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Decay of a charged scalar field around a black hole: Quasinormal modes of RN, RNAdS,
and dilaton black holes

R. A. Konoplya*
Department of Physics, Dniepropetrovsk National University, St. Naukova 13, Dniepropetrovsk 49050, Ukraine

~Received 9 July 2002; published 11 October 2002!

It is well known that the charged scalar perturbations of the Reissner-Nordstro¨m metric will decay slower at
very late times than the neutral ones, thereby dominating in the late time signal. We show that, at the stage of
quasinormal~QN! ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and
dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts
~damping times! for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is
connected with the Choptuik scaling.
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I. INTRODUCTION

The response of a Schwarzschild black hole as a Gaus
wave packet impinges upon it consists of decaying quasi
mal oscillations, dominating after timet'70M , and inverse
power-low tails, dominating after timet'300M , whereM is
the black hole mass~see @1# and references therein!. The
quasinormal~QN! ringing can be caused by either extern
fields or by the formation of a black hole itself, and th
characteristic frequencies do not depend on a form of per
bations, giving us a ‘‘footprint’’ of a black hole.

Becuase of AdS conformal field theory~CFT! correspon-
dence@2# the investigation of the quasinormal frequencies
AdS black holes is appealing now: it gives the thermalizat
time scale for a field perturbation@3#, namely, the imaginary
part of the quasinormal frequency, being inversely prop
tional to the damping time of a given mode, determines
relaxation time of a field. Thus the more imaginary part ofv
the faster a given field comes to an equilibrium.

The investigation of the QN modes within the AdS-CF
correspondence was initiated on the AdS gravity side
Horowitz and Hubeny in@3# for a massless scalar field. The
quasinormal modes associated with perturbations of diffe
fields were considered in many works@4–10#. An exact ex-
pression for the three-dimensional Ban˜ados-Teitelboim-
Zanelli ~BTZ! black hole QN modes corresponding to fiel
of different spin was obtained by Cardoso and Lemos in@4#.
Recently similar work for the BTZ black hole was done
the CFT side@26#.

On the AdS gravity side, it was found that for the neut
massless scalar field in the background of Reissn
Nordström-AdS ~RNAdS! black hole with small charge, th
more the black hole charge is, the quicker its approach
thermal equilibrium in CFT@8#, and after the black hole
charge approaches some critical value the situation cha
to the contrary@9#. This repeats the behavior of the usual R
quasinormal spectrum, where the imaginary part ofv grows
with the black hole charge up to some maximum, and th
begins to decrease~at least forl>0 @15#!.

Summarizing the results of the papers@9#, @11–13#, one
can see that the late time radiative behavior of a neu
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scalar field for asymptotically flat~RN! and asymptotically
~anti–!de Sitter~RNdS and RNAdS! black hole space-times
is essentially different: in the first case the inverse power-
tails are dominating, while in the second it is an exponen
decay. This decay is oscillatory for RNAdS, and for RNd
when a scalar field is strongly coupled to curvature.

When collapsing a charged matter, a charged black h
forms. Thus the evolution of a charged scalar field outs
the RN black hole is most relevant. The late time behavior
a charged scalar field was considered by Hod and Piran@14#.
There it was shown that in the radiative tails the neut
perturbations decay faster than the charged ones and th
fore dominate at very late times. In addition, while at tim
like and null infinity inverse power-law tails appear, alon
the future black hole event horizon, an oscillatory behav
accompanies this tail.

At present it is believed on different grounds, the main
which is the low energy limit of superstring theory, that
black hole possesses a specific scalar field called the dila
It drastically changes the properties of a black hole depe
ing on the value of the dilaton coupling constant. At la
times charged perturbations dominate as well outside s
black holes@20#. Thus it would be interesting to cover thi
class of BH’s in our investigation.

Thus there is a quite clear picture of asymptotic behav
of the radiation corresponding to charged perturbatio
while its behavior during the stage of quasinormal ringing
lacking. This motivated us to study the behavior of a co
plex ~charged! scalar field during the quasinormal ringin
through the computing of its resonant characteristic frequ
cies for RN and RNAdS and dilaton black holes. In Sec.
we shall compute the quasinormal frequencies of the
black hole for different multipole numbersl, in Sec. III the
case of the RNAdS black hole is considered, and in Sec
the dilaton black QN frequencies are obtained. We ha
found that the modes of the nearly extremal RN black ho
have the same damping times for charged and neutral pe
bations. The possible connection of this fact with the critic
collapse is discussed in Sec. V.

II. REISSNER-NORDSTRÖM BLACK HOLE

We shall consider the evolution of the charged scalar p
turbations field in the background of the Reissner-Nordstr¨m
metric:
©2002 The American Physical Society07-1
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ds252 f ~r !dt21 f 21~r !dr21r 2dV2
2 , ~1!

where f (r )5122M /r 1Q2/r 2. The wave equation of the
complex scalar field has the form

f ;abg
ab2 ieAagab~2f ;b2 ieAbf!2 ieAa;bgabf50.

~2!

Here the electromagnetic potentialAt5C2Q/r , andC is a
constant. After representation of the charged scalar field
spherical harmonics and some algebra the equation of
tion takes the form@14#

c ,tt12ie
Q

r
c ,t2c ,r* r* 1Vc50, ~3!

where

V5 f ~r !S l ~ l 11!

r 2
1

2M

r 3
2

2Q2

r 4 D 2e2
Q2

r 2
, ~4!

and c5c(r )e2 ivt, dr* 5dr/ f (r ). One can compute the
quasinormal frequencies stipulated by the above potentia
using the third order WKB formula of Iyer and Will@16#,

iQ0

A2Q09
2L~n!2V~n!5n1

1

2
, ~5!

whereL(n), V(n) are second and third order WKB corre
tion terms depending on the potentialV and its derivatives in
the maximum. HereQ52V1v222(eQ/r )v. SinceQ de-
pends onv, the procedure of finding of the QN frequenci
is the following: one fixes all the parameter of the QN fr
quency, namely, the multipole indexl, the overtone numbe

TABLE I. The quasinormal frequencies for RN BH,l 51,2 n
50, e50 ~first line! ande50.1 ~second line!.

Q l51 l 52

0 0.291120.0980i 0.483220.0968i
0.291120.0980i 0.483220.0968i

0.1 0.291620.0981i 0.484020.0969i
0.295120.0984i 0.487420.0971i

0.3 0.295820.0984i 0.490820.0973i
0.306420.0995i 0.501120.0979i

0.5 0.304920.0991i 0.505620.0980i
0.323320.1008i 0.523620.0990i

0.7 0.321220.0996i 0.532220.0986i
0.349020.1018i 0.559320.1000i

0.8 0.333720.0992i 0.552720.0983i
0.367220.1015i 0.585520.0999i

0.9 0.350920.0972i 0.581520.0966i
0.391820.0993i 0.621420.0980i

0.95 0.362220.0946i 0.601120.0945i
0.407920.0960i 0.645920.0952i

0.99 0.372920.0907i 0.620520.0902i
0.423120.0908i 0.670120.0904i
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n, the black hole mass and chargeM andQ, ande; then one
finds the value ofr at which Q attains a maximum as a
numerical function ofv and substituting it into the formula
~5! one finds, with the trial and error way,v, which satisfies
Eq. ~5!. Note thatQ is, generally, complex and we just con
tinue Eq. ~5! into the complex plane as it is prescribed
@16#.

It is essential that forl 50 modes the WKB formula gives
the worse precision: a relative error, for example, for sca
perturbations of Schwarzschild BH, may be of order 10 p
cent@17#. Nevertheless the morel ~and the lessn), the more
accurate WKB formula is, and already forl 53, n50, ac-
cording to general experience, a relative error may be
order 1022 percent. Thus in order to be sure that not only t
WKB frequencies of charged and neutral perturbations co
cide in the extremal limit, but also the true frequencies do
same, one needs to proceed computations to higherl. We can
see the characteristic behavior of the QN spectrum fr
Table I and Figs. 1 and 2, wherel 51,2 and 3 fundamenta
(n50) QN frequencies corresponding to neutral and char
perturbations are presented. For higher multipole index
WKB precision is better.

The real part ofv for both neutral and charged scal
fields grows with increasing of chargeQ; v Im is more for
charged perturbations than for a neutral one. In addition,
this is the most interesting feature of charged QN spectr
the imaginary part of a given ‘‘charged mode’’ approach
the neutral one in the limit of the extremal black hole. With

FIG. 1. Real part ofv, l 53, n50, e50 ~star!, e50.1 ~dia-
mond! ande50.3 ~box!, for Q, running from 0 to 0.995~RN BH!.

FIG. 2. Imaginary part ofv, l 53, n50, e50 ~diamond!, e
50.1 ~star! ande50.3 ~box!, for Q, running from 0 to 0.995~RN
BH!. At Q50.995 v Im50.08938 fore50 andv Im50.08943 for
e50.3, the coincidence is within precision of the WKB method.
7-2



gh

th
ov
o

ia

l
-

n
di
th

av

to

a
m

o
e
de

les

r-
ole

an
is

ute
st,
d

o
ew
the
asi-

y in
ly

cula-

ri-
lar

DECAY OF A CHARGED SCALAR FIELD AROUND A . . . PHYSICAL REVIEW D66, 084007 ~2002!
the third order WKB method one can check it with a hi
accuracy for higher multipole number perturbations.

III. REISSNER –NORDSTRÖM –ANTI –de SITTER
BLACK HOLE

The Reissner–anti–de Sitter metric has the form

ds252 f ~r !dt21 f 21~r !dr21r 2dV2, ~6!

where

f ~r !512
r 1

r
2

r 1
3

rR2
2

Q2

rr 1
1

Q2

r 2
1

r 2

R2
. ~7!

Here r 1 is an outer horizon,R is the AdS radius, and

M5
1

2 S r 11
r 1

3

R2
1

Q2

r 1
D ~8!

is the mass of the black hole.
Quasinormal oscillations associated with the decay of

charged scalar field in the background of RNAdS are g
erned by the wave equation~3!, which can be transformed t
the form

f ~r !
d2c~r !

dr2
1~ f 8~r !22iv!

dc~r !

dr
2U~r !c~r !50. ~9!

Here theU(r ) is, again, a frequency dependent potent
determined by the formula

U~r !5
f 8~r !

r
1

l ~ l 11!

r 2
1

1

f ~r ! S 2
eQ

r
v2e2

Q2

r 2 D . ~10!

By rescaling ofr we can putR51. The effective potentia
V(r )5 f (r )U(r )22(eQ/r )v with respect to the wave equa
tion ~3! written in the tortoise coordinater * is infinite at
spatial infinity. Thus the wave function is considered to va
ish at infinity and satisfies the purely in-going wave con
tion at the black hole horizon. Then one can compute
quasinormal frequencies stipulated by the potential~10! fol-
lowing the procedure of Horowitz and Hubeny@3#. The main
point of that approach is to expand the solution to the w
equation~9! aroundx151/r 1 (x51/r )

c~x!5 (
n50

`

an~v!~x2x1!n ~11!

and to find the roots of the equationc(x50)50 following
from the boundary condition at infinity. In fact, one has
truncate the sum~11! at some largen5N and check that for
greatern the roots converge.

While the quasinormal modes of an asymptotically fl
black hole are proportional to its mass, those of an asy
totically anti–de Sitter black hole depend upon the radius
a black hole. For large (r 1 is much greater than the anti–d
Sitter radiusR) and intermediate Schwarzschild–anti–
Sitter black holes, bothvRe and v Im are roughly propor-
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tional to the black hole temperature. For small black ho
r 1!R this linearity breaks and in the limitr 1→0 the QNM
approaches the pure anti–de Sitter modes@3,18#. Since it is a
large black hole which is of direct interest for AdS-CFT co
respondence, we shall restrict ourselves to this black h
regime.

From Figs. 3 and 4 one can see thatvRe and v Im grow
with increasing of the charge conjugatione, i.e., the real
oscillation frequency is more for charged perturbations th
for neutral ones and the damping time of a given mode
more for neutral perturbations. Yet we managed to comp
only the lowly charged case, due to the two difficulties. Fir
when Q and e grow, the number of terms in the truncate
sum representing the wave functionc increases: one has t
sum overN;103 and more, and thus one has to guess n
modes through the trial and error way. At the same time,
minimums of the truncated sum corresponding to the qu
normal frequencies are most narrow in thev plane and one
has to guess a lot of figures in the quasinormal frequenc
order to catch the above minimum. Thus for the high
charged case one has to resort to another method of cal
tions of QN modes.

IV. DILATON BLACK HOLE

A wide class of theories includes the stationary sphe
cally symmetric black hole solution with massless sca
field of some specific form~dilaton!:

ds25l2dt22l22dr22R2du22R2sin2udw2, ~12!

FIG. 3. Imaginary part ofv, l 50, n50 for e50, e55
31025, ande51024 from the bottom to the top~RNAdS BH!.

FIG. 4. Real part ofv, l 50, n50 for e50, e5531025, and
e51024 from the bottom to the top~RNAdS BH!.
7-3
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where

l25S 12
r 1

r D S 12
r 2

r D (12a2/(11a2)

,

R25r 2S 12
r 2

r D 2a2/(11a2)

, ~13!

and

2M5r 11S 12a2

11a2D r 2 , Q25
r 2r 1

11a2
. ~14!

Here the dilaton and electromagnetic fields are given by
formulas

e2aF5S 12
r 2

r D 2a2/(11a2)

, Ftr5
e2aFQ

R2
, ~15!

wherea is a non-negative dimensionless value represen
coupling. The casea50 corresponds to the classic Reissn
Nordström metric, the casea51 is suggested by the low
energy limit of the superstring theory, anda5A3 corre-
sponds to the dimensionally reduced Kaluza-Klein bla
hole.

Following the above WKB method we shall compute he
the quasinormal modes corresponding to the neutral
charged massless scalar test field. We do not consider
coupling of the scalar field outside the black hole with t
dilaton, i.e. the scalar field simply propagates in the bla
hole background.

The wave function obeys Eq.~3! with the effective poten-
tial

V~r !5
R,r* r*

R
1

l ~ l 11!l2

R2
2e2

Q2

r 2
. ~16!

This potential is broadening near the extremal limit@19#.
In the case of dilaton BH both real and imaginary parts

v grow with the increase of eitherQ or e. Nevertheless the
imaginary part ofv of the charged field does not approa
that of the neutral one in the nearly extremal regime. One
see it on example ofl 53, n50 modes where the WKB
method should give reasonable accuracy~see Table II!. Yet
there is a possibility that during the broadening of the eff
tive potential of the nearly extremal dilaton BH@19#, the
inaccuracy in the WKB formula may increase. Thus it wou
be most relevant to compute the dilaton BH QN frequenc
numerically.

Recently it has been obtained that at late times the neu
scalar field falls off faster than the charged field in the dila
BH background@20,22#. Thus we see that for a dilaton blac
hole the situation changes on the contrary as well: dom
tion of a neutral field during the quasinormal ringing and
a charged field at late times.
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V. DISCUSSION

We have learned here that the damping time of the qu
normal oscillations associated with a charged scalar field
the background of the Reissner-Nordstro¨m black hole is less
than that of a neutral one. Thus, that is the neutral pertu
tion which will dominate at later stages of quasinormal rin
ing. Yet, we know that at late times the charged perturbati
are dominating, and one could expect, possibly, that the s
sort of perturbations must dominate in the earlier stages
radiation. The logic of the process, however, is different.
was shown in@14#, the late time behavior of the charge
scalar field is entirely determined by the flat space-time
fects, while that of the neutral perturbations is dependen
the relation between the ‘‘tortoise’’r * coordinate andr, i.e.,
by the space-time curvature. In other words, the radiative
of the charged field arises due to the backscattering of
field off the electromagnetic potential far away from th
black hole, while in the case of the neutral fields it is t
effects of gravitation near the black hole~curvature effects!.
In this context it seems natural that in the earlier periods
radiation ~quasinormal ringing! the curvature effects are
dominating, and the neutral perturbations will damp slow

Another interesting point of this study is the coinciden
of the imaginary parts ofv for charged and neutral pertur
bations for the nearly extremal black hole. It is seen at o
that since the universal index appearing in the phenomen
critical collapseb equals 0.37 both for charged@23# and
neutral @24# scalar fields, then there may be a connect
between the behavior of the quasinormal spectrum of ne
extremal black holes and the critical exponent for a giv
black hole. Yet the latter conjecture seems be too strong,
the black hole quasinormal modes may be related to the c
cal exponent in some specific space-time geometries@3,25#.

In this connection it is interesting to recall that the nea
extremal RN black hole is effectively described by the Ad2
black hole after spherically symmetric dimensional reduct
@27#. For such a reduced nearly extremal black hole an ex
relation between the quasinormal modes and the critical
ponent is obtained in@25#. The possible connection of th
QNM and critical collapse for the three dimensional BT
BH is discussed in@26#.

TABLE II. The quasinormal frequencies fora51 dilaton black
hole l 53, n50, e50 ande50.1.

Q e50 e50.1

0 0.6752120.09651i 0.6752120.09651i
0.2 0.6797720.09673i 0.6865020.09970i
0.4 0.6941120.09738i 0.7076820.09799i
0.6 0.7204520.09853i 0.7410920.09941i
0.8 0.7637920.10028i 0.7918920.10138i
1.0 0.8358020.10273i 0.8720920.10398i
1.1 0.8911620.10419i 0.9320520.10549i
1.2 0.9712220.10559i 1.0173420.10691i
1.3 1.1034020.10582i 1.1560220.10711i
1.35 1.2177420.10357i 1.2747320.10478i
1.4 1.4567020.08874i 1.5207620.08969i
7-4



n
a

at
nc

a

ve

tu

S
al,

e

DECAY OF A CHARGED SCALAR FIELD AROUND A . . . PHYSICAL REVIEW D66, 084007 ~2002!
Yet the coincidence of the damping times for charged a
neutral modes of the nearly extremal black hole is, app
ently, an exclusive property of RN BH, and is not appropri
to other black holes. It is possible also that this coincide
takes place only for a massless scalar field, since for a m
sive one the situation is qualitatively different@28#.

Thus any kind of satisfactory explanation of the abo
coincidence from a physical point of view is lacking.

Whether the damping times of charged and neutral per
:
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hy
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bations in the nearly extremal limit will coincide for RNAd
BH, and for an asymptotically nonflat black hole in gener
is a question for further investigation.
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