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You cannot get through Szekeres wormholes: Regularity, topology, and causality
in quasispherical Szekeres models
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The spherically symmetric dust model of Leitnaiand Tolman can describe wormholes, but the causal
communication between the two asymptotic regions through the neck is even less than in the vacuum
(Schwarzschild-Kruskal-Szekejesase. We investigate the anisotropic generalization of the wormhole topol-
ogy in the Szekeres model. The functi&(r,p,q) describes the deviation from spherical symmetry,iE
#0, but this requires the mass to be increasing with radidd,>0, i.e. nonzero density. We investigate the
geometrical relations between the mass dipole and the loci of the apparent horizon and shell crossings. We
present the various conditions that ensure physically reasonable quasispherical models, including a regular
origin, regular maxima and minima in the spatial sections, and the absence of shell crossings. We show that
physically reasonable values &fE# 0 cannot compensate for the effectsspfl >0 in any direction, so that
communication through the neck is still worse than in the vacuum. We also show that a handle topology cannot
be created by identifying hypersufaces in the two asymptotic regions on either side of a wormhole, unless a
surface layer is allowed at the junction. This impossibility includes the Schwarzschild-Kruskal-Szekeres case.

DOI: 10.1103/PhysRevD.66.084011 PACS nuni®er04.20.Gz, 04.40.Nr, 04.70.Bw
[. INTRODUCTION The subjects studied in this paper in some detail are the
following:

The Szekeres metric is a dust model, which has no Killing (i) The dipole-like variation of mass-density; the locus of
vectors[1], but contains the Lemtre-Tolman(LT) model as its poles and of the equator, and the images of the equator
the spherically symmetric special case, which itself containginder the Riemann projectiofij) conditions for regularity
the Schwarzschild-Kruskal-Szekerg®,3] manifold as the of the geometry at the origiR=0; (iii) intersections of the
vacuum case. As with the LT model, it is written in synchro- shell crossings with the surfaces of constant), and con-
nous coordinates, and the particles of dust are comoving. Thaitions for avoidance of shell crossing$y) conditions for
constant time slices are foliated by 2-surfaces of constantegular maxima and minimdy) conditions for a handle to-
coordinater, which have 2-metrics of spheres, planes orpology of at= const space, and the impossibility of preserv-
pseudospheres, depending on the value of parareet8ee ing this topology during evolution of the modeli) appar-

[4] for a review of its known properties. ent horizons (AH)—their shape, intersections with the
Despite the inhomogeneity of the model, and the lack ofsurfaces of constant,f), relations between these intersec-
Killing vectors, any surface of constant coordinate “radius” tions and those of shell crossings, and with the dipole equa-

r in the e=+1 case can be matched onto a Schwarzschildor, location of an AH with respect to tHiR=2M hypersur-
vacuum metrid5,6], and any surface of constant tinias face, the intersection of an AH with a neckvii) the
conformally flat[7]. impossibility of sending a light ray through the neck so that

We here investigate the topological and causal propertieg would emerge from under the AH on the other side; and
of the quasispherical case=+1, subject to the require- (viii) numerical examples of light paths traversing the neck
ments for a physically reasonable model. Reasonability reand of those going in its vicinity.
quirements include well behaved metric components, nondi-
vergent density and curvature, regular spherical origins,
regular maxima and minima in the spatial sections, and pro-
hibition of shell crossings. Choosing well behaved coordi- The LT-type Szekeres metr[8] is*
nates also assists in avoiding the confusion of coordinate
singularities.

Studying such models of low symmetry is important, so 402+ da?
that one can check which properties of spherically symmetric  §2— _ g2+ dr2+ RzM
investigations of cosmology and gravitational collapse are (e+f) E2
preserved, and which are not.

Il. THE SZEKERES METRIC

E’ 2
R'—RE)
1)

1The results presented in R¢8] contain a few misleading typos
*Email address: cwh@maths.uct.ac.za that were corrected in Ref9]. The notation used here does not
"Email address: akr@camk.edu.pl follow the traditional one.
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where '=4d/dr, e=+1,0 andf=1f(r)=—€ is an arbitrary
function ofr.

The functionE is given by

E(r,p,0)=A(p’+0*)+2B,p+2B,q+C, (2
where functionsA=A(r), B;=B;(r), B,=B,(r), andC
=C(r) satisfy the relation
4(AC—B3-B2)=¢, €=0,+1, 3

but are otherwise arbitrary.

The functionR=R(t,r) satisfies the Friedmann equation
for dust

2M+f
R )

R2= (4)

where =3/dt andM =M (r) is another arbitrary function of
coordinate “radius,’r. It follows that the acceleration & is
always negative

-M

R2

5

HereM(r) plays the role of an effective gravitational mass
for particles at comoving “radiust. Fore=+1, itis simply
the total gravitational mass within the sphere of radiug/e
assumeM =0 andR=0. In Eq.(4) f(r) represents twice the

energy per unit mass of the particles in the shells of matter at
constantr, but in the metriq1) it also determines the geom- €

etry of the spatial sectiorts=const(cf. [10]). The evolution
of R depends on the value &fit can be hyperbolicf >0,

M
R=—(coshy—1), (6)
_ _¥o(t-a)
(sinhy— ) =——— @
parabolic,f =0,
2
v
R=M > (8)
7 o(t—a)
5 M ©
. gM(t_a)Z 1/3
ie. R:(T , (10
or elliptic, f<O0,
_ M
R—m(l—cosn), (11
—f 3/2 _
(n_sinn)zw (12

M )
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wherea=a(r) is the last arbitrary function, giving the local
time of the big bang or cruncR=0 ando==*=1 permits
time reversal. More correctly, the three types of evolution
hold for f/M?®> = <0, sincef=0 at a spherical type ori-
gin for all 3 evolution types. The behavior B{t,r) is iden-
tical to that in the LT model, and is unaffected bg,q)
variations.

A more meaningful way to writ& is

(N

S
whereS=S(r), P=P(r), andQ=Q(r) are arbitrary func-
tions, and

2
+e€

S

p—P
E(r,p,q)=§

S SNCE)

Al g _ P
25 Tto2se
— P2+ 2+ SZ
B =—Q, = L. (14)
2728 2S
The metric component

(dp*+dg?)
e 1o

is actually the unit sphere, plane, pseudosphere in Riemann
projection:

1 (p_sp):cot(g)coidﬂ,
(q—s Q) :Cot( g) sin( ), (16)
. C (2 cos
(q—SQ) :(%)Siw), (17)
1 (p_SP)=cotI—<g)c05{¢),
(q—SQ) :cotr<g)sin(¢)- (18)

It seems reasonable to expe&kt0, but it is not obviously
impossible forSto reach or pass through zero.

The factore determines whether thp-q 2-surfaces are
spherical €=+1), pseudosphericalE —1), or planar €
=0). In other words, it determines how the constant
2-surfaces foliate the 3D spatial sections of constaiihe
function E determines how the coordinateg, ) map onto
the unit 2-spheréplane, pseudospherat each value of. At
eachr these 2-surfaces are multiplied by the areal “radius”
R=R(t,r) that evolves with time. Thus thep-q 3-surfaces
are constructed out of a sequence of 2-dimensional spheres
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N

FIG. 1. The Riemann projection fromp(¢) to (p,q) coordi-

nates for spheres and two-sheeted hyperboloids. The diagrams show

only the ¢=0,7 section, i.e. thej=Q section.

(pseudospheres, planethat are not concentric, since the
metric componeng),, depends omp andq as well ag andt.

The (p,q)-coordinates in the cases= +1 ande=0 have
the range ©,+x). In the casee= —1, the parametriza-
tion (13) does not cover the subcasks-0 andC=0 [these
subcases cannot occur wie=0 because of Eq3)]. Com-
ing back to Eq.(2), we see that, foe=—1 andA#0, E is
zero when

(p+B1/A)%+(q+B,/A)?>=1/(4A)?,

E is positive forp andq outside this circle, and is negative
for p andq inside it. Figure 1 suggests that wigé+ — 1, we
should rather take-{ E) as the metric function so thatand

g have finite rather than semi-infinite ranges. However, both
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2(M'—3ME'/E)

8mp=Gy= : 20
P T (R —RE/E)
4, 8-
K=R*"R 5. 5= (877)2[5/32— 3PPt 3P2}’ 21)
where
— 6M
SWP—E (22

is the mean density within “radiust. For all p and p we
have =0, but assumptions of positive mass and density
requirep=0 andp=0. Clearly there are density and curva-
ture singularities aR=0—the bang and/or crunch—and at
"=RE'/E, M'#3ME’'/E—shell crossings. Additionally,
p but not K passes through zero whele'/E exceeds
M'/3M.
The matter flowu®= gy, with projection tensorh,g,
=g,p5tUyUg, has the following properties, which are al-
most trivial to calculate with GRTensé1 2]:

(R'—3RE'/E+2R'R/R)

theE>0 andE<O0 regions are Szekeres spacetimes because

they are mapped one onto another by

(p,@)=(p",q")/(p'?+0’?), (19

the roles ofA andC being interchanged after the transforma-
tion.

If A#0=C, then a nonzer€ is restored by a translation
in the (p,q) plane. If A=0, then the metric of the

(p,q)-surface is brought back to the standard Szekeres form

with A#0+#C by a Haantjes transformatiofa conformal
symmetry transformation of a flat space, $&#&] for a de-
scription in the (p,q) surface, which also restores the ap-
propriate form ofg,, .

The surface area of d< const,r =const) surface is finite
only in thee=+1 case, where it equals#R?. In the other
two cases, it is infinite.

The 6 arbitrary function§, M, a, P, Q andSrepresent 5

physical freedoms to control the inhomogeneity, plus a coor-

dinate freedom to rescate

0=V, u*= , (23)
(R"—RE'/E)
a*=ufVau*=0, (24)
a ay @ a
7“p=9""(VyUa) T U) — 7 hj
(R —R'RIR) _
=—————diag0,2—1,—1), (25)
3(R'—RE'/E)
a)aﬁ:V[BUa]"r‘U[Baa]:O, (26)
Eaﬁzcayﬁrsuyuﬁ
M(R’—RM’/3M)d_ §0-2.1.1) @
= Ia l_ 1 t 1
R3(R'—RE'/E)
1 v )
Hap=7 €ayurC"” st u’=0. (28)

Note that the relation between the active gravitational
massM and the “sum-of-rest-masses¥! is the same in the
=+ 1 Szekeres model as in the LT model:

The density and Kretschmann scalar are functions of all M =M'IVI+T
four coordinates '
The sum of the rest masses contained inside the sphere of

coordinate radius at the timet is defined by
’There are only two independent curvature invariants in the
MZJPV|93|d3X-

Szekeres metric, for which a good choice would Be87p

and C*f°C,, s=48M*{(R'—RM'/3M)*}/{R®(R' —RE'/E)?}
where g5 is the determinant of the metric of the=const
hypersurface, and the integral is taken with respect to the

(29

(30

= (4/3)(8mp)(87p—8mp)>—a pure Ricci invariant and a pure
Weyl invariant. Though less tidy, the# andK used above will
also suffice.
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variablesp and q from —« to +o°, and with respect tao
from rg at the origin to the current value We have

E
V]93] = —=(RIE)XR/IE)’.

N (31
Consequently
1 +oo +oo
M:Eﬁw dqfﬁx dp
r E
xfrodx \/m(M/E?’)’ (t,p,q,X). (32

The term containind:’ is integrated by parts with respect to
X in order to move the priméwhich, in the integrand, means

dl 9x) away fromE to functions that do not depend prand
g- The result is

M:_

3
2

M M
\/m(r)_ \/m(ro)‘|

1
X_
47T —

1 +o +o r s
+ %Lm dqfﬁm dpfrode
3Mf’ M’

x J—
2(1+1)%2  1+f

+ oo
dqf dpE~?2

. (33

We note that
+ 00 + 00
J dg f dpE %=4mx (34)

(this is the surface area of a unit spher@nd so

M )— M )
\/1+f(Ir \/1+f(r°

+1fr 3MF’ M’
20,

- dx
2(1+£)%2  J1+f

_3
M=3

(39

From here, we obtain the same relation that holds in the LT

model, Eq.(29).

Note that this result holds only in the=+1 Szekeres
model (the quasispherical oneWith e=0 or e=—1, the
total surface area of theg(q)-surface is infinite, and s@A
cannot be defined.

A. Special cases and limits

The Lematre-Tolman(LT) model is the spherically sym-

metric special case=+1, E’'=0.
The vacuum case idM’'—3ME’'/E)=0 which givesM
«E3, and this requires
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M'=0=S'=P'=Q'=E’ (36)
and any region over which this holds is the Schwarzschild
metric in LT coordinate$10], with massM. (See[13] for the

full transformation in the general cage.

In the null limit, f—o, in which the “dust” particles
move at light speefl14,15, the metric becomes a pure ra-
diation Robinson-Trautman metric of Petrov type D, as given
in Exact Solutiong16], equation(24.60 with (24.62.2 The
Kinnersley rocke{17] is the e= +1 case of this null limit,
which is actually more general than the axially symmetric
form given in[14].

The KS-type Szekeres metric was showr{1d] to be a
special case of the above LT-type metric, under a suitable
limit.

B. Basic physical restrictions

(i) For a metric of Lorentzian signature-(+ + +), we
require

e+f=0 (37
with equality only occurring whereR’ —RE'/E)?/(e+ )
>0. Clearly, pseudospherical foliations=—1, requiref
=1, and so are only possible for hyperbolic spatial sections,
f>0. Similarly, planar foliationse= 0, are only possible for
parabolic or hyperbolic spatial section§=0, whereas
spherical foliations are possible for di=—1.

(i) We obviously choose the areal radiR$o be positive,

R=0 (38

(R=0 is either an origin, or the bang or crunch. In no case is
a continuation to negativl possible)

(iii) The massM (r) must be positive, so that any vacuum
exterior has positive Schwarzschild mass,

M=0. (39

(iv) We require the metric to be nondegenerate and nons-
ingular, except at the bang or crunch. Sindg{+dqg?)/E?
maps to the unit sphere, plane or pseudosphg&te)|+0 is
needed for a sensible mapping, andse0 is a reasonable
choice. In the cases=0 or —1, E necessarily goes to zero
at certain p,q) values where the mapping is badly behaved.
For a well behaved coordinate, we do need to specify

(R'—RE'/E)? 0 40
T ern % 40

i.e. (e+f)>0 exceptwhere(R'—RE'/E)?=0. (41)

In Lematre-Tolman models[18,19 (E'=0, e=1), the
equality (1+f)=0=(R’)? can occur in closed models
where the areal radius on a spatial section is at a maximum,
or in wormhole models where the areal radius is minimum,

SReferencd 15] corrected Ref[14]'s mistaken claim that the null
limit of Szekeres was a new metric.
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R’(t,r,) =0,Vt. These can only occur at constarsnd must ~ Since, withe= +1, this is never negative, the equatién

minima again later. ationg, and in general two. The two exceptional situations
(v) The density must be positive, and the Kretschmanrr® WhenA=0. They are as follows: _
scalar must be finite, which adds (|) S'=0. ThenE’'=0 has a fam”y of solutions anyway,

but the solutions define a straight line in thp,q)-plane.
either M’ —3ME'/E=0 and R'—RE'/E=0 (42  This will be dealt with belowsee after Eq(56)].
(i) S"=P'=Q’'=0. ThenE'=0 at this particular value
or M'—3ME'/JE<0 and R —RE/E<0. (43 of r, and we see from Eq20) that p will be spherically
symmetric there[In this case, the positions of the great
circle from Eq.(55) and of the poles from Eq64) are un-

If (R"—RE'/E) passes through 0 anywhere other than adeterminecﬂ.

regular extremum, we have a shell crossing, where an inner : : .
; >
shell of matter passes through an outer shell, and the densit al\lﬁ?segfé'q 0, Ap will change sign at the following two

diverges and goes negative. This phenomenon is probably
due to the spacetime coordinates being attached to the shells
of matter, and is not physically realistic. Nevertheless, we S VL 3
would like to avoid models in which such unphysical behav- 9127 Q+F §(_Q =VPEHQ  +eS9). (47)
ior occurs, so it is useful to find restrictions on the arbitrary
functions that prevent it.

(vi) The various arbitrary functions should have sufficient
continuity—C* and piecewiseC3—except possibly at a
spherical origin.

For everyq such thatg; <g<g, there will be two values of
p (and one value op wheng=gq; or q=q,) such thatgE’
=0. Those values gp are

Ill. THE SIGNIFICANCE OF E

A. Properties of E(r,p,q)
Note that the Szekeres metric is covariant with the trans- S\/ (q—Q Q’ ’
+ _

P/2+Ql2

5 +e. (49

formationsr =g(r), whereg is an arbitrary function. Hence, S ?
if R"<0 in the neighborhood of some value=r,, we can

takeg=1/r and obtaindR/dr>0. ThereforeR">0 can al- e regions wher&’ is positive and negative depend on the
ways be assumed to hold in some neighborhood of rany sign ofS'. If S'>0, thenE’>0 for p<p, and forp>p,, if
=Tro. However, ifR" changes sign somewhere, then this is ag' . thenE’ >0 for p,<p<p,. E'=0 for p=p, andp
coordinate-independent property. =p,, but note thap, andp, are members of a continuous

As seen from Eq(13), with e=+1, E must be always ¢y |abeled byg. All the values ofp andq from Egs.(47)
nonzero. Since the sign & is not defined by the metric, we 5 (48) lie on the circle

can assume th&>0.

CanE’ change sign? S\ 12 S\ 12
E'=5S{-[(p—P)’+(a- QYIS +¢} S
P72+ 12
1 , ) =3 —,zQ +e. (49
~5l(P=P)P"+(a-Q)Q"]. (44 s
The discriminant of this with respect t@ ¢ P) is The center of this circle is in the point
2 a—ar—2S ( )—(P >0 Q’S) (50)
=g| g (07 25(@-QQ P.q g Qg
P24 eS2 (45 and the radius of this circle is
€ .
P/2+ Q12
The discriminant ofA,, with respect to ¢—Q) is Ler—o=S TJF €. (51)
12
Aq=4—(P’2+Q’2+eS’2) (46) The situation on the,q)-plane whenS'>0 is shown in
s° ' Fig. 2.
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E'>0 E'>0 E'>0 Deltap<0
q2 /\

E>0 Ej E'>0 Deltap>0
af K
T E'>0 E'>0 E'>0 Deltap<0
q

pi p2
p—

FIG. 2. WhenS'>0, E’'<0 inside the circle defined by Eq.
(49) and E’'>0 outside. Note that thep(q) plane is a Riemann
projection of a sphere, and on the sphere “inside” and “outside”
are topologically equivalent.

B. Properties of E(r, 8, ¢)

We consider the variation d&(r,p,q) around the spheres
of constantt andr.

Settinge=+1 and applying the transformatiaii6) to
Eqg. (13) and to its derivative gives

E——S 52
~1—cosf’ (52)
S’'cosf+sing(P’'cosg+Q’sing)
=- , (53
1—cosé
,_ S'cosf+sind(P"cos¢+Q"sing)
B (1—cosb)
i S\ [ S cosh+sind(P’'cosgp+Q’'sing)
s (1—cos#)
SH)2+(P")2+(Q")?
+() (P") (Q)_ (54)
S
The locuse’=0 is
S’cosf+ P’sinfcosp+Q’'sinfsing=0. (55)

Writing z=cos6, y=sin§cos¢, x=sinfsin ¢, clearly puts
(x,y,2) on a unit sphere through (0,0,0), and E§5) be-
comesS’'z+ P’'x+Q'y=0 which is the equation of an arbi-

PHYSICAL REVIEW D 66, 084011 (2002

defined byE’'=0 passes through the pole of Riemann pro-
jection. In this case, the image of the cird#=0 on the
(p,q) plane is a straight line passing througtp,q)
=(P,Q), as indeed follows from Ed44). The sign ofE’ is
different on each side of the straight line. Compare also with
Figs. 4 and 5.

From Egs.(53) and(52) we find

E/

E

S’cosf+sinf(P’cosgp+Q’sing)
S

(57)
thus

!

£ const= S'z+P’'x+Q’'y=SXconst

(58)

which is a plane parallel to thHe’ =0 plane, implying that all
loci E'/E=const are small circles parallel to tB¢ =0 great
circle. This will be seen to apply to shell crossings and ap-
parent horizons.

The location of the extrema &'/E are found as follows:

a(E’/E)_sina(P’sinqb—Q’cos¢) o

trary plane through (0,0,0). Such planes all intersect the unit

sphere along great circles, theref@é=0 is a great circle,
with locus

-g
P’'cos¢p+Q’sing

tano= (56)

The plane has unit normal

(P",Q",S)N(P)?+(Q")*+(S)%

7% S (59
tan¢ Q CoS¢ P 1
= T = =6/, €=%1,
P’ P2
(60)
a(E’/E)_S’sine—P’cosecos¢—Q’cosﬁsin¢_
Fr S =0
(61)
P’Ccos¢e+ Q'sin e VIP)2+(Q")?
=tanf.= =€
s S
(62
cos6 s 1 (63
= = ==*1.
Ve P @Q)E
The extreme value is then
E/ S/ 2+ P/ 2+ "2
(E) __ S (S) (R

extreme

Now it is easy to understand the meaning of the special

caseS’' =0 mentioned after Eq46). As seen from Eq(56),
with S'=0 we haved=0, which means that the great circle

Since (SiNG,COS¢., SiNB.Sing,, C0Sh,) = (P, Q’, S)/
JV(P)?+(Q")?+(S')?, Egq. (55 shows that the extreme
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values ofE'/E are poles to the great circles Bf =0. The
latter can now be written in parametric form as

cosf= —cosy sinb,, (65)

cosf.tan¢.+tany
cosf.—tang tany’

tang= (66)

PHYSICAL REVIEW D 66, 084011 (2002

and so the density is minimum wheEg/E is maximum.

The density, Eq(20), can be decomposed into a spherical
part and a dipole-like part, as noted by Szek¢2&§ and de
Souzd 21] (see also p. 30 in Ref4]). Rewriting de Souza’s
result into our notation of Eq$l) and(2), we obtain

Clearly E'/E has a dipole variation around each constant

r sphere, changing sign when we go over to the anitipodal

point: (6,¢)— (m— 0, + ). Writing

E’ S'cosf+sinfd(P’'cosp+Q’sin
(R’—RE>=<R’+R (s $rQsing)

(67)

we see thaRE'/E is the correction to the radial separation

R’ of neighboring constant shells, due to their not being
concentric. In particulaRS'/S is the forward ¢#=0) dis-
placement, an®RP'/S andRQ’/S are the two sideways dis-
placements §=w/2, $=0) and @=w/2, p=ml2). The
shortest “radial” distance is wherE'/E is maximum.

It will be shown in Sec. VB that, wher®' >0, E'/E
<M’'/(3M) and E'/E<R’/R are required to avoid shell
crossings, and also in E¢L30) thatR'/R>M'/3M. These
inequalities, together wittM’>0, imply that the density
given by Eq.(20), as a function ok=E'/E,

2M'" 1-3Mx/M’

= 68
P"RR’ 1-RWR' (8
has a negative derivative by
R/R'=3M/M'" 2M’
pix= 0, (69)

" (1-R¥R')2 R%R

p=pstAp, (70)
wherepg is the spherical part,
2M’(A+C)—-6M(A'+C")
ps= 2rpo’ ’ "N’ (71)
RIR'(A+C)—R(A’+C')]
andAp is the dipole-like part,
A'+C'—-(A+C)E'/E
Ap=
R'—RE'/E
6MR'—2M’'R
(72)

8 RIR (A+C)—R(A’+C")]

The dipole-like part changes sign on the surface where
E'/E=(A’"+C")/(A+C), but lacks the antisymmetry prop-
erty: Ap(—E'/E)# — Ap(E'/E). It can be verifiedsee Ap-
pendix A that theAp=0 hypersurface does intersect every
(t=constr =const) sphere along a circle, unleBs=Q’
=S'=0 (=A'"=C"), in which case the dipole component of
density is simply zero. The surfackp=0 in a t=const
space is comoving, i.e. its definition does not depend.on
Also, its intersection with any sphere of constante’/E
=(A"+C")/(A+C)=const, is a circle parallel to the great
circle E'=0, as noted after Eq58). It will coincide with
the E'=0 circle in those points wherA’+C’'=0 (if they
exist). The dipole-like component will be antisymmetric with
respect toE'/E only at such values of, where A+ C)R
=0=(A"+C")R’, but such values may exist only at the
center,R=0, becaus@+C=0 contradicts Eq(3).

In the maximum €,=—1) and minimum €,=1) directions,

n

S(S'S'+P"P'+Q"Q") —[(S')*+(P")*+(Q")?][2S' + &(S)*+(P')*+(Q")’]

(73

max/min_

while around theE’ =0 circle

o (S77+(P)?+(Q)?

SIS — &(S)?+(P")*+(Q)?]

S'(P'cos¢+Q'sing)—S'(P” cos¢+ Q" sing)

(74)

S B V(P"cos¢+Q’'sing)?+(S')?— (P'cos¢p+Q'sing)

084011-7
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IV. REGULAR ORIGINS

Whene=+1, R=0 occurs at an origin of spherical co- M
ordinates, e.gR(t,0)=0,Vt, where the 2-spheres have no

size. Similarly,R(t,0)=0=R(t,0), etc.V t. There will be a
second origin, atr=rqg say, in any closed, regulaf,<0
model. Thus, by Eqgs(1l) and (6) and their combinations
with Egs.(4) and(5), for each constang,

2

lim—=0.

li M 0
Im-—_—=0,
|’—>OM

limf=0,
r—0 f

r—0

(79

PHYSICAL REVIEW D 66, 084011 (2002

,R M? 3Mf’\ ,
= 1- sinp(n—sinn)(1l—cosy)
(—1)3 2M'f
. M?2 Mf’ N 2
———|(1—cos
ENEEYE; K
M?Za’
- (_f)Twsm 77(1— COS77), (81)

Egs. (77) and (78) above make the first term zero and the
second nonzero at an origin for alkOp<<2, so we only

The type of time evolution at the origin must be the sameneed

as its neighborhood, i.e., along a constaslice away from
the bang or crunch, by Eql2) and(7),

f|¥4(t—a)
—<oo

0<lim (76)
r—0 M
Clearly, we needV—0, f—0 and
|f|3/2
0<lim——<oo, (77
r—0
Using I'Hopital’s rule, this gives
. 3Mf’
lim——=1. (78
I’*)OZM ’f

The density and Kretschmann scalar must be well be-
haved. We do not consider a vacuum region of finite size at

the origin, as that is just Minkowski spadd,= 0, and we do

- Ma’
I|m—,<oo.
r—0

(82

Lastly, the metric must be well behaved,Eshould have
no unusual behavior, such 8s-0, that would compromise a
valid mapping of ¢ p>+dg?)/E? to the unit sphere. Also, to
ensure that the rate of change of proper radius with respect to
areal radius is that of an origim,, /(R’)? should be finite

not consider the obscure case of a single vacuum point at the

origin. Becausep and;in Eqg. (21) evolve differently, we
also need

- 6M - 2M7
0<Ilim—-=lim >
r—0 rﬂOR R,

< 0

~ 3R'M
=lim——=1 (79
r—o RM’
and

~ 2(M'—=3ME'/E)
0<lim
r—0 R%(R'—RE'/E)

~ 2M’ (1-3ME'/M’E)
=lim <o, (80
r~oR°R’" (1-RE'/R'E)

(R'"—RE'/E)?
<lm—————-< (83
r—o (1+)(R")
_ 3ME’ 2
=0<lm|1l1-—| <x
r—0 M,E
~ |ME’
=-—w<|im|——| <» (84)
r—o/M'E
[ME'| 1
and lim——I[# =, (85)
r—0 ! 3

where the last of E(.79) has been used. This should hold for
all (p,q), i.e. all (8,¢). Thus Eq.(57) gives

! !

—oo=<|im <o

r—0

—oo<|im
r—0

<oo,
M'S

M’S

!
—oo=<|im <o

r—0

M's| (89

all three limits being different from 1/3.
All of the above suggest that, near an origin,

M~R3 f~R? S~R"

P~R", Q~R", n=0. (87)

but in fact the latter is ensured by the former, and the aniso-

tropic effect of E vanishes at the origin. However, since The conditionE’'/E<M’/3M that will be obtained in the
E'/E is restricted by the conditions for no shell crossings, itnext section implies that near an origin
would be odd if lim_oME'/M'E or lim,_,RE'/R'E were

divergent. Since n<1. (88)
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V. SHELL CROSSINGS

A. Occurrence and position of shell crossings in a surface
of constantt and r

A shell crossing, if it exists, is the locus of zeros of the

function R"—RE'/E. Suppose thaR’'—RE'/E=0 holds
for all r at somet=t,. This leads toc5'=P'=Q'=R’=0.
Since P, Q and S depend only orr, this means they are
constant throughout the spacetime. As seen from @gsnd

(20), the Szekeres metric reduces then to the LT metric, and

so this case need not be considered.

Suppose thaR’'—RE'/E=0 holds for allt at somer
=ry. This is an algebraic equation pnandq whose coeffi-
cients depend ohandr. Taking the coefficients of different
powers ofp and q we find P'=Q’'=S"=R’=0, but this
time these functions vanish only atrq, while R'(t,rg)
will vanish for all t. This will either be a singularitjwhen
M’ (rg)#0] or a neciwhenM'(ry) =0], familiar from the
studies of the LT model, see Refsl0] and [22]. Hence,

PHYSICAL REVIEW D 66, 084011 (2002

_P’2 1(9
Ap= =

R/ !
sl 5=l 5+ Rle-or

1
+(q—Q)Q'—§E(§—E

B 1/9 R’ 2
Aq—4§ §+ﬁ

} (90)

P/2+Q/2+ES/2
SZ

(91)

Thus ER'/R—E’ will have the same sign for alp and q

when A,<0 (because then alsa,<0 for all g). Hence,
ER'/R—E’ has the same sign for gllandq (i.e. there are
no shell crossingsif and only if

P/2+Q12+6872

= =D(r).

(92

R’'—RE'/E#0 except at a shell crossing or at special loca-

tions.

Now R’>0 andR’—RE'/E<O0 cannot hold for alp and
g. This would lead t&e' >ER'/R>0, and we know thaE’
cannot be positive at app andg. Hence, withR’>0, there
must be a region in whiclR’'—RE'/E>0. By a similar
argumentR’<0 andR’—RE'/E>0 cannot hold for allp
and g, so withR'<0, there must be a region in whidr'
—RE'/E<O.

AssumingR’>0, canR’'—RE'/E be positive for allp
andq? Writing

! !

1
ER/R-E'= =

75 [(p—P)?

STR

2 1 S’ R’

+(@-Q)Fl-5eS| 5|
1

+5l(P-PIP'+(a-QQ'], (89

the discriminants of this with respect t@{P) and
—Q) are

Note that where=0, this can fail only at those points where
R"=0.

If R"?/R*=®?, thenA,=0, and soA,=0 at just one
value ofg=qgs. At this value ofq, ER'/R—E'=0 at one
value of p=pgs. In this case, the shell crossing is a single
point in the constantt(r)-surface, i.e. a curve in a space of
constantt and a 2-surface in spacetime.

If R"2/R?><®?, then the locus oER'/R—E’'=0 is in
general a circlga straight line in the special ca&/S=
—R’'/R) in the (p,q) plane. The straight line is just a pro-
jection onto the §,q) plane of a circle on the sphere of
constantt andr, and so is not really any special case.

WhenA >0 (R'?/R?<®?), the two limiting values ofj
at whichA, changes sign are

- _Qri \/P12+Q12+6(S/2_52R/2/R2)
%2 S'/S+R'/R ’

(93

and then for everyg such thatq;<q<gq,, there are two
values ofp (only one ifg=q; or g=q,) such thatER'/R
—E’=0. These are

—-P'= \/—{ %+ E, (4-Q-Q’ 2+ P2+ Q'+ €(S'*~ S°R'?/R?)
Pr2” S/S+R'/R 9
|
The values ofp and g from Egs.(93) and (94) lie on the and with the radiut s given by
circle with the center at
12 P'?+Q'?+e(S'?~ S’R'?/R?%) ©6)

PI
S'/S+R'/R’

— Q’
S'/S+R'/R)’
(95)

(Psc,dscd)=| P Q

(S'IS+R'IR)?

This is in general a different circle from the one defined by
E’'=0. As seen from Eq(89), the shell crossing set inter-
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sects with the surface of constantand r along the line
E'/E=R’/R= const. As noted after Eq58), this line is a
circle that lies in a plane parallel to tli =0 great circle. It
follows immediately that thé&’ =0 and the SC circles can-

not intersect unless they coincide.

B. Conditions for no shell crossings

Szekere$20] obtained a number of regularity conditions
for the e=+1 metric, namely:(i) On any constant time
slice, R(t=constr) is monotonic inr, which allows a trans-
formation to makeR=r andR’=1 on that slice(ii) At an
origin, A, B;, B, andC should beC?, =0, andM ~R? but
we are not sure why he requirdd =0=B;=B,=C’ there.

(i) To keep the density nonsingular,<Q(S')?+(P')?2

+(Q")?)/S*<min((R'/R)?,(M’/3M)?), which is a no shell
crossing condition. We shall improve on the latter below.
Eq. (200 shows that
—3ME'/E) and R’ —RE'/E) must have the same sign. We
now consider the case where both are positive. Whisté (
—3ME'/E)<0 and R'—RE'/E)<0 we reverse the in-

For positive density,

equalities in all the following.

M/

In the case of bothM’'—3ME'/E) and R'—RE'/E)

being zero, this can hold for a particulap,f|) value if
M'/3M=R’'/R, but the latter cannot hold for all time. This

case can only hold for allp,q) if M"=0, E'=0,

which requires all oM’, ', a’, S, P’, Q' to be zero at

somer value.

We consider the inequalityM’'—3ME'/E)=0 and we

R'=0,

argue that it must hold even for the extreme valu&ofE,

Eq. (64), for which we obtain
M" E’
=

M _E| SRR,
3M_ E|_ S r

max

It is obvious that this is sufficient, and also that

M'=0 V r.

We will now consider R’ —RE'/E)>0 for all 3 types of

evolution.

1. Hyperbolic evolution, &0
For hyperbolic models, we can write

’ ’ "3 f3/2a/
E:V(1_¢4)+T §¢4_1)_ v %s
where
_sinhyp(sinhn—7) _ sinhp
(coshp—1)2 ® (coshy—1)2

At early times,

n—0,

M
R-— 777 +0(7%—0,

97)

(99)

(99

. (100

(101

(102

PHYSICAL REVIEW D 66, 084011 (2002

4
$s——+0(5) =+, (103
Y
2 O(7n? 2 10
$a—3+0(7")— 3, (104
we find ¢5 dominates and
R’ f3/2ar
so that R’ —RE'/E)>0 gives
a’'<0 V. (106
Similarly, at late times,
n—%°, R—o%, ¢s—0, ¢4—1, (107
we find ¢5 vanishes and
R 1f’ 108
R2T (108
so that
R_E 0 r ,O 109
R E)S T E (109

Following the above analysis oM’ —3ME’'/E)=0 we ob-
tain

f"  J(S)Z+(P')?+(Q")?
E> S Yr,

(110

which obviously implies

f’>0 V r. (111)

Again, since we already hawd’'=0, it is clear that this is
sufficient, and that

R’ >0. (112

2. Parabolic evolution, £0

The easiest way to obtain the conditions for this cdse,
=0, f'#0, is to putz=»5/\f>0 in the hyperbolic case,
and take the limitf—0, »—0. All terms involving f'/f
cancel and we retain exactly the same conditions, viz. Egs.
(106) and (111) [and of course97)]. Naturally, Eq.(110
ceases to impose any limit.

3. Elliptic evolution, f<0

For elliptic models, we can write

! ! !

R 3 (_f)3/2a/
E:V(l_¢l)+T(§¢l_l)_T¢2'
(113

where
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YOU CANNOT GET THROUGH SZEKERES WORMHOLES. . PHYSICAL REVIEW D 66, 084011 (2002

sin —sin sin 27M
- 7(7 77)’ - 7 (114 b—at+ — (129
(1-cosn)? (1-cosn)? (—f)3?
At early times, we can re-write Eq(113) as
—0, 11 R M’ b’ (2
7 (115 RM ., 5 (2,
R 3M (b—-a)\3
M 7 4
R—>(_—f)7+0(7] )—0, (116) (—a’) 2
(b——a) §—¢1+27T¢2 . (129)
¢2_>ig+o(,7)_)+oo, (117 The derivative of (2/3 ¢,) is (2y—3siny+ycospi(L
i —cosz)?, and the third derivative of the numerator of the

latter is nsin . It follows that (2/3- ¢,)=0 and declines
monotonically from+cc to 0 as» goes from 27 to 0. Since
(2/3— ¢p1+2m¢p,) is the mirror image inp== of (2/3

—¢4), we have that

2 , 2
$1—3+0(7 )— 3 (118

we find ¢, dominates and

/ RW 130
’ 3247 _—
R fo<a 119 R >3|V| ! ( )
EH_ M ®2, (119
so that Eq.(97) guarantees that for each giventhe maxi-
so thatR(R'/R—E'/E)>0 gives mum of E'/E as (p,q) are varied is no more than the mini-
, mum of R’/R as » varies.
a’'<0 V. (120 Note that although Ec(126) implies
Similarly, at late times, ' M’ (130
_<_’
— 21, (121) 2f 3M
M (29— )2 a condition such as E¢110) is not needed in this case. As an
o MJFO[(ZW_ 7)41—0, (129  indication of what the approximate magnitudeRSfR|pmin,
(=1 2 at the moment of maximum expansion along any given
worldline,
b= —4(2m—7)*+O[(2m— 7)]——=, (123
R M" f’
b1 —8ml(2m— 7)3+ 23+ O[ (27— 7)]— —o, (124 R-M T (132
we find so it would be possible to havé'/E|,ax close toR'/R|nmin
) ) , around the time of maximum expansion. The no shell cross-
R M| 8= ) 3 f_( 12m ) ing conditions are summarized in Table I.
R Mi@r-—n?® Tl@m-»?
VI. REGULAR MAXIMA AND MINIMA
(_ f)S/Zar 4 . . . .
M 3 (129 Certain topologies necessarily have extrem®&.ifror ex-
(2m—n) ample, closed spatial sections have a maximum areal radius,
312/ 7 , . and wormholes have a minimum areal radius, R&(t,r )
so thatR*9(R’'/R—E'/E)>0 now gives =0, Vt.
oM (M’ 3f A Suppose é+f)=0 at somea =r,. By Eq. (41) we must
e ' ave
(_f)3/2( YERT +a’>0 VvV r, (126
f'(rm)=0 (133

which is the condition that the crunch time must increase P . . .

with . Since we already havd’ =0, it may be easily veri- (unlessf’ is discontinuous there, which we will not con-
fied that th L ff-'- K siden. We need R'—RE'/E)=0 to k_eg,-pgrr finite, a_nd
ied that these conditions are sufficient to keep hence M'—3ME'/E)=0 to keepp finite, both holding

R'>0 (127 VY (t,p,q) at thatr,,. More specifically, along any given
spatial slice away from the bang or crunch, we want
for all ». , ,
We now show the above also ensurR¢R'/R—E'/E) (R _RE/E)_”_’ 0<L<os, (134)
>0 always. Defining the crunch tini®(r) with Vet f
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(M’ —3ME'/E)

(R—RE/E) N, O=N<ox, (135
As noted above, we require
M'=f'=a’'=S'=P'=Q'=0 (136
to ensure
R'=0. (137

The limits (134) and (135 must hold for allt and for all
(p,q), so using Eqs(13), (99), and (113 with R>0, M
>0, S>0 shows that

PHYSICAL REVIEW D 66, 084011 (2002

layer we must have,, pointing the same way on both sides,

towards increasing say, and zero jump in the extrinsic cur-

vature. So, if we cut the model at the maximum or minimum
rm,» and match the two halves back together, we need

Kii (—=n,) =K (+n,)=K{=-Kj

- (144)

which is only possible if
(149

If however,r ,, is only a shoulder—i.eR’(r,,,) =0, butR’
has the same sign on either side, then the normal direction
does not change sign, so there is no surface layer even if

f=—e.

# — €. Howeverg,,=L2 goes to zero, so it is likely that a

M’ f’ a’ R’ change of coordinates could ma’'|>0. See Table | for a
Jert Verf Jetf Jexf (139 summary of the conditions for no shell crossings or surface
layers.
\/S , \/P , \/Q , \/E (139 VII. IMPOSSIBILITY OF A HANDLE TOPOLOGY
e+f e+f e+f e+f

Since the functiork has the effect of making the distance
must all have finite limits, that do not have to be zero. Usingbetween adjacent constanshells depend on angle, this al-
I'HOpital’'s rule, each of the above limits can be expressed ifows us to create a wormhole that is bent, so that the two

the form asymptotic world sheets on either side can be thought of as
intersecting in the embedding.
M’ 2M"Je+f 2M" This leads to the question of whether those two world
Ly = lim = = (140 sheets can be smoothly joined across a junction surface. In

f——1\ e+f f’ Lf/ '

Thus, forf=—1, the above conditions for no shell crossings
in elliptic regions should be re-expressed in terms of thes
limits.

It is worth pointing out thatE’=0 at f=—1 does not
imply the shells near an extremum hare concentric. It is
the above limits that determine whether there is nonconce
tricity at f=—e.

Conversely, imposin®’ =0 forces all of Eq(136), if we
are to avoid shell crossings. To obtdir — e, we must im-
pose one further requirement for a regular extremum—that
no surface layers should occur &tr,,. Using the results
for the normaln, and the extrinsic curvaturi;; shown in
the next section, and choosing the junction surface to be at
constant coordinate radius=Z=r,, the nonzero compo-
nents are

fact the possibility of matching the two world sheets together
can be considered independently of whether there is a natural

mbedding that would allow them to intersect at the appro-
priate angles.

Thus we investigate whether it is possible to create a
Szekeres model with a handle topology in the following way.
Take a wormhole topology—ae=+1 model withr=0,
nf(0)= —1 at the wormhole and<<0 nearby—and let it be
mirror symmetric about=0. Choose a comoving open sur-

(R"—RE'/E)
n=——H— (147
Je+f
—R(e+f)12
Kpp=——=— (142 : . -
E2 FIG. 3. Conceptual illustration of joining a Szekeres wormhole
model to itself across a boundary surféeshown as a heavy line.
—R(e+ f)1/2 The boundary may be close to the wormhole, as shown, or out in
e (143 the asymptotic regions. There is no significance to the change from

E? solid to dotted circles, other than picture clarity. The handle topol-
ogy is shown as an embedding of a constant time section, with one

Now at an extremum irRR, the factor R’ —RE'/E) goes
from positive to negativelbecause whereR' —RE'/E)
<0, the no-shell-crossing conditions requiRé< 0], which

angular coordinate suppressed, although a valid matching aEross
does not require the result to have a natural embedding. However, it
is shown that the matching fails because it is not preserved by the

means thah, flips direction. For a boundary with no surface model evolution.
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TABLE |I. Summary of the conditions for no shell crossings or surface layers. The conditions found here are exactly Mp§eaod
a for LT models(see[22] which generalizes those 23] for a=0 LT models, with extra conditions involvings, P, Q also.

€ R’ ]_(' M’,f’, a’ S’, P’, Q’
+1 >0 all M'=0 ™2 ™2 ™2 '
VSO H(P)IH(QD)? _ M
S 3IM
+1| >0 |=0 =0 2 2 2 '
VSO H PO S
s 2f
a'=s0 (no condition where f=0)
but not all 3 equalities at once
——=—|+a'=0
(_f)3/2 \ M 2f
a’'=0
but not all 3 equalities at once
+1 | =0 |-1 M'=0, f'=0,a'=0 §'=0,P'=0,0'=0
R">0 (f=—1 for no surface layer)
neck 27M (M_”_ ETA TR, V(P2 (Q") _ M
(—fPR\ M 2f - S M
allso
+1 | =0 [—1 M'=0, f'=0,a’'=0 §$'=0,P'=0,0'=0
R"<0 (f=—1 for no surface layer)
belly 2mM (M_”_ AT NEYE@YHEY M
R\ M 2f) T S 3M
a”BO
+1 | <0 [al M'=0 Y} Y3 Y} ’
_NGDTHPH Q) M
S M
+1 <0 =0 f’$0 Y N2 Y '
NP
s 2f
a'=0 (no condition where f=0)
but not all 3 equalities at once
——=—|+a'=0
(PR M 2f
a'=0
but not all 3 equalities at once
ace>, on one side of the wormhole, and its mirror image onand surface coordinates,
faceX, de of th hol dit g d surf dinat
the other side, and match the two sheets together alorag
shown schematically in Fig. 3. Because the 2 sheets are mir- £=(t,p,q) (147)
ror images, this is equivalent to matchibigto its own mirror "
image.
To imp|ement this we choose a Comoving Surface, ) The tWO fundamental fOI’mS a.nd the nOI’mal are Ca|Cu|ated
in Appendix B.
Obviously 1st fundamental forms match by construction,
r<=2(p,q) (146 and normal vectors are equal and opposite,
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n'= -n,. (148 create a “neck”™—a regular minimum iR(t=constr),

In fact the 2 surface® © and3 _ are identical except for the —1=<f<0, e=+1, (154
sign ofn,,. ThusKj; = — K7, so the only way to match the

ij
., is to make them zero,

ond fundamental fOfmSKﬁ=K.j , but the asymptotic regions may be described by elliptic,

parabolic, or hyperbolic regions.

Kﬁzo. (149
A. The fastest way out
The K= —Kp andKq= —Kg; equations give The general null condition gives
R"=0=ry is ata shell crossing ,)2
R'—R—
unlessZ=const (150 veLBe "2 E "2
0=kkPg,p=(—1)(k)*+————(K)
or R=0= Static: Not possible (152 »
— [(kP)2 )2
or Z,=0, Zy=0=ry=Z=const. (152 * E2[(k )7+ (K7 (159
If the matching surface is at constantthen only a closed E’\2
torus topology is possible. So the answer is: no, a handle (R —) 2 2 2 9
topology is not possible. E (ﬂ) =1— R_H@) +(@) }
SupposeR=0 possible, then it should be possible to e+t dt E2L1dt dt
solve (156
— _ _ It is obvious that at each evedt/dt is maximized by choos-
Kpp=0, Kpq=0, Kgq=0 (153 y

ing kP=0=kY. SinceR is independent of ({,q), this also
for Z(p,q), by Specifying Suitab'e functionE(r,p,q) and giVeS the direction of maXimUrdR/dt|nu|| at any event. We
R(r) on an initial time slice. In other words, you can prob- Will call this “radial” motion, and radial null paths “rays.”
ably match on a constant time slice, but the matching is nof hus, the DE
preserved by the model evolution. dt

!

i
VIll. SZEKERES WORMHOLES? "odr

N

It has been shown ifiL0] that LT models can describe the in principle solves to give
Schwarzschild-Kruskal-Szekeres manifold, as well as models
that have the same topology but nonzero density. It has also t=t,(r) (158
been shown that the matter flows from past to future singu- ] ]
larity, with possibly some matter escaping 6" or some along the “ray.”We do not expect this to be geodesic, but we
being captured from7 ~. The effect of the introduction of regard it as the limit of a sequence of'accelerr?\tlng timelike
matter on the causal structure is to split the Kruskal evenpaths, and thus the bour_1dary to _pOSSIbIe motion through a
horizons and reduce communication through the wormholeVormhole. The acceleration of this path may be calculated
The locusR=2M is an apparent horizon, but not an eventfrom a“=kPVgk, as given in Appendix C.
horizon, and light rays fall irrevocably through the AH to-

RE'
E

!

), j=+x1 (157

wards the singularity wherevéd ' >0. Only if the density is B. Apparent horizons

(locally) zero isR=2M (locally) null. Only if the density is The areal radius along a “ray” is

everywhere zero iR=2M the event horizon(See alsd23] R.=R(t(r).r) (159

for a study of light rays and AHs in a collapsing LT model n e

with a=0.) (Ry)'=Rt,+R’ (160
Since LT models are a subset of Szekeres models, it is of ) )

interest to look at the properties of the Szekeres generaliza- . R R/ RE LR (161

tion, and determine how the loss of spherical symmetry in - Ji+f E

the Szekeres model affects the LT result.
In particular, given the anisotropy of the metric and the 2_M+f

fact that the proper separation of constashells varies with ] R , RE ,

p and q, is it possible for null or timelike paths to pass =1j T(R - | TR, I==1

through a neck or wormhole, by choosing a path along which (162

distances have been made shorter by the particular form of
E? In other words, can one construct a Szekeres wormholghese rays are momentarily stationary when
that is traversible?
For a wormhole, we require an elliptic region, in order to (R, '=0. (163
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Now light rays initially along constarp and q will not re-  However,|D| can be greater than 1 becau3ec —1 is not
main so, owing to the anisotropy of the model. However,prohibited. We have
since these “radial” directions are at each point the fastest
possible escape route, we define this locus to be the apparent
horizon (AH).

[Szekeres[20] defined a trapped surface as the locus (D<-1)=
where null geodesics that afenomentarily “radial” have
zero divergencek”.,=0, wherek”. k"=0, k k*=0, kP
=0=kY. He obtained

. (172

M
R<———
1+ J1+f

This will always occur wherR is close to the Big Bang/Big

Crunch.
2 RE' R Using D, the equation of the AH is
k. :—(R’——> —t 164
+"R e/l =" (164
Given the anisotropy of the model, one does not expect this RE' +DR'E=0, (173

to be the same locus as our AH.

Assuming a normal spacetime point will have nonzero
metric components, and takirig increasing withr on con-  and in terms of andq this equation is
stantt slices,

R'>0 and (R’ RE,)>0 (165 S R
- —|>0, R P R
E (S DR)[(p P)*+(q—Q)~]
we require +2[(p—P)P'+(q—Q)Q’]
lj=—1, (166 s R
_Sz(g'i‘DE =0. (174)

ie.
Either (future AH: AH™) L o .
The discriminant of this with respect fmis
j=+1 (outgoing rays
I=—1 (in acollapsing phage (167 S R’
p g p g -D E (q _ Q)Z

ap=apz—a/S D&
P S "R

Or (past AH: AH™)

s’ R’
j=—1 (incoming ray$ +2(q-Q)Q' - & §+DE”' (179
=41 (in an expanding phage (168

Note that we want “outgoing” to mean moving away from The discriminant of this with respect tpis

the neck atr=0. A ray passing through the neck would

change from incoming to outgoing at=0, and, sinceR’ g R\ 2
flips sign therej would also have to flip there. Af“{g_ DE)
1. The apparent horizon and its location with respect td £0 g2 )2
Define X P’2+Q’2+SZ(?—D2§H. (176
2M
D:=y1+f— F_’_f' (169
Now, if A4<0 everywhere, thea ,<0 for all g, in which
Then case there is np obeying Eq(174), i.e. the apparent horizon
does not intersect this particular surface of constam (
(D>0)<(R>2M). (170 If A,=0, thenA <0 for all g except one valug=q,, at

which A,=0. At this value ofp=p,, Eq.(174) has a solu-
SinceM/R and (2M/R+ f) are positive, we see th@i=1  tion, and so the intersection of the apparent horizon with this

leads to a contradiction, and so one constantt(r) surface is a single point. Note that the
situation when the apparent horizon touches the whole
D<1. (171 3-dimensionat = const hypersurface at a certain valueg o
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exceptional; this requires, from E(L74), thatP'=Q'=5' g2 R’2
=R’=0 at this value oft. The first three functions being —Q'*\/P'?+Q"*+& E_DZE
zero mean just spherical symmetry, but the fourth one defines a1 =
a special location, as mentioned at the beginning of Sec. ’ S'/S-DR’'/R
V A. These equations hold in the Datt-Rubf@# —26 solu- (177
tion.
If A,>0, thenA,>0 for everyq such thatq;<q<(y, _ _ .
where and then a solution of Eq174) exists given by
P+ \/ d DR, +Q’ 2+ P'2+Q'?+&? s” DzR,2
—P'=\/~-||g DRr|@-Q+Q Q e PR
P12= - (179

S'/S—DR'/R

Except for the special case wh&VS=DR'/R, these values lie on a circle in the,) plane, with the center at

PI QI
(Pan Gan) (P SIs—pRIR'"Y SIS-DRIR)’ 79
|
and with the radius 5, given by the condition for no shell crossings, E(P2), when |D|
<1. We already know that necessaridy<1, butD<—1 is
12 R'2 not excluded.
P'?+Q'?+8 _2_D2_2) With |D|<1, when the intersection of AH witht(
L= S _ (180) =cc_)nstr:const) is a single point, a shell crossing is auto-
(S'/S—DR'/IR)? matically excluded.

Note that from Eqg.(173 and from the assumptionR
The special cas8’'/S=DR’/R [when the locus of AH inthe >0, E>0 andR’>0 we have
(p,q) plane is a straight lingis again an artifact of the
Riemann projection because this straight line is an image of (D>0)=(E'<0)
a circle on the sphere.
In summary, the intersection of AH with theq)-plane

is (i) nonexistent wheiR'2/R2>d2/D? (this is the sameb (D<0)=(E">0). (181)
as for the shell crossing(ii) a single point wherR’?/R?
=®?/D?; and (iii) a circle or a straight line wheR’?/R?
<®?/D?. The conditionR’%/R?< ®?/D? is consistent with
o

P1
P2

FIG. 5. The same circles as in Fig. 4 projected onto a plane from

a different pole will project as one inside the other. The transition
P1 P2 from the situation of Fig. 4 to that of Fig. 5 is continuous and occurs
when the sphere is rotated, but the pole and the plane are not
moved. Then one of the circld€1 when a clockwise rotation is

FIG. 4. The circles C1 and C2 on a sphéseen here edge pn applied to Fig. 4 will pass through the pole at one valge= ¢ of

will project onto the planéseen here as the horizontal ljr&s the  the rotation angle. Its image on the plane is acquiring a larger and
circles P1 and P2 that are outside each other. Only parts of P1 ardrger radius with increasing, until it becomes a straight line
P2 are shown here. Circle C1 is i =0 set, circle C2 is the when¢=¢,. Whene increases further, the straight line bends in
apparent horizon circle. the opposite direction so that it surrounds the second circle P2.
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But D>0 andD <0 define regions independent pfandg. M’ R’

Hence, on that surface, on whi€h>0, E’' <0 on the whole IR (187
of AH. WhereD<0, E'>0 on the whole of AH. This im-

plies that theE’ =0 circle and the AH cannot intersect unless gq

they coincide. Indeed, these circles lie in parallel planes, by

the same argument that was used at the end of Sec. V A: the V2<1, (1-V)?>0, —3<(2V-V?)<1. (188
line on the €,r) = const surface defined by E(L73 has the

propertyE’/E=—DR’'/R= const, and so it must be a circle  In those places on the AH, whexe=0=E’, we see that
in a plane parallel to thE’ =0 great circle. It follows that of the surfaceR=2M intersects the AH at all times, but the AH
the three circlesE’=0, SC and AH, no two can intersect is a kind of oval with half insideR=2M and half outside.

unless they coincide. Forf=-1
When theE’=0 and AH circles are disjoint, they may
either be one inside the other or each one outside the other. Ran
However, when projected back onto the sphere, these two M (189

situations turn out to be topologically equivalent: depending

on the position of the point of projection, the same tworegardless o¥. So it is clear that AH and AH ™ cross in a

circles may project onto the plane either as one circle insid@-sphere at the neck of the wormhole=(—1) at the mo-

the other or as two separate circles, see Figs. 4 and 5. ment of maximum expansiorRE2M), as in LT. Note also
that at the bang, wherever' #0, R—0 andR’ —« imply

2. Location of the AH compared with R-2M V—0, and the anisotropy becomes negligible; similarly for

Along R=2M the crunch.
But in general, for all =f>—1
 RE
(R =R'(A+1j)) =, (182 4 Ran
=—=
113)f] - 2M -0 (190

soR=2M is not the AH except wherg’=0.
Equation(162 with Eq. (163 andlj=—1 can be written  andR,,/2M decreases monotonically ¥sgoes from—1 to
1. Note thatVeemd is likely to be less than 1, and also that
2M(1-RE'/R'E)? the maximum and minimum values &, do not have a

A 14 f[1-(1-RE'/R'E)?Y] (183 simple relationship.
We have thatR,,/2M <1 where V>0, i.e. whereE’
2M(1-V)2 >0. In other words, taking at{r) shell that intersects the
=—— - V=RE/R'E. (184  AH at the fast pole, the light rays move fastest between the
1+f(2v-V?) shells exactly where the shell is just emerging from the AH.
. . . Some other features of the AH locus are discussed in Ap-
The effect ofE(r,p,q) is to create a dipole in the geom- pendix D.

etry and density around each) shell, withE’'=0 on an

“equator,” and extreme values
C. Causal structure of a Szekeres wormhole

E' . V(S)?+(P)*+(Q")? (185 We shall next establish whether a radial null ray can pass
- S through a Szekeres wormhole. We shall have to treat the
extreme
neck separately from every othevalue, because of the need
at the poles. to treat thef — —1 limit carefully.
It is clear then that “radial” displacements between two
nearby surfaces of constantare shortest wher&'/E is 1. Can E'>0 compensate for M>0?
maximum, and light rays move outwards fas{esaxdr/dt, As noted in[10] the introduction of matter into a worm-

min dt/dr, i.e. most rapid transfer between constashells hole slows the progress of ||ght rays through it. Can this
at the same f,q) valug]. It has also been shown that the effect be compensated for by a suitable choiceEof07?
denSity is minimum here. The |OngeSt “radial” diSplace' Since the vacuum case ' =0= E’, for which we know
ments, slowest light ray motion and maximum density occukhe behavior, we are only interested in the effects of varying

at the opposite pole. M andE.
We will call the directionlwhe.rgE’/E is maximum, the We start with the gradient of the null rays, E457) and
“fast” pole, and whereE'/E is minimum, the “slow” pole.  yse the substitutiond1) and(113 with Eq. (114 for R, and
Now the conditions for no shell crossings require R’ in terms of  andr, but we note that, if we choose the
£ M future AH—i.e. outgoing rays in a collapsing region—then
— < (186 .
E | ereme M j=+1 and 7<n<2. (191
and for an elliptic region we have So the gradient of the null rays in terms gfandr is
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dt 1 M(1-cosp) siny
drl, VI (—OVIHT HW)
><(—f)3’2a’_( _3sinn(7;—sin77)>£
M 2(1—cosp)? | f
+(1——Sl?f£z;3;zﬂ) MV—EE (192

Consider a region in whicR’>0 andM'>0. Now since,
in the above range of

siny

0= Tcosy) =~

o0
l

2=1-cosy=0,
siny(n—siny)
<]l-———— =<
(1—cosn)?

3siny(n—siny)
1-——mmMmMmMmmmm=w

193
2(1—cosy)? (193

=
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of this curve leads to quite daunting expressions, but is for-
tunately not necessary.

Consider now the slope of a surfaRét,r)=aM(r) in a
collapsing region

.. 2M
R=aM = R?>=——+f
aM
dt R —aM’
=— =, (196)
dr R=aM 2

—+f
o

wherea>0. This is null or outgoing timelike wherever

(R'—aME'/E) R'—aM’

< .
V1+f [2

—+f
o

For M’ =0, which forcesE’ =0 [by Eq.(97)], the equality

obviously requiresa=2, giving the event horizon in a

vacuum model, and aR=«aM surfaces are outgoing time-

like for «>2, and spacelike fox<<2. ForM’>0, the con-

dition E'/E<M’/3M ensures the numerator of the left-hand

(197)

the coefficient ofM’/M is always positive, and the coeffi- side (Ihs) is no less than

cient of E'/E is always negative. In particular, because of

the no shell crossing conditio(®7), |E'/E|<M’/3M, the
E’'/E term gives at most a partial cancellation of te/M

term. Thus it is evident that varyirtg'/E cannot compensate

for the effect of nonzerd’ on the gradient of the radial
rays.

We turn to the AH equatiori163) with Egs. (161) and
(191. We find the future AH equation in terms af andr
may be written

B (—f) sing (—1)%a’
0= 1" V15 (1=cosy) |_ M
y siny )_1( _3sin77(77—sinn))
(1-cosp)?) f 2(1-cosn)?
M’ sinp(n—sinn)
- 1_—
Y (1-cosp)? )}
(—f) sinyg |E’
| V(1+f)(1—cosp)| E" (194

The solution is the parametric locus= nay(r). Itis evident
that if E'=0, varyingM’ has no effect at all on the AH
locus for a giverM, as the solution is

(= sinm _ —142f = R=2M
(1+f) (1—cosy) o087~ = ReeM
(195

Similarly E’ has no effect whem= 7, and(see Appendix

D) when =0 or 2. On the other hand, the effect of vary-

ing E’ is influenced by the value &f'. Analyzing the slope

R’ —aM'/3. (198

For any givenM’'>0,R'>0 and f>—1, this is always
greater than the numerator on the right-hand &ills, so, to
satisfy the equality, the denominator on the Ihs must be
greater than that on the rhs, so once again

a>2. (199

ThusR=aM surfaces can only be tangent to outgoing null
rays forR=aM>2M, and forR<2M they are spacelike,
incoming null, or incoming timelike.

This allows us to conclude that, along the entire length of
the futureR=2M surface, outgoing rays pass inside it, or
run along it whereM’=0. By Eq. (11), the maximumR
along any given constamtworldline in an elliptic region is
at =, when

=2M, (200

Rmax:(__f)
while R grows without bound in parabolic and hyperbolic
regions. Thus every particle worldline encounters the future
R=2M surface(and the past surfageleaving no room for
any rays that arrive at the futuR=2M surface to escape to
VAR

The time reverse of these arguments applies to the past
AH, which lies in an expanding region and has incoming
rays running along it or passing out of it.

To complete the argument, we must consider the limits at
the neck,f— —1 where several derivatives are zero.

2. The AH at the neck

Now we turn to consider the AH at the neck.
The differential of Eq.(161) with Eq. (163) anddp=0
=dq gives us
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. (Rdt+R’dr)E’ RE'dr R(E')Zdr)
. L R'dt+R’dr— - +
0=] R R,_RE’) Rdt+R'dr  fdr E E E?
Vit E R 2(1+1) (R,_R_E’)
E
+R’dt+R"dr, (202
R RE'\  Rf’ RE'\ R , R'E' RE' R(E')? )
dt _{Jﬁ = )_]2(1+f)3’2(R,_ /TN T E O E e +R]
driy R [, RE) R [ REN
W B A E '

(202

At the neck of the wormhole,=r,,, the regularity conditions of Sec. VI give us the following limits, whére etc are
being defined in each case:

f——1, (203
f'—>0, f/J1+f—Lp=2f"IL;=0= (L;)2=2f", (204
E'—0, E'/J1+f— Lg=2E"/L; =0, (205)
R'—0, R'/\J1+f— Lg=2R"/L;>0, (206)
R'—0, R'/V1+f— Lg=2R"/Ly=(dldt)Lg . (207)

Thus the term®R’'R’/J1+f, R’ RE'/EJ1+f, R'E'/EV1+f, R(E')%E2J1+f andR’ go to zero and the remaining nu-
merator terms involvingR cancel, down to

at = 'R”/ Zh(R” RE + R R’ RE/) (209
dr : L E ) Ji+f E /]
dt 2(R"-RFE'/E)
FriT mra— (209
r n,N Lf’

Since the AH only intersects the neck whgrs 0, the behavior oR/\/1+f andR%/ 1+ f must still be determine¢and that

of R” will be verified).
At the moment of maximum expansion in the neck we have

R=2M, R=0, 1+f=0, (210
n=m, cosy=—1, siny=0, (211
and so, using
, M M f M’"  3f"\sinp(n—siny) , singy
R ——<_f>i(V‘T)“‘COS’”‘(V‘?)—u_cosn) —ANT T T sy (212
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., -1 M (( _ )(M’ 3f"\  a'(—f)%?)? siny [( i) M
= —sing)| —— =+ —siny) —=
(1—cosp)? (=D 17" PM 2t M (1—cosy) |7 77 (=1)
2" (M" of’ M”  3f” [ o ,f’ 1 M (M" 7 2 (M f! 213
VT R RV T S i S 2l 5 Y R VR o S
|
gives, by virtue of Eqs(204) and (140, Since M (r) is positive, and bottM(r) and f(r) are at a
, , minimum at the neck, i.eM”>0 and f">0, we have
Lrr=2(Ly:+ ML) =4(M"+Mf")/L¢ Mf"(M”+Mf")<M”+Mf", and so both upper and lower
limits are real and positive.
R'=2(M"+Mf"). (214

Can this requirement be satisfied without creating shell

i e _ _ . crossings? The only relevant condition is the one er
We find the limit ofR/ 1+ f at this point by combining Egs. |1 rr=g f=—-1 R">0

(161 and (163, to obtain

. E/I M// 221
_ _ n " _ =
R _ jLe _ —j(M"+Mf") | Y (221
1+f| ., Le—RLe/E M'+Mf'—ME'/E
(215  To be able to satisfy this as well as E§20) we would need
so it is clear thaR?E’/\/1+ f=0. To check the limit oR’, M"+Mf"—yMT"(M"+Mf") M"
ther derivative of Eq.(4) gives M 3M’ (222
. 1(M" MR f' but this leads to
el R R T2
R R M”(4M” +3M§") <0, (223
RR" [Lwy MLg Ly which is clearly not possible. Indeed, althoughis zero
\/ﬁ: R R 5 (216 rather than divergent whe /E=M'/3M, whereE'/E ex-

ceedsM’/3M, the density is negative at all times.
and because of E214) andR=2M all terms in the bracket Putting the maximum valueE"/E=M"/3M into Eq.

cancel, verifying thaRR'/\/1+f=0. (219 gives

These together with Eq5) give us AU/dr | e MM+ M)

(224)

dt i AME"(M”+M ") 17 dt/drinven |0 (2M7+3MF7)2
dr - ” "__ ” !
armen Lo (M7THMIT=ME"/E) which rises from 0 atf”/M”=0, and asymptotically ap-
B , , proaches 1 a$"/M”"—o, i.e. vacuum.
dt i 4(M"+Mf"—ME"/E) (218 Therefore, even at the nedk! >0 cannot compensate for
dri. ven L ' M’>0, and all rays passing through this event remain

within R<2M, passing from inside AH to inside AH".
For a light ray to pass through the neck at the moment of
maximum expansion without falling inside the AH, we need 3. Summary

dt/dr| s, wen>dt/dr|, wen, in other words In a Szekeres wormhole, every particle worldline encoun-

ters R=2M, twice for mostr values and once where=
—1, making this a pair of 3-surfaces that span the spacetime.
The apparent horizons coincide wih=2M at an extremum

dv/drlauven  ME(M"+MF")
dv/dr|,men  (M”7+Mf"—ME"/E)?

MEN (219 of R(t=constr)—a neck or belly—wherd=—1. Where
M’ =0 (vacuun), the R=2M surfaces aré¢locally) null.
or Assuming there is matteM’>0) somewhere within the
elliptic region describing the neck, and assuming the two
(M"+MF") =M (M"+Mf") E” regions, r— =+, are asymptotically flat, i.eM— M,
M E =const E’'—0), then the event horizon is the set of rays

, , S— . that are asymptotic t&R=2M, but always lie outside. The
(M"+Mf")+ M (M"+MTF") future event horizon EH emerges from th&=2M surface,
< M . (220

and vice versa for EH.
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Thus we conclude that the causal structure of a regular Mo=1, M;=0, E,=1,
Szekeres wormhole is only a quantitative modification of the
LT wormhole (dense black hole and the possible causal E.=0, E,=0, rs=1 (233

diagrams for Szekeres models are essentially the same as
those for LT models, as given {r10]. As expected, we found that the fast AH, the slow AH, the

4. Numerical examples

A few numerical examples were produced as follows.

We choose the 3 LT arbitrary functions to produce a
Kruskal-like topology, with the neck at=0, that is mirror
symmetric about =0 andt=0. The choice must therefore
satisfy f(0)=—1, f'(0)=0, f"(0)>0, M’(0)=0, M"(0)
>0, a(r)=—b(r);

M=My(1+M;r?)3 My,M,;>0, (225
f=—exp—r?ry), rg>0, (226)
a=—aM/(—f)%2 (227

We want to choos€& to maximize the effect oE’ #0 along
one particular radial path. By setting

P(r)=0=0Q(r), (228
so that Eq.(13) is
E=§(2—2+:—2+1), (229
the maximumE'/E becomes
E’ s’
£ =l (230

max

along the direction§,q)=(0,0), i.e.#=0. Since numerical
integrations will only be done along this path and #ve
one, we treaE as a function ofr only. We makeE'/E as

large as possible without violating the no shell crossings con-

dition E'/E<M'/3M with

E=Eo(1+E;r>)+E,, Eg,E;,E,>0, (231

where the shell crossing occurs somewherig, it 0.

Because of the two reflection symmetries, we can star

integrating a null ray from maximum expansion at the neck

n=m, r=0, (232
where AH" and AH™ meet. The symmetry means that inte-
grating forward along increasing and t and integrating

backward along decreasimgandt is the same thing, so one

fast null ray, and the slow null ray were all the same.
Test 2—the LT case:
Moz 1,

M1=0.1, Eozl,

EJ_:O, E22001, rs= 1. (234)
Here the fast and slow rays were the same, and the fast and
slow AHs were the same, but the rays fell inside the AHs, as
expected.
Test 3—a Szekeres version of above LT case:
M 0= 1,

M]_:O.l, E0=1,

E1=Ol, E2=OOl, I’S= 1. (235)
The AHs and rays were split on either side of the test 2
curves.

Run 1—mediumM’/f’:
Mozl, Mlzl, Eozl,

E;=1, E,=0, re=1. (236)

We found that the rays and AHs were well split, while the
rays were strongly trapped.
Run 2—IlowM'/f":

Mo=1, My=1, Eo=1,

E,=1, E,=0.1, ri=0.01. (237)

The rays were mildly split, the AHs were indistinguishable in
the range plotted, and the rays were mildly trapped.
Run 3—slightly less lowM ' /f’;

Mozl, M1:2, EO: 1,

E1:2, E2=001, rS: 0.01. (238)

This was very similar to the previous run, with the rays less

|{nildly trapped.
Run 4—highM'/f’:

Mozl, M1:3, EO:].,
E,=3, E,=0.0001, r.=10. (239

Here the rays and AHs were well split, and the rays were
very strongly trapped.

integration actually traces both halves of the same ray. Rays These examples cover the main possibilites, and run 1 is

that do not pass through this point require two separate par
to the integration, one from maximum expansion towards
andt increasing, and the other towardsandt decreasing,
with careful treatment of the neck limits wherme goes
through zero.

The following runs were done.

Test 1—the vacuum case:

%hown in Fig. 6.

IX. CONCLUSIONS

SzekeregS) models are a generalization of the spheri-
cally symmetric Lemare-Tolman (LT) models. Both de-
scribe inhomogeneous dust distributions, but the former have
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S wormhole is the same as that of the corresponding LT
model.

We also considered whether the two universes on either
side of a wormhole could be joined across a 3-surface, mak-
ing a handle topology. It was found that a smooth junction is
not possible at any finite distance, as a surface layer would
be created. This conclusion applies to LT models and to the
vacuum case—a Schwarzschild wormhole—too.
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FIG. 6. The ¢ —t) diagram for the Szekeres model defined for
run 1, showing the fast and slow future apparent horizéas- and
sA+), and past apparent horizons, the fast and slow rays that pass
through O—the neck at the moment of maximum expansion—
towardsr increasing(fR+ and sR+), and rays through O going
towardsr decreasing, as well as rays going through other points. T
is the moment of time symmetry which is also the simultaneous
time of maximum expansion, and N is the locus of the neck
=0. Note that fA and sA+ are two different intersections of the SinceE’/E at constant is boundedsee Eq(64)], it must be
future apparent horizon AHin two different radial directions—the Vverified whether Eq(A1) has a solution in every sphere of
fast and slow poles wherE'/E takes extreme values. Note also constant andr. The solution will exist when
that there is no origiR(r =r,,t)=0 in wormhole models.

APPENDIX A: THE HYPERSURFACE
OF ZERO MASS-DIPOLE INTERSECTS
EVERY (t=constr=cons) SPHERE

This hypersurface is given by

E'/E=(A’'+C')/(A+C). (A1)

(E'"NE)min=<(A"+C")/(A+C)<(E'/E)max- (A2)

no Killing vectors. There are 3 arbitrary functions of coordi- since €'/E) in=—(E'/E)max, EQ. (A2) is equivalent to
nate radius in LT modelsM, f anda), and a further 3in S
models §, P andQ).

For quasispherical Szeker&S) models, we established 3
sets of regularity conditions—the conditions for a regular
origin, the conditions for no shell crossings, and the condi-
tions for regular maxima and minima in the spatial sections.
The last two contain exactly those for the LT models, withWe have
extra conditions on the arbitrary functions that are peculiar to
S. Thus, for every regular LT model that is nonvacuum
(M’>0) at least somewhere, one can find regular S models
that are anisotropic versions of the same topolodor
vacuum,M’=0, S models must be spherically symmejric. s’ 1

Since LT models can reproduce the Schwarzschild- A’'+C'= 2—§(32—P2—Q2—1)+ s(PP'+QQ".
Kruskal-Szekeres topology of a wormhole connecting two

(A" +C")2(A+C)?><(E'IE)2 rome

1
=g(PPrQs?. Ay

A+C= i(1+ P2+Q%+5?%)
2S

universes, but with nonzero density everywhere, this is also (A4)
possible with S models. In the vacuum casé’'E0) this g pstituted in Eq(A3), this leads to

gives the full Kruskal manifold in geodesic coordinates. It is

known that the presence of matter in such models inhibitg,525'2(1 + P2+ Q2)— 4SS (PP’ +QQ’)

communication through the wormhole and splits the event

horizons. We investigated the S wormhole models, consider- X(S*=P?~Q?~1)-4S*(PP'+QQ’)?

ing apparent horizons and the paths of “radial” null rays, 12~ 2 2 w2

which, while not geodesic, are the fastest paths out of a TP+ QI)(1+PTHQ7+S)=0. (A5)
wormhole. We showed that, even though the S model’s aNt o discriminant of this with respect ® is

isotropy makes the proper separation of consecutive shells

shorter along certain directions, and null motion faster along A=—165%(1+ P2+ Q%+ S?)2

those same directions, this is not enough to compensate for

the retarding effect of matter. Thus the causal structure of an X[(PQ'—QP')?+P'?+Q’'?], (AB)
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and is always negative unlefs =Q’=0. This means that Sgu=—1, (B7)
with (P",Q")#(0,0), the |hs of Eq(A5) is strictly positive.
Even whenP’'=Q’ =0, it is still strictly positive unless’ 2R — RE'JE)2E2+ R2( e+
=0 as well. HoweverP’'=Q’'=S"=0 impliesA’'=C’'=0 3gpp: Zp(R'-REVEET+R(e f), (B8)
andE’ =0 on the whole sphere, and then the dipole compo- E*(e+f)
nent of densityAp=0; i.e. on such a sphere the density is
spherically symmetric. Hence, apart from the spherically 3 ZyZy(R'— RE'/E)?
symmetric subcase, EQA2) is fulfilled, with sharp inequali- 9pa= (e+1) ' (B9)
ties in both places. This means that the=0 hypersurface
intersects every tE& consty =const) sphere along a circle
parallel to theE’ =0 circle [see the remark after E¢G8)]. ; ZE(R’ —RE'/E)?E%+R?(e+1) ®10
qq= 2 '
APPENDIX B: MATCHING THE SZEKERES METRIC E*(e+1)
TO ITSELF . .
the surface basis vectors:
We here lay out the calculations necessary for matching
the Szekeres metric across a comoving surface to some other "
metric, and in particular to another Szekeres metric. e=(1,0,0), (B11)
Given a comoving surface,
e =(0Z,,Zy), (B12)
rs=Z(p,q) (B1) |
f inat
and surface coordinates, eP=(0,1,0), (B13)
£=(t,p,q) (B2)
el=(0,0,2), (B14)
we calculate the basis vectors in the surface,
the surface normal:
axk
Py B3 (R'E-RE')R
e T (B15)
the 1st fundamental form,
_ Z,(R'E-RE')R B16
%9 ="1g; =g, (B4) o= EA ’ (B16)
the normal vector, Z(RE-RE'R
Ng=———Fx (B17)
N, n,n*=1, n,e’=0, (B5)
aZ dZ
and the 2nd fundamental form where Z,=—, Zg=—, (B18)
ap aq
. [aPxN L IXE ox”
Ki=-n r (B6)

=T Gged g a )

Using GRTensor/GRJunctigri2] we find the following
for the intrinsic metric:

[Z,(RR —RR)]
pt— A '

[Z4(RR —RR")]
qt— A '
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A=[R¥*(e+f)+(Z5+Z5)(R'E-RE")?]*?
(B19)

and the extrinsic curvature:

(B20)

(B21)
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Kypp= ——
PP2E2(e+1)A
+[2{3ER'RE' +RR'E?~ (E")?R?*~2E%(R")?~ R?E"E}(e+ )~ Rf'E(R'E-RE')]Z;

—2R(2REE-E,R'E-REE’)(e+f)Z,—2RE((R'E-RE')(e+f)Zq—2R?*(e+1)?],

K - @ @@
PI2E2(e+f)A
+[2{3ER'RE' +RR'E*~(E')?R?*~2E?*(R’)*~R°E"E}(e+f) —~Rf'E(R'E-RE')]Z,Z,

— 2RE(RE,—R'Eg)(e+f)Z,— 2RE(RE,—R'Ep)(e+1)Z,

Kgg=———
1 2E2(e+)A
+[2{3ER'RE' +RR'E?~ (E")?R*~2E%(R")?~ R?E"E}(e+ ) —Rf'E(R'E-RE')]Z]

—2RE,(R'E-RE')(e+f)Z,—2R(2REE-E;R'E—REE")(e+ f)Zq—2R2(6+ f)2],
where all quantities are evaluated Bn

APPENDIX C: THE ACCELERATION OF A GIVEN TANGENT VECTOR

Starting from
aa: kBVBka: kﬂﬁﬁka-f— I"Q’Bykﬁk’}/,
the individual acceleration components for a gikenin the Szekeres metric are

al=kBagk!+ T (K) 2+ T (kP 2+ Tl (k%2

=K'k + K" 9, k'+ kP k' + kIagk' +

RE' (R' RE’
E

R-F& E

a"=kPagk" + 2" KK+ T (K2 4+ 20" K KP+ 21T KK+ T o (KP) 2+ T o (k)2

. RE’ RE'\’
2 R,—?) R’_?) f’
=Ktgk +K 9, K +KkPg K +KkIg K + kK" + — (k"2
t r P a . RE . RE 2(e+f)
E E
o or| B B
E 2 E 2
E ke o D [(kP)?+ (k9)?]
o RE' . RE’ 2 g RE' :
E E E

aP=kP3 gkP+ 2T P k'kP+ TP, (K" 2+ 2T P K'KP+ TP (KP) 2+ 2P KPR+ TP (K9)?

084011-24

1 RR
m(kr)er(E) [(KP)2+(k9)?],

2RE(R'E—RE')(e+f)Z,,+2(R'E-RE)XE,E' —E/E)Z3+2(R'E~RE')%(EE' —E/E)Z3Z,

(B22)

2RE(R'E—RE')(e+f)Zyq+ 2(R'E—RE)X(E,E' — E}E)Z2Z4+2(R'E—~RE )X EE' — E{E)Z,Z5

(B23)

2RE(R'E—RE')(e+)Zqq+ 2(R'E—RE)%(E,E' —E/E)Z,Z2+2(R'E~ RE)(E4E' — E{E)Z:

(B24)

(CD

(C2

(C3

(C4

(CH

(C6)
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! RE, ! li
R'~—=|(EE;~E'Ey)

2R
— KO KP L K 9 kP kP9 KP+ kI KP+ —— tkP — r2
K'9kP+ K g kP+kPapkP+ k9gkP+ Rkk R(e+ 1) (k"
Z(R' RE’
E E 2E E
kP— —PPy2— Z—9pppay —P a2
+ R k'k E(k) Ekk+E(k)' (oy))
aq=k5(9,3kq+21““tqktkq+1““,,(kr)2+21“‘4,qkrk°‘+l“qpp(kp)ZJr21““,)(1k”kq+l“qqq(kq)2 (C8
(R’—? (EE,—E'Eg)
=Kk KA+ Kk 9 KI+KkPH K9+ K99 KA+ — ktkO— 2
K'akI+ k' g k+ kP kI+ kg kI+ Rkk R(et 1) (kM
Z(R’ RE'
E E 2E E
Mkdt —9kPy2— Z_Pppa— —9 (a2
+ R kk+E(k) Ekk E(k). (CY
For “radial” paths kP=0=Kk", dpk*=0=ggk* these reduce to
al=kta.kt+ kg Kt+ R/_R_E - I_E (K")?2 (C10
t ' E E | (et+f) ’
o i RE’) " RE’)’
a"=klok +k'a,k"+ - kik" + e/ __F (k")? (C1)
t ' . RE’ . RE’ 2(e+f) ’
E E
’ RE, ! !
R'——=|(EE,—E'Ep) 2
p:— r
a R(e+ ) (k"e, (C12
’ RE’ ! !
R ——=|(EEq—E'Ey) i
q— r
a R(e+1) (k"< (C13
|
Using the “radial” null condition RE RE'\ 1
r__ o 2
+(R E)(R £ (€+f)(k), (C1H
ki= K R’ RE’) (C19
e+ f E J , RE,
a'=k'g,k'+ — R’——) k'9.k"+2 R’——)(kr)z]
N E E
the acceleration becomes et+f
R, RE/)/
at= [ R RE ktkr+(R’—R—E/)k‘a kr} ¥ S S (16
Ve+f E E )T (R,_R?E’) 2(e+f)
j . RE')’ f! - RE' )2
el \RTE e | R E ,
R, RE! kr kr . (R _?)(EED_E Ep) kr ) Cl
HRTTE &= R(e+ 1) (k)% (€17
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i RE, ! !
R'~—=|(EE;~E'Ey)

al=— R+ D) (k"2 (C18

(dt)_+ S _+2M0r2 05)
dar/ =~ “V1-r2 J1-r?%

) ) Clearly the future AH is incoming timelike. The result ex-
While E’=0 gives the expected LT values, we note thattends to allkk values, and the converse holds for the past AH
E(r,p,q) determines whethea® anda® are zero or not. in the expansion phase.

In the e=+1 case, by Eqgs(16), (60) and (62), the ex-

tremes ofE on a given 2-sphere are located at 2. Behavior near the bang or crunch

P'S Consider Eq.(194) for the locus of the future AH in a
(C19  collapsing elliptic regionf <0, m<5<2m, in terms of pa-
rameteryn. Near the crunchy=2m7— n—0, we find

(—f) [ 2
g <1+f>(?)

pe=P

+
[£V(S)?+(P)?+(Q")*-5']

Q'S
[£V(S)?+(P")*+(Q")*-9]

0e=Q+ (C20 0=

and it is easily verified thaa?=0=a“ in these two antipodal (-H%¥a'[ 4\ f'[127) M’ (8=
directions. It follows that initially radial geodesics in these Y STl = T Tvl =
directions remain radial ip, andq, are constant with. For 7 7 7
example, ifp.=0=q., this would require arbitrary func- —f) [2\]E’

tions satisfying a+n ? == (D6)

PP 28s Q'

= - - As noted previously, wheilt’ =0, the solution makes the
p $?_p2_Q2 Q (C21 p y

first bracket zero;wz\/—f —0. (Even in this case, where
we knowR=2M is the AH, the fact thaR’ diverges atR

Q" 28'S =0 means we must multiply through by to make the rhs

or P=0, Q -Q?’ when P’=0  (C22 zero there. Notice too that the no shell crossing condition
(126) ensures the second bracket is generically non-negative
P’ 29'S whereM’>0 and non-positive wherl’<0. Assuming we
or —= ., Q=0, when Q'=0 (C23  are not near an origin,-OM <=, it is clear that, even if
P g?2—p2 —0, the last two terms in this second bracket are divergent,

with the middle one dominant, making tit€ term negli-
or P=0, Q=0, when P'=0 and Q'=0.  gible. Thusp~2y—f is still the solution in the limit. How-
(C29 ever Eq.(12) in the n~2y—f —0 limit shows that the

time from AH to crunch goes to
APPENDIX D: OTHER FEATURES OF THE AH

-3
1. The FLRW case M 7 4M (D7)

b_tAH—>—3/2——>—
The dust FLRW limit isM=Mgr3, f=—kr? a=0, R (-H¥6 3

=rS(t), and theR=2M locus is given b ) ) i )
© g y where the crunch timé(r) is defined in Eq(128). There-

S(tay)=2Mr2. (D1)  fore the future AH does not intersect the crunch away from
an origin. The result is just the time reverse for the past AH
In the collapse phase of kk=+1 model, the time of the near the bang in an expanding region, and a similar calcula-

future AH is tion applies for hyperbolic or extended parabolic regions,
giving the same result.
cosyay=1—2r2 (D2) An f=0 locus is where an interior elliptic region joins to

an exterior hyperbolic or parabolic region. The transition in-
taii= Mol 7+ arcco2r2— 1)+ 2r J1—r2 D3 volves the lifetime of_ th_e.worldlmes diverging, so either the
T AH ol ¢ ) ] (B3) crunch goes to the infinite future, or the bang goes to the
infinite past. Since there is only one AH in a hyperbolic or
parabolic region, one of the two AH loci in the elliptic region
also exits to infinity beford =0 is reached.

which has slope

2
(ﬂ) - AMor (D4) A third possibility wheref is only asymptotically zer¢the
dr AH 1-r? asymptotically flat cagds that both the bang and the crunch
diverge to the infinite past and future, and the two AHs go
while the light rays have slopes with them.
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3. Behavior near an origin

Consider Eq(194) again. Near a regular origin, along a
constantt or constant  surface (see Sec. I, M
~ u(— 1) E~v(—f)"2for some positive constants and
v, andf—0, so that

siny
0=|1+—f T=cosy)
a’' sin f’
o _’7)+_
m\ (1—cosp)?) 2f
siny nf’
_{ V=T (1—cosy)| 2f - (Dg)

We divide through byf’ and defineX=——f[sinz/(1
—cosz)] which is positive forp> 1, giving

PHYSICAL REVIEW D 66, 084011 (2002

a/

uf’
X n
TIX 2t [

Thougha' andM' always have opposite signfs, may have
either sign in an elliptic region, but in general we do not
expect terms to cancel in the curly brackets. Thus, whether or
not thea’ term diverges, we must havé—1, i.e. siny

—0 so that

siny )

0:[1_)(][ (1—cosn)?

1

of (D9)

;:277— n—2—f.

Unlike the previous case, thougM —0 ensures the AH
intersects the crunch here,

(D10)

3

——0.

5 (D11)

b—tan—u
As always, the time reverse applies in an expanding
phase, and the hyperbolic and parabolic cases give the same
result.
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