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Construction of nonsingular pre-big-bang and ekpyrotic cosmologies
and the resulting density perturbations
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We consider the construction of nonsingular pre-big-bang and ekpyrotic type cosmological models realized
by the addition to the action of specific higher-order terms stemming from quantum corrections. We study
models involving general relativity coupled to a single scalar field with a potential motivated by the ekpyrotic
scenario. We find that the inclusion of the string loop and quantum correction terms in the string frame makes
it possible to obtain solutions of the variational equations which are nonsingular and bouncing in the Einstein
frame, even when a negative exponential potential is present, as is the case in the ekpyrotic scenario. This
allows us to discuss the evolution of cosmological perturbations without the need to invoke matching condi-
tions between two Einstein universes, one representing the contracting branch, the second the expanding
branch. We analyze the spectra of perturbations produced during the bouncing phase and find that the spectrum
of curvature fluctuations in the model proposed originally to implement the ekpyrotic scenario has a large blue
tilt ( nR53). Except for instabilities introduced on small scales, the result agrees with what is obtained by
imposing continuity of the induced metric and of the extrinsic curvature across a constant scalar field~up tok2

corrections equal to the constant energy density! matching surface between the contracting and the expanding
Einstein universes. We also discuss nonsingular cosmological solutions obtained when a Gauss-Bonnet term
with a coefficient suitably dependent on the scalar matter field is added to the action in the Einstein frame with
a potential for the scalar field present. In this scenario, nonsingular solutions are found which start in an
asymptotically flat state, undergo a period of superexponential inflation, and end with a graceful exit. The
spectrum of fluctuations is also calculated in this case.
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I. INTRODUCTION

There has recently been a lot of interest in cosmolog
scenarios in which it is assumed that, instead of emerg
from an initial big bang singularity, our universe has resul
from an Einstein frame bounce that connects a previous c
tracting phase with the present phase of cosmological ex
sion. A lot of this interest has been fueled by string cosm
ogy, the attempt to merge string theory and cosmology. P
big-bang ~PBB! cosmology @1,2# ~see @3,4# for a
comprehensive review! and the ekpyrotic scenario@5# are
two well-known models in which our present phase of c
mological expansion is postulated to have emerged from
previous phase of cosmological contraction.1 In both ex-
amples, however, the cosmological description in terms o

*Email address: shinji@resceu.s.u-tokyo.ac.jp
†Email address: rhb@het.brown.edu
‡Email address: finelli@tesre.bo.cnr.it
1In PBB cosmology this statement is true from the point of vie

of the Einstein frame metric; in the ekpyrotic scenario it is true fro
the point of view of the four space-time dimensional effective
tion which is used to describe the cosmology.
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effective action breaks down at the bounce. In the case
PBB cosmology this bounce corresponds to a region of h
curvature where higher-derivative and string corrections
the effective action will be important; in the case of the e
pyrotic scenario the bounce occurs when two four space-t
dimensional branes collide in a five dimensional bulk.

Models with a cosmological bounce potentially provid
an alternative to cosmological inflation in addressing the
mogeneity problem of standard cosmology and in yieldin
causal mechanism of structure formation, the latter sinc
times long before the bounce fixed comoving scales of c
mological interest today will have been inside the Hubb
radius.2 However, since in both PBB and ekpyrotic scenar
the Hubble parameter increases during the collapsing ph
symmetry arguments such as those used originally@12# to
predict the scale invariance of cosmological fluctuations
inflationary cosmology would lead one to expect a blue sp
trum of curvature perturbations in these models, at leas
effective field theory models in which there is only on
‘‘matter’’field. As outlined in Appendix A, in PBB cosmol-
ogy one expects a spectrum with spectral indexn54,

-
2See Refs.@6–11# for critical arguments on the ekpyrotic scenari
©2002 The American Physical Society13-1
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whereas in the ekpyrotic scenario one expectsn53. In the
case of PBB cosmology, this heuristic prediction was c
firmed @13# by a general relativistic analysis~which is, how-
ever, subject to the caveats indicated below!. In the case of
the ekpyrotic scenario, there is a large disagreement in
results. Whereas the work of@14–17# yields results in agree
ment with the heuristic prediction~namely, n53), others
@18,19# obtain a scale-invariant spectrum of adiabatic flu
tuations~thus also casting doubt on past results in the lite
ture on the spectrum of fluctuations in the PBB scenario!.

The singularity of the effective action at the time of th
bounce makes it impossible to follow the evolution of t
background cosmology and of the resulting cosmolog
perturbations rigorously@20#. In much of the previous work
in the contexts both of PBB cosmology@21# and of the ek-
pyrotic scenario@15–17,19#, the fluctuations were compute
by matching two Einstein universes~the first representing the
contracting phase, the second the expanding phase! along a
spacelike surface~representing the bounce region! and ap-
plying continuity of the induced metric and of the extrins
curvature across the surface@22,21#. As emphasized in@19#,
the result will depend on how the matching surface
chosen.3

In the context of PBB cosmology, it was realized@26–28#
~see also@29–31#! that higher-derivative corrections~defined
in the string frame! to the action induced by inverse strin
tension and coupling constant corrections can yield a no
ingular background cosmology.4 This then allows the study
of the evolution of cosmological perturbations without ha
ing to usead hocmatching prescriptions. The effect of th
higher-derivative terms in the action on the evolution of flu
tuations in the PBB cosmology was investigated in@36#. It
was found that, for low-frequency modes, the spectrum
fluctuations is unaffected by the higher-derivative terms, a
the result obtained is the same as what follows from
analysis using matching conditions between two Einst
universes@13,21# joined along a constant scalar field hype
surface.

Since the ekpyrotic scenario makes use of a negative
ponential potential for the scalar matter field, which leads
an extra instability of the system, it is not clear that t
higher-derivative terms used in@26–28# can in this case
achieve a nonsingular cosmology. The first main result
this paper is that, with suitably chosen coefficients, the ab
mentioned terms are indeed sufficient to produce a non
gular cosmology.

In this paper, we add the same higher-derivative ter

3As emphasized already in@15# and @23#, there is a consistency
check for proposed matching surfaces: when applied to the reh
ing surface in inflationary cosmology, the correct result sho
emerge. This does not happen with the prescription advocate
@19#, nor does it with the matching prescription of@18# which is not
based on a geometric analysis~see also@24,25# for a criticism of the
latter matching prescription!.

4Construction of nonsingular cosmologies in pure Einstein gra
by means of specific higher-derivative terms is also possible~see,
e.g.,@32,33# and its application to PBB cosmology in@34,35#!.
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used in@27# to the action~which includes a positive or nega
tive potential for the scalar matter field! and construct nons
ingular bouncing cosmologies. At the level of the effecti
action, our Lagrangian can be viewed as giving both nons
gular solutions of modified PBB type~the modification con-
sisting of the addition of an exponential potential for t
dilaton!, and also nonsingular ekpyrotic solutions. The jus
fication for adding these higher-derivative terms is differe
in the cases of modified PBB cosmology and in the ekpyro
scenario. In the case of PBB cosmology, both the string c
pling constant and the curvature become large as the dil
increases, thus justifying the inclusion of both highe
derivative terms of the gravitational action and of quantu
corrections. In the case of ekpyrotic cosmology~we have the
initial scenario of@5# in mind in which a bulk brane impact
our physical space-time orbifold fixed plane at the time
the bounce and in which the dilaton and hence the str
coupling constant are fixed!, the density and hence curvatu
at the bounce are large, thus justifying including high
derivative terms. In addition, the brane collision is a quant
mechanical process, thus justifying including loop corre
tions in the action. Note that our method yields a way
constructing a nonsingular bouncing universe which wo
even in a spatially flat universe and is thus different from
constructions of@37# in which a positive spatial curvature i
used to generate a bouncing cosmology. Since tracing b
the spatial curvature into the very early universe given
present date leads—under the assumption that there wa
period of inflation after the bounce—to a highly suppress
curvature at early times, our approach in obtaining a bou
ing cosmology appears more realistic.

We follow the fluctuations through the bounce, and stu
the spectrum of the resulting cosmological perturbations
late times. In this analysis, no matching conditions at
bounce are necessary. Note, however, that in principle
final spectrum could depend on the frame in which t
higher-order correction terms are introduced, and on the s
cific form of the correction terms. In our nonsingular sc
nario discussed in Sec. IV, the correction terms are define
the string frame and we find that the final spectrum of c
mological fluctuations on long wavelength scales has a sh
which agrees with what is obtained when applying t
matching conditions of@22,21# on a constant scalar field
surface5 ~the most physical choice of the matching surface
both PBB and ekpyrotic models!. In particular, for the ekpy-
rotic model of@5# rendered nonsingular by our constructio
we obtain a blue spectrum of the curvature perturbation w
index nR53.

II. SINGLE SCALAR FIELD WITH AN EXPONENTIAL
POTENTIAL

The Lagrangian considered in this paper can be use
describe both a modified PBB model in which the dilaton h

at-
d
in

y 5Note that up to terms of orderk2 the constant scalar field surfac
and the constant energy density surface are identical, as discuss
@15#.
3-2
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an exponential potential and the ekpyrotic scenario. Our
grangian describes gravity plus a single scalar matter fieldf.
In the case of PBB cosmology, the physical frame is
string frame, andf is the dilaton field. In the case of th
original version of the ekpyrotic scenario@5#, the physical
frame is the Einstein frame since the dilaton is fixed, and
field f is related to the separation of a bulk brane from o
four-dimensional space-time orbifold fixed plane. In the ca
of the second version of the ekpyrotic scenario@38# and in
the cyclic variant thereof@39,40#, f is the modulus field
denoting the size of the orbifold~the separation of the two
orbifold fixed planes!.

We begin with the Lagrangian of the four-dimension
effective theory in the string frame, which is

SS5E d4xA2ge2fF1

2
R1

1

2
~¹f!22VS~f!G , ~2.1!

where R is the Ricci scalar andVS(f) is the scalar field
potential in the string frame. In this form, the action loo
reminiscent of the action for PBB cosmology. Note th
VS(f)50 in the simplest version of the PBB scenario. W
set the units such that 8pG[1 with G being a four-
dimensional gravitational constant. Making a conform
transformation

ĝmn5e2fgmn , ~2.2!

the action in the Einstein frame can be written as

SE5E d4xA2ĝF1

2
R̂2

1

4
~¹̂f!22VE~f!G , ~2.3!

where

VE~f![efVS~f!. ~2.4!

Introducing a rescaled fieldw56f/&, the action ~2.3!
reads

SE5E d4xA2ĝF1

2
R̂2

1

2
~¹̂w!22VE„f~w!…G . ~2.5!

In this form, the action is seen to describe both the P
model in the Einstein frame, and the ekpyrotic scenario@19#.

The ekpyrotic scenario is characterized by an exponen
potential@5#

VE52V0 exp~2A2/pw! ~2.6!

with 0,p!1. The field w denotes the separation of tw
parallel branes. According to the ekpyrotic scenario,
branes are initially widely separated but are approach
each other, which means thatw begins near1` and is de-
creasing towardw50. In the PBB scenario, in contrast, th
dilaton starts out from a weakly coupled regime withf in-
creasing from2`. Thus, if we want the potential~2.6! to
describe a modified PBB scenario with a dilaton poten
which is important whenf→0 but negligible forf→2`,
we have to use the relationw52f/& between the fieldw
in the ekpyrotic case and the dilatonf in the PBB case.
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Adopting the Friedmann-Robertson-Lemaitre-Walk
~FRLW! metric ds252dtE

21aE
2dxE

2 in the Einstein frame,
the background equations are given by

3HE
25

1

2
ẇ21VE~w!, ẅ13HEẇ1VE8 ~w!50, ~2.7!

where a prime denotes a derivative with respect to a cos
time tE . For the exponential potential~2.4! we have the fol-
lowing exact solution:

aE}~2tE!p, HE5
p

tE
,

VE52
p~123p!

tE
2 , ẇ5

A2p

tE
. ~2.8!

The solution fortE,0 describes the contracting universe
the Einstein frame prior to the collision of branes.

In the string frame the action is given by Eq.~2.1! with
potential

VS52V0 expF S 1

Ap
21D fG . ~2.9!

The FRLW metric in the string frame is described byds2

52dtS
21aS

2dxS
2, which is connected to the quantities in th

Einstein frame by

dtS5e2w/&dtE , aS5e2w/&aE , ~2.10!

where we used the relationf52&w. Integrating the first
relation gives

2~12Ap!tS5~2tE!12Ap. ~2.11!

Therefore the evolution ofaS andf in the string frame is

aS}~2tS!2Ap, f52
2Ap

12Ap
ln@2~12Ap!tS#.

~2.12!

This illustrates the superinflationary solution with growin
dilaton from f52`. Note that singularities are inevitabl
in both frames ast→0. We wish to analyze whether thi
singularity can be avoided by including higher-order corre
tions.

III. GENERAL ACTIONS AND EVOLUTION EQUATIONS

In this section we present the background and pertur
equations in the case of a generalized action contain
higher-derivative terms. We write this action in the for
@36,41#

S5E d4xA2gF1

2
f ~R,f!2

1

2
v~f!~¹f!22V~f!1LcG ,

~3.1!

wheref (R,f) is a function of the Ricci scalarR and a scalar
field f. v~f! and V(f) are general functions off. The
3-3



th

ef
vi

n-
c
n

tic

-
n

-

e
t

ita
w
a

a

a

g

-

n

ith

ro-

or

de-

n-

d
rm

TSUJIKAWA, BRANDENBERGER, AND FINELLI PHYSICAL REVIEW D66, 083513 ~2002!
LagrangianLc represents the higher-order corrections to
tree-level action. Both higher-derivative gravitational term
and terms involvingw appear. The action~3.1! applies not
only to low-energy effective string theories, but also to
fective action that approaches to Einstein quantum gra
and to scalar tensor theories, among others.

As mentioned in the Introduction, our motivation for co
sidering the addition of higher-derivative terms in the effe
tive action is to construct a nonsingular bouncing model a
thus to overcome the singularity problem~‘‘graceful exit
problem’’! which plagues both the PBB and the ekpyro
scenarios. The higher-order contributionLc can be written as
the sum of thea8 classical correctionLa8 and the quantum
loop correctionLq @27,42#. Both involve the same gravita
tional and scalar field terms, but are multiplied by differe
powers ofe2f.

The leadinga8 ~string! correction to the gravitational ac
tion we adopt is given by@26,27#

La852
1

2
a8lj~f!@cRGB

2 1d~¹f!4#, ~3.2!

where j~f! is a general function off and RGB
2 5R2

24RmnRmn1RmnabRmnab is the Gauss-Bonnet term. Th
inverse string tensiona8 is set to unity. The Gauss-Bonne
term has the property of keeping the order of the grav
tional equations of motion unchanged. It has been kno
since the early days of string theory that this term arises
the lowest string correction to the gravitational field equ
tions in a string theory background. At tree level~lowest
order in \!, we havej(f)52e2f. When applied to PBB
cosmology, it turns out that ast→2` the invariantsRGB

2

and (¹f)4 decay faster than the coefficient functionj~f!
blows up. Hence, the correction terms in the Lagrangian
unimportant for large negative values off, but become im-
portant as the system approaches the strongly coupled re
(f;0).

Following @27#, we take the highern-loop correction
termsLq in addition to the tree-level termLa8 . For the mo-
ment, however, we will keepj~f! general. We will give spe-
cific forms for j~f! andLq later.

A. Background equations

Variation of the action~3.1! with respect to the scale fac
tor, the lapse function~then set to 1 after the variation!, and
the scalar matter field leads to the following backgrou
equations@36#:

H25
1

6F
~vḟ21RF2 f 12V26HḞ1rc!, ~3.3!

Ḣ5
1

2F S 2vḟ21HḞ2F̈2
1

2
rc2

1

2
pcD , ~3.4!

f̈13Hḟ1
1

2v
~vfḟ22 f f12Vf2Df!50, ~3.5!
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whereF[] f /]R andH[ȧ/a. rc , pc , andDf correspond
to the higher-order curvature and derivative corrections w
stress-energy tensorTn

m5(2rc ,pc ,pc ,pc). Df comes
from the variation ofLc with respect tof. For the tree-level
a8 correction~3.2!, one has

rc52a8lS 12cj̇H32
3

2
dj ḟ4D , ~3.6!

pc[22a8lH 4c@ j̈H212jH~Ḣ1H2!#1
1

2
dj ḟ4J ,

~3.7!

Df[2a8l@24cjfH2~Ḣ1H2!

2dḟ2~3j̇ḟ112jf̈112jḟH !#. ~3.8!

Note that taking into account quantum loop corrections p
vides additional source terms forrc , pc , andDf . We will
discuss this issue in Sec. IV.

B. Perturbation equations

A perturbed space-time metric has the following form f
scalar perturbations in an arbitrary gauge~see, e.g.,@43#,
where the functionA is denoted byf!:

ds252~112A!dt212a~ t !B,idxidt

1a2~ t !@~122c!d i j 12E,i , j #dxidxj , ~3.9!

where a comma denotes the usual flat space coordinate
rivative. We introduce the curvature perturbationR in the
comoving gauge@44#

R[c1
H

ḟ
df. ~3.10!

The perturbed Einstein equations for the action~3.1! are
written in the form@41,36#

1

a3Q
~a3QṘ!"2s

D

a2 R50, ~3.11!

where

Q[
vḟ213I ~ Ḟ24lcj̇H2!26l dj ḟ4

~H1I !2 , ~3.12!

s[11
4lcjḟ4216lcj̇ḢI 18lc~ j̈2 j̇H !I 2

vḟ213I ~ Ḟ24lcj̇H2!26l dj ḟ4
~3.13!

with I[(Ḟ24lcj̇H2)/(2F28lcj̇H).
Introducing a new quantity,6 C[zR with z[aAQ, each

Fourier component ofC satisfies the second order differe
tial equation

6Note thatC is the variable in terms of which—for unmodifie
Einstein gravity—the action for fluctuations has the canonical fo
of a free field action with time dependent mass~see, e.g.,@43#
where the variable is denoted asv).
3-4
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Ck91S sk22
z9

z DCk50, ~3.14!

where a prime denotes the derivative with respect to con
mal time, h[*a21dt. In the large scale limit,usk2u
!uz9/zu, Eq. ~3.14! is integrated to give

Rk5Ck1DkE dh

z2 , ~3.15!

where Ck and Dk are integration constants. The curvatu
perturbation is conserved on super-Hubble scales as lon
the second term in Eq.~3.15! is not strongly dominating, as
in the case of the single field, slow-roll inflationary sc
narios.

If the evolution of z before the bounce is given in th
form7

z}~2h!g, ~3.16!

the second term in Eq.~3.15! yields *dh/z2}(2h)122g.
Therefore curvature perturbations can be amplified forg
>1/2 on super-Hubble scales, while they are not forg
,1/2 @17# @note thatRk} ln(2h) for g51/2]. Whether this
enhancement occurs or not depends on the time evolutio
z, and therefore on the string cosmological model.

We need to go to the next order solution of Eq.~3.14! in
order to obtain the spectrum of curvature perturbations.s
is a positive constant~as it will be in the asymptotic limits!,
the solution forCk is expressed by the combination of th
Hankel functions:

Ck5
Apuhu

2
@c1Hn

~1!~x!1c2Hn
~2!~x!#, ~3.17!

where

x[Askuhu, n[
1

2
~122g!. ~3.18!

The solution~3.17! corresponds to the Minkowski vacuum
state in the small scale limit (k→`).

We can expand the Hankel functions in the followin
form @45#:

Hn
~1,2!~x!5 (

n50

`
1

n! S 2
x2

4 D n 1

sinpn F S x

2D n 6 ie7 ipn

G~n1n11!

1S x

2D 2n 7 i

G~2n1n11!G . ~3.19!

The curvature perturbationRk5Ck /z has two solutions,
which are proportional toknuhun2g11/2 andk2nuhu2n2g11/2,
following from the first and second terms in Eq.~3.19!, re-

7Note that as long as the additional termsLc in the action are
negligible, theng5p/(12p), and thus 0,g!1 for the collapsing
phase of ekpyrotic cosmology, andg51/2 (p51/3) for the collaps-
ing phase of PBB cosmology.
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spectively. In the large scale limit (k→0), the contribution
of the second term dominates over the first one, ther
yielding the spectrum of the curvature perturbation as

PR[
k3

2p2 uRku2}k322n}knR21, ~3.20!

in which case the spectral tilt is

nR21532u122gu. ~3.21!

Note that we havek2nuhu2n2g11/25k2nuhu0 for g,1/2, in
which case the constant modeCk in Eq. ~3.15! corresponds
to the solution that comes from the second term in E
~3.19!. The ekpyrotic scenario with a negative potential
,p,1/3) belongs to this case (g,1/2) as we will show
later. Wheng.1/2 one hask2nuhu2n2g11/25k2nuhu122g,
which means thatRk grows before the graceful exit (h
,0). We will discuss a string-inspired model that belongs
this case in Sec. V. The PBB scenario corresponds to
marginal case withg51/2.

Note thats is exactly unity in Eq.~3.14! when the correc-
tionsLc are not taken into account. In the presence of high
order corrections (LcÞ0), s is generally a time-varying
function, in which case the formula~3.21! can not be directly
applied. Nevertheless it is still valid ifs is a slowly varying
positive function.

In subsequent sections we shall apply the above gen
formulas to concrete string-inspired models. In Sec. IV
apply the string loop and quantum corrections to the lo
energy effective action in the string frame and find nons
gular bouncing cosmological solutions. In Sec. V, we co
sider a situation with fixed dilaton and add a Gauss-Bon
term to the Einstein frame action. We find nonsingular c
mological solutions which begin in an asymptotically fl
state, and undergo a period of superexponential infla
which terminates with a graceful exit.

IV. INCLUSION OF HIGHER-ORDER CORRECTIONS
IN THE STRING FRAME: DILATON-DRIVEN CASE

In the context of PBB cosmology, the natural frame to u
in order to define the correction termLc in the Lagrangian is
the string frame. In this case, we should usef 5e2fR and
v52e2f, i.e.,

SS5E d4xA2gH e2fF1

2
R1

1

2
~¹f!22VS~f!G1LcJ ,

~4.1!

where f corresponds to the dilaton. This Lagrangian w
suggested in@26,27#, and used to construct nonsingular bac
ground cosmological solutions of PBB cosmology in the a
sence of a potential for the dilaton. Fluctuations in this mo
were studied in@36# in the absence of a dilaton potential.

In the following, we extend these analyses to the case
nonvanishing dilaton potential. We will first construct non
ingular solutions which in the Einstein frame correspond
nonsingular bouncing cosmologies. We then study how
3-5
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fluctuations evolve across the bounce and compute the s
trum of fluctuations. The analysis in this section thus app
immediately to the modified PBB scenario in which the
laton has a negative exponential potential. We can also a
the results to the initial version@5# of the ekpyrotic scenario
In this case, the brane collision occurs atw50, and since
thus the gravitational coupling constant does not change
nificantly near the bounce, the difference in the role of
higher-derivative terms between the Einstein frame~the
frame in which it appears most logical to define the corr
tion terms in the Lagrangian! and the ‘‘string frame’’~quota-
tion marks used here because in the case of the ekpy
scenariow is not the dilaton, the dilaton being fixed! is not
expected to be significant. The application of the results
this section to the version of the ekpyrotic scenario w
moving boundary branes@38# and to the cyclic scenario@39#
is more problematic since in this casew is the dilaton,w→
2` at the bounce, and thus the difference in the evolution
models with correction terms defined in the Einstein a
string frames is expected to be important.

The reason why nonsingular solutions are possible in
presence of the correction termLc is that such a term can
lead to violations of the null energy condition~from the per-
spective of an observer using unmodified Einstein eq
tions!. Thus, it is expected to lead to a successful grace
exit, in the same way that introducing matter violating t
null energy condition allowed the construction of nonsing
lar bouncing models in@46,47#.

In this model the background equations are written as

6H226Hḟ1ḟ222VS5efrc , ~4.2!

4ḟH24Ḣ26H22ḟ212f̈12VS5efpc , ~4.3!

6Ḣ112H21ḟ222f̈26Hḟ22~VS2VS8!5efDf . ~4.4!

The dilatonic correctionsLc are the sum of the tree-levela8
corrections and the quantumn-loop corrections (n
51,2,3,...), with the functionj~f! @see Eq.~3.2!# given by

j~f!52 (
n50

Cne~n21!f, ~4.5!

whereCn (n>1) are the coefficients ofn-loop corrections
with C051. In this case the source terms due toLc on the
right hand side of Eqs.~4.2!–~4.4! are given by@42#

rc5 (
n50

Cn$rc%n , pc5 (
n50

Cn$pc%n ,

Df5 (
n50

Cn$Df%n , ~4.6!

where

$rc%n5a8lḟe~n21!f$224c~n21!H313 dḟ3%, ~4.7!

$pc%n5a8le~n21!f$8c~n21!H@~n21!ḟ2H1f̈H

12ḟ~Ḣ1H2!#1dḟ4%, ~4.8!
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$Df%n5a8le~n21!f$24c~n21!H2~Ḣ1H2!

23 dḟ2@4f̈14ḟH1~n21!ḟ2#%, ~4.9!

with l521/4. Following Ref.@36# we choose the coeffi-
cients asc52d521. Note that the above corrections in
clude the a8 corrections ~3.6!–~3.8!, corresponding ton
50.

It is also convenient to relate the Hubble parameter and
derivative in the Einstein frame with those in the strin
frame by using Eq.~2.10!:

HE5ef/2S HS2
ḟ

2
D ,

ḢE5efS ḢS2
f̈

2
1

1

2
ḟHS2

ḟ4

4
D . ~4.10!

Here the overdots on the right hand sides denote the t
derivatives with respect totS . The energy densityrE and the
pressurepE in the Einstein frame are expressed as

rE53HE
2, rE523HE

222ḢE . ~4.11!

Once we know the evolution of the background in the str
frame, it is easy to find the evolution ofHE , aE , w5
2f/&, and to check whether the null energy conditionrE
1pE.0 holds or not in the Einstein frame by using Eq
~4.10! and ~4.11!. Note that in the absence of higher-ord
corrections (Lc50) one has 2ḢE52(rE1pE)52ḟ2,0.
In this case once the contraction begins (ḢE,0) the Hubble
parameter isalwaysnegative. Therefore it is not possible t
have the bouncing solutions required for the nonsingular
pyrotic scenario unless higher-order correctionsLc are taken
into account.

A. Background evolution

In the absence of a negative exponential potential (VS
50), it was found in Ref.@26# that curvature singularities
can be avoided by taking into account higher-order corr
tions Lc . In this case we have nonsingular bouncing so
tions in the Einstein frame due to the violation of the n
energy condition. We are interested in whether singula
avoidance is possible or not in the presence of the ekpyr
potential ~2.9!. Note that, since near the bounceH2;t22,
higher-curvature corrections to the Einstein action will lik
wise be important in the presence of a potential.

WhenVSÞ0 andLc50 the background solutions are d
scribed by Eqs.~2.8! and~2.12!. In the string frame the scale
factor evolution is superinflationary with growing Hubb
rate (ḢS.0). We plot in Fig. 1 the evolution of backgroun
quantities in both the string and Einstein frames@see the case
~i!#. The dilatonf starts out from the weakly coupled regim
gstring

2 [ef!1, corresponding to widely separated branes
the ekpyrotic scenario,w52f/&@1. In the Einstein frame
the universe is contracting with a negative Hubble rate. T
solution inevitably meets a curvature singularity asf grows
3-6
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FIG. 1. The evolution ofHS , HE , aS , aE , f, andrE1pE with c521, d51, p50.1. We choose initial conditionsf5220, H55.0
31023. The cases correspond to~i! only tree-level correction terms but no higher-order corrections (C15C250), ~ii ! tree-level and
one-loop corrections present (C151.0,C250), and~iii ! tree-level and one- and two-loop corrections present withC151.0 andC2521.0
31023.
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toward the strongly coupled regime (gstring
2 ;1).

Our first main finding is that withVS(f)Þ0 there exist
nonsingular trajectories in the presence of higher-order
rections (LcÞ0). Thus, the presence of the potential for t
dilaton does not prevent the higher-derivative terms fr
being able to smooth out the curvature singularity. The
tails depend on the value of the power-law indexp. When
p!1 the ekpyrotic potential~2.6! is exponentially sup-
pressed forw*1, in which case the dynamics of the syste
08351
r-
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is hardly affected by the negative potential except for
region w;0. However, in this region the higher-derivativ
terms play a crucial role.

In our simulations, we have adopted the potential~2.6! for
w.0 andVE50 for w,0. This is in the spirit of the first
version of the ekpyrotic scenario@5# in which the potential
vanishes at the brane collision, the bulk brane is absorbe
the orbifold fixed plane via a small instanton transition, a
there is no potential left afterward. We show in Fig. 1 t
3-7
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TSUJIKAWA, BRANDENBERGER, AND FINELLI PHYSICAL REVIEW D66, 083513 ~2002!
dynamical evolution of the system forp50.1. The case~i! is
the one in which only tree-level terms are present and
which singularity avoidance is not possible. The case~ii !
corresponds to the one where both tree-level and one-
corrections are taken into account (C151.0 andC250). In-
clusion of one-loop corrections makes it possible to ha
nonsingular cosmological solutions. In factrE1pE becomes
negative aroundtS;115 in Fig. 1, after which the Hubble
parameterHE begins to grow. The universe starts to expa
onceHE crosses zero; namely, the violation of the null e
ergy condition allows us to have nonsingular bouncing so
tions in the Einstein frame. Nevertheless, we should no
that the evolution of the scale factors is superinflationary
both the string and Einstein frames due to unbounded
crease ofHS andHE , together with rapid growth of the field
f. Therefore we are faced with another problem, nam
how to connect to the stage of a decreasing Hubble par
eter.

If two-loop terms are added~keeping the previous tree
level and one-loop terms! phenomenologically more appea
ing nonsingular solutions can be obtained. WhenC2 is posi-
tive, the evolution of the system does not differ significan
compared to the case~ii !. However, it is possible to obtain
decreasing Hubble rate if we take a negative value ofC2 .
The case~iii ! of Fig. 1 corresponds to the coefficientsC1
51.0 andC2521.031023. We find that the growth rates o
the scale factor and off are slowed compared to the ca
~ii !. We see thatrE1pE becomes positive and begins to d
crease toward10 after the short period of violations of th
null energy condition. Although this case does not cor
spond to the radiation-dominated universe after the grac
exit, it is possible to connect to it by taking into account t
decay of the dilaton to radiation.8 However, including radia-
tion in the ekpyrotic cosmology has some subtle points,
we do not consider this problem in the present work.

We have checked that the addition of three-loop ter
with coefficients chosen to be of the order 1027 ~roughly the
same hierarchy of coefficients between the two- and th
loop terms as between the one- and two-loop terms! does not
change the results of the two-loop analysis in a signific
way. With a coefficient of the three-loop term of order 1, t
background solution ceases to be nonsingular.

We emphasize that we have nonsingular bouncing s
tions in the Einstein frame even in the presence of a nega
exponential potential. Whenp!1 the potential is vanish
ingly small for w@1, in which case the dynamics of th
system is practically the same as that of the zero poten
discussed in Ref.@27#. In this case the dilaton starts out fro
the low-curvature regimeufu@1, which is followed by the
string phase with linearly growing dilaton and nearly co
stant Hubble parameter. During the string phase one has@26#

8If we were to include production of radiation at a fixed tim
during the expanding phase, we could use the well-known res
on the constancy ofR in the expanding phase@44,48,49# to argue
that the spectrum of fluctuations on large scales will be the sam
that obtained in this paper. The crucial fact about our bounce is
it is not symmetric in time~see Fig. 1!.
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aS}~2hS!21, f52
ḟ f

H f
ln~2hS!1const, ~4.12!

where ḟ f.1.40 andH f.0.62. In the Einstein frame this
corresponds to a contracting universe with

aE}~2hE!ḟ f /~2H f !21. ~4.13!

On the other hand, we can consider the scenario where
negative ekpyrotic potential dominates initially but th
higher-order correction becomes important when two bra
approach sufficiently. Numerically we confirmed that it
possible to have nonsingular solutions~see Fig. 2!. In the
simulations we included the correction terms ofLc only for
w&1. In this case the background solutions are described
Eq. ~2.8! or Eq. ~2.12! before the higher-order correctio
terms begin to work. Given this background solution, o
can obtain the spectra of curvature perturbations analytic
as we will see in the next section. The spectra depend
whether the higher-order terms are always dominant or
relative to the negative potential before the bounce.

We have also studied ekpyrotic potentials with other v
ues ofp, and found that if the potential is negative, corr

lts

as
at

FIG. 2. The evolution ofw andaE with c521, d51, p50.1,
C151.0, andC2521.031023. In this case we include the correc
tion term Lc only for w,1. We choose initial conditionsf5
215, H51.531023. Prior to the collision of branes atw50, the
universe is slowly contracting, which is followed by the bounci
solution through higher-order corrections.
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CONSTRUCTION OF NONSINGULAR PRE-BIG-BANG . . . PHYSICAL REVIEW D66, 083513 ~2002!
sponding top,1/3, then singularity avoidance is possib
for suitable choices ofC1 and C2 as in the casep50.1
shown in Fig. 1. In the case ofp.1/3 the fieldf climbs up
a positive exponential potential due to the Hubble contr
tion term. Whenp*1/2 with V05p(123p) we found that
the field f returns back before it reaches the strong
coupled region,f*0. This is equivalent to the fact that tw
parallel branes do not approach each other sufficiently
such cases the positive exponential potential makes the
bounce back before the higher-order correction becomes
portant ~this may be related to the instability discussed
cently in @50#!. If we choose smaller values ofV0 , it is
possible to have nonsingular bouncing solutions which
similar to those in Fig. 1. This case corresponds to the
where the effect of the positive potential is negligible co
pared to higher-order corrections, in which case the ba
ground solutions are given by Eq.~4.12!. When the positive
potential is dominant from the beginning, it is difficult t
obtain a solution where a successful graceful exit is reali
by higher-order corrections.

B. Density perturbations

Let us proceed to the analysis of the evolution and
spectra of density perturbations. We shall consider two ca
~i! the effect of the potentialV(f) is always negligible rela-
tive to the correction termLc , and ~ii ! the effect of the
correction termLc becomes important only around th
graceful exit (f;0). Note that the second case is the phy
cally more interesting one for applications to ekpyrotic co
mology.

1. Case (i):zV„f…z™zLcz

When the correction terms~3.6!–~3.8! always dominate
relative to the exponential potential~2.6!, the spectra of den
sity perturbations are similar to the ones discussed in R
@36#. During the string phase with linearly growing dilato
and nearly constant Hubble parameter withḟ f.1.40 and
H f.0.62, we have a sufficient amount of inflation wi
e-folds N[ ln(a/ai).60 provided that the dilaton field satis
fies ufu@1 initially @36,42#. In this stageQ defined in Eq.
~3.13! is proportional toe2f by making use of Eq.~4.12!,
thereby leading to

z}~2hS!g with g5211
ḟ f

2H f
.0.13. ~4.14!

Making use of the relation~3.21!, which is valid for positive
s, the spectral tilt of the large scale curvature perturbatio

nR21532U32
ḟ f

H f
U.2.26. ~4.15!

The evolution of the frequency shifts is nontrivial ~see
Fig. 3!. In the low-curvature regime where the higher-ord
terms are not important,s is positive (s.1), as in the usua
PBB scenario. It then changes sign and becomes neg
during a short transition from the low-curvature regime
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the string phase. During the string phase,ḟ andHS are con-
stant (ḟ.1.40 andHS.0.62), andj;2e2f. The correc-
tion term on the right hand side of Eq.~3.13! for s dominates
in this phase. It follows from Eq.~3.13! that thef depen-
dence of the leading term cancels out betweenj~f! and
v~f!, and that hences is constant and negative until th
graceful exit. In a stage with negative constants, the solution
of Eq. ~3.14! can be written in the form

Ck5Auhu@c1I n~x!1c2Kn~x!#, ~4.16!

wherex andn are given in Eq.~3.17! ~with s replaced by the
absolute value ofs!, andI n andKn are modified Bessel func
tions, whose asymptotic solutions areI n}xn, Kn}x2n for
x→0, andI n;ex/A2px, Kn;Ap/(2x)e2x for x→`. Then
one reproduces the spectral tilt~4.15! in the large scale limit
(usk2u!uz9/zu). For small scale modes curvature perturb
tions show exponential instability due to negative frequen
shift. After the horizon crossing (usk2u&uz9/zu), curvature
perturbations are frozen, sinceg is smaller than 1/2 in this
case.

It was shown in Ref.@31# that the ratioḟ f /H f is required
to lie in the range 2<ḟ f /H f<3 for a successful gracefu
exit in the presence of other forms of higher-ordera8 cor-
rection. Therefore the spectral tilt lies in the range

2<nR21<3, ~4.17!

which is valid for large scale modes (usk2u!uz9/zu). There-
fore we have blue-tilted spectra as long as the correctionLc
dominates compared to the exponential potential.

2. Case (ii):zV„f…zšzLcz but zV„f…zËzLcz for wÈ0

When the correction termLc becomes important only
around the graceful exit (f;0), the spectra of density per
turbations generated before the bounce are mainly de

FIG. 3. The evolution of the frequency shifts for c521, d
51, p50.1 with initial conditionsf52100, H51.531023. We
include the quantum correctionLc from the beginning. The shifts is
approximately constant~and negative! during the string phase
which is followed by the stage of decreasing curvature with posit
s. Inset: The evolution ofs in the case where the quantum correcti
is taken into account only forw&1. Note thats rapidly changes
sign around the graceful exit.
3-9
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TSUJIKAWA, BRANDENBERGER, AND FINELLI PHYSICAL REVIEW D66, 083513 ~2002!
mined by the exponential potential. In this case the evolut
of the background can be characterized by Eq.~2.12!. Then
the quantityQ in Eq. ~3.12! evolves as

Q5
2ḟ2e2f

~2HS2ḟ !2
}~2hS!2Ap/~12p!. ~4.18!

Therefore we find

z}~2hS!g with g5
p

12p
, ~4.19!

and the spectral tilt for the curvature perturbation is

nR215H 2

12p
~ for 0,p,1/3!,

426p

12p
~ for 1/3,p,1!.

~4.20!

This coincides with the result in the Einstein frame obtain
in Refs.@14–17#. For very slow contraction with a negativ
ekpyrotic potential (p!1), one has blue-tilted spectra wit
nR2152. Sinceg is less than 1/2 forp,1/3 ~i.e., negative
potential!, curvature perturbations are not enhanced in
large scale limit even in the presence of the correctionLc
around the graceful exit. The simplest PBB scenario w
zero potential corresponds top51/3 andg51/2, in which
case one hasnR2153. In this case curvature perturbation
evolve asRk} ln(2h) as found from Eq.~3.15! with Eq.
~3.16!.

We have solved the evolution equation~3.11! for the cos-
mological fluctuations numerically. Experience from stud
ing fluctuations in inflationary cosmology teaches us that
lowing the evolution equation forC instead of for the
gravitational potentialF is less likely to be affected by nu
merical noise. Since in a contracting universe one of
modes ofF increases much more rapidly than the domin
mode ofC, we believe that it is advantageous to useC in
our case as well. In addition, from a more conceptual po
of view, the variableR is preferable since it is more close
related toC in terms of which the action for cosmologica
fluctuations takes on its canonical form. Note thatC is also
the good variable to use when following cosmological flu
tuation from inflation through reheating@70#. In Fig. 4 we
plot the resulting evolution of the spectra of curvature p
turbations for several different frequencies. The higher-or
correctionLc is included only when two branes approa
sufficiently, i.e.,w&1. We find that large scale modes (k
!1) are not enhanced as predicted by Eq.~3.15!. In contrast,
small scale curvature perturbations exhibit rapid grow
around the graceful exit (w;0).

There are two reasons for this instability. The first is t
fact that the frequency shifts becomes negative for a sho
period where the higher-curvature effect is dominant~see the
inset of Fig. 3!. As is obvious from Eq.~3.14!, an exponen-
tial instability for C is induced by negatives, which is stron-
ger for largerk. We expect this instability will become im
portant for modes withusumaxk

2*1, where usumax is the
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maximal negative value of the functions. From the inset of
Fig. 3 the maximal absolute value ofs during the negative
branch is aboutusumax;102. Hence, thes instability is ex-
pected to be important only for modes withk*1021. By
comparing runs withs given by the general formula and run
with s51, we were able to determine numerically that t
actual cutoff value ofk below which the instability due to the
s term is negligible isk;1022. Thus, we conclude that th
main source of the short wavelength instability of the flu
tuation modes around the bounce must be a second
namely, the nontrivial nature of the bouncing backgrou
and its result on the quantityz9/z.

After the transition to the expanding universe, the curv
ture perturbation is nearly conserved as found in Fig. 4.

We show in Fig. 5 the spectra of curvature perturbatio
for p51023 in the case where the correctionLc is included
only for w&1. We find that the numerical value of the spe
tral tilt is nR21;2 for k&1024, which coincides with the
analytic estimation~4.20!. However, this estimate is no
longer valid for small scale modes due to the negative
quency shift and the instability around the graceful exit. T
spectra are highly blue tilted fork*1024 as found in Fig. 5.
This growth of small scale fluctuations obviously works
the gravitational back reaction to the background evoluti
Although we did not consider the effect of the back react
here, it is certainly of interest to investigate how the bac
ground evolution is modified around the graceful exit. W
have performed the simulations with various choices of ti
steps to make sure that the effects we find are not nume
artifacts. The spectra obtained are independent of the spe
value of the time step.

In Fig. 5 we have also plotted the induced fluctuations
Fk

E in the Einstein frame, determined from the results forRk
S

in the string frame, using the relation

Fk
E}Ṙk

S/k2. ~4.21!

FIG. 4. The evolution of the spectra of curvature perturbatio
PR , for c521, d51, p50.1, C151.0, andC2521.031023.
The initial conditions are chosen to bef5215, H51.531023.
We include the higher-order correctionLc only for w&1. The cur-
vature perturbation does not exhibit significant variation during
contracting phase. However small scale modes are enhanced a
the graceful exit.
3-10
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CONSTRUCTION OF NONSINGULAR PRE-BIG-BANG . . . PHYSICAL REVIEW D66, 083513 ~2002!
This corresponds to Eq.~B3! in Appendix B, which follows
from the relation~B1! in the Einstein frame. Note that thi
relation is valid in the absence of higher-curvature corr
tions to the Lagrangian, and will therefore be good at tim
long before and long after the bounce. For the negative
pyrotic potential (0,p,1/3), one has 0,g,1/2 from Eq.
~4.19!, in which case the second term in Eq.~B4! completely
vanishes. In this case we have the relation~B6!, namely,

Fk
E}Hn21

~1,2!/k. ~4.22!

Note thatHn21
(1,2) can be written as the sum of two terms whi

are proportional to (kuhSu)n21 and (kuhSu)2n11.
Since 0,n,1/2 for 0,g,1/2 ~i.e., 0,p,1/3), the

term proportional to (kuhSu)n21 is the growing mode during
the contracting phase on large scales. Therefore the spec
of Fk

E before the bounce can be estimated as

PF
b }k2n21}k22g}knF21, ~4.23!

from which we have

nF2152
2p

12p
. ~4.24!

Then we have a scale-invariant spectrum before the bou
for p;0, as first pointed out in@18#. This agrees with our
numerical result shown in Fig. 5.

The term proportional to (kuhSu)n21, however, decays af
ter the graceful exit as long asn,1. The dominant mode in
Fk

E long after the bounce is described by the te
(kuhu)2n11, in which case the spectrum ofF is written as

FIG. 5. The final spectra of the curvature perturbation,PR , and
of the gravitational potential,PF , in a simulation withc521, d
51, p51023, C151.0, andC2521.031023 with same initial
conditions as in Fig. 4. The superscript ‘‘b’’ denotes the quantities
before the bounce~at tS5300), while ‘‘a’’ indicates the quantities
after the bounce~at tS51000). We have included the quantum co
rection Lc for values w&1. The spectral tilt isnR21 – 2 for k
&1024, which agrees with the analytic estimation of Eq.~4.20!.
For the modesk.1024, the spectra are highly blue tilted, due to a
instability of small scale modes during the graceful exit. The flu
tuations inF are nearly scale invariant on large scales before
bounce.
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PF
a }k322n. ~4.25!

From Fig. 5 we find that the spectrum ofF is blue tilted with
nF;3 for k*10210 ~small scale modes fork*1022 exhibit
larger blue tilt withnF.3). This corresponds to the valu
n;1/2 in Eq.~4.25! after the bounce.

Our numerical calculations show that large scale mo
with k&10210 do not exhibit such a blue spectrum. This c
be understood to mean that the term proportional
(kuhSu)n21 which is dominant in the contracting phase do
not become smaller than the one proportional to (kuhSu)2n11

in the expanding branch for very smallk, unless we evolve
the fluctuations until long after the bounce. However, it
rather difficult to follow such a large amount of time nume
cally. In addition, the second term in Eq.~B4! is not numeri-
cally negligible relative to the first term for these large sc
modes due to the modification of the equation of state a
the bounce@when g.1/2 the second term in Eq.~B4! is
nonvanishing as found by Eq.~B5!#. Nevertheless, we expec
that the term proportional to (kuhSu)2n11 in the first term in
Eq. ~B4! eventually dominates long after the bounce,
which case the spectrum is given by Eq.~4.25!. Therefore
the final spectrum ofF is not generally scale invariant. Th
spectral index is dependent on the evolution of the ba
ground after the bounce~i.e., g!. In this sense including ra
diation is necessary in order to evaluate the spectrum ofF in
realistic cases where the solution connects to our Friedm
branch.

From Fig. 6 we find that the amplitude ofF decreases
after the bounce, thus showing that the dominant prebou
mode ofF couples exclusively to the decaying mode ofF

-
e

FIG. 6. The evolution of the curvature perturbation,PR , and of
the gravitational potential,PF , for the fluctuation mode corre
sponding tok51029. The model parameters and initial condition
are the same as in Fig. 5. The amplitude of the gravitational po
tial near the bounce when the higher-derivative terms dominate
not be trusted sinceFk

E is computed fromRk
S via Eq. ~4.21! which

is only valid in the absence of such higher-derivative terms.
follows from this plot, the dominant growing mode ofFk

E during
the period of contraction couples only to the post bounce deca
mode. At the time of the bounce, the curve forF is dominated by
numerical noise. However, sinceF is computed at each time sepa
rately from the value ofR at that time, this does not introduc
numerical errors in the late time values ofF.
3-11
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after the bounce, as derived in@15# using matching condi-
tions on a constant scalar field hypersurface.

Equations~3.20! and~4.19! indicate that a scale-invarian
spectrum may be obtained forp52/3 for the modes that ar
enhanced during the bouncing phase@23#. In order to obtain
such a spectrum, the exponential potential~positive in this
case! is required to dominate the higher-order term exc
around the graceful exit. However we have found that,
some likely initial conditions, the fieldw bounces back to-
ward largerw before the higher-order correction begins
work. In language appropriate to ekpyrotic cosmology, t
means that the branes never collide. If the higher-order t
always dominates compared to the positive exponential
tential, we have the blue-tilted spectra~4.15!.

V. INCLUSION OF HIGHER-ORDER CORRECTIONS IN
THE EINSTEIN FRAME: MODULUS-DRIVEN CASE

In this section we consider adding higher-derivative ter
defined in the Einstein frame. We add a Gauss-Bonnet t
proportional toRGB

2 multiplied by a function of the modulus
field w to the action. Such a term arises as the one-lo
correction in the context of orbifold compactifications of t
heterotic superstring@51#. Since the initial version of ekpy
rotic cosmology@5# is based on an orbifold compactificatio
of a theory dual to heterotic superstring theory, the correc
terms used in this section are well motivated in the contex
the scenario of@5#. Indeed, it was found in Ref.@52# ~see also
@53–60#! that the inclusion of the Gauss-Bonnet ter
coupled to a modulus field in the Einstein frame leads to
possibility of obtaining nonsingular solutions. In the work
@52#, the potential for the modulus field was taken to vani
In this section we will include an exponential potentia9

More specifically, the correction Lagrangian we consid
here corresponds@in the notation of Eqs.~3.1! and ~3.2!# to
f 5R, v51, c521, d50, j(w)5 ln@2ewh4(iew)# with
h( iew) being the Dedekindh function @52#. Here j~w! is
approximately given by

j~w!.2
p

3
~ew1e2w!. ~5.1!

The sign ofl is chosen to be positive, which is differen
from the one discussed in the previous section. Note a
that, even though the coefficientj~w! becomes large at larg
brane separation~large negative values of the dilaton in th
case of PBB cosmology!, this increase is outweighed by th
falloff of the curvature invariant, as in the case of the mo
considered in the previous section. Thus, in ekpyrotic c
mology the correction terms are expected to become im
tant only in the high-curvature region.

Let us analyze the one-field system of a modulusw, keep-
ing the dilaton fixed. We will consider solutions starting in
asymptotically flat region and beginning in the expand

9The authors of Ref.@60# analyzed nonsingular cosmological s
lutions in the presence of some positive potentials~not the expo-
nential potential!.
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branch. We have not found solutions which begin in a co
tracting phase and undergo a successful bounce. Howe
note that in the original ekpyrotic scenario of@5#, the scale
factor on the orbifold fixed plane corresponding to our fou
dimensional space-time corresponds to an initially asym
totically flat region, and is always expanding. Thus, the
lutions found here might be applicable to a version
ekpyrotic cosmology formulated entirely in terms of physi
on the orbifold fixed plane.

A. Background evolution

As was discussed in@52#, whenVE50 the PBB singular-
ity can be avoided for positive values ofl when thea8
corrections introduced above are taken into account.
sign of l is crucial for the existence of nonsingular cosm
logical solutions. For negative values ofl, thea8 corrections
do not help to lead to a successful graceful exit, as w
analyzed in Ref.@59#.

In the absence of the ekpyrotic potential, the backgrou
evolution for tE,0 is given by@56#

aE.a0 , HE5
H0

tE
2 , ẇ5

5

tE
, ~5.2!

wherea0 andH0 ~.0! are constants. The Gauss-Bonnet te
leads to a violation of the null energy condition (rE1pE
,0) at sufficiently large curvatures and thus enables a gra
ful exit. If we start in an expanding branch~contrary to the
spirit of PBB and ekpyrotic cosmology!, this leads to a su-
perinflationary solution (ḢE.0) until a ‘‘graceful exit’’ ~see
Fig. 7!. The universe is initially expanding very slowly wit
a nearly constant scale factor. After the Hubble parame
reaches its peak valueHE5Hmax, the system connects to
Friedmann-like universe withHE.1/(3tE), aE}tE

1/3, andw
}2 ln tE .

If the ekpyrotic potential is present, the situation is qu
different. We have adopted the potential~2.6! for w.0 and
VE50 for w,0. Once again, we start in an expanding pha
Initially, the potential term is not important and the univer
evolves in a superinflationary trajectory until a graceful e
after which the Hubble expansion rate begins to decre
Whenp,1/3, corresponding to the case of a negative ex
nential potential, then asw→0 the potential becomes impor
tant and leads to a change in sign ofHE . We find that the
system enters a stage of slow contraction@see the case~ii ! of
Fig. 7#. Note that in Fig. 7ḢE changes sign twice. After the
negative Hubble peak, the Hubble rate begins to grow
ward HE→20 without changing sign. Then the system e
ters a very slowly contracting phase with a nearly const
scale factor. In this stage the fieldw evolves rapidly toward
large negative values. In the presence of negative expo
tial potential (p,1/3) we have found that the contractin
stage eventually appears even whenV0 is small.

When p.1/3 there exists a positive potential barrier
the field w approaches zero. The case~iii ! in Fig. 7 corre-
sponds top51/2 with V05p(123p). The effect of the
positive potential is important aroundw;0, which works to
return the field back toward largerw. After the graceful exit
3-12
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FIG. 7. The evolution ofHE , aE , w, andrE1pE in the modulus-driven case withc521, d50. We choose initial conditionsw520 and
H55.08731024. Each case corresponds to~i! V050 with p50.1, ~ii ! V050.01p(123p) with p50.1, and~iii ! V05p(123p) with p
50.5.
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the Hubble rate is always positive with slowly changingw.
The scale factor evolves as a power law (a}tp) due to a
positive exponential potential. Thep.1/3 case provides u
with reasonable nonsingular cosmological solutions. Nev
theless, we need to caution that these nonsingular solut
are different from the bouncing ones where the contrac
of the universe occurs before the graceful exit.

One may argue that the bouncing trajectories may
found by including the correctionLc only aroundw;0.
However, we have numerically found that this is not t
case. The superinflationary evolution characterized by
~5.2! is typically required for the construction of nonsingul
solutions in the present scenario.

B. Density perturbations

When the Gauss-Bonnet term is dominant relative to
ekpyrotic potential, the spectra of density perturbations
be analyzed as in the case of the zero potential (p50 or p
51/3). In this case the evolution of the background dur
the phase of modulus-driven inflation is given by Eq.~5.2!,
thereby leading toj̇(w).2(p/3)ẇew}(2tE)4. Making use
of this relation together with Eq.~3.12!, we find the evolu-
tion of Q andz as

Q}~2tE!2, z}~2tE!}~2hE!. ~5.3!
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This means thatg51 in Eq. ~3.16!, in which case curvature
perturbations are enhanced on super-Hubble scales du
superinflation@Rk}(2hE)21# due to the growth of the sec
ond term in Eq.~3.15! @61#. We show in Fig. 8 the evolution
of curvature perturbations in the case of zero potentialp
51/3) for two different modes (k51023 andk51021). We
find that curvature perturbations are amplified before
graceful exit.

In order to obtain the spectral tilt of density perturbation
we have to caution that the functions defined by Eq.~3.13!
is a time-varying function and is proportional to (2tE).
Therefore the formula~3.21! cannot be directly applied. In
stead one is required to consider the evolution equation
curvature perturbations:

Ṙk1
2

tE
Ṙk2a

k2

a0
2 tERk50, ~5.4!

wherea ~.0! is a constant that depends onH0 in Eq. ~5.2!.
The solution of this equation is written in terms of the Bes
functions

Rk5~2tE!21/2@c1J21/3~x!1c2J1/3~x!#, ~5.5!

wherex[2/3Aa(k/a0)(2tE)3/2. Notice that this solution as
ymptotically approaches the Minkowski vacuum forx→`.
3-13



o

-

In
e

ou

-
tu
th

ra

th
re
te
a
es
u

nu

e
ntial
le
nd
cy
er

ted
en-
ot

ious

the
x-
alter
mi-

in
ti-
gle
to
an
he

ulk
on

in-
s to

e,
er-
lu-
ing

n

ze
e
l i

he

tive
s
nd

TSUJIKAWA, BRANDENBERGER, AND FINELLI PHYSICAL REVIEW D66, 083513 ~2002!
Since J61/3(x)}k61/3 in the x→0 limit, the spectrum of
large scale curvature perturbation is proportional toPR
}k7/3. Therefore the spectral index is

nR215
7

3
, ~5.6!

which is a blue-tilted spectrum.
In the absence of the ekpyrotic potential, the evolution

the background in the asymptotic future is given byw
;A3/2 lntE , HE}1/(3tE), anda}tE

1/3. Therefore one hasz
}tE

1/3}hE
1/2 in Eq. ~3.15!, in which case curvature perturba

tions exhibit logarithmic growth,

R} ln hE . ~5.7!

This indicates that the second term in Eq.~3.15!, which we
call the ‘‘D mode,’’ dominates even after the graceful exit.
the case where theD mode decays after the graceful exit, th
surviving spectra observed in an expanding universe sh
correspond to the first term in Eq.~3.15! ~‘‘ C mode’’!. In the
present model, however, theD mode survives in an expand
ing branch. Therefore the spectrum of the curvature per
bation during superinflation can be preserved even after
graceful exit. In fact, the numerical value of the final spect
tilts of R are found to benR21;2.3 for the modesk!1
~see Fig. 9!. This agrees well with the analytic result~5.6!.

When a positive ekpyrotic potential is present (p.1/3),
the dynamics of the system is more unstable around
graceful exit. This leads to the violent growth of curvatu
perturbations when the field bounces back due to the po
tial barrier. This threatens the viability of the cosmologic
perturbation theory around the graceful exit. Neverthel
the perturbations are not singular as long as the backgro
is smoothly joined to the expanding branch. We have
merically evaluated the power spectra ofR for the modes

FIG. 8. The evolution of the spectra of curvature perturbatio
in the modulus-driven case (c521 and d50) for (p,k)
5(1/3,1021),(1/3,1023),(1/2,1021),(1/2,1023). We choose initial
conditionsw523.888 andH54.15831024. Note that thep51/2
case corresponds to the positive exponential potential while the
potential corresponds top51/3. Around the graceful exit curvatur
perturbations exhibit rapid growth especially when the potentia
positive (p.1/3).
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which left the horizon during superinflation. Although th
amplitude is larger compared to the case of the zero pote
(p51/3), the final spectral tilts are similar for large sca
modes (k!1); see Fig. 9. Again the final spectra are fou
to be blue tilted. We should also mention that the frequen
shift s becomes negative for the Hubble rate which is larg
than unity around the graceful exit@61#. In this case the
small scale modes show exponential instability as we poin
out in the dilaton-driven case. The negative ekpyrotic pot
tial (p,1/3) is not worth studying, since this case does n
connect to the expanding branch as analyzed in the prev
subsection.

Finally, we should mention that we have neglected
effect of radiation in all our analysis. However, this is e
pected to appear at some moment of time. This can also
the final spectra of curvature perturbations due to the do
nance of theC mode in Eq.~3.15!. We leave to future work
investigation of these realistic situations.

VI. DISCUSSIONS AND OPEN ISSUES

We have studied the effects of higher-derivative terms
the joint gravitational and matter action for theories mo
vated by pre-big-bang and ekpyrotic cosmology with a sin
scalar matter field with an exponential potential. Applied
PBB cosmology, our model corresponds to a theory with
exponential potential for the dilaton. In the language of t
initial version of ekpyrotic cosmology@5#, our scalar field is
the modulus field corresponding to the separation of the b
brane from our orbifold fixed plane; in the second versi
@38# and in its cyclic version@39,40# the field is the radius of
the extra spatial dimension. The higher-derivative terms
troduced are the leading string and quantum correction
the low-energy effective action of string theory.

When applying the correction terms in the string fram
and for suitable choices of the coefficients of the high
order corrections, we find nonsingular cosmological so
tions which in the Einstein frame correspond to bounc

s

ro

s

FIG. 9. The final spectra of curvature perturbations in t
modulus-driven case (c521 and d50) for p51/3 andp51/2.
The initial conditions are the same as in Fig. 8. When the posi
potential is present (p.1/3), the amplitude of the spectrum i
larger than in the case of the zero potential. We numerically fi
that the spectral tilt isnR21;2.3 fork!1, which agrees well with
the analytic estimation,nR2157/3.
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universes. We thus find that higher-derivative terms c
smooth out the singularities in PBB and ekpyrotic cosm
ogy and lead to a graceful exit~in the language of PBB
cosmology! or a nonsingular bounce~in the language of ek-
pyrotic cosmology!. We have thus generalized the results
@26# to models with exponential scalar field potentials.

We have studied the evolution of fluctuations in our no
singular bouncing cosmologies. This analysis is not plag
by the matching ambiguities inherent to analyses where
contracting and expanding cosmologies are matched acro
singular space-time surface. For all potentials with 0,p
!1 we find a blue spectrum of curvature fluctuations. T
precise spectral index depends, as expected, on whethe
higher-derivative correction terms are important at tim
when the scales on which we compute the fluctuation sp
trum exit the Hubble radius during the phase of contracti

If the higher-derivative terms are not dominant when
scales exit the Hubble radius, the index of the spectr
agrees with what is obtained by applying the general rela
istic matching conditions on a uniform density hypersurfa
@15–17#. The only difference is an instability of small sca
fluctuation modes during the bounce~see also@61#! which
leads to a further steepening of the spectrum. Our result
plies that the growing mode ofF during the contracting
phase, which is scale invariant for 0,p!1, is effectively
uncoupled with the dominant constant mode ofF in the
expanding phase, a result obtained in the context of matc
conditions in@13# ~in the case of PBB cosmology! and in
@15,16# for the ekpyrotic scenario. If the higher-derivativ
terms dominate when scales of interest exit the Hubble
dius, then the spectrum is blue with a slope ofnR21
.2.26. Note that our result implies that it is the curvatu
fluctuationR ~more precisely, the variablez̃ originally intro-
duced by Bardeen in@62# and used in@15#, which equalsR
up to terms that are suppressed byk2 for large scale fluctua-
tions! which is effectively conserved for large scale pertu
bations across the bounce.

We have also studied nonsingular cosmological mod
obtained by adding a Gauss-Bonnet term~defined in the Ein-
stein frame! multiplied by a suitably chosen function of th
single scalar matter field in the problem~a modulus field!.
Once again, we have included an exponential potential
the modulus field. Although we do not find bouncing co
mologies, we find interesting nonsingular cosmological so
tions which begin in an asymptotically flat region, under
superexponential inflation followed by a graceful exit to
phase with decreasing Hubble radius. In the presence
negative exponential potential (0,p,1/3), the solutions
reach a maximal radius and begin to contract as the fi
crossesw50. During this period of contraction, the Hubb
parameter remains finite. Such solutions might be applica
to ekpyrotic universe models formulated in terms of phys
on the four-dimensional orbifold fixed plane correspond
to our visible space-time. When the potential is positivep
.1/3), the modulusw bounces back around the brane co
sion toward largerw due to the barrier of the positive poten
tial. Although singularities can be avoided aroundw;0, this
model does not correspond to bouncing solutions where
contraction of the universe occurs due to the ekpyrotic
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tential before the graceful exit.
We have also studied the spectrum of curvature fluct

tions R in this modulus-driven cosmology. When highe
order corrections are important before the bounce~as they
must be for the existence of nonsingular solutions!, one has
nR21;7/3. This result is again in agreement with what c
be obtained by neglecting the graceful exit and matching
Einstein universes at a constant density hypersurface.

Note that we have chosen to evolve the curvature per
bation R on comoving hypersurfaces, and found that t
spectral index is given by Eq.~4.20! when the ekpyrotic
potential is dominant. Note that this spectrum in the 0,p
,1/3 case comes from theC mode in Eq.~3.15!, which is
blue tilted for very slow contraction (0,p!1). Since the
large-scaleD modes are enhanced for 1/3,p,1 during the
contracting phase, the spectrum ofR will be scale invariant
for p;2/3 right after the bounce@23#.

If we follow instead the gravitational potentialF in the
longitudinal gauge, its spectral index generated during
collapsing phase is estimated as Eq.~4.24!, which is different
from that ofR @see Eq.~4.20!#. Whenp;0, corresponding
to a very slow contraction, the growing mode~D mode! of F
is approximately scale invariant. The authors of Refs.@18#,
@19# claimed that a scale-invariant spectrum of the domin
postbounce mode ofF would inherit this scale-invarian
spectrum.

However, we know that when computed at late times lo
after the bounce, in an expanding universe, the spectra oR
andF must be identical. Thus, given our results concern
the spectrum ofR, we know that the spectrum ofF long
after the bounce cannot be scale invariant. Our numer
simulations show that the contribution from the prebounceD
mode decays after the system enters the expanding bra
and thus show that the prebounce growing mode ofF
couples exclusively to the postbounce decaying mode. T
results in a blue-tilted spectrum ofF when evaluated long
after the bounce~see Fig. 5!. For very large scales withk
&10210, we need to solve the equation of fluctuations up
sufficient amount of time in order to find the complete dec
of theD mode relative to theC mode. In addition the secon
term in Eq.~B4! is not numerically negligible for very smal
k wheng is greater than 1/2. Nevertheless, the term prop
tional to (kuhSu)2n11 in the first term in Eq.~B4! eventually
dominates long after the bounce (hS→`), thereby yielding
the spectrum~4.25!. Therefore the spectrum ofF long after
the bounce is not generally expected to be scale invarian
spectral index depends on the evolution of the backgroun
an expanding branch.

Since near the bounce the magnitudes of the two mode
F andR differ by such a large ratio, we must worry abo
the possibility of numerical errors. In particular, if one we
to follow the evolution equation forF, it would be difficult
to ensure that numerical noise does not lead to an artifi
coupling between the prebounce growing mode and the p
bounce dominant~constant! mode. We have checked that ou
results do not seem to suffer from a similar problem by
peating the simulations with different values of the time s
Dt. We did not find any dependence of the results within
range of time steps we have chosen (1025<Dt<1023).
3-15
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Let us compare our findings to results that have alre
appeared in the literature. As mentioned repeatedly, our
sults concerning the spectrum of fluctuations obtained in
classes of nonsingular bouncing universe models consid
in this paper agree with the results of@15–17# obtained when
removing the higher-derivative correction terms~thus going
back to a singular background! and matching the fluctuation
on a constant scalar field matching surface. The results im
that the growing mode ofF in the contracting phase does n
source the postbounce dominant mode ofF. Our results thus
indicate that the conjecture of@18,19#, namely, that the grow-
ing mode ofF in the contracting phase~which in ekpyrotic
cosmology has a scale-invariant spectrum! should generi-
cally determine the amplitude and spectrum of the domin
mode ofF in the postbounce phase, is not valid. As emp
sized in@24# and @19#, in the case of a singular backgroun
the spectrum of fluctuations in the expanding phase depe
sensitively on the details of the matching conditions us
Since we have only used one class of ways to smooth ou
singularity, the sensitive dependence on the matching sur
might not have been completely eliminated, but might fi
itself reflected in a sensitive dependence of the final sp
trum on the specific form of the correction terms in the a
tion. We leave the study of this issue to future work.

Our work indicates that it is difficult to obtain a scal
invariant spectrum of curvature fluctuations for a single fi
PBB or ekpyrotic cosmology. However, in the case of ekp
rotic cosmology there is the intriguing fact that the growi
mode of the gravitational potentialF during the phase o
contraction has a scale-invariant spectrum. To obtain a sc
invariant spectrum ofF and thus also of the curvature fluc
tuationR at late times in the expanding phase, one sugg
tion @18,19# was to nontrivially connect the growing mode
F during the contracting phase with the constant mode in
expanding phase. We have shown that this does not occ
the single field case with our choice of correction terms
the action~needed to obtain a nonsingular bounce!.

Note that there are examples where a large growth oF
during the phase of contraction persists after the bounce~see,
e.g., @23,47,37#!. A criterion for when this occurs has bee
proposed recently in@37#. The condition is that the relative
variation of R over a Hubble time scale should be app
ciable, i.e., the following relation@37#:

Ṙ
HR @1, ~6.1!

should hold close to or right at the bounce. We use Eq.~3.15!
and restrict consideration to the case of an exponential
tential, in which case one has

Ṙ
HR 5

Dk~12p!h

pa2@Ck1Dk~2h!122g#

5H Dk~12p!

pCk
~2h!~123p!/~12p! for 0,p,1/3,

12p

p
for 1/3,p,1.

~6.2!
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The marginal casep51/3 ~important for the PBB and also
for the ekpyrotic scenario, in which the potential disappe
close to the bounce! should be treated separately, and lea
to

Ṙ
HR 5

2Dk

Ck1Dk ln~2kh!
. ~6.3!

Surprisingly enough, both the results~6.2! and~6.3! indi-
cate thatF could never match to R nontrivially. For p

<1/3,Ṙ/HR→0 as h→0. For 1/3,p,1,Ṙ/HR→(1
2p)/p;O(1) ash→0. This latter case is interpreted as
variation ofR rather than a change induced byF. Interest-
ingly enough, if one takes seriously the ratio~6.1!, the sin-
gularity at the bounce~i.e., if h50 is reached or not! does
not matter in the impossibility of matchingF to R.

Recently several authors@47,37# considered models of a
bouncing universe~realized in @47# by introducing matter
violating the weak energy condition and in@37# by making
use of spatial curvature in the background metric! in which
R grows dramatically across the bounce and there is a c
pling between the growing mode ofF in the contracting
phase and the dominant mode ofF in the expanding phase
In this case, it may be possible to obtain a scale-invari
spectrum, as already realized in@23#.

Although we have concentrated on the density pertur
tion in the single field scenario, the situation can be chan
by taking into account a second scalar field@23,63,64#. A
system of multicomponent scalar fields generally indu
isocurvature perturbations, which can be the source of a
batic perturbations. In such a case the relation~6.1! could be
satisfied, since isocurvature perturbations act as source
for Ṙ in addition toF. In fact the authors of Ref.@63# con-
sidered a specific two-field system with a brane moduluw
and a dilatonx. When the dilaton has a negative exponent
potential with a suppressed ekpyrotic potential forw, the
entropy ‘‘field’’ perturbation can be scale invariant if th
model parameters are fine-tuned@63#. It was also pointed out
in Ref. @23# that the quantum fluctuation of a light scal
field ~with a noncanonical kinetic term as studied in@65#!
such as axion may lead to the flat spectra of isocurva
perturbations. If the correlation between adiabatic a
isocurvature perturbations is strong, adiabatic perturbati
may be scale invariant.

We wish to stress that our work is not conclusive. In p
ticular, in order to fully evaluate the final power spectra, o
should solve the equations of motion for fluctuations in
nonsingular bouncing model including radiation. Importa
issues which should be investigated further include the
lowing.

The final power spectra of the curvature perturbation
found to be blue tilted for the nonsingular ekpyrotic mode
we have considered, which rely on specific higher-derivat
correction terms. Are there other correction terms to the
tion which are motivated by string theory, lead to nonsing
lar bouncing scenarios, and yield a flat spectrum even in
single field case? Perhaps toy bouncing models using ex
scalar fields or matter in Refs.@46#, @47# can be a good start
ing point to construct viable nonsingular ekpyrotic model
3-16
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We do not include the effect of radiation~or particles!
which can be efficiently produced near the bounce. Part
production around the transition region is expected to
quite efficient@66#, and this could lead to an additional in
stability of small scale metric perturbations. This effect m
also nontrivially alter the nonsingular background evoluti
by the back-reaction effect of created particles. It is a
required to include the radiation after the bounce in orde
evaluate the surviving spectra accurately, although the c
pling between the scalar field and radiation should be cho
carefully in that case.

It is of interest to study the effect of isocurvature pertu
bations in the two-field system of nonsingular ekpyrotic s
narios. In particular, isocurvature perturbations can be
fected by the instability of the background near the boun
In order to obtain the final spectra of adiabatic perturbatio
we need to solve the coupled equations of adiabatic and
tropy perturbations through the nonsingular bounce incl
ing radiation. It is important to investigate whether nea
scale-invariant spectra are obtained by conversion fr
isocurvature to adiabatic perturbations.

Our analysis also applies to cyclic universe models p
posed in Refs.@39#, @40# in which the bounce has been reg
larized by including higher-order corrections. Thus, our co
clusions about the difficulty in obtaining a scale-invaria
spectrum of fluctuations carry over to single field realizatio
of the cyclic scenario. In fact, we have done some simu
tions in the case of a simple negative potentialV5m2(f2

2fc
2) for ufu,fc , and found that the solutions can be no

singular so long as the higher-order effect dominates aro
the graceful exit. Note, however, that the spectra of den
perturbations will be the same as in the ekpyrotic scenar

Recently, a paper has appeared@67# in which in the con-
text of a brane world scenario a nonsingular bouncing c
mology is obtained by considering the motion of a D3-bra
as a boundary of a five-dimensional charged anti–de S
black hole. In this model, computed in linear theory, t
spectrum of gravitational wave fluctuations was shown no
be scale invariant. This result supports the conclusions
have reached.
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APPENDIX A: HEURISTIC DERIVATION
OF THE SPECTRUM OF FLUCTUATIONS

In this appendix we give a heuristic derivation of th
spectral index of cosmological perturbations in the PBB a
ekpyrotic scenarios. This analysis is based on two key
sumptions. The first is the assumption that the amplitude
the fluctuations when they exit the Hubble radius during
phase of contraction~in the Einstein frame! is given by the
Hubble constant. This assumption is reasonable assum
that the fluctuations are quantum vacuum perturbati
which freeze when their wavelength crosses the Hubble
dius.

The second assumption is that the ‘‘physical magnitud
of the fluctuations remains unchanged while the wavelen
of the fluctuation is larger than the Hubble radius. This
sumption is much less obvious, although at first sight t
assumption may seem obvious based on causality, nam
the fact that microphysics cannot influence physics on sc
larger than the Hubble radius. However, in inflationary co
mology and in models with a contracting period such as
PBB and ekpyrotic scenarios, the forward light cone~causal
horizon! is much larger than the Hubble radius, and the s
tial coherence of background fields over scales of the
ward light cone can lead to nontrivial effects on fluctuati
modes on these scales, one of the most dramatic manife
tions of this effect being the parametric amplification
super-Hubble ~but subhorizon! cosmological fluctuations
during reheating in certain two-field inflationary mode
@68–74#. Furthermore, the term ‘‘physical magnitude’’ o
cosmological fluctuations is not well determined. On sup
Hubble scales, the magnitude of the density fluctuations
pends sensitively on the coordinate system chosen. It is
sible to choose coordinate-invariant~gauge-invariant!
variables to describe the fluctuations, but there are m
choices, and even in single field inflationary models many
these gauge-invariant fluctuation variables increase on su
Hubble scales@however, the increase between initial Hubb
radius crossing during inflation att i(k) and final Hubble ra-
dius crossing during the late time~FRW! cosmology att f(k)
is by a factor that depends only on the ratio of the equati
of state at the two Hubble radius crossings#. This increase is
a self-gravitational effect.

In spite of the above caveats, let us proceed with
heuristic discussion of the amplitude of density fluctuatio
applying it first to inflationary cosmology~exponential ex-
pansion to be specific!. The quantity we wish to calculate i
the mean square mass fluctuation on a scalek when the cor-
responding wavelength enters the Hubble radius at fi
Hubble radius crossingt f(k). This quantity, denoted
u(dM /M )@k,t f(k)#u2, is given by the power spectrum o
fluctuations@see Eq.~3.20!#, and its k dependence on the
spectral indexn is given by

UdM

M
@k,t f~k!#U2

;kn21. ~A1!

Based on the first assumption,
3-17
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UdM

M
@k,t i~k!#U2

;H2@ t i~k!#;const, ~A2!

and using the second assumption we infer that

UdM

M
@k,t f~k!#U2

;UdM

M
@k,t i~k!#U2

;const, ~A3!

and that hence the power spectrum is scale invariant with
index n51.

PBB cosmology is characterized~in the Einstein frame!
by a scale factor which scales as

a~ t !;t1/3, ~A4!

and thus

H~ t !5
1

3t
. ~A5!

The condition of the initial Hubble radius crossing during t
period of contraction

ka21@ t i~k!#5H@ t i~k!#, ~A6!

leads to

t i~k!;k23/2, H@ t i~k!#;k3/2, ~A7!

and thus, applying our two basic assumptions as in the c
of inflationary cosmology, to

UdM

M
@k,t f~k!#U2

;k3, ~A8!

which corresponds to a blue spectrum with indexn54.
The analysis for ekpyrotic cosmology is analogous. T

only difference is that the value ofp is different, 0,p!1,
and hence

t i~k!;k21/~12p!, H@ t i~k!#;k1/~12p!, ~A9!

and thus, takingp50 at the end,

UdM

M
@k,t f~k!#U2

;k2, ~A10!

which corresponds to a blue spectrum with indexn53.
Obviously, given the caveats discussed at the beginnin

this appendix, the results for PBB and ekpyrotic cosmolo
cannot be trusted without a fully relativistic analysis. T
growth rates of cosmological fluctuations are very differe
in expanding and contracting cosmologies, and thus e
given that the above heuristic analysis works in the case
inflationary cosmology, this does not mean it has to work
PBB and ekpyrotic cosmologies. However, the results of
paper are in agreement with those derived from the heur
analysis.

APPENDIX B: ANALYTIC ESTIMATES
FOR THE GRAVITATIONAL POTENTIAL

Let us analyze the gravitationalF in more details. In the
Einstein frame, the gravitational potentialFk

E in the longitu-
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dinal gauge is expressed in terms ofRk
E in the absence of

higher-order corrections@70,75#:

Fk
E5

aE
2ḢE

k2HE
Ṙk

E . ~B1!

The gravitational potentialFk
S in the string frame is related

to the one in the Einstein frame as@76#

Fk
S5Fk

E1
dF

2F
5Fk

E2
1

2
dfk . ~B2!

Making use of Eqs.~2.10! and ~4.10!, we find that the cur-
vature perturbation in the Einstein frame is exactly the sa
as that in the string frame~i.e., Rk

E5Rk
S). Therefore the

gravitational potential in the Einstein frame is expressed
terms ofṘk

S :

Fk
E5

aS
2~ḢS2f̈/21ḟHS/22ḟ4/4!

k2~HS2ḟ/2!
Ṙk

S . ~B3!

Note that the overdots in Eq.~B3! denote the time deriva
tives with respect totS . This is the equation that we solv
numerically.

Taking note of the relation Hn8(x)5Hn21(x)
2(n/x)Hn(x), one finds

Ṙk
S5

Ap

4aSz F2AsuhSuk@c1Hn21
~1! ~x!1c2Hn21

~2! ~x!#

6
1

AuhSu
S 122n72UhSU z8

z D @c1Hn
~1!~x!1c2Hn

~2!~x!#G ,

~B4!

where each sign corresponds to the case withhS.0 and
hS,0, respectively. When the evolution ofz is given byz
}uhSug, we have

122n72uhSu
z8

z
5122n22g5122g2u122gu

5H 0 for g,1/2,

2~122g! for g.1/2.
~B5!

This term completely vanishes during the contracting ph
in the ekyprotic cosmology withp,1/3, sinceg is less than
1/2. In this case the gravitational potential in the Einste
frame can be expressed as

Fk
E5

aSApsuhSu~ḢS2f̈/21ḟHS/22ḟ4/4!

2z~HS2ḟ/2!k

3@c1Hn21
~1! ~x!1c2Hn21

~2! ~x!#. ~B6!

This relation is used to estimate the spectrum ofFk
E in Sec.

IV.
3-18
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