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Black hole interaction energy

Sergio Dain*
Albert-Einstein-Institut, am Mu¨hlenberg 1, D-14476, Golm, Germany

~Received 26 July 2002; published 29 October 2002!

The interaction energy between two black holes at a large separation distance is calculated. The first term in
the expansion corresponds to the Newtonian interaction between the masses. The second term corresponds to
the spin-spin interaction. The calculation is based on the interaction energy defined on the two black holes’
initial data. No test particle approximation is used. The relation between this formula and cosmic censorship is
discussed.
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I. INTRODUCTION

The purpose of this article is to prove, under appropri
assumptions, the following statement: the interaction ene
at a large separation distancel, between two black holes o
massesM1 ,M2 and spinsJ1 ,J2 is given by

E5
2M1M2

l
1

2J1•J213~J1•n̂!~J2•n̂!

l 3

1higher order terms, ~1!

wheren̂ is a unit vector which points inward along the lin
connecting the black holes. Before giving a precise definit
of the parameters involved in Eq.~1!, I want to discuss its
physical meaning.

The first term in Eq.~1! has the Newtonian form. For two
point particles of massesM1 andM2 separated by a Euclid
ean distancel, the Newtonian interaction energy betwe
them is given by2M1M2 / l . The fact that this term appear
also for a two-black-hole system in general relativity is e
pected from the weak field limit of Einstein’s equations. T
second term in Eq.~1!, which involves the spins, has a
analogous form to the dipole-dipole electromagnetic inter
tion; there exists an analogy between the magnetic dipol
electromagnetism and spin in general relativity~see@1#!. In
the electromagnetic case,l is the Euclidean distance betwee
two charge distributions andJ1 ,J2 their corresponding di-
pole moments. However, the gravitational black hole sp
spin interaction has the opposite sign to the electromagn
one. The first evidence of this fact was given by Hawki
@2#. I want to reproduce Hawking’s argument here becaus
points out the connection between Eq.~1! and the cosmic
censorship conjecture~see also the discussion in@1#!. In the
argument, we assume the following two consequences
weak cosmic censorship and the theory of black holes~cf.
@3,4#; see also@5#!: ~i! Every apparent horizon must be e
tirely contained within the black hole event horizon;~ii ! if
matter satisfies the null energy condition~i.e., if Tabk

akb

>0 for all null ka), then the area of the event horizon of
black hole cannot decrease in time. We also assume~iii ! that
all black holes eventually settle down to a final Kerr bla
hole.
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Consider a system of two black holes such that, at a gi
time, the separation distance between them is large. T
there must exist a Cauchy surface in the asymptotically
region of the space-time such that the intersection of
hypersurface with the event horizon has two disconnec
component of areasA1 andA2. Since the black holes are fa
apart, these areas can be approximated by the Kerr form

A158p~M1
21AM1

42J1
2!,

A258p~M2
21AM2

42J2
2!. ~2!

At late times, after the collision, the system will settle dow
to a Kerr black hole. Hence, there must exist another Cau
hypersurface such that its intersection with the event hori
will have area

Af58p~M f
21AM f

42Jf
2!, ~3!

whereM f is the mass of the final black hole andJf is its final
angular momentum. By~ii ! we have

Af>A11A2 . ~4!

Since gravitational waves have positive mass, we also h

M f<M11M2 . ~5!

In general, gravitational waves will carry angular mome
tum. But in axially symmetricspace-times the total angula
momentum is a conserved quantity, since it can be define
a Komar integral~cf. @6# and also@4#!. Then in this case we
have

Jf5J11J2 . ~6!

Using Eqs.~2!, ~3!, ~4!, and ~6! it is possible to obtain an
upper bound, which depends onJ1 and J2, to the total
amount of radiation emitted by the systemM11M22M f . It
can be seen that ifJ1 andJ2 have the same sign this uppe
bound is smaller than if they have opposite sign. This s
gests that there may be a spin-spin force between the b
holes that is attractive if the angular momenta have oppo
directions and repulsive if they have the same direction. P
sumably, in the second case the system expends energ
doing work against the spin repulsive force, and for this r
son this energy is not available to be radiated via grav
tional radiation.
©2002 The American Physical Society19-1
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Hawking’s argument only suggests that the spin inter
tion energy between black holes has this sign depende
with respect to the spins. It is not a proof, first because th
is no proof for the weak cosmic censorship conjectures~i!,
~ii ! and for the assumption~iii !; second, because even if w
assume~i!–~iii ! the argument only shows that an upp
bound of the total amount of radiated energy has this s
dependence in terms ofJ1 and J2, but the real amount o
gravitational radiation can, in principle, have a different d
pendence. In fact, the total amount of gravitational radiat
produced by such systems, as numerical studies show
much smaller than this bound. This upper bound is 50%
the total mass when the spins are antiparallel, the black h
are extreme (J25M ), and have equal masses; when t
spins are zero or when the black holes are extreme w
parallel spins, the upper bound is 29% of the total mass.
the other hand, in the numerical calculations the maxim
amount of radiation emitted by this type of system is ab
3% of the total mass~see@7,8# for a recent calculation and
also @9# for an up to date review on the subject!. However,
the numerical studies show that the system indeed rad
less when the spins are parallel than when they are ant
allel. Moreover, Wald@1# proves that the interaction energ
between a test particle with spinJ2 and a stationary back
ground of spinJ1 has precisely this sign dependence. Wa
shows that the spin-spin interaction energy has the form

2J1•J213~J1•n̂!~J1•n̂!

l 3
, ~7!

wherel and n̂ are defined as follows. The stationary field
expanded at large distance with respect to Carte
asymptotic coordinatesxi ; herel is the Euclidean radius with
respect toxi andn̂i5xi / l . Equation~7! has also been prove
by D’Eath using post-Newtonian expansions@10#. It is im-
portant to note that Eq.~7! gives indirect evidence in suppo
of ~i!–~iii !.

In this article I want to prove Eq.~7! without using either
the particle or post-newtonian approximation. The proof
based on an interaction energy defined on the two-black-
initial data. This interaction energy is genuinely nonlinear
does not involve any approximation.

The plan of the paper is as follows. In Sec. II the ma
results are given. In Sec. III Theorem 2 is proved; in Sec.
we prove Corollary 1. Finally, in Sec. V an alternative de
nition of the interaction energy is discussed.

II. MAIN RESULT

The strategy I will follow was given by Brill and
Lindquist @11#. It is based on the analysis of aninitial data
set with many asymptotic ends. An initial data set for the
Einstein vacuum equations is given by a triple (S̃,h̃ab ,K̃ab)
where S̃ is a connected three-dimensional manifold,h̃ab a
~positive definite! Riemannian metric, andK̃ab a symmetric
tensor field onS̃. They satisfy the vacuum constraint equ
tions
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D̃bK̃ab2D̃aK̃50, ~8!

R̃1K̃22K̃abK̃
ab50 ~9!

on S̃, whereD̃a is the covariant derivative with respect t
h̃ab , R̃ is the trace of the corresponding Ricci tensor,K̃

5h̃abK̃ab , and a,b,c, . . . denote abstract indices. Tens
indices of quantities with a tilde will be moved with th
metric h̃ab and its inverseh̃ab. The data will be calledas-
ymptotically flat with N11 asymptotic ends, if for some
compact setV we have thatS̃\V5(k50

N S̃k , where S̃k are

open sets such that eachS̃k can be mapped by a coordina
systemxj diffeomorphically onto the complement of a close
ball in R3 such that we have in these coordinates

h̃i j 5S 11
2Mk

r D d i j 1O~r 22!, ~10!

K̃ i j 5O~r 22!, ~11!

as r 5@( j 51
3 (xj )2#1/2→` in each setS̃k ; where i , j . . . ,

which take values 1,2,3, denote coordinate indices with
spect to the given coordinate systemxj , andd i j denotes the
flat metric. We will call the coordinate systemxi an
asymptotic coordinate systemat the endk. Each asymptotic
region S̃k has a different asymptotic coordinate system. T
constant Mk denotes the Arnowitt-Deser-Misner~ADM !
mass@12# of the data at the endk. These conditions guaran
tee that the mass, the linear momentum, and the ang
momentum of the initial data set are well defined at ev
end.

For N>1, this class of data contains, in general, appar
horizons. The existence of apparent horizons leads us to
terpret these data as representing initial data for black ho
Their evolution will presumably contain an event horizo
according to the standard theory of black holes@3#. The va-
lidity of this picture depends, of course, on the cosmic c
sorship conjecture. The only statement about the evolutio
the data that we can make is the geodesic incompletene
the space-time. In general, in order to prove the geod
incompleteness of a space-time, one needs to know tha
data contain a trapped surface in order to apply the singu
ties theorems@3#. However, in this particular case, since th
topology of the data is not trivial, the geodesic incomple
ness of the space-time follows directly from a theore
proved by Gannon@13#.

For simplicity we will fix N52 ~see Fig. 1!. In this case
the data can be interpreted as initial data with two bla
holes. This interpretation is suggested by the following fa
when an appropriate distance parameter is large comp
with the massesMk , then it can be seen numerically th
only two disconnected apparent horizons appear. For t
symmetric data, these numeric calculations have been d
in @11#; the non-time-symmetric case has been studied
Cook ~see@14# and references therein!. It is not clear that the
number of apparent horizons is the number of black ho
contained in the data, since, even when there are two dis
9-2
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nected apparent horizons, the intersection of the event h
zon with the initial data can be connected. However, at la
separation distance, this seems to be a reasonable ass
tion, which is confirmed by the numerical evolutions@9#.

Brill and Lindquist define the following interaction energ
at the endk:

Ek5Mk2 (
k850
k8Þk

N

Mk8 . ~12!

The energyEk is a geometric quantity; its definition does n
involve any approximation. The question now is how to c
culateEk in terms of physically relevant parameters. The fi
problem is how to define an appropriate separation dista
between the black holes. When there are two apparent h
zons, there is a well defined separation distancel h̃ defined as
the minimum geodesic distance between any two point
the two different horizons~see Fig. 2!.

However, the distancel h̃ is hard to compute. The locatio
of the apparent horizons can be calculated only numeric
Since we are only interested in the energy at large sep
tions, instead ofl h̃ we will use another parameterl, and we
will argue thatl h̃' l in this limit. The definition of the pa-
rameterl is related to the way in which one can constru
solutions of the constraint equations with many asympto
ends. The conformal method~see@15,16# and the reference
therein! is a general method for constructing solutions of t
constraint equations. We assume thathab is a positive defi-

FIG. 1. Initial data with three asymptotic ends (N52). For each

asymptotic regionS̃k , we have the corresponding massMk and
total angular momentumJk

a .

FIG. 2. An initial data set with three asymptotic end points a
only two disconnected apparent horizons of areaA1 ,A2, and radii
R1 ,R2. The pointsi 1 andi 2 represent the two other infinities 1 an
2. The geodesic distancel h̃ is computed with the physical metri

h̃ab . The parameterl is computed with the conformal metric. Th
geodesic distance betweeni 1 and i 2 with respect to the physica
metric is infinite.
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nite metric with covariant derivativeDa , andKab is a trace-
free ~with respect tohab) symmetric tensor, satisfying

DaKab50 on S̃. ~13!

Let w be a solution of

Lhw52
1

8
KabK

abw27 on S̃, ~14!

whereLh5DaDa2R/8 andR is the scalar curvature of th
metric hab . Then the physical fields (h̃,K̃) defined byh̃ab

5w4hab and K̃ab5w210Kab will satisfy the vacuum con-
straint equations onS̃. We have assumed thatKab is trace
free; henceK̃ab will also be trace free with respect toh̃ab .
That is, the initial data set will bemaximal.

To ensure asymptotic flatness of the data at the each
k, we will require the following boundary conditions. Leti 1

andi 2 be two arbitrary points inR3, with coordinatesx1
j and

x2
j in some Cartesian coordinate systemxi . Define the mani-

fold S̃ by S̃5R3\$ i 1 ,i 2%. Assume thathab is regular onR3.
At infinity we will impose the following falloff behavior:

hi j 5d i j 1O~r 22!, ~15!

Kab5O~r 22!, ~16!

w511O~r 21!. ~17!

At the pointsi 1 and i 2 we require

Kab5O~r 1
24!, Kab5O~r 2

24!, ~18!

where

r 15S (
i 51

3

~xi2x1
i !2D 1/2

,

r 25S (
i 51

3

~xi2x2
i !2D 1/2

, ~19!

and

lim
r 1→0

r 1w5
m1

2
, lim

r 2→0
r 2w5

m2

2
, ~20!

wherem1 and m2 are positive constants. Note that bothw
andKab are singular ati 1 ,i 2.

One can prove that the data so constructed will be asy
totically flat at the three ends. We have made an artific
distinction between the end 0, given byr→`, and the ends
1 and 2. It is possible to discuss the same construction
more geometrical way, such that all ends are treated equ
see@17–20#. However, since our final goal is to calculate th
interaction energy at one end, it is convenient to make
distinction. The coordinate systemxi and the corresponding
flat metric in the expansion Eq.~15! give the Euclidean dis-
tancel betweeni 1 and i 2:
9-3
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SERGIO DAIN PHYSICAL REVIEW D 66, 084019 ~2002!
l 5S (
i 51

3

~x2
i 2x1

i !2D 1/2

, ~21!

which will be our separation distance parameter~see Fig. 2!.
In general, Eq.~14! is nonlinear. However, if we assum

that the data are time symmetric, i.e.,Kab50, then it be-
comes a linear equation forw. If we assume that the confor
mal metric is flat, we obtain a Laplace equation forw. The
solution of this equation that satisfies the boundary con
tions Eqs.~20! and ~17! is given by

w0511
m1

2r 1
1

m2

2r 2
. ~22!

This solution was found by Brill and Lindquist in@11#. In
this case it is possible to calculate explicitly the interact
energy~12! in terms of the masses and the separation
tance. The result is the following.

Theorem 1 (Brill-Lindquist). Let hab be a flat metric and
K̃ab50. Then the interaction energy defined by Eq.~12! is
always negative. Moreover, whenl is large compared with
Mk the following expansion holds:

E052
M1M2

l
1higher order terms. ~23!

Giulini @21# has computed the higher order terms for the
data and other conformally flat time symmetric data w
different topologies. In those examples the Newtonian te
is invariant but the higher order terms depend on the part
lar initial data.

In order to discuss spin-spin interaction, we need ini
data with nontrivial angular momentum, that is, we have
allow for nontrivial extrinsic curvature in the data. At eac
end we have the angular momentumJk given by

Jk
a5

1

8p
lim
r→`

E
Sr

r K bcn
becadnddSr , ~24!

whereSr is a two-sphere defined in the asymptotic regionS̃k
andna is its outward unit normal vector. In Eq.~24! we can
use eitherKab or K̃ab because the conformal factor satisfi
Eq. ~17!. In general the angular momentum at each end isnot
determined by the intrinsic angular momentum of each bl
hole. It includes also the angular momentum of the grav
tional field surrounding the black holes. Then, in gene
there is no relation betweenJ0 , J1, andJ2; these three quan
tities can be freely prescribed. But in the presence of sy
metries these quantities cannot be given freely any m
Moreover, in the presence ofconformal symmetriesof the
metric there exists a well defined quasilocal definition
angular momentum. Assume thatja is a conformal Killing
vector; that is, a solution of the equation (Lhj)ab50, where

~Lhj!ab5Dajb1Dbja2
2

3
habDcj

c. ~25!
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If the initial data are maximal, i.e.,K50, then the vector
Kabjb is divergence free. Hence, for each conformal symm
try ja we have the associated integral

I j5E
S
Kabjbna dS, ~26!

whereS is a close two-surface andna its outward unit nor-
mal vector. This integral is a conformal invariant. It can
calculated also in terms of tilde quantities. The integral~26!
will be nonzero only if the vectorKabjb is singular at some
points; in our case it will be singular at two points: the loc
tions of the holes. Then the integral in Eq.~26! will have
three different values depending on whether the surfacS
encloses one hole, two holes, or no hole. In the last c
I j50. If we choseja to be a rotation,I j will give the cor-
responding component of the quasilocal angular moment
If the data are conformally flat we have ten conformal Ki
ing vectors. In particular, we have three rotations and he
a complete definition of the quasilocal angular momentu
These quantities will be defined only on this slice and w
generally not be preserved in the evolution. They will on
be preserved if the space-time admits a Killing vector. In t
case they will coincide with the corresponding Komar in
gral. The space time will admit a Killing vector field ifja is
a Killing vector for the whole initial data set; that is, £jh̃ab

5£jK̃
ab50, where £j is the Lie derivative with respect to

ja. A conformally flat, maximal slice can be interpreted as
instant of time in which the gravitational field carries n
angular momentum and no linear momentum itself, a
hence these quantities are carried only by the ‘‘source
which in this case are the black holes. Data containing ma
with compact support can also be constructed.

There exist in the literature other definitions of quasiloc
angular momentum@22–25#, which are applicable for an ar
bitrary closed two-surface in the spacetime. It is not clea
any of these definitions will agree with Eq.~26! in the par-
ticular case of a two-surface lying on a conformally fl
three-hypersurface.

From the discussion above, we conclude that in the c
of conformally flat, maximal data we have

J0
a1J1

a1J2
a50. ~27!

For an observer placed at the asymptotic end 0 the sys
will look like two black holes with spins2J1

a and2J2
a , and

the total angular momentum will beJ0
a52J1

a2J2
a . For a

more general discussion of conformal symmetries in ini
data, see@26# and @27#; in particular in those articles a gen
eralization of Eq.~27! that includes linear momentum i
proved.

Bowen and York obtain a simple model for a conforma
flat data set which represents two black holes with spins@28#.
Brandt and Bru¨gmann@29# study these data with boundar
conditions for theN11 asymptotic ends given by Eqs.~18!,
~16!, ~20!, and ~17!. For these data, the conformal seco
fundamental form is given by

Kab5K1
ab1K2

ab, ~28!
9-4
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where

K1
ab5

6

r 1
3

n1
(aeb)cdJ1 cn1 d ,

K2
ab5

6

r 2
3

n2
(aeb)cdJ2 cn2 d , ~29!

and

n1
i 5

xi2x1
i

r 1
, n2

i 5
xi2x2

i

r 2
, ~30!

whereJ1
c ,J2

c are constants, andebcd is the flat volume ele-
ment. One can check that the constantsJ1

c and J2
c give the

angular momentum at ends 1 and 2, respectively. The
sors ~29! are divergence free and trace free with respec
the flat metric inR3\$ i 1 ,i 2%.

The first result of this article is the following theorem.
Theorem 2.Let hab be the flat metric andKab be given by

Eq. ~28!. Then the interaction energy~12! is given by

E05
2M1M2

l
1

2J1•J213~J1•n̂!~J1•n̂!

l 3

1higher order terms. ~31!

The expansion of the dimensionless quantityE0 / l is
made in terms of the dimensionless parametersM1 / l , M2 / l ,
J1 / l 2, andJ2 / l 2. By ‘‘higher order terms’’ we mean terms o
cubic order in those parameters. We prove Theorem 2 in
III.

Using similar arguments, Gibbons@30,31# has obtained
the qualitative sign dependence of the spin-spin interac
for a certain class of axially symmetric, conformally fl
data. Note that in Theorem 2 the data are nonaxially sy
metric in general, since the spins can point in arbitrary dir
tions. Bonnor@32# studied the spin-spin interaction using a
exact, axially symmetric solution of the Einstein-Maxwe
equations; his result also qualitatively agrees with the sp
spin term in Eq.~31!.

The Bowen-York data are, of course, very special. T
natural question is how to generalize Theorem 2 for m
general data. For general asymptotically flat data with th
asymptotic ends we cannot even expect to recover the N
tonian interaction term. Take, for example, time symme
initial data with only two ends. Choosing the conformal m
ric appropriately, one can easily construct data such that
differenceM12M0 is arbitrary. That means that we are pu
ting more radiation in one end than in the other. If we ad
third end with small mass, the new interaction energy will
dominated by the differenceM12M0 and hence will be not
related to any Newtonian force. Hence, Theorem 1 is not
for general asymptotically flat metrics with many asympto
ends.

The interaction energy defined by Eq.~12! can have the
meaning of a two-black-hole interaction energy only if it
possible to distinguish in the data two objects that are sim
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to the Kerr black hole when the separation distance is la
I will call this class of datatwo Kerr-like black hole initial
data. The existence of these data has been proved in@33,20#.
The following two properties of the Kerr initial data, in th
standard Boyer-Lindquist coordinates, are important:~i! The
data are conformally flat up to orderO(J2); ~ii ! the leading
order term of the second fundamental form is given by
Bowen-York one~29!. Then one can expect that Eq.~31! is
unchanged in the principal terms for this class of data.

More precisely, two Kerr-like black hole initial data ca
be constructed as follows~see@33# and@20# for details!. Take
a slice of the Kerr metric, with parametersMK1

and J1, in
the standard Boyer-Lindquist coordinates. Choosing the
propriate conformal factor, the conformal metric can be w
ten in the following form:

hab
K15dab1hab

R1 , ~32!

wherehab
R15O(J1

2). In the same way the conformal secon
fundamental form can be written as

KK1

ab5K1
ab1KR1

ab , ~33!

whereKR1

ab5O(J1
2) and K1

ab is given by Eq.~29!. Take an-

other Kerr metric, with parametersMK2
and J2, and define

the following conformal metric:

hab
KK5dab1hab

R11hab
R2 , ~34!

and the following conformal second fundamental form:

KKK
ab 5K̄K1

ab1K̄K2

ab1~LhKK
w!ab, ~35!

where the bar means the trace-free part of the tensor
respect to the metric~34! andwa is chosen such thatKKK

ab is
divergence free and trace free with respect to the metric~34!.
In @33,20# it was proved that such a vectorwa exists and is
unique. Using Eqs.~34! and ~35!, solve Eq.~14! with the
boundary conditions~20! and ~17! where

m15AMK1

2 2J1
2/MK1

2 ,

m25AMK2

2 2J2
2/MK2

2 . ~36!

The existence of a unique solution has been proved
@33,20#.

If we choseJ1
a andJ2

a to point in the same direction, th
data will be axially symmetric. In this particular case, we c
use the integral~26! to calculate the quasilocal angular m
mentum of each of the black holes. The result will beJ1

a and
J2

a . However, in general, this class of data will admit n
conformal Killing vector. In this general situation, it is ver
hard to compute the quasilocal spins of each of the bl
holes. However, when the separation distance is large,J1

a and
J2

a will give approximately the angular momentum of each
the black holes because this class of data has a far limit to
9-5
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SERGIO DAIN PHYSICAL REVIEW D 66, 084019 ~2002!
Kerr initial data. In other words,J1
a andJ2

a give the spins of
one black hole when the parameters of the other are se
zero.

For this class of data we have the following result.
Collollary 1. For the two Kerr-like data defined above, th

formula ~31! for the interaction energy holds.
We prove this corollary in Sec. IV.

III. INTERACTION ENERGY FOR SPINNING
BOWEN-YORK INITIAL DATA

In this section we will prove Theorem 2. For Bowen-Yo
data, with the boundary conditions~20! and~17!, Eq.~14! for
the conformal factor can be written in the following for
@29#:

Du52
KabKab

8w7
, w5w01u, ~37!

with the boundary condition

lim
r→`

u50, ~38!

wherew0 is defined in Eq.~22!, with m1 and m2 arbitrary
positive constants, andKab5K1

ab1K2
ab is given by Eq.~29!.

The coordinatesxi are asymptotic coordinates for the en
0. The total mass at 0 is given by

M05m11m212u` , ~39!

whereu` is the term that varies as 1/r in the solutionu of
Eq. ~37! and is given by

u`5
1

4pER3

KabKab

8w7
dx3. ~40!

We want to calculate the massesM1 and M2 for the other
ends. The asymptotic coordinates for the other ends are

x̂i 1
i 5

m1
2

4

~xi2x1
i !

r 1
2

, x̂i 2
i 5

m2
2

4

~xi2x2
i !

r 2
2

. ~41!

Take, for example, the end pointi 1, in x̂i 1
i coordinates we

have

h̃î ĵ5S 11
m1

2r̂ 1

1
m1m2

4l r̂ 1

1
u~ i 1!

2r̂ 1
D d î ĵ1O~1/r̂ 1

2!, ~42!

where we have used

r 25 l 1O~1/r̂ 1!, ~43!

and r̂ 1 is the Euclidean radius with respect tox̂i 1
i . Then the

mass at this end is given by

M15m1S 11
m2

2l
1u~ i 1! D , ~44!
08401
to
whereu( i 1) denote the value of the functionu at the point
i 1. In an analogous way we obtain the mass at the end 2

M25m2S 11
m1

2l
1u~ i 2! D . ~45!

Then the interaction energy at the endi 0 is given by

E05M02M12M2

52
m1m2

l
12u`2m1u~ i 1!2m2u~ i 2!. ~46!

Using Eq.~37! and the Green’s function for the Laplacia
we obtain the following integral representation of the ter
involving u in Eq. ~46!:

2u`2m1u~ i 1!2m2u~ i 2!

5
1

16pER3

KabKab

w7 S 12
m1

2r 1
2

m2

2r 2
Ddx3. ~47!

The formula~47! involves the unknown functionu. Using
the fact thatu is O(J2), we make an expansion of this inte
gral in terms of the parametersJ1 / l 2, J2 / l 2, m1 / l , and
m2 / l . We obtain that the first nontrivial term is given by

2u`2m1u~ i 1!2m2u~ i 2!'Es, ~48!

where

Es5
1

8pER3
K1

abK2 ab dx. ~49!

The interaction energy, up to this order, is given by

E52
M1M2

l
1Es, ~50!

where we have used Eqs.~44! and~45! to replacemk by Mk ,
since up to this order they are equal.

All that remains is to compute the integralEs. This inte-
gral can, in principle, be calculated explictly from the e
pressions~29!. However, such a calculation is very comp
cated. Instead of this we will calculate Eq.~49! in the
following way. The tensors~29! can be written as

~Ldv1!ab5K1
ab, ~Ldv2!ab5K2

ab, ~51!

whereLd is the conformal Killing operator defined in Eq
~25! for the flat metric, and

v1
i 52e i jkJ1 jn1 kr 1

22 , ~52!

v2
i 52e i jkJ2 jn2 kr 2

22 . ~53!

Let Be1
andBe2

be small balls centered ati 1 and i 2, respec-

tively, of radii e1 ande2. We have that

Es5
1

8p
lim

e1 ,e2→0
E

R32Be1
2Be2

K1
abK2abdx. ~54!
9-6
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Using the Gauss theorem inR32Be1
2Be2

we obtain

E
R32Be1

2Be2

K1
abK2ab dx522E

]Be1

K2
abv1bn1adSe1

22E
]Be2

K2
abv1bn2adSe2

,

~55!

wheren1
a andn2

a are the outward normals to the two surfac
Be1

and Be2
. In the limit e1→0 the first integral vanishes

We use here thatK2
ab is regular inBe1

. The second integra

can easily be calculated in the limite2→0. We obtain

Es5
2J1•J213~J1•n̂!~J1•n̂!

l 3
. ~56!

IV. INTERACTION ENERGY FOR TWO KERR-LIKE
BLACK HOLES INITIAL DATA

The two Kerr-like black hole initial data are solutions
the following equation:

LhKKwKK52
KKK abKKK

ab

8wKK
7

on S̃, ~57!

with the boundary conditions~20! and ~17!, wherehab
KK and

KKK
ab are given by Eqs.~34!,~35! andm1 ,m2 are given by Eq.

~36! in terms of the Kerr parameters.
The conformal factor for the Kerr initial data with param

etersMK1
,J1 can be written in the following form:

wK1
511

m1

2r 1
1wR1

, ~58!

where wR1
5O(J1

2). We can decompose the two Kerr-lik
solution in the following form:

wKK5w01wR1
1wR2

1u. ~59!

Using that Eq.~58! is a solution for a one Kerr-like initia
data set, we obtain that the first term in the expansion inJ1
andJ2 of the functionu satisfies the following linear equa
tion:

Du'2
K1

abK2 ab

8w0
7

. ~60!

Hence, the spin-spin interaction term has the same form
the Bowen-York one. In an analogous way to the previo
section, we obtain that the interaction energy is given by

E0'2
M1M2

l
1Es, ~61!

whereEs is given by Eq.~49!.
08401
as
s

V. DISCUSSION

We have shown, using the interaction energy defined
Eq. ~12!, that the spin-spin interaction between black ho
of arbitrary masses and spins has an expansion of the f
~31!. This formula was previously derived using a test p
ticle approximation@1# and post-Newtonian expansions@10#.
The main improvement of the present calculation, apart fr
its simplicity, is that no approximation is used in the defin
tion of the interaction energy. Moreover, the very definiti
of the interaction energy involves black holes, in contr
with previous calculations where the black holes appear
directly.

The interaction energy defined by Eq.~12! uses the fact
that we are choosing a particular topology for the initial da
but other topologies are possible. Examples of differ
kinds of topologies where we cannot use Eq.~12! are the
Misner topology of two isometric sheets@34#, the Misner
wormhole @35#, or even initial data with trivial topologies
which contain an apparent horizon@36#. If the initial data
havek disconnected apparent horizons of areaAk , we can
define the individual masses as follows:

MHk
5A Ak

16p
. ~62!

Then the interaction energy is given by the formula

EH5M2 (
k850
k8Þk

N

MH
k8
. ~63!

What is the relation betweenEk defined by Eq.~12! andEH
defined by Eq.~63!? Note thatEH is much harder to compute
than Ek . I want to argue thatEk will presumably give the
same result asEk for the leading order terms in the expa
sion given by Theorem 2. Assume that the data are such
when the separation distance parameter is large, then
areas can by approximated by the Schwarzschild form
Ak'16pMk

2 plus terms of orderJ2. Then the radii of the
horizons will beRk'2Mk . The distancel h̃ will differ from l
in terms of orderO(M ,J2). Then we can replacel by l h̃ in
theoreml h̃ andMHk

by Mk in Eq. ~12!, up to this order.

It is interesting to note that the interaction energyEH has
been used in a different context, namely, to determine the
stable circular orbit in a black hole collision@37#.
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