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Black hole interaction energy
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The interaction energy between two black holes at a large separation distance is calculated. The first term in
the expansion corresponds to the Newtonian interaction between the masses. The second term corresponds to
the spin-spin interaction. The calculation is based on the interaction energy defined on the two black holes’
initial data. No test particle approximation is used. The relation between this formula and cosmic censorship is
discussed.
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[. INTRODUCTION Consider a system of two black holes such that, at a given
time, the separation distance between them is large. Then
The purpose of this article is to prove, under appropriateéhere must exist a Cauchy surface in the asymptotically flat
assumptions, the following statement: the interaction energyegion of the space-time such that the intersection of the
at a large separation distankebetween two black holes of hypersurface with the event horizon has two disconnected

massedVl1,M, and spinsly,J, is given by component of area&; andA,. Since the black holes are far
R R apart, these areas can be approximated by the Kerr formula

_M1M2+ —J1-J5+3(J1-n)(Jz-N)

| E A=8m(Mi+M1-J9),
+ higher order terms, (1) A,=8m(M3+\M5—J3). )

wheren is a unit vector which points inward along the line At late times, after the collision, the system will settle down
connecting the black holes. Before giving a precise definitior]® @ Kerr black hole. Hence, there must exist another Cauchy
of the parameters involved in E€L), | want to discuss its hypersurface such that its intersection with the event horizon
physical meaning. will have area

The first term in Eq(1) has the Newtonian form. For two _ 2, A
point particles of massad; andM, separated by a Euclid- Ar=8m(Mi+ VM= J7), ©)
ean distancd, the Newtonian interaction energy between, hereM . is the mass of the final black hole adgis its final
them is given by— MM, /I. The fa_ct that this term appears angular momentum. Byii) we have
also for a two-black-hole system in general relativity is ex-
pected from the weak field limit of Einstein’s equations. The A=A +A,. 4
second term in Eq(1), which involves the spins, has an o -
analogous form to the dipole-dipole electromagnetic interacSince gravitational waves have positive mass, we also have
tion; there exists an analogy between the magnetic dipole in M <M+ M 5
electromagnetism and spin in general relatiigge[1]). In i=Mg+M;. (5)
the electromagnetic cadeis the Euclidean distance between In general, gravitational waves will carry angular momen-

two charge distributions and, ,J, their corresponding di- 1y "Byt in axially symmetricspace-times the total angular

pole moments. However, the gravitational black hole spiny,,mentym is a conserved quantity, since it can be defined by

spin interaction has the opposite sign to the electromagnetig 4y integralcf. [6] and alsd[4]). Then in this case we
one. The first evidence of this fact was given by Hawking, ..«

[2]. I want to reproduce Hawking’s argument here because it

points out the connection between E@) and the cosmic Ji=Jd,+J,. (6)

censorship conjectur@ee also the discussion fii]). In the

argument, we assume the following two consequences dflsing Egs.(2), (3), (4), and (6) it is possible to obtain an

weak cosmic censorship and the theory of black hotés upper bound, which depends ah and J,, to the total

[3,4]; see alsd5]): (i) Every apparent horizon must be en- amount of radiation emitted by the systéiy +M,—M;. It

tirely contained within the black hole event horizdi) if can be seen that if; andJ, have the same sign this upper

matter satisfies the null energy conditidie., if T,pk?k" bound is smaller than if they have opposite sign. This sug-

=0 for all null k?), then the area of the event horizon of a gests that there may be a spin-spin force between the black

black hole cannot decrease in time. We also assiiimghat  holes that is attractive if the angular momenta have opposite

all black holes eventually settle down to a final Kerr blackdirections and repulsive if they have the same direction. Pre-

hole. sumably, in the second case the system expends energy in
doing work against the spin repulsive force, and for this rea-
son this energy is not available to be radiated via gravita-
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_ Hawking’s argument only suggests thgt th_e spin interac- BPK ,,— DK =0, ®)
tion energy between black holes has this sign dependence
with respect to the spins. It is not a proof, first because there
is no proof for the weak cosmic censorship conjectuigs

(i) and fpr th_e assumptiofiii ); second, because even if we on'S, whereD, is the covariant derivative with respect to
assume(i)—(iii) the argument only shows that an upper_." ~'_" a . o =
bound of the total amount of radiated energy has this sigiab, R is the trace of the corresponding Ricci tensir,
dependence in terms @f; andJ,, but the real amount of =h3"K,,, anda,b,c, ... denote abstract indices. Tensor
gravitational radiation can, in principle, have a different de-indices of quantities with a tilde will be moved with the
pendence. In fact, the total amount of gravitational radiatiormetricﬁab and its inversén@®. The data will be calledis-
produced by such systems, as numerical studies show, {anptotically flatwith N-+1 asymptotic ends, if for some
much smaller than this bound. This upper bound is 50% Of:ompact sef) we have thafS\Q:EE:OTSk, where3, are

the total mass when the spins are antiparallel, the black holeos en sets such that eah can be mapped by a coordinate
are extreme J°=M), and have equal masses; when the P u PP y !

spins are zero or when the black holes are extreme WitﬁySteij diffeomorphically onto the complement of a closed

parallel spins, the upper bound is 29% of the total mass. OHa” in ? such that we have in these coordinates
the other hand, in the numerical calculations the maximum
amount of radiation emitted by this type of system is about ﬁij -
3% of the total mass$see[7,8] for a recent calculation and
also[9] for an up to date review on the subjedHowever, _
the numerical studies show that the system indeed radiates Kij=0(r?), (11
less when the spins are parallel than when they are antipar- . _
allel. Moreover, Wald 1] proves that the interaction energy as r=[Ej3:1(X‘) —o in each setS,; wherei,j ...,
between a test particle with spily and a stationary back- which take values 1,2,3, denote coordinate indices with re-
ground of spinJ; has precisely this sign dependence. Waldspect to the given coordinate systetn and d;; denotes the
shows that the spin-spin interaction energy has the form flat metric. We will call the coordinate system' an
asymptotic coordinate systeat the endk. Each asymptotic
—~J,-3,+3(31-n)(J;-N) regionS, has a different asymptotic coordinate system. The
3 : (7)  constantM, denotes the Arnowitt-Deser-MisnefADM )
mass[12] of the data at the enkl These conditions guaran-

. tee that the mass, the linear momentum, and the angular
wherel andn are defined as follows. The stationary field is momentum of the initial data set are well defined at every
expanded at large distance with respect to Cartesiasnd.
asymptotic coordinates; herel is the Euclidean radius with ForN=1, this class of data contains, in general, apparent
respect toc andn'=x'/1. Equation(7) has also been proved horizons. The existence of apparent horizons leads us to in-
by D’Eath using post-Newtonian expansigrig€]. It is im-  terpret these data as representing initial data for black holes.
portant to note that Eq7) gives indirect evidence in support Their evolution will presumably contain an event horizon,
of (i)—(iii). according to the standard theory of black hdigds The va-

In this article | want to prove Eq7) without using either lidity of this picture depends, of course, on the cosmic cen-
the particle or post-newtonian approximation. The proof issorship conjecture. The only statement about the evolution of
based on an interaction energy defined on the two-black-holthe data that we can make is the geodesic incompleteness of
initial data. This interaction energy is genuinely nonlinear; itthe space-time. In general, in order to prove the geodesic
does not involve any approximation. incompleteness of a space-time, one needs to know that the

The plan of the paper is as follows. In Sec. Il the maindata contain a trapped surface in order to apply the singulari-
results are given. In Sec. Ill Theorem 2 is proved:; in Sec. I\ties theorem$3]. However, in this particular case, since the
we prove Corollary 1. Finally, in Sec. V an alternative defi- topology of the data is not trivial, the geodesic incomplete-
nition of the interaction energy is discussed. ness of the space-time follows directly from a theorem
proved by Gannonl3].

For simplicity we will fix N=2 (see Fig. L In this case
the data can be interpreted as initial data with two black

The strategy | will follow was given by Brill and holes. This interpretation is suggested by the following fact:
Lindquist[11]. It is based on the analysis of amitial data ~ When an appropriate distance parameter is large compared
setwith many asymptotic endsAn initial data set for the With the massedVly, then it can be seen numerically that

Einstein vacuum equations is given by a trip& fap,Kap) only two. disconnected apparent horlzo'ns appear. For time
~ . . : g symmetric data, these numeric calculations have been done
where S is a connected three-dimensional manifdid,, a

— in [11]; the non-time-symmetric case has been studied by
(positive definitg Riemannian metric, ankl,, a symmetric  Cook (see[14] and references thergirit is not clear that the

tensor field onS. They satisfy the vacuum constraint equa-number of apparent horizons is the number of black holes
tions contained in the data, since, even when there are two discon-

R+K?—KpK#=0 9)

2M, .
1+T 5ij+O(r ), (10)

2]1/2

II. MAIN RESULT
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nite metric with covariant derivative,, andK2® is a trace-
free (with respect tch,,) symmetric tensor, satisfying

D,K®=0 on S (13

Let ¢ be a solution of

1 ~
Lyo=— gKabKab¢_7 on S, (14)
FIG. 1. Initial data with three asymptotic ends<2). For each
asymptotic regiorS,, we have the corresponding mak and  wherelL,=D?D,—R/8 andR is the scalar curvature of the
total angular momenturd . metric h,,. Then the physical fieldsh(K) defined byh,;

. . . = ¢*h,, and K2P= 193 will satisfy the vacuum con-
nected apparent horizons, the intersection of the event hori- @ Tab ¢ fy

- B . b .
zon with the initial data can be connected. However, at larg&traint equatuzns.ors. We have assumed thee™ is trace
separation distance, this seems to be a reasonable assurfiige; henceK® will also be trace free with respect ty,.

tion, which is confirmed by the numerical evolutiof®. That is, the initial data set will benaximal
Brill and Lindquist define the following interaction energy ~ To ensure asymptotic flatness of the data at the each end
at the endk: k, we will require the following boundary conditions. Ligt

andi, be two arbitrary points i3, with coordinatesd1 and

N xb in some Cartesian coordinate systemDefine the mani-
Ex= Mk_kgo Mic - (12) fo1d B by 3=R3{iy,i,}. Assume thah,, is regular onR?.
Kk At infinity we will impose the following falloff behavior:
— -2

The energ)E, is a geometric quantity; its definition does not hij= 8 +0(r %), (15
involve any approximation. The question now is how to cal- ab_ —s
culateE, in terms of physically relevant parameters. The first K®=0(r"), (16)
problem is how to define an appropriate separation distance o=1+0(r" 1 17

between the black holes. When there are two apparent hori-

zons, there is a well defined separation distdpatefined as A

the minimum geodesic distance between any two points in

the two different horizongsee Fig. 2 Ka=0(r; %, Ka=0(r;%), (18)
However, the distanclk; is hard to compute. The location

of the apparent horizons can be calculated only numericallywhere

Since we are only interested in the energy at large separa-

tions, instead ofy, we will use another parametérand we s\

will argue thatls~I in this limit. The definition of the pa- r= Z (X'—X'l)z) ,

rameterl is related to the way in which one can construct -t

t the pointsi; andi, we require

solutions of the constraint equations with many asymptotic 3 172
ends. The conformal methddee[15,16] and the references ro= ( 2 (X — Xl )2) (19)
therein is a general method for constructing solutions of the 2 \& 2 ’
constraint equations. We assume thg{ is a positive defi-
and
Apparent
A / horizons N2 lim r o= % lim r o= % (20
r{—0 r,—0

wherem,; andm, are positive constants. Note that bath
andK?2” are singular at,i,.
One can prove that the data so constructed will be asymp-
; totically flat at the three ends. We have made an artificial
distinction between the end 0, given by, and the ends
FIG. 2. An initial data set with three asymptotic end points andl and 2. It is possible to discuss the same construction in a
only two disconnected apparent horizons of afgaA,, and radii ~ more geometrical way, such that all ends are treated equally,
R;.R,. The pointsi; andi, represent the two other infinities 1 and se€[17-20. However, since our final goal is to calculate the
2. The geodesic distandg is computed with the physical metric interaction energy at one end, it is convenient to make this
Rap. The parameter is computed with the conformal metric. The distinction. The coordinate systexhand the corresponding
geodesic distance betweép andi, with respect to the physical flat metric in the expansion E@l5) give the Euclidean dis-
metric is infinite. tancel betweeni; andi,:

l
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E (21) K3, is divergence free. Hence, for each conformal symme-

=1 try £€2 we have the associated integral

3 (12 If the initial data are maximal, i.eK=0, then the vector
I={ 2, (o—xp)?|
which will be our separation distance paramdsse Fig. 2 ab
In general, Eq(14) is nonlinear. However, if we assume le= SK £pnadS, (26)
that the data are time symmetric, i.&2°=0, then it be-

comes a linear equation far. If we assume that the confor- whereSis a close two-surface amf its outward unit nor-
mal metric is flat, we obtain a Laplace equation forThe  mal vector. This integral is a conformal invariant. It can be
solution of this equation that satisfies the boundary condicalculated also in terms of tilde quantities. The inte2#)

tions Egs.(20) and(17) is given by will be nonzero only if the vectoK?°&, is singular at some
points; in our case it will be singular at two points: the loca-
m  m; tions of the holes. Then the integral in E@6) will have
Po=1+ 2_r1+ 2r, (22 three different values depending on whether the surface

encloses one hole, two holes, or no hole. In the last case,

This solution was found by Brill and Lindquist ifi1]. In  !¢=0. If we choseé to be a rotation] . will give the cor-

this case it is possible to calculate explicitly the interactionféSponding component of the quasilocal angular momentum.

energy(12) in terms of the masses and the separation dislf the data are conformally flat we have ten conformal Kill-

tance. The result is the following. ing vectors. In particular, we have three rotations and hence
Theorem 1 (Brill-Lindquist)Let h,,, be a flat metric and 2 complete qulmtpn of the.quasnocal ang.ular.momentu_m.

Kab=0. Then the interaction energy defined by EtQ) is These quantities will be defined only on this slice and will

always negative. Moreover, whenis large compared with generally not .be preserveq in the gvolutipn. They will only
M, the following expansion’ holds: be preserved if the space-time admits a Killing vector. In this

case they will coincide with the corresponding Komar inte-
MM gral. The space time will admit a Killing vector field §f is
1M2

Eo=— +higher order terms. (23 a Killing vector for the whole initial data set; that is,;Tfab

I ~ _ . o .

=£§Kab=0, where £ is the Lie derivative with respect to
éa. A conformally flat, maximal slice can be interpreted as an
instant of time in which the gravitational field carries no

Giulini [21] has computed the higher order terms for thes
data and other conformally flat time symmetric data with 4 .
different topologies. In those examples the Newtonian ter ngular momentum__and no Ilnt_ear momentum |"fself, a””,',
is invariant but the higher order terms depend on the particu-e'.me.the.Se quantities are carried only by the_ SOources,
lar initial data. W_hlch in this case are the black holes. Data containing matter

In order to discuss spin-spin interaction, we need initialWlth compact support can aiso be constructed.

data with nontrivial angular momentum, that is, we have to There exist in the literature other definitions of quasilocal
allow for nontrivial extrinsic curvature in the data. At each a_ngular momenturﬁZZ—ZEﬂ,_whlch are ap_pllcabl_e for an ar- .
end we have the angular momentuingiven by bitrary closed two-surface in the spacetime. It is not clear if

any of these definitions will agree with E(R6) in the par-
1 ticular case of a two-surface lying on a conformally flat
‘]E:_"mf r Kpcne@n,ds (24)  three-hypersurface. _
87, . Js, From the discussion above, we conclude that in the case
of conformally flat, maximal data we have

where$, is a two-sphere defined in the asymptotic regin
andn? is its outward unit normal vector. In ER4) we can

use eithelk @ or K2° because the conformal factor satisfies For an observer placed at the asymptotic end 0 the system
Eq.(17). In general the angular momentum at each embts il look like two black holes with spins-J3 and—J3, and
determined by the intrinsic angular momentum of each blaclhe total angular momentum will bal=—J2—J3. For a
hole. It includes also the angular momentum of the gravitamgre general discussion of conformal symmetries in initial
tlonal_fleld surrpundlng the black holes. Then, in generaldata, sed26] and[27]; in particular in those articles a gen-
there is no relation betweely, J;, andJ,; these three quan- gralization of Eq.(27) that includes linear momentum is
tities can be freely prescribed. But in the presence of SYMproved.
metries thgse quantities cannot be given freely any more. Bowen and York obtain a simple model for a conformally
Moreover, in the presence abnformal symmetriesf the 5t gata set which represents two black holes with s{26%
metric there exists a well defined quasilocal definition ofgrangt and Bigmann[29] study these data with boundary
angular momentum. Assume thétt is a conf;)brmal Kiling - conditions for theN+ 1 asymptotic ends given by Eq4.8),
vector; that is, a solution of the equatiod£)*°=0, where (1), (20), and (17). For these data, the conformal second
fundamental form is given by

35 +J5+33=0. (27)

2
(£r§)°=D%+D" - gh™Det%. (29 K=K+ K3, (28)

084019-4



BLACK HOLE INTERACTION ENERGY PHYSICAL REVIEW D66, 084019 (2002

where to the Kerr black hole when the separation distance is large.
I will call this class of datawo Kerr-like black hole initial
ab_ O (a_b)cd data The existence of these data has been provéd@3r20.
K1 —Enl €7 J1cNy g, The following two properties of the Kerr initial data, in the

standard Boyer-Lindquist coordinates, are importantThe
data are conformally flat up to ord€(J?); (ii) the leading

Kab— — p(acb)cdy 29 order term of the second fundamental form is given by the
2 —ahye 2cN2ds (29 ;
rs Bowen-York one(29). Then one can expect that E®1) is
unchanged in the principal terms for this class of data.
and More precisely, two Kerr-like black hole initial data can

be constructed as followsee[33] and[20] for detail9. Take
i — ni— (30) a slice of the Kerr metric, with parametelisy andJq, in
Yoo 7, the standard Boyer-Lindquist coordinates. Choosing the ap-

_ propriate conformal factor, the conformal metric can be writ-
where J$,JS are constants, aneP? is the flat volume ele- ten in the following form:

ment. One can check that the constalftsand J5 give the

angular momentum at ends 1 and 2, respectively. The ten- h:éz abt h;l), (32
sors(29) are divergence free and trace free with respect to

. . 3 - .
the flat metric inR*\{iy,i5}. where h§g=O(Ji). In the same way the conformal second

The first result of this article is the following theorem.

. ) fundamental form can be written as
Theorem 2Let h,;, be the flat metric an#&2® be given by

Eqg. (28). Then the interaction enerdyt2) is given by Kﬁ?: KibJr K%r;, (33)
~MiM,  —J;-d,+3(Jd;-n)(Jg-n o
o= Il 2, “1ve (31 N(1-n) whereK&’=0(J3) andK3" is given by Eq.(29). Take an-
I other Kerr metric, with parameteid K, andJ,, and define
+ higher order terms. (31)  the following conformal metric:
The expansion of the dimensionless quantiy/| is h¥K= 5,0+ h:ng h:ﬁ, (34)

made in terms of the dimensionless parameltéygl, M, /I,
J1 /12, andJ, /12, By “higher order terms” we mean terms of and the following conformal second fundamental form:
cubic order in those parameters. We prove Theorem 2 in Sec.
1.

Using similar arguments, Gibbori80,31 has obtained

the qualitative sign dependence of the spin-spin interaction h he b h ¢ £ th ith
for a certain class of axially symmetric, conformally flat Were the bar means the trace-free part of the tensor wit
data. Note that in Theorem 2 the data are nonaxially symt€SPect to the metric34) andw* is chosen such thag is

metric in general, since the spins can point in arbitrary direcdivergence free and trace free with respect to the megdr

tions. Bonnor32] studied the spin-spin interaction using an !N [33,20 it was proved that such a vector® exists and is
exact, axially symmetric solution of the Einstein-Maxwell Unique. Using Eqs(34) and (35), solve Eq.(14) with the

equations; his result also qualitatively agrees with the spinboundary condition$20) and(17) where
spin term in Eq.(31).

K=K+ KR+ (L, w)2, (35)

The Bowen-York data are, of course, very special. The my= \/Mil—Jilel,
natural question is how to generalize Theorem 2 for more
general data. For general asymptotically flat data with three m,= MZ Z3Z/M2 ﬁg_J%/Mﬁz' (36)

asymptotic ends we cannot even expect to recover the New-
tonian interaction term. Take, for example, time symmetric . . . .
initial data with only two ends. Choosing the conformal met—The existence of a unique solution has been proved in
ric appropriately, one can easily construct data such that th@azq

differenceM ; — M, is arbitrary. That means that we are put- | We choseJi andJj to point in the same direction, the
ting more radiation in one end than in the other. If we add fata will be axially symmetric. In this particular case, we can

third end with small mass, the new interaction energy will beS€ the integral26) to calculate the quasilocal angular mo-
dominated by the differencil; — M, and hence will be not Mentum of each of the black holes. The result willXjeand
related to any Newtonian force. Hence, Theorem 1 is not trudz - However, in general, this class of data will admit no

for general asymptotically flat metrics with many asymptoticconformal Killing vector. In this general situation, it is very
ends. hard to compute the quasilocal spins of each of the black

The interaction energy defined by E@2) can have the holes. However, when the separation distance is lafyand
meaning of a two-black-hole interaction energy only if it is J5 will give approximately the angular momentum of each of
possible to distinguish in the data two objects that are similathe black holes because this class of data has a far limit to the
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whereu(i;) denote the value of the functiamat the point

one black hole when the parameters of the other are set iq. In an analogous way we obtain the mass at the end 2

zero.
For this class of data we have the following result.

Collollary 1. For the two Kerr-like data defined above, the

formula (31) for the interaction energy holds.
We prove this corollary in Sec. IV.

IIl. INTERACTION ENERGY FOR SPINNING
BOWEN-YORK INITIAL DATA

In this section we will prove Theorem 2. For Bowen-York

data, with the boundary conditio20) and(17), Eq.(14) for
the conformal factor can be written in the following form
[29]:

KabKab
Au=— —, ¢=@otu, (37
8¢
with the boundary condition
lim u=0, (39

r—oo

where ¢q is defined in Eq.(22), with m; and m, arbitrary
positive constants, and*’= K2+ K3 is given by Eq.(29).

The coordinates' are asymptotic coordinates for the end

0. The total mass at 0 is given by

M0=m1+m2+2Uoc, (39)

whereu,, is the term that varies asrlin the solutionu of
Eqg. (37) and is given by

1 KK,

U,=-— dx3.
Am)r® 8¢’

(40

We want to calculate the masskk;, and M, for the other
ends. The asymptotic coordinates for the other ends are

LoomEdexy)

.
. ;Mg (X' =Xp)
2 T4

4 ra

42

X; X; (41

I 12

Take, for example, the end point, in )221 coordinates we
have

m; mym, u(i A
a=| 1+ ot 2, Q S+0(1rd), (42
2ry  4lry 2ry
where we have used
r=1+0(1f ), (43

andr is the Euclidean radius with respectity . Then the
mass at this end is given by

m;

+U(i1)>,

my ,

Then the interaction energy at the eids given by
Eo=Mo—M;—M,;

m;m;
I

= +2U,—mqu(ig) —myu(i,). (46)
Using Eq.(37) and the Green’s function for the Laplacian,
we obtain the following integral representation of the terms
involving u in Eqg. (46):

2U.,—myu(iy) —myu(i,)

1 KaPK 1, ( B “

- my mZ) 3
16m)rs o7

2_I'1_2_I’2 dx°.

The formula(47) involves the unknown function. Using
the fact thatu is O(J%), we make an expansion of this inte-
gral in terms of the parameted /12, J,/12, m;/l, and
m, /. We obtain that the first nontrivial term is given by

2Uw—mlu(i1)— mzu(iz)%ES, (48)
where
s 1 ab
E=g— H3K1 Ky ap dX. (49
The interaction energy, up to this order, is given by
MM
R N (50)

where we have used Eqg4) and(45) to replacen, by M,
since up to this order they are equal.

All that remains is to compute the integfaf. This inte-
gral can, in principle, be calculated explictly from the ex-
pressiong29). However, such a calculation is very compli-
cated. Instead of this we will calculate E¢9) in the
following way. The tensor$29) can be written as

(Lav1)?P=KE®, (Lov2)?P=K5, (51)
where L5 is the conformal Killing operator defined in Eg.
(25) for the flat metric, and

vh=

— e 33Ny 4ry %, (52

UiZZ_Eiijzjnz krgz. (53)

LetB,, and B, be small balls centered &t andi,, respec-

tively, of radii e; and e,. We have that

lim
€1,60—0

f , K2PK 5, p0 X. (54)
®°-B, -B,,
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Using the Gauss theorem P — B, —B., we obtain V. DISCUSSION
We have shown, using the interaction energy defined by
f KTszabdX= _zf Kgbvlbnladss Eqg. (12), that the spin-spin interaction between black holes
k3-8, -B,, B, ' of arbitrary masses and spins has an expansion of the form
(31). This formula was previously derived using a test par-
_Zf Kgbv 16N2adS.., ticle apprqximatior[l] and post-Newtonian exp.ansio[‘ibo].
2 The main improvement of the present calculation, apart from

€2

its simplicity, is that no approximation is used in the defini-
(59 tion of the interaction energy. Moreover, the very definition
of the interaction energy involves black holes, in contrast

wheren$ andnj are the outward normals to the two surfaces . . : )
with previous calculations where the black holes appear in-

Be, and B, In the limit e,—0 the first integral vanishes.

directly.
We use here that3” is regular inB, . The second integral  The interaction energy defined by E42) uses the fact
can easily be calculated in the limip— 0. We obtain that we are choosing a particular topology for the initial data,
R R but other topologies are possible. Examples of different
s —Jdirdat 3(J1-n)(Jy-n) kinds of topologies where we cannot use Et2) are the
E= E : (56) Misner topology of two isometric shee{84], the Misner

wormhole [35], or even initial data with trivial topologies
which contain an apparent horizdB86]. If the initial data
IV. INTERACTION ENERGY FOR TWO KERR-LIKE havek disconnected apparent horizons of afgg we can
BLACK HOLES INITIAL DATA define the individual masses as follows:

The two Kerr-like black hole initial data are solutions of

the following equation:
Kk abKE2 M= Ver 62
KK ab™KK =
Lpkkpgk=———"——— oOn S, (57
8ekk ) ) o
Then the interaction energy is given by the formula
with the boundary condition€0) and (17), wherehX} and

K2b are given by Eqs(34),(35) andm, ,m, are given by Eq. N

(36) in terms of the Kerr parameters. o
The conformal factor for the Kerr initial data with param- Eq=M IZO M. (63
etersMg _,J; can be written in the following form: K’ £k
1
my . . .
P, =1+ 2, + @R, (58)  What is the relation betweds, defined by Eq(12) andEy

defined by Eq(63)? Note thaE, is much harder to compute
than E,. | want to argue thak, will presumably give the
same result ag, for the leading order terms in the expan-
sion given by Theorem 2. Assume that the data are such that,
when the separation distance parameter is large, then the
areas can by approximated by the Schwarzschild formula
A~167M?2 plus terms of orded?. Then the radii of the
horizons will beR,~2M, . The distancé, will differ from |

in terms of ordetO(M,J?). Then we can replackeby I3 in
theoremly, andMy; by My in Eq. (12), up to this order.

where (,DR1=O(J§). We can decompose the two Kerr-like
solution in the following form:

Prk=®ot R T @R, T U. (59
Using that Eq.(58) is a solution for a one Kerr-like initial

data set, we obtain that the first term in the expansiodyin
and J, of the functionu satisfies the following linear equa-

tion:
It is interesting to note that the interaction eneky has
K2K 5 ap been used in a different context, namely, to determine the last
Au~— gl (60 stable circular orbit in a black hole collisidB7].
®o
Hence, the spin-spin interaction term has the same form as ACKNOWLEDGMENTS
the Bowen-York one. In an analogous way to the previous
section, we obtain that the interaction energy is given by | would like to thank J. Isenberg and J. Valiente-Kroon for
their reading of the first draft of the paper and L. Szabados
MM, for discussions concerning quasilocal angular momentum. |
Eo~— | +E (62) would also like to acknowledge the friendly hospitality of the
American Institute of Mathematid®\IM ), where part of this
whereE?® is given by Eq.(49). work was done.
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