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You cannot get through Szekeres wormholes: Regularity, topology, and causality
in quasispherical Szekeres models

Charles Hellaby*
Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

Andrzej Krasiński†

N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00 716 Warszawa, Poland
~Received 18 June 2002; published 25 October 2002!

The spherically symmetric dust model of Lemaıˆtre and Tolman can describe wormholes, but the causal
communication between the two asymptotic regions through the neck is even less than in the vacuum
~Schwarzschild-Kruskal-Szekeres! case. We investigate the anisotropic generalization of the wormhole topol-
ogy in the Szekeres model. The functionE(r ,p,q) describes the deviation from spherical symmetry if] rE
Þ0, but this requires the mass to be increasing with radius,] rM.0, i.e. nonzero density. We investigate the
geometrical relations between the mass dipole and the loci of the apparent horizon and shell crossings. We
present the various conditions that ensure physically reasonable quasispherical models, including a regular
origin, regular maxima and minima in the spatial sections, and the absence of shell crossings. We show that
physically reasonable values of] rEÞ0 cannot compensate for the effects of] rM.0 in any direction, so that
communication through the neck is still worse than in the vacuum. We also show that a handle topology cannot
be created by identifying hypersufaces in the two asymptotic regions on either side of a wormhole, unless a
surface layer is allowed at the junction. This impossibility includes the Schwarzschild-Kruskal-Szekeres case.

DOI: 10.1103/PhysRevD.66.084011 PACS number~s!: 04.20.Gz, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

The Szekeres metric is a dust model, which has no Kill
vectors@1#, but contains the Lemaıˆtre-Tolman~LT! model as
the spherically symmetric special case, which itself conta
the Schwarzschild-Kruskal-Szekeres@2,3# manifold as the
vacuum case. As with the LT model, it is written in synchr
nous coordinates, and the particles of dust are comoving.
constant time slices are foliated by 2-surfaces of cons
coordinater, which have 2-metrics of spheres, planes
pseudospheres, depending on the value of parametere. See
@4# for a review of its known properties.

Despite the inhomogeneity of the model, and the lack
Killing vectors, any surface of constant coordinate ‘‘radiu
r in the e511 case can be matched onto a Schwarzsc
vacuum metric@5,6#, and any surface of constant timet is
conformally flat@7#.

We here investigate the topological and causal proper
of the quasispherical case,e511, subject to the require
ments for a physically reasonable model. Reasonability
quirements include well behaved metric components, no
vergent density and curvature, regular spherical orig
regular maxima and minima in the spatial sections, and p
hibition of shell crossings. Choosing well behaved coor
nates also assists in avoiding the confusion of coordin
singularities.

Studying such models of low symmetry is important,
that one can check which properties of spherically symme
investigations of cosmology and gravitational collapse
preserved, and which are not.

*Email address: cwh@maths.uct.ac.za
†Email address: akr@camk.edu.pl
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The subjects studied in this paper in some detail are
following:

~i! The dipole-like variation of mass-density; the locus
its poles and of the equator, and the images of the equ
under the Riemann projection;~ii ! conditions for regularity
of the geometry at the originR50; ~iii ! intersections of the
shell crossings with the surfaces of constant (t,r ), and con-
ditions for avoidance of shell crossings;~iv! conditions for
regular maxima and minima;~v! conditions for a handle to-
pology of at5 const space, and the impossibility of preser
ing this topology during evolution of the model;~vi! appar-
ent horizons ~AH!—their shape, intersections with th
surfaces of constant (t,r ), relations between these interse
tions and those of shell crossings, and with the dipole eq
tor, location of an AH with respect to theR52M hypersur-
face, the intersection of an AH with a neck;~vii ! the
impossibility of sending a light ray through the neck so th
it would emerge from under the AH on the other side; a
~viii ! numerical examples of light paths traversing the ne
and of those going in its vicinity.

II. THE SZEKERES METRIC

The LT-type Szekeres metric@8# is1

ds252dt21

S R82R
E8

E D 2

~e1 f !
dr21R2

~dp21dq2!

E2
, ~1!

1The results presented in Ref.@8# contain a few misleading typos
that were corrected in Ref.@9#. The notation used here does n
follow the traditional one.
©2002 The American Physical Society11-1
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CHARLES HELLABY AND ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 66, 084011 ~2002!
where 8[]/]r , e561,0 and f 5 f (r )>2e is an arbitrary
function of r.

The functionE is given by

E~r ,p,q!5A~p21q2!12B1p12B2q1C, ~2!

where functionsA5A(r ), B15B1(r ), B25B2(r ), and C
5C(r ) satisfy the relation

4~AC2B1
22B2

2!5e, e50,61, ~3!

but are otherwise arbitrary.
The functionR5R(t,r ) satisfies the Friedmann equatio

for dust

Ṙ25
2M

R
1 f , ~4!

where˙[]/]t andM5M (r ) is another arbitrary function o
coordinate ‘‘radius,’’r. It follows that the acceleration ofR is
always negative

R̈5
2M

R2
. ~5!

Here M (r ) plays the role of an effective gravitational ma
for particles at comoving ‘‘radius’’r. Fore511, it is simply
the total gravitational mass within the sphere of radiusr. We
assumeM>0 andR>0. In Eq.~4! f (r ) represents twice the
energy per unit mass of the particles in the shells of matte
constantr, but in the metric~1! it also determines the geom
etry of the spatial sectionst5const~cf. @10#!. The evolution
of R depends on the value off; it can be hyperbolic,f .0,

R5
M

f
~coshh21!, ~6!

~sinhh2h!5
f 3/2s~ t2a!

M
, ~7!

parabolic,f 50,

R5M
h2

2
, ~8!

h3

6
5

s~ t2a!

M
, ~9!

i.e. R5S 9M ~ t2a!2

2 D 1/3

, ~10!

or elliptic, f ,0,

R5
M

~2 f !
~12cosh!, ~11!

~h2sinh!5
~2 f !3/2s~ t2a!

M
, ~12!
08401
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wherea5a(r ) is the last arbitrary function, giving the loca
time of the big bang or crunchR50 and s561 permits
time reversal. More correctly, the three types of evoluti
hold for f /M2/3.,5,,0, sincef 50 at a spherical type ori-
gin for all 3 evolution types. The behavior ofR(t,r ) is iden-
tical to that in the LT model, and is unaffected by (p,q)
variations.

A more meaningful way to writeE is

E~r ,p,q!5
S

2 H S p2P

S D 2

1S q2Q

S D 2

1eJ , ~13!

whereS5S(r ), P5P(r ), andQ5Q(r ) are arbitrary func-
tions, and

A5
1

2S
, B15

2P

2S
,

B25
2Q

2S
, C5

P21Q21eS2

2S
. ~14!

The metric component

~dp21dq2!

E2
~15!

is actually the unit sphere, plane, pseudosphere in Riem
projection:

e511
~p2P!

S
5cotS u

2D cos~f!,

~q2Q!

S
5cotS u

2D sin~f!, ~16!

e50
~p2P!

S
5S 2

u D cos~f!,

~q2Q!

S
5S 2

u D sin~f!, ~17!

e521
~p2P!

S
5cothS u

2D cos~f!,

~q2Q!

S
5cothS u

2D sin~f!. ~18!

It seems reasonable to expectS.0, but it is not obviously
impossible forS to reach or pass through zero.

The factore determines whether thep-q 2-surfaces are
spherical (e511), pseudospherical (e521), or planar (e
50). In other words, it determines how the constantr
2-surfaces foliate the 3D spatial sections of constantt. The
function E determines how the coordinates (p,q) map onto
the unit 2-sphere~plane, pseudosphere! at each value ofr. At
eachr these 2-surfaces are multiplied by the areal ‘‘radiu
R5R(t,r ) that evolves with time. Thus ther -p-q 3-surfaces
are constructed out of a sequence of 2-dimensional sph
1-2



e

e

ot
u

a-

n

or

p-

o

a

ity
a-
at

l-

nal

e of

the

th

e

sh
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~pseudospheres, planes! that are not concentric, since th
metric componentgrr depends onp andq as well asr andt.

The (p,q)-coordinates in the casese511 ande50 have
the range (2`,1`). In the casee521, the parametriza-
tion ~13! does not cover the subcasesA50 andC50 @these
subcases cannot occur withe>0 because of Eq.~3!#. Com-
ing back to Eq.~2!, we see that, fore521 andAÞ0, E is
zero when

~p1B1 /A!21~q1B2 /A!251/~4A!2,

E is positive forp andq outside this circle, and is negativ
for p andq inside it. Figure 1 suggests that withe521, we
should rather take (2E) as the metric function so thatp and
q have finite rather than semi-infinite ranges. However, b
theE.0 andE,0 regions are Szekeres spacetimes beca
they are mapped one onto another by

~p,q!5~p8,q8!/~p821q82!, ~19!

the roles ofA andC being interchanged after the transform
tion.

If AÞ05C, then a nonzeroC is restored by a translatio
in the (p,q) plane. If A50, then the metric of the
(p,q)-surface is brought back to the standard Szekeres f
with AÞ0ÞC by a Haantjes transformation~a conformal
symmetry transformation of a flat space, see@11# for a de-
scription! in the (p,q) surface, which also restores the a
propriate form ofgrr .

The surface area of a (t5const,r 5const) surface is finite
only in thee511 case, where it equals 4pR2. In the other
two cases, it is infinite.

The 6 arbitrary functionsf, M, a, P, Q andS represent 5
physical freedoms to control the inhomogeneity, plus a co
dinate freedom to rescaler.

The density and Kretschmann scalar are functions of
four coordinates2

2There are only two independent curvature invariants in
Szekeres metric, for which a good choice would beR58pr
and CabgdCabgd548M2$(R82RM8/3M )2%/$R6(R82RE8/E)2%
5(4/3)(8pr̄)(8pr̄28pr)2—a pure Ricci invariant and a pur
Weyl invariant. Though less tidy, the 8pr and K used above will
also suffice.

FIG. 1. The Riemann projection from (u,f) to (p,q) coordi-
nates for spheres and two-sheeted hyperboloids. The diagrams
only thef50,p section, i.e. theq5Q section.
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8pr5Gtt5
2~M 823ME8/E!

R2~R82RE8/E!
, ~20!

K5RabgdRabgd5~8p!2F4

3
r̄22

8

3
r̄r13r2G , ~21!

where

8pr̄5
6M

R3
~22!

is the mean density within ‘‘radius’’r. For all r and r̄ we
have K>0, but assumptions of positive mass and dens
requirer>0 andr̄>0. Clearly there are density and curv
ture singularities atR50—the bang and/or crunch—and
R85RE8/E, M 8Þ3ME8/E—shell crossings. Additionally,
r but not K passes through zero whereE8/E exceeds
M 8/3M .

The matter flow ua5d t
a , with projection tensorhab

5gab1uaub , has the following properties, which are a
most trivial to calculate with GRTensor@12#:

Q5¹aua5
~Ṙ823ṘE8/E12R8Ṙ/R!

~R82RE8/E!
, ~23!

aa5ub¹bua50, ~24!

sa
b5gag~¹(gua)1u(gaa)!2

Q

3
hb

a

5
~Ṙ82R8Ṙ/R!

3~R82RE8/E!
diag~0,2,21,21!, ~25!

vab5¹[bua]1u[baa]50, ~26!

Ea
b5Ca

gbdugud

5
M ~R82RM8/3M !

R3~R82RE8/E!
diag~0,22,1,1!, ~27!

Hab5
1

2
eagmnCmn

bdugud50. ~28!

Note that the relation between the active gravitatio
massM and the ‘‘sum-of-rest-masses’’M is the same in the
e511 Szekeres model as in the LT model:

M85M 8/A11 f . ~29!

The sum of the rest masses contained inside the spher
coordinate radiusr at the timet is defined by

M5E rAug3ud3x, ~30!

where g3 is the determinant of the metric of thet5const
hypersurface, and the integral is taken with respect to

e

ow
1-3
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CHARLES HELLABY AND ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 66, 084011 ~2002!
variablesp and q from 2` to 1`, and with respect tor
from r 0 at the origin to the current valuer. We have

Aug3u5
E

A11 f
~R/E!2~R/E!8. ~31!

Consequently

M5
1

4pE2`

1`

dqE
2`

1`

dp

3E
r 0

r

dxF E

A11 f
~M /E3!8G ~ t,p,q,x!. ~32!

The term containingE8 is integrated by parts with respect
x in order to move the prime~which, in the integrand, mean
]/]x) away fromE to functions that do not depend onp and
q. The result is

M5
3

2 F M

A11 f
~r !2

M

A11 f
~r 0!G

3
1

4pE2`

1`

dqE
2`

1`

dpE22

1
1

8pE2`

1`

dqE
2`

1`

dpE
r 0

r

dxE22

3F 3M f 8

2~11 f !3/2
2

M 8

A11 f
G . ~33!

We note that

E
2`

1`

dqE
2`

1`

dpE2254p ~34!

~this is the surface area of a unit sphere!, and so

M5
3

2 F M

A11 f
~r !2

M

A11 f
~r 0!G

1
1

2Er 0

r F 3M f 8

2~11 f !3/2
2

M 8

A11 f
Gdx. ~35!

From here, we obtain the same relation that holds in the
model, Eq.~29!.

Note that this result holds only in thee511 Szekeres
model ~the quasispherical one!. With e50 or e521, the
total surface area of the (p,q)-surface is infinite, and soM
cannot be defined.

A. Special cases and limits

The Lemaıˆtre-Tolman~LT! model is the spherically sym
metric special casee511, E850.

The vacuum case is (M 823ME8/E)50 which givesM
}E3, and this requires
08401
T

M 8505S85P85Q85E8 ~36!

and any region over which this holds is the Schwarzsch
metric in LT coordinates@10#, with massM. ~See@13# for the
full transformation in the general case.!

In the null limit, f→`, in which the ‘‘dust’’ particles
move at light speed@14,15#, the metric becomes a pure ra
diation Robinson-Trautman metric of Petrov type D, as giv
in Exact Solutions@16#, equation~24.60! with ~24.62!.3 The
Kinnersley rocket@17# is thee511 case of this null limit,
which is actually more general than the axially symmet
form given in @14#.

The KS-type Szekeres metric was shown in@14# to be a
special case of the above LT-type metric, under a suita
limit.

B. Basic physical restrictions

~i! For a metric of Lorentzian signature (2111), we
require

e1 f >0 ~37!

with equality only occurring where (R82RE8/E)2/(e1 f )
.0. Clearly, pseudospherical foliations,e521, require f
>1, and so are only possible for hyperbolic spatial sectio
f .0. Similarly, planar foliations,e50, are only possible for
parabolic or hyperbolic spatial sections,f >0, whereas
spherical foliations are possible for allf >21.

~ii ! We obviously choose the areal radiusR to be positive,

R>0 ~38!

(R50 is either an origin, or the bang or crunch. In no case
a continuation to negativeR possible.!

~iii ! The massM (r ) must be positive, so that any vacuu
exterior has positive Schwarzschild mass,

M>0. ~39!

~iv! We require the metric to be nondegenerate and no
ingular, except at the bang or crunch. Since (dp21dq2)/E2

maps to the unit sphere, plane or pseudosphere,uS(r )uÞ0 is
needed for a sensible mapping, and soS.0 is a reasonable
choice. In the casese50 or 21, E necessarily goes to zer
at certain (p,q) values where the mapping is badly behave
For a well behavedr coordinate, we do need to specify

`.
~R82RE8/E!2

~e1 f !
.0, ~40!

i.e. ~e1 f !.0 except where~R82RE8/E!250. ~41!

In Lemaı̂tre-Tolman models@18,19# (E850, e51), the
equality (11 f )505(R8)2 can occur in closed model
where the areal radius on a spatial section is at a maxim
or in wormhole models where the areal radius is minimu

3Reference@15# corrected Ref.@14#’s mistaken claim that the nul
limit of Szekeres was a new metric.
1-4



d

n

n
n

ns
ab
h
w
v
ry

n

ns
,

y
s

ns

,

at

e

s

YOU CANNOT GET THROUGH SZEKERES WORMHOLES: . . . PHYSICAL REVIEW D 66, 084011 ~2002!
R8(t,r m)50,;t. These can only occur at constantr and must
hold for all (p,q) values. We will consider maxima an
minima again later.

~v! The density must be positive, and the Kretschma
scalar must be finite, which adds

either M 823ME8/E>0 and R82RE8/E>0 ~42!

or M 823ME8/E<0 and R82RE8/E<0. ~43!

If ( R82RE8/E) passes through 0 anywhere other tha
regular extremum, we have a shell crossing, where an in
shell of matter passes through an outer shell, and the de
diverges and goes negative. This phenomenon is prob
due to the spacetime coordinates being attached to the s
of matter, and is not physically realistic. Nevertheless,
would like to avoid models in which such unphysical beha
ior occurs, so it is useful to find restrictions on the arbitra
functions that prevent it.

~vi! The various arbitrary functions should have sufficie
continuity—C1 and piecewiseC3—except possibly at a
spherical origin.

III. THE SIGNIFICANCE OF E

A. Properties of E„r ,p,q…

Note that the Szekeres metric is covariant with the tra
formationsr 5g( r̃ ), whereg is an arbitrary function. Hence
if R8,0 in the neighborhood of some valuer 5r 0, we can
takeg51/r̃ and obtaindR/dr̃.0. Therefore,R8.0 can al-
ways be assumed to hold in some neighborhood of anr
5r 0. However, ifR8 changes sign somewhere, then this i
coordinate-independent property.

As seen from Eq.~13!, with e511, E must be always
nonzero. Since the sign ofE is not defined by the metric, we
can assume thatE.0.

CanE8 change sign?

E85
1

2
S8$2@~p2P!21~q2Q!2#/S21e%

2
1

S
@~p2P!P81~q2Q!Q8#. ~44!

The discriminant of this with respect to (p2P) is

Dp5
1

S2 F2
S82

S2
~q2Q!222

S8

S
~q2Q!Q8

1P821eS82G . ~45!

The discriminant ofDp with respect to (q2Q) is

Dq54
S82

S6
~P821Q821eS82!. ~46!
08401
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Since, withe511, this is never negative, the equationE8
50 will always have at least one solution~exceptional situ-
ations!, and in general two. The two exceptional situatio
are whenDq50. They are as follows:

~i! S850. ThenE850 has a family of solutions anyway
but the solutions define a straight line in the (p,q)-plane.
This will be dealt with below@see after Eq.~56!#.

~ii ! S85P85Q850. ThenE8[0 at this particular value
of r, and we see from Eq.~20! that r will be spherically
symmetric there.@In this case, the positions of the gre
circle from Eq.~55! and of the poles from Eq.~64! are un-
determined.#

When Dq.0, Dp will change sign at the following two
values ofq:

q1,25Q1
S

S8
~2Q86AP821Q821eS82!. ~47!

For everyq such thatq1,q,q2 there will be two values of
p ~and one value ofp when q5q1 or q5q2) such thatE8
50. Those values ofp are

p1,25P2P8
S

S8

6SA2S q2Q

S
1

Q8

S8
D 2

1
P821Q82

S82
1e. ~48!

The regions whereE’ is positive and negative depend on th
sign ofS8. If S8.0, thenE8.0 for p,p1 and forp.p2, if
S8,0, thenE8.0 for p1,p,p2 . E850 for p5p1 andp
5p2, but note thatp1 and p2 are members of a continuou
family labeled byq. All the values ofp andq from Eqs.~47!
and ~48! lie on the circle

F p2S P2P8
S

S8
D G 2

1Fq2S Q2Q8
S

S8
D G 2

5S2S P821Q82

S82
1e D . ~49!

The center of this circle is in the point

~p,q!5S P2P8
S

S8
,Q2Q8

S

S8
D , ~50!

and the radius of this circle is

LE8505SAP821Q82

S82
1e. ~51!

The situation on the (p,q)-plane whenS8.0 is shown in
Fig. 2.
1-5
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B. Properties of E„r ,u,f…

We consider the variation ofE(r ,p,q) around the sphere
of constantt and r.

Setting e511 and applying the transformation~16! to
Eq. ~13! and to its derivative gives

E5
S

12cosu
, ~52!

E852
S8cosu1sinu~P8cosf1Q8sinf!

12cosu
, ~53!

E952
S9cosu1sinu~P9cosf1Q9sinf!

~12cosu!

12S S8

S D S S8cosu1sinu~P8cosf1Q8sinf!

~12cosu! D
1

~S8!21~P8!21~Q8!2

S
. ~54!

The locusE850 is

S8cosu1P8sinu cosf1Q8sinu sinf50. ~55!

Writing z5cosu, y5sinu cosf, x5sinu sinf, clearly puts
(x,y,z) on a unit sphere through (0,0,0), and Eq.~55! be-
comesS8z1P8x1Q8y50 which is the equation of an arb
trary plane through (0,0,0). Such planes all intersect the
sphere along great circles, thereforeE850 is a great circle,
with locus

tanu5
2S8

P8cosf1Q8sinf
. ~56!

The plane has unit normal

~P8,Q8,S8!/A~P8!21~Q8!21~S8!2.

Now it is easy to understand the meaning of the spe
caseS850 mentioned after Eq.~46!. As seen from Eq.~56!,
with S850 we haveu50, which means that the great circ

FIG. 2. WhenS8.0, E8,0 inside the circle defined by Eq
~49! and E8.0 outside. Note that the (p,q) plane is a Riemann
projection of a sphere, and on the sphere ‘‘inside’’ and ‘‘outsid
are topologically equivalent.
08401
it
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defined byE850 passes through the pole of Riemann p
jection. In this case, the image of the circleE850 on the
(p,q) plane is a straight line passing through (p,q)
5(P,Q), as indeed follows from Eq.~44!. The sign ofE8 is
different on each side of the straight line. Compare also w
Figs. 4 and 5.

From Eqs.~53! and ~52! we find

E8

E
52

S8cosu1sinu~P8cosf1Q8sinf!

S
~57!

thus

E8

E
5const⇒ S8z1P8x1Q8y5S3const ~58!

which is a plane parallel to theE850 plane, implying that all
loci E8/E5const are small circles parallel to theE850 great
circle. This will be seen to apply to shell crossings and a
parent horizons.

The location of the extrema ofE8/E are found as follows:

]~E8/E!

]f
5

sinu~P8sinf2Q8cosf!

S
50 ~59!

⇒tanfe5
Q8

P8
⇒cosfe5e1

P8

A~P8!21~Q8!2
, e1561,

~60!

]~E8/E!

]u
5

S8sinu2P8cosu cosf2Q8cosu sinf

S
50

~61!

⇒tanue5
P8cosfe1Q8sinfe

S8
5e1

A~P8!21~Q8!2

S8
~62!

⇒cosue5e2

S8

A~S8!21~P8!21~Q8!2
, e2561. ~63!

The extreme value is then

S E8

E D
extreme

52e2

A~S8!21~P8!21~Q8!2

S
. ~64!

Since (sinuecosfe, sinuesinfe, cosue) 5 e2(P8, Q8, S8)/
A(P8)21(Q8)21(S8)2, Eq. ~55! shows that the extreme

’
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values ofE8/E are poles to the great circles ofE850. The
latter can now be written in parametric form as

cosu52cosc sinue , ~65!

tanf5
cosue tanfe1tanc

cosue2tanfe tanc
. ~66!

Clearly E8/E has a dipole variation around each const
r sphere, changing sign when we go over to the anitipo
point: (u,f)→(p2u,f1p). Writing

S R82R
E8

E D5S R81R
S8cosu1sinu~P8cosf1Q8sinf!

S D
~67!

we see thatRE8/E is the correction to the radial separatio
R8 of neighboring constantr shells, due to their not being
concentric. In particularRS8/S is the forward (u50) dis-
placement, andRP8/S andRQ8/S are the two sideways dis
placements (u5p/2, f50) and (u5p/2, f5p/2). The
shortest ‘‘radial’’ distance is whereE8/E is maximum.

It will be shown in Sec. V B that, whereR8.0, E8/E
<M 8/(3M ) and E8/E<R8/R are required to avoid she
crossings, and also in Eq.~130! that R8/R.M 8/3M . These
inequalities, together withM 8.0, imply that the density
given by Eq.~20!, as a function ofx5E8/E,

r5
2M 8

R2R8

123Mx/M 8

12Rx/R8
, ~68!

has a negative derivative byx:

r,x5
R/R823M /M 8

~12Rx/R8!2
•

2M 8

R2R8
,0, ~69!
08401
t
al

and so the density is minimum whereE8/E is maximum.
The density, Eq.~20!, can be decomposed into a spheric

part and a dipole-like part, as noted by Szekeres@20# and de
Souza@21# ~see also p. 30 in Ref.@4#!. Rewriting de Souza’s
result into our notation of Eqs.~1! and ~2!, we obtain

r5rs1Dr, ~70!

wherers is the spherical part,

rs5
2M 8~A1C!26M ~A81C8!

R2@R8~A1C!2R~A81C8!#
, ~71!

andDr is the dipole-like part,

Dr5
A81C82~A1C!E8/E

R82RE8/E

3
6MR822M 8R

R2@R8~A1C!2R~A81C8!#
. ~72!

The dipole-like part changes sign on the surface wh
E8/E5(A81C8)/(A1C), but lacks the antisymmetry prop
erty: Dr(2E8/E)Þ2Dr(E8/E). It can be verified~see Ap-
pendix A! that theDr50 hypersurface does intersect eve
(t5const,r 5const) sphere along a circle, unlessP85Q8
5S850 (5A85C8), in which case the dipole component o
density is simply zero. The surfaceDr50 in a t5const
space is comoving, i.e. its definition does not depend ot.
Also, its intersection with any sphere of constantr, E8/E
5(A81C8)/(A1C)5const, is a circle parallel to the grea
circle E850, as noted after Eq.~58!. It will coincide with
the E850 circle in those points whereA81C850 ~if they
exist!. The dipole-like component will be antisymmetric wit
respect toE8/E only at such values ofr, where (A1C)R
505(A81C8)R8, but such values may exist only at th
center,R50, becauseA1C50 contradicts Eq.~3!.
In the maximum (e2521) and minimum (e251) directions,

Emax/min9 5
S~S9S81P9P81Q9Q8!2@~S8!21~P8!21~Q8!2#@2S81e2A~S8!21~P8!21~Q8!2#

S@S82e2A~S8!21~P8!21~Q8!2#
, ~73!

while around theE850 circle

E95
~S8!21~P8!21~Q8!2

S
2

S9~P8cosf1Q8sinf!2S8~P9 cosf1Q9 sinf!

A~P8cosf1Q8sinf!21~S8!22~P8cosf1Q8sinf!
. ~74!
1-7
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IV. REGULAR ORIGINS

Whene511, R50 occurs at an origin of spherical co
ordinates, e.g.R(t,0)50,;t, where the 2-spheres have n
size. Similarly,Ṙ(t,0)505R̈(t,0), etc.; t. There will be a
second origin, atr 5r O say, in any closed, regular,f ,0
model. Thus, by Eqs.~11! and ~6! and their combinations
with Eqs.~4! and ~5!, for each constanth,

lim
r→0

M

f
50, lim

r→0
f 50, lim

r→0

f 2

M
50. ~75!

The type of time evolution at the origin must be the sa
as its neighborhood, i.e., along a constantt slice away from
the bang or crunch, by Eqs.~12! and ~7!,

0, lim
r→0

u f u3/2~ t2a!

M
,`. ~76!

Clearly, we needM→0, f→0 and

0, lim
r→0

u f u3/2

M
,`. ~77!

Using l’Hôpital’s rule, this gives

lim
r→0

3M f 8

2M 8 f
51. ~78!

The density and Kretschmann scalar must be well
haved. We do not consider a vacuum region of finite size
the origin, as that is just Minkowski space,M50, and we do
not consider the obscure case of a single vacuum point a
origin. Becauser and r̄ in Eq. ~21! evolve differently, we
also need

0, lim
r→0

6M

R3
5 lim

r→0

2M 8

R2R8
,`

⇒ lim
r→0

3R8M

RM8
51 ~79!

and

0, lim
r→0

2~M 823ME8/E!

R2~R82RE8/E!

5 lim
r→0

2M 8

R2R8

~123ME8/M 8E!

~12RE8/R8E!
,`, ~80!

but in fact the latter is ensured by the former, and the an
tropic effect of E vanishes at the origin. However, sinc
E8/E is restricted by the conditions for no shell crossings
would be odd if limr→0ME8/M 8E or limr→0RE8/R8E were
divergent. Since
08401
e

-
at

he

o-

t

R2
R8

M 8
52

M2

~2 f !3 S 12
3M f 8

2M 8 f
D sinh~h2sinh!~12cosh!

1
M2

~2 f !3 S 12
M f 8

M 8 f
D ~12cosh!3

2
M2a8

~2 f !3/2M 8
sinh~12cosh!, ~81!

Eqs. ~77! and ~78! above make the first term zero and th
second nonzero at an origin for all 0,h,2p, so we only
need

lim
r→0

Ma8

M 8
,`. ~82!

Lastly, the metric must be well behaved, soE should have
no unusual behavior, such asS50, that would compromise a
valid mapping of (dp21dq2)/E2 to the unit sphere. Also, to
ensure that the rate of change of proper radius with respe
areal radius is that of an origin,grr /(R8)2 should be finite

0, lim
r→0

~R82RE8/E!2

~11 f !~R8!2
,` ~83!

⇒0, lim
r→0

S 12
3ME8

M 8E
D 2

,`

⇒2`< lim
r→0

UME8

M 8E
U,` ~84!

and lim
r→0

UME8

M 8E
UÞ 1

3
, ~85!

where the last of Eq.~79! has been used. This should hold f
all (p,q), i.e. all (u,f). Thus Eq.~57! gives

2`< lim
r→0

UMS8

M 8S
U,`, 2`< lim

r→0
UM P8

M 8S
U,`,

2`< lim
r→0

UMQ8

M 8S
U,`, ~86!

all three limits being different from 1/3.
All of the above suggest that, near an origin,

M;R3, f ;R2, S;Rn,

P;Rn, Q;Rn, n>0. ~87!

The conditionE8/E<M 8/3M that will be obtained in the
next section implies that near an origin

n<1. ~88!
1-8
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V. SHELL CROSSINGS

A. Occurrence and position of shell crossings in a surface
of constant t and r

A shell crossing, if it exists, is the locus of zeros of t
function R82RE8/E. Suppose thatR82RE8/E50 holds
for all r at somet5to . This leads toS85P85Q85R850.
Since P, Q and S depend only onr, this means they are
constant throughout the spacetime. As seen from Eqs.~1! and
~20!, the Szekeres metric reduces then to the LT metric,
so this case need not be considered.

Suppose thatR82RE8/E50 holds for all t at somer
5r 0. This is an algebraic equation inp andq whose coeffi-
cients depend ont andr. Taking the coefficients of differen
powers ofp and q we find P85Q85S85R850, but this
time these functions vanish only atr 5r 0, while R8(t,r 0)
will vanish for all t. This will either be a singularity@when
M 8(r 0)Þ0] or a neck@whenM 8(r 0)50], familiar from the
studies of the LT model, see Refs.@10# and @22#. Hence,
R82RE8/EÞ0 except at a shell crossing or at special loc
tions.

Now R8.0 andR82RE8/E,0 cannot hold for allp and
q. This would lead toE8.ER8/R.0, and we know thatE8
cannot be positive at allp andq. Hence, withR8.0, there
must be a region in whichR82RE8/E.0. By a similar
argument,R8,0 andR82RE8/E.0 cannot hold for allp
and q, so with R8,0, there must be a region in whichR8
2RE8/E,0.

AssumingR8.0, canR82RE8/E be positive for allp
andq? Writing

ER8/R2E85
1

2SS S8

S
1

R8

R D @~p2P!2

1~q2Q!2#2
1

2
eSS S8

S
2

R8

R D
1

1

S
@~p-P!P81~q-Q!Q8#, ~89!

the discriminants of this with respect to (p2P) and (q
2Q) are
08401
d

-

Dp5
P82

S2
2

1

S2 S S8

S
1

R8

R D F S S8

S
1

R8

R D ~q2Q!2

1~q2Q!Q82
1

2
eS S8

S
2

R8

R D G ~90!

Dq54
1

S2 S S8

S
1

R8

R D 2F P821Q821eS82

S2
2e

R82

R2 G .

~91!

Thus ER8/R2E’ will have the same sign for allp and q
when Dq,0 ~because then alsoDp,0 for all q). Hence,
ER8/R2E8 has the same sign for allp andq ~i.e. there are
no shell crossings! if and only if

R82

R2
.e

P821Q821eS82

S2
ªF2~r !. ~92!

Note that whene50, this can fail only at those points wher
R850.

If R82/R25F2, then Dq50, and soDp50 at just one
value ofq5qSS. At this value ofq, ER8/R2E850 at one
value of p5pSS. In this case, the shell crossing is a sing
point in the constant (t,r )-surface, i.e. a curve in a space
constantt and a 2-surface in spacetime.

If R82/R2,F2, then the locus ofER8/R2E850 is in
general a circle~a straight line in the special caseS8/S5
2R8/R) in the (p,q) plane. The straight line is just a pro
jection onto the (p,q) plane of a circle on the sphere o
constantt and r, and so is not really any special case.

WhenDq.0 (R82/R2,F2), the two limiting values ofq
at whichDp changes sign are

q1,25
2Q86AP821Q821e~S822S2R82/R2!

S8/S1R8/R
, ~93!

and then for everyq such thatq1,q,q2, there are two
values ofp ~only one if q5q1 or q5q2) such thatER8/R
2E850. These are
p1,25

2P86A2F S S8

S
1

R8

R D ~q2Q!2Q8G2

1P821Q821e~S822S2R82/R2!

S8/S1R8/R
. ~94!
by
-

The values ofp and q from Eqs. ~93! and ~94! lie on the
circle with the center at

~pSC,qSC!5S P2
P8

S8/S1R8/R
,Q2

Q8

S8/S1R8/R
D ,

~95!
and with the radiusLSC given by

LSC
2 5

P821Q821e~S822S2R82/R2!

~S8/S1R8/R!2
. ~96!

This is in general a different circle from the one defined
E850. As seen from Eq.~89!, the shell crossing set inter
1-9
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sects with the surface of constantt and r along the line
E8/E5R8/R5 const. As noted after Eq.~58!, this line is a
circle that lies in a plane parallel to theE850 great circle. It
follows immediately that theE850 and the SC circles can
not intersect unless they coincide.

B. Conditions for no shell crossings

Szekeres@20# obtained a number of regularity condition
for the e511 metric, namely:~i! On any constant time
slice,R(t5const,r ) is monotonic inr, which allows a trans-
formation to makeR5r andR851 on that slice.~ii ! At an
origin, A, B1 , B2 andC should beC1, f 50, andM;R2 but
we are not sure why he requiredA8505B185B285C8 there.
~iii ! To keep the density nonsingular, 0<@(S8)21(P8)2

1(Q8)2#/S2,min„(R8/R)2,(M 8/3M )2
…, which is a no shell

crossing condition. We shall improve on the latter below.
For positive density, Eq. ~20! shows that (M 8

23ME8/E) and (R82RE8/E) must have the same sign. W
now consider the case where both are positive. Where (M 8
23ME8/E)<0 and (R82RE8/E),0 we reverse the in-
equalities in all the following.

In the case of both (M 823ME8/E) and (R82RE8/E)
being zero, this can hold for a particular (p,q) value if
M 8/3M5R8/R, but the latter cannot hold for all time. Thi
case can only hold for all (p,q) if M 850, E850, R850,
which requires all ofM 8, f 8, a8, S8, P8, Q8 to be zero at
somer value.

We consider the inequality (M 823ME8/E)>0 and we
argue that it must hold even for the extreme value ofE8/E,
Eq. ~64!, for which we obtain

M 8

3M
>

E8

E U
max

5
A~S8!21~P8!21~Q8!2

S
; r . ~97!

It is obvious that this is sufficient, and also that

M 8>0 ; r . ~98!

We will now consider (R82RE8/E).0 for all 3 types of
evolution.

1. Hyperbolic evolution, fÌ0

For hyperbolic models, we can write

R8

R
5

M 8

M
~12f4!1

f 8

f S 3

2
f421D2

f 3/2a8

M
f5 , ~99!

where

f45
sinhh~sinhh2h!

~coshh21!2
, f55

sinhh

~coshh21!2
. ~100!

At early times,

h→0, ~101!

R→M

f

h2

2
1O~h4!→0, ~102!
08401
f5→
4

h3
1O~h!→1`, ~103!

f4→
2

3
1O~h2!→ 2

3
, ~104!

we find f5 dominates and

R8

R
→2

f 3/2a8

M
f5 , ~105!

so that (R82RE8/E).0 gives

a8,0 ; r . ~106!

Similarly, at late times,

h→`, R→`, f5→0, f4→1, ~107!

we find f5 vanishes and

R8

R
→ 1

2

f 8

f
, ~108!

so that

S R8

R
2

E8

E D.0 ⇒ f 8

2 f
2

E8

E
.0. ~109!

Following the above analysis of (M 823ME8/E)>0 we ob-
tain

f 8

2 f
.

A~S8!21~P8!21~Q8!2

S
; r , ~110!

which obviously implies

f 8.0 ; r . ~111!

Again, since we already haveM 8>0, it is clear that this is
sufficient, and that

R8.0. ~112!

2. Parabolic evolution, fÄ0

The easiest way to obtain the conditions for this casef

50, f 8Þ0, is to put h̃5h/Af .0 in the hyperbolic case
and take the limitf→0, h→0. All terms involving f 8/ f
cancel and we retain exactly the same conditions, viz. E
~106! and ~111! @and of course~97!#. Naturally, Eq.~110!
ceases to impose any limit.

3. Elliptic evolution, fË0

For elliptic models, we can write

R8

R
5

M 8

M
~12f1!1

f 8

f S 3

2
f121D2

~2 f !3/2a8

M
f2 ,

~113!

where
1-10
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f15
sinh~h2sinh!

~12cosh!2
, f25

sinh

~12cosh!2
. ~114!

At early times,

h→0, ~115!

R→ M

~2 f !

h2

2
1O~h4!→0, ~116!

f2→
4

h3
1O~h!→1`, ~117!

f1→
2

3
1O~h2!→ 2

3
, ~118!

we find f2 dominates and

R8

R
→2

f 3/2a8

M
f2 , ~119!

so thatR(R8/R2E8/E).0 gives

a8,0 ; r . ~120!

Similarly, at late times,

h→2p, ~121!

R→ M

~2 f !

~2p2h!2

2
1O@~2p2h!4#→0, ~122!

f2→24/~2p2h!31O@~2p2h!#→2`, ~123!

f1→28p/~2p2h!312/31O@~2p2h!#→2`, ~124!

we find

R8

R
→ M 8

M S 8p

~2p2h!3D 2
f 8

f S 12p

~2p2h!3D
1

~2 f !3/2a8

M S 4

~2p2h!3D , ~125!

so thatR3/2(R8/R2E8/E).0 now gives

2pM

~2 f !3/2S M 8

M
2

3 f 8

2 f D1a8.0 ; r , ~126!

which is the condition that the crunch time must increa
with r. Since we already haveM 8>0, it may be easily veri-
fied that these conditions are sufficient to keep

R8.0 ~127!

for all h.
We now show the above also ensureR(R8/R2E8/E)

.0 always. Defining the crunch timeb(r ) with
08401
e

b5a1
2pM

~2 f !3/2
~128!

we can re-write Eq.~113! as

R8

R
5

M 8

3M
1

b8

~b2a! S 2

3
2f1D

1
~2a8!

~b2a! S 2

3
2f112pf2D . ~129!

The derivative of (2/32f1) is (2h23sinh1h cosh)/(1
2cosh)2, and the third derivative of the numerator of th
latter is hsinh. It follows that (2/32f1)>0 and declines
monotonically from1` to 0 ash goes from 2p to 0. Since
(2/32f112pf2) is the mirror image inh5p of (2/3
2f1), we have that

R8

R
.

M 8

3M
, ~130!

so that Eq.~97! guarantees that for each givenr, the maxi-
mum of E8/E as (p,q) are varied is no more than the min
mum of R8/R ash varies.

Note that although Eq.~126! implies

f 8

2 f
,

M 8

3M
, ~131!

a condition such as Eq.~110! is not needed in this case. As a
indication of what the approximate magnitude ofR8/Rumin ,
at the moment of maximum expansion along any giv
worldline,

R8

R
5

M 8

M
2

f 8

f
, ~132!

so it would be possible to haveE8/Eumax close toR8/Rumin
around the time of maximum expansion. The no shell cro
ing conditions are summarized in Table I.

VI. REGULAR MAXIMA AND MINIMA

Certain topologies necessarily have extrema inR. For ex-
ample, closed spatial sections have a maximum areal rad
and wormholes have a minimum areal radius, i.e.R8(t,r m)
50, ; t.

Suppose (e1 f )50 at somer 5r m . By Eq. ~41! we must
have

f 8~r m!50 ~133!

~unless f 8 is discontinuous there, which we will not con
sider!. We need (R82RE8/E)50 to keepgrr finite, and
hence (M 823ME8/E)50 to keepr finite, both holding
; (t,p,q) at that r m . More specifically, along any given
spatial slice away from the bang or crunch, we want

~R82RE8/E!

Ae1 f
→L, 0,L,`, ~134!
1-11
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~M 823ME8/E!

~R82RE8/E!
→N, 0<N,`. ~135!

As noted above, we require

M 85 f 85a85S85P85Q850 ~136!

to ensure

R850. ~137!

The limits ~134! and ~135! must hold for all t and for all
(p,q), so using Eqs.~13!, ~99!, and ~113! with R.0, M
.0, S.0 shows that

M 8

Ae1 f
,

f 8

Ae1 f
,

a8

Ae1 f
,

R8

Ae1 f
, ~138!

S8

Ae1 f
,

P8

Ae1 f
,

Q8

Ae1 f
,

E8

Ae1 f
~139!

must all have finite limits, that do not have to be zero. Us
l’Hôpital’s rule, each of the above limits can be expressed
the form

LM85 lim
f→21

M 8

Ae1 f
5

2M 9Ae1 f

f 8
5

2M 9

L f 8

. ~140!

Thus, forf 521, the above conditions for no shell crossin
in elliptic regions should be re-expressed in terms of th
limits.

It is worth pointing out thatE850 at f 521 does not
imply the shells near an extremum inR are concentric. It is
the above limits that determine whether there is nonconc
tricity at f 52e.

Conversely, imposingR850 forces all of Eq.~136!, if we
are to avoid shell crossings. To obtainf 52e, we must im-
pose one further requirement for a regular extremum—
no surface layers should occur atr 5r m . Using the results
for the normalnm and the extrinsic curvatureKi j shown in
the next section, and choosing the junction surface to b
constant coordinate radius,r 5Z5r m , the nonzero compo
nents are

nr52
~R82RE8/E!

Ae1 f
, ~141!

Kpp5
2R~e1 f !1/2

E2
, ~142!

Kqq5
2R~e1 f !1/2

E2
. ~143!

Now at an extremum inR, the factor (R82RE8/E) goes
from positive to negative@because where (R82RE8/E)
,0, the no-shell-crossing conditions requireR8,0], which
means thatnm flips direction. For a boundary with no surfac
08401
g
in

e

n-

at

at

layer we must havenm pointing the same way on both side
towards increasingr say, and zero jump in the extrinsic cu
vature. So, if we cut the model at the maximum or minimu
r m , and match the two halves back together, we need

Ki j
1~2nm!5Ki j

2~1nm!⇒Ki j
152Ki j

2 , ~144!

which is only possible if

f 52e. ~145!

If however,r m is only a shoulder—i.e.R8(r m)50, butR8
has the same sign on either side, then the normal direc
does not change sign, so there is no surface layer evenf
Þ2e. Howevergrr 5L2 goes to zero, so it is likely that a
change of coordinates could makeuR8u.0. See Table I for a
summary of the conditions for no shell crossings or surfa
layers.

VII. IMPOSSIBILITY OF A HANDLE TOPOLOGY

Since the functionE has the effect of making the distanc
between adjacent constantr shells depend on angle, this a
lows us to create a wormhole that is bent, so that the
asymptotic world sheets on either side can be thought o
intersecting in the embedding.

This leads to the question of whether those two wo
sheets can be smoothly joined across a junction surface
fact the possibility of matching the two world sheets togeth
can be considered independently of whether there is a na
embedding that would allow them to intersect at the app
priate angles.

Thus we investigate whether it is possible to create
Szekeres model with a handle topology in the following wa
Take a wormhole topology—ane511 model with r 50,
f (0)521 at the wormhole andf ,0 nearby—and let it be
mirror symmetric aboutr 50. Choose a comoving open su

FIG. 3. Conceptual illustration of joining a Szekeres wormho
model to itself across a boundary surfaceS, shown as a heavy line
The boundary may be close to the wormhole, as shown, or ou
the asymptotic regions. There is no significance to the change f
solid to dotted circles, other than picture clarity. The handle top
ogy is shown as an embedding of a constant time section, with
angular coordinate suppressed, although a valid matching acroS
does not require the result to have a natural embedding. Howev
is shown that the matching fails because it is not preserved by
model evolution.
1-12
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TABLE I. Summary of the conditions for no shell crossings or surface layers. The conditions found here are exactly those onM, f, and
a for LT models~see@22# which generalizes those of@23# for a50 LT models!, with extra conditions involvingS, P, Q also.
on

m

ted

n,
faceS on one side of the wormhole, and its mirror image
the other side, and match the two sheets together alongS, as
shown schematically in Fig. 3. Because the 2 sheets are
ror images, this is equivalent to matchingS to its own mirror
image.

To implement this we choose a comoving surface,

r S5Z~p,q! ~146!
08401
ir-

and surface coordinates,

j i5~ t,p,q!. ~147!

The two fundamental forms and the normal are calcula
in Appendix B.

Obviously 1st fundamental forms match by constructio
and normal vectors are equal and opposite,
1-13
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nm
152nm

2 . ~148!

In fact the 2 surfacesS1 andS2 are identical except for the
sign of nm . ThusKi j

252Ki j
1 , so the only way to match the

2nd fundamental forms,Ki j
15Ki j

2 , is to make them zero,

Ki j
650. ~149!

The Kpt52Kpt andKqt52Kqt equations give

R850⇒r S is at a shell crossing

unlessZ5const ~150!

or Ṙ50⇒Static: Not possible ~151!

or Zp50, Zq50⇒r S5Z5const. ~152!

If the matching surface is at constantr, then only a closed
torus topology is possible. So the answer is: no, a han
topology is not possible.

SupposeṘ50 possible, then it should be possible
solve

Kpp50, Kpq50, Kqq50 ~153!

for Z(p,q), by specifying suitable functionsE(r ,p,q) and
R(r ) on an initial time slice. In other words, you can pro
ably match on a constant time slice, but the matching is
preserved by the model evolution.

VIII. SZEKERES WORMHOLES?

It has been shown in@10# that LT models can describe th
Schwarzschild-Kruskal-Szekeres manifold, as well as mod
that have the same topology but nonzero density. It has
been shown that the matter flows from past to future sin
larity, with possibly some matter escaping toJ 1 or some
being captured fromJ 2. The effect of the introduction o
matter on the causal structure is to split the Kruskal ev
horizons and reduce communication through the wormh
The locusR52M is an apparent horizon, but not an eve
horizon, and light rays fall irrevocably through the AH to
wards the singularity whereverM 8.0. Only if the density is
~locally! zero isR52M ~locally! null. Only if the density is
everywhere zero isR52M the event horizon.~See also@23#
for a study of light rays and AHs in a collapsing LT mod
with a50.!

Since LT models are a subset of Szekeres models, it i
interest to look at the properties of the Szekeres genera
tion, and determine how the loss of spherical symmetry
the Szekeres model affects the LT result.

In particular, given the anisotropy of the metric and t
fact that the proper separation of constantr shells varies with
p and q, is it possible for null or timelike paths to pas
through a neck or wormhole, by choosing a path along wh
distances have been made shorter by the particular form
E? In other words, can one construct a Szekeres worm
that is traversible?

For a wormhole, we require an elliptic region, in order
08401
le

ot

ls
so
-

t
e.
t

of
a-
n

h
of
le

create a ‘‘neck’’—a regular minimum inR(t5const,r ),

21< f ,0, e511, ~154!

but the asymptotic regions may be described by ellip
parabolic, or hyperbolic regions.

A. The fastest way out

The general null condition gives

05kakbgab5~21!~kt!21

S R82R
E8

E D 2

e1 f
~kr !2

1
R2

E2
@~kp!21~kq!2# ~155!

⇒
S R82R

E8

E D 2

e1 f S dr

dt D
2

512
R2

E2 F S dp

dt D
2

1S dq

dt D
2G .

~156!

It is obvious that at each eventdr/dt is maximized by choos-
ing kp505kq. SinceR is independent of (p,q), this also
gives the direction of maximumdR/dtunull at any event. We
will call this ‘‘radial’’ motion, and radial null paths ‘‘rays.’’
Thus, the DE

tn85
dt

dr U
n

5
j

A11 f
S R82

RE8

E D , j 561 ~157!

in principle solves to give

t5tn~r ! ~158!

along the ‘‘ray.’’ We do not expect this to be geodesic, but
regard it as the limit of a sequence of accelerating timel
paths, and thus the boundary to possible motion throug
wormhole. The acceleration of this path may be calcula
from aa5kb¹bka, as given in Appendix C.

B. Apparent horizons

The areal radius along a ‘‘ray’’ is

Rn5R„tn~r !,r …, ~159!

~Rn!85Ṙtn81R8 ~160!

5 j
Ṙ

A11 f
S R82

RE8

E D1R8 ~161!

5 l j

A2M

R
1 f

A11 f
S R82

RE8

E D1R8, l 561.

~162!

These rays are momentarily stationary when

~Rn!850. ~163!
1-14
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Now light rays initially along constantp and q will not re-
main so, owing to the anisotropy of the model. Howev
since these ‘‘radial’’ directions are at each point the fast
possible escape route, we define this locus to be the app
horizon ~AH!.

@Szekeres@20# defined a trapped surface as the loc
where null geodesics that are~momentarily! ‘‘radial’’ have
zero divergence,km

;m50, wherek ;n
m kn50, kmkm50, kp

505kq. He obtained

k ;m
m 5

2

R S R82
RE8

E D S Ṙ

A11 f
1 j D . ~164!

Given the anisotropy of the model, one does not expect
to be the same locus as our AH.#

Assuming a normal spacetime point will have nonze
metric components, and takingR increasing withr on con-
stantt slices,

R8.0 and S R82
RE8

E D.0, ~165!

we require

l j 521, ~166!

i.e.

Either ~future AH: AH1!

j 511 ~outgoing rays!

l 521 ~in a collapsing phase! ~167!

Or ~past AH: AH2!

j 521 ~incoming rays!

l 511 ~in an expanding phase!. ~168!

Note that we want ‘‘outgoing’’ to mean moving away from
the neck atr 50. A ray passing through the neck wou
change from incoming to outgoing atr 50, and, sinceR8
flips sign there,j would also have to flip there.

1. The apparent horizon and its location with respect to E8Ä0

Define

DªA11 f 2A2M

R
1 f . ~169!

Then

~D.0!⇔~R.2M !. ~170!

SinceM /R and (2M /R1 f ) are positive, we see thatD>1
leads to a contradiction, and so

D,1. ~171!
08401
,
st
ent

s

is

However,uDu can be greater than 1 becauseD,21 is not
prohibited. We have

~D,21!⇒S R,
M

11A11 f
D . ~172!

This will always occur whenR is close to the Big Bang/Big
Crunch.

Using D, the equation of the AH is

RE81DR8E50, ~173!

and in terms ofp andq this equation is

S S8

S
2D

R8

R D @~p2P!21~q2Q!2#

12@~p2P!P81~q2Q!Q8#

2S2S S8

S
1D

R8

R D50. ~174!

The discriminant of this with respect top is

Dp54P8224S S8

S
2D

R8

R D F S S8

S
2D

R8

R D ~q2Q!2

12~q2Q!Q82S2S S8

S
1D

R8

R D G . ~175!

The discriminant of this with respect toq is

Dq564S S8

S
2D

R8

R D 2

3F P821Q821S2S S82

S2
2D2

R82

R2 D G . ~176!

Now, if Dq,0 everywhere, thenDp,0 for all q, in which
case there is nop obeying Eq.~174!, i.e. the apparent horizon
does not intersect this particular surface of constant (t,r ).

If Dq50, thenDp,0 for all q except one valueq5q0, at
which Dp50. At this value ofp5p0, Eq. ~174! has a solu-
tion, and so the intersection of the apparent horizon with t
one constant (t,r ) surface is a single point. Note that th
situation when the apparent horizon touches the wh
3-dimensionalt5const hypersurface at a certain value oft is
1-15
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CHARLES HELLABY AND ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 66, 084011 ~2002!
exceptional; this requires, from Eq.~174!, that P85Q85S8
5R850 at this value oft. The first three functions being
zero mean just spherical symmetry, but the fourth one defi
a special location, as mentioned at the beginning of S
V A. These equations hold in the Datt-Ruban@24–26# solu-
tion.

If Dq.0, thenDp.0 for everyq such thatq1,q,q2,
where
e

a

08401
es
c.

q1,25

2Q86AP821Q821S2S S82

S2
2D2

R82

R2 D
S8/S2DR8/R

~177!

and then a solution of Eq.~174! exists given by
p1,25

2P86A2F S S8

S
2D

R8

R D ~q2Q!1Q8G2

1P821Q821S2S S82

S2
2D2

R82

R2 D
S8/S2DR8/R

. ~178!

Except for the special case whenS8/S5DR8/R, these values lie on a circle in the (p,q) plane, with the center at

~pAH ,qAH!5S P2
P8

S8/S2DR8/R
,Q2

Q8

S8/S2DR8/R
D , ~179!
to-

om
ion
urs

not

and

in
.

and with the radiusLAH given by

LAH
25

P821Q821S2S S82

S2
2D2

R82

R2 D
~S8/S2DR8/R!2

. ~180!

The special caseS8/S5DR8/R @when the locus of AH in the
(p,q) plane is a straight line# is again an artifact of the
Riemann projection because this straight line is an imag
a circle on the sphere.

In summary, the intersection of AH with the (p,q)-plane
is ~i! nonexistent whenR82/R2.F2/D2 ~this is the sameF
as for the shell crossing!; ~ii ! a single point whenR82/R2

5F2/D2; and ~iii ! a circle or a straight line whenR82/R2

,F2/D2. The conditionR82/R2,F2/D2 is consistent with

FIG. 4. The circles C1 and C2 on a sphere~seen here edge on!
will project onto the plane~seen here as the horizontal line! as the
circles P1 and P2 that are outside each other. Only parts of P1
P2 are shown here. Circle C1 is theE850 set, circle C2 is the
apparent horizon circle.
of

the condition for no shell crossings, Eq.~92!, when uDu
,1. We already know that necessarilyD,1, butD,21 is
not excluded.

With uDu,1, when the intersection of AH with (t
5const,r 5const) is a single point, a shell crossing is au
matically excluded.

Note that from Eq.~173! and from the assumptionsR
.0, E.0 andR8.0 we have

~D.0!⇒~E8,0!

~D,0!⇒~E8.0!. ~181!

nd

FIG. 5. The same circles as in Fig. 4 projected onto a plane fr
a different pole will project as one inside the other. The transit
from the situation of Fig. 4 to that of Fig. 5 is continuous and occ
when the sphere is rotated, but the pole and the plane are
moved. Then one of the circles~C1 when a clockwise rotation is
applied to Fig. 4! will pass through the pole at one valuew5w0 of
the rotation angle. Its image on the plane is acquiring a larger
larger radius with increasingw, until it becomes a straight line
when w5w0. Whenw increases further, the straight line bends
the opposite direction so that it surrounds the second circle P2
1-16
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But D.0 andD,0 define regions independent ofp andq.
Hence, on that surface, on whichD.0, E8,0 on the whole
of AH. WhereD,0, E8.0 on the whole of AH. This im-
plies that theE850 circle and the AH cannot intersect unle
they coincide. Indeed, these circles lie in parallel planes,
the same argument that was used at the end of Sec. V A
line on the (t,r )5const surface defined by Eq.~173! has the
propertyE8/E52DR8/R5 const, and so it must be a circl
in a plane parallel to theE850 great circle. It follows that of
the three circles (E850, SC and AH!, no two can intersec
unless they coincide.

When theE850 and AH circles are disjoint, they ma
either be one inside the other or each one outside the o
However, when projected back onto the sphere, these
situations turn out to be topologically equivalent: depend
on the position of the point of projection, the same tw
circles may project onto the plane either as one circle ins
the other or as two separate circles, see Figs. 4 and 5.

2. Location of the AH compared with RÄ2M

Along R52M

~Rn!85R8~11 l j !2
RE8

E
, ~182!

so R52M is not the AH except whereE850.
Equation~162! with Eq. ~163! andl j 521 can be written

RAH5
2M ~12RE8/R8E!2

11 f @12~12RE8/R8E!2#
~183!

5
2M ~12V!2

11 f ~2V2V2!
, V5RE8/R8E. ~184!

The effect ofE(r ,p,q) is to create a dipole in the geom
etry and density around each (t,r ) shell, with E850 on an
‘‘equator,’’ and extreme values

E8

E U
extreme

56
A~S8!21~P8!21~Q8!2

S
~185!

at the poles.
It is clear then that ‘‘radial’’ displacements between tw

nearby surfaces of constantr are shortest whereE8/E is
maximum, and light rays move outwards fastest@maxdr/dt,
min dt/dr, i.e. most rapid transfer between constantr shells
at the same (p,q) value#. It has also been shown that th
density is minimum here. The longest ‘‘radial’’ displac
ments, slowest light ray motion and maximum density oc
at the opposite pole.

We will call the direction whereE8/E is maximum, the
‘‘fast’’ pole, and whereE8/E is minimum, the ‘‘slow’’ pole.

Now the conditions for no shell crossings require

E8

E U
extreme

,
M 8

3M
~186!

and for an elliptic region we have
08401
y
he

er.
o

g

e

r

M 8

3M
,

R8

R
, ~187!

so

V2,1, ~12V!2.0, 23,~2V2V2!,1. ~188!

In those places on the AH, whereV505E8, we see that
the surfaceR52M intersects the AH at all times, but the AH
is a kind of oval with half insideR52M and half outside.

For f 521

RAH

2M
51 ~189!

regardless ofV. So it is clear that AH1 and AH2 cross in a
2-sphere at the neck of the wormhole (f 521) at the mo-
ment of maximum expansion (R52M ), as in LT. Note also
that at the bang, wherevera8Þ0, R→0 andR8→` imply
V→0, and the anisotropy becomes negligible; similarly f
the crunch.

But in general, for all 0> f .21

4

113u f u
>

RAH

2M
>0 ~190!

andRAH/2M decreases monotonically asV goes from21 to
1. Note thatuVextremeu is likely to be less than 1, and also th
the maximum and minimum values ofRAH do not have a
simple relationship.

We have thatRAH/2M,1 where V.0, i.e. whereE8
.0. In other words, taking a (t,r ) shell that intersects the
AH at the fast pole, the light rays move fastest between
shells exactly where the shell is just emerging from the A

Some other features of the AH locus are discussed in
pendix D.

C. Causal structure of a Szekeres wormhole

We shall next establish whether a radial null ray can p
through a Szekeres wormhole. We shall have to treat
neck separately from every otherr value, because of the nee
to treat thef→21 limit carefully.

1. Can E8Ì0 compensate for M8Ì0?

As noted in@10# the introduction of matter into a worm
hole slows the progress of light rays through it. Can t
effect be compensated for by a suitable choice ofE8.0?
Since the vacuum case isM 8505E8, for which we know
the behavior, we are only interested in the effects of vary
M andE.

We start with the gradient of the null rays, Eq.~157! and
use the substitutions~11! and~113! with Eq. ~114! for R, and
R8 in terms ofh and r, but we note that, if we choose th
future AH—i.e. outgoing rays in a collapsing region—the

j 511 and p,h<2p. ~191!

So the gradient of the null rays in terms ofh and r is
1-17
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dt

dr U
n

5
1

A11 f
S M ~12cosh!

~2 f !A11 f
D H 2S sinh

~12cosh!2D
3

~2 f !3/2a8

M
2S 12

3sinh~h2sinh!

2~12cosh!2 D f 8

f

1S 12
sinh~h2sinh!

~12cosh!2 D M 8

M
2

E8

E J . ~192!

Consider a region in whichR8.0 andM 8.0. Now since,
in the above range ofh

2>12cosh>0, 0>
sinh

~12cosh!
>2`,

1<12
sinh~h2sinh!

~12cosh!2
<`,

1<12
3sinh~h2sinh!

2~12cosh!2
<`, ~193!

the coefficient ofM 8/M is always positive, and the coeffi
cient of E8/E is always negative. In particular, because
the no shell crossing condition~97!, uE8/Eu<M 8/3M , the
E8/E term gives at most a partial cancellation of theM 8/M
term. Thus it is evident that varyingE8/E cannot compensat
for the effect of nonzeroM 8 on the gradient of the radia
rays.

We turn to the AH equation~163! with Eqs. ~161! and
~191!. We find the future AH equation in terms ofh and r
may be written

05F11A ~2 f !

~11 f !

sinh

~12cosh!
G H 2

~2 f !3/2a8

M

3S sinh

~12cosh!2D 2
f 8

f S 12
3sinh~h2sinh!

2~12cosh!2 D
1

M 8

M S 12
sinh~h2sinh!

~12cosh!2 D J
2FA ~2 f !

~11 f !

sinh

~12cosh!
G E8

E
. ~194!

The solution is the parametric locush5hAH(r ). It is evident
that if E850, varying M 8 has no effect at all on the AH
locus for a givenM, as the solution is

A ~2 f !

~11 f !

sinh

~12cosh!
521 ⇒ cosh5112 f ⇒ R52M .

~195!

Similarly E8 has no effect whenh5p, and ~see Appendix
D! whenh50 or 2p. On the other hand, the effect of vary
ing E8 is influenced by the value ofM 8. Analyzing the slope
08401
f

of this curve leads to quite daunting expressions, but is
tunately not necessary.

Consider now the slope of a surfaceR(t,r )5aM (r ) in a
collapsing region

R5aM ⇒ Ṙ25
2M

aM
1 f

⇒
dt

dr
U

R5aM

5
R82aM 8

A2

a
1 f

, ~196!

wherea.0. This is null or outgoing timelike wherever

~R82aME8/E!

A11 f
<

R82aM 8

A2

a
1 f

. ~197!

For M 850, which forcesE850 @by Eq. ~97!#, the equality
obviously requiresa52, giving the event horizon in a
vacuum model, and allR5aM surfaces are outgoing time
like for a.2, and spacelike fora,2. ForM 8.0, the con-
dition E8/E,M 8/3M ensures the numerator of the left-han
side ~lhs! is no less than

R82aM 8/3. ~198!

For any givenM 8.0, R8.0 and f .21, this is always
greater than the numerator on the right-hand side~rhs!, so, to
satisfy the equality, the denominator on the lhs must
greater than that on the rhs, so once again

a.2. ~199!

ThusR5aM surfaces can only be tangent to outgoing n
rays for R5aM.2M , and forR,2M they are spacelike
incoming null, or incoming timelike.

This allows us to conclude that, along the entire length
the futureR52M surface, outgoing rays pass inside it,
run along it whereM 850. By Eq. ~11!, the maximumR
along any given constantr worldline in an elliptic region is
at h5p, when

Rmax5
2M

~2 f !
>2M , ~200!

while R grows without bound in parabolic and hyperbol
regions. Thus every particle worldline encounters the fut
R52M surface~and the past surface!, leaving no room for
any rays that arrive at the futureR52M surface to escape to
J 1.

The time reverse of these arguments applies to the
AH, which lies in an expanding region and has incomi
rays running along it or passing out of it.

To complete the argument, we must consider the limits
the neck,f→21 where several derivatives are zero.

2. The AH at the neck

Now we turn to consider the AH at the neck.
The differential of Eq.~161! with Eq. ~163! and dp50

5dq gives us
1-18
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A11 f E 5 Ṙ 2~11 f ! S R82
RE8

E D 6
1Ṙ8dt1R9dr, ~201!

dt

dr U
AH

5

2H j
Ṙ8

A11 f
S R82

RE8

E D2 j
Ṙf 8

2~11 f !3/2S R82
RE8

E D1 j
Ṙ

A11 f
S R92

R8E8

E
2

RE9

E
1

R~E8!2

E2 D 1R9J
F j

R̈

A11 f
S R82

RE8

E D1 j
Ṙ

A11 f
S Ṙ82

ṘE8

E
D 1Ṙ8G .

~202!

At the neck of the wormhole,r 5r n , the regularity conditions of Sec. VI give us the following limits, whereL f 8 etc are
being defined in each case:

f→21, ~203!

f 8→0, f 8/A11 f → L f 852 f 9/L f 8>0 ⇒ ~L f 8!
252 f 9, ~204!

E8→0, E8/A11 f → LE852E9/L f 8>0, ~205!

R8→0, R8/A11 f → LR852R9/L f 8.0, ~206!

Ṙ8→0, Ṙ8/A11 f → LṘ852Ṙ9/L f 85~]/]t !LR8 . ~207!

Thus the termsṘ8R8/A11 f , Ṙ8RE8/EA11 f , R8E8/EA11 f , R(E8)2/E2A11 f and Ṙ8 go to zero and the remaining nu
merator terms involvingṘ cancel, down to

dt

dr U
AH,N

52 jR9Y F 2R̈

L f 8
S R92

RE9

E D1
Ṙ

A11 f
S Ṙ82

ṘE8

E
D G , ~208!

dt

dr U
n,N

5 j
2~R92RE9/E!

L f 8

. ~209!

Since the AH only intersects the neck whenṘ50, the behavior ofṘ/A11 f andṘ2/A11 f must still be determined~and that
of Ṙ8 will be verified!.

At the moment of maximum expansion in the neck we have

R52M , Ṙ50, A11 f 50, ~210!

h5p, cosh521, sinh50, ~211!

and so, using

R85
M

~2 f ! H S M 8

M
2

f 8

f D ~12cosh!2S M 8

M
2

3 f 8

2 f D sinh~h2sinh!

~12cosh! J 2a8A2 f
sinh

~12cosh!
, ~212!
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R95
21

~12cosh!2

M

~2 f ! H ~h2sinh!S M 8

M
2

3 f 8

2 f D1
a8~2 f !3/2

M J 2

1
sinh

~12cosh! H ~h2sinh!
M

~2 f !

3F2 f 8

f S M 8

M
2

9 f 8

8 f D2S M 9

M
2

3 f 9

2 f D G2A2 f S a91a8
f 8

f D J 1~12cosh!
M

~2 f ! H M 9

M
2

f 9

f
2

2 f 8

f S M 8

M
2

f 8

f D J ~213!
.

t

t o
ed

r

ell

r
ain

n-

ime.

wo

ys
gives, by virtue of Eqs.~204! and ~140!,

LR852~LM81ML f 8!54~M 91M f 9!/L f 8 ,

R952~M 91M f 9!. ~214!

We find the limit ofṘ/A11 f at this point by combining Eqs
~161! and ~163!, to obtain

Ṙ

A11 f
U

MEN

5
2 jL R8

LR82RLE8 /E
5

2 j ~M 91M f 9!

M 91M f 92ME9/E
,

~215!

so it is clear thatṘ2E8/A11 f 50. To check the limit ofṘ8,
the r derivative of Eq.~4! gives

Ṙ85
1

Ṙ
S M 8

R
2

MR8

R2
1

f 8

2 D
→ ṘṘ8

A11 f
5S LM8

R
2

MLR8

R2
1

L f 8
2 D , ~216!

and because of Eq.~214! andR52M all terms in the bracke
cancel, verifying thatṘṘ8/A11 f 50.

These together with Eq.~5! give us

dt

dr U
AH,MEN

5 j
4M f 9~M 91M f 9!

L f 8~M 91M f 92ME9/E!
, ~217!

dt

dr U
n,MEN

5 j
4~M 91M f 92ME9/E!

L f 8

. ~218!

For a light ray to pass through the neck at the momen
maximum expansion without falling inside the AH, we ne
dt/druAH,MEN.dt/drun,MEN , in other words

dt/druAH,MEN

dt/drun,MEN
5

M f 9~M 91M f 9!

~M 91M f 92ME9/E!2U
MEN

.1,

~219!

or

~M 91M f 9!2AM f 9~M 91M f 9!

M
,

E9

E

,
~M 91M f 9!1AM f 9~M 91M f 9!

M
. ~220!
08401
f

Since M (r ) is positive, and bothM (r ) and f (r ) are at a
minimum at the neck, i.e.M 9.0 and f 9.0, we have
AM f 9(M 91M f 9),M 91M f 9, and so both upper and lowe
limits are real and positive.

Can this requirement be satisfied without creating sh
crossings? The only relevant condition is the one fore5
11, R850, f 521, R9.0

E9

E U
max

<
M 9

3M
. ~221!

To be able to satisfy this as well as Eq.~220! we would need

M 91M f 92AM f 9~M 91M f 9!

M
,

M 9

3M
, ~222!

but this leads to

M 9~4M 913M f 9!,0, ~223!

which is clearly not possible. Indeed, althoughr is zero
rather than divergent whereE8/E5M 8/3M , whereE8/E ex-
ceedsM 8/3M , the density is negative at all times.

Putting the maximum value,E9/E5M 9/3M into Eq.
~219! gives

dt/druAH,MEN

dt/drun,MEN
U

max

5
9M f 9~M 91M f 9!

~2M 913M f 9!2
, ~224!

which rises from 0 atf 9/M 950, and asymptotically ap-
proaches 1 asf 9/M 9→`, i.e. vacuum.

Therefore, even at the neck,E8.0 cannot compensate fo
M 8.0, and all rays passing through this event rem
within R<2M , passing from inside AH2 to inside AH1.

3. Summary

In a Szekeres wormhole, every particle worldline encou
ters R52M , twice for mostr values and once wheref 5
21, making this a pair of 3-surfaces that span the spacet
The apparent horizons coincide withR52M at an extremum
of R(t5const,r )—a neck or belly—wheref 521. Where
M 850 ~vacuum!, theR52M surfaces are~locally! null.

Assuming there is matter (M 8.0) somewhere within the
elliptic region describing the neck, and assuming the t
regions, r→6`, are asymptotically flat, i.e.M→Mtot
5const (E8→0), then the event horizon is the set of ra
that are asymptotic toR52M , but always lie outside. The
future event horizon EH1 emerges from theR52M surface,
and vice versa for EH2.
1-20
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Thus we conclude that the causal structure of a reg
Szekeres wormhole is only a quantitative modification of
LT wormhole ~dense black hole!, and the possible causa
diagrams for Szekeres models are essentially the sam
those for LT models, as given in@10#.

4. Numerical examples

A few numerical examples were produced as follows.
We choose the 3 LT arbitrary functions to produce

Kruskal-like topology, with the neck atr 50, that is mirror
symmetric aboutr 50 andt50. The choice must therefor
satisfy f (0)521, f 8(0)50, f 9(0).0, M 8(0)50, M 9(0)
.0, a(r )52b(r );

M5M0~11M1r 2!3, M0 ,M1.0, ~225!

f 52exp~2r 2/r s!, r s.0, ~226!

a52pM /~2 f !3/2. ~227!

We want to chooseE to maximize the effect ofE8Þ0 along
one particular radial path. By setting

P~r !505Q~r !, ~228!

so that Eq.~13! is

E5
S

2 S p2

S2
1

q2

S2
11D , ~229!

the maximumE8/E becomes

E8

E U
max

5US8

SU ~230!

along the direction (p,q)5(0,0), i.e.u50. Since numerical
integrations will only be done along this path and theu5p
one, we treatE as a function ofr only. We makeE8/E as
large as possible without violating the no shell crossings c
dition E8/E<M 8/3M with

E5E0~11E1r 2!1E2 , E0 ,E1 ,E2.0, ~231!

where the shell crossing occurs somewhere ifE250.
Because of the two reflection symmetries, we can s

integrating a null ray from maximum expansion at the ne

h5p, r 50, ~232!

where AH1 and AH2 meet. The symmetry means that int
grating forward along increasingr and t and integrating
backward along decreasingr and t is the same thing, so on
integration actually traces both halves of the same ray. R
that do not pass through this point require two separate p
to the integration, one from maximum expansion towardr
and t increasing, and the other towardsr and t decreasing,
with careful treatment of the neck limits wherer goes
through zero.

The following runs were done.
Test 1—the vacuum case:
08401
ar
e

as

-

rt
,

ys
rts

M051, M150, E051,

E150, E250, r s51. ~233!

As expected, we found that the fast AH, the slow AH, t
fast null ray, and the slow null ray were all the same.

Test 2—the LT case:

M051, M150.1, E051,

E150, E250.01, r s51. ~234!

Here the fast and slow rays were the same, and the fast
slow AHs were the same, but the rays fell inside the AHs,
expected.

Test 3—a Szekeres version of above LT case:

M051, M150.1, E051,

E150.1, E250.01, r s51. ~235!

The AHs and rays were split on either side of the tes
curves.

Run 1—mediumM 8/ f 8:

M051, M151, E051,

E151, E250, r s51. ~236!

We found that the rays and AHs were well split, while th
rays were strongly trapped.

Run 2—lowM 8/ f 8:

M051, M151, E051,

E151, E250.1, r s50.01. ~237!

The rays were mildly split, the AHs were indistinguishable
the range plotted, and the rays were mildly trapped.

Run 3—slightly less lowM 8/ f 8:

M051, M152, E051,

E152, E250.01, r s50.01. ~238!

This was very similar to the previous run, with the rays le
mildly trapped.

Run 4—highM 8/ f 8:

M051, M153, E051,

E153, E250.0001, r s510. ~239!

Here the rays and AHs were well split, and the rays w
very strongly trapped.

These examples cover the main possibilites, and run
shown in Fig. 6.

IX. CONCLUSIONS

Szekeres~S! models are a generalization of the sphe
cally symmetric Lemaıˆtre-Tolman ~LT! models. Both de-
scribe inhomogeneous dust distributions, but the former h
1-21
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no Killing vectors. There are 3 arbitrary functions of coord
nate radius in LT models (M , f anda), and a further 3 in S
models (S, P andQ).

For quasispherical Szekeres~S! models, we established
sets of regularity conditions—the conditions for a regu
origin, the conditions for no shell crossings, and the con
tions for regular maxima and minima in the spatial sectio
The last two contain exactly those for the LT models, w
extra conditions on the arbitrary functions that are peculia
S. Thus, for every regular LT model that is nonvacuu
(M 8.0) at least somewhere, one can find regular S mod
that are anisotropic versions of the same topology.~For
vacuum,M 850, S models must be spherically symmetric!

Since LT models can reproduce the Schwarzsch
Kruskal-Szekeres topology of a wormhole connecting t
universes, but with nonzero density everywhere, this is a
possible with S models. In the vacuum case (M 850) this
gives the full Kruskal manifold in geodesic coordinates. It
known that the presence of matter in such models inhi
communication through the wormhole and splits the ev
horizons. We investigated the S wormhole models, consi
ing apparent horizons and the paths of ‘‘radial’’ null ray
which, while not geodesic, are the fastest paths out o
wormhole. We showed that, even though the S model’s
isotropy makes the proper separation of consecutive sh
shorter along certain directions, and null motion faster alo
those same directions, this is not enough to compensate
the retarding effect of matter. Thus the causal structure o

FIG. 6. The (r 2t) diagram for the Szekeres model defined f
run 1, showing the fast and slow future apparent horizons~fA1 and
sA1!, and past apparent horizons, the fast and slow rays that
through O—the neck at the moment of maximum expansio
towards r increasing~fR1 and sR1!, and rays through O going
towardsr decreasing, as well as rays going through other point
is the moment of time symmetry which is also the simultane
time of maximum expansion, and N is the locus of the neckr
50. Note that fA1 and sA1 are two different intersections of th
future apparent horizon AH1 in two different radial directions—the
fast and slow poles whereE8/E takes extreme values. Note als
that there is no originR(r 5r o ,t)50 in wormhole models.
08401
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S wormhole is the same as that of the corresponding
model.

We also considered whether the two universes on ei
side of a wormhole could be joined across a 3-surface, m
ing a handle topology. It was found that a smooth junction
not possible at any finite distance, as a surface layer wo
be created. This conclusion applies to LT models and to
vacuum case—a Schwarzschild wormhole—too.
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APPENDIX A: THE HYPERSURFACE
OF ZERO MASS-DIPOLE INTERSECTS

EVERY „tÄconst,rÄconst… SPHERE

This hypersurface is given by

E8/E5~A81C8!/~A1C!. ~A1!

SinceE8/E at constantr is bounded@see Eq.~64!#, it must be
verified whether Eq.~A1! has a solution in every sphere o
constantt and r. The solution will exist when

~E8/E!min<~A81C8!/~A1C!<~E8/E!max. ~A2!

Since (E8/E)min52(E8/E)max, Eq. ~A2! is equivalent to

~A81C8!2/~A1C!2<~E8/E!extreme
2

5
1

S2
~P821Q821S82!. ~A3!

We have

A1C5
1

2S
~11P21Q21S2!

A81C85
S8

2S2
~S22P22Q221!1

1

S
~PP81QQ8!.

~A4!

Substituted in Eq.~A3!, this leads to

4S2S82~11P21Q2!24SS8~PP81QQ8!

3~S22P22Q221!24S2~PP81QQ8!2

1~P821Q82!~11P21Q21S2!>0. ~A5!

The discriminant of this with respect toS8 is

D5216S2~11P21Q21S2!2

3@~PQ82QP8!21P821Q82#, ~A6!

ss

T
s
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and is always negative unlessP85Q850. This means tha
with (P8,Q8)Þ(0,0), the lhs of Eq.~A5! is strictly positive.
Even whenP85Q850, it is still strictly positive unlessS8
50 as well. However,P85Q85S850 impliesA85C850
andE850 on the whole sphere, and then the dipole com
nent of densityDr50; i.e. on such a sphere the density
spherically symmetric. Hence, apart from the spherica
symmetric subcase, Eq.~A2! is fulfilled, with sharp inequali-
ties in both places. This means that theDr50 hypersurface
intersects every (t5const,r 5const) sphere along a circl
parallel to theE850 circle @see the remark after Eq.~58!#.

APPENDIX B: MATCHING THE SZEKERES METRIC
TO ITSELF

We here lay out the calculations necessary for match
the Szekeres metric across a comoving surface to some
metric, and in particular to another Szekeres metric.

Given a comoving surface,

r S5Z~p,q! ~B1!

and surface coordinates,

j i5~ t,p,q! ~B2!

we calculate the basis vectors in the surface,

ei
m5

]x6
m

]j i
, ~B3!

the 1st fundamental form,

3gi j
15 3gi j

25gmn
6 ei

mej
n , ~B4!

the normal vector,

nm , nmnm51, nmei
m50, ~B5!

and the 2nd fundamental form

Ki j
652nl

6S ]2xl

]j i]j j
1Gmn

l
]xm

]j i

]xn

]j j D . ~B6!

Using GRTensor/GRJunction@12# we find the following
for the intrinsic metric:
08401
-

y

g
her

3gtt521, ~B7!

3gpp5
Zp

2~R82RE8/E!2E21R2~e1 f !

E2~e1 f !
, ~B8!

3gpq5
ZpZq~R82RE8/E!2

~e1 f !
, ~B9!

3gqq5
Zq

2~R82RE8/E!2E21R2~e1 f !

E2~e1 f !
, ~B10!

the surface basis vectors:

ei
t5~1,0,0!, ~B11!

ei
r5~0,Zp ,Zq!, ~B12!

ei
p5~0,1,0!, ~B13!

ei
q5~0,0,1!, ~B14!

the surface normal:

nr52
~R8E2RE8!R

ED
, ~B15!

np5
Zp~R8E2RE8!R

ED
, ~B16!

nq5
Zq~R8E2RE8!R

ED
, ~B17!

where Zp5
]Z

]p
, Zq5

]Z

]q
, ~B18!

D5@R2~e1 f !1~Zp
21Zq

2!~R8E2RE8!2#1/2,

~B19!

and the extrinsic curvature:
Kpt5
@Zp~RṘ82ṘR8!#

D
, ~B20!

Kqt5
@Zq~RṘ82ṘR8!#

D
, ~B21!
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Kpp5
1

2E2~e1 f !D
S2RE~R8E2RE8!~e1 f !Zpp12~R8E2RE8!2~EpE82Ep8E!Zp

312~R8E2RE8!2~EqE82Eq8E!Zp
2Zq

1@2$3ER8RE81RR9E22~E8!2R222E2~R8!22R2E9E%~e1 f !2R f8E~R8E2RE8!#Zp
2

22R~2REp8E2EpR8E2REpE8!~e1 f !Zp22REq~R8E2RE8!~e1 f !Zq22R2~e1 f !2D , ~B22!

Kpq5
1

2E2~e1 f !D
S2RE~R8E2RE8!~e1 f !Zpq12~R8E2RE8!2~EpE82Ep8E!Zp

2Zq12~R8E2RE8!2~EqE82Eq8E!ZpZq
2

1@2$3ER8RE81RR9E22~E8!2R222E2~R8!22R2E9E%~e1 f !2R f8E~R8E2RE8!#ZpZq

22RE~REq82R8Eq!~e1 f !Zp22RE~REp82R8Ep!~e1 f !ZqD , ~B23!

Kqq5
1

2E2~e1 f !D
S2RE~R8E2RE8!~e1 f !Zqq12~R8E2RE8!2~EpE82Ep8E!ZpZq

212~R8E2RE8!2~EqE82Eq8E!Zq
3

1@2$3ER8RE81RR9E22~E8!2R222E2~R8!22R2E9E%~e1 f !2R f8E~R8E2RE8!#Zq
2

22REp~R8E2RE8!~e1 f !Zp22R~2REq8E2EqR8E2REqE8!~e1 f !Zq22R2~e1 f !2D , ~B24!

where all quantities are evaluated onS.

APPENDIX C: THE ACCELERATION OF A GIVEN TANGENT VECTOR

Starting from

aa5kb¹bka5kb]bka1Ga
bgkbkg, ~C1!

the individual acceleration components for a givenka in the Szekeres metric are

at5kb]bkt1G t
rr ~kr !21G t

pp~kp!21G t
qq~kq!2 ~C2!

5kt] tk
t1kr] rk

t1kp]pkt1kq]qkt1S R82
RE8

E D S Ṙ82
ṘE8

E
D 1

e1 f
~kr !21S RṘ

E2 D @~kp!21~kq!2#, ~C3!

ar5kb]bkr12G r
trk

tkr1G r
rr ~kr !212G r

rpkrkp12G r
rqkrkq1G r

pp~kp!21G r
qq~kq!2 ~C4!

5kt] tk
r1kr] rk

r1kp]pkr1kq]qkr1

2S Ṙ82
ṘE8

E
D

S R82
RE8

E D ktkr1F S R82
RE8

E D 8

S R82
RE8

E D 2
f 8

2~e1 f !G ~kr !2

2

2RS Ep8

E
2

E8Ep

E2 D
S R82

RE8

E D krkp2

2RS Eq8

E
2

E8Eq

E2 D
S R82

RE8

E D krkq2
R~e1 f !

E2S R82
RE8

E D @~kp!21~kq!2#, ~C5!

ap5kb]bkp12Gp
tpktkp1Gp

rr ~kr !212Gp
rpkrkp1Gp

pp~kp!212Gp
pqk

pkq1Gp
qq~kq!2 ~C6!
084011-24
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5kt] tk
p1kr] rk

p1kp]pkp1kq]qkp1
2Ṙ

R
ktkp2

S R82
RE8

E D ~EEp82E8Ep!

R~e1 f !
~kr !2

1

2S R82
RE8

E D
R

krkp2
Ep

E
~kp!22

2Eq

E
kpkq1

Ep

E
~kq!2, ~C7!

aq5kb]bkq12Gq
tqktkq1Gq

rr ~kr !212Gq
rqkrkq1Gq

pp~kp!212Gq
pqk

pkq1Gq
qq~kq!2 ~C8!

5kt] tk
q1kr] rk

q1kp]pkq1kq]qkq1
2Ṙ

R
ktkq2

S R82
RE8

E D ~EEq82E8Eq!

R~e1 f !
~kr !2

1

2S R82
RE8

E D
R

krkq1
Eq

E
~kp!22

2Ep

E
kpkq2

Eq

E
~kq!2. ~C9!

For ‘‘radial’’ paths kp505kq, ]pka505]qka these reduce to

at5kt] tk
t1kr] rk

t1S R82
RE8

E D S Ṙ82
ṘE8

E
D 1

~e1 f !
~kr !2, ~C10!

ar5kt] tk
r1kr] rk

r1

2S Ṙ82
ṘE8

E
D

S R82
RE8

E D ktkr1F S R82
RE8

E D 8

S R82
RE8

E D 2
f 8

2~e1 f !G ~kr !2, ~C11!

ap52

S R82
RE8

E D ~EEp82E8Ep!

R~e1 f !
~kr !2, ~C12!

aq52

S R82
RE8

E D ~EEq82E8Eq!

R~e1 f !
~kr !2. ~C13!
Using the ‘‘radial’’ null condition

kt5
jkr

Ae1 f
S R82

RE8

E D ~C14!

the acceleration becomes

at5
j

Ae1 f
H S Ṙ82

ṘE8

E
D ktkr1S R82

RE8

E D kt] tk
rJ

1
j

Ae1 f
H F S R82

RE8

E D 8
2

f 8

2~e1 f ! S R82
RE8

E D G~kr !2

1S R82
RE8

E D kr] rk
r J
08401
1SR82
RE8

E D SṘ82
ṘE8

E
D 1

~e1 f !
~kr !2, ~C15!

ar5kr] rk
r1

j

Ae1 f
H SR82

RE8

E D kr] tk
r12SṘ82

ṘE8

E
D~kr!2J

1F S R82
RE8

E D 8

S R82
RE8

E D 2
f 8

2~e1 f !G ~kr !2, ~C16!

ap52

S R82
RE8

E D ~EEp82E8Ep!

R~e1 f !
~kr !2, ~C17!
1-25



a

l
se

-

-
H

n
tive

ent,

om
H

ula-
ns,

o
in-
e

the
or
n

h
go
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aq52

S R82
RE8

E D ~EEq82E8Eq!

R~e1 f !
~kr !2. ~C18!

While E850 gives the expected LT values, we note th
E(r ,p,q) determines whetherap andaq are zero or not.

In the e511 case, by Eqs.~16!, ~60! and ~62!, the ex-
tremes ofE on a given 2-sphere are located at

pe5P1
P8S

@6A~S8!21~P8!21~Q8!22S8#
~C19!

qe5Q1
Q8S

@6A~S8!21~P8!21~Q8!22S8#
~C20!

and it is easily verified thatap505aq in these two antipoda
directions. It follows that initially radial geodesics in the
directions remain radial ifpe andqe are constant withr. For
example, if pe505qe , this would require arbitrary func
tions satisfying

P8

P
5

2S8S

S22P22Q2
5

Q8

Q
~C21!

or P50,
Q8

Q
5

2S8S

S22Q2
, when P850 ~C22!

or
P8

P
5

2S8S

S22P2
, Q50, when Q850 ~C23!

or P50, Q50, when P850 and Q850.
~C24!

APPENDIX D: OTHER FEATURES OF THE AH

1. The FLRW case

The dust FLRW limit isM5M0r 3, f 52kr2, a50, R
5rS(t), and theR52M locus is given by

S~ tAH!52M0r 2. ~D1!

In the collapse phase of ak511 model, the time of the
future AH is

coshAH5122r 2 ~D2!

→ tAH5M0@p1arccos~2r 221!12rA12r 2# ~D3!

which has slope

S dt

dr D
AH

52
4M0r 2

A12r 2
~D4!

while the light rays have slopes
08401
t

S dt

dr D
n

56
S

A12r 2
56

2M0r 2

A12r 2
. ~D5!

Clearly the future AH is incoming timelike. The result ex
tends to allk values, and the converse holds for the past A
in the expansion phase.

2. Behavior near the bang or crunch

Consider Eq.~194! for the locus of the future AH in a
collapsing elliptic region,f ,0, p,h<2p, in terms of pa-
rameterh. Near the crunch,h̄52p2h→0, we find

05F12A ~2 f !

~11 f !S 2

h̄
D G

3H ~2 f !3/2a8

M S 4

h̄3D 2
f 8

f S 12p

h̄3 D 1
M 8

M S 8p

h̄3 D J
1FA ~2 f !

~11 f !S 2

h̄
D G E8

E
. ~D6!

As noted previously, whenE850, the solution makes the
first bracket zero,h̄'2A2 f →0. ~Even in this case, where
we know R52M is the AH, the fact thatR8 diverges atR
50 means we must multiply through byh̄ to make the rhs
zero there.! Notice too that the no shell crossing conditio
~126! ensures the second bracket is generically non-nega
whereM 8.0 and non-positive whereM 8,0. Assuming we
are not near an origin, 0,M,`, it is clear that, even iff
→0, the last two terms in this second bracket are diverg
with the middle one dominant, making theE8 term negli-
gible. Thush̄'2A2 f is still the solution in the limit. How-
ever Eq. ~12! in the h̄'2A2 f →0 limit shows that the
time from AH to crunch goes to

b2tAH→ M

~2 f !3/2

h̄3

6
→ 4M

3
~D7!

where the crunch timeb(r ) is defined in Eq.~128!. There-
fore the future AH does not intersect the crunch away fr
an origin. The result is just the time reverse for the past A
near the bang in an expanding region, and a similar calc
tion applies for hyperbolic or extended parabolic regio
giving the same result.

An f 50 locus is where an interior elliptic region joins t
an exterior hyperbolic or parabolic region. The transition
volves the lifetime of the worldlines diverging, so either th
crunch goes to the infinite future, or the bang goes to
infinite past. Since there is only one AH in a hyperbolic
parabolic region, one of the two AH loci in the elliptic regio
also exits to infinity beforef 50 is reached.

A third possibility wheref is only asymptotically zero~the
asymptotically flat case! is that both the bang and the crunc
diverge to the infinite past and future, and the two AHs
with them.
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3. Behavior near an origin

Consider Eq.~194! again. Near a regular origin, along
constant t or constant h surface ~see Sec. IV!, M
'm(2 f )3/2, E'n(2 f )n/2 for some positive constantsm and
n, and f→0, so that

05F11A2 f
sinh

~12cosh!G
3H 2

a8

m S sinh

~12cosh!2D 1
f 8

2 f J
2FA2 f

sinh

~12cosh!G n f8

2 f
. ~D8!

We divide through byf 8 and defineX52A2 f @sinh/(1
2cosh)# which is positive forh.p, giving
iv

c.

s
3

se
rio

08401
05@12X#H 2
a8

m f 8
S sinh

~12cosh!2D
1

1

2 f
1

X

12X

n

2 f J . ~D9!

Thougha8 andM 8 always have opposite signs,f 8 may have
either sign in an elliptic region, but in general we do n
expect terms to cancel in the curly brackets. Thus, whethe
not the a8 term diverges, we must haveX→1, i.e. sinh
→0 so that

h̄52p2h→2A2 f . ~D10!

Unlike the previous case, though,M→0 ensures the AH
intersects the crunch here,

b2tAH→m
h̄3

6
→0. ~D11!

As always, the time reverse applies in an expand
phase, and the hyperbolic and parabolic cases give the s
result.
,
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