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Slowly rotating charged fluid balls and their matching to an exterior domain
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The slow-rotation approximation of Hartle is developed to a setting where a charged rotating fluid is present.
The linearized Einstein-Maxwell equations are solved on the background of the Reissner-Nordstro¨m space-
time in the exterior electrovacuum region. The theory is put to action for the charged generalization of the
Wahlquist solution found by Garcı´a. The Garcı´a solution is transformed to coordinates suitable for the match-
ing and expanded in powers of the angular velocity. The two domains are then matched along the zero pressure
surface using the Darmois-Israel procedure. We prove a theorem to the effect that the exterior region is
asymptotically flat if and only if the parameterC2, characterizing the magnitude of an external magnetic field,
vanishes. We obtain the form of the constantC2 for the Garcı´a solution. We conjecture that the Garcı´a metric
cannot be matched to an asymptotically flat exterior electrovacuum region even to first order in the angular
velocity. This conjecture is supported by a high precision numerical analysis.
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I. INTRODUCTION

There are a surprisingly few rotating perfect fluid so
tions of Einstein’s relativistic equations known to date. O
of the most comprehensive of these is the rigidly rotat
charged perfect fluid solution of Garcı´a @1#. This metric is
type D in the Petrov classification of the curvature. T
Einstein-Maxwell equations are satisfied with a stress ten
which is the sum of that of the perfect fluid and the Maxw
field. The fluid medium carries electric charge, and it ha
divergence-free four-current. Because of the tantalizing l
of explicit, relativistically rotating fluid stellar models in th
literature, it is only natural to ask if it is possible to join
suitably chosen domain of the Garcı´a solution to an externa
source-free Einstein-Maxwell region.

The Garcı´a solution reduces to the Wahlquist space-ti
in the absence of electric charge. Unfortunately, as we h
proven in an earlier publication@2#, the Wahlquist solution is
unsuitable as a model of isolated an relativistic objectA
priori it is unclear if the presence of electric charge c
supply the necessary ingredients for a smooth matching

The purpose of the present paper is to search for the
ditions of matching the Garcı´a metric to an asymptotically
well-behaved external electrovacuum domain. For
matching we use the Darmois-Israel procedure@3–6#, stating
that the induced metrics and induced extrinsic curvatu
should agree along the matching surface. From these co
tions it follows that the matching surface agrees with
zero pressure surface of the interior as desired. The cond
on the extrinsic curvatures also ensures that there are
surface layers of matter. We further assume that there ar
surface charges or currents implying continuity of the el
tromagnetic field tensor across the matching surface.

The Garcı´a solution may be expanded in powers of t
rotation parameter of the fluid and it becomes spheric
symmetric in the non-rotating limit. It is hence appropriate
match it to rotating perturbations of the Reissner-Nordstr¨m
0556-2821/2002/66~8!/084012~12!/$20.00 66 0840
e
g

or
l
a
k

e
ve

n-

e

s
di-
e
on
no
no
-

y

solution. A suitable vehicle for performing this is the slow
rotation approximation scheme developed by Hartle@7#. If
the fluid interior can be smoothly matched to the exter
region for arbitrary values of the rotation parameter then
matching conditions would be satisfied to any finite order
the expansion parameter. Conversely, when one can sho
a given finite order that no exterior domain can be join
then there is no exact global solution either. We could s
cessfully use this approach in our previous computations
the Wahlquist space-time@2#. In its original form, the Hartle
method matches an internal fluid domain with an exter
vacuum. An essential tenet of this approach is the indep
dence of the first-order perturbation functionv of the polar
angleq. For a generic setting in the presence of the Maxw
field, one would have to go through the proof of this ind
pendence. In the present case, however, we can omit
general theory sincev is a function of the radius alone in th
slowly rotating Garcı´a space-time. As a consequence of t
matching conditions, then, this property is inherited by t
electrovacuum exterior.

In this paper we apply the slow-rotation approximation
the Garcı´a space-time. Our result is that the electric cha
works against the conditions of matching. We find th
matching to an asymptotically flat electrovacuum exterior
impossible already to the first order in the angular veloc
This comes as a surprise to us since all uncharged fluids
be matched to an asymptotically flat vacuum exterior to fi
order in the rotation parameter. This is because such vac
space-times do not differ from the first-order form of the t
Kerr metric.

The paper is organized as follows. In Sec. II we comp
the Garcı´a metric in various forms that will be necessary
launch the matching process. In Sec. II B we take the st
limit which, of course, is spherically symmetric. Next,
Sec. II C we assemble the slowly rotating form of the metr
In Sec. III we prepare the field quantities in the extern
electrovacuum domain. Thus we get the general solution
©2002 The American Physical Society12-1
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the first-order perturbation functionv, and we investigate its
asymptotic properties. The actual matching of the two
mains takes place in Sec. IV. As before, we require that
Darmois-Israel conditions@3# are satisfied. The details ar
worked out in Sec. IV A, generalizing the theory in the pre
ence of a Maxwell field. The solution of the matching co
ditions for the static state and to first order in the angu
velocity is carried out in Secs. IV B and IV C, respective
The results are further discussed in Sec. V. The Appendi
devoted to the issue of the choice of independent parame

II. THE INTERIOR METRIC

The charged generalization of the Wahlquist solut
given by Garcı´a @1# has the metric

ds25
P

D
~dt1dNds!22

Q

D
~dt1dMds!21DS dx2

P
1

dy2

Q D
~1!

with the real functions

D5M2N

M5
1

k2
sinh2~kx!2j0

2

N52
1

k2
sin2~ky!2j0

2 ~2!

P5a1
1

2k
@2n1x~a1b2!#sinh~2kx!

1@b2~g1bx!2#cosh~2kx!

Q5a2
1

2k
@2m1y~a1b2!#sin~2ky!

1@b1~e1by!2#cos~2ky!.

Herea, b, e, g, k, m, n, a, b, d andj0 are eleven constants
The number of independent parameters modulo diffeom
phisms is eight~cf. the Appendix!. This metric is a solution
of Einstein’s equationsGab58p(Tab

( f )1Tab
(e)) with

Tab
( f )5~m1p!uaub1pgab

Tab
(e)5

1

4p S FagFb
g2

1

4
gabFgdFgdD

wherep is the pressure,m the density,ua the velocity of the
fluid, andFab is the electromagnetic field tensor. In como
ing coordinates, the velocity vector isu5u0]/]t. The pres-
sure and density are given by
08401
-
e

-
-
r

is
rs.

r-

8pp52
k2

D
~Q2P!1ak21S

8pm53
k2

D
~Q2P!2ak22S

S52
2bk

D
@~e1by!sin~2ky!

1~g1bx!sinh~2kx!#.

The electromagnetic four-potentialAa determines the field
tensor1 asFab5]aAb2]bAa , and its components are

Ax5Ay50

As52
d

2Dk
@~e1by!M sin~2ky!1~g1bx!N sinh~2kx!#

At52
1

2Dk
@~e1by!sin~2ky!1~g1bx!sinh~2kx!#

5
S

4k2b
.

The electric current vectorj a5rua satisfies the field equa
tion 4p j a5F ;b

ab . The current 4p j a52k2bdt
a has no diver-

gence~as it should, since the Maxwell equations are sa
fied! and the conserved charge density is

r5
k2b

2p
AQ2P

D
.

Note that this solution has been named theWahlquist-
Newman metricin @8#.

A. The Wahlquist form

Our goal in this section is to bring the metric~1! to a form
which reduces to that of the Wahlquist solution in the n
charge limit. The static limit of the Wahlquist form will, in
turn, yield the charged generalization of the Whittaker spa
time. To achieve this, we transform to the new coordinatej
andz by setting

kj5sinh~kx!, kz5sin~ky!. ~3!

Then we have

D5j21z2. ~4!

In order to be able to introduce Wahlquist’s functionsh1 and
h2, we rescale the functionsP and Q using a new constan
parameterr 0:

1Garcı́a @1# uses the definitionFab52A[a,b] , which gives rise to
an overall sign difference inAa .
2-2
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h15r 0
2Q, h25r 0

2P.

To choose the factors of the other terms appropriately,
also rescale thet ands coordinates as

w52
1

r 0
2
s, t5

1

r 0
t.

The metric takes the form

ds252
h12h2

D
~dt2Adw!21r 0

2d2D
h1h2

h12h2
dw2

1Dr 0
2F dz2

~12k2z2!h1

1
dj2

~11k2j2!h2
G ~5!

whereA is Wahlquist’s function,

A5dr 0S h1j21h2z2

h12h2
2j0

2D . ~6!

We introduce the rescaled constants

m̄5mr0
3 , b̄52nr0

3

~7!

ē5er0 , ḡ5gr0 , b̄5br 0

and three new constants as follows. In place ofa we shall
use the constantk, the constanta will be replaced byC and
finally E will take the place of the constantb, using the
following definitions2:

1

k2
5r 0

2~a1b2!

C5r 0
2~a1b! ~8!

E522r 0
2bk22

1

k2
.

We get for the functions

h15
z

k2 Fz2
1

k
A12k2z2arcsin~kz!G

2
2m̄

r 0
zA12k2z21F ē1

b̄

k
arcsin~kz!G2

~122k2z2!

1C1Ez2 ~9!

2We have slight differences from the notation of Garcı´a @1#: m̄ and

b̄ have different factors,k includes a termb2, andE andC are not
set to 1 yet.
08401
e
h252

j

k2 Fj2
1

k
A11k2j2arcsinh~kj!G

2
2b̄

r 0
jA11k2j22F ḡ1

b̄

k
arcsinh~kj!G2

~112k2j2!

1C2Ej2. ~10!

The electromagnetic potential 1-formA5Aadxa is

A52
1

D
F ḡ1

b̄

k
arcsinh~kj!GjA11k2j2@dt1~z2

1j0
2!dr 0dw#2

1

D
F ē1

b̄

k
arcsin~kz!GzA12k2z2

3@dt2~j22j0
2!dr 0dw#. ~11!

The pressure and density become

8pp52
k2

Dr 0
2 ~h12h2!1

k2

r 0
2k2

~12b̄2k2!1S ~12!

8pm53
k2

Dr 0
2 ~h12h2!2

k2

r 0
2k2

~12b̄2k2!2S ~13!

S5
4b̄k2

r 0
2

At . ~14!

The expressions~5!–~14! contain a large number of pa
rameters:C, E, m̄, b̄, k, k, ē, ḡ, b̄, r 0 , d andj0. How many
of these 12 constants are necessary to uniquely describ
metric? This question will next be addressed.

By using linear coordinate transformations oft andw we
can obviously setd51 and j050. The parameterr 0 has
been introduced in order to enable ourselves to go to
slow-rotation limit. The scaling of this parameter can be ch
sen arbitrarily. Definingr 085cr0 , C85c2C, E85c2E, m̄8

5c3m̄, b̄85c3b̄, k85k/c, ē85cē, ḡ85cḡ, b̄85cb̄,
wherec is a constant, thedz2 and dj2 terms in the metric
remain unchanged with the primed quantities. However,
need to perform a transformation of the coordinatest5ct8,
w5c2w8 to keep the structure of the other componen
This shows that the two sets of constan

$C,E,m̄,b̄,k,k,ē,ḡ,b̄,r 0% and $C8,E8,m̄8,b̄8,k,k8,ē8,ḡ8,
b̄8,r 08% provide parametrizations of a single physical sta
equivalent under the diffeomorphism$z8,j8,w8,t8%
5$z,j,c22w,c21t%.

Another freedom of choice follows from the coordina
transformationz95 f z, j95 f j, wheref is a constant. In the
metric ~5! we have

D5j21z25
1

f 2
~j921z92!5

1

f 2
D9. ~15!
2-3
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Introducing the constantsk95k/ f , C95 f 4C, E95 f 2E, m̄9

5 f 3m̄, b̄95 f 3b̄, k95k/ f , ē95 f 2ē, ḡ95 f 2ḡ, b̄95 f b̄, and
definingh19 andh29 similarly to h1 andh2, we get

h15
1

f 4
h19 , h25

1

f 4
h29 . ~16!

Then thedz2 and dj2 terms transform appropriately. How
ever, to get the correct transformation for the other terms
the metric, we need to change the coordinates ast5 f t9 and
w5 f 3w9. It follows that the two sets of constant

$C,E,m̄,b̄,k,k,ē,ḡ,b̄,r 0% and $C9,E9,m̄9,b̄9,k9,k9,ē9,
ḡ9,b̄9,r 0%, are equivalent descriptors.

At this stage, the coordinates are completely fixed. He
there areeight independent physical parameters. The cor
sponding analysis of the parameters in the original coo
nates is not needed in the present paper, but for convenie
is included as an Appendix. Using the coordinate transform
tions xi85xi8(xk) and xi95xi9(xk), for example, the con-
stantsC and E can always be made61 or 0. Garcı´a @1#

discusses the caseC5E51, which for zeroē, ḡ and b̄
yields the original uncharged Wahlquist solution. WhenC or
E can only be rescaled to21 or 0, some different solution
might arise, as was first noted by Mars and Senovilla@9# in
the uncharged case.

There exist two combinations of these transformatio
which preserve many of the constants. Table I. shows the
of constants giving metrics equivalent to the original

$C,E,m̄,b̄,k,k,ē,ḡ,b̄,r 0%, when choosingc f51 and c f2

51.

B. The static charged fluid

In this section we consider the static limiting case of t
Garcı́a space-time. Following the procedure of Wahlqu
@10#, we introduce a new radial coordinate

r 5zr 0 ~17!

and a new constantg in place ofk by substituting

k5gr 0 ~18!

everywhere. The constantg is related to Wahlquist’srs by
g25k2rs . The static limit can be obtained then by going
zero with r 0. In the limit r 0→0,

TABLE I. Equivalent sets of parameters.

1 C E m̄ b̄ k k ē ḡ b̄ r 0

c f51 c2C E m̄ b̄
1
c

k k cē cḡ b̄
1
c

r 0

c f251 C f2E f 3m̄ f 3b̄ f k
1
f

k ē ḡ f b̄ f 2r 0
08401
in

e
-
i-
ce,
a-

s
ts

t

t

lim
r 0→0

S r 0
2

r 2
h1D 5h̃1 ~19!

where

h̃15E2
2m̄

r
A12g2r 21

1

k2 F12
1

gr
A12g2r 2arcsin~gr !G

1F ẽ

r
1

b̄

gr
arcsin~gr !G2

~122g2r 2! ~20!

and ẽ5r 0ē. The functionh2 has the limiting form

h̃25 lim
r 0→0

h25C2Ej222b̃j2~ ḡ1b̄j!2 ~21!

where b̃5b̄/r 0. Using the limitsr 0
2D→r 2, and A→0, the

metric becomes

ds252h̃1dt21
dr2

~12g2r 2!h̃1

1r 2S dj2

h̃2

1d2h̃2dw2D . ~22!

A simpler form arises if we introduce a new radial coo
dinatez by setting

gr 5sinz. ~23!

Then

h̃15E22m̄g cotz1
1

k2
~12z cotz!1~ ẽg1b̄z!2~cot2z21!

~24!

and

ds252h̃1dt21
dz2

g2h̃1

1
sin2z

g2 S dj2

h̃2

1d2h̃2dw2D . ~25!

The only nonvanishing component of the electromagne
potential is

At52~ ẽg1b̄z!cotz.

The pressure~12! and the density~13! are

8pp5g2S 2h̃11
1

k2
2b̄2D 1S

8pm5g2S 3h̃12
1

k2
1b̄2D 2S ~26!

S54b̄g2At .
2-4
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The bracketed term in Eq.~25! is the metric of a two-
surface. We next show that there is a parameter range
which this two-surface is the two-sphereS2. In order to get
the metric of the two-sphere, we introduce a new coordin
u in place ofj by d2h̃25c1sin2u, wherec1 is some constant
Then

d2
dh̃2

dj
52c1sinu cosu

du

dj
~27!

and

dj2

h̃2

5
4c1

2sin2u cos2u

d4h̃2

S dh̃2

dj
D 22

du2

5
4~c12d2h̃2!

d2 S dh̃2

dj
D 22

du2. ~28!

The condition

dj2

h̃2

5c2du2 ~29!

wherec2 is another constant, is satisfied if and only if

c25
1

E1b̄2

~30!

c15d2FC2ḡ21
~ b̃1ḡb̄ !2

E1b̄2 G .

We can use the map in the third row of Table I to setc2

51 by makingE1b̄251. Of course, this can be done on
when E1b̄2 is positive. The Lorentzian signature of th
metric ~25! holds whenever it is possible to set

C2ḡ21
~ b̃1ḡb̄ !2

E1b̄2
51 ~31!

using the second row of Table I. Finally we setd51 by
rescaling thew coordinate. With these choicesh̃2512(j
1b̃1ḡb̄)2 and we end up with the simple coordinate tran
formation

j1b̃1ḡb̄5cosu. ~32!

Then

h̃1512b̄222m̄g cotz1
1

k2
~12z cotz!1~ ẽg1b̄z!2

3~cot2z21!, ~33!

and the metric becomes
08401
or

te

-

ds252h̃1dt21
1

g2 Fdz2

h̃1

1sin2z~d u21sin2udw2!G .

~34!

The center, determined byz50, can be regular only ifm̄
50 andẽ50.

C. The combined transformation

In the previous sections we have been led to transform
the Garcı´a metric to the Wahlquist coordinates and hence
a form which is amenable for accessing the static limit. W
now combine these procedures into a direct transformat
sidestepping the Wahlquist form, and compute the quanti
for slow rotation.

The coordinate transformations~3!, ~17! and ~23!, with
k5gr 0, can be combined to the single transformation

z5ky. ~35!

Garcı́a’s parameters are expressed in terms of ours as
lows:

k5gr 0 , m5
m̄

r 0
3

n52
b̃

r 0
2

, a5
1

r 0
2 S 1

k2
2b̄2D

e5
ẽ

r 0
2

, g5
ḡ

r 0
~36!

b5
b̄

r 0
, a5

C

r 0
2

1
1

2r 0
4g2 S E1

1

k2D
b52

1

2r 0
4g2 S E1

1

k2D .

We now substitute the new parameters given by Eq.~36! into
the metric form~1! and introduce new coordinates by

y5
z

gr 0
, t5r 0t, s52r 0

2w. ~37!

Using Table I, we find that the coordinate system is fixed
setting

d51, j050, E512b̄2

~38!
C511ḡ22~ b̃1ḡb̄ !2.

The regularity at the center is ensured by

m̄50, ẽ50. ~39!

The angular coordinateq is introduced by writing
2-5
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x5cosq2b̃2ḡb̄. ~40!

The coordinateq only equals theu defined in Sec. II B when
the fluid is static. Then for smallr 0 to linear order we obtain
the metric

ds252h̃1dt21
dz2

g2h̃1

1
sin2z

g2
@dq21sin2q~dw2vdt!2# ~41!

with

h̃1512b̄21
1

k2
~12z cotz!1b̄2z2~cot2z21! ~42!

and

v5r 0

g2

sin2z
~ h̃121!. ~43!

The first-order calculation shows thatv does not depend on
the angular coordinate. To this order, the only componen
the four-potentialA to pick up a small new contribution i
Aw :

A52b̄z cotz dt1r 0@b̄sin2q~12z cotz!2b̄2ḡcosq#dw.

~44!

Note that to first order inr 0, the metric is independent of th
magnetic monopole charge parameterḡ. In fact, the mono-
pole contribution affects only the Maxwell equations b
does not affect the gravitational equations.

III. THE ELECTROVACUUM EXTERIOR

The metric of the ambient electrovacuum domain, to fi
order in the angular velocity, has the Reissner-Nordstr¨m
form modified by the non-diagonal rotation term,

ds252S 122
m

r
1

e2

r 2D dt2

1S 122
m

r
1

e2

r 2D 21

dr21r 2@dq21sin2q~dw

2vdt!2#. ~45!

The four-potentialA5Aadxa, where Aa5Aa(r ,q), has a
time component

At52
e

r
. ~46!

From the (r ,r ) and (r ,q) components of Einstein’s equa
tions we get no contribution toAt , and the (t,q) component
givesAr ,q5Aq,r . Hence there is a gauge in which
08401
f

t

t

Ar5Aq50. ~47!

The other perturbation components are obtained in the
mainder of this section. Before doing that, we remark that
the special case of the slowly rotating Kerr-Newman solut
the forms ~46! and ~47! of the four-potential component
remain valid and we have

Aw
(KN)5

ae sin2q

r

v (KN)5
2am

r 3
2

ae2

r 4
. ~48!

We now proceed to computing the first-order contrib
tions for a general electrovacuum. Fromt the (w,t) compo-
nent of Einstein’s equations the second-order differen
equation follows:

r 4
d2v

dr2
14r 3

dv

dr
2

4e

sin2q

]Aw

]r
50. ~49!

For the uncharged case, e50, this has the solutionv5v0
12am/r 3 wherea is the Kerr parameter. The value of th
constantv0 can be set to zero by the transformationw→w
1c1t.

The solution of Eq.~49! for a generic charge eÞ0 is

Aw5
1

4e
r 4sin2q

dv

dr
1 f ~q!. ~50!

The Maxwell equation for the componentAw is

~2mr2r 22e2!
]2Aw

]r 2
1r 2sin2qe

dv

dr

12S e2

r
2mD ]Aw

]r
2

]2Aw

]q2
1cotq

]Aw

]q

50. ~51!

SubstitutingAw from Eq. ~50!

1

4
~2mr2r 22e2!r 4

d3v

dr3
1S 7

2
rm22r 22

3

2
e2D r 3

d2v

dr2

1S 4m2
5

2
r D r 3

dv

dr

5
e

sin2q
S d2f ~q!

dq2
2cotq

d f~q!

dq D . ~52!

This is a separable equation. Introducing the separation c
stantK, we get

e

sin2q
S d2f ~q!

dq2
2cotq

d f~q!

dq D 5K ~53!
2-6
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with the solution

f ~q!5
1

2

K cos2q

e
1

C4

e
1

C5

e
cosq. ~54!

We next consider the radial part of Eq.~52!.
~i! For the case e2Þm2 the general solution of the radia

equation is

v5C11
e222mr

3m3r 4
C01

2

r
C2

1
e2~r 222mr1e2!@r 1m1~e22r 2!L#

m2~e22m2!2r 4
C3 ~55!

where

C05Km213e2m2C21
2e2

e22m2
C3 ~56!

and

L~r !55
1

2Am22e2
ln

r 2m1Am22e2

r 2m2Am22e2
if m.e

1

Ae22m2 S p

2
2arctan

r 2m

Ae22m2D if m,e

~57!

with the derivative

dL~r !

dr
5

1

2mr2r 22e2
. ~58!

~ii ! For the equilibrium case e25m2, the radial solution is

v5C11
m22r

3r 4
~K13m2C2!1

2

r
C2

1
2

15

5r 224mr1m2

m~r 2m!2r 4
C3 . ~59!

When an asymptotically nonrotating frame is chosen,
have thatC150, and we shall assume this to hold in th
sequel.

Comparing with the Kerr-Newman metric with rotatio
parametera, we obtain

K523am.

Substituting the solution~55!, ~54! and~58! in the poten-
tial ~50! we get for the case e2Þm2:
08401
e

Aw5
ae

r
sin2q1

3e2mr2mr322e4

2emr
C2sin2q

1
3m2r ~m1r !22e2m224e4

6m3r ~e22m2!2
C3e sin2q

1
3e2mr2mr322e4

2m2r ~e22m2!2
C3eL~r !sin2q2

3am

2e
1

C4

e

1
C5

e
cosq. ~60!

For e56m , we get identical limits from both values ofL in
Eq. ~57!. The limiting form of the potentialAw can be ob-
tained by substituting Eq.~59! in Eq. ~50!:

6Aw5
am

r
sin2q1

~r 12m!~r 2m!2

2mr
C2sin2q

2
~2r 2m!~2m225mr15r 2!

15m2r ~r 2m!3
C3sin2q2

3a

2
1

C4

m

1
C5

m
cosq. ~61!

The constantC4 is inessential since it does not appear in t
Maxwell tensor.

In order to clarify the role of the constantsC2 andC5, it
will be helpful to introduce a tetrad with the components

e05S 122
m

r
1

e2

r 2D 21/2
]

]t

e15S 122
m

r
1

e2

r 2D 1/2
]

]r

~62!

e25
1

r

]

]q

e35
1

rsinq

]

]w
2vr sinqS 122

m

r
1

e2

r 2D 21
]

]t
.

In this tetrad the leading terms for larger in the components
of the Riemann tensor are given by

R01135R02235
C2sinq

r 2

~63!
1

2
R01235R021352R03125

C2cosq

r 2
.

As seen the terms do not fall off sufficiently fast for th
space-time to be asymptotically flat. Thus this object do
not seem to be isolated. To see this we look at the asymp
behavior of the electromagnetic field in this tetrad. From E
~60! we obtain
2-7
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lim
r→`

F1352
C2

e
sinq[2B2

lim
r→`

F2352
C2

e
cosq[B1 . ~64!

This can be interpreted that for nonzero values ofC2, the
fluid ball is immersed in a constant~in this approximation!
external magnetic field, parallel to the axis of rotation, a
extending to infinity. Note that the Riemann tensor falls
even though the electromagnetic field tends to a cons
value. One would expect that the contribution of the elect
magnetic stresses to the curvature will appear in a hig
approximation. Hence we have the following:

Theorem. When C2 has a nonzero value, the extern
solution is not asymptotically flat.

It is therefore important to investigate the values ofC2
that the matching provides. This investigation will be carri
out in the next section.

The term containingC5 is the potential of a magneti
monopole. In the given frame, it gives rise to a purely rad
magnetic field which has the asymptotic form;1/r 2.

IV. MATCHING

In this section the matching procedure is described. T
next section outlines the method in general terms. We t
join the static, spherically symmetric external and inter
domains in Sec. IV B. The static internal state is para
etrized by the constantsb̄, k andg. As a result of the match
ing, these three constants determine the radiusr 1 of the
matching surface and the parametersm and e of the vacuum
exterior. It is a consequence of the matching conditions
the surface of matching coincides with the zero pressure
face of the interior. In Sec. IV C we carry out the matching
first order in the rotation parameter. This will yield the p
rameters of the slowly rotating electrovacuum region
terms ofr 0, the parameter describing the angular velocity
the fluid, and in terms of the parameterḡ.

A. The matching conditions

We want a global model from which~i! any surface
charges and currents and, furthermore,~ii ! the surface layers
of matter are absent. From the first condition it follows@11#
that the electromagnetic stress tensor can be continuo
matched at the surfaceS if we assume that both the perm
ablity and dielectric coefficients are equal in the elect
vacuum and in the interior. This means with~ii ! that there is
no discontinuity in the pressurep acrossS.

We write the metricds2[gabdxadxb for both the interior
and the exterior regions in curvature coordinates,$xa%
5$t,r ,q,w%, in the following form:

ds252A2dt21B2dr2

1r 2@dq21sin2q~dw2vdt!2# ~65!
08401
d
f
nt
-
er

l

e
n
l
-

at
r-

f

sly

-

whereA, B and v are functions of the radial coordinater
alone. Both to order zero and one in the angular velocity,
constant-pressure surfaces of the perfect fluid coincide w
the constantr surfaces.

We match the hypersurface given byr 5r 1 of the interior
region with the corresponding matching surface atr 5r 1 of
the exterior region, such that the induced metricsds2uS and
induced extrinsic curvaturesKuS are equal. The continuity o
the functionsA and v across the matching surface can
achieved by transforming the coordinates such that

t5C6t8, w5w81Vt8 ~66!

whereC6 andV are suitably chosen constants andx15r and
x25q are unchanged. We shall, however, drop the prim
from the new coordinates.

The normal of the hypersurfaceS has the form

n5
1

B
]

]r
. ~67!

The extrinsic curvature has the nonvanishing components@2#

K00[
1

2
g00,1n

152
A
BA,r ~68!

K03[
1

2
g03,1n

152
1

2Bsin2q~r 2v! ,r ~69!

K22[
1

2
g22,1n

15
r

B ~70!

K33[
1

2
g33,1n

15
r

Bsin2q. ~71!

The junction ofK22 with Eq. ~70! implies that the functionB
must beC0 at r 5r 1. ~This implies the matching ofK33.)
Next we conclude from Eqs.~68! and~69!, respectively, that
A andv areC1 functions atr 1.

The four-potentialA5Aadxa in both regions has a sma
Aw component, andAr5Aq50. The timelike componentAt
retains its spherically symmetric form to first order in th
angular velocity. From condition~i!, the following compo-
nents of the electromagnetic stress tensorFab are continuous
across the matching surfaceS: Fabhg

ahd
b and Fabhg

anb,
where hg

a5dg
a2nang is the projection tensor into the or

thogonal complement to the normaln of the tangent space.3

We must match the following nonvanishing components:

Frt5At,r ~72!

Frw5Aw,r ~73!

3If we allow for surface currents and charges~but still assume that
the permeability and dielectricity are that of the vacuum! these con-
ditions take the general form@Fab#hg

ahd
b50 and @Fab#hg

anb

54p j g
(sur f ace) where the jump is indicated by a bracket.
2-8
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Fqw5Aw,q . ~74!

B. Spherical matching

We first carry out the matching of the electrovacuum
gion at the spherer 5r 1 with the internal region atz5z1 to
order zero in the rotation parameterr 0. The metric of the
perfect fluid takes a simpler form when using the coordin
z. However, the matching process is more transparent w
using the radial coordinater. These dual pictures are con
nected by the transformationgr 5sinz @cf. Eq. ~23!#. From
the continuity of the metric componentgqq at the junction
surface we find

r 15
sinz1

g
. ~75!

Eliminating the massm between the junction conditions o
the metric componentsgtt andKqq , we get the simple resul
for the value of the parameter

C65cosz1 . ~76!

Continuity of the radial component of the electromagne
field yields the value of the total charge,

e5
b̄

g
~z12sinz1cosz1!. ~77!

Integration of the charge density over the proper volume
the fluid gives consistently the same charge e.

We next eliminatem between the junction condition ofgtt
and that of the extrinsic curvature componentKtt . Solving
for k2, we get

1

k2
5

tanz1

z1
12b̄2~21z1cot 2z1!. ~78!

The mass is then obtained from the condition of continuity
the gtt component as

m5
r 1

2 S 12
cos2z1

k2 D 1
b̄2

2g sinz1
S z1

21z1sin 2z1cos 2z1

1
1

2
sin22z1D . ~79!
-

e
en

c

f

f

The specific charge of the body is characterized by
function m22e2, given by Eqs.~77!, ~78! and ~79!. Taylor
expanding about the origin,z150, we get

m22e25
124b̄2

9g2
z1

61O~z1
8!. ~80!

Hence we find that for small stars, e2.m2 for the values
ub̄u.1/2. In other cases, we need to treat the different ty
of specific charge separately.

The pressure at the center is required to be non-nega
In Fig. 1 we plotb̄2 as a function of the radiusz1 of the star
for the limiting case when the pressure at the center vanis
~solid curve!. The allowed region ofb̄2 lies under this curve.
The other two curves represent the two solutions forb̄2 for
the extremely charged star,m25e2. However, the extremely
charged state lies outside the physically allowed domain

C. First-order matching

From the continuity of the metric componentgtw we get
the angular velocity of the fluid:

FIG. 1. The physically allowed region of the specific chargeb̄2:
The solid curve gives the maximally allowed value as a function
the radius.
V5
r 0g2

sin2z1

@b̄2z1
2~cot2z121!2b̄21k22~12z1cotz1!#1

g3~2m sinz12ge2!

m3sin4z1cosz1
S e2m2C21

2e2

3~e22m2!
C32am3D

2C3

g4

m2sin4z1cosz1

e2

~e22m2!2 S e21
sin2z1

g2
22m

sin z1

g D Fsinz1

g
1m1S e22

sin2z1

g2 D LS sinz1

g D G2
4g

sin 2z1
C2 .

~81!

084012-9
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The condition of continuity of the Maxwell fieldFwq can
be investigated by using the form of the four-potential
Eqs.~44! and~60!. The matching of the magnetic monopo
terms, proportional to cosq, yields that

C552r 0eḡ. ~82!

The rest of this matching equation, taken together with
continuity ofFwr andKtw can be solved for the parametersa,
C2 andC3 as follows:
08401
e

a5
r 0

6gmk2
$eb̄21g~4b̄2k223!22b̄2k2z1cos 2z1

12z1sin2z11b̄k24z1~z1b̄2eg!cotz12~1

12z1
2!b̄ sin 2z1%. ~83!

C25CL0216r 0egb̄3z1
2cos2z1sin4z1

FGH

D2
LS sinz1

g D ~84!

C35
r 0b̄4cosz1cotz1

4096g4z1
3e

FGH2. ~85!

The detailed form of the quantities here is
CL05
b̄eg2r 0

3D2
z1tanz1$2512e4b̄24g4sin6z1270b̄2z1sin4z1sin 2z114b̄2z1

2sin4z1~391448z1
21384z1

4!

17b̄2z1sin4z1~5sin 6z12sin 10z1!12b̄2z1
2sin4z1~6 cos 2z11144z1

2cos 2z1!22b̄2z1
2sin4z1~104 cos 4z119 cos 6z1!

12b̄2z1
2sin4z1~26 cos 8z113 cos 10z1!264b̄2z1

3sin4z1~28z1cos 4z1121sin32z1!232b̄2z1
3sin4z1~12 cos 2z1sin32z1

19z1cos 6z1!232b̄2z1
3sin4z1~128z1

2sin 2z1124z1
2sin 4z1!2b̄4z1

2sin2z1~402162z1
211136z1

411536z1
6!

28b̄4z1
2sin2z1~z1

2156z1
4!cos 2z12b̄4z1

2sin2z1cos 4z1~221z1
221088z1

4260!24b̄4z1
2sin2z1~6 cos 8z12cos 12z1!

132b̄4z1
3sin2z1~7 cos 2z122!sin52z114b̄4z1

4sin2z1~31112z1
2!cos 6z123b̄4z1

4sin2z1cos 12z1

1256b̄4z1
7sin2z1~10 sin 2z11sin 4z1!1128b̄4z1

5sin2z1~516 cos 2z1!sin32z112b̄4z1
4sin2z1@~31124z1

2!cos 8z1

22 cos 10z1#1b̄6z1
3B2~32z1

3212z129 sin 2z113 sin 6z1!12b̄6z1
4B2~cos 2z116 cos 4z12cos 6z1!

1128b̄6z1
5B2cos3z1sinz1% ~86!
d

e

are
3

ate

e
t

n
axis
ic
where

D516e2b̄22g2sin4z11b̄4z1
2B212b̄2z1sin2z1@~3

124z1
2!sin 2z12sin 6z1#12b̄2z1

2sin2z1~4z1sin 4z1

2cos 2z118 cos 4z1!12b̄2z1
2sin2z1~cos 6z128

216z1
2!

and

B54z1
21cos 4z11z1sin 4z121

F54b̄2z1
21~112b̄2z1

2!cos 2z123b̄2z1sin 2z121

G5~8z1
221!cosz11cos 3z124z1sinz1

H52z1~21b̄2B!24z1cos 2z122 sin2z11sin 4z1 .
We next investigate the value of the constantC2 as a func-

tion of the radiusz1 and the charge density parameterb̄. The
values ofC2 are strictly negative in the physically allowe

region $z1P(0,p/2),b̄P(0,0.5)%. In Fig. 2 we display the
values ofC2 on a three-dimensional diagram. For clarity w

have chosen the parameter region$z1P(0,0.2),b̄
P(0,0.1)%. ~The values have been obtained by the softw
MAPLE of the University of Waterloo, using a precision of 3
significant digits.!

Based on this numerical result, we are in position to st
the following.

Conjecture. The Garcı´a solution cannot be used as th
model of an isolated rotating body. Our conjecture does no
prohibit physical applications of the Garcı´a solution. For a
nonvanishing parameterC2, the fluid domain is embedded i
an external homogeneous magnetic field parallel to the
of rotation. This is a typical setting in the interior of galact
disks.
2-10
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V. DISCUSSION OF RESULTS

The Garcı´a solution is the electrically charged generaliz
tion of the Wahlquist space time and it carries the extra
rameterb̄ determining the charge density. The new degr
of freedom that the presence of electric charge bring in
model would seem to raise the possibility of a succes
matching to an empty exterior domain. However, the appe
ance of these new degrees of freedom is compensated fo
a larger number of matching conditions. In addition to t
surface gravity and first curvature, one must match also
electromagnetic field, to rule out surface charges and
rents. As we demonstrated in the main part of this paper,
net effect is that the charged generalization of the Wahlq
metric is even less likely to serve as a model of an isola
star. An alternative approach would be to assume that
dielectricity or the permeability of the interior solution di
fers from that of the vacuum. We could then solve the ju
tion conditions for the electric polarizabilityPW and/or mag-
netizationMW . However, this would probably not give rise t
any physically realistic model of the substance occupying
interior region.
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APPENDIX

An important question is how many physical paramet
there are in the metric~1!. A coordinate transformationt

FIG. 2. The coefficientC2 as a function of the specific chargeb̄
and the radiusz1.
08401
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5t81cs, wherec is a constant, can be used to setj0 to an
arbitrary value. A transformations5cs8 rescales the con
stantd. The determinant of the (t,s) part of the metric is
2d2PQ, showing that the symmetry axis is at those valu
of x5x0 whereP(x0)50. The coefficient of thedtds part
of the metric is (d/D)(PN2QM). In order to obtain a co-
ordinate system which can be made regular at the axis
must haveM (x0)50, i.e.

j05
1

k
sinh~kx0!.

The constantd should be set by requiring the usual perime
per radius ratio 2p for small circles near the axis, taking int
account the range of the cyclical coordinates.

We should decide whether or not two different sets
constantsa, b, e, g, k, m, n, a, b, d and j0 determine dif-
ferent spacetimes. Let us assume for the time being tha
set j050 andd51. If we perform the coordinate transfo
mation x85cx, y85cy and introduce the constantk85k/c
then the functionsM andN transform as

M5
1

k2
sinh2~kx!5

1

c2k82
sinh2~k8x8!5

1

c2
M 8

and N5N8/c2. Introducing the constantsa85c4a, b8
5c4b, e85c2e, g85c2g, m85c3m, n85c3n, a85c2a,
b85cb, and definingP8 andQ8 similarly to Eq. ~2! for P
andQ, we get

P5
1

c4
P8, Q5

1

c4
Q8.

Then the (x,y) block of the metric becomes

DS dx2

P
1

dy2

Q D5D8S dx82

P8
1

dy82

Q8
D .

To get the appropriate transformation for the other terms
the metric, we have to change the coordinates ast5ct8 and
s5c3s8. It follows that the two sets of constants,a, b, e, g,
k, m, n, a, b anda8, b8, e8, g8, k8, m8, n8, a8, b8 describe
diffeomorphic metrics. Since no other similar freedom exis
there are eight physical parameters in the charged Wahlq
metric. One can use the above freedom to set one of
constants to some prescribed value; for example, one ma
k51 or b51. The constantsa andb can only be scaled by
a positive constant. Hence they may be put equal to61 or 0.
e
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