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We consider the construction of nonsingular pre-big-bang and ekpyrotic type cosmological models realized
by the addition to the action of specific higher-order terms stemming from quantum corrections. We study
models involving general relativity coupled to a single scalar field with a potential motivated by the ekpyrotic
scenario. We find that the inclusion of the string loop and quantum correction terms in the string frame makes
it possible to obtain solutions of the variational equations which are nonsingular and bouncing in the Einstein
frame, even when a negative exponential potential is present, as is the case in the ekpyrotic scenario. This
allows us to discuss the evolution of cosmological perturbations without the need to invoke matching condi-
tions between two Einstein universes, one representing the contracting branch, the second the expanding
branch. We analyze the spectra of perturbations produced during the bouncing phase and find that the spectrum
of curvature fluctuations in the model proposed originally to implement the ekpyrotic scenario has a large blue
tilt (ngx=3). Except for instabilities introduced on small scales, the result agrees with what is obtained by
imposing continuity of the induced metric and of the extrinsic curvature across a constant scalapfielk?
corrections equal to the constant energy densitgtching surface between the contracting and the expanding
Einstein universes. We also discuss nonsingular cosmological solutions obtained when a Gauss-Bonnet term
with a coefficient suitably dependent on the scalar matter field is added to the action in the Einstein frame with
a potential for the scalar field present. In this scenario, nonsingular solutions are found which start in an
asymptotically flat state, undergo a period of superexponential inflation, and end with a graceful exit. The
spectrum of fluctuations is also calculated in this case.
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[. INTRODUCTION effective action breaks down at the bounce. In the case of
PBB cosmology this bounce corresponds to a region of high
There has recently been a lot of interest in cosmologicaturvature where higher-derivative and string corrections to
scenarios in which it is assumed that, instead of emerginghe effective action will be important; in the case of the ek-
from an initial big bang singularity, our universe has resultedPyrotic scenario the bounce occurs when two four space-time
from an Einstein frame bounce that connects a previous corflimensional branes collide in a five dimensional bulk.
tracting phase with the present phase of cosmological expan- Models with a cosmological bounce potentially provide
sion. A lot of this interest has been fueled by string cosmol-an alternative to cosmological inflation in addressing the ho-
ogy, the attempt to merge string theory and cosmology. Prénogeneity problem of standard cosmology and in yielding a
big-bang (PBB) cosmology [1,2] (see [3,4] for a causal mechanism of structure formation, the latter since at
comprehensive reviewand the ekpyrotic scenarigs] are  times long before the bounce fixed comoving scales of cos-
two well-known models in which our present phase of Cos.mological interest today will have been inside the Hubble
mological expansion is postulated to have emerged from &dius? However, since in both PBB and ekpyrotic scenarios
previous phase of cosmological contractom both ex- the Hubble parameter increases during the collapsing phase,

amples, however, the cosmological description in terms of agymmetry arguments such as those used origirfdlg} to
predict the scale invariance of cosmological fluctuations in

inflationary cosmology would lead one to expect a blue spec-

*Email address: shinji@resceu.s.u-tokyo.ac.jp trum of curvature perturbations in these models, at least in
"Email address: rhb@het.brown.edu effective field theory models in which there is only one
*Email address: finelli@tesre.bo.cnr.it “matter”field. As outlined in Appendix A, in PBB cosmol-

lin PBB cosmology this statement is true from the point of view 0dy One expects a spectrum with spectral index 4,
of the Einstein frame metric; in the ekpyrotic scenario it is true from
the point of view of the four space-time dimensional effective ac-
tion which is used to describe the cosmology. 2See Refs[6—11] for critical arguments on the ekpyrotic scenario.
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whereas in the ekpyrotic scenario one expects3. In the  used in[27] to the action(which includes a positive or nega-
case of PBB cosmology, this heuristic prediction was condive potential for the scalar matter figldnd construct nons-
firmed[13] by a general relativistic analysishich is, how- ingular bouncing cosmologies. At the level of the effective
ever, subject to the caveats indicated bélolw the case of action, our Lagrangian can be viewed as giving both nonsin-
the ekpyrotic scenario, there is a large disagreement in th@ular solutions of modified PBB typghe modification con-
results. Whereas the work pf4—17) yields results in agree- Sisting of the addition of an exponential potential for the
ment with the heuristic predictiotnamely, n=3), others dilator), and also nonsingular ekpyrotic solutions. The justi-
[18,19 obtain a scale-invariant spectrum of adiabatic fluc-fication for adding these higher-derivative terms is different

tuations(thus also casting doubt on past results in the literal the cases of modified PBB cosmology and in the ekpyrotic

ture on the spectrum of fluctuations in the PBB scenario sc_enario. In the case of PBB cosmology, both the string cou-
The singularity of the effective action at the time of the pllng constant anq th_e (_:urvature_becor_ne large as the_ dilaton
bounce makes it impossible to follow the evolution of the NCreases, thus ]?Sﬂfymg t_he. |ncllu3|o_n of SOT higher-
background cosmology and of the resulting cosmologicage”vattl-ve telrmtsho the g:cav;tatlort[a actlonlan I'? qu?hntum
. X X orrections. In the case of ekpyrotic cosmoldgse have the
perturbations rigorousl{20]. In much of the previous work, Py d

! initial scenario of 5] in mind in which a bulk brane impacts
in the contexts both of PBB cosmolog@1] and of the ek- o+ hhysical space-time orbifold fixed plane at the time of

pyrotic scenarig15-17,19, the fluctuations were computed (e hounce and in which the dilaton and hence the string
by matching two Einstein universéthe first rgpresenting the coupling constant are fixedthe density and hence curvature

contracting phase, the second the expanding pr&eeg a 4t the hounce are large, thus justifying including higher-
spacelike surfacgrepresenting the bounce regjoand ap-  gerivative terms. In addition, the brane collision is a quantum
plying continuity of the induced metric and of the .extrmsm mechanical process, thus justifying including loop correc-
curvature across the surfaf22,21]. As emphasized if19],  {jons in the action. Note that our method yields a way of

the result will depend on how the matching surface iSgonsiructing a nonsingular bouncing universe which works
choser’ _ _ even in a spatially flat universe and is thus different from the
In the context of PBB cosmology, it was realiZ&6—28  consiructions of37] in which a positive spatial curvature is
(see als§29-31) that higher-derivative correctioridefined ;seq to generate a bouncing cosmology. Since tracing back
in the string framg to the action induced by inverse string e spatial curvature into the very early universe given the

tension and coupling constant corrections can yield & nongsresent date leads—under the assumption that there was no
ingular background cosmolodyThis then allows the study period of inflation after the bounce—to a highly suppressed

of the evolution of cosmological perturbations without hav- . ,rvature at early times, our approach in obtaining a bounc-
ing to usead hocmatching prescriptions. The effect of the ing cosmology appears more realistic.

high_er—dgrivative terms in the action on the gvolution of fluc- “\we follow the fluctuations through the bounce, and study
tuations in the PBB cosmology was investigated36]. It o spectrum of the resulting cosmological perturbations at
was fognd that, for Iow-frequency modes,' th? spectrum ofgte times. In this analysis, no matching conditions at the
fluctuations is unaffected by the higher-derivative terms, ang,; ;nce are necessary. Note, however, that in principle the
the result obtained is the same as what follows from thgj, 4 spectrum could depend on the frame in which the

analysis using matching conditions between two Einsteirhigher-order correction terms are introduced, and on the spe-
universed 13,21 joined along a constant scalar field hyper- gific form of the correction terms. In our nonsingular sce-

surface. , _ , nario discussed in Sec. IV, the correction terms are defined in
Since the ekpyrotic scenario makes use of & negative e string frame and we find that the final spectrum of cos-

ponential potential for the scalar matter field, which leads t%ological fluctuations on long wavelength scales has a shape
an extra instability of the system, it is not clear that thenich agrees with what is obtained when applying the
higher-derivative terms used if26-2§ can in this case atching conditions 0f22,21) on a constant scalar field
achieve a nonsingular cosmology. The first main result of,it4c8 (the most physical choice of the matching surface in
this paper is that, with §U|tably chqs'en coefficients, the abOY%oth PBB and ekpyrotic modelsin particular, for the ekpy-
mentioned terms are indeed sufficient to produce a nonsifyic model of[5] rendered nonsingular by our construction,

gular cosmology. _ o we obtain a blue spectrum of the curvature perturbation with
In this paper, we add the same higher-derivative term%dean:&

3As emphasized already {i15] and[23], there is a consistency Il. SINGLE SCALAR FIELD WITH AN EXPONENTIAL
check for proposed matching surfaces: when applied to the reheat- POTENTIAL
ing surface in inflationary cosmology, the correct result should ) ) ) .
emerge. This does not happen with the prescription advocated in 1h€ Lagrangian considered in this paper can be used to
[19], nor does it with the matching prescription[d8] which is not describe both a modified PBB model in which the dilaton has
based on a geometric analyésee als§24,25 for a criticism of the
latter matching prescription

“4Construction of nonsingular cosmologies in pure Einstein gravity °Note that up to terms of ordé? the constant scalar field surface
by means of specific higher-derivative terms is also posgg#e, and the constant energy density surface are identical, as discussed in
e.g.,[32,33 and its application to PBB cosmology [84,35). [15].
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an exponential potential and the ekpyrotic scenario. Our La- Adopting the Friedmann-Robertson-Lemaitre-Walker

grangian describes gravity plus a single scalar matter ffeld (FRLW) metric ds’= —dt§+ aédxé in the Einstein frame,

In the case of PBB cosmology, the physical frame is thethe background equations are given by

string frame, andyp is the dilaton field. In the case of the

original version of the ekpyrotic scenari6], the physical

frame is the Einstein frame since the dilaton is fixed, and the

field ¢ is related to the separation of a bulk brane from our

four-dimensional space-time orbifold fixed plane. In the casavhere a prime denotes a derivative with respect to a cosmic

of the second version of the ekpyrotic scend88] and in  timetg. For the exponential potenti&?.4) we have the fol-

the cyclic variant thereof39,40, ¢ is the modulus field lowing exact solution:

denoting the size of the orbifolthe separation of the two

orbifold fixed planes . o ag(—te)?, He=t
We begin with the Lagrangian of the four-dimensional te

effective theory in the string frame, which is

5= | ax(=ge¢
The solution fortg<0 describes the contracting universe in
where R is the Ricci scalar and/g(¢) is the scalar field the Einstein frame prior to the collision of branes.
potential in the string frame. In this form, the action looks |n the string frame the action is given by E@.1) with
reminiscent of the action for PBB cosmology. Note thatpotential
Vg(¢)=0 in the simplest version of the PBB scenario. We

1. . _ ,
3HE=5¢"+Ve(e), +3Hep+Ve(9)=0, (2.7

1-3 2
p( . P o= J_p. 28

1 Veg=—

R+3(V¢>2—V<¢) (2.0 te
22 S\ e

set the units such that785=1 with G being a four- 1
dimensional gravitational constant. Making a conformal Vs=—Voex \/_B_l ¢|. (2.9
transformation

The FRLW metric in the string frame is described 8§

g, —e ¢
9ur=€ "Gpr @2 _ —dt3+a2dx3, which is connected to the quantities in the

the action in the Einstein frame can be written as Einstein frame by
dts=e #"2dtz, ag=e *"?ag, (2.10

SE=f d“w—@Fh— C@er-ve@)| 23
2 4 ’ where we used the relatioth= —v2¢. Integrating the first

relation gives

where
—(1-p)ts=(—tg)* P 2.1
Ve($)=eVy(d). (2.4 (1= Jp)ts=(—tg) 2.11
Introducing a rescaled fieldb=+ $/v2, the action (2.3 Therefore the evolution ddig and ¢ in the string frame is
reads
5 2\p
asx(—tg) P, p=— In[— (1—p)ts].
/— B 1o 1o 2 1-p
SE:f d*xv—-9 ER_E(V@) —Ve(o(e))|. (2.5 (2.12

In this form, the action is seen to describe both the PBBT.hIS llustrates the supermflatlon.ary so!u_tlon W't.h growing
dilaton from ¢p= —. Note that singularities are inevitable

model in the Einstein frame, and the ekpyrotic scengii. .P both frames ag—0. We wish to analyze whether this

. . . .
pOILfr:(aa(allEg]yrotlc scenario is characterized by an exponentlasingularity can be avoided by including higher-order correc-

tions.
Ve=—Voexp —2/pe) (2.6

with 0<<p<<1. The field ¢ denotes the separation of wo In this section we present the background and perturbed
parallel branes. According to the ekpyrotic scenario, the

S . ._equations in the case of a generalized action containing
branes are |n|t_|aIIy widely separa}ted but are approaCh'n%igher-derivative terms. We write this action in the form
each other, which means thatbegins neart+« and is de- [36,41] '

creasing towardp=0. In the PBB scenario, in contrast, the

dilaton starts out from a weakly coupled regime wiphin- 1 1

creasing from—c. Thus, if we want the potentigR.6) to SZJ d4X\/—_9[§f(R,¢)— Ew(¢)(V¢)2—V(¢)+£c .
describe a modified PBB scenario with a dilaton potential

which is important whenp— 0 but negligible for¢p— — oo, 3.1
we have to use the relatiop= — ¢/v2 between the fieldo  wheref(R, ¢) is a function of the Ricci scald® and a scalar
in the ekpyrotic case and the dilatehin the PBB case. field ¢. w(¢) and V(¢) are general functions op. The

Ill. GENERAL ACTIONS AND EVOLUTION EQUATIONS
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Lagrangian’, represents the higher-order corrections to thewhereF=4f/JR andH=a/a. p., p., andA 4 correspond
tree-level action. Both higher-derivative gravitational termsto the higher-order curvature and derivative corrections with
and terms involvingy appear. The actio3.1) applies not stress-energy tensoiT%=(—p¢,pc.Pc.Pc). A, cOmes
only to low-energy effective string theories, but also to ef-from the variation ofC. with respect top. For the tree-level
fective action that approaches to Einstein quantum gravityx’ correction(3.2), one has
and to scalar tensor theories, among others. 3

As mentloned_ in the In_troductlop, our motivation for con- pe= 2a’)\< 12c£H3 - Edg ¢4), (3.6)
sidering the addition of higher-derivative terms in the effec-
tive action is to construct a nonsingular bouncing model and 1
thus to overcome the singularity probleffgraceful exit ch—Za’)\[4c[éH2+ 2§H(H+H2)]+ —dé¢ (']54],
problem”) which plagues both the PBB and the ekpyrotic 2
scenarios. The higher-order contributi6p can be written as (3.7
the sum of thex' classical correctiorC,; and the quantum A,=— a’'\[24cE H2(H+H?)
loop correctionZ, [27,42. Both involve the same gravita- ¢ ¢
tional and scalar field terms, but are multiplied by different —dgp?(3Ep+12p+128pH) . (3.9
powers ofe” ?.

The leadinga’ (string) correction to the gravitational ac- Note that taking into account quantum loop corrections pro-
tion we adopt is given by26,27] vides additional source terms fpg, p., andA ,. We will
discuss this issue in Sec. IV.

1
Loy=— 5 a’'Né(p)[c RéB+ d(Ve)4], (3.2 B. Perturbation equations

A perturbed space-time metric has the following form for
where &¢) is a general function of¢ and RéB: R2 scalar perturbat_ions. in an arbitrary gaugee, e.g.[43],
—4R"'R,,+RMPR 5 is the Gauss-Bonnet term. The where the functiorA is denoted byp):

inverse string tensiom’ is set to unity. The Gauss-Bonnet ds’=—(1+2A)dt?+ 2a(t)B,idxidt
term has the property of keeping the order of the gravita- ) o
tional equations of motion unchanged. It has been known +a’(t)[(1-24) 5+ 2E; j]dx'dx, 3.9

since the early days of string theory that this term arises ihere a comma denotes the usual flat space coordinate de-

t_he onvest string correction to the gravitational field €auaiyative. We introduce the curvature perturbati®in the
tions in a string theory background. At tree le@west .
comoving gaug¢44]

order in#), we haveé(¢)=—e  %. When applied to PBB
cosmology, it turns out that as—— the invariantsR3g H
and (V¢)* decay faster than the coefficient functigte) R=y+—06¢. (3.10
blows up. Hence, the correction terms in the Lagrangian are ¢

unimportant for large negative values ¢f but become im- The perturbed Einstein equations for the acti@l) are
portant as the system approaches the strongly coupled regi?/vr}itten in the form[41,36]

(¢~0).
Following [27], we take the highem-loop correction 3 _
termsL, in addition to the tree-level termi,,, . For the mo- ErQ(a QR) _SEZR_O' (3.1D
ment, however, we will keeg(¢) general. We will give spe-
cific forms for §(¢) and £, later. where
wd?+ 31 (F—4ANcEH?) — 6N dé ¢*
A. Background equations Q= Hr1)2 ' (3.12
Variation of the actior{3.1) with respect to the scale fac- ) o o
tor, the lapse functiofithen set to 1 after the variatiprand B ANCEP—1BNCEHI +8NC(é— EH)I?
the scalar matter field leads to the following background s=1+ 21 31(F — ANCEH?) — ) dé b4 (3.13
equationd 36]: we ( cgH) £
1 _ with 1 =(F—4xcEH?)/(2F — 8\ CEH).

H2= G—F(w¢>2+ RF—f+2V—6HF+p,), (3.3 Introducing a new quantiy,¥ =zR with z=a./Q, each
Fourier component o satisfies the second order differen-
tial equation

H= ! p>+HF —F Lo 3.4
=5 | T@d tHF=F=Zpc— 5P|, 3.4

Note that¥ is the variable in terms of which—for unmodified
Einstein gravity—the action for fluctuations has the canonical form

+3H b+ — 2_f . 4+2V,—A,)=0, 3 of a free field action with time dependent masee, e.g.[43]
¢ ¢ 2w (0g ¢ 0" A0 3.9 where the variable is denoted ap.
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d spectively. In the large scale limik{-0), the contribution
sk~ 7 V=0, (3.149 of the second term dominates over the first one, thereby
yielding the spectrum of the curvature perturbation as
where a prime denotes the derivative with respect to confor-

v+

mal time, »=fa !dt. In the large scale limit,|sk?| p k® Ru|2oc k3 2vor k- 1 3.2
! ) ! =—— o Vo
<|Z"l7|, Eq.(3.14 is integrated to give R 2772| 2 ' (3.20
Rk:Ck"'DkJ 2277, (3.15 in which case the spectral tilt is
Ng—1=3—|1-29|. (3.21)

where C, and Dy are integration constants. The curvature

perturbation is conserved on super-Hubble scales as long afote that we havé?| 5|~ 7 2=k 7| 5| for y<1/2, in

the second term in Ed3.15 is not strongly dominating, as which case the constant mo@ in Eq. (3.15 corresponds

in the case of the single field, slow-roll inflationary sce-to the solution that comes from the second term in Eq.

narios. (3.19. The ekpyrotic scenario with a negative potential (0
If the evolution ofz before the bounce is given in the <p<1/3) belongs to this casey&1/2) as we will show
form’ later. Wheny>1/2 one hask™"|y| "~ Y Y2=k™"|5|*~27,
2%(= 1), (3.16 which means thatR, grows before the graceful exitzn(

<0). We will discuss a string-inspired model that belongs to
the second term in Eq3.15 yields fdn/ZZOc(_n)172y_ this case in Sec. V. The PBB scenario corresponds to the
Therefore curvature perturbations can be amplified for Marginal case withy=1/2.

>1/2 on super-Hubble scales, while they are not for Note thatsis exactly unity in Eq(3.14) when the correc-
<1/2[17] [note thatR,xIn(—7) for y=1/2]. Whether this tions L are not taken into account. In the presence of higher-

enhancement occurs or not depends on the time evolution @Fder corrections £.#0), s is generally a time-varying
2, and therefore on the string cosmological model. function, in which case the formul®.21) can not be directly

We need to go to the next order solution of E8.14) in applied. Nevertheless it is still valid &is a slowly varying
order to obtain the spectrum of curvature perturbations. If POSitive function.

is a positive constartias it will be in the asymptotic limits In subsequent sections we shall apply the above general
the solution for®, is expressed by the combination of the formulas to concrete string-inspired models_. In Sec. IV we
Hankel functions: apply the string loop and quantum corrections to the low-
energy effective action in the string frame and find nonsin-
\/W . ) gular bouncing cosmological solutions. In Sec. V, we con-

vy = 5 [eiHP (%) +cH P (x)], (3.17  sider a situation with fixed dilaton and add a Gauss-Bonnet

term to the Einstein frame action. We find nonsingular cos-
where mological solutions which begin in an asymptotically flat

state, and undergo a period of superexponential inflation
which terminates with a graceful exit.

N| =

x=\sK7|, v=s(1-2y). (3.18

. . . IV. INCLUSION OF HIGHER-ORDER CORRECTIONS
The solution(3.17) corresponds to the Minkowski vacuum IN THE STRING FRAME: DILATON-DRIVEN CASE
state in the small scale limik{ o).
We can expand the Hankel functions in the following In the context of PBB cosmology, the natural frame to use

form [45]; in order to define the correction terfi in the Lagrangian is
the string frame. In this case, we should dsee™ R and
- x2\" 1 x\” *ie i w=—e% ie,
H200=2 | =7 snaal 2
v n=o n! 4] sinv|\2) I'(v+n+1)
1 1
x\ " Ti Ss:fd4XV_g(e¢ §R+§(V¢>)2—Vs(¢) + L,

+(§ T(—v+n+1)| 319 (4.1)

The curvature perturbatio®,=%¥,/z has two solutions, Wwhere ¢ corresponds to the dilaton. This Lagrangian was
which are proportional t&”| |”~ ¥* Y2 andk ™| 9| "*~¥*¥2,  suggested ifi26,27], and used to construct nonsingular back-
following from the first and second terms in E®.19, re-  ground cosmological solutions of PBB cosmology in the ab-
sence of a potential for the dilaton. Fluctuations in this model
were studied if36] in the absence of a dilaton potential.
"Note that as long as the additional termis in the action are In the following, we extend these analyses to the case of a
negligible, theny=p/(1—p), and thus 8 y<1 for the collapsing nonvanishing dilaton potential. We will first construct nons-
phase of ekpyrotic cosmology, and= 1/2 (p=1/3) for the collaps-  ingular solutions which in the Einstein frame correspond to
ing phase of PBB cosmology. nonsingular bouncing cosmologies. We then study how the
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fluctuations evolve across the bounce and compute the spec-
trum of fluctuations. The analysis in this section thus applies
immediately to the modified PBB scenario in which the di-
laton has a negative exponential potential. We can also apply
the results to the initial versiofb] of the ekpyrotic scenario. with A =—1/4. Following Ref.[36] we choose the coeffi-

In this case, the brane collision occurs@t0, and since cients asc=—d=—1. Note that the above corrections in-
thus the gravitational coupling constant does not change sig:lude the «’ corrections(3.6)—(3.8), corresponding ton
nificantly near the bounce, the difference in the role of the=0.

higher-derivative terms between the Einstein fraitiee It is also convenient to relate the Hubble parameter and its
frame in which it appears most logical to define the correcderivative in the Einstein frame with those in the string
tion terms in the Lagrangiarand the “string frame”(quota-  frame by using Eq(2.10):

tion marks used here because in the case of the ekpyrotic

{Aghn=a'Ne" D 24c(n—1)HZ(H+ H?)

-3d¢p4p+4pH+(n—1) ¢}, (4.9

scenariogp is not the dilaton, the dilaton being fixed not &

expected to be significant. The application of the results of He=e?? Hg— >/

this section to the version of the ekpyrotic scenario with

moving boundary brang88] and to the cyclic scenari@9] . -

is more problematic since in this cageis the dilaton,e— HE=e"’< He— f.,_ E¢Hs— (i) (4.10
— o at the bounce, and thus the difference in the evolution of 2 2 4

models with correction terms defined in the Einstein and ] ) )
string frames is expected to be important. Here the overdots on the right hand sides denote the time

The reason why nonsingular solutions are possible in th&erivatives with respect tt. The energy densitye and the
presence of the correction terfly, is that such a term can Pressuree in the Einstein frame are expressed as
lead to violations of the null energy conditigfrom the per-
spective of an observer using unmodified Einstein equa- (4.1

tions). Thus, it is expected to lead to a successful graceful ) ) .
exit, in the same way that introducing matter violating the©Once we know the evolution of the background in the string

null energy condition allowed the construction of nonsingu-frame, it is easy to find the evolution dfie, ag, ¢=
lar bouncing models 46,47 — ¢/v2, and to check whether the null energy conditjgn

In this model the background equations are written as +Pe>0 holds or not in the Einstein frame by using Egs.
(4.10 and (4.11). Note that in the absence of higher-order

PE:3HE1 PE= _3Hé_2HE-

6H?—6Hp+ ¢’ 2Vs=e’pc, (42 corrections £.=0) one has Blg=—(pg+pg) = — $p2<0.
. : . - _ In this case once the contraction begifk:& 0) the Hubble
—AH—BH2— &2 —a?
APH—AH—BH "~ "+ 24+2Vs=e"p, (4.9 parameter iflwaysnegative. Therefore it is not possible to
6H+ 12H2+ ¢p?— 2h— 6H p— 2(Vs— V’S)=e¢A¢. (4.4) have the bouncing solutions required for the nonsingular ek-

pyrotic scenario unless higher-order correctidhsare taken

The dilatonic correction€,, are the sum of the tree-levef Nt account.

corrections and the quanturm-loop corrections i

=1,2,3,...), with the functiorf(¢) [see Eq(3.2)] given by A. Background evolution

In the absence of a negative exponential potenti&} (
=0), it was found in Ref[26] that curvature singularities
can be avoided by taking into account higher-order correc-
tions L. In this case we have nonsingular bouncing solu-
tions in the Einstein frame due to the violation of the null
energy condition. We are interested in whether singularity
avoidance is possible or not in the presence of the ekpyrotic
potential (2.9). Note that, since near the bouneg~t"2,
higher-curvature corrections to the Einstein action will like-
wise be important in the presence of a potential.

WhenVg#0 and£.=0 the background solutions are de-

&)= —go Cnen e, (4.5

whereC,, (n=1) are the coefficients afi-loop corrections
with Cy=1. In this case the source terms duefpon the
right hand side of Eq94.2)—(4.4) are given by[42]

Pc:ngo Cn{pc}na pc:nzo Cn{pc}ni

A¢=n20 ColAytn, (4.6)

where
{pctn=a'Npe" "V —24c(n—1)H3+3d¢3, (4.7)
{Petn=a'Ne" V8c(n—1)H[(n—1)$?H + HH

+2¢p(H+H?)]+dp*, (4.9

scribed by Egs(2.8) and(2.12. In the string frame the scale
factor evolution is superinflationary with growing Hubble
rate (Hs>0). We plot in Fig. 1 the evolution of background
guantities in both the string and Einstein franiese the case
(i)]. The dilaton¢ starts out from the weakly coupled regime
gﬁmngz e?<1, corresponding to widely separated branes in
the ekpyrotic scenariagp= — ¢/v2> 1. In the Einstein frame
the universe is contracting with a negative Hubble rate. The
solution inevitably meets a curvature singularitygagrows
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FIG. 1. The evolution oHg, Hg, ag, ag, ¢, andpg+pg with c=—1,d=1, p=0.1. We choose initial conditiongg= —20, H=5.0
x 103, The cases correspond {9 only tree-level correction terms but no higher-order correctidBs=(C,=0), (ii) tree-level and
one-loop corrections present{=1.0C,=0), and(iii) tree-level and one- and two-loop corrections present @itk 1.0 andC,=—1.0
X103

toward the strongly coupled regimgg(ringNJ-)' is hardly affected by the negative potential except for the
Our first main finding is that with/s(¢)#0 there exist region ¢~0. However, in this region the higher-derivative
nonsingular trajectories in the presence of higher-order coiterms play a crucial role.
rections (C.#0). Thus, the presence of the potential for the In our simulations, we have adopted the poter(@af) for
dilaton does not prevent the higher-derivative terms frome>0 andVg=0 for ¢<0. This is in the spirit of the first
being able to smooth out the curvature singularity. The deversion of the ekpyrotic scenar[®] in which the potential
tails depend on the value of the power-law indeXWhen  vanishes at the brane collision, the bulk brane is absorbed by
p<1 the ekpyrotic potential2.6) is exponentially sup- the orbifold fixed plane via a small instanton transition, and
pressed for=1, in which case the dynamics of the systemthere is no potential left afterward. We show in Fig. 1 the
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dynamical evolution of the system fp=0.1. The casé) is 15 - - - -
the one in which only tree-level terms are present and in
which singularity avoidance is not possible. The céisg 10
corresponds to the one where both tree-level and one-looj
corrections are taken into accour@,(=1.0 andC,=0). In- 50
clusion of one-loop corrections makes it possible to haveg-
nonsingular cosmological solutions. In fagt+ pg becomes 0.0
negative arounds~115 in Fig. 1, after which the Hubble
parameteHg begins to grow. The universe starts to expand
onceHg crosses zero; namely, the violation of the null en-
ergy condition allows us to have nonsingular bouncing solu- . . . .
tions in the Einstein frame. Nevertheless, we should notice ™

that the evolution of the scale factors is superinflationary in 0 0 0 ts 600 50 1000
both the string and Einstein frames due to unbounded in-

crease oHg andHg, together with rapid growth of the field . . . . .
¢. Therefore we are faced with another problem, namely,
how to connect to the stage of a decreasing Hubble param
eter.

If two-loop terms are addetkeeping the previous tree-
level and one-loop termgphenomenologically more appeal-
ing nonsingular solutions can be obtained. Wiasnis posi-
tive, the evolution of the system does not differ significantly
compared to the cag@). However, it is possible to obtain a 10 ‘ i
decreasing Hubble rate if we take a negative valu€ of
The case(iii) of Fig. 1 corresponds to the coefficienty
=1.0 andC,= —1.0x 10" 3. We find that the growth rates of ' - ' - -
the scale factor and aop are slowed compared to the case 700 720 740 760 780 800 820
(ii). We see thapg+ pg becomes positive and begins to de- ts
crease toward-0 after the short period of violations of the
null energy condition. Although this case does not corre-
spond to the radiation-dominated universe after the gracefl{
exit, itis pOSSMe to Conne.Ct .to it by takmg Into gccoun_t the—lS, H=1.5x10"3. Prior to the collision of branes at=0, the
d_eca}y of the dllatqn to radiatidhHowever, including r_adla- universe is slowly contracting, which is followed by the bouncing
tion in the ekpyrotic cosmology has some subtle points, andgytion through higher-order corrections.
we do not consider this problem in the present work.

We have checked that the addition of three-loop terms .
with coefficients chosen to be of the order IQroughly the acx(— 79 L, $=— ﬁm(_ ns)+const, (4.12
same hierarchy of coefficients between the two- and three- Hy
loop terms as between the one- and two-loop téwiees not i
change the results of the two-loop analysis in a significanwhere ¢;=1.40 andH;=0.62. In the Einstein frame this
way. With a coefficient of the three-loop term of order 1, thecorresponds to a contracting universe with
background solution ceases to be nonsingular.

10 | 1

=
=]

FIG. 2. The evolution ofp andag with c=—1,d=1, p=0.1,
1=1.0, andC,=—1.0x10"2. In this case we include the correc-
on term L. only for ¢<1. We choose initial conditiong=

We emphasize that we have nonsingular bouncing solu- agx(— pg)r/HO—1, (4.13
tions in the Einstein frame even in the presence of a negative
exponential potential. Whep<1 the potential is vanish- On the other hand, we can consider the scenario where the

ingly small for ¢>1, in which case the dynamics of the negative ekpyrotic potential dominates initially but the
system is practically the same as that of the zero potentidligher-order correction becomes important when two branes
discussed in Ref27]. In this case the dilaton starts out from approach sufficiently. Numerically we confirmed that it is
the low-curvature regimégp|>1, which is followed by the possible to have nonsingular solutiofeee Fig. 2 In the
string phase with linearly growing dilaton and nearly con-simulations we included the correction termsfonly for

stant Hubble parameter. During the string phase ong2s ¢=1. In this case the background solutions are described by
Eq. (2.8) or Eq. (2.12 before the higher-order correction

terms begin to work. Given this background solution, one
8f we were to include production of radiation at a fixed time Can obtain the spectra of curvature perturbations analytically,
during the expanding phase, we could use the well-known result8S We Wwill see in the next section. The spectra depend on
on the constancy oR in the expanding phag@4,48,49 to argue ~ Whether the higher-order terms are always dominant or not
that the spectrum of fluctuations on large scales will be the same d€lative to the negative potential before the bounce.
that obtained in this paper. The crucial fact about our bounce is that We have also studied ekpyrotic potentials with other val-
it is not symmetric in time(see Fig. L ues ofp, and found that if the potential is negative, corre-
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sponding top<1/3, then singularity avoidance is possible 50 - - - -

for suitable choices ofZ; and C, as in the casg=0.1

shown in Fig. 1. In the case @>1/3 the field¢ climbs up 0.0 ~ | —
a positive exponential potential due to the Hubble contrac- ratet

tion term. Whenp=1/2 with Vy=p(1—3p) we found that 50 [ wwlS ]

the field ¢ returns back before it reaches the strongly
coupled regiong=0. This is equivalent to the fact that two

Lo10*

parallel branes do not approach each other sufficiently. In ton? o
such cases the positive exponential potential makes the fieli - r
bounce back before the higher-order correction becomes im st o ts ]
portant (this may be related to the instability discussed re- - 0 00 a0 so0
cently in [50]). If we choose smaller values of, it is 2010* ' ' ! !
0 100 200 300 400 500

possible to have nonsingular bouncing solutions which are t
similar to those in Fig. 1. This case corresponds to the one s
where the effect of the positive potential is negligible com-  F|G. 3. The evolution of the frequency shitfor c=—1, d
pared to higher-order corrections, in which case the back=1, p=0.1 with initial conditions¢p=—100, H=1.5x1073. We
ground solutions are given by E(t.12. When the positive  include the quantum correctiafy, from the beginning. The shiftis
potential is dominant from the beginning, it is difficult to approximately constantand negative during the string phase,
obtain a solution where a successful graceful exit is realizedvnhich is followed by the stage of decreasing curvature with positive
by higher-order corrections. s. Inset: The evolution of in the case where the quantum correction
is taken into account only fop<1. Note thats rapidly changes
B. Density perturbations sign around the graceful exit.

Let us proceed to the analysis of the evolution and thgne string phase. During the string phageandHs are con-
spectra of density perturbations. We shall consider two cases;

. ; . o 3tant (»=1.40 andH¢=0.62), andé~—e~¢. The correc-
(i) the effect of the potentidV(¢) is always negligible rela- .. : ; .
tive to the correction ternt,, and (i) the effect of the tion term on the right hand side of E(.13 for s dominates

. . in this phase. It follows from Eq(3.13 that the ¢ depen-
correction _term[,C becomes important only a_lround the_ dence of the leading term cancels out betweé#) and
graceful exit (p~0). Note that the second case is the physrw(d)), and that hence is constant and negative until the

callly more interesting one for applications to ekpyrotic COS-graceful exit. In a stage with negative constarthe solution
mology. of Eq. (3.14 can be written in the form

1. Case (iv(o)l=lLd W= \Trlleal (0 +c2K, ()], (4.16
When the correction term&.6)—(3.8) always dominate _ _ _

relative to the exponential potentié.6), the spectra of den- Wherexand v are given in Eq(3.17) (with s replaced by the
sity perturbations are similar to the ones discussed in Refbsolute value af), andl, andK, are modified Bessel func-
[36]. During the string phase with linearly growing dilaton tions, whose axsymptotlc solutions alrg_sj(x » Koex™” for
and nearly constant Hubble parameter with=1.40 and X0, andl,~€"/y2mx, K,~ym/(2x)e " for x—o. Then
H,=0.62, we have a sufficient amount of inflation with one reproduces the spectral td.15 in the large scale limit
e-folds N=In(a/a)>60 provided that the dilaton field satis- (|SK<|2'/2]). For small scale modes curvature perturba-
fies |¢|>1 initially [36,42. In this stageQ defined in Eq. tions show exponential instability due to negative frequency

3.13 is proportional toe- ¢ by making use of Eq(4.12, shift. Aftgr the horizon cro;ssing|$k2|s|z”/z|), curvature
t(herg)bly Igadﬁ)ng Ito 4 ng u a4.12 perturbations are frozen, singeis smaller than 1/2 in this
case.

b It was shown in Ref[31] that the ratiog; /H; is required
zx(—ng)” with y=—-1+ 2—Hf20-13- (4149 to lie in the range & ¢;/H;<3 for a successful graceful

exit in the presence of other forms of higher-order cor-

Making use of the relatio8.21), which is valid for positive rection. Therefore the spectral tilt lies in the range

s, the spectral tilt of the large scale curvature perturbation is 2<ngp—1<3 4.17

which is valid for large scale mode$s§?|<|z"/z|). There-
=2.26. (415 fore we have blue-tilted spectra as long as the corredfion
dominates compared to the exponential potential.

nR—lza—‘s—:#:

The evolution of the frequency shif is nontrivial (see N
Fig. 3. In the Iow-curvaturg regin):e where the higher-order 2. Case (i):[V(#)[>|Lc| but [V(#)[<|Ld] for ¢~0
terms are not importans is positive 6=1), as in the usual When the correction ternC. becomes important only
PBB scenario. It then changes sign and becomes negatiaound the graceful exit¢~0), the spectra of density per-
during a short transition from the low-curvature regime toturbations generated before the bounce are mainly deter-
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mined by the exponential potential. In this case the evolution o F '
of the background can be characterized by @q12). Then om0 F
the quantityQ in Eq. (3.12 evolves as 0.0010
10°
220~ i 107
Q=22 o y2Pun. @19 ax W
(2H ST ¢)2 10
. 10"
Therefore we find o
10"
. p 10
zx(—mng)? with y= g’ (4.19 e E . \ \ X
p 0 100 200 300 400 500

and the spectral tilt for the curvature perturbation is
FIG. 4. The evolution of the spectra of curvature perturbations,

2 (for 0<p<1/3), Pr, for c=—1,d=1, p=0.1, C;=10, andC,=—1.0x10">

1-p The initial conditions are chosen to b= —15, H=1.5x10 3.
np—1= 4-6p (4.20 We include the higher-order correctidl only for ¢<1. The cur-

——  (for 1/3<p<1). vature perturbation does not exhibit significant variation during the

1-p contracting phase. However small scale modes are enhanced around

. .. . . . . . the graceful exit.
This coincides with the result in the Einstein frame obtained

in Refs.[14—-17. For very slow contraction with a negative ) ) ) )
ekpyrotic potential p<<1), one has blue-tilted spectra with Maximal negative value of the functian From the inset of
ne—1=2. Sincey is less than 1/2 fop<1/3 (i.e., negative Fig. 3 the maximal absolute value efdunng th'e. nggatlve
potentia), curvature perturbations are not enhanced in thdranch is abo_ut5|max~102- Hence, thes InS.tabIhtXF ex-
large scale limit even in the presence of the correciipn Pected to be important only for modes wike10"". By
around the graceful exit. The simplest PBB scenario with®0mparing runs witts given by the general formula and runs
zero potential corresponds fo=1/3 andy=1/2, in which with s=1, we were able to de_termlne_ num_e_rlcally that the
case one has,—1=3. In this case curvature perturbations actual cutoff value ok below which the instability due to the

evolve asR,In(—7) as found from Eq.(3.15 with Eq. S €M is negligible isk~ 102, Thus, we conclude that the
(3.16. main source of the short wavelength instability of the fluc-

We have solved the evolution equatithi11) for the cos- tuation modes around the bounce must be a second one,
mological fluctuations numerically. Experience from study-n@mely, the nontrivial nature of the bouncing background

ing fluctuations in inflationary cosmology teaches us that fol-and its result on the quantiy//z. _
lowing the evolution equation forV instead of for the After the transition to the expanding universe, the curva-

gravitational potentiaib is less likely to be affected by nu- turé perturbation is nearly conserved as found in Fig. 4.
merical noise. Since in a contracting universe one of the We Sh?‘é".'n Fig. 5 the spectra of curvature perturbations
modes ofd® increases much more rapidly than the dominant©r P=10"" in the case where the correctiah is included
mode of ¥, we believe that it is advantageous to ugen Oy for ¢<1. We find that the numerical value of the spec-
our case as well. In addition, from a more conceptual poinfra! tilt is ng—1~2 for k<10"", which coincides with the

of view, the variableR is preferable since it is more closely analytic estimation(4.20. However, this estimate is no
related toW in terms of which the action for cosmological longer valid for small scale modes due to the negative fre-
fluctuations takes on its canonical form. Note tHafs also ~ duency shift and the instability around the graceful exit. The
the good variable to use when following cosmological fluc-SPectra are highly blue tilted fde=10"* as found in Fig. 5.
tuation from inflation through reheatingo]. In Fig. 4 we  This growth of small scale fluctuations obviously works as
plot the resulting evolution of the spectra of curvature perihe gravitational back reaction to the background evolution.
turbations for several different frequencies. The higher-ordeflthough we did not consider the effect of the back reaction
correction £, is included only when two branes approach here, it is certainly of interest to investigate how the back-
sufficiently, i.e., o=<1. We find that large scale modek ( 9round evolution is modified around the graceful exit. We
<1) are not enhanced as predicted by Bg15. In contrast, have performed the simulations with various choices of time

small scale curvature perturbations exhibit rapid growthSteps to make sure that the effects we find are not numerical
around the graceful exitd~0). artifacts. The spectra obtained are independent of the specific

There are two reasons for this instability. The first is thevalué of the time step. _ _
fact that the frequency shift becomes negative for a short Elr_1 Fig. 5 we have also plotted the induced fluctuations of
period where the higher-curvature effect is domin@ee the Pk in the Einstein frame, determined from the results7gr
inset of Fig. 3. As is obvious from Eq(3.14, an exponen- in the string frame, using the relation
tial instability for W is induced by negative, which is stron-
ger for largerk. We expect this instability will become im- E 5o
portant for modes With|s|,,k?=1, Where |s|na is the Dy =Rk (4.21
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FIG. 6. The evolution of the curvature perturbatiéy,, and of
the gravitational potentialP4 , for the fluctuation mode corre-
sponding tok=10"°. The model parameters and initial conditions
are the same as in Fig. 5. The amplitude of the gravitational poten-

conditions as in Fig. 4. The superscriph™denotes the quantities . - s .
. - o tial near the bounce when the higher-derivative terms dominate can-
beforethe bounceat tg=300), while “a” indicates the quantities . . . .
unce(at ts ), whi ind guantit not be trusted smcé)E is computed frome via Eq. (4.2 which

after the bouncgat ts=1000). We have included the quantum cor- . e ) o
rection Z.. for \j(aluess o=1 )The spectral tilt isn _1q > for k is only valid in the absence of such higher-derivative terms. As
(o ~ 4 R -

. . . E .
=10 *, which agrees with the analytic estimation of Hg4.20). Iﬁllows_fr((j)mfthls tplott,_ the dorrlnnantlgrtowtlrr]lg mo?i B dugng .
For the mode&>10"*, the spectra are highly blue tilted, due to an € period ot contraction coupies only to the post bounce decaying

instability of small scale modes during the graceful exit. The fluc-mode- At the time of the bounce, the curve fbris dominated by

tuations in® are nearly scale invariant on large scales before théwmerlcal noise. However, sinee is _comput_ed at each tlme sepa-
bounce rately from the value ofR at that time, this does not introduce

numerical errors in the late time values ®f

FIG. 5. The final spectra of the curvature perturbati®p, and
of the gravitational potentiaPg , in a simulation withc=-1, d
=1, p=103, C,;=1.0, andC,=—1.0x10 % with same initial

This corresponds to EGB3) in Appendix B, which follows A 32

from the relation(B1) in the Einstein frame. Note that this Ppock®™ . (4.29
relation is valid in the absence of higher-curvature correc- ] i ) ) ]
tions to the Lagrangian, and will therefore be good at timedrom Fig. 5 we qug that the spectrum @fis bluef|zlted with
long before and long after the bounce. For the negative ekdo~3 for k=10" " (small scale modes fde=10" exhibit
pyrotic potential (8<p<1/3), one has & y<1/2 from Eq. larger plue tilt withng>3). This corresponds to the value
(4.19, in which case the second term in EB4) completely ¥~ 1/2in Eq.(4.29 after the bounce.

vanishes. In this case we have the relatiBé), namely, Our numerical calculations show that large scale modes
with k=10 1% do not exhibit such a blue spectrum. This can
DEcH (12K, (4.22  be understood to mean that the term proportional to

(k| 7¢))*~* which is dominant in the contracting phase does
Note thatH (% can be written as the sum of two terms which not become smaller than the one proportionalkiayg|) ~***
are proportional toK| 7g))”~* and k| 7g)) """ 1. in the expanding branch for very sméll unless we evolve
Since O<v<1/2 for 0<y<1/2 (i.e., 0<p<1/3), the the fluctuations until long after the bounce. However, it is
term proportional to K| ¢|)” ! is the growing mode during rather difficult to follow such a large amount of time numeri-
the contracting phase on large scales. Therefore the spectrually. In addition, the second term in E@4) is not numeri-

of q;E before the bounce can be estimated as cally negligible relative to the first term for these large scale
modes due to the modification of the equation of state after
PR ock?” Lok 2YockMo L, (4.23  the bouncelwhen y>1/2 the second term in EqB4) is
nonvanishing as found by E¢B5)]. Nevertheless, we expect
from which we have that the term proportional tok{#ng]) ~*** in the first term in
Eq. (B4) eventually dominates long after the bounce, in
ne—1=— 2_p (4.24 which case the spectrum is given by E¢.25. Therefore
@ 1-p° ' the final spectrum of> is not generally scale invariant. The

spectral index is dependent on the evolution of the back-
Then we have a scale-invariant spectrum before the bouncground after the bouncé.e., y). In this sense including ra-
for p~0, as first pointed out i118]. This agrees with our diation is necessary in order to evaluate the spectruh iof
numerical result shown in Fig. 5. realistic cases where the solution connects to our Friedmann

The term proportional tok{ 7¢|)”~ %, however, decays af- branch.

ter the graceful exit as long as<1. The dominant mode in From Fig. 6 we find that the amplitude df decreases
®F long after the bounce is described by the termafter the bounce, thus showing that the dominant prebounce
(k] 7)) ~*"1, in which case the spectrum df is written as ~ mode of® couples exclusively to the decaying modedf
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after the bounce, as derived it5] using matching condi- branch. We have not found solutions which begin in a con-

tions on a constant scalar field hypersurface. tracting phase and undergo a successful bounce. However,
Equations(3.20 and(4.19 indicate that a scale-invariant note that in the original ekpyrotic scenario [&], the scale

spectrum may be obtained fpr=2/3 for the modes that are factor on the orbifold fixed plane corresponding to our four-

enhanced during the bouncing ph428]. In order to obtain  dimensional space-time corresponds to an initially asymp-

such a spectrum, the exponential poten(@dsitive in this totically flat region, and is always expanding. Thus, the so-

case is required to dominate the higher-order term exceptutions found here might be applicable to a version of

around the graceful exit. However we have found that, forekpyrotic cosmology formulated entirely in terms of physics

some likely initial conditions, the field bounces back to- on the orbifold fixed plane.

ward largere before the higher-order correction begins to

work. In language appropriate to ekpyrotic cosmology, this A. Background evolution

means that the branes never collide. If the higher-order term

always dominates compared to the positive exponential po- As was d|scgssed ir52], V‘.’henVE:O the PBB smgulallr-
tential, we have the blue-tilted specté& 15 ity can be avoided for positive values af when the «
' ' corrections introduced above are taken into account. The

sign of \ is crucial for the existence of nonsingular cosmo-
V. INCLUSION OF HIGHER-ORDER CORRECTIONS IN logical solutions. For negative valuesXfthea’ corrections
THE EINSTEIN FRAME: MODULUS-DRIVEN CASE do not help to lead to a successful graceful exit, as was

In this section we consider adding higher-derivative termgnalyzed in Ref[59]. . _
defined in the Einstein frame. We add a Gauss-Bonnet term " the absence of the ekpyrotic potential, the background

proportional toR2, multiplied by a function of the modulus €Volution forte<0 is given by[56]

field ¢ to the action. Such a term arises as the one-loop H 5
correction in the context of orbifold compactifications of the ag=ay, HE:—ZO, o=—, (5.2
heterotic superstrings1]. Since the initial version of ekpy- te te

rotic cosmology[5] is based on an orbifold compactification
of a theory dual to heterotic superstring theory, the correctior‘f"hereao and!—|0 (.>O) are constants. The Gaus_s.-Bonnet term
terms used in this section are well motivated in the context o’feadS to a_v_lolat|on of the null energy conditiope(t pe
the scenario off5]. Indeed, it was found in Ref52] (see also <0) z_it sufficiently If'irge curvatur_es and thus enables a grace-
[53—-60) that the inclusion of the Gauss-Bonnet term ful_e_:xn. If we start in an e_xpandlng bran_c(bontrary to the
coupled to a modulus field in the Einstein frame leads to thePift of PBB and ekpyrotic cosmologythis leads to a su-
possibility of obtaining nonsingular solutions. In the work of perinflationary solutionki>0) until a “graceful exit” (see
[52], the potential for the modulus field was taken to vanish.Fig- 7). The universe is initially expanding very slowly with
In this section we will include an exponential potenfial. @ nearly constant scale factor. After the Hubble parameter
More specifically, the correction Lagrangian we considerréaches its peak valugg=Hpay, the system connects to a
here correspondsn the notation of Eqs(3.1) and(3.2]to  Friedmann-like universe withlg=1/(3tg), agxt¥*, and¢
f=R, w=1, c=—1, d=0, &(¢)=In[2e?7*ie®)] with <—Intg.
n(ie®) being the Dedekindy function [52]. Here &(¢) is If the ekpyrotic potential is present, the situation is quite
approximately given by different. We have adopted the potent(al6) for ¢>0 and
Ve=0 for ¢<0. Once again, we start in an expanding phase.
T Initially, the potential term is not important and the universe
(lo)=—7z(e"+e %) (5.1)  evolves in a superinflationary trajectory until a graceful exit
after which the Hubble expansion rate begins to decrease.
The sign of\ is chosen to be positive, which is different Whenp<1/3, corresponding to the case of a negative expo-

from the one discussed in the previous section. Note alsgential potential, then as—0 the potential becomes impor-
that, even though the coefficiedte) becomes large at large t@nt and leads to a change in signtéf . We find that the
brane separatiotiarge negative values of the dilaton in the SYStém enters a stage of slow contrac{isee the casgi) of
case of PBB cosmologythis increase is outweighed by the Fig. 7]. Note that in Fig. Hg changes sign twice. After the
falloff of the curvature invariant, as in the case of the modelnegative Hubble peak, the Hubble rate begins to grow to-
considered in the previous section. Thus, in ekpyrotic cosward He— —0 without changing sign. Then the system en-
mology the correction terms are expected to become impoiters a very slowly contracting phase with a nearly constant
tant only in the high-curvature region. scale factor. In this stage the fieldevolves rapidly toward
Let us analyze the one-field system of a modulukeep- large negative values. In the presence of negative exponen-
ing the dilaton fixed. We will consider solutions starting in antial potential (0<1/3) we have found that the contracting
asymptotically flat region and beginning in the expandingstage eventually appears even whgnis small.
When p>1/3 there exists a positive potential barrier as
the field ¢ approaches zero. The ca6i) in Fig. 7 corre-
The authors of Ref{60] analyzed nonsingular cosmological so- Sponds top=1/2 with V,=p(1—3p). The effect of the
lutions in the presence of some positive potentialst the expo-  positive potential is important aroung~ 0, which works to
nential potentigl return the field back toward larger. After the graceful exit
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FIG. 7. The evolution ofg, ag, ¢, andpg+ pg in the modulus-driven case with= — 1, d=0. We choose initial conditiong =20 and
H=5.087x10"*. Each case corresponds (i» V=0 with p=0.1, (i) Vo=0.0Ip(1—3p) with p=0.1, and(iii) Vo=p(1—3p) with p
=0.5.

the Hubble rate is always positive with slowly changimg This means thay=1 in Eq.(3.16), in which case curvature
The scale factor evolves as a power lametP) due to a perturbations are enhanced on super-Hubble scales during
positive exponential potential. The>1/3 case provides us superinflatior] R, (— 7g) 1] due to the growth of the sec-
with reasonable nonsingular cosmological solutions. Neverend term in Eq(3.15 [61]. We show in Fig. 8 the evolution
theless, we need to caution that these nonsingular solutiorsf curvature perturbations in the case of zero potenimal (
are different from the bouncing ones where the contraction=1/3) for two different modesk=10"2 andk=10"1). We

of the universe occurs before the graceful exit. find that curvature perturbations are amplified before the
One may argue that the bouncing trajectories may begraceful exit.
found by including the correctiorC. only around ¢~0. In order to obtain the spectral tilt of density perturbations,

However, we have numerically found that this is not thewe have to caution that the functi@defined by Eq(3.13

case. The superinflationary evolution characterized by Eqgs a time-varying function and is proportional to-{g).

(5.2 is typically required for the construction of nonsingular Therefore the formul#3.21) cannot be directly applied. In-

solutions in the present scenario. stead one is required to consider the evolution equation for
curvature perturbations:

B. Density perturbations 2 k2

When the Gauss-Bonnet term is dominant relative to the R+ ERk*a;tERk:O’ (5.4
ekpyrotic potential, the spectra of density perturbations can 0
be analyzed as in the case of the zero potenpa#@ orp  wherea (>0) is a constant that depends big in Eq. (5.2).
=1/3). In this case the evolution of the background duringThe solution of this equation is written in terms of the Bessel
the phase of modulus-driven inflation is given by E5.2), functions
thereby leading t@(¢) = — (7/3)pe?x(—tg)*. Making use
of this relation together with E¢3.12), we find the evolu- Ri=(—te) Y c1d_15(x) +c2I5(x)], (5.9

tion of Q andz as — 32 . . .
wherex=2/3\/a(k/ag)(—tg)*? Notice that this solution as-

Qo(—tg)?,  zoc(—tg)(— 7g). (5.3 ymptotically approaches the Minkowski vacuum for .
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FIG. 8. The evolution of the spectra of curvature perturbations FIG. 9. _The final spectra of curvature perturbations in the
in the modulus-driven casect—1 and d=0) for (p,k) modglg;-drlven.(.:asecﬁ—l andd:0).for.p:1/3 andp=1/2. N
=(1/3,10°Y),(1/3,10°3),(1/2,10°1),(1/2,10°%). We choose initial The |n_|t|al_ conditions are the same as in Fig. 8. When the p05|_t|ve
conditions=23.888 andH=4.158< 10" *. Note that thep=1/2 potential is _presentp(>1/3), the amplltudg of the spec_trum is
case corresponds to the positive exponential potential while the Ze”ﬁrger than in the_ case of the zero potentla_ll. we numerlcall_y find
potential corresponds o= 1/3. Around the graceful exit curvature that the SPeCtra,l tilt 181z 1~2.3 fork<1, which agrees well with
perturbations exhibit rapid growth especially when the potential isthe analytic estimatiomz—1=7/3.
positive (p>1/3). which left the horizon during superinflation. Although the
Since J. 14(x) <k 13 in the x—0 limit, the spectrum of amplitude is Iarger compared.to the ca_se.of the zero potential
large scale curvature perturbation is proportional Rg (p=1/3), the final spectral t'lt.s are s_lmllar for large scale
k3. Therefore the spectral index is modes k<1); see Fig. 9. Again the f|r)al spectra are found
to be blue tilted. We should also mention that the frequency
7 shift s becomes negative for the Hubble rate which is larger
nR—1=§, (5.6)  than unity around the graceful exi61]. In this case the
small scale modes show exponential instability as we pointed
out in the dilaton-driven case. The negative ekpyrotic poten-
ftial (p<1/3) is not worth studying, since this case does not
connect to the expanding branch as analyzed in the previous

which is a blue-tilted spectrum.
In the absence of the ekpyrotic potential, the evolution o
the background in the asymptotic future is given by

113 subsection.
~t1Vg/2Ir11/t2E, Hee1/(3tg), andaxtg™. Therefore one has Finally, we should mention that we have neglected the
oC
E

<tz 7e” in Eq. (3.19, in which case curvature perturba- effect of radiation in all our analysis. However, this is ex-
tions exhibit logarithmic growth, pected to appear at some moment of time. This can also alter
the final spectra of curvature perturbations due to the domi-
nance of theC mode in Eq.(3.15. We leave to future work
investigation of these realistic situations.

RolIn 7. (5.7

This indicates that the second term in Eg§.15, which we
call the “D mode,” dominates even after the graceful exit. In
the case where th2 mode decays after the graceful exit, the
surviving spectra observed in an expanding universe should We have studied the effects of higher-derivative terms in
correspond to the first term in EB.15 (“ C mode”). Inthe  the joint gravitational and matter action for theories moti-
present model, however, tli2 mode survives in an expand- vated by pre-big-bang and ekpyrotic cosmology with a single
ing branch. Therefore the spectrum of the curvature perturscalar matter field with an exponential potential. Applied to
bation during superinflation can be preserved even after theBB cosmology, our model corresponds to a theory with an
graceful exit. In fact, the numerical value of the final spectralexponential potential for the dilaton. In the language of the
tilts of R are found to beny—1~2.3 for the modek<1 initial version of ekpyrotic cosmolog}s], our scalar field is
(see Fig. 9. This agrees well with the analytic res8.6). the modulus field corresponding to the separation of the bulk
When a positive ekpyrotic potential is presept<{1/3), brane from our orbifold fixed plane; in the second version
the dynamics of the system is more unstable around thg38] and in its cyclic versiof39,4Q the field is the radius of
graceful exit. This leads to the violent growth of curvaturethe extra spatial dimension. The higher-derivative terms in-
perturbations when the field bounces back due to the potenroduced are the leading string and quantum corrections to
tial barrier. This threatens the viability of the cosmologicalthe low-energy effective action of string theory.
perturbation theory around the graceful exit. Nevertheless When applying the correction terms in the string frame,
the perturbations are not singular as long as the backgrourehd for suitable choices of the coefficients of the higher-
is smoothly joined to the expanding branch. We have nuerder corrections, we find nonsingular cosmological solu-
merically evaluated the power spectra®ffor the modes tions which in the Einstein frame correspond to bouncing

VI. DISCUSSIONS AND OPEN ISSUES
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universes. We thus find that higher-derivative terms carential before the graceful exit.
smooth out the singularities in PBB and ekpyrotic cosmol- We have also studied the spectrum of curvature fluctua-
ogy and lead to a graceful exiin the language of PBB tions R in this modulus-driven cosmology. When higher-
cosmology or a nonsingular bouncgn the language of ek- order corrections are important before the bouta® they
pyrotic cosmology. We have thus generalized the results ofmust be for the existence of nonsingular solutipsie has
[26] to models with exponential scalar field potentials. nz—1~7/3. This result is again in agreement with what can

We have studied the evolution of fluctuations in our non-pe obtained by neglecting the graceful exit and matching two
singular bouncing cosmologies. This analysis is not plagueginstein universes at a constant density hypersurface.
by the matching ambiguities inherent to analyses where the Note that we have chosen to evolve the curvature pertur-
contracting and expanding cosmologies are matched acrossation R on comoving hypersurfaces, and found that the
singular space-time surface. For all potentials with®  spectral index is given by Eq4.20 when the ekpyrotic
<1 we find a blue spectrum of curvature fluctuations. Thepotential is dominant. Note that this spectrum in the [
precise spectral index depends, as expected, on whether tkel/3 case comes from th@ mode in Eq.(3.15, which is
higher-derivative correction terms are important at timesplue tilted for very slow contraction @p<1). Since the
when the scales on which we compute the fluctuation speqarge-scaleD modes are enhanced for ¥p<1 during the
trum exit the Hubble radius during the phase of contractioncontracting phase, the spectrumfwill be scale invariant

If the higher-derivative terms are not dominant when thefor p~ 2/3 right after the bouncd 23].
scales exit the Hubble radius, the index of the spectrum |f we follow instead the gravitational potentid} in the
agrees with what is obtained by applying the general relativiongitudinal gauge, its spectral index generated during the
istic matching conditions on a uniform density hypersurfacecollapsing phase is estimated as E24), which is different
[15-17. The only difference is an instability of small scale from that of R [see Eq.(4.20]. Whenp~0, corresponding
fluctuation modes during the boun¢see alsd61]) which o a very slow contraction, the growing mot2 mode of ®
|e?:ld5 to a further St_eepening of the spectrum. Our result |mS approximate|y scale invariant. The authors of Rém],
plies that the growing mode ob during the contracting [19] claimed that a scale-invariant spectrum of the dominant
phase, which is scale invariant for@<1, is effectively  postbounce mode of> would inherit this scale-invariant
uncoupled with the dominant constant mode ®fin the  spectrum.
expanding phase, a result obtained in the context of matching However, we know that when computed at late times long
conditions in[13] (in the case of PBB cosmologynd in  after the bounce, in an expanding universe, the spectfa of
[15,16 for the ekpyrotic scenario. If the higher-derivative and® must be identical. Thus, given our results concerning
terms dominate when scales of interest exit the Hubble rathe spectrum ofR, we know that the spectrum @b long
dius, then the spectrum is blue with a slope m§—1  after the bounce cannot be scale invariant. Our numerical
=2.26. Note that our result implies that it is the curvaturesimulations show that the contribution from the prebouidce
fluctuationR (more precisely, the variabioriginally intro- ~ mode decays after the system enters the expanding branch,
duced by Bardeen if62] and used if15], which equalsk ~ and thus show that the prebounce growing modedof
up to terms that are suppressedKsyfor large scale fluctua- couples exclusively to the postbounce decaying mode. This
tions) which is effectively conserved for large scale pertur-results in a blue-tilted spectrum @ when evaluated long
bations across the bounce. after the bouncdsee Fig. % For very large scales witk

We have also studied nonsingular cosmological modelss10 1% we need to solve the equation of fluctuations up to
obtained by adding a Gauss-Bonnet tédwefined in the Ein-  sufficient amount of time in order to find the complete decay
stein frame multiplied by a suitably chosen function of the of theD mode relative to th€ mode. In addition the second
single scalar matter field in the problea modulus fielgl ~ term in Eq.(B4) is not numerically negligible for very small
Once again, we have included an exponential potential fok when vy is greater than 1/2. Nevertheless, the term propor-
the modulus field. Although we do not find bouncing cos-tional to (k| 7g]) ~*** in the first term in Eq(B4) eventually
mologies, we find interesting nonsingular cosmological soludominates long after the bounced— «), thereby yielding
tions which begin in an asymptotically flat region, undergothe spectruni4.25. Therefore the spectrum db long after
superexponential inflation followed by a graceful exit to athe bounce is not generally expected to be scale invariant; its
phase with decreasing Hubble radius. In the presence of gpectral index depends on the evolution of the background in
negative exponential potential €0p<<1/3), the solutions an expanding branch.
reach a maximal radius and begin to contract as the field Since near the bounce the magnitudes of the two modes of
crossesp=0. During this period of contraction, the Hubble ® andR differ by such a large ratio, we must worry about
parameter remains finite. Such solutions might be applicabléhe possibility of numerical errors. In particular, if one were
to ekpyrotic universe models formulated in terms of physicgo follow the evolution equation fo, it would be difficult
on the four-dimensional orbifold fixed plane correspondingto ensure that numerical noise does not lead to an artificial
to our visible space-time. When the potential is positipe ( coupling between the prebounce growing mode and the post-
>1/3), the modulusy bounces back around the brane colli- bounce dominantconstant mode. We have checked that our
sion toward largek due to the barrier of the positive poten- results do not seem to suffer from a similar problem by re-
tial. Although singularities can be avoided aroupd 0, this  peating the simulations with different values of the time step
model does not correspond to bouncing solutions where that. We did not find any dependence of the results within the
contraction of the universe occurs due to the ekpyrotic porange of time steps we have chosen (38 At<10"3).
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Let us compare our findings to results that have alreadyrhe marginal cas@=1/3 (important for the PBB and also
appeared in the literature. As mentioned repeatedly, our refor the ekpyrotic scenario, in which the potential disappears
sults concerning the spectrum of fluctuations obtained in thelose to the boungeshould be treated separately, and leads
classes of nonsingular bouncing universe models considerad
in this paper agree with the results[@b—17 obtained when )
removing the higher-derivative correction teriftisus going R 2Dy
back to a singular backgroupdnd matching the fluctuations HR ~ Cy+DyIn(—kp)"
on a constant scalar field matching surface. The results imply
that the growing mode b in the contracting phase does not ~ Surprisingly enough, both the resu{&?2) and(6.3) indi-
source the postbounce dominant modebofOur results thus cate that® could never match to R nontrivially. For p

indicate that the conjecture fif8,19, namely, that the grow- <1/3R/HR—0 as n—0. For 1/3p<1,R/HR—(1
ing mode of® in the contracting phasevhich in ekpyrotic  —p)/p~©(1) as »—0. This latter case is interpreted as a
cosmology has a scale-invariant spectjushould generi-  variation of R rather than a change induced by Interest-
cally determine the amplitude and spectrum of the dominaningly enough, if one takes seriously the rati1), the sin-
mode of® in the postbounce phase, is not valid. As emphaguylarity at the bouncéi.e., if =0 is reached or nptdoes
sized in[24] and[19], in the case of a singular background not matter in the impossibility of matching to R.
the spectrum of fluctuations in the expanding phase depends Recently several authofd7,37 considered models of a
sensitively on the details of the matching conditions usedpouncing universdrealized in[47] by introducing matter
Since we have only used one class of ways to smooth out th@glating the weak energy condition and [j[87] by making
singularity, the sensitive dependence on the matching surfaggse of spatial curvature in the background metiicwhich
might not have been completely eliminated, but might findz grows dramatically across the bounce and there is a cou-
itself reflected in a sensitive dependence of the final spegjing between the growing mode @b in the contracting
trum on the specific form of the correction terms in the ac-phase and the dominant mode®fin the expanding phase.
tion. We leave the study of this issue to future work. In this case, it may be possible to obtain a scale-invariant
Our work indicates that it is difficult to obtain a scale- spectrum, as already realized[@23].
invariant spectrum of curvature fluctuations for a single field ~ Although we have concentrated on the density perturba-
PBB or ekpyrotic cosmology. However, in the case of ekpy-tion in the single field scenario, the situation can be changed
rotic cosmology there is the intriguing fact that the growingpy taking into account a second scalar fi¢28,63,64. A
mode of the gravitational potentigh during the phase of gystem of multicomponent scalar fields generally induces
contraction has a scale-invariant spectrum. To obtain a scalgsocurvature perturbations, which can be the source of adia-
invariant spectrum ofb and thus also of the curvature fluc- patic perturbations. In such a case the relati) could be
tuationR at late times in the expanding phase, one suggessatisfied, since isocurvature perturbations act as source term
tion [18,19 was to nontrivially connect the growing mode of for 72 in addition tod. In fact the authors of Ref63] con-
& during the contracting phase with the constant mode in thgidered a specific two-field system with a brane moduus

e"paf‘d'”g phase. we have shown that this doe; not occur il 5 dilatony. When the dilaton has a negative exponential
the single field case with our choice of correction terms to,

b . . potential with a suppressed ekpyrotic potential farthe
theNacinotrr]](ntetehded to obtain alnons;]ngular Ibouhce i of entropy “field” perturbation can be scale invariant if the
durir?gethe%haseer%?c:?)n?(;c?gne;ev:sigtr: aaftearr?hee gbrgw " model parameters are fine-tunda]. It was also pointed out

o : (see, in Ref. [23] that the quantum fluctuation of a light scalar
e.g.,[23,47,31). A criterion for when this occurs has been [23] 9 9

X SR ) field (with a noncanonical kinetic term as studied[Bb])
proposed recently if37]. The condition is that the relative such as axion may lead to the flat spectra of isocurvature
variation of R over a Hubble time scale should be appre-

; ) i _ ) perturbations. If the correlation between adiabatic and
ciable, i.e., the following relatiofB7]: isocurvature perturbations is strong, adiabatic perturbations
: may be scale invariant.

HR>1’ (6.9 We wish to stress that our work is not conclusive. In par-

ticular, in order to fully evaluate the final power spectra, one

should hold close to or right at the bounce. We use(Bd5  should solve the equations of motion for fluctuations in a
and restrict consideration to the case of an exponential pgionsingular bouncing model including radiation. Important

(6.3

tential, in which case one has issues which should be investigated further include the fol-
. lowing.
R _ Du(1-p)7n The final power spectra of the curvature perturbation are
HR paz[Ck+ D.(— 71?7 found to be blue tilted for the nonsingular ekpyrotic models
we have considered, which rely on specific higher-derivative
De(1~p) (—p)1-39/A-P) for 0<p<1/3 correction terms. Are there other correction terms to the ac-
pCy ’ tion which are motivated by string theory, lead to nonsingu-
= 1-p lar bouncing scenarios, and yield a flat spectrum even in the
T for 1/3<p<1. single field case? Perhaps toy bouncing models using exotic

scalar fields or matter in Ref46], [47] can be a good start-
(6.2  ing point to construct viable nonsingular ekpyrotic models.
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We do not include the effect of radiatiofor particles APPENDIX A: HEURISTIC DERIVATION
which can be efficiently produced near the bounce. Particle OF THE SPECTRUM OF FLUCTUATIONS

production around the transition region is expected to be In this appendix we give a heuristic derivation of the

quite efficient[66], and this could lead to an additional in- g0 ra) index of cosmological perturbations in the PBB and
stability of_ s_mall scale metric perturbatlons. This effect MaYekpyrotic scenarios. This analysis is based on two key as-
also nontrivially aIFer the nonsingular backgrlound ev9|Ut'0nsumptions. The first is the assumption that the amplitude of
by the back-reaction effect of created particles. It is alsqne fluctuations when they exit the Hubble radius during the
required to include the radiation after the bounce in order tg)hase of contractiofin the Einstein frameis given by the
evaluate the surviving spectra accurately, although the couyqubble constant. This assumption is reasonable assuming
pling between the scalar field and radiation should be chosethat the fluctuations are quantum vacuum perturbations
carefully in that case. which freeze when their wavelength crosses the Hubble ra-
It is of interest to study the effect of isocurvature pertur-dius.

bations in the two-field system of nonsingular ekpyrotic sce- The second assumption is that the “physical magnitude”
narios. In particular, isocurvature perturbations can be afef the fluctuations remains unchanged while the wavelength
fected by the instability of the background near the bounceof the fluctuation is larger than the Hubble radius. This as-
In order to obtain the final spectra of adiabatic perturbationssumption is much less obvious, although at first sight this
we need to solve the coupled equations of adiabatic and e@ssumption may seem obvious based on causality, namely,
tropy perturbations through the nonsingular bounce includthe fact that microphysics cannot influence physics on scales
ing radiation. It is important to investigate whether near|ylarger than the Hubble radius. However, in inflationary cos-

scale-invariant spectra are obtained by conversion fronf?0logy and in models with a contracting period such as the
isocurvature to adiabatic perturbations. PBB and ekpyrotic scenarios, the forward light cqnausal

Our analysis also applies to cyclic universe models pro_horizorb is much larger than the Hubble radius, and the spa-

: : - _tial coherence of background fields over scales of the for-
posed in Refsi39], [40] in which the bounce has been regu ward light cone can lead to nontrivial effects on fluctuation

larized by including higher-order corrections. Thus, our con- . .
clusions about the difficulty in obtaining a scale-invariantr.nOdeS on 'Fhese scales, one of the most dramapp mgnlfesta—
. . : ..~ tions of this effect being the parametric amplification of
spectrum o_f fluctuat|_ons carry over to single field reallz_at|onssuper_HubbIe (but subhorizon cosmological fluctuations
of the cyclic scenario. In fact, we have done some S'gnljl"“ijuring reheating in certain two-field inflationary models
tlong in the case of a simple negative poteniiat m*(¢ [68—74. Furthermore, the term “physical magnitude” of
— ¢¢) for [¢|< ¢, and found that the solutions can be non- cosmological fluctuations is not well determined. On super-
singular so long as the higher-order effect dominates aroundubble scales, the magnitude of the density fluctuations de-
the graceful exit. Note, however, that the spectra of densityyends sensitively on the coordinate system chosen. It is pos-
perturbations will be the same as in the ekpyrotic scenario.sible to choose coordinate-invarianfgauge-invariant

Recently, a paper has appeaféd] in which in the con- variables to describe the fluctuations, but there are many
text of a brane world scenario a nonsingular bouncing cosehoices, and even in single field inflationary models many of
mology is obtained by considering the motion of a D3-branethese gauge-invariant fluctuation variables increase on super-
as a boundary of a five-dimensional charged anti—de Sittedubble scaleghowever, the increase between initial Hubble
black hole. In this model, computed in linear theory, theradius crossing during inflation &t(k) and final Hubble ra-
spectrum of gravitational wave fluctuations was shown not talius crossing during the late tinfERW) cosmology at¢(k)
be scale invariant. This result supports the conclusions wes by a factor that depends only on the ratio of the equations
have reached. of state at the two Hubble radius crossihgghis increase is

a self-gravitational effect.
In spite of the above caveats, let us proceed with the
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oM 2 ) dinal gauge is expressed in terms?ﬁf in the absence of
- Ltk T} ~HTt(k)]~const, (A2) " higher-order correction0,75;
and using the second assumption we infer that £ agHe . £
5 (I)k :WRK . (Bl)

2 SM E
= Sk (0)]

oM
V[k;tf(k)] ~const, (A3)

The gravitational potentia[)f in the string frame is related

and that hence the power spectrum is scale invariant with afp the one in the Einstein frame f6]
indexn=1.

1
PBB cosmology is characterizdih the Einstein frampe D=+ ﬁﬂDE— > 9. (B2)
by a scale factor which scales as
a(t)~t'3, (Ad)  Making use of Eqs(2.10 and(4.10, we find that the cur-

vature perturbation in the Einstein frame is exactly the same

and thus as that in the string framéi.e., RE=R}). Therefore the

1 gravitational potential in the Einstein frame is expressed in

H(t)= =. (A5) 5S.

3t terms of Ry:
The_ condition of the initial Hubble radius crossing during the E_aé(HS_ b2+ ¢Hs/2— ¢4/4) S
period of contraction Q= . RE. (B3)

-1 kz( HS_ ¢/2)
ka™ " [ti(k) ]=H[ti(k)], (A6)

leads to Note that the overdots in E4B3) denote the time deriva-

tives with respect tds. This is the equation that we solve
ti(k)~k 3% H[ti(k)]~k>?, (A7) numerically.
) , , , Taking note of the relation H)(x)=H, ((x)
and thus, applying our two basic assumptions as in the casg(V/X)H (x), one finds
of inflationary cosmology, to v
2 V7

~K®, (A8)  RR=g 5| 2VslmslkleiH, 100 +cH, (0]

oM
i Lti()]

which corresponds to a blue spectrum with inehex4. _ z' @ @

The analysis for ekpyrotic cosmology is analogous. The — * 1-2v=21ng —|[CH,7(X)+CH, 7 () ]|,
only difference is that the value qf is different, O<p<1, LE
and hence (B4)

. L~ U1-p) . _LU(1-p)
titk)~k P HIL( ]~k ”, (A9) where each sign corresponds to the case wjgh~0 and

7ns<0, respectively. When the evolution afis given byz
x| ng]?, we have

~k?, (A10) z'
1-2v¥2| 54 ;21—2v—2)/=1—27—|1—2y|

and thus, takingp=0 at the end,
2

oM
(]

which corresponds to a blue spectrum with inaex 3.

Obviously, given the caveats discussed at the beginning of _ 0 for y<1/2, B5
this appendix, the results for PBB and ekpyrotic cosmology |2(1-2y) for y>1/2. (B5)
cannot be trusted without a fully relativistic analysis. The
growth rates of cosmological fluctuations are very differentThis term completely vanishes during the contracting phase
in expanding and contracting cosmologies, and thus eveim the ekyprotic cosmology witpp<1/3, sincey is less than
given that the above heuristic analysis works in the case of/2. In this case the gravitational potential in the Einstein
inflationary cosmology, this does not mean it has to work forframe can be expressed as
PBB and ekpyrotic cosmologies. However, the results of our
paper are in agreement with those derived from the heuristic O as\7s| ¢l (Hs— p/2+ pH/2— ¢*14)
analysis. k=

2z(Hs— ¢/2)k

APPENDIX B: ANALYTIC ESTIMATES

(1) (2)
FOR THE GRAVITATIONAL POTENTIAL XLeH, 21 () + o= ()] (B6)

Let us analyze the gravitationdl in more details. In the This relation is used to estimate the spectrunigfin Sec.
Einstein frame, the gravitational potent'faE in the longitu- V.
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