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Fate of singularities and horizons in higher derivative gravity

Bob Holdom*
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 2 July 2002; published 16 October 2002!

We study static spherically symmetric solutions of high derivative gravity theories, with 4, 6, 8 and even 10
derivatives. Except for isolated points in the space of theories with more than 4 derivatives, only solutions that
are nonsingular near the origin are found. But these solutions cannot smooth out the Schwarzschild singularity
without the appearance of a second horizon. This conundrum, and the possibility of singularities at finiter,
leads us to study numerical solutions of theories truncated at four derivatives. Rather than two horizons we are
led to the suggestion that the original horizon is replaced by a rapid nonsingular transition from weak to strong
gravity. We also consider this possibility for the de Sitter horizon.
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I. INTRODUCTION

The vacuum Schwarzschild~Schd! solution of general
relativity suffers from a singularity atr 50, but perhaps a
more meaningful observation is that the Schd solution can
be trusted in a finite region enclosing the origin. At a nonz
radius inside the horizon a curvature invariant has grown
large as the Planck mass scale, at which point the Eins
action should no longer provide the correct description.
example in the standard Schd coordinate sys
RmnsrRmnsr548G2M2/r 6, and thus the Schd solutio
breaks down at a radius of orderr s5(48G4M2)1/6. For large
M this is much smaller than the horizon size 2GM, but it is
much larger than the Planck lengthAG.

There have been discussions within general relativity
how the diverging curvatures can be tamed@1#. If a suitable
matter distribution is postulated and allowed to violate
strong energy condition, then nonsingular black-hole-like
lutions do arise. Although the curvatures in the core reg
are now finite they are still characterized by the Planck sc
and thus the Einstein action can only provide a crude
scription. But an interesting aspect of such solutions is
appearance of a second horizon, in the vicinity ofr s .

No matter what the theory is or what matter is presen
appears that nonsingular spherically symmetric static s
tions can never have only one horizon. In the standard c
dinate system the metric of interest is

ds252B~r !dt21A~r !dr21r 2~du21sin2uf2!. ~1!

If the curvature invariantsR, RmnRmn, RmnsrRmnsr . . . are
to be nonsingular at the origin, what does this imply ab
the behavior ofA(r ) andB(r )? For smallr we find that1

*Electronic address: bob.holdom@utoronto.ca
1In lieu of a proof we have scanned through a variety of pow

law behaviors ofA(r ) and B(r ) near the origin and a variety o
curvature invariants, similar to our scan for solutions in the n
section.
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A~r !511a2r 21•••

B~r !5b~11b2r 21••• !. ~2!

In this caseR56(a22b2) at r 50 and the higher invariants
are polynomials ina2 andb2. ~The constantb is affected by
a rescaling oft and can be ignored.! The important point is
that A(0) is fixed to be unity. But inside the horizon of th
Schd solutionA(r ) is negative, a fact directly connected wit
the existence of the Schd horizon where the signs ofA(r )
andB(r ) change. Then to match onto a nonsingular solut
with A(0)51 another sign change is required. To preserv
time-like directionB(r ) must also change sign again. Thu
A(r ) and B(r ) must each have an even number of si
changes betweenr 50 andr 5`, rather than the single sign
change implied by a single horizon.

Given this result, a theory of gravity capable of describi
Planck scale physics should address the following th
questions. Are these metrics that describe large but non
gular curvatures near the origin actually solutions to
theory? Do solutions that are singular at the origin contin
to be present, or are they banished altogether? How do
nonsingular solution at the origin match onto a sensible
lution at larger while experiencing an even number of sig
changes, without encountering a singularity at a finiter?

To model Planck scale physics we consider theor
where the Einstein action is extended to include terms w
more factors of the curvature tensor and its covariant der
tives. We will explicitly study spherically symmetric stati
solutions of these higher derivative theories truncated at v
ous orders in derivatives. In particular we will construct s
lutions as a series expansion about the origin for theo
with 6, 8 and even 10 derivatives. And for the general the
truncated at four derivatives we will be able to constru
numerical solutions that interpolate between the small cur
ture, weak gravity behavior at larger and the high curvature
strong gravity behavior at smallr. Some aspects of our re
sults may be true at any order in the derivative expansio

In the 214 derivative theory~the theory with the Einstein
term and the general set of 4 derivative terms! the Schd
solution is still present. Reference@2# applied the series ex
pansion approach to this theory to find, in addition to t
Schd solution, another class of singular solutions and a c
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BOB HOLDOM PHYSICAL REVIEW D 66, 084010 ~2002!
of nonsingular solutions. But it was not known which, if an
of these alternative solutions near the origin could ma
onto the desired weak gravity solution at larger. Our nu-
merical work shall clarify these issues.

Although the 214 derivative theory has a variety of so
lutions near the origin, we find that only one class of so
tions remains for the typical action with more derivative
This turns out to be the nonsingular class of solutions, hav
the expected propertyA(0)51. Such solutions are found fo
any action considered. It is perhaps not surprising that n
singular solutions exist, since spherically symmetric sta
solutions that are everywhere weak, produced for exam
by a low density matter distribution, must be recover
More surprising is thatsingularsolutions, if they exist at all,
only exist for very particular actions, of measure zero in
space of theories.~Among these very particular theories a
those that have received some attention. For example
Schd solution continues to exist in theories where only po
ers of the curvature scalarR appear in the action@3#.!

This is not to say that solutions with singularities don
exist; the typical unphysical solution would involve a curv
ture singularity at a finiter. But to find nonsingular black-
hole-like solutions our previous discussion indicates that
must search for solutions with several sign flips. This appe
difficult to accomplish in higher derivative theories, eith
analytically or numerically, and it is not the focus of th
work. Rather we shall be more concerned with how a c
region of strong gravity matches onto a weak gravity largr
region without any change of sign of metric components, a
thus with no horizons.

Before launching into the study of these solutions, it
natural to question the derivative expansion itself. Of cou
a derivative expansion truncated at some finite order
problems with physical interpretation; in particular it suffe
from negative energy ghost modes when linearized. But
problem is entangled with the effects of truncation and l
earization; it is not fundamental in the sense that the un
lying theory, from which the derivative expansion is derive
should be quite sensible. Evidence of the role of nonline
ties in resolving the ghost problem was found for a differe
class of metrics of Friedmann-Robertson-Walker~FRW!
form in @5#, where ghost modes were found to decouple fr
positive energy matter when the nonlinear solutions w
considered. In any case results that hold at arbitrary orde
the nonlinear derivative expansion, such as the existenc
nonsingular solutions near the origin as described abo
would appear to carry some significance.

The solutions near the origin and their implications a
discussed in more detail in the next section. In Secs. III
IV we turn to the general 214 derivative theory and numeri
cally analyze the non-Schd solutions that are respectiv
singular and nonsingular near the origin. We show how th
solutions match onto the desired weak gravity solutions
larger, and in particular that they do so without encounteri
horizons. In Sec. V we turn to the de Sitter space, which
static coordinates also has a horizon at a finite radius. H
we again explore the idea that the horizon is replaced b
boundary where a transition from weak to strong grav
08401
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occurs; now the picture is inside-out with weak~strong!
gravity on the inside~outside!. We conclude in Sec. VI.

II. SOLUTIONS NEAR THE ORIGIN

We consider a general gravitational action with any nu
ber of derivatives. The field equationsHmn5Tmn determin-
ing A(r ) and B(r ) can be found by substituting the metr
~1! into the action and varying with respect toA(r ) and
B(r ); this givesHrr and Htt respectively.Huu can then be
found from the Bianchi identity@2#:

Huu5
r 3

2 S Hrr

A D 8
1

r 2Hrr

A
1

r 3B8Hrr

4AB
1

r 3B8Htt

4B2
. ~3!

We first look for nonsingular solutions in the presence o
smooth matter distribution with finite energy and pressur

For our purposes we define nonsingular metrics as th
without curvature singularities, and we have already said
such metrics must haveA(0)51. It is interesting to see how
this emerges as a property of solutions to the field equatio
When A(0) and B(0) are nonzero and finite the leadin
terms in the field equations for smallr behave like 1/r n

wheren is the maximum number of derivatives in the actio
This behavior arises from the terms with no derivatives
A(r ) and B(r ), which nevertheless arise fromn derivative
terms in the action. The coefficient of the 1/r n term in each
equation is proportional to a polynomial inA(0), andthese
polynomials vanish iffA(0)51. This result is thus intrinsi-
cally connected with the nonlinearity of the theory.

All the terms behaving like inverse powers ofr in the
equations must vanish, and this leads to solutions of the f

A~r !511a2r 21 (
n>4

anr n,

B~r !511b2r 21 (
n>4

bnr n. ~4!

We find that solutions of this form exist for general action
and we have tested actions up to 10 derivatives.a2 and b2

are free parameters of these solutions except for isola
points in theory space. One such exception is general r
tivity, wherea2 andb2 are determined by the energy dens
and pressure at the origin.

We now consider the possibility of singular solutions. T
find other solutions near the origin we look for other cas
where the leading terms in the 1/r expansion of the field
equations vanish for special choices of theA(r ) and B(r )
expansion parameters:
0-2
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FATE OF SINGULARITIES AND HORIZONS IN . . . PHYSICAL REVIEW D66, 084010 ~2002!
A~r !5aar a1aa11r a111•••,

B~r !5bbr b1bb11r b111•••. ~5!

Note that both the leading and next-to-leading parame
can appear in the leading terms in the field equations. If s
a case is found then the expansion can be tested as a so
at higher orders. Since various powers ofr a andr b appear in
the nonlinear field equations it would seem miraculous
find solutions witha andb noninteger; in any case we hav
restricted the search to integera and b. Our search is also
blind to solutions that are not amenable to a series expan
at the origin.

We have performed a scan through a range of values oa
and b for a range of actions. In the case of the genera
14 derivative theory the scan yields the three sets of s
tions found in@2#: the nonsingular solutions in Eq.~4! with
(a,b)5(0,0), the Schd solution with (a,b)5(1,21), and
another set of singular solutions to be described below w
(a,b)5(2,2). For actions with more derivatives only th
nonsingular solutions remain, except for specialized acti
where various terms are set arbitrarily to zero.

The result then is that the static spherically symme
solutions of a typical high derivative theory are not singu
at the origin. If singularities occur, they occur at a nonze
radius.

We stress again that the Schd solution is a generic s
tion only in theories truncated at two derivatives~general
relativity! or four derivatives. In typical theories with six o
more derivatives the Schd solution will remain only as
approximate weak gravity solution in the larger region
where the Einstein term dominates. In fact by examinin
series expansion in 1/r of the field equations around the Sch
solution one finds~see also@6#! that the corrections have th
form

A~r !51/~122GM/r !1O~G4M2/r 6!,

B~r !5122GM/r 1O~G4M2/r 6!. ~6!

Once again we see that the Schd solution is a good app
mation to an exact solution down to a radius well within t
horizon, implying thatA(r ) andB(r ) would have to change
sign a second time if they were to match onto Eq.~4!. When
the exact solution is extended in towards the origin one m
encounter a second horizon and/or a singularity at a fi
radius.2

But there is a loophole in these arguments, related to
observation that an exact solution of the form in Eq.~6! is
not the unique solution in the weak gravity region@2#. As
discussed in the next section, there are other solutions
volving the massive modes in the theory, giving rise to so
tions involving terms of the Yukawa potential type. Thus t

2The singularity could be impassable. There is also the possib
of a violent singularity at the origin of a type not amenable to
series expansion. Note that some kind of singularity is expecte
the case thatM is negative, since a nonsingular negative ene
solution would imply that Minkowski space is not stable@7#.
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real question is what happens when a more general exte
solution, which is Newtonian plus Yukawa in form at larger,
is continued in towardsr 50.

To shed light on these issues it would be best to mak
direct analysis of a theory with six or more derivative
where the only solutions are nonsingular at the origin. B
the complexity of those equations will constrain our pres
work to a numerical study of the 214 derivative theory. We
will investigate how the various solutions existing near t
origin of the 214 derivative theory join onto the weak
gravity large-r solutions. We are once again dealing wi
solutions of truncated theory in a region where the trunca
theory is not justified, but it will be of interest to compa
and contrast these solutions to the Schd solution.

III. DOMAINS OF STRONG GRAVITY

The action of the general 214 derivative theory can be
cast in the form

S5
1

16pGE d4xA2g~R1aR21bRmnRmn!. ~7!

We first consider thelinearizedversion of this theory, where
the equations forA(r ) andB(r ) have five independent solu
tions @2#. For a weak constraint ona andb, assumed here to
be satisfied, four of the solutions have exponential dep
dence. The two that grow exponentially withr are discarded
to satisfy boundary conditions at infinity. This leaves t
Newtonian solution and two solutions that resemble Yuka
potentials. For any physical matter distribution the Yuka
potential terms will coexist with the Newtonian term in th
exterior solution~an example is given in@2#!. One of the
Yukawa potential terms has a repulsive sign, reflecting
ghost-like nature of the massive mode. The Yukawa pot
tials are typically swamped by the Newtonian term and of
little chance of detection in weak gravity solutions@2,4#.

On the other hand, the mere existence of the Yukawa
tential terms for some matter distribution for which linea
ized gravity is applicable proves that the exact Schd solu
of the full 214 derivative theory is not the true exterio
solution @4#. There is also no reason to expect it to be t
relevant solution when there is sufficient matter density
cause the Schd horizon to form. We must study other ex
solutions of the theory that take a Newtonian plus Yuka
form in the exterior region.

Such solutions can be markedly different from the Sc
solution in the interior region. In particular the region of hig
curvature and strong gravity can be larger than in the S
solution. The idea that a region of Planck scale curvature
be of macroscopic size is not conceptually new since,
described in the introduction, this is already is implied by t
Schd solution. If strong gravity extends out to nearly t
radius of the would-be Schd horizon, thenA(r ) and B(r )
could retain their weak gravity signs for allr, and a horizon
need not exist.

This possibility turns out to be illustrated by the oth
class of solutions in the 214 derivative theory that are sin
gular near the origin. Close to the origin they have the fo
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A~r !5a2r 21a3r 31a4r 41 (
n>5

anr n,

B~r !5b2r 21
a3

a2
b2r 31

6a2a41a3
212a2

3

8a2
2

b2r 41 (
n>5

bnr n.

~8!

We shall be concerned witha2 ,b2.0, whereb2 is sensitive
to a rescaling oft. The existence of these solutions up tor 3

was shown in@2#. We have found that these are 5 parame
solutions where the parameters (a2 ,a3 ,a4 ,a5 ,b5) determine
(an ,bn) for n>6, for a given action. The leading behavi
of the curvature invariants @R,RmnRmn,RmnsrRmnsr]

is @(22a3a2
3110a2a3a42a3

3260b5a2
3136a5a2

2)/(4a2
4r ),

12/(a2
2r 8),24/(a2

2r 8)], to be compared with@0, 0,;1/r 6] for
the Schd solution. We note here that any nonsingular m
distribution only affects (an ,bn) for n>10.

It is an interesting coincidence that there are five para
eters here, just as in the linearized gravity solutions. T
lends support to the idea that full solutions exist which jo
together the strong gravity smallr solutions with the weak
gravity large r solutions. A numerical verification is mad
somewhat difficult by the existence of exponentially growi
solutions at larger, and by the extremely singular behavi
of the equations at smallr away from the exact solutions. I
particular, a numerical analysis based on the initial va
problem atr 50 is not feasible. Instead the following stra
egy was adopted.

At some finiter 0 in theweakgravity region initial condi-
tions are chosen so as to deviate only very slightly from
Schd solution, and the equations are numerically integra
for r both larger and smaller thanr 0. The Yukawa potential
modes are induced and they grow for decreasingr. This can
cause the solution to deviate significantly from the Schd
lution around the would-be horizon region, and rather th
changing sign, bothA(r ) andB(r ) can stay finite and posi
tive throughout this region and down tor 50. The initial
conditions atr 0 are then finely tuned so thatA(r ) andB(r )
nearr 50 take the form of the known solution in Eq.~8! to
O(r 4).

Additional fine tuning is needed to remove the unwan
modes that grow exponentially withr. But it is easier just to
repeat the whole process for a largerr 0 where the required
deviation from the Schd solution is smaller; then the am
tude of the unwanted modes is smaller and a sensible
merical solution extends out to largerr. It appears that the
extent to which one can push this is a purely numerical lim
tation, and that these numerical results are sufficient to d
onstrate the existence of exact solutions of this type.

We display one of these numerical vacuum solutions
Fig. 1, where we plot the functions2 ln„A(r )… and ln„B(r )….
These functions coincide~after a suitable rescaling oft) with
each other and with the Schd solution in the weak grav
region, exterior to the would-be horizon. We have chosea
5G/2 andb52G in Eq. ~7! to simplify the equations some
what ~corresponding, in the linearized theory, to equ
masses for the two massive modes!, but the basic propertie
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of the solutions are independent of this choice. The massM
as deduced by the larger behavior in this example is
10G21/2. LargerM has also been considered and there d
not seem to be any limitation, other than numerical, to
cover arbitrarily large mass solutions.

The new solutions have no horizon and a singularity at
origin. Their interior form, and the point where deviatio
from the Schd solution occurs, is not uniquely determined
M. This is as expected given the additional parameters g
erning the strength of the Yukawa potentials in the exter
solution, and the five parameters in Eq.~8!. We also find that
a2;G23M 24, which is consistent with the curvature in
variant RmnsrRmnsr being of Planck size close to th
would-be horizon, even for a large mass object. Of cou
this is how the usual arguments for the existence of a hori
are avoided, since the uniqueness of the Schd solution re
on small curvatures and the applicability of general relativ
down to radii well within the horizon.

This solution is intriguing, but it is occurring in a theor
arbitrarily truncated in derivatives, and the solution involv
a region of high curvature where higher derivative ter
would be important. On the other hand, the Schd solut
suffers from exactly the same problems. As in that case
may want to presume that the higher derivative terms be
ignored would serve to smooth out the singularity at t
origin while retaining the main qualitative feature, the fa
that the transition between weak and strong gravity
moved out to the would-be horizon radius.

IV. NONSINGULAR SOLUTIONS

We shall now turn to the nonsingular solutions of the
14 derivative theory, where additional insights w
emerge.3 A spherically symmetric nonsingular matter distr
bution will act as a source for these solutions. We choos

3We keep in mind though that these solutions need not be t
representative of the nonsingular solutions in theories with e
more derivatives.

FIG. 1. A solution of the 214 derivative theory with no horizon
and a singularity at the origin, which matches onto the Schd s
tion with M510 close to its horizon atr 520 ~in units with G
51). A(r ) andB(r ) exhibit anr 2 dependence nearr 50.
0-4
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FATE OF SINGULARITIES AND HORIZONS IN . . . PHYSICAL REVIEW D66, 084010 ~2002!
study incompressible matter, wherer(r ) will be given a
fixed profile and the theory will determine the required pr
sure p(r ). In particular we taker(r )5r0exp(2r2/R 2).
Thus far we are only successful by takingR of order the
Planck lengthAG, but this seems to be purely a limitation o
the numerical strategy which we now describe. Noting t
equations cannot be directly integrated fromr 50, we use
the series expansion in Eq.~4! to O(r 12) and express al
coefficients in terms ofa2 , b2 , p0 and r0. This is used to
provide the initial conditions for the differential equations
a small finite value ofr, where the series solution can b
trusted. The equations can then be numerically integrated
from this point to larger. For a givenr0, a tedious search o
the (a2 ,b2 ,p0) parameter space is then needed to match o
the weak gravity exterior solution, with the additional co
straint thatp(r )→0 for r @R. We display one of these so
lutions in Fig. 2; our choice here and in the following isR
54AG/3.

With the usual definition of massM[*r(r )4pr 2dr we
haveM}r0 for fixed R. In general relativity the pressure a
the origin p0 increases with increasingM, and p0 becomes
infinite at a finiteM. The whole notion of gravitational col
lapse is based on this basic behavior, but we find a qua
tively different behavior in the 214 derivative theory. We
refer to our derivedM (p0) in Fig. 3 where for smallp0 and
M, p0 increases withM, but more slowly than in genera
relativity ~GR!. The higher derivative terms are acting
reduce the tendency to collapse, andp0 is still finite at the
particular mass that first causes infinitep0 in GR. p0 contin-
ues to increase for increasingM until the strong gravity ef-
fects cause a peculiar phenomenon; a maximum valueMmax
occurs at a finitep0. After this pointp0 continues to increase
while M decreases.

Connected with this behavior is the fact that, unlike G
the physical massM of the object as deduced by the exteri
solution is not the same asM, the volume integral ofr(r ).
From Fig. 3 we see thatM is smaller thanM for small p0,
while the reverse happens for sufficiently largep0. In the
latter case strong gravity contributions are responsible fo

FIG. 2. A nonsingular solution of the 214 derivative theory for
the smooth mass distribution withR54/3 andM51.1 in Planck
units. For the same distribution the dotted line shows ln„B(r )… from
general relativity, which yields vanishingB(r ) and infinite pressure
at some radius.
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increasing fraction of the totalM, which decreases muc
less rapidly thanM for increasingp0. We note that the maxi-
mum valueMmax is achieved when the scalar curvatureR at
the origin switches sign, being positive~negative! on the low
~high! pressure side ofMmax. The example in Fig. 2 corre
sponds toM'Mmax.

Even though theM (p0) curve in Fig. 3 is derived for an
incompressible material, it has implications for massive o
jects with more physical equations of state. For the m
standard part of the curve wherep0 is growing withr0 ~re-
memberr0}M ), p0 /r0 is also growing. Thus when mor
matter is added to a given volume the object may or may
be able to support the required increase in pressure, dep
ing on its equation of state. If not, gravitational collap
ensues. On the other part of the curve,p0 decreaseswith
increasingr0. Thus adding more matter to a given volum
will tend to decrease the required pressure, and the requ
p0 /r0 decreases even more. Then the matter exerts too m
pressure and the object will tend to expand in size rather t
contract. Thus the usual tendency for gravitational collaps
absent on this part of the curve. The crossover between
two types of behavior occurs at the value ofp0 /r0 at Mmax;
for our example withR54AG/3 this is 0.39.

It remains to be checked whether this basic picture s
vives for much largerR. The question is whether aM (p0)
curve corresponding to a larger volume, which would
above the one in Fig. 3, has the same general shape. Bu
present numerical approach is not powerful enough to d
with this question.

Finally, the concept of a maximum mass at a finite pr
sure leads to the following question. Suppose we start w
the maximum mass configuration; what happens if the m
in the fixed volume is increased still further? As in gene
relativity, we may expect that a curvature singularity shou
develop at the origin. If so then the solution should transfo
into one of the solutions of the previous section; we ha
already mentioned that the presence of a nonsingular m
distribution would only affect those solutions at ord
O(r 10). By continuity it seems appropriate that the new co
figuration would maintain a finitep0. In this way it appears
that the ‘‘maximum mass at finite pressure’’ property of t

FIG. 3. The mass in a fixed volume versus the pressurep0 at the
origin. M is the volume integral of the matter energy density andM
is the mass deduced from the exterior solution. Both definitio
apply to the mass in general relativity,MGR.
0-5
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nonsingular solution is related to the existence of the sing
class of solutions. Unlike general relativity, the transiti
from a nonsingular solution to a singular one does not lea
the appearance of a horizon.

V. THE de SITTER HORIZON

Another horizon of physical interest occurs in the de S
ter metric, which in the static coordinate system has

B~r !512
L

3
r 2, A~r !51/B~r !. ~9!

The physical region is interior to the horizon atr 5A3/L and
for small cosmological constant it is a weak gravity, sm
curvature region withR54L. But we may wonder whethe
the weak gravity region can border on a strong gravity reg
in such a way that there is no horizon, with the border be
roughly the location of the would-be horizon. We will fin
that actions containing terms with six or more derivatives
necessary to deal with this question. Thus we must rely
on numerical analysis and more on series expansions, bo
the weak and strong gravity regions. We find results that
consistent with the idea of horizon elimination.

First we note that the de Sitter metric when expand
about the origin is a member of the nonsingular class
solutions in Eq.~4!. We are interested in other solutions
this class where the scalar curvatureR is close to being con-
stant, departing significantly from 4L only when the
would-be horizon is approached. We can write such soluti
to theories with a cosmological constant and no matter in
form

A~r !51YX12S L

3
2« D r 2C1(

i>2
a2i r

2i ,

B~r !512S L

3
1« D r 21(

i>2
b2i r

2i . ~10!

The parameter« characterizes the deviation from the de S
ter metric. The coefficientsai andbi vanish with« and they
also depend onL and the action being considered.

For the 214 derivative action we find that solutions wit
a nonzero« do not in fact produce a departure ofR from 4L.
Actions with more derivatives are required for this to ha
pen; in addition such actions cause theL in Eq. 10 to shift
by an amount of orderL3 from the cosmological constant i
the action. When this is taken into account we find that a«
expansion gives3

R54L1«2f L~r 2!1•••. ~11!

f L(r 2) has a nonvanishingL50 limit and f L(0)50. By
taking « appropriately small we can suppose thatuR24Lu
will remain small until r approaches the would-be horizo
Numerically we find that« has to be exponentially smal
this is reminiscent of the exponentially small departure fr
the Schd solution in the exterior region discussed in the p
vious sections.
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To explore the larger strong gravity region we expand th
equations in powers of 1/r . We find a new one-paramete
family of solutions that can only arise when six or mo
derivative terms appear in the action. These new soluti
are typically a corrected form of the anti-de Sitter–Schd m
ric, since pure AdS-Schd solutions only occur for specializ
actions. The appearance of corrections are not unexpe
given the corrected Schd metric in Eq.~6!. The leading cor-
rections are deduced by solving the equations to the ap
priate order in 1/r , and we find4

A~r !51YS 11
L̂

3
r 222GM/r D 1â8G5M2/r 81•••,

B~r !511
L̂

3
r 222GM/r 1b̂6G4M2/r 61•••. ~12!

These are strong gravity solutions since the positiveL̂ is
fixed by the theory to be Planckian in size,L̂'1/G. The
dimensionlessb̂6 and â8 constants are also determined b
the action being considered, whereasM is the free parameter

If the corrections were absent then the scalar curva
would be 24L̂ and there would be a horizon atr
5(6GM/L̂)1/3'G2/3M1/3 for largeM. But at larger the cor-
rections modify the scalar curvature as follows:

R524L̂2
2â8

3

G5L̂2M2

r 6
1•••. ~13!

Thus in the vicinity of the would-be horizon the departur
from the pure AdS-Schd metric are becoming large, and
what actually happens there is not known. Note that t
modification of the horizon region has emerged autom
cally from the general solution. The one parameterM can
then be adjusted so that the radius of this would-be horizo
in the vicinity of the would-be horizon of the weak gravit
interior solution. In both the interior and exterior region
A(r ) andB(r ) are positive, and so the matching of solutio
can occur without a horizon.

These results are of course not sufficient to prove
existence of an exact solution that joins together the sm
and larger behaviors we have described, but the results
consistent with such a solution. A numerical analysis of t
horizon-free possibility remains to be performed. The res
ing picture is of a large mass object in a strong AdS sp
that has as its interior a weak dS space. The ‘‘mass of
universe’’M'G22L23/2 is enormous, since it is of order
Planckian mass density times the volume of the inter
space.

VI. CONCLUSION

We have studied static spherically symmetric solutions
higher derivative gravity, and have found that when there

4Actions with 6 and 8 derivatives were considered.
0-6
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six or more derivatives the solutions are typically nonsing
lar near the origin. But the nature of these solutions imp
that the complete solutions with Newtonian larger behavior
must have an even number of horizons. Our study of 214
derivative gravity provides some insights into how a solut
with a strong gravity core region can realize the zero horiz
option. The region of strong gravity extends out to the rad
of the would-be horizon, which then negates the usual a
ments for the existence of a horizon. We exhibited horiz
free solutions of this type that were singular at the origin
remains to show how this picture persists in the higher
rivative theories where solutions are always nonsingula
the origin.

We also discussed some unexpected properties of non
gular solutions in 214 derivative gravity that affect the in
evitability of gravitation collapse. A high pressure accum
lation of matter can have the property that increasing ene
density corresponds to decreasing pressure. Associated
this is a maximum for the amount of matter in the giv
volume. This sounds familiar, but in this case horizons a
black holes play no role. Rather, the maximum mass confi
ration corresponds to a particular finite pressure at the ori
and this configuration can be approached from both the
pressure and high pressure sides. Numerical limitations c
oi
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D
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fined our study of this phenomena to Planck mass obje
and so it remains to extend this picture to much larg
masses.

It could be expected that strong gravity and higher deri
tives would help to resolve singularities. But we have se
that a transition region from weak to strong gravity can a
take the place of a horizon. Of most interest are solutio
that are nonsingular and same-sign everywhere; such s
tions have to be investigated in theories with six or mo
derivatives to see whether they exist for smooth mass di
butions of arbitrary energy density. We have seen in the p
vious section that theories with six or more derivatives
necessary to describe the possible elimination of the de S
horizon. In both the Schd and de Sitter cases the deviat
in the weak gravity regions are exponentially small until t
would-be horizon is reached. It remains to be seen whe
regions of strong gravity can be intruding on our weak gra
ity universe.
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