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Decay of a charged scalar field around a black hole: Quasinormal modes of RN, RNAdS,
and dilaton black holes
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It is well known that the charged scalar perturbations of the Reissner-Nardstedric will decay slower at
very late times than the neutral ones, thereby dominating in the late time signal. We show that, at the stage of
qguasinormalQN) ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and
dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts
(damping timesfor charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is
connected with the Choptuik scaling.
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I. INTRODUCTION scalar field for asymptotically flatRN) and asymptotically
(anti-)de Sitter(RNdS and RNAdgblack hole space-times
The response of a Schwarzschild black hole as a Gaussiad essentially different: in the first case the inverse power-law
wave packet impinges upon it consists of decaying quasinoitails are dominating, while in the second it is an exponential
mal oscillations, dominating after tinte=70M, and inverse decay. This decay is oscillatory for RNAdS, and for RNdS
power-low tails, dominating after time=300M, whereM is when a scalar field is strongly coupled to curvature.
the black hole masgsee[1] and references therginThe When collapsing a charged matter, a charged black hole
quasinormalQN) ringing can be caused by either external forms. Thus the eyolutlon of a charged scal_ar field oth|de
fields or by the formation of a black hole itself, and the the RN black hole is most relevant. The late time behavior of

characteristic frequencies do not depend on a form of pertu charged scalar field was considered by Hod and Rirah
bations, giving us a “footprint’ of a black hole. There it was shown that in the radiative tails the neutral
Becuase of AdS conformal field theof€FT) correspon- perturbations decay faster than the charged ones and there-
dence[2] the investigation of the quasinormal frequencies offoreé dominate at very late times. In addition, while at time-
AdS black holes is appealing now: it gives the thermalizatior’k€ @nd null infinity inverse power-law tails appear, along
time scale for a field perturbatidis], namely, the imaginary the future _black_hole event horizon, an oscillatory behavior
part of the quasinormal frequency, being inversely propor2ccompanies this tail. _ _
tional to the damping time of a given mode, determines the At Presentitis believed on different grounds, the main of
relaxation time of a field. Thus the more imaginary partof Which is the low energy limit of superstring theory, that a
the faster a given field comes to an equilibrium. black hole possesses a specific scalar field called the dilaton.
The investigation of the QN modes within the AdS-CFT It drastically changes the properties of' a black hole depend-
correspondence was initiated on the AdS gravity side by"d on the value of the dilaton coupling constant. At late
Horowitz and Hubeny ifi3] for a massless scalar field. Then iMmes charged perturbations dominate as well outside such
quasinormal modes associated with perturbations of differerflack holes(20]. Thus it would be interesting to cover this
fields were considered in many worké—10]. An exact ex-  class of BH's in our investigation. _ ,
pression for the three-dimensional Taos-Teitelboim- Thus the.re. is a quite clear_plcture of asymptotic behgwor
Zanelli (BTZ) black hole QN modes corresponding to fields ©f the radiation corresponding to charged perturbations,
of different spin was obtained by Cardoso and Lemog#n Whll_e its be_hawor_dunng the stage of quasmormal ringing is
Recently similar work for the BTZ black hole was done on lacking. This motivated us to study the behavior of a com-
the CFT sidg26]. plex (chargedl scalar field during the quasinormal ringing
On the AdS gravity side, it was found that for the neutra|throug|h the computing of its resonant characteristic frequen-
massless scalar field in the background of ReissneSi€S for RN and RNAdS and dilaton black holes. In Sec. II
Nordstran-AdS (RNAS) black hole with small charge, the W€ Shall compute the quasinormal frequencies of the RN
more the black hole charge is, the quicker its approach t®ack hole for different multipole numbetsin Sec. Il the
thermal equilibrium in CFT[8], and after the black hole case pf the RNAdS black hole is conS|dered,l and in Sec. IV
charge approaches some critical value the situation changdd€ dilaton black QN frequencies are obtained. We have
to the contraryf9]. This repeats the behavior of the usual RN found that the modes of the nearly extremal RN black holes
quasinormal spectrum, where the imaginary parajrows have the same damping times for charged and neutral pertur-
with the black hole charge up to some maximum, and ther}?ations' The possible connection of this fact with the critical
begins to decreas@t least forl=0 [15]). collapse is discussed in Sec. V.
Summarizing the results of the papégg, [11-13, one Il REISSNER-NORDSTROM BLACK HOLE
can see that the late time radiative behavior of a neutral '
We shall consider the evolution of the charged scalar per-
turbations field in the background of the Reissner-Norastro
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ds’=—f(r)dt?+f1(r)dr’+r2dQ3, 1) Rew
[
where f(r)=1—-2M/r+Q?/r2. The wave equation of the 0.2 0.4 0.6 0.8 gl e
complex scalar field has the form 0.95 .
0.9 e
b9~ 1€ A0 (26— i€ Ay ) — i€ A ,g? P =0. v
' ' ' 2) 0.85 7
0.8 e *
Here the electromagnetic potential=C—Q/r, andC is a ' e
constant. After representation of the charged scalar field into 0.75 -
spherical harmonics and some algebra the equation of mo- 0.7 g

tion takes the formj14]

w,tt+ 2ie$lﬂ't— lﬂ,r*r* +Vlﬂ: O,

where

V=*(r)

2 3 4

r r r

[(1+1) 2M 2_Q2 - ,Q°

I.2

FIG. 1. Real part ofw, |=3, n=0, e=0 (stay, e=0.1 (dia-
mond ande=0.3 (box), for Q, running from 0 to 0.995RN BH).

3
n, the black hole mass and chargleandQ, ande; then one
finds the value ofr at which Q attains a maximum as a
numerical function ofw and substituting it into the formula
@ (5) one finds, with the trial and error way, which satisfies

Eq. (5). Note thatQ is, generally, complex and we just con-
tinue Eg.(5) into the complex plane as it is prescribed in

and ¢=y(r)e "', dr*=dr/f(r). One can compute the [16]. . .
quasinormal frequencies stipulated by the above potential by Itis essential that for=0 modes the WKB formula gives

using the third order WKB formula of Iyer and WillLE],

iQo
V2Qq

whereA(n), (n) are second and third order WKB correc-
tion terms depending on the potentidbnd its derivatives in
the maximum. Her®= —V+ w?—2(eQ/r)w. SinceQ de-
pends orw, the procedure of finding of the QN frequencies
is the following: one fixes all the parameter of the QN fre-
guency, namely, the multipole indéxthe overtone number

TABLE |I. The quasinormal frequencies for RN BH+=1,2 n

1
—A(N)—Q(n)=n+

El

=0, e=0 (first line) ande=0.1 (second ling

©)

the worse precision: a relative error, for example, for scalar
perturbations of Schwarzschild BH, may be of order 10 per-
cent[17]. Nevertheless the moigand the les®), the more
accurate WKB formula is, and already fbr3, n=0, ac-
cording to general experience, a relative error may be of
order 10 2 percent. Thus in order to be sure that not only the
WKB frequencies of charged and neutral perturbations coin-
cide in the extremal limit, but also the true frequencies do the
same, one needs to proceed computations to high'ée can
see the characteristic behavior of the QN spectrum from
Table | and Figs. 1 and 2, whelte=1,2 and 3 fundamental
(n=0) QN frequencies corresponding to neutral and charged
perturbations are presented. For higher multipole indexes,
WKB precision is better.

The real part ofw for both neutral and charged scalar

fields grows with increasing of chard®;, w,, is more for
charged perturbations than for a neutral one. In addition, and

Q =1 =2
0 0.29110.0980 0.4832-0.0968
0.2911-0.0980 0.4832-0.0968
0.1 0.2916-0.0981 0.4840-0.0969
0.2951-0.0984 0.4874-0.0971
0.3 0.2958-0.0984 0.4908-0.0973
0.3064-0.0995 0.5011-0.0979
0.5 0.3049-0.0991 0.5056-0.0980
0.3233-0.1008 0.5236-0.0990
0.7 0.3212-0.0996 0.5322-0.0986
0.3490-0.1018 0.5593-0.1000
0.8 0.3337-0.0992 0.5527-0.0983
0.3672-0.1015 0.5855-0.0999
0.9 0.3509-0.0972 0.5815-0.0966
0.3918-0.0993 0.6214-0.0980
0.95 0.3622-0.0946 0.6011-0.0945
0.4079-0.0960 0.6459-0.0952
0.99 0.3729-0.0907 0.6205-0.0902

0.4231-0.0908

0.6701-0.0904

this is the most interesting feature of charged QN spectrum,
the imaginary part of a given “charged mode” approaches
the neutral one in the limit of the extremal black hole. Within

Imw

FIG. 2. Imaginary part ofw, |=3, n=0, e=0 (diamond, e
=0.1 (stap ande=0.3 (box), for Q, running from 0 to 0.995RN
BH). At Q=0.995 w,,,=0.08938 fore=0 and w,,,=0.08943 for

e=0.3, the coincidence is within precision of the WKB method.
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the third order WKB method one can check it with a high Imw
accuracy for higher multipole number perturbations. 282.5
280
Ill. REISSNER —NORDSTROM —ANTI —de SITTER 2775
BLACK HOLE '
. . . . 275
The Reissner—anti—de Sitter metric has the form
272.5
ds?=—f(r)dt?+f1(r)dr?+r?dQ?, (6) o
1000 3000 4000
where 267.5
L
3 2 2 2 .
f(r)zl_r_+_r_+_Q_+Q_+r_ 7) FIG. 3. Imaginary part ofw, 1=0, n=0 for e=0, e=5
r(Rr2 rr, 2 R2 X105, ande=10* from the bottom to the topRNAJS BH).
Herer . is an outer horizonR is the AdS radius, and tional to the black hole temperature. For small black holes
. r . <R this linearity breaks and in the limit, —0 the QNM
1 ri Q2 approaches the pure anti—de Sitter mdd#e$8]. Since it is a
M= o+ * R? +: ® large black hole which is of direct interest for AdS-CFT cor-

respondence, we shall restrict ourselves to this black hole
is the mass of the black hole. regime.

Quasinormal oscillations associated with the decay of the From Figs. 3 and 4 one can see thate and v, grow
charged scalar field in the background of RNAdS are govWith increasing of the charge conjugati@ i.e., the real
erned by the wave equati@8), which can be transformed to oscillation frequency is more for charged perturbations than

the form for neutral ones and the damping time of a given mode is
more for neutral perturbations. Yet we managed to compute

d?u(r) o duy(r only the lowly charged case, due to the two difficulties. First,

f(r) a2 +(F'(r)—2i0)—5—— U §(r)=0. (9 whenQ ande grow, the number of terms in the truncated

sum representing the wave functignincreases: one has to
Here theU(r) is, again, a frequency dependent potential, SUM overN~10° and more, and thus one has to guess new
determined by the formula modes through the trial and error way. At the same time, the
minimums of the truncated sum corresponding to the quasi-
f/(r) 1(0+1) 1 eQ 2 normal frequencies are most narrow in theplane and one
U(r)= + +—|2—w—-e>=|. (10 has to guess a lot of figures in the quasinormal frequency in
r r2 f(r) r r2 C .
order to catch the above minimum. Thus for the highly
charged case one has to resort to another method of calcula-
tions of QN modes.

By rescaling ofr we can putR=1. The effective potential

V(r)=f(r)U(r)—2(eQ/r) o with respect to the wave equa-

tion (3) written in the tortoise coordinate* is infinite at

spatial infinity. Thus the wave function is considered to van- IV. DILATON BLACK HOLE

e e ey o e Con Awide ciass of heores ncludes the tatonary spher
; . : cally symmetric black hole solution with massless scalar

guasinormal frequencies stipulated by the potertfi@) fol- field of some specific forntdilaton):

lowing the procedure of Horowitz and Hubef8]. The main P '

point of that approach is to expand the solution to the wave

—\ 2H¢+2 —24¢2 2 2 2ai 2
equation(9) aroundx, = 1/r . (x=1/r) ds’=\?dt?—\"2dr’—R*d6*—R’sinfgde?, (12

o Rew
P =2 an(w)(x—x;)" (11) 1854
n=0 182.5
and to find the roots of the equatiaf(x=0)=0 following 180
from the boundary condition at infinity. In fact, one has to 177.5
truncate the sunill) at some largen=N and check that for 175

greatemn the roots converge.
While the quasinormal modes of an asymptotically flat
black hole are proportional to its mass, those of an asymp- 1000 2000 3000 XooQ

172.5

totically anti—de Sitter black hole depend upon the radius of  167.5
a black hole. For larger(. is much greater than the anti—de

Sitter radiusR) and intermediate Schwarzschild—anti—-de  FIG. 4. Real part ofv, |=0, n=0 fore=0, e=5x10"°, and
Sitter black holes, bothwg. and w,,, are roughly propor- e=10* from the bottom to the topRNAJS BH).
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where TABLE Il. The quasinormal frequencies far=1 dilaton black
holel=3, n=0, e=0 ande=0.1.
r r (1-a?%/(1+a?)
)\2:<1__+)(1___) , Q e=0 e=0.1
r r
0 0.675210.09651 0.67521-0.09651
o\ 281+ a?) 0.2 0.679770.09673 0.68650-0.09970
R2= rz( 1— _—) ' (13) 0.4 0.6941%0.09738 0.70768-0.09799
r 0.6 0.72045-0.09853 0.74109-0.09941
0.8 0.76379-0.10028 0.79189-0.10138
and 1.0 0.83580-0.10273 0.87209-0.10398
1.1 0.89116-0.10419 0.93205-0.10549
1-a? L 1.2 0.97122-0.10559 1.01734-0.10691
M=ro |\ e Qe W 1.3 1.10346-0.10582 1.15602-0.10711
1.35 1.217740.10357 1.27473-0.10478
Here the dilaton and electromagnetic fields are given by the L4 1.45676-0.08874 1.52076-0.08969
formulas
V. DISCUSSION
r 2a2/(1+a2) e2atIJQ
eat—|1 - — , Fi= , (15 We have learned here that the damping time of the quasi-
r R? normal oscillations associated with a charged scalar field in

the background of the Reissner-Nordstrblack hole is less

wherea is a non-negative dimensionless value representinghan that of a neutral one. Thus, that is the neutral perturba-
coupling. The casa=0 corresponds to the classic Reissner-tion which will dominate at later stages of quasinormal ring-
Nordstran metric, the case=1 is suggested by the low ing. Yet, we know that at late times the charged perturbations
energy limit of the superstring theory, ara=+/3 corre-  are dominating, and one could expect, possibly, that the same
sponds to the dimensionally reduced Kaluza-Klein blacksort of perturbations must dominate in the earlier stages of
hole. radiation. The logic of the process, however, is different. As

Following the above WKB method we shall compute herewas shown in[14], the late time behavior of the charged
the quasinormal modes corresponding to the neutral anscalar field is entirely determined by the flat space-time ef-
charged massless scalar test field. We do not consider thiects, while that of the neutral perturbations is dependent on
coupling of the scalar field outside the black hole with thethe relation between the “tortoise™ coordinate and, i.e.,
dilaton, i.e. the scalar field simply propagates in the blackoy the space-time curvature. In other words, the radiative tail
hole background. of the charged field arises due to the backscattering of this

The wave function obeys E¢B) with the effective poten- field off the electromagnetic potential far away from the
tial black hole, while in the case of the neutral fields it is the
effects of gravitation near the black hdleurvature effects
In this context it seems natural that in the earlier periods of
radiation (quasinormal ringing the curvature effects are
dominating, and the neutral perturbations will damp slower.

Another interesting point of this study is the coincidence
This potential is broadening near the extremal lipdi®]. of the imaginary parts of for charged and neutral pertur-

In the case of dilaton BH both real and imaginary parts ofbations for the nearly extremal black hole. It is seen at once
o grow with the increase of eithép or e. Nevertheless the that since the universal index appearing in the phenomena of
imaginary part ofw of the charged field does not approach critical collapse equals 0.37 both for chargd@3] and
that of the neutral one in the nearly extremal regime. One caneutral [24] scalar fields, then there may be a connection
see it on example of=3, n=0 modes where the WKB between the behavior of the quasinormal spectrum of nearly
method should give reasonable accurésge Table Il. Yet  extremal black holes and the critical exponent for a given
there is a possibility that during the broadening of the effecblack hole. Yet the latter conjecture seems be too strong, and
tive potential of the nearly extremal dilaton BH9], the the black hole quasinormal modes may be related to the criti-
inaccuracy in the WKB formula may increase. Thus it wouldcal exponent in some specific space-time geomef&e5|.
be most relevant to compute the dilaton BH QN frequencies In this connection it is interesting to recall that the nearly
numerically. extremal RN black hole is effectively described by the AdS

Recently it has been obtained that at late times the neutrdilack hole after spherically symmetric dimensional reduction
scalar field falls off faster than the charged field in the dilaton[27]. For such a reduced nearly extremal black hole an exact
BH background20,22. Thus we see that for a dilaton black relation between the quasinormal modes and the critical ex-
hole the situation changes on the contrary as well: dominaponent is obtained ifi25]. The possible connection of the
tion of a neutral field during the quasinormal ringing and of QNM and critical collapse for the three dimensional BTZ
a charged field at late times. BH is discussed if26].

R, 1(I+1)N\? Q?
V(r)= er+ =~ —ezr—z. (16)
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Yet the coincidence of the damping times for charged andations in the nearly extremal limit will coincide for RNAdAS
neutral modes of the nearly extremal black hole is, apparBH, and for an asymptotically nonflat black hole in general,
ently, an exclusive property of RN BH, and is not appropriateis a question for further investigation.
to other black holes. It is possible also that this coincidence
takes place only for a massless scalar field, since for a mas-

sive one the situation is qualitatively differefiz8]. ACKNOWLEDGMENTS
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