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Energy norms and the stability of the Einstein evolution equations
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The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical
solutions of these different formulations display a wide range of growth rates for constraint violations. For
symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an
energy norm. This expression agrees with the growth rate determined by numerical solution of the equations.
An approximate method for estimating the growth rate is also derived. This estimate can be evaluated alge-
braically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically
determined rate on the parameters that specify the formulation of the equations. This simple rate estimate
therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.
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[. INTRODUCTION first-order evolution equations introduced by Kidder, Scheel,
and TeukolskyKST) [26]. This family of equations has been

It is well known that the Einstein equations may be writ- sShown to be strongly hyperbolic when certain inequalities
ten in a variety of formg1—-32. In recent years a growing are satisfied by the 12 parameters; however, our expressions
body of work has documented the fact that these differenfor the instability growth rates apply only ®ymmetrichy-
formulations, while equivalent analytically, have signifi- Perbolic systems of equations. Therefore we must extend the
cantly different stability properties when used for uncon-analysis of the KST equations by explicitly constructing the
strained[33] numerical evolutiong§4,25,26,32,34—36 The ~ Symmetrizer(or metric on the space of fielithat makes the
most important of these differences is the behavior of nonequations symmetric hyperbolic. We show that such a sym-
physical solutions of the evolution equations, which oftenmetrizer(in fact a four-parameter family of such symmetriz-
grow exponentially and eventually dominate the desirecers can be constructed for an open subset of the KST equa-
physical solutions. These nonphysical solutions could be sdions having only physical characteristic speeds. .
lutions of the evolution equations that violate the constraints We compare numerical evolutions of the symmetric hy-
(“constraint-violating instabilities} or solutions that satisfy Perbolic subset of the KST equations with our analytical ex-
the constraints but represent some ill-behaved coordinadressiongboth exact and approximatéor the growth rates
transformatior(“gauge instabilities). In many cases it is the Of the instabilities. We make these comparisons using two
rapid exponential growth of these nonphysical solutionsS€ts of initial data for the evolution equations: flat space in
rather than numerical issues, that appear to be the key factéindler coordinate§39], and the Schwarzschild geometry in
that limits our ability to run numerical simulations of black PainleveGullstrand coordinatef40—-42. We find that our
holes for long time$26,34,37,3& For lack of a better term, €xact analytic expression for the growth rate of the instability
we refer to these nonphysical solutions as “instabilitiéss- ~ agrees with the actual growth rate of the constraintath
cause they are unstable, i.e., exponentially growing, solutully nonlinear and linearizednumerical simulations. This
tions of the evolution equatiopsbut keep in mind that they agreement provides further evidence that the constraint-
are neither numerical instabilities nor do they represent phystiolating instabilities are real features of the evolution equa-
ics. tions and not an artifact of using a poor numerical algorithm.

In this paper we explore the use of the energy normn addition, the approximate analytical expressions for the
(which can be introduced for any symmetric hyperbolic formgrowth rates derived here are shown to have good qualitative
of the evolution equationsto study these instabilities. We agreement with the numerically determined rates. This ap-
derive an exact expression for the growth rate in terms of th@roximation therefore provides a useful tool for finding more
energy norm, and verify that the rate determined in this Wayvell—behaved formulations of the equations. Furthermore,
agrees with the growth rate of the constraint violations dethe growth rate of the instability is shown here to depend in
termined numerically. We also derive an approximate expres2 hontrivial way on the exact “background” solution as well
sion for this growth rate that can be evaluated algebraicallfS on the particular formulation of the equations. Hence, un-
from the initial data for the evolution equations. We explorefortunately, it seems likely that it will never be possible to
the accuracy of this approximation by comparing it with nu-find @ unique “most stable” form of the equations for the
merically determined growth rates for solutions of a family €volution of all initial data.
of symmetric hyperbolic evolution equations.

In order to compare the. analytical expressiong for the Il ENERGY NORMS AND RATE ESTIMATES
growth rates derived here with the results of numerical com-
putations, it is necessary to select some particular family of We limit our study here to formulations of the Einstein
evolution equations with which to make the comparisonsevolution equations that can be expressed as first-order sys-
Here we focus our attention on the 12-parameter family otems
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Gu”+ A gauP=Fe, (2.2) 10° ; ;

Here u“ is the collection of dynamical fieldsA"“B andF«

are (generally complicatedfunctions ofu®, andd; and g,

are the partial derivatives with respect to the titrend the

spatial coordinates® respectively(We use Greek indices to

label the dynamical fields and Latin indices to label spatial

components of tensojsSystems of equations of the form

(2.1 are called weakly hyperboli&t3] if nkAk“B has all real

eigenvalues for all spatial one-formg, and strongly hyper-

bolic if in addition nkAk“B has a complete set of eigenvectors

for all n,. There exists a large literature devoted to a variety 10°

of representations of the Einstein evolution equations that t™M

satisfy these conditiond5-30. In particular, the 12- ) )

parameter KST system of equations that we use for our nu- F!G- 1. Energy norm|SE|[| and constraints|C|| (per unit vol-

merical comparisons is of this form. ume for evolutions qf perturped Schwarzschild initial data using
In order to construct an energy norm, first-order systemdree spectral resolutions. Solid curves GBE|| from the full non-

such as Eq(2.1) must have an additional structure: a “sym- Inear evolution code, and p0|nt§ are from the linearized code. Dot-

A . ; ; ted curves ar¢|C|| from the nonlinear code.
metrizer” S, ;. First-order systems of evolution equations

arebcell.llequ)r/]mmetn.c hyperbol[é3] (pr symhm(;trlzable hy- It follows immediately from the linearized evolution equa-
per .O'Q I there exists a symmelrizer which serves as Aions Eq.(2.2) that this energy density evolves as follows,
metric on the space of fields. Such a symmetrizer must be
symmetric and positive definitéi.e. Saﬁu"uﬁ>0,v u“ 3 SE+V 6Ek=Ca,35u“5uB, (2.5
#0); in addition, it must symmetrize the matricé§“ﬁ:

saMAk#ﬁEAkB:A'ga V k. In this paper we limit our discus- WhereVj is the spatial covariant derivative associated with

3

sion to symmetric hyperbolic formulations. Note that sym-the (background three-metricg;; , C,p is given by
metric hyperbolic systems are automatically strongly hyper-
- -1 k

bolic, because symmetric matricegA';ﬁ always have real Caﬂ_zsu(a':#ﬁﬁﬁtsaﬁﬂ\/g) I \/ﬁAw), (2.6
eigenvalues with a complete set of eigenvectors. But the con- _ . . .
verse is not true: strongly hyperbolic systems need not b?nm:g_?\let?”tf Ege de\t/\(;:tr:?w;]nan';vof thét)&:ﬁkgroupg;p?r:gl
symmetric hyperbolidexcept in one spatial dimensiprin ¢ € hC. ote tha €5’2 Z s€ des asa be sou 53 w
Sec. IIl we construct symmetrizers féan open subset pf [OF the energy in Eq(2.5), depends omi but not onéu.
the KST equations. _

Let us turn now to the question of the stability of the B. Exact expression for the growth rate
evolution equations. To do this we consider solutions to the Next we explore the possibility of using this energy to
equations that are closes defined by the metrig,z) to an  measure and to estimate the growth rate of instabilities. De-
exact “background” solutiorug [44]. Note thatug may be  fine the growth rate %/of the energy norm to be
time-dependent. We definfu“=u“—ug to be the deviation

of the solutionu® from this given background solution. The 1 _alleE|l 27
evolution of u® is determined by the linearized evolution T 2||5E||’ '
equations:

where the energy normdE|| is defined by
FSuT+ AR g SuP=F“ s5uP. (2.2)
— 3
HereA""‘B andF“; may depend omig but not onou®. We ||5E||_J OB\g ox. 28
illustrate in Fig. 1 below that the constraint-violating insta-
bilities occur in the solutions to these linearized evolutionIntegrating Eq.(2.5) over at=constant surface, we obtain
equations as well as in the solutions to the full nonlinearthe following general expression for the growth rate of the

equations. energy norm:
A. Energy evolution E: —1 f (C,z0U*SUP—V, SEM g dBx. (2.9
7 2||SE|| apB n : '

For any symmetric hyperbolic system of evolution equa-
tions, we may define a natural “energy density” and We note that Eq(2.9) is an identity for any solution of the

“energy-flux” [45,46€ associated withSu®: equations. The rate 2#/becomes independent of time when
R, su® grows exponentiallysu®oel/”,
OE=S,g0u”du”, 23 Figure 1 illustrates the equivalence between the energy
Kk pK s as B norm measure and the standard measures of the growth rate
OE"=A,gou*ou”. (2.4 of the constraint-violating instability. Plotted are results from
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3D nonlinear numerical evolutions of perturbed Schwarzs- 1 1
child initial data using a particular formulation of the Ein- -=

. ; / : T 2||5E||
stein evolution equationp47]. The solid curves show the

evolution of the energy norr) SE|| while the dotted curves Therefore if\ o is the largest eigenvalue of the equation
show the evolution of the norm of the constraint violations, 0=(C,s—\S,z) 8P, then

f Cp0u®SuP\Jgdx. (2.11)

! 1 A
ldll= [ @+ecrgex, 210 —<m 212
where C represents the Hamiltonian aigfi the momentum  Or equivalently,
constraintd48]. The larger points plotted in Fig. 1 show the Nt
energy norm computed for a numerical solution of time ||5E||<C||5E(t:0)||e (2.13

earized evolution equations, indicating that the constraint-t5r some constan€. This argument is often usedé6] to
violating instabilities occur even in the linearized theory.  ¢how that symmetric hyperbolic systems have well-posed

Figure 1 clearly illustrates that the constraint violationsjnitial value problems, i.e., that symmetric hyperbolic sys-
||Cl| grow at the same rate as the energy nofE|| (until  tems have growth rates that are bounded by exponentials.
the very end of the simulation when nonlinear effects begecause our numerical simulations use boundary conditions
come significant This equality between the growth rates is 5t satisfy 8EXn,=0 (incoming characteristic fields are
exact for any constraint-violating solution having the form zerg, we could use Eq(2.12 to estimate the growth rate.
su“(t,x)=e"75u*(0x). Our numerical solution approaches Unfortunately, we find that the upper bound provided by Eq.
this form asymptotically. The numerically-determined slopes(2.12) is typically far greater than the actual growth rate, and
of these curves, 1(5E, ) =0.0489(from the linear evolution  therefore an estimate based on this bound is not very useful.
codg, 1/7(SEy.)=0.0489 (from the non-linear codeand Therefore we take a different approach. Without any prior
1/7(C)=0.0490(also from the non-linear codleare also in  knowledge of the structure of the actual unstable solution,
good agreement with the growth rate determined from thehe simplest choice is to assume that the spatial gradients are
integral expression in Eq2.9): 1/7(f)=0.0489. This agree- given approximately by,su*~k,éu®, wherek, is a “wave
ment shows that the numerical solutions satisfy the identityector” that characterizes the direction and magnitude of the
in Eq. (2.9). This provides further strong evidence that thegradient oféu®. (Since the actual solutions that are respon-
constraint-violating instabilities seen here are real solutionsible for the instabilities in the cases we have studied do
to the evolution equations, rather than arising from purelyseem to have a characteristic lengthscale, typically the mass
numerical problems associated with the discrete representaf the black hole or some other physically distinguished
tion of the solution or the time-evolution algorithm. scale, this approximation should not be too badl this case

The computational domain, boundary conditions, initialthe expression in Eq2.9) for 1/7 simplifies to
data, and other details of the numerical evolutions shown in L L
Fig. 1 are the same as described later in Sec. IV B. To choose B = « 3
gauge conditions we set the shift and the densitized lapse T 2||5E||f Capdu®su’\g dx, (2.14
equal to their analytic values for all time. Each nonlinear
evolution in Fig. 1 is shown for three different spectral reSO-whereEaﬂ is given by
lutions, 188X 15, 24x8x 15, and 3X8X 15 (where the
notationN, X N,X N represents the number of spectral col- EaﬁIZS#(QF’U"B)-F 9:Sap— 2KnAngs - (2.15
location points in the, 6, and ¢ directiong, demonstrating
the asymptotic convergence of these results. The results for Next we limit thedu® to the subspace of field vectors that
the same three resolutions using the linear evolution code asatisfy the boundary conditions. We do this formally for
indistinguishable from each other in Fig. 1, so only one resothesesu® by introducing the projection operat®“ ;. This
lution is plotted. These linearized results are also essentiallgrojection annihilates vectors that violate the boundary con-
indistinguishable(until very late timey from the highest ditions, and leaves those vectors that satisfy all the boundary
resolution nonlinear results. conditions unchangel@9]. Using this projection we rewrite

Eq. (2.19 as
C. Approximate expression for the growth rates

Although Eg.(2.9) is an identity, it does not provide a Ez ;f CaﬁP“MPﬁyauf‘auV\/a d3x, (2.16

particularly useful way to determine/Its use requires the T 2||sE|

full knowledge of the spatial structure of the unstable solu- ~

tion du®, and this can be determined only by solving theWhere SE=S, ;P P¥ su#5u”. We expect that the fastest

equations. Our goal is to obtain a reasonable estimaterof 1/Arowing solution to the evolution equation will be the one

without having to solve the evolution equations. driven most strongly by these “source” terms on the right
We first note that ifSEXn,=0 at the boundariegvhere ~ Side of Eq.(2.16. Thus we approximatgoughly) this most

ny is the outward-directed normal one-form at the boungary unstable solution as the eigenvectig” of CaﬁP“MPEV hav-

one can integrate E@2.9) by parts and obtain ing the largest eigenvalue:
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characteristic speeflef the system in a fundamental way,
and the second part has Kinematical parametergrepre-

sented by Latin letters, k, a, b, ¢, d, ande) that merely
re-define the dynamical fields.

The 5-parameter family oflynamical modifications of
these equations is obtainéd by adding a 4-parameter fam-

rmaxSozﬁPa(,uPB,,5eV:EQIBPD(MPBV5GV. (2.1

The integrals in Eq(2.16) are easily evaluated for this ei-
genvectorée®, giving the following approximate expression
for the growth rate:

1 1 . s Nmax ily of multiples of the constraints to the fundamental ADM
- ~—f NmaxdENg d*x= 5 - (2.18  equations, antb) by assuming that a certain densitized lapse
ZJ SE\g dx function (which depends on one additional parametather

than the lapse itself, is a fixed function on spacetime. The
first modification is obtained by adding multiples of the con-

In this approximation then the growth rate of this most un_straints 0 the right sides of Eq68.2 and (3.3

stable solution is half the maximum eigenvalue of

CaﬁP“MPBV. We te.st the accuracy of this approximation in aKij= -+ yNg;C+ §Ngabca(ij)b, (3.4
Sec. IV by comparing its predictions with the results of nu-
merical solutions to the evolution equations. Dyjj=-- -+ 1 NGy Cjy+ %XNgijCkv (3.5

wherewy, , 5, andy are constants, and the constrai(fts
the vacuum cageare defined by
In this section we introduce the particular formulations of

IIl. EINSTEIN EVOLUTION EQUATIONS

the Einstein evolution equations that we study numerically to C=3[ ®R-K; KT +K?], (3.9
make comparisons with the growth rate estimates derived in _

Sec. II. The rather general 12-parameter family of formula- Ci=VK),—VK, (3.7
tions introduced by Kidder, Scheel, and TeukoldkST)

[26] is ideal for these purposes. In this section we review Cyij= 99ij — Dij » (3.9
these formulations and derive expressions for the symme-

trizer S,; and energy densitgE (when they existthat are Cyiij= 9kDiij — 9\ Dyj - (3.9

needed for our growth rate estimates. This section contains a
very brief review of the derivation and basic properties of theT he second modification comes by assuming that the densi-
KST equations using the notation of this paper, followed bytized lapseQ, defined by
a rather more detailed and technical derivation of the needed _
Q=log(Ng~*) (3.10

symmetrizer and energy norms. Readers more interested in
our numerical tests of the growth rate estimates might prefe(rather than the lapse itsglis a fixed function on spacetime,
whereg=det(g;;) ando is a constant. With these modifica-

to skip ahead to that material in Sec. IV.

tions the extended ADM equations become a 5-parameter
family of evolution equations for the fundamental fiels.

The KST formulation of the Einstein evolution equations These equations can be written as

begins with the standard Arnowitt-Deser-Misié&DM ) [1]
equationgdiscussed in detail ifi2]) written as a first-order
system for the “fundamental” dynamical variablesig
=1{0ij .Kjj ,Dyij}, whereg;; is the spatial metricK;; is the
extrinsic curvature, andeijE%akgij . We express these
standard ADM equations in thsomewhat abstracform

A. Summary of the KST equations

(3.1)

The quantitiesAE“ﬁ andF{ are functions of the fieldsg and
the parametery, ¢, 7, x, ando. We give explicit expres-
sions for theA'(‘)"B in Sec. Il B and the Appendix.

The 12-parameter KST family of representations of the

Gug+AE g UE=F.

3t9ij:Nk&kgij+29k(i&j)Nk—2N Kij , (3.2 Einstein evolution equations is completed by adding a
7-parameter family okinematicaltransformations of the dy-
aKij=---, (3.2 namical fields to the fundamental representations given in
Eq.(3.11). These transformations replakg andD,;; by P;;
dDyjj=---, (3.3 andM,;; according to the expressions:

where N and NX are the lapse and shift respectively.
The - - - on the right sides of Eq$3.2) and(3.3) stand for
the standar(_j terms t.hat appear in the .fi(st—order form of the M ij =[R5ﬁ5ib5f+é5ﬁ5jb) 5§+59ijgb°5ﬁ+59ijgab5ﬁ

ADM equations, which are given explicitlup to a slight

change in notatiof50]) in Egs. (2.14) and (2.24 of KST (3.13
[26]. The 12-parameter extension of these equations pro-

posed by KST splits naturally into two parts: the first part haswhile these kinematical transformations may seem like

Py =Kij +20i;0%K ap, (3.12

+c i 5}a)gbc+a Ok 5jc)gab]Dabc-

5 dynamicalparametergrepresented by Greek letteys ¢,
7, X, ando) that influence the dynamidg.g. including the

“trivial” reparametrizations of the theory, numerical results
(see e.g. Sec. IV B belovhave shown that these transforma-
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tions can have a significant effect on the stability of theequa- j2_ 1 4. 25, _125v—3 32
tions. The general transformation defined in E@s12 and v2= s(n—4no—2x X=3nd), 3.29
(3.13 is a linear transformation from the basic dynamical ,

fields u§ to the new set of dynamical fieldsu® v3=2(2+4y=n=2yn+2x+Ayx—nl). (3.22
= i !P“ YM ii : . . .
193 :Pij Muh In much of the analysis that follows, we will restrict at-
(3.14 tention to the subset of these KST equations where the char-

' acteristic speeds have only the physical vali&es 1}. This
; 2_.2_ .2 ; :
g . . requiresv;=v5=v3=1 if the theory is also to be strongly
where the transformaﬂofr. s depends (_)n the klngmatlcal hyperbolic (see KST[26]). Thus our primary focus will be
parameters and the metrig; . The special case witk=1  the 9-parameter family of equations in which the parameters

andz=a=b=c=d=e=0 corresponds to the identity trans- &, 7, andy are fixed by the conditions
formation u*=ug. The explicit representations of the in-

ur=Tuf,

verse transformationT( *)“, are given in the Appendix. o=3, (3.23
The evolution equations for the new transformed dynami-
cal fieldsu® are obtained by multiplying Ed3.11) by T%,. -8
The result(after some straightforward manipulatiomas the 7Y 77 +10y+69¢" (3.29
same general form as E(8.11),
44+47+10y+6
&tu“+Ak“ﬁakuB=F“, (3.15 X~ 755 7§+ 1OZ+ 635« (3.25

: ka @ N
with A™; andF“ given by that are needed to enswe=v,=v3=1. The parameters

ke _ta akp (r—1yv and ¢ are arbitrary so long as57¢+10y+6vy{#0. Thus
A =T AT ), (310 the curvey=—(7¢+5)/(6¢+ 10) is forbidden, buty and¢
B - are otherwise unconstraing81].
Fe=T, FE+Va,g;+2A VAID;

(3.17 B. Symmetric hyperbolicity of KST
whereVel is defined by Afirst order system such as E®.15 is called symmetric
hyperbolic if there exists a positive definggmmetrizer 5,
T such thatA 7 ,=S,,A" ; is symmetric in the indices and
vall=—E(T-L» gy, (3.18§ B, ALz=A},, for all field configurations. We assume here

99ij that S,z depends only on the spatial metig [52]. It is

. . convenient to represent the symmetrizer as a quadratic form
All of the terms on the right side of Eq3.17), except the P y q

term containing 4,9;;, depend on theu® (or ug dS=S,zdu*du”, (3.26
=T‘1“Bu5) and not its derivatives. In the remaining term,
the quantitys,g;; is to be replaced by the right-hand side of wheredu“={dg;; ,dP;; ,dM,;;} denotes the standard basis
Eq. (3.1); this introduces the spatial derivativégy;; , which  of co-vectors on the space of dynamical fields. The most
are to be replaced byl2;; . Thus in the end“ in Eq. (3.17) general symmetric quadratic form on the space of dynamical
is simply a function ofu® as required. fields (which depends only on the metrig;) is given by

The simple transformatiof3.16 that relates the matrix
A‘(‘)",, of the fundamental representation of the equations with dS*=A; dG?+B; dP?+2D; dGdP+A, g ikg jl daij d§k|
Ak“v ensures that the characteristic speeds of the theory are

independent of the kinematical parameters: +B,9'%g!'dP;;dPy+ 2D, g™*g ! dg;dPy
kl i ib AN Y,
0=del —v 8"+ A ) = det — v 55+ AT ). +C1979"9dMijydMap)
(3.19 +Cy9 klgiagjb[dmkij_dm(kij)][dmlab_dm(lab)]
These characteristic spee@slative to the hypersurface or- +Czg"dM{dM [ +C,g " dMZdM?
thogonal observeysare also independent of directiony in . —
general relativity. Thus the hyperbolicity of these formula- +2C5g"dM{dM7. (3.27

tions can depend only on the dynamical paramejers, 7,

X, and o. One can show that these characteristic speedsleredG anddP are the traces alg;; andd P;; respectively,
(relative to the hypersurface orthogonal observen {0, anddaij anddf’” are their trace-free parts. The two traces of
+1,%v,,*v,,*v3}, Where dM,; are defined by

vi=20, (3.20 dM=dM;;, g’ (3.28
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dM?EdeIJngi (329) 0282(6M1+/L2+ 10#3)_05(10V2+1OV3+30V4)

and its trace-free partfM,;;, is Ca(1001+ 575+ 2005+ 10v). (339
~ . 1 1 ) This is a system of six linear equations for the seven param-
dMyij=dMyij+ 5 [dMigjk—2 dMgj; + dMg;; etersB, andC, . Thus we expect there to exist solut{ento
~3dM2giy,] (3.30 these equations_ for almost all choices of thg gnd V-
(G ' However, there is no guarantee that such solutions will sat-
isfy the positivity requirements needed to ensure B)atis
positive definite.
We divide into two parts the question of determining
when solutions to Eq$3.34) through(3.39 exist that satisfy
the appropriate positivity conditions: first the question of
when a positive definite symmetrizeﬁgﬁ, exists for the
: - . subset of the KST equations whose dynamical fields are the
A In or<_jer tonjmswe_r this we need explicit expressions "% ndamental fieldsiy, and second the question of when this
the matricesA™ ;. Quite generally these matrices are deter-q,, 43 mental symmetrizer can be extended to a symmetrizer

mined for these equations by a set of 12 constapsand o the full 12-parameter set of KST equations. We consider
va, Which in turn are determined by the 12 parameters of thgne second question first. Assume that for a given set of

KST fo.rmulations.(We give the explicit.expressions fara dynamical parameters there exists a positive defisﬁg
andv, in terms of the KST parameters in the Appengikhe such thats® AM7. =<2 AN Now defineS. .-
equations that define tha"®, in terms of these constants ay 0 BTy 0 ar @B

are: Sup=T '+, S0, T 17, (3.40
O”tgijZNné’ngij , (33])

This quadratic form, EQ.(3.27), is positive definite iff
{A;,A;,B;,B,,C,,C,,C5,C,} are all positive andC2
<C;3C,4, D2<A;B,, andD5<A,B,. (The signs ofCs, D,
andD, are irrelevan).

The question now is whether the constaAis, Bs, Ca
andD 4 can be chosen to make tWé;B symmetric ina and

One can verify, using Eq3.16), that thisS,; symmetrizes
A", . Further it follows, using Eq(3.14), that thisS,; is
L~ L b dgob B ’ y a8
Py =N"dKi; —N[ 119" 5Ci5dj+'“29n 83 5%) positive definite,
+ m3g bc‘s?i 5dj)+:“4ng5?i 5bj)+M59ndg *%g;;

S.pu“uf=S. suguf>0, (3.4)
+ 169 "°9 °%9;; 10xMpca, (3.32
sincesgﬂ is assumed to be positive definite. In the Appendix

M yi;=N"3, M — N[vlénkébi 5°]. + Vzg?i 5bj)5§ we give explicit expressions for the constaBisandC, that
defineS,; in terms of the constant8} and C), that define
S‘;B and the parameters that define the transformation

+ 169203 6" 19nPhec. 333 T _ . .

Now we return to the first, and more difficult, question:
where= means that only the principal parts of the equationgvhen does there exist a positive definite symmeti&fgyfor
have been represented explicitly,*+ A" aﬁ(gkuﬁzo)_ the subset of the KST equations whose dynamical fields are
We now evaluateAl ;=S,,A"*, and A, =S, A", the fundamental fieldsg? At the present time we have not

using the expressions in EqE3.27) through (3.33. After  solved this problem completely. Rather, we restrict our atten-
lengthy algebraic manipulations, we find thaf ; is sym- tion to an interestingperhaps the most interestingubset of
metric iff D,=D,=0 and the following constraints are sat- these KST equations in which the characteristic speads

+ 139 "Gy %) + 149 "°Gi; 8%+ 59 PGk 6

isfied by the constant8, andC: Uo a_nd'v3 are all the speeq. of lightv1=v,=vz=1. T.he
restrictions that these conditions place on the dynamical pa-
0=Ba(p1+ p2) — Ci(v1tvy), (3.34 rameters are given in Eq$3.23 through (3.25. Each of
these systems is strongly hyperbolic.
0=B,(241— tty) — Co(2v,— 1), (3.35 One can now evaluate the, and v, appropriate for this

subset of KST equations using Eq#5) through (A12)
along with Eqs(3.23 through(3.25. Substituting these into
Egs. (3.39 through(3.39 gives the symmetrization condi-
+9vg) —Cs(v1+2v,+2v3+ v, +6v5+3vg), (3.36  tions for these equations. These conditions are degenerate in
this case, reducing to only five independent equations. Solv-
0=B1(3uy+3u3+9us) —Cs5(3v,+ v+ v3+3v,+3vs ing these five symmetrization equations for g in terms
of the BS gives

0= Bl(3/~l’l+ 3/.[,4"’ 9#6)_C3(3V1+ V2+ V3+ 3V4+ 31/5

+9vg) — Cy(v1+2v,+ 2v3+ v+ 615+ 315), (3.37)

Cy=-¢BY, (3.42
0= Bz( - 2,LL1+ 3ILL2+ 10M4) - Cg( 101/2+ 10V3+ 301/4)

— Co(10v,+ 5v,+ 2005+ 10v,), (3.39 C3=3(3+()B3, (3.43
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3({~5)? Sipdutduf=dG?, (350
0_ 2R0 0 ap
C5=9(1+ 7Bl + 155737 B2 (3.49 o
(07-57 Sducduf=g'igkdg; dgy, (3.51
0_ 2R0 _ 0 N
Ci=(2+39)°BY* 355737 B2 (349 Sodudu’=dP?+gi[3(1+ y)dM]! - (2+3y)dM?]
({-5)(9¢-5) X[3(1+7)dM]—(2+3y)dM[],  (3.52

Cl=-3(1+7v)(2+3y)Bj-

105+30) 2 . e ST
. ‘ (3.46 Si%du duf=g'*g!'dP;;dPy— £g"g™@g"*d M i;,dM (ap
—14ij _ 1
These equations guarantee thaf,C5,C3,C9} are positive +[305+30) ] "g"[3({—5)dM;
for any positiveB} andB) if and only if —(9¢~5)dM?][3({~5)dM!
0>¢>-%. (3.47 —(9¢-5)dMf]+3(3+ g 'gg”
The only remaining condition needed to establish symmetric X[dMy; — dM iy ILd My ap— A M 12 ]-
hyperbolicity is to ensure that3CJ— (C2)2>0. Using Egs. (353
(3.44) through(3.46) it follows that '
The dimensions of the corresponding sub-spaces are
2
CgCZ—(Cg)2=3(5+ 7g(+ 10;’”;675) 089 {1,5,4,20. Just as the fundamental symmetri&; is re-
105+ 3¢ :

lated to the more general symmetriZgy; by the transfor-
(3.48 mation given in Eg.(3.40, so the fundamental sub-

symmetrizers are related to the general sub-symmetrizers by
tive iff {>—2 and 5+ 7{+10y+6y{+#0. The first of these P T ln grop-Lv 35
conditions along with Eq(3.42 demonstrates that E(B.47) ap Rl B (359
is the necessary and SUﬁlQent constraint on the parametefge note that this transformation leaves the first two sub-
{¢,y} to ensure symmetric hyperbolicity. The second Ofsymmetrizers unchange61ﬁ=81°ﬁ and Szﬁzsz%
i . o a (¢4 afb
these conditions was also required to ensure that the param= 5o interesting subset of the nine-parameter family of

etersy and x in Egs.(3.24 and(3.29 are finite, so it does kgt equations studied here is the two-parameter “general-

not represent a new restriction. ized Einstein-Christoffel” system studied extensively by

Thus a large open set of this two-parameter family of thecgT[26]. In the language used here this two-parameter fam-
fundamental KST representations of the Einstein evolutlor"y is defined by

equations is symmetric hyperbolic. And perhaps even more
surprising, the complimentary subset of these strongly hyper- =—k=-1 (3.55
bolic equationgi.e. when{>0 or {< — 2) is not symmetric '
hyperbolic[53]. Further, the extension of this two-parameter

Thus the right side is positive whenevg} andBS are posi-

family via Eq. (3.40 produces a nine-parameter family of a=y+3z+3zy, (3.59
strongly hyperbolic representations the Einstein equations. A N - -
large open subset of this nine-parameter family is symmetric b=—y-2z-3yz, (3.57)
hyperbolic (i.e. those that are extensions of the symmetric R R
hyperbolic fundamental representatipng/hile its compli- c=—-d=2, (3.58
ment is not symmetric hyperbolic.

The construction used here to build a symmetrizgy for e=0. (3.59

the KST equations has succeeded unexpectedly well. We

found not just a single symmetrizer, but in fact a four- Substituting these parameter values into E§s42 through
parameter family of such symmetrizers. Using the exprest3.46) and (A38) through(A44), we find the constants that
sions for theC, from Eqgs.(3.42 through(3.46), we see that determine the symmetrizer to be

the symmetrizesgﬁ is a sum of terms that depend linearly R

on each of the four parametefd\;,A,,B?,BY}. Thus we BY=(1+32)%B,, (3.60
may write this symmetrizer in the form:

0 10 20 | R0c30 . R0c40 B2=C1=C,=B, (369
Saﬁ:AlSaﬁ+AZSaﬁ+ Bl aB"’ BZ B (349
, : =B;+ 1z .

where the “sub-symmetrizers3,} represent a set of posi- Cs=Bit 5 B2, (362
tive definite(under the conditions needed for symmetric hy- 5
perbolicity established aboyenetrics on mutually orthogo- Cs=5B2, (3.63
nal subspaces in the space of fields The expressions for
these sub-symmetrizers are Cs=—£B,, (3.649
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where B; and B, are arbitrary positive constants. For this questions for the energies. First we recall that the dynamical
case the sub-symmetrizeszﬁ and S‘;B have the simple fieldsu® are related to the fundamental fields by the trans-
forms formation,

s

a

s

a

sdutduP=dP?+gldMidmE, (3.69 u*=Tgug, (3.72

where the matrixT“ﬁ [defined in Egs.(3.12 and (3.13)]
depends on the kinematical parameters and the mefric
+gikgi'dpijdpk|—%dpz_ (3.6 Thus perturbationssu® are related to perturbations in the
fundamental fields by
We also point out that the symmetrizer becomes particularly
simple in this generalized Einstein-Christoffel case by taking Su=(Ts+ 5T ud)dug,

A;=B;=1% andA,=B,=1: a
1=B1=3 2=B> =T M(5“3+V“B)5ug, (3.73

BduadU'B:gklgiagjbd MkideIab_ %g”dMlld MjL

2 _ ad B
dS" =S, zdu*du where

=g"*g''dg;dgq+9™*g"' dP;dPy

e V=T 1 0,T7 ug (3.74
+gg'2gPdM,;;dM),p - (3.67)

One can now work out the transformation properties of
This represents a kind of “Euclidean” metric on the space ofthe energy and flux using Eqé3.16 and(3.40:
fields, in which the symmetrizer is just the sum of squares of SE=S. .suSuP
the components of the dynamical fields. ap '
=8B+ S, VEsougduf (3.75
C. The KST energy norms

mv i
The symmetrizers for the KST equations may be writtenWhereV“ﬁ Is defined as

as arbitrary positive linear combinations of the sub- VA = MY 4 SV B Y, (3.76
symmetrizers as in Eq3.49. Since the equation fo€,4, af Tal BTTRT an T ol B

and hence the equation for the evolution of the energy iShus the energysE is just the fundamental energ§E,
linear inS,, it follows that there are in fact four indepen- =Sgﬁ5u35u€ plus terms proportional ty;. A similar ar-

dent energy “sub-norms” for the KST equations. Each isgument leads to the transformation for the energy flux:
defined using the corresponding sub-symmetrizer:

SE"=SED+A] , VAL sugSub . (3.77
SEn=Sgoucsuf, (3.69 0 TOmyTapTrOTTO
We note that the only dependence of the energy and flux on
SEA=S] ,A™ ;ou®su”. (3.69 '{;15 kinematical parameters comes througf}; and hence
It follows that these energies each satisfy evolution equations Finally, we note that the expression for the transformation
analogous to Eg(2.5): of the termscaﬁﬁu%uﬁ can be obtained by a similar calcu-
lation. The result is
G OE A+ Vo SER=C)z0usuP, (3.70

Copdu®suP=[CY;+2S) VEIFE +0(S) Vip)

uvY ao a

+(N9) Ln(VOAY, VLR +E gl dug suf,

c’;ﬁ=2sﬁ(aFﬂB)+ats§ﬁ+(fg)—lan(fgsﬁMA”“B(). ) (3.78
3.7

Each of these energies gives the same growthsréitem Eq.

(2.9 for solutions that grow exponentially. At present we  Eagdugoug=—2(84+V*,)8ugS), V" AR’ sdnduf
have not found a use for this unexpected abundance of sym- ann v

metrizers and energy norms. In our numerical work below +2(56+V¥a) Sughg,,V Banéug'

we choosegfairly arbitrarily) one member of this family to (3.79
compute our growth-rate estimates.

In our earlier discussion we found it useful to analyze theThis expression is obtained by straightforward calculation
symmetrizers associated with these equations in two step¥sing Egs.(3.79 through(3.77). Note that the left side of
first, to consider the symmetrizers associated with the fundaEd- (3.79 is a quadratic form insug while the right side
mental representations of the theory, and second to work outepends on the derivativegéug . To understand this we use
how the general symmetrizer can be obtained from the funthe fact thatv#, is non-zero only when the index corre-
damental representation by performing a suitable transformaponds to one of the spatial metric components, i.e.
tion. Here we find it useful to consider the correspondingvaﬁﬁugzva”Egij. This follows from Egs.(3.18 and

whereC%, is given by

where the ternk ;4 is defined by
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(3.74 and the fact thal“; depends omy;; but none of the
other dynamical fields. It follows that the term
V”UAB"Banﬁug includes only the derivatives of fields that
are present in the metric evolution equation. But this evolu-
tion equation, Eq(3.31), includes only the derivatives of the
metric along the shift vector, and so it follows that
V",A8” ;= —NkV7;. Thus the expression fdE,, may be
written in the form:

E o pdug Suf=4(3%+V* ) (A§,,+NKS) ) ougV*i 6Dy .
(3.80 » e .
N : 0% s 10 15

The last terms in this expression came from the term /M

vvﬁa@ug, which [using Eq.(3.18] depends only on the
spatial derivatives of the metric perturbationsg;; :
V3 Suf=V"19,89;;=2V"1 5Dy;; . Thus the right side of
Eqg. (3.80 is a quadratic form in théug as required. Finally
we note thatCaﬁéu“(SuB, like the energy and energy-flux,
depends on'the kinematical parameters only th_rougp. d?= — x2dt2+ dx2+ dy?+ d 22, @.1)
The expression for the transformation of the ma@ix; that

appears in our approximate expressions for the instabilityn this geometry the dynamical fields have the following

FIG. 2. Solid curve shows the evolution of the sum of the inte-
gral norms of all of the constraints. Dotted curves show the indi-
vidual contributions from the various constraintg;C*", 2,
CiiC, andCyC (in that order from largest to smallgst

growth-rates, Eq(2.16), follows directly from Eq.(3.798: simple forms:
Copdu®suP=[C 4+ 280 VEVF G+ (S, VAY) 9ij=dij » (4.2
+E .5~ 2KoAD,, VEGISUGSUS . (3.8)) Kij=0, (4.3
DkiJ-:O, (44)
IV. NUMERICAL TESTS
In this section we compare the approximate expressions N=x, (4.5
for the instability growth rates developed in Sec. Il with NK=0 4.6

growth rates determined directly from numerical solutions of

the Einstein evolution equations. For this study we use th%\/hereﬁij represents the Euclidean metric in Cartesian coor-

ﬁ;%arar?eter dstubsettrc])f the KS-:T ec&ug_tlor;s: dgﬁqstsef(fj Im Sec(j"l‘nates. Figure 2 illustrates that even this simple representa-
, feterred 1o as the generalized EINSEN-LANSIONe! SyS«;q, of fa¢ space is subject to the constraint violating insta-

tem [26]. Since we do not yet unde_rstand the meamr_lg_of th ilities. This figure shows the evolution of the norms of each
d|ffer_ent energy norms developed in Sec. Il C, we limit OUr it the constraints defined in Eq.6) through (3.9). This
c9n5|dgrat|on heore to the norm coomputeq from.the_ SYMMEgure also illustrates that all of the constraints grow at the
trizer with A, =B; =1/3 andA,=B;=1. This choice is the a6 exponential rate in our simulations. The simplicity of
closest analog we have of the simple “Euclidean” metric Ofthe expression&t.2) through(4.6) allows us to evaluate the
Eq. (3.67) for these systems. _ _ various quantities needed to make our stability estimates in a
We examine the accuracy of the approximate expressiop,,sonably straightforward way. The first consequence of this
for the growth rate, E¢2.18), by examining the evolution of  gip1e form is that the unperturbed fundamental fields con-
perturbations about two rather different background spaceg;g; only of metric fieldsug=1{4;;,0,0}. This fact consider-
times: flat spacetime in Rlndlgr coordinatgag, anq the ably simplifies many of the needed expressions. In particular,
Schwarzschild geometry in Painle@ullstrand coo.rdlnates the quantityd, T# u? vanishes identically for this geometry
[40—42. In each of these cases the full 3D numerical eVOIU'becausé'” 3vheyn3 has values that correspond to the com-

tion of these equations has constraint-violatiagd possibly onents of the metric, is just the identity transformation and
gaugg instabilities, and the approximate expressions for th%[sence independent of the dynamical fields. Thus the matrix

growth rates using our new formalism are simple enough thavﬂ ! . . ; . )
. ; ) . defined in Eq(3.74) vanishes identically for the Rindler
we can evaluate them in a straightforward mar(iegen ana geometry. It follows that for RindleroE=oE,, SE"

lytically in some cases Thus we are able to compare the h
yueaty 9 P = 5EJ, andC,z0u”suf=C0,ougsuf . Thus the time scale

estimates of the growth rates with the full numerical evolu- ) ) _ 0 _ )
tions in a systematic way. 1Ur assomat_ed with the |nstab|I|t3_/ in the_ Rindler geometry is
completely independent of the kinematical parameters of the
representation of the evolution equations. This independence
of 1/ on the kinematical parameters has been verified nu-
Flat spacetime can be expressed in Rindler coordinates aserically for the 2-parameter generalized Einstein-
follows: Christoffel subset of the linearized KST equations.

A. Rindler spacetime
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10

1/t

FIG. 4. Evolution of the energy norm for perturbations of Rin-
dler space. The solid curves show the evolutions based on three
cgjifferent resolutions(101, 401 and 6401 grid pointof a finite
difference version of the code, while dotted curves show the same
evolution using three different spectral resoluti¢é4, 96, and 128
basis functions A magnified view of the first part of the evolution
%upper lef} illustrates the short time scale instability whose growth
rate is shown in Fig. 3.

FIG. 3. Solid curve showghalf) the largest eigenvalue @,
for the Rindler space-timéwith k,=0). Dots give values for the
actual growth rate of the short time scale instability as determine
by numerical solution of the linearized evolution equations with
=-1.

Next we evaluate the simple estimate of the growth rate o
the fastest-growing mode using E.14). First we evaluate

the quadratic for@55u35ug. For the Rindler geometry ated from the growth rate of the energy norm for evolutions

with k,=0 this quantity has a reasonably simple form: of the linearized KST equations using a 1D pseudospectral
method on the domaine[0.1,1]. The numerical method

(but not the system of equationis identical to the one de-

COpou®suP= 25K (£+3)xK 6Dy — 2X*8D i — 2x ;]
scribed in[55], except here our spatial coordinate is the Car-

+XOK!{(Q1=2) 6D’
—[Q1+2(¢—»)18D;'}
+X*SKI[(Q1+2) D) — Q.8D'],  (4.7)

tesian coordinat& rather than the spherical coordinateAll
evolutions are performed at multiple resolutiqsse Fig. 4

to test convergence, and the growth rates that we quote in the
text and in the figures are taken from the converged solution.
At the boundaries we demand that incoming characteristic

fields have zero time derivative, and we do not constrain the
outgoing and nonpropagating characteristic fields. The initial
data is taken to be the exact solution plus a perturbation of

the formAe~ ¢~ 055" that is added to each of the dynami-

cal variables §;; ,Kjj ,Myj;). The perturbation amplitud&

for each variable is a randomly chosen number in the interval

(4.9  (—1078108). Note that this perturbation violates the con-

straints. The gauge field8' and Q are not perturbed. We

measure the growth rates of the energy norm during the very
arliest parts of the evolutions, before the initial Gaussian
ulse can propagate to the edge of the computational do-

whereiizvix, andQ, andQ, are given by

1-¢
Qu=2y(5+37)+105—. (4.8

- [+5
Qu=6y(2+7)+85 .

This symmetric quadratic form is simple enough that its ei-
genvalues and eigenvectors can be determined analytical
[54]. All of these eigenvalues depend on the tvx_/o dynamlcamain. To do this we use an extremely narrow puise

parameters{g,y}_ but not on any of the kinematical param- _g 0125, so that there is sufficient time to measure the
eters. The maximum eigenvalue also depends on position in '

. g ) k growth rate before even the tail of the pulse reaches the
Rindler space, according tqna=f(£,7)+4x", wherexis the  poundary(one could also widen the computational domain,
Rindler coordinate. This eigenvalue has tfa@proximatg

but this is equivalent to changing the pulse width because the
minimum value \2,,=10.198+4x? at the point{,y}=

Rindler solution is scale-invariant
{—0.135;-1.382. In our growth rate estimates we evaluate Figure 3 illustrates that the analytical estimate consisting

the eigenvalue at the point in our computational domairgf 1/7~1) .. gives a reasonably good estimate of this initial
where\ .« has its maximum value, which in our case is atgrowth rate of the instability. And the location of the optimal
x=1. value of the parametey, where the growth rate of the insta-
We illustrate in Fig. 3 the dependence bk, on the  bility is minimum, also agrees fairly well with the location of
parametery (for {=—1). Our simple analysis predicts that the minimum of3\ ..
the best-behaved form of the evolution equations should be However, the short timescale instabilities illustrated in
obtained for parameter values near this minimum. We als&ig. 3 are not our primary concern here. Figure 4 illustrates
plot in Fig. 3 numerically-determined points that representhe evolution of the energy norm for one of the evolutions
the growth rates of the instability. These points were evaludiscussed abovewith y=3%, (=-1, w=0.025). This
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v over these timescales. The only long term instabilities that

we observed in Rindler occur for valuesphear 0.5, where

the short-term instability growth rate is infinite. We believe

4 these instabilities occur because of coupling in the evolution

° equations between the pure propagating and non-propagating
) modes used in our simple estimate.

10 represent growth rates determined numerically over many
many light crossing time§or these evolutions, we have no
i need for an extremely narrow pulse; we wge 0.1 so that
we can run at lower resolutionsWe observed that these
1/"5 [ equations are in fact stable for most values of the parameter
ie _
.. Y

B. Schwarzschild spacetime

FIG. 5. Solid curve illustrates the simple analytical growth rate  \We have also studied instabilities in the Einstein evolution
estimate 1#=0 for the Rindler space-time. Points are growth ratesequations for solutions that are close to the Schwarzschild

determined numerically for long-terfmany light crossing times geometry. We use the Painfe@ullstrand[40—42 form of
evolutions with{=—1. Dotted curve represents the short-term in- the Schwarzschild metric:

stability growth rate estimate.
ds?=—dt?+(dr+2M/rdt)2+r?dQ?, (4.10

shows that once the unstable initial pulse crosses and leaves ) ) .
the computational domaifin about half a light crossing whered()~ represents the standard metric on the unit sphere.

time, ort~0.6), the solution grows much less rapidly. While The dynamical fields that represent this geometry are also

the short term instability does not seriously effect the longdUite Simple(although not quite as simple as Rindlemn
term stability of the codéunless it is large enough that the Cartesian coordinates we have

code blows up in less than a crossing t)pfeg. 4 illustrates gi =S¢ (4.1
that there are often other instabilities that grow more slowly, e '
but which can contaminate and eventually destroy any at- ~n

Y y ey Kij= V2M/r38, — 3\ M2 7, (4.12

tempts to integrate the equations for long periods of time.
Figure 4 also illustrates the equivalence between evolving
the system using a1 dimensional finite difference code
and a pseudo-spectral code. The finite difference code uses a N=1 (414
first-order upwind methodsee, e.g.[56]) in which the fun- ’ :
damental variables are decomposed into characteristic fields. K g
Both the finite difference and the pseudo-spectral methods N*=y2M/rr%, (419
use t.h.e same '”'“"’?' data, boundary condltlons, and gau ehereéi- is the Euclidean metri@in Cartesian coordinatgs
conditions. Three different spatial resolutions are illustrate e I ) ) ) R )
for each method, and the highest resolution runs essentialdr = (x,y,2)/r is the unit vector in the radial direction. In
coincide. This agreement provides additional evidence thdf!iS representation of the Schwarzschild geometry the funda-
the instabilities discussed here are features of the analyticdlental representation of the dynamical fieldsg
evolution equations, and are not numerical in origin. =1{4j;,Kjj,0} includes a non-vanishing extrinsic curvature.
In our estimates, we will now attempt to filter out the less Therefored, T suf will be non-zero for this geometry. Since
interesting short term instabilities by imposing boundarythe D;; components ofiy are still zero, it follows that only
conditions on the trial eigenfunctior® used in Eq(2.14).  theKj; components off“; will contribute toV#,. One can
These boundary conditions are implemented using the prashow that only the<;; components oV ,éug are non-zero,
jection operatoP#, in Eq. (2.16. For the case of the Rin- and that these are given by:
dler geometry this projection operator is constructed to anni-

Dkij=0, (413

hilate both the ingoing and outgoing propagating modes. z A b~ ab ab
Thus the growth rate estimate given in E8.18 is imple- —1+32[(1+3Z)K5ia5j —2Kg;;9%"— 0 K*] 6Gap -
mented by finding the largest eigenvalue(lqjﬁP“MPBV that (4.16

is projected onto the subspace of non-propagating modes

(i.e. the eigenvectors &kAkaﬁ having eigenvalue zero, as Thus V#, depends only on the kinematical parameter
measured by a hypersurface orthogonal obsgriWe find  Consequently for evolutions near the representation of the
that the largest eigenvalue of tm_swpaMpBV is zero for all Schyvarzsgh!ld geometry considered here, the growth rates of
values Of{g,’}’}, for all values of the Wavevectm'n, and for the instabilities will depend on Only three of the nine KST
all values ofx: the non-propagating modes of Rindler are all parameters{g,y,i}.
stable according to this estimate. We solve the evolution equations for the perturbed
This estimate of the long-term growth rate in Rindler is Schwarzschild geometry using a pseudospectral collocation
shown as the solid curve in Fig. 5. The points in Fig. 5method(see, e.g[57,58 for a general review, an®6,55,59

084014-11



L. LINDBLOM AND M. A. SCHEEL PHYSICAL REVIEW D 66, 084014 (2002

40 T T T

30

2wkl/t

10

20  -10 0 10 20
Y

0.01

FIG. 7. Same information as Fig. 6 but plotted here using a
logarithmic scale. This illustrates that while the simple analytical
growth rate estimate is qualitatively correct, it fails to correctly
identify the optimum choice of parameters.

FIG. 6. Dashed curve illustrates the simple analytical growth
rate estimate for the Schwarzschild space-time Wijts 0, and the
solid curve shows estimate fkf= —Fn/M . Points are growth rates
determined numerically for long-tergmany light crossing timegs
evolutions of the 3D linearized equations with= —1 and z=

14 variation of su®: the dashed curve represents the chdice

=0, while the solid curve represents the choikg=

for more details of the particular implementation used here—r,/M. The points in this graph represent the numerically-
on a 3D spherical-shell domain extending from 1.9M to  determined growth rates of the instabilities for the linearized
r=11.9M. Our code utilizes the method of lines; the time equations. We see that the agreement with our very simple
integration is performed using a fourth order Runge-Kuttaanalytical estimate is again quite good. However, Fig. 7 il-
algorithm. The inner boundary lies inside the event horizonjustrates that while the simple analytical estimate is correct
at this boundary all characteristic curves are directed out ofjualitatively, it fails to correctly identify the best choice of
the domain(into the black holg so no boundary condition is parameters to use for long-term numerical evolutions. The
required there and none is imposéthorizon excision”  minimum growth rate is actually small¢by about a factor
[26,60-7Q). This reflects the causality condition that the in- of two) than what could be achieved by the optimal range of
terior of a black hole cannot influence the exterior region. Atparameters that are identified by the simple analytical growth
the outer boundary we require that all ingoing characteristicate estimate.

fields be time-independent, but we allow all outgoing char- Figure 8 is the same as Fig. 7 except the results are plot-

acteristic fields to propagate freely. The initial data is theted as a function of the parameterfor (=—1 and y=
exact solution Eqs4.11) through(4.19, plus a perturbation —16. Again, the actual minimum growth rate is smaller than
of the formAe™ ("~ "M?4M? aqded to each of the 30 dynami- the analytical estimate. However, the qualitative shape of the
cal variables(the Cartesian components gf;, K;;, and analytical curve is correct, and can be used as a guide for
Myij). The perturbation amplitudé for each variable is a choosing parameters to investigate with the numerical code.
randomly chosen number in the intervat {0 8,10°8). The  In the present case this guide proves extremely useful, for it
gauge fieldg8' andQ are not perturbed. Because we perturbhas allowed us to find a parameter choié@(—0.42, y=

the Cartesiancomponents of each field by a spherically sym- —16, ;= —1) that significantly extends the amount of time
metric function, the initial data are not spherically symmet-the fully 3D nonlinear code can evolve a single Schwarzs-
ric. Note that we have chosen an initial perturbation thathild black hole. The very narrow range of parameters where
violates the constraints. At the outer boundary, the modeghe evolution equations have optimal stability, as shown in
that appear non-propagating to a hypersurface orthogonal olsig. 8, illustrate why these optimal values were not discov-
server actually are incoming with respect to the boundaryred empirically{26]. The growth rate estimates derived here
because of the outward-directed radial shift vedtar Thus  were needed to focus the search onto the relevant part of the
the projection operatoP*, needed to construct our growth parameter space. The improvement in 3D nonlinear black
rate estimates from E@2.18) is therefore the one that anni- hole evolutions resulting from these better parameter choices
hilates both the incoming and the “non-propagating” modes,will be discussed in detail in a forthcoming paper.

but leaves the outgoing modes unchanged. We have com-
puted the eigenvalues of this appropriately projedig,

and illustrate the largest eigenvalue in Fig. 6. These eigen-

values depend on the radial coordinaten this spacetime,  This paper studies the constraint-violating and gauge in-
and we plot in Fig. 6 the largest value of this eigenvalue stapilities of the Einstein evolution equations. We derive an
which occurs atr=2M. The graph representhalf) this  analytical expression for the growth rate of an energy norm
largest eigenvalue as a function of the parametder {= in Sec. II. This energy norm measures the deviations of a
—1 and z=-1/4. In Fig. 6 we give estimates for two given solution from a background constraint-satisfying solu-
choices of the wave vectdq, that characterizes the spatial tion. We show numerically that the growth rate of this energy

V. DISCUSSION
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constraint violations grow at the same rate as the energy
norm, it seems very unlikely that the constraint violations
could be eliminated or even significantly reduced simply by
changing the boundary conditions. And even if the constraint
violations could be eliminated with better boundary condi-
tions, our analysis shows that something—presumably gauge
instabilities—would still cause the energy norms to grow on
the timescales illustrated here.

The analysis presented here provides additional support
for the claim that the growth rate of instabilities is strongly
affected by the choice of representation of the Einstein evo-
2 0 2 lution equations. We find that this growth rate varies consid-
z erably as the parameters in the KST formulation of the equa-
tions are varied. Further, we demonstrate here that the
functional dependence of the growth rate on the parameters
strongly depends on the initial data that are being evolved.
We show that the functional dependence on the set of param-
eters is not the same for the Schwarzschild geometry as it is
for flat spacetime in Rindler coordinates. This result strongly
norm is identical to the growth rate of constraint violations inS.uggeStS that a”"ﬂ!'yz'”g the Stab'“ty of }he gvolutlon equa-

tions for perturbations of flat spacetime in Minkowski coor-

solutions of both the linearized equations and of the ful ) '
nonlinear equations. Thus we concentrate here on the anal§inates31,37, although useful for screening out particularly

sis of the evolution of this energy norm. Section Il derives .oorly—behaved formulations, is unlikely to succeed in iden-

the analytical expressions needed to evaluate this energwy'ng the best form of the equations to use for binary black -
norm in the 12-parameter family of Einstein evolution equa- ole spacetime evolutions. Rather these results suggest that it

tions introduced by Kidder, Scheel, and Teukol§Rg]. This =~ May be necessary to choose the optimal form of the evolu-
ion equations individually for each problem. Estimates of

analysis demonstrates that an open subset of the KST equ%1 _ -
tions with all physical characteristic speeds is symmetric hy € instability growth rates such as those found hened

perbolic. And perhaps more surprisingly, there is a largd!°Pefully more refined estimates yet to be discovebet

open subset of these strongly hyperbolic equations that is n&end' only on the fields at a given instant of time. I.t might be
symmetric hyperbolic. possible(or even necessarthen to use such estimates to

We make a considerable effort in this paper to Ciemon_determme and then adjust the form of the evolution equa-

strate that the instabilities that we observe are actual solloNS 1 be optimal as the spacetime evolves.

tions to the evolution equations and not numerical artifacts of

the discrete representation of the solution that we use. We ACKNOWLEDGMENTS
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non-trivial check that the instabilities we find are real solu-

tions to the equations. APPENDIX

The analysis presented here also suggests that the insta—I hi di ve the details of ber of
bilities that we see are endemic to the Einstein evolution. " NS appendix we give the details of a number of equa-

equations and are not the result of improper boundary corflons t_hat defing the KSTZG.] fqrmulation of the Einsteiq
ditions. We impose conditions that suppress the incomin volution 'equayons. The prmupal parts of these equations
components of the dynamical fields at the boundaries of th&an b€ written in the form of a first order system:
computational domain. These conditiometimes called

. IR AU+ AR 9 uP=0 (A1)
maximally dissipativg71]) ensure that the energy norm does t Bk '
not grow due to energy being inserted into the computational _ _
domain across the boundaries. Any other boundary condiHere the dynamical fields are taken to be the sét
tions that might be impose@ncluding ones that attempt to ={0i; ,Pij ,My;j}, whereg;; is the spatial metric, anfl;; and
control the influx of constraint violationg72]) could only ~ M,;; are fields that initially will be interpreted as the extrin-
increase the growth rate of our energy norm. Because thgic curvatureK;; and the spatial derivatives of the metric

FIG. 8. Dashed curve illustrates the simple analytical growth
rate estimate for the Schwarzschild spacetime Wjts 0, and the
solid curve shows the estimate fiof= —Fn/M. Points are growth
rates determined numerically for long-termany light crossing
times 3D evolutions with{=—1 andy=—16.
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Dyij= %&kgij respectively. The matrice%"“ﬁ can be written Sa= 2(3e+4Kk)(bc—ad)— (a—b—c+d)e?
quite generally for these systems in the form
—2(2ae—be—ce+2ak)k, A17
3:9ij=N"dngij , (A2) ( ) (ALD)
o~ oan on A
(9tpiijnf3’nKij—N[M19nb5°i5dj+M29nd5b(i5cj) ob=4(2e+k)(ad—bc)+2(a—c)e
+ 139" 8%+ w49 °98"; 87 +2(2ae—be+de—2bk)k, (A18)

+159"9°%+ 1169 "0 %9319 M e, (A3) fo= 426+ (33— Do)+ 23 B)22
9 M ij=N"9M ;= N[ 18"8"% 8+ 26" %) 8% +2(2ae—ce+de—2ck)k (A19)
+v39"°916%)+ 4970 6%+ v59°°g i 6"

sd=4(e+3k)(bc—ad)—4ae?+ 4(be+ ce—dk)k,

+vs9 bCgijénk]&npbc- (A4) (A20)
For the fundamental representations of the theory discussed .
in Sec. Il where the dynamical fields areu§ dpe=2e, (A21)
=1{0ij ,Kjj ;Dyij}, the constantg., andv, are related to the L
5 dynamical KST parameters/(Z,n,x,o) by Sok=—e— 2Kk, (A22)
p=r=1, (A5) 5= 62— ek—2k2, (A23)
p2=—1-1, (A6) PO A
6= 06g[10(bc—ad)+(3b+3c—a+d+e)e
M3:_1+§1 (A7) ~ ~ ~ A A A A~
—(6a+2b+2c+4d+e+ 2k)k]. (A24)
wa=1+20, (A8) .
The transformatio“ is invertible as long a$+0 andz
M5=— = — 7, (A9) #— 1. In this generic case we may write
v,=0, (A10) ug=T 1zuf, (A25)
V3= —vs=—37, (A1l)  andT*, T 175=6%, wheres®s is the identity matrix on
. the space of fields.
V4= Vg= T3 X- (A12) We have seen in Sec. Ill that the general expression for

the matricesAk"B is related to its form in the fundamental

KST [26] generalize this fundamental representation Ofrepresentation of the equatiortsg “,, by the simple trans-

the theory by introducing a 7-parameter family of transfor-f : pake _Ta akp -1V : ;
. . . ) rmation law:A*“;=T* Ag*, T . This transformation
mations on the dynamical fields. These transformations de—0 ation l1a B mo v B S transformatio

fine the new field®;; andM; in terms of the fundamental ::nay al'so be eﬁpressed somewrcljat mﬁre So?cretily as a'trans—
fields K, andDy;: via an equation of the form orma|1(t|on on the constanis, and v, that define the matri-
1 Kij cesA*;. The resulting expressions for these constants after

ua:TaBug_ (A13) the kinematical transformation are
The explicit form of this transformation is given in Egs. pi=k—3(1+0)e, (A26)
(3.12 and (3.13. Here we give explicit expressions for the B B
inverse transformation: wr=3(1=e—(1+ )k, (A27)
Kij = Pij +;gijgabpaba (A14)

ws=(1+60)b—(1-)k—1(1-40—30)d
Dkij:[?5§5P5f+g5?i5?)5ﬁ+ggijgbcé\ﬁ +i(1+40+0)e, (A28)

+bg ijgab‘SEJrgg k(i 5,'a)gbc o - o
wa=(1+60)a+(1+20)k—32(1—40—3¢)c

+d 91659 IManc, (A15) -
- —2(1-0pe, (A29)
where the constantz,k,a,b,c,d,e} are functions of the ki-
nematical parameteig,k,a,b,c,d,e}: ws=(1+2y+4z+6yz)(b—id)+20z(3b+d+e)
7=—-7/(1+32), (A16) —(y+22+3y2)(k—e)—1d, (A30)
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we=(1+2y+42+6yz)(a—3c)+20z(3a+k+c) fundamental representatid),; is determined by constants
B2 andC2. The general symmetrizer is related to the fun-
+(y+2z+3y2)(k—te)—icc, (A31)  damental by Eq(3.40, S,=T .S, T '*,. This trans-
. formation can be represented more concretely as relation-
=Kk, (A32) ships between the constarﬁg andC, that defineS,; and
A the constant83 andC$ that defmeﬁoﬁ These relations are
v,=e, (A33)
. - . B,=(1+32)?BY, (A38)
vs=(1=n—3x)d—3(n+3x)C— i(n+2x)e~ 37k ' '
(A34) B,=BY, (A39)
vs=(1-n—3x)b—3(n+3x)a—3ne—3xk, T E2e0
(A35) Ci=(k+e)°Cy, (A40)
J— I —a — (. _1.\2~0
vs=1(2+ n+3x+62+27z+6x2)C Cy=(k=2€)°C3, (A41)
+1(29+x+2z+49z+2x2)d C3=A2C3+B2Cl+2ABCE, (A42)
+i(p+292)k+ L(p+2x+4z+29z+4x2)e, C,=D2C3+£2CH+2DECy, (A43)
(A36) Cs=ADC3+ BECI+ (AE+ BD)C, (A44)
ve=3%(2+ n+3y+6z+27z+6x2)a where
1 4 A7t Dy D4 L e _
+3(2n+ x+2z+4nz+2x2)b+ 3 (n+2n2z)e A=k+3a+c, (A45)
+i(xy+2z+2y2)k. (A37) o
B=1ie+a+2c, (A46)
These expressions are identical to those in K3d] except
for us and ug, which differ from the the KST expressions D=e+3b+d, (A47)
(due to a typographical error in K$by the substitutions
ced. E=k+%e+b+2d. (A48)

Finally we wish to give an explicit expression for the
transformation that relates a fundamental representation dtis straightforward to verify that thed®, andC, satisfy the
the symmetrizerS‘iB with the general representatid),; . positivity conditions needed to guarantee t8ag is positive
We have seen in Sec. Ill B that a symmetri&gy, is deter-  definite, so long as thB% and C also satisfy those condi-
mined by a set of constan®, and C,, and similarly the tions.
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