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Inflation: Flow, fixed points, and observables to arbitrary order in slow roll
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| generalize the inflationary flow equations of Hoffman and Turner to arbitrary order in slow roll. This makes
it possible to study the predictions of slow roll inflation in the full observable parameter space of the tensor/
scalar ratiar, spectral index, and runningdn/d In k. It also becomes possible to identify exact fixed points in
the parameter flow. | numerically evaluate the flow equations to fifth order in slow roll for a set of randomly
chosen initial conditions and find that the models cluster strongly in the observable parameter space, indicating
a “generic” set of predictions for slow roll inflation. | comment briefly on the interesting proposed correspon-
dence between flow in inflationary parameter space and renormalization group flow in a boundary conformal

field theory.
DOI: 10.1103/PhysRevD.66.083508 PACS nunier98.80.Cq
[. INTRODUCTION Turner. (However, the qualitative character of their analysis

is preserved at higher order in slow rpNVe emphasize that
Inflationary cosmology[1—3] has become the dominant in this paper we limit ourselves to inflation driven by a single
paradigm for describing the very early universe. Over thescalar field¢. The case of multiple-field inflation is in gen-
past 20 years, inflationary model building has been a prolifie€ral much more complex.
enterprisg4]. Concurrently, cosmological observations have This idea of flow in the inflationary parameter space has
improved to the point that it is beginning to be possible totaken on different significance with recent ideas arising from
rule out models of inflatiori5,6]. Future observations, par- the “holographic” correspondence between de Sitter space
ticularly the Microwave Anisotropy Prob&VAP) [7] and and boundary conformal field theories proposed by
Planck[8] cosmic microwave backgroun@€MB) satellites, ~ Strominger[12]. Particularly interesting are efforts to inter-
promise to dramatically improve the situation in the nearpret flow in the space of slow roll parameters as renormal-
future [9,10]. The key observational parameters for distin-ization group flow in a boundary conformal field the¢iys].
guishing among inflation models are the tensor/scalar ratio This raises the possibility that understanding the evolution of
the scalar spectral index and the “running” of the spectral inflationary parameters is important not just for phenomenol-
index, dn/d Ink, since different inflation models predict dif- 0gy, but for fundamental reasons as well.
ferent values for these parameters. The paper is organized as follows: Sec. Il briefly reviews
It is desirable, however, to gain some insight into what thethe very powerful Hamilton-Jacobi formalism for inflation.
genericpredictions of inflation are without having to work Section IlI discusses the generation of fluctuations in infla-
within the context of some particular model. The standardion and the relationship between the slow roll parameters
lore of a small tensor/scalar ratio and nearly scale-invarian@nd the observables in various exact and approximate solu-
power spectrum is insufficient now that precision measuretions of the inflationary equations of motion. The hierarchy
ments of the CMB and large-scale structure are becoming @f flow equations is derived in Sec. IV. Section V discusses
reality. Hoffman and Turner have proposed the method othe fixed points in the slow roll parameter space. Section VI
inflationary “flow” to gain generic insight into the behavior discusses the details of the numerical solution. Section VIl
of inflation models[11]. The flow equations relate the time presents conclusions.
derivatives of the slow roll parameters to other, higher order
slt_)w roll par_ameter_s. With a suitable choice_ of tru_ncati_on, Il. INFLATION AND THE HAMILTON-JACOBI
this make_s it p033|_ble to study the dynam|cs of mflatlon FORMALISM
models without having to specify a particular potential for
the field driving inflation. In this paper we generalize the The dominant component of an inflationary cosmology is
method from the lowest-order analysis of Hoffman anda spatially homogeneous scalar fiefd (the inflatorn) with
Turner and derive a simple set of flow equations which carpotentialV(¢) and equation of motion
be evaluated to arbitrarily high order, and which are in fact
exactin the limit of infinite order in slow roll. We perform a b+ 3H ¢+V’(q§)=0, 1)
numerical integration of Tinflation models to fifth order in

slow roll, and plot their predictions in the observable param- . . : .
eter space r(n,dn/d Ink). The predictions of the models WhereH=(a/a) is the Hubble parameter, and the Einstein

cluster strongly in the observable parameter space, in facﬁeld equations for the evolution of a flat background metric

even more strongly than was suggested by Hoffman and
ds®=dt?—a?(t)dx? )
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2_(é>2_ Tr 1., aocex;{ JtH dt} (10)
=3 —: V(¢)+ §¢ : ©) fg '
and where the number aé-folds N is defined to be
. te ¢e H 2\/; ¢ d¢
a - N= | Hdt= —d¢p=— .11
5) g [V 7] @ R e

Here we takd, and ¢, to be the time and field value at end
of inflation. ThereforeN increases as one gobackwardin
time, dt>0=dN<0. These expressions are exact, and do

not depend on any assumption of slow roll. It is important to
eyolqun of the umvgrse. In the I|m.|t that=0, the expan- note the sign convention fafe, which we define to have the
sion of the universe is of the de Sitter form, with the scale

. . . A same sign asl’(¢):
factor increasing exponentially in time: g (¢)

Terl _, Me H'
H= (38 V(¢)=const, \/E_+2\/; H - (12)

(5) In the next section we briefly discuss the generation of per-
axe"t, turbations in inflation from the point of view of different
exact and approximate solutions.

Here mp=G Y?=10'° GeV is the Planck mass. These
background equations, along with the equation of motion
form a coupled set of differential equations describing the

In general, the Hubble parametdrwill not be exactly con-

stant, but will vary as the fielgp evolves along the potentigl IIl. COSMOLOGICAL PERTURBATIONS: SCALAR AND

V(¢). A convenient approach to the more general case is to TENSOR POWER SPECTRA

express the Hubble parameter directly as a function of the ' ' o

field ¢ instead of as a function of timé&j=H(¢). This is Cosmological density and gravitational wave perturba-

consistent as long ag is monotonic in time. The equations tions in the inflationary scenario arise as quantum fluctua-
of motion for the field and background are given[ig—17  tions which are “redshifted” to long wavelength by the rapid
cosmological expansiopl8-21. The power spectrum of

e m_,%|H ” density perturbations is given §22]
4 ' 3
() PRAK= /5 < (13
H - ey =— 2Ty ) e
5 HA($) =~ V(o).

mg, mp, wherek is a comoving wave number, and the mode function

uy satisfies the differential equatig@3—25
These equations are completely equivalent to the second-

order equation of motiofil). The second of these is referred d?u, , 1 d?z _
to as theHamilton-Jacobiequation, and can be written in the d 72 k= Zd-2/Y 0 (14)
useful form
where 7 is the conformal timeds?=a?(7)(d7?—dx?), and
H2 877 the quantityz is defined as
H2(¢)| 1- —e(¢> amz) V() () _
2 a
o 2w —¢):—aﬁ. (15)
where the parameteris defined as mp \ H
mgl ( ($))2 ® We then have
e=7_
H(¢) 1 d%z 3 1
S92 =2a’H?| 1+ e— sn+€e—2en+ 5 n°+ 5 52)
The physical meaning of the parametercan be seen by dr 2 2
expressing Eq4) as (16)
. where the additional parameters and £2 are defined as
a 2 [26,27]
| =HA(PI1-e(e)], @ &
. _mp[H'(¢) )
so that the condition for inflationafa)>0 is given bye = 4 H() (17
< 1. The evolution of the scale factor is given by the general
expression and
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mp,
1672

=

H' (HH"(9) AL
. 18 =- : (27)
H2(9) ) o S

These are often referred to si&w roll parameters, although This approximation is consistent as long as the first two de-
they are defined here without any assumption of slow rolrivatives of the potential are small relative to its magnitude
(discussed below Note that despite the somewhat unfortu- V',V"<V. The parameters and » reduce in this limit to
nate standard notation used above, the parangétean be [29]

either positive or negative.

Equation(14) can be solved exactly for the case of power- _ m3 (V' (¢))?
law inflation, for whiche= 7= ¢= const, and the scale factor “~ l6n V(g) |’
evolves as a power law in time, (28)
) 1 _my[V'(g) 1 V'(¢>)2
€__ __ - - a - A .
)<t =— g7 - (19 8w | V(g) 2\ V(o)
(Note that during inflations<0, with 7—0 at late timg. ~ The slow roll limit can then be equivalently expressed as
The vacuum solution to the mode equatidd) is then €,/ 7|<1. These expressions are frequently taken in the lit-
erature as definitions of the slow roll parameters, but here
ugecy —krH (= k7), (200  they are simply limits of the defining expressio(® and
(17). In the limit where slow roll is valid, the tensor and
whereH, is a Hankel function of the first kind, and scalar spectra are again power laws, where the spectral index
nis given by
B 3 € 21
VT2 1—e 21) n=1—4e+27. (29)
The power spectrum for modes with wavelength much largefhe tensor spectral index is just te 1 limit of the power-
than the horizonK<aH) is an exact power law, law case,
PEI/-R/ZZ H ockn_l, (22) Nr= —2e. (30)
277\/; aH=k . .
A second class of approximate models kasl as in the
where the spectral indexis given by slow roll case, but is characterized by a large paramsgter
=const-O(1). In this case, the slow roll expressiof&3)
2¢ do not apply, and it can be shown thatan be expressed in
n=1l-1—. (23 terms of the potential bj30]
Similarly, the tensor fluctuation amplitude is V()
€(¢)=3| 1- : (3D
H V(o)
Pri=g—| k™M, (24 . . . —
| aH=k where ¢, is a stationary point of the fieldy' (¢y)=0. In
this case, the scalar spectral index is
where
n=1+2n, (32
2€ (25
Ny=— .
T 1-e and the tensor spectral index is, as usual,
Other classes of exact solution are knoj@8]. nr=—2e. (33)

There are also classes of approximate solution. The stan-
dard slow roll approximation is the assumption that the fleldSuch models are strongly observationally disfavored, be-

evolution is dominated by drag from the expansigr=0,  cause they predict a rapidly varying power spectrym,
so that¢ is approximately constant artd(¢) can be taken —1|~0O(1), butthey are nonetheless important as attractors
to vary as in the inflationary parameter space.

Note that in all cases, the ratio of tensor to scalar pertur-

8 bations is just the first slow roll parameter
H(¢)= 3, VIo(D)], (26)

Pl
o r=—'=e (34)
where ¢(t) satisfies R

-
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This expression is exact in the power-law case, and valid to

lowest order in the slow roll caseNote that this is related to =
the tensor spectral index by the inflationary “consistency
condition” [29] ny=—2r, so the shape of the tensor spec-
trum does not provide an additional independent observablé.
The scalar spectral index depends in generahpand there- m

fore is an independent observahlm Sec. V we discuss the 2\ = PI ( ) = (40)
generalization of the expressions in this section to higher 1672\ H?

order in slow roll)

2\ € -1 q(€+1)
m H d H
Pl) H) (39

A HE  dglD’

or example, thé =2 parameter is jusf®:

We can then define an infinite hierarchy of “flow” equations
IV. THE SLOW ROLL HIERARCHY AND FLOW for the slow roll parameters by differentiating E§9):
IN THE INFLATIONARY PARAMETER SPACE d( ¢ W)

= _ _ € +1
The slow roll parameters are not in general constant dur- dN A A R (42)

ing inflation, but change in value as the scalar field driving

the inflationary expansion evolves. From the definitionsTogether with Eqs(37),(38), these form a system of differ-

(8),(17),(18) of the parameters, 5,¢, we have ential equations that can be numerically integrated to arbi-
trarily high order in slow roll.

de (2= This flow equation approach to studying the inflationary
@: . 2\/2(77— €), parameter space was first suggested by Hoffman and Turner
Pl [11], who wrote the flow equations to lowest order in slow
(39 roll in terms of the tensor/scalar ratid(S) and the scalar
dp [2Jm\1 spectral index as
de | mm T(f —€n).
PLTVe d(T/S) T 1(T\2
- - an (Vs tElg)
It will be convenient to use the number of e-folds before the
end of inflationN as the evolution parameter instead of the 5 (42)
field. From Eq.(11), it is straightforward to rewrite deriva- din-1) 1 T 1/(T 2+ mp 27T
tives with respect ta in terms of derivatives with respect to dN E(n_ )§ 25\S] T1672 V 5 A
N!
where
d Mp, d
= ——e —. (36) V()
dN 2 d¢ X(h)= ——tc. 43
Jm (=g (43)
In terms ofN, we then have Here (T/S) is related to the parameterdefined in Eq.(34)
q by (T/S)=10r. Hoffman and Turner “closed” the flow
_6226(77_ e), (37) equgtions by assuming thg’( is small and cpnstant..lt is
dN straightforward to generalize these equations using the
Hubble slow roll formalism above. We can define a new
and parameter
d o=27n—A4e, (44)
ﬁ =&—e. (38)

which is equivalent to the spectral index parameter used by

Note that the derivati f h sl I ter is it IfHoffman and Turneroc=n—1 to lowest order in slow roll.
ote that the derivative of each slow roll parameter is itselfr . .. equation$37),(38) in terms ofc are

higher order in slow roll. This suggests an infinite hierarchy
of “Hubble slow roll” parameter$[27]

€
aN~ e(o+2¢),
IConventions for the normalization of this parameter vary widely do (45
in the literature. In particular, the rati/S of the tensor and scalar —— =282 5e0—12€°.
contributions to the CMB depends on the current valueQ gfand dN

Q, [31]. For the currently favored valug3,,~0.3, Q,~0.7, the ) ) )
relationship isT/S=10r, which is the normalization used in Refs. These expressions can be shown to be identical to @gs.
[11,6]. To compare with the normalization foras defined in Refs. DYy evaluating using the slow roll expressioi2$) for € and

[5,9,10, taker —13.6. 7. Using &= 2\, the flow equationg45) along with Eq.
’The slow roll parameteta,, used here are related to the (41) then represent a generalization of the flow equations of
parameters3,, defined by Liddleet al. by‘x = (‘By)¢. Hoffman and Turner to arbitrarily high order in slow roll.
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This system of equations, taken to infinite order, is exact. InThe second class of fixed points is just the case of power-law
practice, these equations must be truncated at some finiteflation, e= = £>=const, or
order, by assuming\,=0 for ¢ greater than some finite

order M. The higher order the truncation, the weaker the €=Const,

implicit assumptions about the form of the potential. The

next section discusses the fixed point structure of the infla- o= —2e,

tionary parameter space. (52
2)\H: 62,

V. FIXED POINTS IN THE INFLATIONARY PARAMETER
SPACE CIng=e(Ny), 1=2.

Summarizing the results of the preceding section, the hingte that these are fixed points of the exact system of equa-
erarchy of inflationary flow equations is tions. It is straightforward to evaluate the stability of the
fixed point(51), since

€
d—N=e(a'+26), d2e
. dNde| =~ 59
aN= S5e0—126%+2(%\y), (46)
and
d(‘Ap) [1 ¢ +1 d’e
SN =5 (€ Dt (E=2)e[ (A + ag. iNde| O (54)

=
To lowest order in slow roll, these can be related to observ- ) ) ) )
ables byr = e andn— 1= o-. To second order in slow roll, the Therefore the fixed point a¢=0 is stable with respect to

observables are given 493,27 perturbations ine for >0, or spectral indexa>1, and
unstable foro<0, or spectral indexa<1. (This unusual
r=e1-C(o+2¢)], (47 sign convention for stability comes from the definitidiN
<0 fordt>0.) In general, inflationary evolution flows away
for the tensor/scalar ratio, and fromr=0 forn<1, and toward =0 for n>1. This behav-

1 1 ior can be easily understood in terms of simple inflaton po-
N—1=o0—(5-3C)e?— —(3—5C) e+ —(3—C)( 2\ tentials in slow roll. Using the slow roll expressiok28),
o= )€ 4( Joe 2( Y taking e=0 implies that the field is at an equilibrium point
(48) éxV'($)=0, and the spectral index is

for the spectral index. Her€=4(In 2++), where y=0.577 2 \yn
is Euler’s constant. Derivatives with respect to wave number n—1= Mpi V() (55)

k can be expressed in terms of derivatives with respedt to 4w V(¢)
as[32
132] The casee=0, n<1 is just that of the field sitting atop an
d d unstable equilibrium, for example the poigt=0 on a po-
daN dink’ (49 tential of the formV(¢)=A%~m?¢2. The casee=0, n
>1 is that of a field sitting at a stable equilibrium poWit
The scale dependence ofis then given by the simple ex- >0, for example the poing=0 on a potential of the form

pression V(¢)=A*+m?¢2. In such models, inflation nominally con-
tinues forever. In practice, however, it is possible to end in-

dn 1 \dn flation by coupling to additional fields, as in “hybrid” infla-
dink 1= ¢/dN’ (50 tion modeld 33—35. The observables in this a case are given

by their values near the late-time asymptote. The case of the
which can be evaluated to third order in slow roll by usingfixed point(52) is more complex. It is, however, known that
Eg. (48) and the flow equations. We wish to study flow in the it is not in general a late-time attract@®6], a conclusion that

parameter space of observablesy, anddn/d Ink. is supported by numerical integration of the flow equations.
It is useful to identify fixed points of the system of Eqs.

(46), for which all the derivatives vanish. Two classes of VI. EVALUATING THE FLOW EQUATIONS

fixed points are easily obtained by inspection. First is the

case of the vanishing tensor/scalar ratio, with With the flow equations in hand, it is possible to ask the

question: what are thgeneric predictions of inflation? In
e=N\y=0, principle, any model of inflation driven by a single, mono-
(51)  tonic scalar field can be completely specified by selecting a

o=const. point in the(infinite dimensionadl slow roll parameter space,
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€,0,Ny.% For a model specified in this way, there is a the result of the Monte Carlo calculation, as long as they are
straightforward procedure for determining its observable prechosen such that the slow roll hierarchy is convergent. For
dictions, that is, the values of n—1, anddn/dInk a fixed each model, we calculate observables according to the algo-
numberN e-folds before the end of inflation. The algorithm rithm above, with two differences because of the finite nature
for a single model is as follows: of the calculation. When we evolve forward in time, there are

Select a point in the parameter spagey, '\ . now three possible late-time behaviors for a particular

Evolve forward in time dN<0) until either(a) inflation =~ model: (1) the model reaches the late-time attractsr0,
ends, or(b) the evolution reaches a late-time fixed point. >0, (2) inflation ends, 0£3) none of the above, indicating

If the evolution reaches a late-time fixed point, calculatethat the integration failed to reach any identifiable
the observables, n—1, anddn/d Ink at this point. asymptotic behavior within the limits of the integration,

If inflation ends, evaluate the flow equations backwilrd which we take to be 1000 e-folds. For models in which in-
e-folds from the end of inflation. Calculate the observableflation ends at late time, we then evolve the model backward
parameters at this point. in time N e-folds from the end of inflation. If the choice of

The end of inflation is given by the condition=1 (not  parameters supportd e-folds without inflation ending or
by the end of slow roll, although in practice these conditionsslow roll failing, we calculate observable parameters,
are essentially equivalentin the case where inflation ends in and dn/d Ink at that point. We will call these pointson-
the late-time limit, there is another possibility: that one will trivial points. In summary, there are four categories of out-
find that inflation also ends when evolving back to earlycome for a particular choice of initial condition:
times. That is, the model is incapable of supportihg-folds Late-time attractore=0, 0>0.
of inflation. Insufficient inflation.

In principle, it is possible to carry out this program ex-  Nontrivial point: Inflation ends at late time, suppoits
actly, with no assumptions made about the convergence @-folds of inflation.
the hierarchy of slow roll parameters. In practice, the series No identifiable asymptotic behavior at late time.
of flow equationg46) must be truncated at some finite order ~ The numerical integration is implemented in C using a
and evaluated numerically. In addition, for any given path infifth-order adaptive step-size Runge-Kutta method to solve
the parameter space, we do not knawpriori the correct the system of equations. The Monte Carlo calculation is run
number of e-foldsN at which to evaluate the observables, by selecting initial conditions at random as described above
since this depends on details such as the energy density ddor 100 000 points. We are interested in the models which
ing inflation and the reheat temperat|rE7]. We adopt a converge to a late-time attractor or possess a nontrivial point.
Monte Carlo approach: we evaluate a large number of inflain addition, we requiren<<1.5 in order to be consistent with
tion models at ordeM in slow roll, where each model con- observations of the cosmic microwave backgro{f®] and
sists of a randomly selected set of parameters in the followeonstraints from primordial black hole formatid87—40.
ing ranges: The results of a Monte Carlo run to ordgr=5 in slow roll

are as follows:
N=[40,70 Total iterations: 100 000.
Late-time attractorr =0, n>1.5: 90 340.
Nontrivial points: 6999.

€=[0,0.8] Late-time attractorr =0, n<<1.5: 2542,
Insufficient inflation: 116.
o=[—0.5,0.5 No identifiable asymptotic behavior: 3.
(56) One surprising result is that more than 90% of the models
5 evaluated result in an unacceptably blue spectral index,
Ay=[-0.05,0.03 >1.5: the most “generic” prediction of inflation from this
point of view is already ruled out. Figure 1 shows the re-
3\=[—0.005,0.00%, maining models plotted on then(r) plane.(Note that the

normalization forr used here differs from elsewhere in the
literature. To compare with Reff5,9,1(, taker —13.6'. To
compare with Refs[11,6], taker —T/S=10r.) The models
cluster strongly neatbut not on) the power-law fixed point,
M+INy=0 and on ther =0 fixed point. This is qualitatively consistent
with the results of Hoffman and Turner, except that the mod-
and so forth, reducing the width of the range by factor of terels appear to be much more strongly clustered in the param-
for each higher order in slow roll. The series is closed toeter space than they concluded from a lowest-order analysis.
order M by taking M*1\,,=0. The exact choice of ranges Also, models sparsely populate the regions that Hoffman and
for the initial parameters does not have a large influence offurner label “excluded” and “poor power law,” suggesting
that these categorizations do not generalize to higher order in
slow roll. (We note that a poor power law was a rare result in
3strictly speaking, this statement is true only if the slow roll ex- the integrations, with of order 0.1% of the models predicting
pansion is nonsingular to all orders. |dn/d Ink|>0.05) However, consistent with Hoffman and
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1.5
n
FIG. 1. Models p|o’[ted in ther(’r) p|ane for anM =5 Monte FIG. 3. Spectral index vs |0m ShOWing the behavior of the

Carlo calculation. The solid line is the power-law fixed pomt attractor region for small r.

=1-2r/(1—r). The error bar shows the size of the expected 2

error from Planck.(See the note in text regarding the somewhatShow the small- behavior of the attractor region. Figure 4

unconventional normalization afused herg. shows the same models plotted on thdn/d In k plane, also
showing noticeable clustering behavior in the parameter

Turner, there is a large region for>1 andr>0 that is space. In particuladn/d In k<0 is favored.

entirely unpopulated by models. Figure 2 shows ther) Figure 5 showsdn/dInk as a function ofr. Especially

plane zoomed in on the observationally favored region neaihteresting is that the models with largéthe ones close to

n=1. Figure 3 shows the same models plotted vsrjotg{  the power-law line in Fig. Ji also have significant variation
in the spectral index. This suggests that the models are not

0.1 — 7 flowing to the power-law fixed point, which hadn/d Ink
- =0. This raises an interesting question: are the models con-
verging slowly to the power-law line at early times, or are
0.08 [ - — T . 1
0.04 - -
0.06 Planck 2 o —
[ 0.02 - -
~
0.04 T _5
o
~N
[~
0.02 - ©
0 - 0 L L 1 b ;
0.8 0.9 1 1.1 I .
n 004 [ oot .
FIG. 2. Figure 1 zoomed in to the region preferred by observa- Y RS S

tion. The models populate the entire area below the power-law line. 05 n ! 15
There is, however, a large apparently excluded region above the

power-law line. This overlaps witkbut is not identical tpthe re- FIG. 4. Models plotted in then,dn/d In k) plane for anM =5
gion labeled “poor power law” by Hoffman and Turner. Monte Carlo calculation.
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001 I Copelandet al.[41], which concluded that power-law infla-
tion is a unique late-time attractor in a cosmology consisting
of a scalar field and a second fluid component. Copeland
et al. assumed a scalar field with an exponential potential—
that is, a model lying exactly on the power-law fixed point—
and showed that the scalar field would generically dominate
the cosmological evolution at late times. Figure 7 shows ex-
amples of flow in the ¢,€) plane.

VII. CONCLUSIONS

dn/dlnk

We have derived a set of inflationary “flow” equations
based on the Hubble slow roll expansion of Liddteal.[27]
that is in principle exact when taken to all orders. These
equations completely specify the dynamics of the inflation-
ary system, so that any particular inflationary potential can
i be specified as a point in this parameter space. The past and
ST future dynamics of the model are then determined by evalu-
00 b L 1 L ating the flow of the parameters away from this point. It is
0 005 r o %18 possible to identify two classes of fixed points of the exact
flow equations: power-law inflation, witth=1-2r/(1
FIG. 5. Models plotted in ther(dn/d Ink) plane for anM=5  —r) and models with vanishing tensor/scalar ratie;0.
Monte Carlo calculation. This latter class is unstable for<1 and stable fon>1.

In practice, the flow equations must be truncated to some
they converging to some other fixed point? To answer thiorder and evaluated numerically, which was done to lowest
guestion, we evolve the models to very early timds;70.  order by Hoffman and Turndd1]. Extending the system of
Figure 6 shows models plotted on tha,() plane forN  flow equations to higher order makes it possible to consider
=125, 250, 500, and 1000. Instead of flowing to the powerthe running of the spectral indek/d Ink as well ag andn.
law fixed point at early time, the models instead flow downWe perform a Monte Carlo integration of the flow equations
to ther =0 line. We therefore find that the power-law fixed to fifth order in slow roll, and show that the distribution of
point is not an attractor at early or late time. It is important tomodels in the parameter space of observables and
note that this conclusion is not in conflict with the analysis ofdn/d Ink is strongly clustered around particular values. 90%

of the models selected in the Monte Carlo calculation con-
— —— verge to the observationally unacceptable asymptet®,
N = 125 ] [ N =250 | n>1.5. The remaining models cluster around two classes of
i ] early-time “attractor,” the first class at the=0 fixed point
5 and the second with>0 andn<1. Interestingly, the >0
| 1 o F , ] attractorcannotbe identified with the power-law fixed point,
I ] i ' ] since they generally haveén/d In k<0, and the variation in
the spectral index vanishes at the fixed point. Evaluation of
the models at very early time$§y>70, indicates that the
Py N power-law fixed point is not an attractor at early times, since
05 1 15 the models generically flow to the=0 line for largeN. We
" therefore interpret the>0 attractor as simply an artifact of
— — the fact that observable perturbations are generated relatively
N=50 I I N =1000 ] late in the inflationary evolution, when slow roll has begun to
] ] measurably break down. In addition, we see that power-law
inflation is not in general an attractor for either eaolylate
o o F ] times. At higher order, models cluster much more strongly
[ ] i ] than is suggested by the “favored” region of the parameter

001

«.‘.;
)

02 - T 02 - N

oL 1 oy 1 space derived by Hoffman and Turner. Also, models sparsely
_ L ; populate the regions labeled by Hoffman and Turner as “ex-
o) P I cluded” and “poor power law,” suggesting that these catego-
05 1 15 05 1 15 rizations do not generalize to higher order. However, consis-
n n

tent with previous analysis, there is a region for0, n

FIG. 6. Results of the Monte Carlo calculation with a large =1 which is entirely unpopulated by models.
number of e-foldsN, illustrating the behavior of the flow at early It is important to consider questions of generality with
times(largerN). The models flow not to the power-law fixed point respect to both the choice of the order in slow Mland the
n=1-2r/(1—r) but to ther =0 fixed point. choice of initial conditions for the Monte Carlo calculation
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FIG. 7. Examples of flow plotted in ther(€) plane. The circles indicate the randomly selected initial value, and the squares indicate the
valueN efolds before the end of inflation. The straight line is the power-law fixed peoirt—2e. Integrating to high order in slow roll
allows for a variety of complex flows.

(56). By “closing” the hierarchy of flow equations at finite connecting flow in inflationary models to a proposed “holo-
order, we are implicitly limiting ourselves to a restricted graphic” correspondence between quasi—de Sitter spaces and
class of potentials, although fd =5, that class of poten- boundary conformal field theorie€CFTs [12,45-5Q. In

tials is large. However, models with potentials that containparticular, Larseret al.[13] have proposed a correspondence
featureg42,43 or for which the slow roll expansion is not between slow roll parameters and couplings in the boundary
convergent44] will not be captured by solutions at finite  CFT, interpreting flow in the inflationary parameter space as
order in slow roll. In addition, inflation might not be driven renormalization group flow in the associated JBIL]. The

by only a single scalar field. The effect of different choicesfixed points ar =0 are interpreted as ultraviolen 1) and

of initial conditions can be studied empirically, simply by infrared (1<1) fixed points in the renormalization group
trying different constraints on the space of initial conditions.flow. In this picture, studying inflationary dynamics is
Choosing “looser” initial conditions does not alter the char- equivalent to studying the structure of the underlying CFT.
acteristics of the result. Instead, models that fail to SUppOI’Ut is not immediately clear, however, how one interprets the

sufficient inflation become much more numerous. Perhapgower-law fixed point in the context of the boundary OFT.

most importantly, absent a metric on the space of initial con-

ditions, one should use caution when attempting to interpret

_th_e_se “scaf[t_er plots” statis_tically. We do not know how thg ACKNOWLEDGMENTS
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