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Inflation: Flow, fixed points, and observables to arbitrary order in slow roll

William H. Kinney*
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I generalize the inflationary flow equations of Hoffman and Turner to arbitrary order in slow roll. This makes
it possible to study the predictions of slow roll inflation in the full observable parameter space of the tensor/
scalar ratior, spectral indexn, and runningdn/d ln k. It also becomes possible to identify exact fixed points in
the parameter flow. I numerically evaluate the flow equations to fifth order in slow roll for a set of randomly
chosen initial conditions and find that the models cluster strongly in the observable parameter space, indicating
a ‘‘generic’’ set of predictions for slow roll inflation. I comment briefly on the interesting proposed correspon-
dence between flow in inflationary parameter space and renormalization group flow in a boundary conformal
field theory.
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I. INTRODUCTION

Inflationary cosmology@1–3# has become the dominan
paradigm for describing the very early universe. Over
past 20 years, inflationary model building has been a pro
enterprise@4#. Concurrently, cosmological observations ha
improved to the point that it is beginning to be possible
rule out models of inflation@5,6#. Future observations, par
ticularly the Microwave Anisotropy Probe~MAP! @7# and
Planck@8# cosmic microwave background~CMB! satellites,
promise to dramatically improve the situation in the ne
future @9,10#. The key observational parameters for dist
guishing among inflation models are the tensor/scalar ratr,
the scalar spectral indexn, and the ‘‘running’’ of the spectra
index,dn/d ln k, since different inflation models predict dif
ferent values for these parameters.

It is desirable, however, to gain some insight into what
genericpredictions of inflation are without having to wor
within the context of some particular model. The stand
lore of a small tensor/scalar ratio and nearly scale-invar
power spectrum is insufficient now that precision measu
ments of the CMB and large-scale structure are becomin
reality. Hoffman and Turner have proposed the method
inflationary ‘‘flow’’ to gain generic insight into the behavio
of inflation models@11#. The flow equations relate the tim
derivatives of the slow roll parameters to other, higher or
slow roll parameters. With a suitable choice of truncatio
this makes it possible to study the dynamics of inflati
models without having to specify a particular potential f
the field driving inflation. In this paper we generalize t
method from the lowest-order analysis of Hoffman a
Turner and derive a simple set of flow equations which c
be evaluated to arbitrarily high order, and which are in f
exactin the limit of infinite order in slow roll. We perform a
numerical integration of 105 inflation models to fifth order in
slow roll, and plot their predictions in the observable para
eter space (r ,n,dn/d ln k). The predictions of the model
cluster strongly in the observable parameter space, in
even more strongly than was suggested by Hoffman
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Turner. ~However, the qualitative character of their analys
is preserved at higher order in slow roll.! We emphasize tha
in this paper we limit ourselves to inflation driven by a sing
scalar fieldf. The case of multiple-field inflation is in gen
eral much more complex.

This idea of flow in the inflationary parameter space h
taken on different significance with recent ideas arising fr
the ‘‘holographic’’ correspondence between de Sitter sp
and boundary conformal field theories proposed
Strominger@12#. Particularly interesting are efforts to inte
pret flow in the space of slow roll parameters as renorm
ization group flow in a boundary conformal field theory@13#.
This raises the possibility that understanding the evolution
inflationary parameters is important not just for phenomen
ogy, but for fundamental reasons as well.

The paper is organized as follows: Sec. II briefly revie
the very powerful Hamilton-Jacobi formalism for inflation
Section III discusses the generation of fluctuations in in
tion and the relationship between the slow roll paramet
and the observables in various exact and approximate s
tions of the inflationary equations of motion. The hierarc
of flow equations is derived in Sec. IV. Section V discuss
the fixed points in the slow roll parameter space. Section
discusses the details of the numerical solution. Section
presents conclusions.

II. INFLATION AND THE HAMILTON-JACOBI
FORMALISM

The dominant component of an inflationary cosmology
a spatially homogeneous scalar fieldf ~the inflaton! with
potentialV(f) and equation of motion

f̈13Hḟ1V8~f!50, ~1!

whereH[(ȧ/a) is the Hubble parameter, and the Einste
field equations for the evolution of a flat background met

ds25dt22a2~ t !dx2 ~2!

can be written as
©2002 The American Physical Society08-1
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H25S ȧ

a
D 2

5
8p

3mPl
2 FV~f!1

1

2
ḟ2G , ~3!

and

S ä

a
D 5

8p

3mPl
2 @V~f!2ḟ2#. ~4!

Here mPl5G21/2.1019 GeV is the Planck mass. Thes
background equations, along with the equation of motion~1!,
form a coupled set of differential equations describing
evolution of the universe. In the limit thatḟ50, the expan-
sion of the universe is of the de Sitter form, with the sc
factor increasing exponentially in time:

H5AS 8p

3mPl
2 D V~f!5const,

~5!
a}eHt.

In general, the Hubble parameterH will not be exactly con-
stant, but will vary as the fieldf evolves along the potentia
V(f). A convenient approach to the more general case i
express the Hubble parameter directly as a function of
field f instead of as a function of time,H5H(f). This is
consistent as long asf is monotonic in time. The equation
of motion for the field and background are given by@14–17#

ḟ52
mPl

2

4p
H8~f!,

~6!

@H8~f!#22
12p

mPl
2

H2~f!52
32p2

mPl
4

V~f!.

These equations are completely equivalent to the sec
order equation of motion~1!. The second of these is referre
to as theHamilton-Jacobiequation, and can be written in th
useful form

H2~f!F12
1

3
e~f!G5S 8p

3mPl
2 D V~f!, ~7!

where the parametere is defined as

e[
mPl

2

4p S H8~f!

H~f! D 2

. ~8!

The physical meaning of the parametere can be seen by
expressing Eq.~4! as

S ä

a
D 5H2~f!@12e~f!#, ~9!

so that the condition for inflation (ä/a).0 is given bye
,1. The evolution of the scale factor is given by the gene
expression
08350
e

e
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a}expF E
t0

t

H dtG , ~10!

where the number ofe-folds N is defined to be

N[E
t

te
H dt5E

f

fe H

ḟ
df5

2Ap

mPl
E

fe

f df

Ae~f!
. ~11!

Here we takete andfe to be the time and field value at en
of inflation. ThereforeN increases as one goesbackwardin
time, dt.0⇒dN,0. These expressions are exact, and
not depend on any assumption of slow roll. It is important
note the sign convention forAe, which we define to have the
same sign asH8(f):

Ae[1
mPL

2Ap

H8

H
. ~12!

In the next section we briefly discuss the generation of p
turbations in inflation from the point of view of differen
exact and approximate solutions.

III. COSMOLOGICAL PERTURBATIONS: SCALAR AND
TENSOR POWER SPECTRA

Cosmological density and gravitational wave perturb
tions in the inflationary scenario arise as quantum fluct
tions which are ‘‘redshifted’’ to long wavelength by the rap
cosmological expansion@18–21#. The power spectrum o
density perturbations is given by@22#

PR
1/2~k!5A k3

2p2Uuk

z U, ~13!

wherek is a comoving wave number, and the mode functi
uk satisfies the differential equation@23–25#

d2uk

dt2 1S k22
1

z

d2z

dt2Duk50, ~14!

wheret is the conformal time,ds25a2(t)(dt22dx2), and
the quantityz is defined as

z[
2Ap

mPl
S aḟ

H
D 52aAe. ~15!

We then have

1

z

d2z

dt2 52a2H2S 11e2
3

2
h1e222eh1

1

2
h21

1

2
j2D ,

~16!

where the additional parametersh and j2 are defined as
@26,27#

h[
mPl

2

4p S H9~f!

H~f! D ~17!

and
8-2
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j2[
mPl

4

16p2 S H8~f!H-~f!

H2~f!
D . ~18!

These are often referred to asslow roll parameters, although
they are defined here without any assumption of slow
~discussed below!. Note that despite the somewhat unfort
nate standard notation used above, the parameterj2 can be
either positive or negative.

Equation~14! can be solved exactly for the case of powe
law inflation, for whiche5h5j5const, and the scale facto
evolves as a power law in time,

a~ t !}t1/e52
1

H~12e!
t21. ~19!

~Note that during inflation,t,0, with t→0 at late time.!
The vacuum solution to the mode equation~14! is then

uk}A2ktHn~2kt!, ~20!

whereHn is a Hankel function of the first kind, and

n5
3

2
1

e

12e
. ~21!

The power spectrum for modes with wavelength much lar
than the horizon (k!aH) is an exact power law,

PR
1/25

H

2pAe
U

aH5k

}kn21, ~22!

where the spectral indexn is given by

n512
2e

12e
. ~23!

Similarly, the tensor fluctuation amplitude is

PT
1/25

H

2p U
aH5k

}knT, ~24!

where

nT52
2e

12e
. ~25!

Other classes of exact solution are known@28#.
There are also classes of approximate solution. The s

dard slow roll approximation is the assumption that the fi
evolution is dominated by drag from the expansion,f̈.0,
so thatḟ is approximately constant andH(f) can be taken
to vary as

H~f!5AS 8p

3mPl
2 D V@f~ t !#, ~26!

wheref(t) satisfies
08350
ll

-

r

n-
d

ḟ52
V8~f!

3H~f!
. ~27!

This approximation is consistent as long as the first two
rivatives of the potential are small relative to its magnitu
V8,V9!V. The parameterse and h reduce in this limit to
@29#

e.
mPl

2

16p S V8~f!

V~f! D 2

,

~28!

h.
mPl

2

8p FV9~f!

V~f!
2

1

2S V8~f!

V~f! D 2G .
The slow roll limit can then be equivalently expressed
e,uhu!1. These expressions are frequently taken in the
erature as definitions of the slow roll parameters, but h
they are simply limits of the defining expressions~8! and
~17!. In the limit where slow roll is valid, the tensor an
scalar spectra are again power laws, where the spectral in
n is given by

n5124e12h. ~29!

The tensor spectral index is just thee!1 limit of the power-
law case,

nT522e. ~30!

A second class of approximate models hase!1 as in the
slow roll case, but is characterized by a large parameteh
.const;O(1). In this case, the slow roll expressions~28!
do not apply, and it can be shown thate can be expressed in
terms of the potential by@30#

e~f!.3S 12
V~f!

V~f0! D , ~31!

wheref0 is a stationary point of the field,V8(f0)50. In
this case, the scalar spectral index is

n.112h, ~32!

and the tensor spectral index is, as usual,

nT.22e. ~33!

Such models are strongly observationally disfavored,
cause they predict a rapidly varying power spectrum,un
21u;O(1), butthey are nonetheless important as attract
in the inflationary parameter space.

Note that in all cases, the ratio of tensor to scalar per
bations is just the first slow roll parameter

r[
PT

PR
5e. ~34!
8-3
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This expression is exact in the power-law case, and valid
lowest order in the slow roll case.1 Note that this is related to
the tensor spectral index by the inflationary ‘‘consisten
condition’’ @29# nT522r , so the shape of the tensor spe
trum does not provide an additional independent observa
The scalar spectral index depends in general onh, and there-
fore is an independent observable.~In Sec. V we discuss the
generalization of the expressions in this section to hig
order in slow roll.!

IV. THE SLOW ROLL HIERARCHY AND FLOW
IN THE INFLATIONARY PARAMETER SPACE

The slow roll parameters are not in general constant d
ing inflation, but change in value as the scalar field drivi
the inflationary expansion evolves. From the definitio
~8!,~17!,~18! of the parameterse,h,j, we have

de

df
5S 2Ap

mPl
D 2Ae~h2e!,

~35!

dh

df
5S 2Ap

mPl
D 1

Ae
~j22eh!.

It will be convenient to use the number of e-folds before
end of inflationN as the evolution parameter instead of t
field. From Eq.~11!, it is straightforward to rewrite deriva
tives with respect tof in terms of derivatives with respect t
N,

d

dN
5

mPl

2Ap
Ae

d

df
. ~36!

In terms ofN, we then have

de

dN
52e~h2e!, ~37!

and

dh

dN
5j22eh. ~38!

Note that the derivative of each slow roll parameter is its
higher order in slow roll. This suggests an infinite hierarc
of ‘‘Hubble slow roll’’ parameters2 @27#

1Conventions for the normalization of this parameter vary wid
in the literature. In particular, the ratioT/S of the tensor and scala
contributions to the CMB depends on the current values ofVM and
VL @31#. For the currently favored valuesVM;0.3, Vl;0.7, the
relationship isT/S.10r , which is the normalization used in Ref
@11,6#. To compare with the normalization forr as defined in Refs.
@5,9,10#, taker→13.6r .

2The slow roll parameters,lH used here are related to th
parameters,bH defined by Liddleet al. by,lH5( ,bH),.
08350
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,lH[S mPl
2

4p D , ~H8!,21

H,

d(,11)H

df (,11)
. ~39!

For example, the,52 parameter is justj2:

2lH5
mPl

4

16p2 S H8H-

H2 D 5j2. ~40!

We can then define an infinite hierarchy of ‘‘flow’’ equation
for the slow roll parameters by differentiating Eq.~39!:

d~ ,lH!

dN
5@~,21!h2,e#~ ,lH!1 ,11lH . ~41!

Together with Eqs.~37!,~38!, these form a system of differ
ential equations that can be numerically integrated to a
trarily high order in slow roll.

This flow equation approach to studying the inflationa
parameter space was first suggested by Hoffman and Tu
@11#, who wrote the flow equations to lowest order in slo
roll in terms of the tensor/scalar ratio (T/S) and the scalar
spectral indexn as

d~T/S!

dN
5~n21!

T

S
1

1

5 S T

SD 2

,

~42!
d~n21!

dN
52

1

5
~n21!

T

S
2

1

25S T

SD 2

6
mPl

3

16p2
A2p

5

T

S
x9,

where

x~f![
V8~f!

V~f!
. ~43!

Here (T/S) is related to the parameterr defined in Eq.~34!
by (T/S)510r . Hoffman and Turner ‘‘closed’’ the flow
equations by assuming thatx9 is small and constant. It is
straightforward to generalize these equations using
Hubble slow roll formalism above. We can define a ne
parameter

s[2h24e, ~44!

which is equivalent to the spectral index parameter used
Hoffman and Turner:s.n21 to lowest order in slow roll.
The flow equations~37!,~38! in terms ofs are

de

dN
5e~s12e!,

~45!
ds

dN
52j225es212e2.

These expressions can be shown to be identical to Eqs.~42!
by evaluating using the slow roll expressions~28! for e and
h. Using j25 2lH , the flow equations~45! along with Eq.
~41! then represent a generalization of the flow equations
Hoffman and Turner to arbitrarily high order in slow rol
8-4
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This system of equations, taken to infinite order, is exact
practice, these equations must be truncated at some fi
order, by assuming,lH50 for , greater than some finite
order M. The higher order the truncation, the weaker t
implicit assumptions about the form of the potential. T
next section discusses the fixed point structure of the in
tionary parameter space.

V. FIXED POINTS IN THE INFLATIONARY PARAMETER
SPACE

Summarizing the results of the preceding section, the
erarchy of inflationary flow equations is

de

dN
5e~s12e!,

ds

dN
525es212e212~ 2lH!, ~46!

d~ ,lH!

dN
5F1

2
~,21!s1~,22!eG~ ,lH!1 ,11lH .

To lowest order in slow roll, these can be related to obse
ables byr 5e andn215s. To second order in slow roll, the
observables are given by@23,27#

r 5e@12C~s12e!#, ~47!

for the tensor/scalar ratio, and

n215s2~523C!e22
1

4
~325C!se1

1

2
~32C!~ 2lH!

~48!

for the spectral index. HereC[4(ln 21g), whereg.0.577
is Euler’s constant. Derivatives with respect to wave num
k can be expressed in terms of derivatives with respect tN
as @32#

d

dN
52~12e!

d

d ln k
. ~49!

The scale dependence ofn is then given by the simple ex
pression

dn

d ln k
52S 1

12e D dn

dN
, ~50!

which can be evaluated to third order in slow roll by usi
Eq. ~48! and the flow equations. We wish to study flow in th
parameter space of observables,r, n, anddn/d ln k.

It is useful to identify fixed points of the system of Eq
~46!, for which all the derivatives vanish. Two classes
fixed points are easily obtained by inspection. First is
case of the vanishing tensor/scalar ratio, with

e5 ,lH50,
~51!

s5const.
08350
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The second class of fixed points is just the case of power-
inflation, e5h5j25const, or

e5const,

s522e,
~52!

2lH5e2,

,11lH5e~ ,lH!, l>2.

Note that these are fixed points of the exact system of eq
tions. It is straightforward to evaluate the stability of th
fixed point ~51!, since

d2e

dNde U
e50

5s, ~53!

and

d2e

dNds U
e50

50. ~54!

Therefore the fixed point ate50 is stable with respect to
perturbations ine for s.0, or spectral indexn.1, and
unstable fors,0, or spectral indexn,1. ~This unusual
sign convention for stability comes from the definitiondN
,0 for dt.0.! In general, inflationary evolution flows awa
from r 50 for n,1, and towardr 50 for n.1. This behav-
ior can be easily understood in terms of simple inflaton p
tentials in slow roll. Using the slow roll expressions~28!,
taking e50 implies that the field is at an equilibrium poin
ḟ}V8(f)50, and the spectral index is

n2152h.
mPl

2

4p

V9~f!

V~f!
. ~55!

The casee50, n,1 is just that of the field sitting atop a
unstable equilibrium, for example the pointf50 on a po-
tential of the formV(f)5L42m2f2. The casee50, n
.1 is that of a field sitting at a stable equilibrium pointV9
.0, for example the pointf50 on a potential of the form
V(f)5L41m2f2. In such models, inflation nominally con
tinues forever. In practice, however, it is possible to end
flation by coupling to additional fields, as in ‘‘hybrid’’ infla-
tion models@33–35#. The observables in this a case are giv
by their values near the late-time asymptote. The case of
fixed point~52! is more complex. It is, however, known tha
it is not in general a late-time attractor@36#, a conclusion that
is supported by numerical integration of the flow equatio

VI. EVALUATING THE FLOW EQUATIONS

With the flow equations in hand, it is possible to ask t
question: what are thegeneric predictions of inflation? In
principle, any model of inflation driven by a single, mon
tonic scalar field can be completely specified by selectin
point in the~infinite dimensional! slow roll parameter space
8-5
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e,s, ,lH .3 For a model specified in this way, there is
straightforward procedure for determining its observable p
dictions, that is, the values ofr, n21, anddn/d ln k a fixed
numberN e-folds before the end of inflation. The algorith
for a single model is as follows:

Select a point in the parameter spacee,h, llH .
Evolve forward in time (dN,0) until either~a! inflation

ends, or~b! the evolution reaches a late-time fixed point.
If the evolution reaches a late-time fixed point, calcula

the observablesr, n21, anddn/d ln k at this point.
If inflation ends, evaluate the flow equations backwardN

e-folds from the end of inflation. Calculate the observa
parameters at this point.

The end of inflation is given by the conditione51 ~not
by the end of slow roll, although in practice these conditio
are essentially equivalent!. In the case where inflation ends
the late-time limit, there is another possibility: that one w
find that inflation also ends when evolving back to ea
times. That is, the model is incapable of supportingN e-folds
of inflation.

In principle, it is possible to carry out this program e
actly, with no assumptions made about the convergenc
the hierarchy of slow roll parameters. In practice, the se
of flow equations~46! must be truncated at some finite ord
and evaluated numerically. In addition, for any given path
the parameter space, we do not knowa priori the correct
number of e-foldsN at which to evaluate the observable
since this depends on details such as the energy density
ing inflation and the reheat temperature@17#. We adopt a
Monte Carlo approach: we evaluate a large number of in
tion models at orderM in slow roll, where each model con
sists of a randomly selected set of parameters in the foll
ing ranges:

N5@40,70#

e5@0,0.8#

s5@20.5,0.5#
~56!

2lH5@20.05,0.05#

3lH5@20.005,0.005#,

•••

M11lH50

and so forth, reducing the width of the range by factor of
for each higher order in slow roll. The series is closed
order M by taking M11lH50. The exact choice of range
for the initial parameters does not have a large influence

3Strictly speaking, this statement is true only if the slow roll e
pansion is nonsingular to all orders.
08350
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the result of the Monte Carlo calculation, as long as they
chosen such that the slow roll hierarchy is convergent.
each model, we calculate observables according to the a
rithm above, with two differences because of the finite nat
of the calculation. When we evolve forward in time, there a
now three possible late-time behaviors for a particu
model: ~1! the model reaches the late-time attractore50,
s.0, ~2! inflation ends, or~3! none of the above, indicating
that the integration failed to reach any identifiab
asymptotic behavior within the limits of the integratio
which we take to be 1000 e-folds. For models in which
flation ends at late time, we then evolve the model backw
in time N e-folds from the end of inflation. If the choice o
parameters supportsN e-folds without inflation ending or
slow roll failing, we calculate observable parametersr, n,
and dn/d ln k at that point. We will call these pointsnon-
trivial points. In summary, there are four categories of o
come for a particular choice of initial condition:

Late-time attractor,e50, s.0.
Insufficient inflation.
Nontrivial point: Inflation ends at late time, supportsN

e-folds of inflation.
No identifiable asymptotic behavior at late time.
The numerical integration is implemented in C using

fifth-order adaptive step-size Runge-Kutta method to so
the system of equations. The Monte Carlo calculation is
by selecting initial conditions at random as described ab
for 100 000 points. We are interested in the models wh
converge to a late-time attractor or possess a nontrivial po
In addition, we requiren,1.5 in order to be consistent with
observations of the cosmic microwave background@5,6# and
constraints from primordial black hole formation@37–40#.
The results of a Monte Carlo run to orderM55 in slow roll
are as follows:

Total iterations: 100 000.
Late-time attractor,r 50, n.1.5: 90 340.
Nontrivial points: 6999.
Late-time attractor,r 50, n,1.5: 2542.
Insufficient inflation: 116.
No identifiable asymptotic behavior: 3.
One surprising result is that more than 90% of the mod

evaluated result in an unacceptably blue spectral indexn
.1.5: the most ‘‘generic’’ prediction of inflation from this
point of view is already ruled out. Figure 1 shows the r
maining models plotted on the (n,r ) plane. ~Note that the
normalization forr used here differs from elsewhere in th
literature. To compare with Refs.@5,9,10#, taker→13.6r . To
compare with Refs.@11,6#, taker→T/S510r .! The models
cluster strongly near~but not on! the power-law fixed point,
and on ther 50 fixed point. This is qualitatively consisten
with the results of Hoffman and Turner, except that the mo
els appear to be much more strongly clustered in the par
eter space than they concluded from a lowest-order analy
Also, models sparsely populate the regions that Hoffman
Turner label ‘‘excluded’’ and ‘‘poor power law,’’ suggestin
that these categorizations do not generalize to higher orde
slow roll. ~We note that a poor power law was a rare result
the integrations, with of order 0.1% of the models predicti
udn/d lnku.0.05.! However, consistent with Hoffman an
8-6
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Turner, there is a large region forn.1 and r .0 that is
entirely unpopulated by models. Figure 2 shows the (n,r )
plane zoomed in on the observationally favored region n
n51. Figure 3 shows the same models plotted vs log(r) to

FIG. 1. Models plotted in the (n,r ) plane for anM55 Monte
Carlo calculation. The solid line is the power-law fixed pointn
5122r /(12r ). The error bar shows the size of the expecteds
error from Planck.~See the note in text regarding the somewh
unconventional normalization ofr used here.!

FIG. 2. Figure 1 zoomed in to the region preferred by obser
tion. The models populate the entire area below the power-law
There is, however, a large apparently excluded region above
power-law line. This overlaps with~but is not identical to! the re-
gion labeled ‘‘poor power law’’ by Hoffman and Turner.
08350
ar

show the small-r behavior of the attractor region. Figure
shows the same models plotted on then,dn/d ln k plane, also
showing noticeable clustering behavior in the parame
space. In particular,dn/d ln k,0 is favored.

Figure 5 showsdn/d ln k as a function ofr. Especially
interesting is that the models with larger ~the ones close to
the power-law line in Fig. 1!, also have significant variation
in the spectral index. This suggests that the models are
flowing to the power-law fixed point, which hasdn/d ln k
50. This raises an interesting question: are the models c
verging slowly to the power-law line at early times, or a

t

-
e.
he

FIG. 3. Spectral index vs log(r), showing the behavior of the
attractor region for small r.

FIG. 4. Models plotted in the (n,dn/d ln k) plane for anM55
Monte Carlo calculation.
8-7
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WILLIAM H. KINNEY PHYSICAL REVIEW D 66, 083508 ~2002!
they converging to some other fixed point? To answer
question, we evolve the models to very early times,N@70.
Figure 6 shows models plotted on the (n,r ) plane for N
5125, 250, 500, and 1000. Instead of flowing to the pow
law fixed point at early time, the models instead flow dow
to the r 50 line. We therefore find that the power-law fixe
point is not an attractor at early or late time. It is important
note that this conclusion is not in conflict with the analysis

FIG. 5. Models plotted in the (r ,dn/d ln k) plane for anM55
Monte Carlo calculation.

FIG. 6. Results of the Monte Carlo calculation with a lar
number of e-foldsN, illustrating the behavior of the flow at earl
times~largerN). The models flow not to the power-law fixed poin
n5122r /(12r ) but to ther 50 fixed point.
08350
is
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Copelandet al. @41#, which concluded that power-law infla
tion is a unique late-time attractor in a cosmology consist
of a scalar field and a second fluid component. Copel
et al. assumed a scalar field with an exponential potentia
that is, a model lying exactly on the power-law fixed point
and showed that the scalar field would generically domin
the cosmological evolution at late times. Figure 7 shows
amples of flow in the (s,e) plane.

VII. CONCLUSIONS

We have derived a set of inflationary ‘‘flow’’ equation
based on the Hubble slow roll expansion of Liddleet al. @27#
that is in principle exact when taken to all orders. The
equations completely specify the dynamics of the inflatio
ary system, so that any particular inflationary potential c
be specified as a point in this parameter space. The pas
future dynamics of the model are then determined by eva
ating the flow of the parameters away from this point. It
possible to identify two classes of fixed points of the ex
flow equations: power-law inflation, withn5122r /(1
2r ), and models with vanishing tensor/scalar ratio,r 50.
This latter class is unstable forn,1 and stable forn.1.

In practice, the flow equations must be truncated to so
order and evaluated numerically, which was done to low
order by Hoffman and Turner@11#. Extending the system o
flow equations to higher order makes it possible to consi
the running of the spectral indexdn/d ln k as well asr andn.
We perform a Monte Carlo integration of the flow equatio
to fifth order in slow roll, and show that the distribution o
models in the parameter space of observablesr, n and
dn/d ln k is strongly clustered around particular values. 90
of the models selected in the Monte Carlo calculation c
verge to the observationally unacceptable asymptoter 50,
n.1.5. The remaining models cluster around two classe
early-time ‘‘attractor,’’ the first class at ther 50 fixed point
and the second withr .0 andn,1. Interestingly, ther .0
attractorcannotbe identified with the power-law fixed point
since they generally havedn/d ln k,0, and the variation in
the spectral index vanishes at the fixed point. Evaluation
the models at very early times,N@70, indicates that the
power-law fixed point is not an attractor at early times, sin
the models generically flow to ther 50 line for largeN. We
therefore interpret ther .0 attractor as simply an artifact o
the fact that observable perturbations are generated relat
late in the inflationary evolution, when slow roll has begun
measurably break down. In addition, we see that power-
inflation is not in general an attractor for either earlyor late
times. At higher order, models cluster much more stron
than is suggested by the ‘‘favored’’ region of the parame
space derived by Hoffman and Turner. Also, models spars
populate the regions labeled by Hoffman and Turner as ‘‘
cluded’’ and ‘‘poor power law,’’ suggesting that these categ
rizations do not generalize to higher order. However, con
tent with previous analysis, there is a region forr .0, n
.1 which is entirely unpopulated by models.

It is important to consider questions of generality wi
respect to both the choice of the order in slow rollM and the
choice of initial conditions for the Monte Carlo calculatio
8-8
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FIG. 7. Examples of flow plotted in the (s,e) plane. The circles indicate the randomly selected initial value, and the squares indica
valueN e-folds before the end of inflation. The straight line is the power-law fixed point,s522e. Integrating to high order in slow roll
allows for a variety of complex flows.
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~56!. By ‘‘closing’’ the hierarchy of flow equations at finite
order, we are implicitly limiting ourselves to a restricte
class of potentials, although forM55, that class of poten
tials is large. However, models with potentials that cont
features@42,43# or for which the slow roll expansion is no
convergent@44# will not be captured by solutions at finit
order in slow roll. In addition, inflation might not be drive
by only a single scalar field. The effect of different choic
of initial conditions can be studied empirically, simply b
trying different constraints on the space of initial condition
Choosing ‘‘looser’’ initial conditions does not alter the cha
acteristics of the result. Instead, models that fail to supp
sufficient inflation become much more numerous. Perh
most importantly, absent a metric on the space of initial c
ditions, one should use caution when attempting to interp
these ‘‘scatter plots’’ statistically. We do not know how th
initial conditions for the universe were selected. However
observations determine that the relevant cosmological
rameters lie outside the ‘‘favored’’ region, it will be an ind
cation of highly unusual dynamics during the inflationa
epoch.

Finally, we note an interesting recent body of literatu
08350
n

.

rt
s
-

et

f
a-

connecting flow in inflationary models to a proposed ‘‘hol
graphic’’ correspondence between quasi–de Sitter spaces
boundary conformal field theories~CFTs! @12,45–50#. In
particular, Larsenet al. @13# have proposed a corresponden
between slow roll parameters and couplings in the bound
CFT, interpreting flow in the inflationary parameter space
renormalization group flow in the associated CFT@51#. The
fixed points atr 50 are interpreted as ultraviolet (n.1) and
infrared (n,1) fixed points in the renormalization grou
flow. In this picture, studying inflationary dynamics
equivalent to studying the structure of the underlying CF
~It is not immediately clear, however, how one interprets
power-law fixed point in the context of the boundary CFT!
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