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Slowly rotating charged fluid balls and their matching to an exterior domain
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The slow-rotation approximation of Hartle is developed to a setting where a charged rotating fluid is present.
The linearized Einstein-Maxwell equations are solved on the background of the Reissner-Morsisace-
time in the exterior electrovacuum region. The theory is put to action for the charged generalization of the
Wabhlquist solution found by Gal& The Gara solution is transformed to coordinates suitable for the match-
ing and expanded in powers of the angular velocity. The two domains are then matched along the zero pressure
surface using the Darmois-Israel procedure. We prove a theorem to the effect that the exterior region is
asymptotically flat if and only if the paramet€y,, characterizing the magnitude of an external magnetic field,
vanishes. We obtain the form of the const@stfor the Garca solution. We conjecture that the Garenetric
cannot be matched to an asymptotically flat exterior electrovacuum region even to first order in the angular
velocity. This conjecture is supported by a high precision numerical analysis.
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[. INTRODUCTION solution. A suitable vehicle for performing this is the slow-
rotation approximation scheme developed by Hafg If
There are a surprisingly few rotating perfect fluid solu-the fluid interior can be smoothly matched to the external
tions of Einstein’s relativistic equations known to date. Oneregion for arbitrary values of the rotation parameter then the
of the most comprehensive of these is the rigidly rotatingmatching conditions would be satisfied to any finite order in
charged perfect fluid solution of Gaacjl]. This metric is  the expansion parameter. Conversely, when one can show to
type D in the Petrov classification of the curvature. Thea given finite order that no exterior domain can be joined
Einstein-Maxwell equations are satisfied with a stress tensdhen there is no exact global solution either. We could suc-
which is the sum of that of the perfect fluid and the Maxwell cessfully use this approach in our previous computations for
field. The fluid medium carries electric charge, and it has @ahe Wahlquist space-timi&]. In its original form, the Hartle
divergence-free four-current. Because of the tantalizing lacknethod matches an internal fluid domain with an external
of explicit, relativistically rotating fluid stellar models in the vacuum. An essential tenet of this approach is the indepen-
literature, it is only natural to ask if it is possible to join a dence of the first-order perturbation functianof the polar
suitably chosen domain of the Gaaolution to an external angled. For a generic setting in the presence of the Maxwell
source-free Einstein-Maxwell region. field, one would have to go through the proof of this inde-
The Garca solution reduces to the Wahlquist space-timependence. In the present case, however, we can omit this
in the absence of electric charge. Unfortunately, as we havgeneral theory since is a function of the radius alone in the
proven in an earlier publicatiof2], the Wahlquist solution is  slowly rotating Gar@ space-time. As a consequence of the
unsuitable as a model of isolated an relativistic objéct. matching conditions, then, this property is inherited by the
priori it is unclear if the presence of electric charge canelectrovacuum exterior.
supply the necessary ingredients for a smooth matching. In this paper we apply the slow-rotation approximation to
The purpose of the present paper is to search for the corthe Garca space-time. Our result is that the electric charge
ditions of matching the Garaimetric to an asymptotically works against the conditions of matching. We find that
well-behaved external electrovacuum domain. For theamatching to an asymptotically flat electrovacuum exterior is
matching we use the Darmois-Israel proced®e6], stating impossible already to the first order in the angular velocity.
that the induced metrics and induced extrinsic curvatureFhis comes as a surprise to us since all uncharged fluids can
should agree along the matching surface. From these condde matched to an asymptotically flat vacuum exterior to first
tions it follows that the matching surface agrees with theorder in the rotation parameter. This is because such vacuum
zero pressure surface of the interior as desired. The conditiospace-times do not differ from the first-order form of the the
on the extrinsic curvatures also ensures that there are rerr metric.
surface layers of matter. We further assume that there are no The paper is organized as follows. In Sec. Il we compute
surface charges or currents implying continuity of the electhe Garca metric in various forms that will be necessary to
tromagnetic field tensor across the matching surface. launch the matching process. In Sec. Il B we take the static
The Garca solution may be expanded in powers of thelimit which, of course, is spherically symmetric. Next, in
rotation parameter of the fluid and it becomes sphericallySec. Il C we assemble the slowly rotating form of the metric.
symmetric in the non-rotating limit. It is hence appropriate toln Sec. Il we prepare the field quantities in the external
match it to rotating perturbations of the Reissner-Norastro electrovacuum domain. Thus we get the general solution for
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the first-order perturbation functian, and we investigate its k2 )
asymptotic properties. The actual matching of the two do- 87p=— 1 (Q—P)+ak +3
mains takes place in Sec. IV. As before, we require that the

Darmois-Israel conditiong3] are satisfied. The details are K2

worked out in Sec. IV A, generalizing the theory in the pres- 877'“=3K(Q_ P)—ak?®-3

ence of a Maxwell field. The solution of the matching con-
ditions for the static state and to first order in the angular

velocity is carried out in Secs. IV B and IV C, respectively. _ Z_ﬂk .
The results are further discussed in Sec. V. The Appendix is 2 A [(e+ By)sin(2ky)
devoted to the issue of the choice of independent parameters. ,
+(g+ Bx)sinh(2kx)].
Il. THE INTERIOR METRIC The electromagnetic four-potentidl, determines the field
The charged generalization of the Wahlquist solutiontenSOiL asFap=0dafp~ dpAa, and its components are
i c[1] has th tri
given by Garaa[1] has the metric Ac=A,=0
P , Q ) dx®> dy? 5
dsZ=K(dT+ oNdo)*— +(d7+6Mdo) "+ A -+ Q As= = saxL(e+BY)M sin(2ky) +(g+ BX)N sinh(2kx)]
()
1 . .
with the real functions A=— m[(ewL By)sin(2ky) + (g+ Bx)sinh(2kx) ]
4k’
_ 1 H hZ k 2
M= ESIH (kx) = &5 The electric current vectgr=pu® satisfies the field equa-
tion 4mj%= F;“BB. The current 4rj“=2k?B5* has no diver-
1 gence(as it should, since the Maxwell equations are satis-
N=— Psinz(ky)—gg @) fied) and the conserved charge density is
KB [Q-P
1 Pm27z N A
P=a+ =—[2n+X(a+ B%)]sinh(2kx)
2k Note that this solution has been named tWahlquist-
+[b—(g+ Bx)?]cosh 2kx) Newman metrién [8].
1 A. The Wahlquist form
Q=a- 5 [2m+ y(a+ B?)]sin(2ky) Our goal in this section is to bring the metfit) to a form
which reduces to that of the Wahlquist solution in the no-
+[b+ (e+ By)?Jcog 2ky). charge limit. The static limit of the Wahlquist form will, in

turn, yield the charged generalization of the Whittaker space-
Herea, b, e, g, k, m n, a, 8,  and&, are eleven constants. time. To achieve this, we transform to the new coordingtes

The number of independent parameters modulo diffeomor@nd{ by setting
phisms is eightcf. the Appendix. This metric is a solution o o
of Einstein’s equations ;=8 (T{)+T')) with kg=sinh(kx), kg=sin(ky). ©)
f Then we have
Tgy,l)iz (lu’+ p)uauﬁ+ pga,B

A=+ 4
1 1 . - .
Tﬁf'g= ——| FayF— _gaﬁpyap“ﬂs In order to be able to introduce Wahlquist's functidnsand
4m 4 h,, we rescale the function8 and Q using a new constant
parameter g:
wherep is the pressurey the densityu® the velocity of the
fluid, andF .4 is the electromagnetic field tensor. In comov-
ing coordinates, the velocity vector is=u®3/dr. The pres- !Garca[1] uses the definitiof , 3= 2A;, 4 , Which gives rise to
sure and density are given by an overall sign difference iA,, .
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=r2Q, h,=rip.
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h,=— %[ &— %\/1+ szzarcsinmkg)}
K

To choose the factors of the other terms appropriately, we

also rescale the and o coordinates as

1 . 1
o= 1] =T
r3 )

The metric takes the form

h hsh
A=~ =5 (dt=Ade)? +156%A -

h;—h;

de? de? ]
(1+Kk?E2)h,

de?

2
+
l(1-k2d)h,

©)

whereA is Wahlquist's function,

A= 5r0

2 2
hlf +h2§ 2) (6)

ho—h, %)

We introduce the rescaled constants

m=mrd, b=-nrd
(7)
Bro

g=er0, E:grm E:

and three new constants as follows. In placexoive shall
use the constant, the constan& will be replaced byC and

finally E will take the place of the constart, using the
following definitions:

%=ré<a+ﬂz>
K
C=r5(a+b) (8)

1
E=—2ribk’— —.

K

We get for the functions

- é l— %\/1— kzgzarcsir(kg“)}

2m
— —{J1-k“+
o

ﬁ 2
e+ Earcsir{ kg)} (1—2k2?)

+C+EZ? 9

2We have slight differences from the notation of Gafdi: m and

b have different factorsg includes a ternﬁz, andE andC are not
setto 1 yet.

2
(1+2k%&?)

B e

+C—E&.

g+ —arcsmhkg)
(10

The electromagnetic potential 1-forA= A, dx“ is

11— B
X g+ Karcsmtﬁkg)

A= EVIHKCEdt+ (&2
) 11— B
+£5)rode]— xlet Karcsu{kg)}g\/l— k222
X[dt— (&%= &) orode]. (1D
The pressure and density become
k2 2 o
— 2.2
8wp——A—rg(h1—h2)+rg7(l—,8 k)+3 (12
k2 k?
8mu=3—(hy—hy)— 2 - (1= B2k -3, (13
Arg roK
48k?
5= 20 (14
o

The expre55|on$5) (14) contain a large number of pa-

rametersC, E, m, b, k, «, €, g, B, ro, 6 andé,. How many
of these 12 constants are necessary to uniquely describe the
metric? This question will next be addressed.

By using linear coordinate transformationstaind ¢ we
can obviously setf=1 and ¢£,=0. The parameter, has
been introduced in order to enable ourselves to go to the
slow-rotation limit. The scaling of this parameter can be cho-
sen arbitrarily. Definingrj= Cro, C'=c?C, E'=c%E, m’'
=c3m, b'=c%, «'=«lc, €' =ce, g =cg, B =cp,
wherec is a constant, thelg2 and dé? terms in the metric
remain unchanged with the primed quantities. However, we
need to perform a transformation of the coordindtest’,
p=c?¢’ to keep the structure of the other components.
This shows that the two sets of constants
{C,E,m,b,k,x,e,9,8,ro} and {C’,E',m’,b’ k,«",e",g’,
B’,ro} provide parametrizations of a single physical state
equivalent under the diffeomorphism{{’, &, ¢’ t'}
={¢.éc7?p,c7 ]

Another freedom of choice follows from the coordinate
transformationy” =f1¢, & =f¢&, wheref is a constant. In the
metric (5) we have

1 " "
A=§2+§2=f—2(§ {9)=—A (19
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TABLE |. Equivalent sets of parameters.

lim
TOHO

rs -
—hy|=hy (19

1 C E m b k x e g r

|
S

— 1 -
cf=1 c?C E m b Ek K ce cg B —ro where

o 1 -
cf’=1 C fE m f3%b fk Tk e g fB f2rg _2m = 2r2+i
r LR

S
=
Il
m

1
1— 7\/1_ yer2arcsir( yr)

e

2
B .

_+ J—

; yrarcsw( yr)

Introguc_ing thE constanﬂs’_z k/f,_ sz“c_, E_”:fZE, m’ + (1-2%r?) (20)
=13m, b"=13b, k"=«/f, e"=1%e, g"=f?g, B"=1B, and
definingh? andh} similarly to h, andh,, we get

ande=r,e. The functionh, has the limiting form
! ! o= lim hy=C—E&—2be—(g+ B2 (21
” —hj. (16) 2= lim hy= £ §—(g+B¢) (21
f

h =
1 4 ro—0

h{, hy,=

Then thed¢? and d&? terms transform appropriately. How- Whereb=b/r,. Using the limitsrgA —r?, and A—0, the
ever, to get the correct transformation for the other terms ifnetric becomes
the metric, we need to change the coordinates=a&t” and
e=13¢". It follows that the two sets of constants, o dr? )
(C.EMbkkegBrod and {CE MK, 457 Nt o— e
{C.Embk.x.eg.6ro (1—y’r3)h,
g”,B",ro}, are equivalent descriptors.

At this stage, the coordinates are completely fixed. Hence A simpler form arises if we introduce a new radial coor-
there areeightindependent physical parameters. The corredinatez by setting
sponding analysis of the parameters in the original coordi-
nates is not needed in the present paper, but for convenience, yr=sinz. (23)
is included as an Appendix. Using the coordinate transforma-
tions X" =x""(x¥) and x""=x"(x¥), for example, the con- Then
stantsC and E can always be made-1 or 0. Garca [1]
discusses the case=E=1, which for zeroe, g and g _ _ 1 o
yields the original uncharged Wahlquist solution. Wi@or  h;=E—2mycotz+ — (1—zcotz) + (ey+ Bz)*(cofz—1)
E can only be rescaled te 1 or 0, some different solutions K
might arise, as was first noted by Mars and Senoy8lgin (24)
the uncharged case.

There exist two combinations of these transformation@nd
which preserve many of the constants. Table I. shows the sets P » )
of constants giving metrics eqU|vaIer_1t to ihe orlglna2I set 42— T dt?+ d2~ E(ii'i‘gzﬁzd@z). 25
{CiE,m,b,k,K,e,g,B,ro}, when choosingcf=1 and cf ¥hy ¥\ h,

2

d
—+ 5ZF12d(p2) . (22
h,

The only nonvanishing component of the electromagnetic
B. The static charged fluid potential is
In this section we consider the static limiting case of the

Garca space-time. Following the procedure of Wahlquist
[10], we introduce a new radial coordinate

A= — (ey+ Bz)cotz.

The pressurél2) and the density13) are

r=_ro 17
— A2 1 2

and a new constang in place ofk by substituting 8mp=vy ( —hy+ 2 +2

k=yrg (18 1

8mu= 17> 3F11——2+32)—2 (26)

everywhere. The constant is related to Wahlquist'ss by K
v?=k?ps. The static limit can be obtained then by going to o
zero withry. In the limitry—0, S =48yA,.
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The bracketed term in Eq25) is the metric of a two- B 1 [d
surface. We next show that there is a parameter range for ds?=—h,dt?+ = — +sirfz(d #%+sirfad¢?) |.

which this two-surface is the two-spheg8. In order to get ¥l hy
the metric of the two-sphere, we introduce a new coordinate (34)
; F i ; _
_?Ar;r?lace ofé by 6°h,=csin’9, wherec, is some constant. The center, determined g=0, can be regular only ifm
=0 ande=0.
,dh, _ de
o d_f =2c4Sinéd cosad—g (27 C. The combined transformation
In the previous sections we have been led to transforming
and the Garca metric to the Wahlquist coordinates and hence to
a form which is amenable for accessing the static limit. We
dé? 4cfsin20 cogd | dh, -2 5 now combine these procedures into a direct transformation,
~—=64—~ 9 de sidestepping the Wahlquist form, and compute the quantities
h, h, for slow rotation.
o The coordinate transformation(8), (17) and (23), with
_A(cy— 5%n,) (dhz) 462 28) k= yro, can be combined to the single transformation
T 2 \de '
S d¢ z=ky. (35)
The condition Garca’s parameters are expressed in terms of ours as fol-
5 lows:
d
98 e 29) —
h k=yrg, m= ]
wherec, is another constant, is satisfied if and only if 0
1 b 1 ( 1 _2>
n=——, a=—|—-—
— 2’ 2 2
CZ_ E+E2 I’O I’O K
30 ~ -
—, (b+gp)? 0 e=—, 9= (36)
c1=8 C—g*+ ——=—|. ry ro
E+p3
. . B C 1 1
We can use the map in the third row of Table | to sgt ==, a=—+——|E+—
=1 by makingE+ B8%=1. Of course, this can be done only To rg 2rgy’ K?
when E+ B2 is positive. The Lorentzian signature of the
metric (25) holds whenever it is possible to set b — 1 Et 1
- 21 4.2 2
~ =5 oY K
C-g?+ (b+ 9B =1 31
9 E +E2 - (32) We now substitute the new parameters given by(Bf). into

the metric form(1) and introduce new coordinates by
using the second row of Table I. Finally we s&t1 by

rescaling thep coordinate. With these choicds,=1— (¢ yzi, T=rot, o=—rde. (37)
+B+g_ﬁ)2 and we end up with the simple coordinate trans- o
formation Using Table I, we find that the coordinate system is fixed by
U setting
&+b+gB=cosé. (32

5=1, &=0, E=1-p2
Then (38)

- . B C=1+g?-(b+gp)%
hy=1-p~2my co+ F(l_ZCOtZH(éyJ’ p2)* The regularity at the center is ensured by

x (cofz—1), (33 m=0, e=0. (39)
and the metric becomes The angular coordinaté is introduced by writing
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X=cosd—b—gp. (40)
The coordinate¥ only equals the defined in Sec. Il B when
the fluid is static. Then for smail, to linear order we obtain
the metric

dSZZ _Fldtz‘i‘

YZFM
sirfz _
+ T [d92+siPd(de—wdt)?]  (4D)
Y
with
~ — 1 _
h1=1—ﬁ2+—Z(l—zcotz)+,8222(cot22—1) (42)
K
and
2
©=r, ;Z(El—l). 43)

The first-order calculation shows thatdoes not depend on

the angular coordinate. To this order, the only component o

the four-potentialA to pick up a small new contribution is

Ayt

A= — Bzcotz dt+r [ BsiPd(1—zcotz) — B—gcosd]de.
(44)

Note that to first order imy, the metric is independent of the

magnetic monopole charge paramegerin fact, the mono-

pole contribution affects only the Maxwell equations but

does not affect the gravitational equations.

Ill. THE ELECTROVACUUM EXTERIOR

The metric of the ambient electrovacuum domain, to first
order in the angular velocity, has the Reissner-Nordstro

form modified by the non-diagonal rotation term,

€&
ds?= (1 2—+—|dt?
r
m -1
1-2—-+ dr?+r?[d9?+sirPd(de
— wdt)?]. (45)

The four-potentialA=A_dx%,
time component

where A,=A,(r,?), has a

(46)

From the ¢,r) and (,9) components of Einstein’s equa-
tions we get no contribution t4,, and the {,3) component
givesA; y=A, . Hence there is a gauge in which

PHYSICAL REVIEW D 66, 084012 (2002

A=Ay=0. 47

The other perturbation components are obtained in the re-
mainder of this section. Before doing that, we remark that for
the special case of the slowly rotating Kerr-Newman solution
the forms(46) and (47) of the four-potential components
remain valid and we have

ae sirfd

(KN)
A= ;

2am a€’

WKV == —.
r r

(48)

We now proceed to computing the first-order contribu-
tions for a general electrovacuum. Fromt thgt) compo-
nent of Einstein’s equations the second-order differential
equation follows:

4dzw do 4e JA,
A= 43— —— ¢,
dr? dar sirgg dr

(49

For the uncharged caser=0, this has the solutiom= w
]aLZam/r wherea is the Kerr parameter. The value of the
constantw, can be set to zero by the transformatipn- ¢

cqt.
The solution of Eq(49) for a generic charge+#0 is

A= 1er smzf}— +£(9). (50)

¢4

The Maxwell equation for the componeAt, is

do
+r smzﬂe—

ez) i

(2mr—r?

cotd A
(91‘}

+2

& ) A, &ZA
[ m ——

r ar (9192
=0. (51
SubstitutingA, from Eq. (50)

d3
—(2mr—r 2—)rt d—+

7 d2
—rm-2r ——ez)
2 dr?

(a4 5 3dw
m 2r r dr

e [d?H(9)
sit9l do?

df(fz‘)) | -

dd

This is a separable equation. Introducing the separation con-
stantK, we get

d?f(9)
dd?

e

df(d)
s

dv

- =K (53
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with the solution

Kcogd C, Cs
+—+ ——cosd.
e e e

1
f(9)=7 (54)

We next consider the radial part of EG2).

(i) For the case%*m? the general solution of the radial

equation is

—2mr 2

Co+

w=Cy+ ————Co+ —C
Y 3mert ro?

. e(r?=2mr+e)[r+m+(e—r?)L]

m2(62_ m2)2r4

Cs; (59

where

2¢
Co=Km?+3&m?C,+ 7 Cs (56)
—m

and

1 I r—m+Vmé—¢? ;
n i
2Vm?*—€  r—m—ym?—¢€?

T r-m
———| ——arctan—— if m<e

Ve¢—m? VE—m?

with the derivative

m>e

L(r)= (57)

dL(r)_ 1
dr  omr—r2-¢*

(58)

(ii) For the equilibrium case’e=m?, the radial solution is

m-—2r
3r?

2
w=C;+ (K+3m2C2)+FC2
2 5r2—4mr+m?

+ ———F——Cj;. 59
15 mr—-mzr4 ° 59

When an asymptotically nonrotating frame is chosen, we
have thatC,;=0, and we shall assume this to hold in the

sequel.

Comparing with the Kerr-Newman metric with rotation

parameter, we obtain

PHYSICAL REVIEW D66, 084012 (2002

3@mr—mré-2¢
2emr

ae
A¢=Tsinzz‘)+ C,sintd
. 3m?r(m+r)—2ém?—4¢

PSR Ciesirtd

3e2mr—mr3—2e“C oL ()sir?s 3am C,
omr(@—m?)2 O (NSITd= e+ e
Cs

+?cosﬁ. (60)

For e= =m , we get identical limits from both values &fin
Eqg. (57). The limiting form of the potentiaA, can be ob-
tained by substituting Eq59) in Eq. (50):

(r+2m)(r—m)?

ST C,sirt 9

am
iA¢=Tsinzﬁ+

(2r—m)(2m?—5mr+5r?)
15m?r(r—m)3

. 3a C,
Casintd— -t

Cs
+ —cosd. (62)
m

The constanC, is inessential since it does not appear in the
Maxwell tensor.

In order to clarify the role of the constan®, andCs, it
will be helpful to introduce a tetrad with the components

m —-1/2
80:(1_27+r_2 e

m ez 1/2(9
e1=(1—27+r—2 ar

(62)
19
©2= o0
1 9 _ m -t

e3:rsinﬁ£_wrsmﬂ 1—27+r—2 S

In this tetrad the leading terms for largén the components
of the Riemann tensor are given by

C,sind
Ro115= Ro225= —r >

(63

C,cosd

2 Ro125= Ro215= 0312~~~ 5
r

As seen the terms do not fall off sufficiently fast for the
space-time to be asymptotically flat. Thus this object does
not seem to be isolated. To see this we look at the asymptotic
behavior of the electromagnetic field in this tetrad. From Eq.
(60) we obtain

K=—-3am.

Substituting the solutios5), (54) and(58) in the poten-
tial (50) we get for the case’e m?:
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_ C, . where A, B and w are functions of the radial coordinate

lim Fy5=— ——sind=—B, alone. Both to order zero and one in the angular velocity, the

= constant-pressure surfaces of the perfect fluid coincide with
the constant surfaces.

_ C, We match the hypersurface given by r, of the interior

lim F 3= — —cosd=B;. (64)  region with the corresponding matching surface atr; of
e . . .

= the exterior region, such that the induced metde$|s and

induced extrinsic curvature€|s are equal. The continuity of

This can be interpreted that for nonzero valuesCof the the functionsA and w across the matching surface can be
fluid ball is immersed in a constafin this approximation  achieved by transforming the coordinates such that
external magnetic field, parallel to the axis of rotation, and
extending to infinity. Note that the Riemann tensor falls off t=Cet’, ¢=¢'+0Ot’ (66)
even though the electromagnetic field tends to a constant .
value. One would expect that the contribution of the electroWhereCg andQ are suitably chosen constants arte-r and
magnetic stresses to the curvature will appear in a highef =¥ are unchanged. We shall, however, drop the primes
approximation. Hence we have the following: from the new coordinates.

Theorem. When Chas a nonzero value, the external ~ The normal of the hypersurface has the form
solution is not asymptotically flat

It is therefore important to investigate the valuesGf
that the matching provides. This investigation will be carried
out in the next section. o o

The term containingCs is the potential of a magnetic The extrinsic curvature has the nonvanishing compori@ts
monopole. In the given frame, it gives rise to a purely radial

_ J
n= ﬁ (67)

oVl

s ; : 2 1 A
magnetic field which has the asymptotic forail/r . K o= 5900,1”1= _ EA‘ (68)
IV. MATCHING 1 1
Kos= = 0oz N'=— ==Sif9(r’w) (69)
In this section the matching procedure is described. The 05~ 3 Goad 2B o’
next section outlines the method in general terms. We then
join the static, spherically symmetric external and internal 1 LT
domains in Sec. IV B. The static internal state is param- K2o=392210" =3 (70)

etrized by the constany3, k andy. As a result of the match-

ing, these three constants determine the radiuof the 1 r

matching surface and the parameterand e of the vacuum Ksz= 5933,1711:59“219- (72)
exterior. It is a consequence of the matching conditions that

the surface of matching coincides with the zero pressure sufrpe junction ofK ,, with Eq. (70) implies that the functior
face of the interior. In Sec. IV C we carry out the matching to;, ;st pec® at r=r,. (This implies the matching oKs3.)

first order in the rotation parameter. This will yield the pa- Next we conclude from Eq¢68) and(69), respectively, that
rameters of the slowly rotating electrovacuum region inA andw areC! functions atr;.

terms ofr,, the parameter describing the angular velocity of 11,4 four-potentialh=A_dx® in both regions has a small

the fluid, and in terms of the parametgr A, component, ané\, =A,=0. The timelike componers,
retains its spherically symmetric form to first order in the
angular velocity. From conditiofi), the following compo-

o nents of the electromagnetic stress terfsgy are continuous
We want a global model from whiclii) any surface 5cr0ss the matching surface: Faﬁh‘;hg and Faﬁh‘;nﬁ,

charges and currents and, furthermdii,the surface layers where h®=%-n“n, is the projection tensor into the or-

of matter are absent. From the first condition it follopt4] hogonal complement to the normalof the tangent spacke
that the electromagnetic stress tensor can be continuous{x/ '

) e must match the following nonvanishing components:
matched at the surfac® if we assume that both the perme- ¢ g P

A. The matching conditions

ablity and dielectric coefficients are equal in the electro- Fr=A, (72)

vacuum and in the interior. This means with that there is '

no discontinuity in the pressugeacrosss.. Fro=A,, (73)
¢ ¢

We write the metricdszzgaﬁdx“dxﬁ for both the interior
and the exterior regions in curvature coordinatés}

={t,r in the following form:
{t.r. 9.}, in the following fo 31f we allow for surface currents and chargésit still assume that

ds2= — A2dt?+ B%dr? the permeability and dielectricity are that of the vacydhese con-
ditions take the general fornj FaB]h$h§=0 and [Faﬁ]hin/”
+r[d 9%+ sirf9(de— wdt)?] (65  =4mjur'acd where the jump is indicated by a bracket.

084012-8
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Fﬁ :A(,D,ﬁ' (74)

(]

B. Spherical matching

We first carry out the matching of the electrovacuum re-
gion at the sphere=r, with the internal region at=z; to
order zero in the rotation parametey. The metric of the

perfect fluid takes a simpler form when using the coordinate
z. However, the matching process is more transparent wher

using the radial coordinate These dual pictures are con-
nected by the transformatiopr =sinz [cf. Eq. (23)]. From
the continuity of the metric componeagty, at the junction
surface we find

sinz;
v

ry= (79
Eliminating the massn between the junction conditions of
the metric componenty, andK 45, we get the simple result
for the value of the parameter

Ce=C0Sz;. (76)

Continuity of the radial component of the electromagnetic

field yields the value of the total charge,

B
;(Zl

(77

sinz,c0sz;).

Integration of the charge density over the proper volume of

the fluid gives consistently the same charge e.

We next eliminaten between the junction condition gf;
and that of the extrinsic curvature compon&it. Solving
for k2, we get

1

K2

2, -,
+2B%(2+z,c0t2z).
1

(78

PHYSICAL REVIEW D66, 084012 (2002

05

0.451

0.35

0.31

0.25

FIG. 1. The physically allowed region of the specific chaﬁe
The solid curve gives the maximally allowed value as a function of
the radius.

The specific charge of the body is characterized by the
function m?>—€?, given by Eqs(77), (78) and (79). Taylor
expanding about the origiz; =0, we get

m2—e2— — '3 $+0(28). (80)

Hence we find that for small stars?>em? for the values
|B|>1/2. In other cases, we need to treat the different types
of specific charge separately.

The pressure at the center is required to be non-negative.
In Fig. 1 we plotg? as a function of the radiug, of the star
for the limiting case when the pressure at the center vanishes

02
The mass is then obtained from the condition of continuity of(Solid curve. The allowed region oB“ lies under this curve.

the gy component as

The other two curves represent the two solutionsgdifor
the extremely charged stan?=€?. However, the extremely
charged state lies outside the physically allowed domain.

r cosz B2
m=—|1- 1) + '8. <z§+ z,Sin 2z,c0s 22,
2 K2 2ysinz, ) )
C. First-order matching
1. From the continuity of the metric componegy, we get
* Esm2221). (79 the angular velocity of the fluid:
3 inz,— ye 2¢
2, —, vi(2msinz; — y€e) ) 3
2(cofz;—1)— B2+ k 4(1—zsc0tz;) ]+ €m?C,+ ————Cy—am
smzzl[ﬁ T 10012y ] mSsintz,cosz, 2 3@-mp)
o 3 sirfz; sinz, | | sinz, sirfz; | [sinz; 4y
—C3—H—, 22e2+ S +| - L e
m?sintz,cosz; (€#—m?) y Y ¥ Y sin2z;

08401
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The condition of continuity of the Maxwell fiel& ., can

r _ _ _
be investigated by using the form of the four-potential in ~ a=—— s{€B8™ M y(4B°k*—3) — 28°k*2,c08 22,
Egs.(44) and(60). The matching of the magnetic monopole 6ymx
terms, proportional to co8, yields that +2215in221+ﬁl<2421(21§— ey)cotz,— (1
+272) Bsin 2z,}. (83
e — FGH [sinz
Cs=~roeg. (82) C,=Co— 16rjeyB°z2cosz;sin'z, o2 ( 1) (84)
roB*cosz,cotz, ,
The rest of this matching equation, taken together with the Cs= T 40967 H~. (89
continuity of F,, andK,, can be solved for the parametexs !
C, andCj as follows: The detailed form of the quantities here is

2
eyr — _ _
CLo= % z,tanz,{ — 512¢ B~ *y*sinz, — 708%z,sin'z,sin 2z, + 482 Z2sirt'z,(39+ 44825 + 384z77)

+7B%z;sinzy(5sin 62, — sin 1Qz;) + 28222sin’'z,(6 coS 2, + 14472c0s 22;) — 2 B2Z3sinz, (104 cos 4, + 9 cos &;)
+2B%22sin'z,(26 cos &; + 3 cos 1@;) — 64B°Z3sin'z,(282,C0s 4, + 21sirP2z,) — 32B%Z3sin'z, (12 cos Z;sin*2z;
+92,C0s 62;) — 328°23sin’z, (128&2sin 2z, + 247%sin 4z,) — B*Z3sirfz, (40— 16272+ 113671 + 15365)
—8B%Z3sirtz, (22 + 562%) cos 2, — B*Z2sinfz,cos 4z, (22122 — 10884 — 60) — 43*Z2sir’z,(6 cos &, — cos 12;)
+32B%23sirPz, (7 cos 2, — 2)sinP2z, + 4 B*Z}sinPz,(3+ 1127%) cos &, — 38*Z3sinz,cos 12,
+2568z]sirfz,(10 sin 2, + sin 4z;) + 1283*z3sir’z,(5+ 6 cos Z;)sin*2z, + 2 8*Z1sinPz,[ (31+ 242%)cos &;

—2 cos 1@, ]+ B°23B2(3223 — 122, — 9 sin 2z, + 3 sin 6z;) + 23°2B?(cos 22, + 6 cos 4, — cos 6z;)
1 1 1

+1283%22B2cos’z;sinz,} (86)
|
where We next investigate the value of the const@jtas a func-
— T TP tion of the radiug; and the charge density paramegerThe
D=16€8 *y*sir'z,+ B*z1B*+28°2;5in2,[ (3 values ofC, are strictly negative in the physically allowed
+24z§)sin 27, sin 621]+ZEZZisinzzl(4zlsin4zl region{z, e (0,7/2),Be (0_,0.5)}: In Fig. 2 we display_the
values ofC, on a three-dimensional diagram. For clarity we
—Cc0s 2z, +8 cos 4zl)+2,822§sin221(cos &,—8 have chosen the parameter regiofiz;(0,0.2),8
€(0,0.1)}. (The values have been obtained by the software
— 1627)

and

MAPLE of the University of Waterloo, using a precision of 33
significant digits).

Based on this numerical result, we are in position to state
B=4z5+cos 4, +2;sin4z,— 1 the following. ) _

Conjecture. The Garal solution cannot be used as the
model of an isolated rotating bodpur conjecture does not
prohibit physical applications of the Gaacsolution. For a
nonvanishing paramet€r,, the fluid domain is embedded in
an external homogeneous magnetic field parallel to the axis
. of rotation. This is a typical setting in the interior of galactic
H=22z,(2+ 8°B)—4z,c0s 2, — 2 sin2z; + sin 4z, . disks.

F=4B%2+(1+2B%23)cos Z,— 38°z;sin 22, — 1

G=(8z5—1)cosz, + cos ¥, — 4z;sinz,

084012-10
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=7 +co, wherec is a constant, can be used to ggtto an
arbitrary value. A transformatiorr=co’ rescales the con-
stants. The determinant of ther(o) part of the metric is

— 8°PQ, showing that the symmetry axis is at those values
of x=Xxu whereP(xg) =0. The coefficient of thelrdo part

of the metric is ¢/A)(PN—QM). In order to obtain a co-
ordinate system which can be made regular at the axis we
must haveM (xy) =0, i.e.

-1e-05
-Z2e-05
-3e-05
1.
fo:E5|m’(kXo)-
The constans should be set by requiring the usual perimeter

_ perradius ratio zr for small circles near the axis, taking into
FIG. 2. The coefficienC, as a function of the specific charge  account the range of the cyclical coordinate

and the radiug;. We should decide whether or not two different sets of
constants, b, €, g, k, m, n, @, B, § and &, determine dif-
V. DISCUSSION OF RESULTS ferent spacetimes. Let us assume for the time being that we

The Garca solution is the electrically charged generaliza—s'et §°:0, and 5:,1' If we p(_erform the coordinate transfor-
mationx’=cx, y'=cy and introduce the constakt=k/c

tion of the Wahlquist space time and it carries the extra pa .
— . ) then the functiond andN transform as
rameter determining the charge density. The new degrees

of freedom that the presence of electric charge bring in the 1 1 1
model would seem to raise the possibility of a successful M= —ZSinhZ(kX)= ——sint(k'x") = M’
matching to an empty exterior domain. However, the appear- k c?k'2 ¢

ance of these new degrees of freedom is compensated for by

a larger number of matching conditions. In addition to thegng N=N'/c2. Introducing the constant®’=c*a, b’
surface gravity and first curvature, one must match also the. c*b, e'=c%, g'=c?g, m'=c3m, n'=c3n, o' =ca,
electromagnetic field, to rule out surface charges and cur, '=cp, and definingP’ andQ’ similarly to Eq.(2) for P
rents. As we demonstrated in the main part of this paper, thg,4 Q, we get

net effect is that the charged generalization of the Wahlquist

metric is even less likely to serve as a model of an isolated 1 1

star. An alternative approach would be to assume that the P=—P, Q=-Q"

dielectricity or the permeability of the interior solution dif- ¢ ¢

fers from that of the vacuum. We could then solve the junc-

tion conditions for the electric polarizability and/or mag-  1hen the &.y) block of the metric becomes

netizationM . However, this would probably not give rise to ) 5 'Y ,
any physically realistic model of the substance occupying the A ax® dy?) | dxe . dy
interior region. P Q'

P Q
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