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Fate of singularities and horizons in higher derivative gravity
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We study static spherically symmetric solutions of high derivative gravity theories, with 4, 6, 8 and even 10
derivatives. Except for isolated points in the space of theories with more than 4 derivatives, only solutions that
are nonsingular near the origin are found. But these solutions cannot smooth out the Schwarzschild singularity
without the appearance of a second horizon. This conundrum, and the possibility of singularities at finite
leads us to study numerical solutions of theories truncated at four derivatives. Rather than two horizons we are
led to the suggestion that the original horizon is replaced by a rapid nonsingular transition from weak to strong
gravity. We also consider this possibility for the de Sitter horizon.
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. INTRODUCTION A(N)=1+a,r2+- -
The vacuum Schwarzschil@Schd solution of general B(r)=b(1+byr?+-..). 2

relativity suffers from a singularity at=0, but perhaps a

more meaningful observation is that the Schd solution canndf this caseR=6(a,—b,) atr=0 and the higher invariants
be trusted in a finite region enclosing the origin. At a nonzercre polynomials ira, andb,. (The constanb is affected by
radius inside the horizon a curvature invariant has grown a8 rescaling ot and can be ignorefThe important point is
large as the Planck mass scale, at which point the Einsteitf@t A(0) is fixed to be unity. But inside the horizon of the
action should no longer provide the correct description. Fochd solutionA(r) is negative, a fact directly connected with

example in the standard Schd coordinate systenﬁhe existence of the Schd horizon where th(_e signgé\(@f) _
RMWPR“W’J=48GZM2/r6, and thus the Schd solution antii(r()) c_himge.;hen_to m;ltch or_lto a nqns(jln%ular solution
breaks down at a radius of order=(48G*M?) 6. For large V! \(0)=1 another sign change is required. To preserve a
M this is much smaller than the horizon siz€ R, but it is time-like directionB(r) must also change sign again. Thus

A(r) and B(r) must each have an even number of sign
much larger than the Planck_leng@. . o changes betweern=0 andr =, rather than the single sign
There have been discussions within general relativity o

. : ; rIchange implied by a single horizon.
how the diverging curvatures can be tanjél If a suitable Given this result, a theory of gravity capable of describing

matter distribution is postulated and allowed to violate thep|gnck scale physics should address the following three
strong energy condition, then nonsingular black-hole-like sogestions. Are these metrics that describe large but nonsin-
lutions do arise. Although the curvatures in the core regionyylar curvatures near the origin actually solutions to the
are now finite they are still characterized by the Planck scaleheory? Do solutions that are singular at the origin continue
and thus the Einstein action can only provide a crude deto be present, or are they banished altogether? How does a
scription. But an interesting aspect of such solutions is théionsingular solution at the origin match onto a sensible so-
appearance of a second horizon, in the vicinity of lution at larger while experiencing an even number of sign
No matter what the theory is or what matter is present, itthanges, without encountering a singularity at a fine
appears that nonsingular spherically symmetric static solu- To model Planck scale physics we consider theories
tions can never have only one horizon. In the standard coomwhere the Einstein action is extended to include terms with
dinate system the metric of interest is more factors of the curvature tensor and its covariant deriva-
tives. We will explicitly study spherically symmetric static
solutions of these higher derivative theories truncated at vari-
ds?=—B(r)dt?+ A(r)dr?+r2(d6?+sirf0¢?). (1)  ous orders in derivatives. In particular we will construct so-
lutions as a series expansion about the origin for theories
with 6, 8 and even 10 derivatives. And for the general theory

If the curvature invariant® R,,R*", R,,,,R**?... are truncated at four derivatives we will be able to construct
to be nonsingular at the origin, what does this imply aboutumerical solutions that interpolate between the small curva-
the behavior ofA(r) andB(r)? For smallr we find that ture, weak gravity behavior at largeand the high curvature,

strong gravity behavior at small Some aspects of our re-
sults may be true at any order in the derivative expansion.
*Electronic address: bob.holdom@utoronto.ca In the 2+ 4 derivative theorythe theory with the Einstein
Yn lieu of a proof we have scanned through a variety of powerterm and the general set of 4 derivative teynise Schd
law behaviors ofA(r) and B(r) near the origin and a variety of solution is still present. Referen¢2] applied the series ex-
curvature invariants, similar to our scan for solutions in the nextpansion approach to this theory to find, in addition to the
section. Schd solution, another class of singular solutions and a class
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of nonsingular solutions. But it was not known which, if any, occurs; now the picture is inside-out with wedagtrong
of these alternative solutions near the origin could matchgravity on the insiddoutsidg. We conclude in Sec. VI.
onto the desired weak gravity solution at langeOur nu-
merical work shall clarify these issues.

Although the 2+4 derivative theory has a variety of so- Il. SOLUTIONS NEAR THE ORIGIN
lutions near the origin, we find that only one class of solu- ) o ) )
tions remains for the typical action with more derivatives. Ve consider a general gravitational action with any num-
This turns out to be the nonsingular class of solutions, having€" Of derivatives. The field equatiofs,,=T,, determin-
the expected proper#§(0)=1. Such solutions are found for M9 A(r) andB(r) can be found by substituting the metric
any action considered. It is perhaps not surprising that nonl) into the action and varying with respect #(r) and
singular solutions exist, since spherically symmetric staticB("); this givesH,, andHy; respectivelyH,, can then be
solutions that are everywhere weak, produced for exampl&und from the Bianchi identity2]:
by a low density matter distribution, must be recovered.
More surprising is thasingular solutions, if they exist at all,
only exist for very particular actions, of measure zero in the Cr3(Hy )\ rPH rPB'H rPB'Hy
space of theorieAmong these very particular theories are 00— A "B T 4B2
those that have received some attention. For example the
Schd solution continues to exist in theories where only pow-

ers of the curvature scal& appear in the actiof8].) We first look for nonsingular solutions in the presence of a
This is not to say that solutions with singularities don’t smooth matter distribution with finite energy and pressure.
exist; the typical unphysical solution would involve a curva-  For our purposes we define nonsingular metrics as those
ture singularity at a finitg. But to find nonsingular black-  without curvature singularities, and we have already said that

hole-like solutions our previous discussion indicates that Wey,,ch metrics must haw(0)=1. It is interesting to see how
must search for solutions with several sign flips. This appearg,g emerges as a property of solutions to the field equations.
difficult to accomplish in higher derivative theories, either\ynen A(0) and B(0) are nonzero and finite the leading
analytically or numerically, and it is not the focus of this (gyms in the field equations for small behave like 1"
work. Rather we shall be more concerned with how a Corgyheren is the maximum number of derivatives in the action.
region of strong gravity matches onto a weak gravity large Thjs pehavior arises from the terms with no derivatives of
region without any change of sign of metric components, anc(ry and B(r), which nevertheless arise fromderivative
thus with no horizons. terms in the action. The coefficient of therLterm in each

Befcl)re Iaunc_hinghintg the study of th_ese_solll;tior;s, it iSequation is proportional to a polynomial &(0), andthese
natural to question the derivative expansion itself. Of course o mials vanish iffA(0)=1. This result is thus intrinsi-

a derivative expansion truncated at some finite order ha ally connected with the nonlinearity of the theory.

problems Wlth physical interpretation; in pa}rtlcu!ar it suffers_ Al the terms behaving like inverse powers ofin the
from negative energy ghost modes when linearized. But this

problem is entangled with the effects of truncation and Iin_equations must vanish, and this leads to solutions of the form
earization; it is not fundamental in the sense that the under-

lying theory, from which the derivative expansion is derived,

should be quite sensible. Evidence of the role of nonlineari- AN =1+a,r2+ > a,rm

ties in resolving the ghost problem was found for a different n=4

class of metrics of Friedmann-Robertson-WalkgRW)

form in[5], where ghost modes were found to decouple from

positive energy matter when the nonlinear solutions were

considered. In any case results that hold at arbitrary order in B(r)=1+byr2+ > byr". (4)
the nonlinear derivative expansion, such as the existence of n=4

nonsingular solutions near the origin as described above,

would appear to carry some significance. , ) . . .
The solutions near the origin and their implications areWVe find that solutions of this form exist for general actions,

discussed in more detail in the next section. In Secs. Il an@"d We have tested actions up to 10 derivatiegsandb,

IV we turn to the general 2 4 derivative theory and numeri- are free parameters of these solutions except for isolated
cally analyze the non-Schd solutions that are respectivelpoints in theory space. One such exception is general rela-
singular and nonsingular near the origin. We show how thes@vity, wherea, andb, are determined by the energy density
solutions match onto the desired weak gravity solutions a@nd pressure at the origin.

larger, and in particular that they do so without encountering We now consider the possibility of singular solutions. To
horizons. In Sec. V we turn to the de Sitter space, which irfind other solutions near the origin we look for other cases
static coordinates also has a horizon at a finite radius. Herehere the leading terms in therléxpansion of the field

we again explore the idea that the horizon is replaced by aquations vanish for special choices of thé) and B(r)
boundary where a transition from weak to strong gravityexpansion parameters:

©)
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A(r)=a,r+a, r*t+---, real question is what happens when a more general exterior
solution, which is Newtonian plus Yukawa in form at lange
B(r)=bgrf+bg, rf 4. ... (5) s continued in towards=0.

To shed light on these issues it would be best to make a
Note that both the leading and next-to-leading parametergirect analysis of a theory with six or more derivatives,
can appear in the leading terms in the field equations. If sucyhere the only solutions are nonsingular at the origin. But
a case is found then the expansion can be tested as a solutigie complexity of those equations will constrain our present
at higher orders. Since various powers tfandr” appearin  work to a numerical study of the-24 derivative theory. We
the nonlinear field equations it would seem miraculous towill investigate how the various solutions existing near the
find solutions witha and 8 noninteger; in any case we have origin of the 2+4 derivative theory join onto the weak-
restricted the search to integerand 8. Our search is also gravity larger solutions. We are once again dealing with
blind to solutions that are not amenable to a series expansiagplutions of truncated theory in a region where the truncated
at the origin. theory is not justified, but it will be of interest to compare
We have performed a scan through a range of values of and contrast these solutions to the Schd solution.
and B for a range of actions. In the case of the general 2
+4 derivative theory the scan yields the three sets of solu-
tions found in[2]: the nonsingular solutions in E¢4) with
(a,B)=(0,0), the Schd solution witha/,8)=(1,—1), and The action of the general-24 derivative theory can be
another set of singular solutions to be described below witltast in the form
(a,B)=(2,2). For actions with more derivatives only the
nonsingular solutions remain, except for specialized actions 1 . 5 ,
where various terms are set arbitrarily to zero. S= RJ d*x\=g(R+aR+bR,,R*).  (7)
The result then is that the static spherically symmetric
solutions of a typical high derivative theory are not singularye first consider théinearizedversion of this theory, where
at the origin. If singularities occur, they occur at a nonzergy,q equations foA(r) andB(r) have five independent solu-
radius. , o , tions[2]. For a weak constraint om andb, assumed here to
_ We stress again that the Schd solution is a generic Solyse gatisfied, four of the solutions have exponential depen-
tion only in theories truncated at two derivativegeneral  §ence. The two that grow exponentially witrare discarded
relativity) or fpur derivatives. In typicalitheorie.s with six or to satisfy boundary conditions at infinity. This leaves the
more derivatives the Schd solution will remain only as anyewtonian solution and two solutions that resemble Yukawa
approximate weak gravity solution in the largeregion  stentials. For any physical matter distribution the Yukawa
where the Einstein term dominates. In fact by examining &qential terms will coexist with the Newtonian term in the
series expansion inLbf the field equations around the Schd gyierior solution(an example is given ifi2]). One of the
solution one findgsee alsd6]) that the corrections have the v,kawa potential terms has a repulsive sign, reflecting the
form ghost-like nature of the massive mode. The Yukawa poten-
_ _ a4Nn27,6 tials are typically swamped by the Newtonian term and offer
A(r)=1(1=2GM/r) + O(G"M™Ir®), little chance of detection in weak gravity solutiof&4].
B(r)=1—2GM/r+O(G*M?/r®). (6) Qn the other hand, the mere .exi.sterjce of the Yukgwa po-
tential terms for some matter distribution for which linear-

Once again we see that the Schd solution is a good approxized gravity is applicable proves that the exact Schd solution
mation to an exact solution down to a radius well within theof the full 2+4 derivative theory is not the true exterior
horizon, implying thatA(r) andB(r) would have to change solution[4]. There is also no reason to expect it to be the
sign a second time if they were to match onto Et). When  relevant solution when there is sufficient matter density to
the exact solution is extended in towards the origin one musgause the Schd horizon to form. We must study other exact
encounter a second horizon and/or a singularity at a finit§olutions of the theory that take a Newtonian plus Yukawa
radius® form in the exterior region.

But there is a loophole in these arguments, related to the Such solutions can be markedly different from the Schd
observation that an exact solution of the form in E@). is solution in the interior region. In particular the region of high
not the unique solution in the weak gravity regif]. As curvgture anq strong gravny can be larger than in the Schd
discussed in the next section, there are other solutions irgolution. The idea that a region of Planck scale curvature can
volving the massive modes in the theory, giving rise to solube of macroscopic size is not conceptually new since, as

tions involving terms of the Yukawa potential type. Thus thedescribed in the introduction, this is already is implied by the
Schd solution. If strong gravity extends out to nearly the

radius of the would-be Schd horizon, thér) and B(r)

?The singularity could be impassable. There is also the possibiliygould retain their weak gravity signs for alland a horizon
of a violent singularity at the origin of a type not amenable to aneed not exist.
series expansion. Note that some kind of singularity is expected in This possibility turns out to be illustrated by the other
the case thaM is negative, since a nonsingular negative energyclass of solutions in the 24 derivative theory that are sin-
solution would imply that Minkowski space is not stapig. gular near the origin. Close to the origin they have the form

IIl. DOMAINS OF STRONG GRAVITY
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A(r)=a,r2+asr3+a,rt+ >, a

n=5 101
—In(A(r))
a 6a,a,+as+2ad 5]
B(r)=b,r?+ —3b2r3+“—;’2b2r4+ > b,
a 8a5 n=5 r

8 ° s

We shall be concerned witd, ,b,>0, whereb, is sensitive
to a rescaling of. The existence of these solutions uprfo o]
was shown irf2]. We have found that these are 5 parameter ~
solutions where the parametees, (az,a4,as5,bs) determine
(a,,b,) for n=6, for a given action. The leading behavior
of the curvature invariants[R,R,,R*",R,,,,R*"""] FIG. 1. A solution of the 2-4 derivative theory with no horizon

is [(22a333+ 10a,aza,— ag_ 60b5ag+ 36a5a§)/(4a‘2‘r), gnd a.singularity at the origin, Which matches onto .the Sphd solu-
12/(a§rg),24/(a§rg)], to be compared witho, 0, ~ 1/r ] for tion with M=10 close to its h20r|20n at=20 (in units with G

the Schd solution. We note here that any nonsingular masgl)' A(r) andB(r) exhibit anr® dependence near=0.
distribution only affects §,,,b,,) for n=10.

It is an interesting coincidence that there are five paramof the solutions are independent of this choice. The rass
eters here, just as in the linearized gravity solutions. Thi®s deduced by the large behavior in this example is
lends support to the idea that full solutions exist which join10G™ "2 LargerM has also been considered and there does
together the strong gravity smallsolutions with the weak not seem to be any limitation, other than numerical, to re-
gravity larger solutions. A numerical verification is made cover arbitrarily large mass solutions.
somewhat difficult by the existence of exponentially growing  The new solutions have no horizon and a singularity at the
solutions at large, and by the extremely singular behavior origin. Their interior form, and the point where deviation
of the equations at smailaway from the exact solutions. In from the Schd solution occurs, is not uniquely determined by
particular, a numerical analysis based on the initial valueM. This is as expected given the additional parameters gov-
problem atr =0 is not feasible. Instead the following strat- erning the strength of the Yukawa potentials in the exterior
egy was adopted. solution, and the five parameters in E§). We also find that

At some finiter , in the weakgravity region initial condi-  @;~G~®M ~*%, which is consistent with the curvature in-
tions are chosen so as to deviate only very slightly from thevariant R,,,,,R*"? being of Planck size close to the
Schd solution, and the equations are numerically integrategould-be horizon, even for a large mass object. Of course
for r both larger and smaller than. The Yukawa potential this is how the usual arguments for the existence of a horizon
modes are induced and they grow for decreasirthis can  are avoided, since the uniqueness of the Schd solution relies
cause the solution to deviate significantly from the Schd soon small curvatures and the applicability of general relativity
lution around the would-be horizon region, and rather tharflown to radii well within the horizon.
changing sign, boti\(r) andB(r) can stay finite and posi- This solution is intriguing, but it is occurring in a theory
tive throughout this region and down to=0. The initial ~ arbitrarily truncated in derivatives, and the solution involves
conditions atr, are then finely tuned so tha({(r) andB(r) a region of high curvature where higher derivative terms
nearr =0 take the form of the known solution in E(B) to would be important. On the other hand, the Schd solution
o(r?). suffers from exactly the same problems. As in that case one

Additional fine tuning is needed to remove the unwantedMay want to presume that the higher derivative terms being
modes that grow exponentially with But it is easier just to ignored would serve to smooth out the singularity at the
repeat the whole process for a larggrwhere the required  ©rigin while retaining the main qualitative feature, th_e fact
deviation from the Schd solution is smaller; then the ampli-that the transition between weak and strong gravity has
tude of the unwanted modes is smaller and a sensible ninoved out to the would-be horizon radius.
merical solution extends out to larger It appears that the
extent to which one can push this is a purely numerical limi-
tation, and that these numerical results are sufficient to dem-
onstrate the existence of exact solutions of this type. We shall now turn to the nonsingular solutions of the 2

We display one of these numerical vacuum solutions in+4 derivative theory, where additional insights will
Fig. 1, where we plot the functionsIn(A(r)) and INB(r)).  emerge’ A spherically symmetric nonsingular matter distri-

These functions coincid@fter a suitable rescaling 6f with  bution will act as a source for these solutions. We choose to
each other and with the Schd solution in the weak gravity

region, exterior to the would-be horizon. We have choaen
=G/2 andb=—G in Eq.(7) to simplify the equations some-  3we keep in mind though that these solutions need not be truly

what (corresponding, in the linearized theory, to equalrepresentative of the nonsingular solutions in theories with even
masses for the two massive mogdsut the basic properties more derivatives.

In(B(r))

IV. NONSINGULAR SOLUTIONS
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FIG. 3. The mass in a fixed volume versus the prespyie the
origin. M is the volume integral of the matter energy density ard
is the mass deduced from the exterior solution. Both definitions
apply to the mass in general relativityl gk -

FIG. 2. A nonsingular solution of the-24 derivative theory for
the smooth mass distribution witR=4/3 andM=1.1 in Planck
units. For the same distribution the dotted line showB(n)) from

general relativity, which yields vanishirig(r) and infinite pressure ) ) ]
at some radius. increasing fraction of the totaM, which decreases much

less rapidly thamM for increasingp,. We note that the maxi-

study incompressible matter, whepdr) will be given a  mum valueM . is achieved when the scalar curvatiReat
fixed profile and the theory will determine the required presthe origin switches sign, being positiyeegative on the low
sure p(r). In particular we takep(r)=poexp(~r¥R?).  (high) pressure side ol ... The example in Fig. 2 corre-
Thus far we are only successful by takifig of order the  sponds toM~M .
Planck length/G, but this seems to be purely a limitation of ~ Even though thev (p) curve in Fig. 3 is derived for an
the numerical strategy which we now describe. Noting thaincompressible material, it has implications for massive ob-
equations cannot be directly integrated fremO, we use jects with more physical equations of state. For the more
the series expansion in E¢4) to O(r'?) and express all standard part of the curve whepg is growing with p, (re-
coefficients in terms of,, b,, py andpy. This is used to  memberpy=M), po/p, is also growing. Thus when more
provide the initial conditions for the differential equations at matter is added to a given volume the object may or may not
a small finite value ofr, where the series solution can be be able to support the required increase in pressure, depend-
trusted. The equations can then be numerically integrated oitig on its equation of state. If not, gravitational collapse
from this point to large. For a giverp,, a tedious search of ensues. On the other part of the curyg, decreaseswith
the (@,,b,,po) parameter space is then needed to match ontincreasingp,. Thus adding more matter to a given volume
the weak gravity exterior solution, with the additional con-will tend to decrease the required pressure, and the required
straint thatp(r)—0 for r>"7R. We display one of these so- p,/p, decreases even more. Then the matter exerts too much
lutions in Fig. 2; our choice here and in the followings  pressure and the object will tend to expand in size rather than
=4/G/3. contract. Thus the usual tendency for gravitational collapse is

With the usual definition of masMl=[p(r)4=r2dr we  absent on this part of the curve. The crossover between the
haveM « p,, for fixed R. In general relativity the pressure at two types of behavior occurs at the valuepgf/ pg at M pax;
the origin p, increases with increasinifl, and p, becomes  for our example withR =4./G/3 this is 0.39.
infinite at a finiteM. The whole notion of gravitational col- It remains to be checked whether this basic picture sur-
lapse is based on this basic behavior, but we find a qualitarives for much largefR. The question is whether M (pg)
tively different behavior in the 24 derivative theory. We curve corresponding to a larger volume, which would lie
refer to our derivedV (po) in Fig. 3 where for smalpy and  above the one in Fig. 3, has the same general shape. But our
M, pg increases withM, but more slowly than in general present numerical approach is not powerful enough to deal
relativity (GR). The higher derivative terms are acting to with this question.
reduce the tendency to collapse, gmdis still finite at the Finally, the concept of a maximum mass at a finite pres-
particular mass that first causes infingigin GR. py contin-  sure leads to the following question. Suppose we start with
ues to increase for increasimg until the strong gravity ef- the maximum mass configuration; what happens if the mass
fects cause a peculiar phenomenon; a maximum vsllg,  in the fixed volume is increased still further? As in general
occurs at a finitgy. After this pointp, continues to increase relativity, we may expect that a curvature singularity should
while M decreases develop at the origin. If so then the solution should transform

Connected with this behavior is the fact that, unlike GR,into one of the solutions of the previous section; we have
the physical masd of the object as deduced by the exterior already mentioned that the presence of a nonsingular mass
solution is not the same a4, the volume integral op(r).  distribution would only affect those solutions at order
From Fig. 3 we see tha#1 is smaller tharM for small pg, O(r19. By continuity it seems appropriate that the new con-
while the reverse happens for sufficiently largg In the  figuration would maintain a finit@y. In this way it appears
latter case strong gravity contributions are responsible for athat the “maximum mass at finite pressure” property of the
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nonsingular solution is related to the existence of the singular To explore the large strong gravity region we expand the
class of solutions. Unlike general relativity, the transitionequations in powers of 4/ We find a new one-parameter
from a nonsingular solution to a singular one does not lead téamily of solutions that can only arise when six or more

the appearance of a horizon. derivative terms appear in the action. These new solutions
are typically a corrected form of the anti-de Sitter—Schd met-
V. THE de SITTER HORIZON ric, since pure AdS-Schd solutions only occur for specialized

actions. The appearance of corrections are not unexpected
Another horizon of physical interest occurs in the de Sit-gjyen the corrected Schd metric in E@). The leading cor-
ter metric, which in the static coordinate system has rections are deduced by solving the equations to the appro-
priate order in 17, and we find

A
B(r)=1—§r2, A(r)=1/B(r). (9 A
A(r)= 1/ 1+ §r2—2GM/r +agG°M%/r8+. ..,
The physical region is interior to the horizonrat \3/A and
for small cosmological constant it is a weak gravity, small A
curvature region wittR=4A. But we may wonder whether B(r)=1+ —rZ—ZGM/H—BeGAM 206, ... (12)

the weak gravity region can border on a strong gravity region
in such a way that there is no horizon, with the border being
roughly the location of the would-be horizon. We will find These are strong gravity solutions since the positlvés

that actions containing terms with six or more derivatives arg;yoq by the theory to be Planckian in sizk~1/G. The
necessary to deal with this question. Thus we must rely IesEi '

3

on numerical analysis and more on series expansions, both mens_lonles_sb6 and ag constants are also determined by
the weak and strong gravity regions. We find results that ar e action bemg_consdered, wheress the free parameter.
consistent with the idea of horizon elimination. If the correcAt|ons were absent then the scalar curvature
First we note that the de Sitter metric when expandegvould be —4A and there would be a horizon at
about the origin is a member of the nonsingular class of=(6GM/A)¥3~G?*M*? for largeM. But at larger the cor-
solutions in Eq.(4). We are interested in other solutions of rections modify the scalar curvature as follows:
this class where the scalar curvatités close to being con-
stant, departing significantly from M only when the
would-be horizon is approached. We can write such solutions RE—4A-———F—+-. (13
to theories with a cosmological constant and no matter in the

form Thus in the vicinity of the would-be horizon the departures

A ' from the pure AdS-Schd metric are becoming large, and so
A(r)=1/(1—<§—s r2 +2 ayr?, what actually happens there is not known. Note that this
i=2 modification of the horizon region has emerged automati-
A cally from the general solution. The one parameteican
N 5 2 then be adjusted so that the radius of this would-be horizon is
B(r)=1 3 +8)r +i§2 bair™. (10 in the vicinity of the would-be horizon of the weak gravity

interior solution. In both the interior and exterior regions
The parametes characterizes the deviation from the de Sit- A(r) andB(r) are positive, and so the matching of solutions
ter metric. The coefficients; andb; vanish withe and they  can occur without a horizon.
also depend ork and the action being considered. These results are of course not sufficient to prove the
For the 2+ 4 derivative action we find that solutions with existence of an exact solution that joins together the small
a nonzere do not in fact produce a departureRfrom 4A.  and larger behaviors we have described, but the results are
Actions with more derivatives are required for this to hap-consistent with such a solution. A numerical analysis of this
pen; in addition such actions cause than Eq. 10 to shift horizon-free possibility remains to be performed. The result-
by an amount of ordeA ® from the cosmological constant in ing picture is of a large mass object in a strong AdS space
the action. When this is taken into account we find thatan that has as its interior a weak dS space. The “mass of the

expansion gives universe”M~G~2A ~*2is enormous, since it is of order a
Planckian mass density times the volume of the interior
R=4A+e%f\(r?)+---. (11  space.
fo(r?) has a nonvanishing=0 limit and f,(0)=0. By VI. CONCLUSION

taking e appropriately small we can suppose that-4A|

will remain small untilr approaches the would-be horizon.  We have studied static spherically symmetric solutions of
Numerically we find thate has to be exponentially small; higher derivative gravity, and have found that when there are
this is reminiscent of the exponentially small departure from

the Schd solution in the exterior region discussed in the pre=—

vious sections. “4Actions with 6 and 8 derivatives were considered.
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six or more derivatives the solutions are typically nonsingu-fined our study of this phenomena to Planck mass objects,
lar near the origin. But the nature of these solutions impliesand so it remains to extend this picture to much larger
that the complete solutions with Newtonian lamgkbehavior masses.
must have an even number of horizons. Our study 642 It could be expected that strong gravity and higher deriva-
derivative gravity provides some insights into how a solutiontives would help to resolve singularities. But we have seen
with a strong gravity core region can realize the zero horizorthat a transition region from weak to strong gravity can also
option. The region of strong gravity extends out to the radiugake the place of a horizon. Of most interest are solutions
of the would-be horizon, which then negates the usual arguthat are nonsingular and same-sign everywhere; such solu-
ments for the existence of a horizon. We exhibited horizontions have to be investigated in theories with six or more
free solutions of this type that were singular at the origin. Itderivatives to see whether they exist for smooth mass distri-
remains to show how this picture persists in the higher debutions of arbitrary energy density. We have seen in the pre-
rivative theories where solutions are always nonsingular atious section that theories with six or more derivatives are
the origin. necessary to describe the possible elimination of the de Sitter
We also discussed some unexpected properties of nonsiherizon. In both the Schd and de Sitter cases the deviations
gular solutions in 2-4 derivative gravity that affect the in- in the weak gravity regions are exponentially small until the
evitability of gravitation collapse. A high pressure accumu-would-be horizon is reached. It remains to be seen whether
lation of matter can have the property that increasing energyegions of strong gravity can be intruding on our weak grav-
density corresponds to decreasing pressure. Associated willly universe.
this is a maximum for the amount of matter in the given
volume. This sounds familiar, but in this case horizons and
black holes play no role. Rather, the maximum mass configu-
ration corresponds to a particular finite pressure at the origin, | thank E. Poppitz for discussions. This research was sup-
and this configuration can be approached from both the lovported in part by the Natural Sciences and Engineering Re-
pressure and high pressure sides. Numerical limitations corsearch Council of Canada.
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