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Cosmological perturbations in a generalized gravity including tachyonic condensation
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We present unified ways of handling the cosmological perturbations in a class of gravity theory covered by
a general action. This gravity includes our previous generalifg¢dR) gravity and the gravity theory moti-
vated by the tachyonic condensation. We present a general prescription to derive the power spectra generated
from vacuum quantum fluctuations in the slow-roll inflation era. An application is made to a slow-roll inflation
based on the tachyonic condensation with an exponential potential.
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. INTRODUCTION =(1/87G)R—2X—2V(¢). (2) f(¢,R) gravity: f=T(,R)
—2w(Pp)X=2V(¢). (3) p(4,X) gravity: f=(1/87G)R

In our present paradigm of physical cosmology, the ob-+2p(¢,X). (4) Tachyonic condensationf=(1/87G)R
served large-scale cosmic structures and the anisotropies of\/(4) 1+ 2X.
the cosmic microwave backgrou@MB) are regarded as  The gravitational field equation and the equation of mo-
small deviations from the spatially homogeneous and isotrofion hbecome
pic Friedmann world mode[1]. In such a paradigm the
structures in the large-scale limit and in the early stage of the 1
evolution are assumed to be linear deviations from the back- Gap= E
ground world mode[2]. Although the observations are con-
sistent with the perturbed Friedmann world model, these,
however, do not necessarily constrain the underlying gravity - Ef,X‘ﬁ,a‘ﬁ,b
theory (and the matter contento be the Einstein one. Gen-
eralized forms of gravity appear in a variety of situations =87GTyp, 2
involving the quantum aspects of the gravity theory and the
low energy limits of the unified theories of gravity with other (Fx9).c=T 4, ()
fundamental forces. Thus, it is likely that the early stages of
the universe were governed by the gravity more general than T(man="0, (4)
Einstein one. _ )

We have been studying the cosmological perturbations ithereFE'f,R. Tap is the effective energy-momentum tensor,
the so-calledf(¢,R) gravity theory which includes diverse and TSy is the energy-momentum tensor of additional mat-
generalized gravity theories known in the literature as case4€rs.

[3]. In this work, motivated by the recent interests on the

action based on the tachyonic condensafijnand also by a lll. CLASSICAL PERTURBATIONS

previous study in the context ofk“inflation” [5], we extend
our study to a more general form of gravity presented in Eq,
(1). Section Il presents the classical evolutions in a unifie
form. Section IV presents the quantum generation proces
a_md the generated power spectra un_der_ the slow-roll aASSUMPg2— _ 52(1 4 24)d - 2a2,8,ad ndxe+ az[gﬁfg)(le 2¢)
tion and others. Section V is an application a tachyonic slow-

1 .
ng)"' E(f_ FR)gab+ F,a;b_ chcgab

We consider the Friedmann background with the scalar-
nd the tensor-type perturbations. Our metric convention fol-
lows Bardeen’§6]:

roll inflation. We setc=1=#. +27 45+ 2C,pdx*dXE. (5)
Il GRAVITY The energy-momentum tensor is decomposed as
We consider an action To=—(u+ou), To=—(u+pv /K,
4 1 a_ (. @ 1 (3)ay (3) 1 a (s) a
S=| d*xy—g 5f(R,q’>,X)+Lm , (1) Tz=(p+dp)dg+ FZV Vi +§5B m+ . (6)

whereX=3¢°¢ ., andf is a general algebraic function of A vertical bar| andV® are the covariant derivatives based
R, ¢ andX. This action includes the following gravity theo- on gg"g.
ries as cases(l) A minimally coupled scalar field:f To the background order, EQR) gives
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87G K

. K
2:_ —_— = —
H'=—F—p= 2, H=—4nG(ut+p)+ 5, (@)

where H=a/a and an overdot denotes a time derivative

based ont with dt=adz. We also haveR=6(2H?+H
+K/a?). The effective fluid quantities are

1 1 1. .
87Gu= E{“(m)_ 5(f—=FR)— Ef,x¢2—3HF}

1 1 . :
8mGp= E[p(m)—l— S(F=FR)+F+2HF
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3F?2 )
= - =—7,
: H+ F) e
2F
-1
2f yxX?
ci= 32 (13

8 For f y=—2w(¢) we recover the result derived in the
’ (8) f(#,R) gravity theory[7].
(i) In the second case, perturbed parts of &).can be

where we haveX=— % $2. To the background order E¢g) ~ cOmbined to give

gives

1 .
gg(a3f'x¢)'+f‘¢:0. 9

A perturbed set of equations can be derived similarly. The
perturbed set of equations in Einstein gravity based on our

H2

convention in Eqs(5) and (6) is presented ir{6].> These wherep+p=—1f y¢2=1 v X, and

equations are valid even in our gravity theory if we re-
interprete the fluid quantities as the effective ones. The per-
turbed order effective fluid quantities can be easily read by
comparing Eq(6) with Eq. (2).

For the scalar-type perturbation we ignore the presence of
additional fluid, thusT{I’=0. In the following we consider
two general situations(i) F=F(¢) and K=0, and(ii) F
=1/87G but generalK. We introduce the Field-Shepley
combination[8]?

L
P 4nGurpal A (19
Hczk?
T anG(utpac 19
P.o—Cim.p ¢ K
c2=c2— ¢ X P
ATX wtp HK>
f
=Px__ Tx (16)

Equations (14) and (15 were derived by Garriga and

Mukhanov; see Eqs21) and (22) in [13]. Equations(14)

K/a2 and(15) can be combined to give
P=gs54— 27G(utp) £ (10 L 2 Lt
o (a%Qd) +c2 D=0, Q="
where a2Q @ ) Hez®=0. Q c2H?’ (17
_ . _ + p H2 a .7 k2
esp=¢—(HIp)op, ¢, =¢—Hy, (11 Lol SR ol 22 =
8¢ X H | (u+pal H @y +CAa2(PX 0. (18
are gauge-invariant combinatiohsy=a(B+avy) is a spa- Usi
tially gauge-invariant combinatiof6]. sing
(i) In the first case, perturbed parts of E®@) can be 1
comb!ned to gl\ge a closed form of second-order differential v=2P, u= Px . z=aJ0=_"3, (19
equation fore 5, Vu+p Ca

N
E(a Qesqp) +CA;<P5¢=0, (12

lSee EQs.(43)—(50) in [7]. We have e=du, w=4p, ¥=
—(a/k)(u+p)v, ando=(a/k?) =,

2See the paragraph containing Eg6) in [9].

3¢5¢ is the samep in the uniform-field gauge§¢$=0) [10]. ¢,
is the same a® in the zero-shear gauge€£0) [11], and is the
same asby which is often called the Bardeen potenfiaP].

“The procedure is exactly the same as the one used to derive Eq°The procedure is exactly the same as the one used to derive Egs.
(32) and(33) in [9].

(66) in [7].
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Egs.(17) and(18) become the well known equatiof,10]

"

z
v"+(cik2— —|v=0, (20)
1/"2' "
u’+ Cikz—g)UZO, (21
1/z
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where a prime indicates a time derivative basedyofqua- " H 1 T(») /k| 7\ ¥
tion (20) is valid for the first case in Eq12) as well. Pilis=5= (29
~ 27 aH|7y| I'(3/2)\ 2 v o’
In the large-scale limit, withz"/z>c3k? and z(1/z)" m aH|y| (312 cavQ
s ~21 2 ;
>Cak®, we have exact solutions wherev=./n+1/4. We can read the spectral indices
tdt Cq_a_ —a_
<D=C(x)—D(x)ja—T,, (22) ng—1=3—y4ng+1, ny=3—4n+1. (29
0
We introduce the slow-roll parametdrg|
H t 72 1 . . . .
er-4m6o|c [ Zatr G| (29 LI S
' a oa K Tz Ty ®T2HF T 2HE
Ignoring the transient solutiofwhich is theD-mode in ex- <y
panding phasgswe have a temporally conserved behavior E=F 3F _ Ef CF X (30)
for ® 2_¢2F 2 1 x 7 Txx
d(x,t)=C(x). (29 Compared with the Einstein gravity ifiL6] we have two

additional parameters; and €, for the scalar-type perturba-
For the tensor-type perturbation, for theneralaction in Eq.  tion which reflect the effects of additional parametérs

(1), we have (=f gr) andf x in our generalized gravity; for the tensor-type
perturbation we have only one additional parametefrom

. Fl. k?+ 2K 1 F. Compared witt{ 7] the only difference occurs in our defi-
Cit|3H+ ] Cpt _az_CEZEW(m)Z- (25 nition of E which includes thef(¢,R) gravity in [7] as a

case. Using our present definition gfs our unified analyses

which is the same as E¢L11) in [7] based orf(¢,R) grav- ~Made in Eqs(30)~(32) of [14] remain valid. _

ity. Thus, the presence of general algebraic complicatiok of 10 the first-order in the slow-roll parameters, i@ssum-
in Eq. (1) hasno effecton the tensor-type perturbation. Also, "9

Eq. (25) can be written as in Eq$17) and(20). In such cases )

we haved=C%, Q=F=7/(87G), ca=1, thusz=a\F, €=0, [e[<1, (31)
and Eqgs.(22) and(24) also remain valid.

The vector-type perturbation of additionally present flu- V€ ¢an derive

id(s) is described by Eq(4) which is not affected by the H
generalized nature of the gravity theory in Ed). V2l éf?
“oolis gl °% o
IV. SLOW-ROLL INFLATION H2 1
As in [14] the quantum generation process can be pre- = Z—H\/_Z—{l+ ext[y1+In(k|7))]
sented in a unified form. From E@L7) we can construct the ¢ s
perturbed actioh10] X (2€,— €+ €3~ €4)}C,, Vs (32)
62S= Ef a’Q Ci)z—c,iiztl)”(l) dtd®x,  (26) o H 1
2 a v Pie| =\V167G %\/—Z_t{l+el+[yl+ln(k|77|)]

BlLs
which is valid for both the scalar-type and tensor-type per- (e
turbations in a unified form. The rest of the canonical quan- (e1—€3)},
tization process is straightforward; dé&l]. Under anansatz

(33

where y1=7yg+In2—-2=-0.72% . . ., with yg the Euler
Ziz=nin?  c2=const, 27 constant. We have
E/F

~Tre ZT8meF (34)

wheren=ng, n, for the two perturbation types, the mode Zg

function has an exact solution in terms of the Hankel func-

tions; see Eq(24) in [14]. The power spectrum based on the \yhere 7's hecome unity in Einstein gravity. Thus, besides

vacuum expectation value df can be constructed as in Eq. ¢,, the scalar-type perturbation is affected &y, e; and e,

(26) of [14], and in the large-scale limit we have (thus,f 4, F andf x), whereas the tensor-type perturbation
is affected bye; (thus,F) only. The spectral indices of the

scalar and tensor-type perturbations in E29) become
SFor v=0 we have an additional 2 lg{k|#]) factor. For the gravi-

tational we should consider additiong factor[15]. Ng—1=2(2€;,—€,+€3—€4), Nr=2(€1—€3). (35

084009-3



J. HWANG AND H. NOH

For the scale independent Harrison-Zel'doviafg{ 1=0

=ny) spectrd 17] the CMB quadrupole anisotropy becomes

2 5 5 T 13
(ag)=(ag)st(ag)r= 7_577¢5¢+7-7Ag @Pcaﬁ, (36)

which is valid forK=0=A. The four-year Cosmic Back-

ground Explorer(COBE) Differential Microwave Radiom-
eter (DMR) data give(a3)=1.1x10"1% [18]. From Egs.

(36), (32) and(33) the ratio between two types of perturba-

tionsr,=(a3)1/(a3)s becomes

¢2
ro=13.8¢47G Zt 2
2 ng
138(]-‘|'—)(61 63)(1+63)+
:13.a61_63|CA
=6.93n¢[Cx, (37)

where in the last two steps we used the slow-roll condition

in Eg. (31). In the limit of Einstein gravity we have,=
—13.8&;=—6.92; which is independent df and is known
as a consistency relation. Thg factor difference from the
Einstein gravity forp(¢,X) gravity was noticed ii13]. For
the f(4,R) gravity we haveci=1.

V. TACHYONIC CONDENSATION
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e TMy (40)
€1= —€Ex=€,4= 2V, e3=0.
Thus, Eq.(35) gives
ns_1:461, nT:2€1, (41)
and Eqs(32)—(34) and(37) reduce to
H2 1 1V
12 — (42)
% 27| W 23x aM?,
H 1 J_-
7?1’2 ~ 167G — W 43
27 \/—77 |\/| (43

Therefore, if the seed structures were generated from the
vacuum quantum fluctuation under such a slow-roll phase,
the final spectra show thdl) the spectra are nearly scale-
invariant Harrison-Zel'dovich typg2) the consistency rela-
tion is met,(3) the graviational wave is suppressed, &g

ghe CMB quadrupole requires

o —Vz =1.1x10710
(a9)= 75X127 0?M,

(45)

We have assumed that, first, the seed fluctuations were gen-
erated during the slow-roll inflation stage supported by the
tachyonic condensation, and secondly, the tachyonic gravity
stage was switched successfully to an ordinary big-bang

The recently popular tachyonic condensation is a case aftage while the fluctuations stay in the large-scale liisdte

our gravity with a form f=(1/87G)R—2V{1+2X: if

[23] for the reheating problemin such a case the relatively

based on the string theory, we should regard the field in thigrowing C-mode fluctuation in Eq22) survives as the same
action as being written in the unit where the string theory isC-mode of the curvature fluctuatich now supported by the

relevant. We have

p> V .
Q=$m, cai=1-¢% (38
Equationg20) and(21) in this case were derived in E(L7)
of [19] and in Eq.(44) of [20], respectively. We have,
=0 andE=(V/87G)(1— ¢?) 32

Assuminga set ofslow-roll conditions¢p<3H ¢ and ¢
<1, and under amnsatz \= Ve~ *¢ [21], from Egs.(7)—
(9) for K=0 we have 22]

2 \/§a2Mp|
¢=——n| c— Pt
a 6o
axe(c\volﬁmpl)t—(az/lz)tz, (39
where M3=1/(87G). If we set t;=0, we have C

=e (2% andV,=V,C?.

Einstein gravity with ordinary matter. We have derived these
results directly based on the generalized form of gravity
theory whereas the previous analy$24,22 were based on
known formulation in Einstein gravity by using some field
redefinition.

VI. DISCUSSIONS

We have presented unified ways of handling the cosmo-
logical perturbations in a class of gravity theory covered by
an action in Eq(1). Section Ill presents the classical evolu-
tions in a unified form, and Eqg28) and (29) show the
generated seed fluctuations of the quantum origin under an
assumption in Eq(27). The rest of Sec. IV presents the
general prescription to derive the power spectra generated
under the slow-roll assumption, and Sec. V is an application
to a tachyonic slow-roll inflation.

We note that even in the gravity withdditional stringy
correction terms

Fort=t; we have an accelerated &( d’)[ClRGB"' CZGab(}/’ a®d:ptC30p P .o+ Cy( P2 271

expansion stage. In such a situation we have the slow-roll

conditions in Eq(31) are well met, with the result

9(¢)RR, (46)
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in the Lagrangian, wher®%,=R3"°‘R,.— 4R3°R,p+ R?
andRR= 72"°R_ ®'R 4., we still have Eqs(12) and (26)
with more complicated) and c,i [25]. Thus, the rest of the
analyses made above can be applied similarly as j2éll
Similar unified formulation also exists in the fluid context
[10,14]. We also have studied the situation wiRA°R,,, term

in the action[26], in which case the gravity becomes a
fourth-order theory.
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ever, that the classical evolutions studied in Sec. Il are valid
for the general cosmological situations governed by our ac-
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