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Dark energy and matter evolution from lensing tomography
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Reconstructed from lensing tomography, the evolution of the dark matter density field in the well-understood
linear regime can provide model-independent constraints on the growth function of structure and the evolution
of the dark energy density. We examine this potential in the context that high-redshift cosmology has in the
future been fixed by cosmic microwave background measurements. We construct sharp tests for the existence
of multiple dark matter components or a dark energy component that is not a cosmological constant. These
functional constraints can be transformed into physically motivated model parameters. From the growth func-
tion, the fraction of the dark matter in a smooth component, such as a light neutrino, may be constrained to a
statistical precision ofs( f )'0.0006f sky

21/2 by a survey covering a fraction of skyf sky with a redshift resolution
Dz50.1. For the dark energy, a parametrization in terms of the present energy densityVDE , equation of state
w, and its redshift derivativew8, the constraints correspond tos(w)50.009f sky

21/2 and a degenerate combina-
tion of the other two parameters. For a fixedVDE , s(w8)50.046f sky

21/2.

DOI: 10.1103/PhysRevD.66.083515 PACS number~s!: 98.80.2k, 98.62.Sb, 98.65.2r
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I. INTRODUCTION

The weak gravitational lensing of faint galaxies@1# pro-
vides the most direct probe of mass distribution in the u
verse~e.g.,@2#!. Moreover, the evolution of clustering in th
mass distribution is arguably the best theoretically groun
probe of the dark energy and dark matter@3#. Although ob-
servations of weak lensing on large scales@4# are still in the
discovery phase@5#, future wide-field surveys have the po
tential to rival the statistical precision and cosmological u
ity of luminosity distance measures from supernova surv
@6,7#. Even in the context of a precisely determined hom
geneous cosmology, lensing measurements are unique in
they probe the clustering properties of the dark matter
energy. These are fixed by the homogeneous cosmology
under particular assumptions of the particle constitue
~e.g., cold dark matter and scalar field dark energy! @8,9#.

Much of the critical cosmological information lies in th
temporal or radial direction. A potential obstacle for we
lensing is that the observables are inherently two dim
sional. All of the matter along the line-of-sight to a dista
source contributes to the lensing. For a family of cosmolo
cal models that is described by a handful of parameters,
is not a serious drawback. Lack of radial information
largely compensated by a large angular dynamic range
external cosmological information.

Given the lack of compelling models for the dark ener
and controversies surrounding the phenomenology of
dark matter on small scales, it is interesting to conside
more model-independent approach. Indeed recent studie
alternate parametrizations of the dark energy have reve
potential ambiguities in the interpretation of luminosity d
tance measurements@10–14#. To address these issues wi
weak lensing, recovery of the temporal dimension becom
critical.

With future surveys that possess source photometric
shift information, recovery of the lost information is possib
in principle through tomography. Photometric redshift tec
0556-2821/2002/66~8!/083515~7!/$20.00 66 0835
i-

d

-
s
-
hat
d
ly

ts

-
t
i-
is

nd

e
a
of

ed

s

d-

-

niques are already being applied and tested on current l
ing data@15#. The full two-point statistical information can
be regained by cross-correlating the lensing observable
all source redshift planes@16#. This method utilizes both the
angular clustering and the temporal evolution of the den
field but obscures the nature and hence the model de
dence of the information. Additionally, the joint observabl
are survey-dependent and computationally cumbersom
analyze.

In this paper, we instead isolate the temporal informat
by applying recently developed techniques to reconstruct
radial density field itself@17,18#. We will further focus solely
on the linear regime where predictions are well understo
Even utilizing only this theoretically clean subset of inform
tion in the data, future surveys can potentially provide int
esting model-independent constraints on the properties o
dark energy and matter.

The outline of the paper is as follows. In Sec. II, w
discuss the method for reconstruction and statistical fo
casts. In Sec. III, we study constraints on the growth funct
for a fixed homogeneous cosmology and in Sec. IV the d
energy density evolution assuming pure cold dark matter.
discuss these results in Sec. V.

II. TOMOGRAPHIC RECONSTRUCTION

We begin in Sec. II A by briefly reviewing the tomogra
phic reconstruction of the dark matter density field in a fix
background cosmology as studied in@18#. We then general-
ize to the case where the cosmology and the density fi
must be jointly recovered from the data in Sec. II B a
review Fisher techniques for statistical forecasts in Sec. I
In Sec. II D, we outline the fiducial cosmology and surv
parameters used for illustrative purposes in the follow
sections.

A. Known homogeneous cosmology

We consider the data to be the lensing convergencek in
an angular pixel discretized into bins of source redshift co
©2002 The American Physical Society15-1
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WAYNE HU PHYSICAL REVIEW D 66, 083515 ~2002!
posed into a data vectordk . Weak lensing dictates that th
data are a linear projection of an underlying density fi
plus noise in the convergence measurementnk ,

dk5PkDsD1nk , ~1!

with

@PkD# i j 5H 3

2
H0

2VmdD j

~Di 112D j !D j

Di 11
, Di 11.D j ,

0, Di 11<D j ,
~2!

whereD is the comoving distance in a flat universe,

D~z!5E
0

z dz8

H~z8!
, ~3!

with H258pGr tot/3 defining the Hubble parameter anddD j
is the width of binj. Here and throughout subscripts on m
trices are labels, whereas matrix elements are denote
@ # i j . HereD5(dr/r)/a is the density fluctuation in the bin
with the growth rate in a matter-dominated universe sca
out. Note that these distances depend on the assumed
mology. We assume for now thatD(z) has been fixed by
other observations, e.g., future supernovae surveys, but r
this assumption in the following section.

The minimum variance estimator of the underlying de
sity field is given by@18#

ŝD5RDkdk , ~4!

where the reconstruction matrix

RDk5NDDPkD
t Nkk

21 . ~5!

Here

NDD5@PkD
t NkkPkD#21 ~6!

is the noise covariance of the estimator. Note thatRDkPkD

5I so that the estimator is unbiased.
The statistical properties of the recovered density fi

contain cosmological information. The recovered dens
field is an average of the density fluctuation over a wind
~or mask! Wi(x) defined by the angular pixel and redsh
binning. The signal covariance of these density averages

@S̄DD# i j 5
f i

f0

f j

f0
E d3k

~2p!3
Wi~k!Wj* ~k!P~k!,

where P(k) is the linear power spectrum today,f i
5Dgrow(zi)/ai is the linear decay rate of the potential fiel
with Dgrow the linear growth rate of the density field, norma
ized so thatf i51 in the matter-dominated regime, an
Wi(k) are the Fourier transforms of the windows. The tw
point statistical properties of the reconstruction theref
contain information on the growth rate and underlying pow
spectrum of the density field.
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B. Unknown homogeneous cosmology

The inversion of Eq.~4! requires an assumption of
distance-redshift relation inPkD . If this relation is not fixed
by external constraints, then the reconstructed density fi
will be a biased measure of the true density field. In this ca
both the distance-redshift and growth rate must be fit to
data.

If the assumedD(z) is close to the trueD(z), then the
reconstruction of the previous section still serves as a us
representation of the data. The reconstruction matrixRDk
employs a slightly incorrect assumption of the projecti
matrix so thatRDkPkDÞI . The statistical properties of th
estimated density field are encapsulated in the noise ma
~6!, which remains unchanged, and a new signal covaria
matrix

SDD5RDkPkDS̄DDPkD
t RDk

t . ~7!

The two-point statistics now also contain information abo
the distance-redshift relationD(z).

C. Statistical forecasts

The two-point statistical information in the reconstructio
can be exposed through the familiar Fisher approach~e.g.,
@19#!. If the parameters that underly the two-point correlati
are given by a vectorsp , the Fisher matrix is given by

@Fpp# i j 5
Npix

2
tr@CDD

21CDD,iCDD
21CDD, j # ~8!

with the covariance matrix

CDD5NDD1SDD . ~9!

Here we have assumed that the convergence is measur
Npix independent pixels. We will often write this factor as th
total sky coverage in independent pixelsNpix
54p f sky/Apix , whereApix is the pixel area in steradians.
complete treatment would track the small correlations
tween neighboring pixels on contiguous patches of sky@18#.

The inverse of the Fisher matrixFpp
21 gives an estimate o

the covariance matrixCpp of the measured parametersŝp .
Note that under a reparametrization of the space, the Fi
matrix transforms as a covariant tensor

Fp̃p̃5Jpp̃
t FppJpp̃ , @Jpp̃# i j [

]pi

] p̃ j

. ~10!

We will use this fact to go from model-independent para
etrizations of the underlying functions to model-depend
ones.

D. Fiducial model and survey

We take as a fiducial cosmology a flatV tot51 universe
with Vc50.3 in cold dark matter,Vb50.05 in baryons,
VDE50.65 in dark energy; an equation of state of the da
energy ofw(z)521 corresponding to a cosmological co
stant; a dimensionless Hubble constant,h50.65, scalar spec
5-2
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DARK ENERGY AND MATTER EVOLUTION FROM . . . PHYSICAL REVIEW D66, 083515 ~2002!
tral indexn51, and amplitude of the initial curvature powe
spectrumdz54.831025 (s850.92, see@7# for specific defi-
nitions of parameters!. Since tomographic reconstruction wi
mainly be useful for next-generation surveys, it is reasona
to assume that cosmic microwave background~CMB! ex-
periments will by that time have determined many of t
underlying cosmological parameters to high accuracy.
simplicity, we will assume here thatVch

2, Vbh2, n, dz , and
V tot are completely fixed to their fiducial values. We w
return to this point in Sec. V. These parameters fix the sh
and high redshift normalization of the potential power sp
trum and so we will work in the context that only the grow
function and distance-redshift relation need be determi
through lensing.

For definiteness, we will take the fiducial survey to
defined with circular pixels of area 1 deg2 so that the recon-
structed density field is in the linear regime@20#. Larger
pixels would reduce the number of independent pixels
hence increase the sample variance in the signal-domin
regime. In the figures that follow, we takef sky50.1
(;4000 deg2) but note that all lensing errors may be re
caled as (f sky/0.1)21/2. For the redshift binning, we tak
Dz50.1 out toz53. With this binning, the signal covari
ance matrixSDD is nearly diagonal and the statistics redu
to the evolution of the density variance in bins.

We will assume a convergence noise spectrum of the f

Nkk5diag@g rms
2 /Ni #, ~11!

as appropriate for random intrinsic galaxy ellipticities. W
take n̄53.63105 gal deg22 andg rms50.3 as an estimate o
the usable galaxies and the shear noise per galaxy mea
from a space-based platform~A. Refregier, private commu
nication! and form the number of galaxies per binNi from a
redshift distribution@21#

dN

dz
}

dD

dz
Dexp@2~D/D* !4#, ~12!

where D* is set to reproduce a median redshiftzmed51.
These fiducial survey specifications are chosen to repre
the upper range of the capabilities of surveys in the fores
able future.

III. GROWTH RATE

For a fixed distance-redshift relation and high redsh
power spectrum, the remaining degrees of freedom in
two-point statistical properties of the reconstructed den
field are contained in the growth functionf(z). To study
how lensing constrains this function, we begin with a mod
independent approach.

Consider the set of binned growth ratesf i as the param-
eters to be estimated. With fine-binning of the density fi
Dz50.1, this leads to estimates that have large correla
errors since the reconstruction effectively takes differen
of noisy data. The long-time scale evolution of the dens
field is faithfully preserved in the reconstruction@18#. Since
structure grows in linear theory on the expansion time sc
08351
le

r

e
-

d

d
ed

m

red

nt
e-

t
e
y

l-

d
d
s

y

le

in gravitational instability models, this information is suffi
cient to constrain cosmology.

To better understand the information contained there
consider the principle component or eigenvector decomp
tion of the Fisher matrixFff5SLSt and the linear combi-
nations of the data they define,

ŝl5Stŝf , Cll5L21. ~13!

In other words, the eigenvectors are the redshift represe
tion of a new basis that is complete and yields uncorrela
orthogonal measurements with variance given by the inve
eigenvalue 1/l i . The largest eigenvalues correspond to t
minimum variance directions and are shown in the up
panel of Fig. 1. The first mode has a broad single peak
tween 0,z,zmed51 corresponding to the bell-shape
weight in the lensing projection of Eq.~2!. The higher modes
exhibit oscillatory structure and capture information on t
low-order derivatives of the growth function around this i
termediate redshift as well as the regionz.zmed. The spec-
trum of eigenvaluesl i

21/2, scaled to represent inverse rm
noise and normalized forf sky50.1, is shown in the bottom
panel. Although the eigenvalues reflect only the noise pr
erties and not the signal-to-noise ratio, the growth rate in
fiducial cosmology is sufficiently flat so that@sl# il i

21/2

shares the same form~bottom panel!. Most of the signal
comes from the first few eigenmodes but the signal-to-no
ratio in the first 10–15 eigenmodes remains substantial fo
large survey.

Although this principle component analysis is ideal f
exposing the nature of the information, the oscillating w
dows make it somewhat difficult to visualize its impact f
model testing. For this purpose, it may be preferable to
more localized linear combinations that retain the uncor
lated property at the expense of having overlapping~nonor-

FIG. 1. Principle components of the growth function:~upper!
first five eigenfunctions of the growth function~thick to thin! plot-
ted in discrete redshift bins;~lower! rank ordered inverse rms nois
l i

21/2 ~thin! and signal-to-noise ratio. Here and in the followin
figures the fiducial model and survey are assumed throughout
f sky50.1 andDz50.1 redshift bins.
5-3
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WAYNE HU PHYSICAL REVIEW D 66, 083515 ~2002!
thogonal! windows. Consider the linear combinations d
fined by rows of the ‘‘square root’’ of the Fisher matrix@22#,

G[SL1/2St, ~14!

and with a normalization chosen so that the window e
ments sum to unity. As shown in Fig. 2, they yield we
localized windows and provide a visualization of the da
with error boxes whose width is determined as that enclos
the central 60% of the window. We show here the err
appropriate for a survey withf sky50.1.

Any model-independent constraints on the growth r
can be translated into a model-dependent one by exami
the x2 of the model fit. In terms of Fisher forecasts, this
equivalent to a reparametrization through the transforma
law ~10!. As an example, consider a family of growth fun
tions that represent a rescaling and pivot around a fixedzp
from the fiducial model

f~z!5AS 11z

11zp
D p

ffid~z!. ~15!

The pivot point can be chosen to decorrelate the errors
tweenA andp by examining Fisher reparametrization ofzp
@25#. This choice then has the nice property that the er
s(A) in the two-parameter model (A,p) is also that of the
single-parameter family of models (A). For the fiducial
model and surveyzp50.64, s(A)50.0023f sky

21/2, ands(p)
50.0089f sky

21/2. Physically, such constraints would limit th
fraction f of the dark matter in a smooth component, f
example a light neutrino below its free-streaming scale
smooth component induces a change in the growth rate in
matter-dominated epoch ofp53 f /5 and a consequen
change in the amplitude compared with the initial conditio
of dA'4 f ~e.g.,@23#!.

FIG. 2. Localized constraints on the growth functionf
5Dgrow/a: ~upper! projected error boxes on the growth functio
with 1s error bars on the Fisher square root representation w
bandwidths taken from the window functions~lower!. For compari-
son, the growth function for anmtot50.2 eV model with three equa
mass neutrinos is shown~dashed line!.
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We show a neutrino model with a total massmtot
50.2 eV distributed equally into three species in Fig. 2. T
test is potentially substantially more powerful than its gala
clustering analogue due to the lack of an unknown b
@23,24#. While most of the constraint would come from th
amplitudeA, information on the growth indexp is useful for
distinguishing such effects from those of the dark ene
~Sec. IV! and uncertainties in the initial conditions~Sec. V!.
By varying the pixel size, one can in principle test the sc
dependence of the growth rate predicted in such mod
Likewise, deviations would occur if the dark energy is n
effectively smooth on the scale of the pixels. Lensing tomo
raphy offers a unique opportunity to test the clustering pr
erties of both the dark energy and the dark matter on in
mediate scales.

IV. DARK ENERGY DENSITY EVOLUTION

If the distance-redshift relationD(z) is uncertain due to
the dark energy, then these degrees of freedom must b
corporated into the statistical forecasts as well. For simp
ity, we will in this context assume that the dark matter
composed solely of cold dark matter.

Fortunately for a smooth dark energy component, both
distance-redshift relation~3! and the growth rate are fixed b
the dark energy density evolutionrDE(z) @3#. Here the
growth rate obeys

d2f

d ln a2
1F5

2
2

3

2
w~z!VDE~z!G df

d ln a

1
3

2
@12w~z!#VDE~z!f50, ~16!

where the initial conditions aref51 anddf/d ln a50 and
the equation of state

w~z![
pDE

rDE
52

1

3

d ln rDE

d ln a
21. ~17!

As in the case of the growth rate, we chose a mod
independent parametrization as the primary representa
Consider the dark energy density in redshift bins@10,13#,
specifically

di5 lnS rDE~zi !

rcr0
D , ~18!

with z050 and Dz of the same binning as in the densi
reconstructionD. Sincercr0 is the critical density today,d0
5 ln VDE. The difference here is that we require a fini
w8(z)[dw/dz to ensure that the dark energy remai
smooth. Therefore, we choosed(z) as a spline interpolation
of di .

Again, the recovery of finely binned parameters is no
and correlated across neighboring bins. The information c
tent is best revealed through the Fisher principle compon
analysis. Shown in Fig. 3~top! are the first five eigenfunc
tions. The qualitative difference between the eigenfunctio

th
5-4
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DARK ENERGY AND MATTER EVOLUTION FROM . . . PHYSICAL REVIEW D66, 083515 ~2002!
of the growth and that of the density is the presence of s
stantial low redshift information in the latter. The dark e
ergy density at low redshift affects the distance to all hig
redshifts. In Fig. 3, we show the eigenvalues asl i

21/2 and the
signal-to-noise ratio for the fiducial model andf sky50.1.

It is again desirable to find an uncorrelated but more
calized representation of the data. Unfortunately, the Fis
square-root technique of Eq.~14! does not yield localized
windows for the dark energy density. Instead we choos
close analogue, the Cholesky decorrelation@22#, where the
windows are the columns ofL andFdd5LL t again normal-
ized to sum to unity. The windows are shown in Fig. 4~lower
panel!. With the exception of one window that oscillate
aroundz'0.5 and picks up the local derivative of the da
energy density and not its value, the windows are fairly loc
The windows also have the interesting property that they
strictly zero below some minimum redshift.

In Fig. 4 ~upper panel!, we show the projected constrain
on these localized modes compared with the predictions f
w520.8 model ~points! and the actual functionrDE(z)
~curve! in this model. The deviation between the points a
the curve reflects the nonlocality of the windows. Note th
for a cosmological constant model (rDE5const) there is no
deviation by definition~straight line! and that the expectatio
value of all points is lnVDE. Any statistically significant
difference in the values of the points in this reconstruct
represents a detection of a dark energy component that isnot
a cosmological constant@10#. This is true in spite of the
nonlocality of the windows and independently of the mod
dependent parametrization of the dark energy.

Again one may always test specific models for the d
energy from the model-independent parametrization. M
dark energy models can be parametrized byVDE, w(zeff),
andw85dw/dzuzeff

. The pivot pointzeff can be chosen to b
the best constrained redshift or ‘‘sweet spot’’ by decorre
ing the errors inw andw8. As was the case for the growt
rate, the resulting errors onw(zeff) are the same as in th
case of a two-parameter model (VDE,w). For the fiducial

FIG. 3. Principle components of the dark energy densityd
[ ln(rDE /rcr0): ~upper! first five eigenfunctions of the growth func
tion ~thick to thin! plotted in redshift;~lower! rank ordered inverse
rms noisel i

21/2 ~thin! and signal-to-noise ratio.
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model and survey, this is zeff50.44 and s(w)
50.0086f sky

21/2. Note that this constraint is marginalized ov
(VDE,w8) without prior assumptions to their values.

As in the case of supernovae luminosity distance m
sures@12,11#, there remains a degeneracy betweenVDE and
w8 in that they may both be adjusted upward to keep the d
energy density at the well-constrained low redshifts fixed.
Fig. 5, we show the 68% confidence region with vario
assumptions of prior knowledge onVDE: none, s(VDE)
50.03, 50.01. With VDE fixed, the errors becomes(w8)
50.046f sky

21/2.
Conversely, ifw8 is fixed, the constraints on the dar

energy density improve tos(VDE)50.004f sky
21/2. This two-

FIG. 4. Localized constraints on the dark energy density:~up-
per! projected error boxes on the growth function with 1s error
bars around the fiducial model~line! for the Cholesky representa
tion where bandwidths are taken from the window functio
~lower!. With the exception of one mode, the windows are fai
local. For comparison, a model withw520.8 is shown both in the
predictions for the modes~points! and the density function itsel
~curve!. The small difference reflects the nonlocality of the wi
dows. Any deviation from constancy represents dark energy tha
not a cosmological constant.

FIG. 5. Error ellipses~68% C.L.! for dark energy parameter
(VDE ,w,w8): ~upper! the (VDE ,w8) plane showing the degenerac
direction and the efficacy of external information onVDE ; ~lower!
the (VDE ,w) plane with complete and no external information o
w8. Here w is defined as the equation of state atz50.44. The
fiducial model and survey are assumed throughout withf sky50.1.
5-5
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WAYNE HU PHYSICAL REVIEW D 66, 083515 ~2002!
parameter family (VDE,w) represents the amplitude an
slope of the dark energy density itself at a normalizat
point of z50. In fact, as Fig. 4 shows, this is quite close
the ‘‘sweet spot’’ and so there is little remaining degenera
betweenw andVDE ~see Fig. 5, right panel!. Optimization of
the normalization redshift improves errors on the dark ene
density by a factor of 1.2 and again also represents the e
on VDE in the single-parameter family of dark energy mo
els. Errors onw of course remain unchanged.

V. DISCUSSION

We have shown that lensing surveys covering more tha
few percent of the sky with good photometric redshift info
mation can probe the time evolution of the linear grow
function and distance-redshift relation, both of which a
sensitive to properties of the dark energy and dark ma
Specifically, we have tested a model-independent param
zation of the linear growth rate and/or dark energy den
discretized into bins in redshift. Deviations in the growth ra
would indicate a component of the dark matter that is
effectively cold or dark energy that is not smooth on t
lensing scale. Deviations in the constancy of the dark ene
would rule out a cosmological constant model.

In this exploratory study, we have made several simpli
ing assumptions that would need to be addressed in a
crete implementation. Perhaps the primary one is that fu
CMB measurements will completely fix the high redsh
cosmology. The most uncertain piece involves the amplit
of the initial fluctuations on the scales relevant to the lens
pixels, k;0.05 Mpc21 for degree scales. Fortunately, th
pivot point of CMB anisotropy experiments with several a
minute scale resolution is sufficiently close to the lens
scale that the slope and shape of the initial power spect
do not cause much ambiguity@7#.

To fully utilize the lensing information, the initial ampli
tude must be fixed to an accuracy better than the amplit
of the growth function, which we have found to b
As

n

n.
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;0.002f sky
21/2, i.e., percent level accuracy for surveys of se

eral thousand square degrees. For CMB anisotropies,
precision requires that the optical depth during reionizat
must be determined tos(t);0.01 to resolve the amplitude
degeneracy. If determined from CMB observations alo
this will require polarization measurements with a precis
comparable to the Planck satellite@26#, which can in prin-
ciple achieves(ln dz)50.0044 atk50.05 Mpc21 @7#. Direct
measurements of the reionization epoch can also resolve
ambiguity @7#. Even in the absence of this information, th
evolutionof the growth and luminosity-distance relation a
still constrained. These issues are best addressed thr
joint parameter estimation.

On the lensing side, the most important assumption is
the noise in the convergence measurements is well-calibr
and not significantly larger than the projections based
intrinsic ellipticities. Even aside from the demanding r
quirements for control of systematic errors, there may
intrinsic correlations in the ellipticities@27# that need to be
modeled or avoided by increasing the pixel scale and reds
bin widths. The recovered information is largely insensiti
to the redshift bin width since the high signal-to-noise mod
are all low frequency. Errors scale roughly asApix

1/2 due to the
loss of independent modes in a fixed survey area.

We have also neglected sample covariance between
pixels but note that we have correspondingly neglected
information contained in such correlations. Indeed, we h
completely neglected the information contained in the n
linear regime, which in fact contains the majority of the i
formation from lensing tomography@18#. Clearly, future
studies will be required to see how best to mine the mod
independent information contained in lensing tomograph
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