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Reconstructed from lensing tomography, the evolution of the dark matter density field in the well-understood
linear regime can provide model-independent constraints on the growth function of structure and the evolution
of the dark energy density. We examine this potential in the context that high-redshift cosmology has in the
future been fixed by cosmic microwave background measurements. We construct sharp tests for the existence
of multiple dark matter components or a dark energy component that is not a cosmological constant. These
functional constraints can be transformed into physically motivated model parameters. From the growth func-
tion, the fraction of the dark matter in a smooth component, such as a light neutrino, may be constrained to a
statistical precision o&(f)~0.0006gk§’2 by a survey covering a fraction of sKy,, with a redshift resolution
Az=0.1. For the dark energy, a parametrization in terms of the present energy depsitgquation of state
w, and its redshift derivativev’, the constraints correspond sqw)=0.00% ;22 and a degenerate combina-

sky
tion of the other two parameters. For a fixBghe, o(w')=0.046 o2
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[. INTRODUCTION niques are already being applied and tested on current lens-
ing data[15]. The full two-point statistical information can
The weak gravitational lensing of faint galaxigl] pro- ~ be regained by cross-correlating the lensing observables on
vides the most direct probe of mass distribution in the uni-all source redshift pland46]. This method utilizes both the
verse(e.g.,[2]). Moreover, the evolution of clustering in the a_mgular clustering and the temporal evolution of the density
mass distribution is arguably the best theoretically grounde@ilr(]jcglgf ?T?S?#{srsm;qso:a;%rgit%zilI?/e?r?:jct)ki]r?t g"bosde?l/g;ggn'
robe of the dark energy and dark mataf. Although ob- ’ '
gervations of weak Iensg,;i%g on large sc;ﬂﬁej]tsare stillgin the &€ survey-dependent and computationally cumbersome to

. L analyze.
discovery phasgS], future wide-field surveys have the po- | s naner we instead isolate the temporal information

tential to rival the statistical precision and cosmological util-by applying recently developed techniques to reconstruct the
ity of luminosity distance measures from supernova surveyg;gia| density field itself17,18. We will further focus solely
[6,7]. Even in the context of a precisely determined homo-yp, the [inear regime where predictions are well understood.

geneous cosmology, lensing measurements are unique in thafen, yilizing only this theoretically clean subset of informa-
they probe the clustering properties of the dark matter angion in the data, future surveys can potentially provide inter-

energy. These are fixed by the homogeneous cosmology Onlisting model-independent constraints on the properties of the
under particular assumptions of the particle constituentg, energy and matter.

(€.g., cold dark matter and scalar field dark eng{@y9). The outline of the paper is as follows. In Sec. Il, we
Much of the critical cosmological information lies in the giscyss the method for reconstruction and statistical fore-

temporal or radial direction. A potential obstacle for weakagts. In Sec. 111, we study constraints on the growth function

lensing is that the observables are inherently two dimen;q, 5 fixed homogeneous cosmology and in Sec. IV the dark

sional. All of_ the matter along the Iine—of—sight to a distan'; energy density evolution assuming pure cold dark matter. We
source contributes to the lensing. For a family of cosmologiiscuss these results in Sec. V.

cal models that is described by a handful of parameters, this

is not a serious drawback. Lack of radial information is Il. TOMOGRAPHIC RECONSTRUCTION
largely compensated by a large angular dynamic range and o ) o
external cosmological information. We begin in Sec. Il A by briefly reviewing the tomogra-

Given the lack of compelling models for the dark energyphic reconstruction of the dark maitter density field in a fixed
and controversies surrounding the phenomenology of thEackground cosmology as studied|i8]. We then general-
dark matter on small scales, it is interesting to consider &€ t0 the case where the cosmology and the density field
more model-independent approach. Indeed recent studies Bfust be jointly recovered from the data in Sec. Il B and
alternate parametrizations of the dark energy have reveald§view Fisher technlques for ;tat|§t|cal forecasts in Sec. Il C.
potential ambiguities in the interpretation of luminosity dis- IN Sec. 1l D, we outline the fiducial cosmology and survey
tance measuremenfd0—14. To address these issues with para_meters used for illustrative purposes in the following
weak lensing, recovery of the temporal dimension become§€ctions.
critical.

With future surveys that possess source photometric red-
shift information, recovery of the lost information is possible  We consider the data to be the lensing convergenae
in principle through tomography. Photometric redshift tech-an angular pixel discretized into bins of source redshift com-

A. Known homogeneous cosmology
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posed into a data vectat,. Weak lensing dictates that the B. Unknown homogeneous cosmology
data are a linear projection of an underlying density field The inversion of Eq.(4) requires an assumption of a
plus noise in the convergence measurenment distance-redshift relation iR, . If this relation is not fixed
d =P .stn ) by external constraints, then the reconstructed density field
e will be a biased measure of the true density field. In this case,
with (l:j)oth the distance-redshift and growth rate must be fit to the
ata.
3, (Di+1—Dj)D; If the as;umed)(z) is plose to ghe trgeD(z), then the
[P ]i= EHonfSDj T Di+1>Dy, reconstruction of the previous section still serves as a useful
kAdij —

representation of the data. The reconstruction ma®ix,
i employs a slightly incorrect assumption of the projection
(2 matrix so thatR,.P,,#1. The statistical properties of the
estimated density field are encapsulated in the noise matrix
(6), which remains unchanged, and a new signal covariance
matrix

0, D;,1=D

whereD is the comoving distance in a flat universe,

z dz
D(Z):fo H(z')'

!

3 _
® Saa=RaPaSaaPiaRY - ()

with H2=87Gp,/3 defining the Hubble parameter b, The two-point statistics now also contain information about
is the width of binj. Here and throughout subscripts on ma- the distance-redshift relatidd(z).

trices are labels, whereas matrix elements are denoted as

[1;j - HereA=(8p/p)/a is the density fluctuation in the bin C. Statistical forecasts

with the growth rate in a matter-dominated universe scaled g yyo-point statistical information in the reconstruction
out. Note that these distances depend on the assumed cQSy, pe exposed through the familiar Fisher approach).,

mology. We assume for now th&l(z) has been fixed by [19)) f the parameters that underly the two-point correlation
other observations, e.g., future supernovae surveys, but relax. given by a vectas,, the Fisher matrix is given by
this assumption in the following section. ’

The minimum variance estimator of the underlying den- Npix. 4 .
sity field is given by[18] [Foplij =M CaaCan,iCarCan,l (8)
S\ =Ry,d,, (4)  with the covariance matrix
where the reconstruction matrix Caa=NzatSaa- 9
Rac=NaaPt A NCE (55  Here we have assumed that the convergence is measured in
Npix independent pixels. We will often write this factor as the
Here total sky coverage in independent pixelsNy
. . =4ty Apix, WhereA,, is the pixel area in steradians. A
Naa=[PiaNycPral (6)  complete treatment would track the small correlations be-

. ) ) ) tween neighboring pixels on contiguous patches of[4/8].
is the noise covariance of the estimator. Note 1R&fP,a The inverse of the Fisher matrk, ' gives an estimate of
=1 so that the estimator is unbiased. P

The statistical properties of the recovered density fiel hgt:?r\g[”igggrrgartggprgnﬂfe:rr;;ea?oenaz?rti(i 2a;8ér:e§ri§.ﬁsher
contain cosmological information. The recovered densit P pace,

field is an average of the density fluctuation over a Windovdﬂatnx transforms as a covariant tensor
(or mask W;(x) defined by the angular pixel and redshift

.. k . . - t B e &pl
binning. The signal covariance of these density averages Fpp:JpBFppJpp, [Joplij= = (10)
J
— i b dk . . .
[Saalij=— —f —SWi(k)V\/j*(k)P(k), We will use this fact to go from model-independent param-
bo b0l (2m) etrizations of the underlying functions to model-dependent

ones.
where P(k) is the linear power spectrum todayp;

=Dygou(zi)/a; is the linear decay rate of the potential field,
with D 4.0, the linear growth rate of the density field, normal-
ized so that¢;=1 in the matter-dominated regime, and We take as a fiducial cosmology a fl@,=1 universe

W, (k) are the Fourier transforms of the windows. The two-with Q.=0.3 in cold dark matter(2,=0.05 in baryons,
point statistical properties of the reconstruction thereforeldpe=0.65 in dark energy; an equation of state of the dark
contain information on the growth rate and underlying powerenergy ofw(z)=—1 corresponding to a cosmological con-
spectrum of the density field. stant; a dimensionless Hubble constérit,0.65, scalar spec-

D. Fiducial model and survey
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tral indexn=1, and amplitude of the initial curvature power

spectrums,=4.8x 10 ° (a3=0.92, sed7] for specific defi- Ly Grasib. Bigenmodes
nitions of parametejsSince tomographic reconstruction will ¢, -

mainly be useful for next-generation surveys, it is reasonable E

to assume that cosmic microwave backgroy@iB) ex- 0.2

periments will by that time have determined many of the
underlying cosmological parameters to high accuracy. For
simplicity, we will assume here th&:h? Quh?, n, 5,, and -02
O are completely fixed to their fiducial values. We will
return to this point in Sec. V. These parameters fix the shape
and high redshift normalization of the potential power spec- 10
trum and so we will work in the context that only the growth 1
function and distance-redshift relation need be determined g,
through lensing.

1/noise

vood vl vl L P e P P B

signal/noise

L L L L N RN

oo b b b ey 0 3

For definiteness, we will take the fiducial survey to be 05 1 - L5 2
defined with circular pixels of area 1 dego that the recon- Z (wpper), /10 (owen
structed density field is in the linear reginj20]. Larger FIG. 1. Principle components of the growth functidappes

pixels would reduce the number of independent pixels angs; five eigenfunctions of the growth functidthick to thin) plot-
hence increase the sample variance in the signal-dominatgy in discrete redshift binglower rank ordered inverse rms noise
regime. In the figures that follow, we takég,=0.1  \; %2 (thin) and signal-to-noise ratio. Here and in the following
(~4000deg) but note that all lensing errors may be res-figures the fiducial model and survey are assumed throughout with
caled as {g,/0.1)"Y2 For the redshift binning, we take fy,=0.1 andAz=0.1 redshift bins.
Az=0.1 out toz=3. With this binning, the signal covari-
ance matrixS,, is nearly diagonal and the statistics reducein gravitational instability models, this information is suffi-
to the evolution of the density variance in bins. cient to constrain Cosmo|ogy_

We will assume a convergence noise spectrum of the form To better understand the information contained therein,

. consider the principle component or eigenvector decomposi-
N o= diad y7nd Ni], (1D tion of the Fisher matri¥4,=SAS and the linear combi-

. L o nations of the data they define,
as appropriate for random intrinsic galaxy ellipticities. We

taken=3.6x 10° galdeg ? and vy,,c=0.3 as an estimate of
the usable galaxies and the shear noise per galaxy measured
from a space-based platfor(A. Refregier, private commu-
nication and form the number of galaxies per B from a  In other words, the eigenvectors are the redshift representa-

5i=S's;, Cn=A"1 (13

redshift distribution21] tion of a new basis that is complete and yields uncorrelated,
orthogonal measurements with variance given by the inverse

dN dD 4 eigenvalue I;. The largest eigenvalues correspond to the

a4z g7 e —(D/D)7, (12 minimum variance directions and are shown in the upper

panel of Fig. 1. The first mode has a broad single peak be-

where D, is set to reproduce a median redshiff,=1. tWeen 0<z<z,,~1 corresponding to the bell-shaped
These fiducial survey specifications are chosen to represefteight in the lensing projection of E(). The higher modes

the upper range of the capabilities of surveys in the foresed2xhibit oscilla_tory structure and capture _information on _the
able future. low-order derivatives of the growth function around this in-

termediate redshift as well as the region z,,oq. The spec-
trum of eigenvalues., ¥?, scaled to represent inverse rms
noise and normalized fairg,,= 0.1, is shown in the bottom
For a fixed distance-redshift relation and high redshiftpanel. Although the eigenvalues reflect only the noise prop-
power spectrum, the remaining degrees of freedom in therties and not the signal-to-noise ratio, the growth rate in the
two-point statistical properties of the reconstructed densityfiiducial cosmology is sufficiently flat so thdts,JiA; 12
field are contained in the growth functiop(z). To study shares the same forrtbottom panel Most of the signal
how lensing constrains this function, we begin with a model-comes from the first few eigenmodes but the signal-to-noise
independent approach. ratio in the first 10—15 eigenmodes remains substantial for a
Consider the set of binned growth raig¢sas the param- large survey.
eters to be estimated. With fine-binning of the density field Although this principle component analysis is ideal for
Az=0.1, this leads to estimates that have large correlatedxposing the nature of the information, the oscillating win-
errors since the reconstruction effectively takes differenceslows make it somewhat difficult to visualize its impact for
of noisy data. The long-time scale evolution of the densitymodel testing. For this purpose, it may be preferable to use
field is faithfully preserved in the reconstructiph8]. Since  more localized linear combinations that retain the uncorre-
structure grows in linear theory on the expansion time scaléated property at the expense of having overlapgimgnor-

IIl. GROWTH RATE
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BRSO We show a neutrino model with a total mass,,
L4[- ¢ (growth) i =0.2 eV distributed equally into three species in Fig. 2. This

i ] test is potentially substantially more powerful than its galaxy
121 B clustering analogue due to the lack of an unknown bias

i = ] [23,24). While most of the constraint would come from the
Lo == = amplitudeA, information on the growth indep is useful for

C =5 ] distinguishing such effects from those of the dark energy
0.8 1 (Sec. IV) and uncertainties in the initial conditioiSec. \j.

i ] By varying the pixel size, one can in principle test the scale
0.6F ——-my=0.2eV H dependence of the growth rate predicted in such models.
06: e T o B e o o _ Likewise, deviations would occur if the dark energy is not
B windows effectively smooth on the scale_of the pixels. Lensin_g tomog-
o raphy offers a unique opportunity to test the clustering prop-

E < erties of both the dark energy and the dark matter on inter-

0.5 1 Z L5 2 mediate scales.
FIG. 2. Localized constraints on the growth functiaf IV. DARK ENERGY DENSITY EVOLUTION

=Dgow/a: (upped projected error boxes on the growth function

with 1o error bars on the Fisher square root representation with If the distance-redshift relatioB(z) is uncertain due to

bandwidths taken from the window functiofiewer). For compari-  the dark energy, then these degrees of freedom must be in-

son, the growth function for am,,=0.2 eV model with three equal corporated into the statistical forecasts as well. For simplic-

mass neutrinos is show(dashed ling ity, we will in this context assume that the dark matter is
composed solely of cold dark matter.

thogonal windows. Consider the linear combinations de- Fortunately for a smooth dark energy component, both the

fined by rows of the “square root” of the Fisher matfix2],  distance-redshift relatiof8) and the growth rate are fixed by
the dark energy density evolutioppe(z) [3]. Here the

G=SAY2 (14)  9rowth rate obeys
2
and with a normalization chosen so that the window ele- d’¢ + > §W(Z)QDE(Z) _dd’
ments sum to unity. As shown in Fig. 2, they yield well- dina® [2 2 dina
localized windows and provide a visualization of the data 3
with error boxes whose width is determined as that enclosing _
+-[1- Q =0, 16

the central 60% of the window. We show here the errors 2[ wW(z)[Qoe(2) ¢ (16

appropriate for a survey withg,=0.1. o N

Any model-independent constraints on the growth ratevhere the initial conditions ar¢=1 andd¢/dIna=0 and
can be translated into a model-dependent one by examinirf§€ equation of state
the x? of the model fit. In terms of Fisher forecasts, this is

equivalent to a reparametrization through the transformation Poe_ 1dinpoe _

: : w(z)=——=—5 (17)
law (10). As an example, consider a family of growth func- PDE 3 dlna
tions that represent a rescaling and pivot around a fed ]
from the fiducial model As in the case of the growth rate, we chose a model-

independent parametrization as the primary representation.
Consider the dark energy density in redshift bji€,13,

p
b5id(2). (15  specifically

B ( 1+z
Pd(2)=A 1+—zp

pDE(Zi)), 18

The pivot point can be chosen to decorrelate the errors be- dizln( Dero

tweenA andp by examining Fisher reparametrization zf

[25]. This choice then has the nice property that the errofith z,=0 and Az of the same binning as in the density
a(A) in the two-parameter modelA(p) is also that of the  reconstructiomA. Sincepy is the critical density todayd,
single-parameter family of modelsA}. For the fiducial ~=|nQp.. The difference here is that we require a finite
model and survey,=0.64, o(A)=0.0023 o”, ando(p)  w’(z)=dw/dz to ensure that the dark energy remains
=0.0089§k§’2. Physically, such constraints would limit the smooth. Therefore, we chooséz) as a spline interpolation
fraction f of the dark matter in a smooth component, for of d; .

example a light neutrino below its free-streaming scale. A Again, the recovery of finely binned parameters is noisy
smooth component induces a change in the growth rate in thend correlated across neighboring bins. The information con-
matter-dominated epoch op=3f/5 and a consequent tent is best revealed through the Fisher principle component
change in the amplitude compared with the initial conditionsanalysis. Shown in Fig. 8top) are the first five eigenfunc-

of SA~4f (e.g.,[23]). tions. The qualitative difference between the eigenfunctions
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FIG. 3. Principle components of the dark energy density FIG. 4. Localized constraints on the dark energy densitp:
=In(ppe/ peo): (Upped first five eigenfunctions of the growth func- Pen projected error boxes on the growth function witer Error

tion (thick to thin) plotted in redshiftlowen rank ordered inverse bars around the fiducial modéine) for the Cholesky representa-
rms noise\; 2 (thin) and signal-to-noise ratio. tion where bandwidths are taken from the window functions

(lower). With the exception of one mode, the windows are fairly
of the growth and that of the density is the presence of sublocal. For comparison, a model witlhi= — 0.8 is shown both in the
stantial low redshift information in the latter. The dark en- predictions for the modeé&oints and the density function itself
ergy density at low redshift affects the distance to all higher(curve). The small difference reflects the nonlocality of the win-
redshifts. In Fig. 3, we show the eigenvam%a—g/z andthe dows. Any deviz_ition from constancy represents dark energy that is
signal-to-noise ratio for the fiducial model arigi,=0.1. not a cosmological constant.

It is again desirable to find an uncorrelated but more lo-
calized representation of the data. Unfortunately, the Fishemodel and survey, this isz=0.44 and o(w)
square-root technique of Eql4) does not yield localized =0.0086;k)1,’2. Note that this constraint is marginalized over
windows for the dark energy density. Instead we choose & pe,w’) without prior assumptions to their values.
close analogue, the Cholesky decorrelati@g], where the As in the case of supernovae luminosity distance mea-
windows are the columns df andFygq=LL " again normal-  sures[12,11], there remains a degeneracy betwéks: and
ized to sum to unity. The windows are shown in Figlewer  w’ in that they may both be adjusted upward to keep the dark
pane). With the exception of one window that oscillates energy density at the well-constrained low redshifts fixed. In
aroundz~0.5 and picks up the local derivative of the dark Fig. 5, we show the 68% confidence region with various
energy density and not its value, the windows are fairly localassumptions of prior knowledge ofipe: none, o(Qpg)
The windows also have the interesting property that they are-0.03, =0.01. With Q¢ fixed, the errors become(w’)
strictly zero below some minimum redshift. 20_046‘3@’2_

In Fig. 4 (upper pangl we show the projected constraints  Conversely, ifw’ is fixed, the constraints on the dark
on these localized modes compared with the predictions for g@nergy density improve to-(Qpg) =0.004 2. This two-

w=—0.8 model (pointy and the actual functiorppg(z) K
(curve in this model. The deviation between the points and
the curve reflects the nonlocality of the windows. Note that
for a cosmological constant moded{== const) there is no
deviation by definitior(straight ling and that the expectation
value of all points is If)pe. Any statistically significant
difference in the values of the points in this reconstruction o}
represents a detection of a dark energy component timat is
a cosmological constarjtl0]. This is true in spite of the
nonlocality of the windows and independently of the model- °
dependent parametrization of the dark energy.

Again one may always test specific models for the dark -1 I y—— T y=a—
energy from the model-independent parametrization. Many Qoe QpE

dark energy models can be parametrized(tye, W(Zer), FIG. 5. Error ellipseg68% C.L) for dark energy parameters

- . X
andw =dw/dz|zeﬁ. The pivot pointz.; can be chosen to be (Qoe,w,w'): (upped the (Qpe,w') plane showing the degeneracy
the best constrained redshift or “sweet spot” by decorrelatirection and the efficacy of external information 8y : (lower)
ing the errors inv andw’. As was the case for the growth the (Qpe,w) plane with complete and no external information on
rate, the resulting errors ow(zy;) are the same as in the w’. Herew is defined as the equation of state zzt0.44. The
case of a two-parameter model fe,w). For the fiducial fiducial model and survey are assumed throughout Wgj=0.1.

-09
05| g

G'(W )=0 none

St 1 1af
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parameter family Qpe,w) represents the amplitude and ~0.002‘s‘k§’2, i.e., percent level accuracy for surveys of sev-
slope of the dark energy density itself at a normalizationeral thousand square degrees. For CMB anisotropies, this
point of z=0. In fact, as Fig. 4 shows, this is quite close to precision requires that the optical depth during reionization
the “sweet spot” and so there is little remaining degeneracymust be determined to(7)~0.01 to resolve the amplitude
betweenw and() e (see Fig. 5, right panglOptimization of ~ degeneracy. If determined from CMB observations alone,
the normalization redshift improves errors on the dark energyhis will require polarization measurements with a precision
density by a factor of 1.2 and again also represents the errof@mparable to the Planck satellit26], which can in prin-

on Qpe in the single-parameter family of dark energy mod- Ciple achieves(In 8,)=0.0044 ak=0.05 Mpc * [7]. Direct

els. Errors onw of course remain unchanged. measurements of the reionization epoch can also resolve the
ambiguity [7]. Even in the absence of this information, the
evolutionof the growth and luminosity-distance relation are

V. DISCUSSION still constrained. These issues are best addressed through
We have shown that lensing surveys covering more than 10 wg p?r:arrete_r ESt!?atLﬁn' ti tant tion is that

few percent of the sky with good photometric redshift infor- the nrl)isee ir(le ?r?éngosr:vg; eﬁcngoniegzﬁ(r)err?\gn?ssissuwgIl?:glilératzd

mation can probe the time evolution of the linear growth Lo 9 I

function and distance-redshift relation, both of which aref”Ind not significantly larger than the projections based on

sensitive to properties of the dark energy and dark matte}.m.rInSIC ellipticities. Even aside frc_>m the demanding re-
uirements for control of systematic errors, there may be

Specifically, we have tested a model-independent arametnOl L . . A
zrftion of t)r/1e linear growth rate and/or dar;k energs densitjm”ns'c correlations in the ellipticitief27] that need to be

discretized into bins in redshift. Deviations in the growth ratemc’deIed or avoided by increasing the pixel scale and redshift

would indicate a component of the dark matter that is nofin widths. The recovered information is largely insensitive
effectively cold or dark energy that is not smooth on the o the redshift bin width since the high signal-to-noise modes

2
lensing scale. Deviations in the constancy of the dark energ re all Ipw frequency. Errors_scalg roughly/&#x due to the
would rule out a cosmological constant model. oss of independent modes in a fixed survey area.
In this exploratory study, we have made several simplify- . We have also neglected sample covariance between the
ing assumptions that would need to be addressed in a COIF?-'XHS bl.Jt note that we have correqundmgly neglected the
crete implementation. Perhaps the primary one is that futyriformation contained in such correlations. Indeed, we have

CMB measurements will completely fix the high redshift completely neglected the information contained in the non-

cosmology. The most uncertain piece involves the amplitud hear regime, which n fact contains the majority of the in-
ormation from lensing tomography18]. Clearly, future

of the initial fluctuations on the scales relevant to the lensin di il b red how b . h del
pixels, k~0.05 Mpc ! for degree scales. Fortunately, the tudies will be required to see how best to mine the model-

pivot point of CMB anisotropy experiments with several arc-independent information contained in lensing tomography.
minute scale resolution is sufficiently close to the lensing
scale that the slope and shape of the initial power spectrum
do not cause much ambiguify]. | thank D. Huterer and C.R. Keeton for useful conversa-

To fully utilize the lensing information, the initial ampli- tions and E. Linder for pointing out a typo in the draft. W.H.
tude must be fixed to an accuracy better than the amplitudis supported by NASA NAG5-10840 and the DOE QJI pro-
of the growth function, which we have found to be gram.
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