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The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis
on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a
low energy expansion method. This allows us, through the junction conditions, to deduce the effective equa-
tions of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a
quasi-scalar-tensor theory with a specific coupling funcédi’ ) =3W¥/2(1—W¥) on the positive tension brane
and w(®)=—-3d/2(1+ P) on the negative tension brane, whéfeand® are nonlinear realizations of the
radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity,
the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and
negative tension branes, with different effective gravitational coupling constants. In particular, the radion
disguised as the scalar fields and® couples with the sum of the traces of the energy-momentum tensor on
both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting
the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For complete-
ness, we also derive the effective action for our theory by substituting the bulk solution into the original action.
It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk
geometry can be reconstructed from the solution of quasi-scalar-tensor gravity.
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[. INTRODUCTION To further illuminate the role of the radion in the brane
world, let us pose the issue in the following way. In our
Motivated by the recent development of superstringprevious paper, we derived the low energy effective equation
theory, the brane world scenario has been studied intensivelgn the brane agl2] (see alsd13])
In particular, the warped compactification mechanism pro- 2

posed by Randall and SundruRS) has given birth to a new G"V—K—T“,,— EXP-V(X,U-), (1)

picture of the universgl]. The single brane modéRS2 has | |
been well studied so far because of its simplicity and the u " . . .
absence of a stability problem of the radion mé¢@es]. As ~ WhereG*,, «, andT”, denote the four-dimensional Ein-

for the two-brane mode{RS1, Garriga and Tanaka have stein tensor, the five-dimensional gravitational constant,_ and
shown that the gravity on the brane behaves as in BrandN€ €nergy-momentum tensor on the brane, respectively.
Dicke theory at a linearized levgs]. Thus, the conventional Here, the “constant of integrationy,,,(x) is transverse and

linearized Einstein equations do not hold even on scalefaceless. When we impose maximal symmetry on the spatial

large compared with the curvature schie the bulk. Char- Part of the brane world, Ed1) reduces to the Friedmann
mousiset al. have clearly identified the Brans-Dicke field as duation with dark radiation:
the radion modé¢7]. Subsequent research has been focused
on the role of the radion in the brane world scena@ie 10]. Hz:87’GP n < @)
However, the above-mentioned works are restricted to lin- 3 aé
ear theory or to homogeneous cosmological models. It is
important to study nonlinear gravity for applications to as-whereH, ay, andp are, respectively, the Hubble parameter,
trophysical and cosmological problems. Recently, Wisemarhe scale factor, and the total energy density of each brane,
has analyzed a special two-brane system with the negatiwehile C is a constant of integration associated with the mass
tension brane taken to be in vacuum and has shown that ttef a black hole in the bulk. Hencg,,,(x) can be regarded as
low energy effective theory becomes a scalar-tensor theorst generalization of the dark radiation appearing in &.
with a specific coupling functiofil1]. Here, we consider the The point is that Eq(1) holds irrespective of the existence of
general case including matter on the negative tension brar@her branes. The effect of the bulk geometry comes into the
and derive the effective equations of motion for this systenbrane world only througly,,, .
using a low energy expansion method developed bjldk On the other hand, as we have noted, a scalar-tensor
theory emerges in the two-brane system. How can we recon-
cile these seemingly incompatible pictures? In this paper, we
*Electronic address: kanno@phys.h.kyoto-u.ac.jp reveal a mechanism to convert the Einstein equations with
TElectronic address: jiro@phys.h.kyoto-u.ac.jp generalized dark radiation to quasi-scalar-tensor gravity.
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Eventually, it turns out that the radion disentangles the non-
locality in the nonconventional Einstein equations and leads
to local quasi-scalar-tensor gravity.

This paper is organized as follows. In Sec. Il, our iteration
scheme to solve the Einstein equations at low energy is ex-
plained. In Sec. lll, the background solution is presented. In
Sec. IV, we derive the brane effective action from the junc-
tion conditions at leading order. We see that the effective
theory is described by quasi-scalar-tensor gravity with a spe-
cific coupling function. The relation to holography is also
discussed. In Sec. V, a systematic method for computing the
higher order corrections is discussed. Section VI is devoted
to discussion and conclusions. In Appendix A, we explain the
physical meaning of our method, especially the relation to v=0 y=1
the zero mode and Kaluza-Klein modes in linear theory, by
using a simple scalar field model. In Appendix B, linearized FIG. 1. Radion as a distance between two branes.
gravity is analyzed in detail using our method.
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Il. LOW ENERGY APPROXIMATION
—VEV, o= VEPV, ¢

A. RS1 model and basic equations

; ; ; 4 2 1 A 1 Al a—
The model is described by the action =— |75’V‘+ K §5‘V‘0A+T "= 55’;T e ?58(y)
=1 d°xy—g Rt 2| > oy | d*/—g'Pame 1 2By _ L
242 12) g 7! + K2 3ot T “V—§5‘V‘TB e ?8(y—1),
£ 3 [ g, ® ©
i=A,B
e (e ’K) —(e"?KF)(e" K p)
where R, gilfia“e, and «? are the scalar curvature, the in- -VV,p—V*pV, ¢
duced metric on the branes, and the gravitational constant in 4 2
five-dimensions, respectively. We consider®iZ, orbifold =— - K_( — 4+ Te %58(y)
spacetime with the two branes as the fixed points. In the RS1 | 3
model, two flat three-branes are embedded in the five- 2
dimensional asymptotically anti—de SittékdS) bulk with — —(—4og+T®e ?s(y—1), 7)
curvature radiusl with the brane tensions given by, 3
=6/(x%l) andog=—6/(x?l).
For general nonflat branes, we cannot keep both the two V(e ?K” )—V, (e ?K)=0, (8)
branes straight in the Gaussian normal coordinate system. a a
Hence, we use the following coordinate system to describe )
the geometry of the brane model: where R*, is the curvature on the bran&, denotes the

covariant derivative with respect to the metgg, , and we
260y X g0 2 P introduced the tensd ,,= —g,,,/2 for convenience. One
ds’=e*?tOdy?+g,,,(y.x*)dx“dx". (4 can read off the junction condition from the above equations
as

We place the branes pt=0 (A-brang andy=1 (B-brang in 5
this coordinate system. The proper distance between the two -4 KHE— SEK _k wy TAR
branes with fixed coordinates can be written as e (KL= o Klly-o 2 (—oad, W) ©)

2

K ~
d(x)=f|e‘f’(y’x)dy. (5) e [KY=SUK]lyoi=— o (—ogd+T%,), (10)
0

whereK?=g*“K, and the fact that we are considering a
Hence, we callkp the radion(see Fig. L In this coordinate symmetric spacetime is used. Decompose the extrinsic cur-
system, the five-dimensional Einstein equations become vature into the traceless part and the trace part:
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2

1 d 6 «
e K=3,+ 30,,Q. Q=—e *llogy~g. Kop=1. T =8mGy (18)
(11)
give k?~(10° GeV) 2 and|o;|~1 TeV:.
Then, off the brane, we obtain the basic equations In this paper, we will consider the low energy regime in
the sense that the energy density of the mapteron a brane
Ly @ 1 @ is smaller than the brane tension, i.p;/|o;|<1. In this
e xt, - QY =R, = 2 O R-VIV,6—-VH ¢V, ¢ regime, a simple dimensional analysis
2 2
P L . '—) <1 19
47" a¢+v ¢Va¢) ’ (12) |0'i| K |0'i| | L
implies that the curvature on the brane can be neglected
3 b cawp W] 12 compared with the extrinsic curvature at low energies. Thus,
ZQ -= BE = RJF 12 (13 the anti-Newtonian or gradient expansion method used in the

cosmological contexil4] is applicable to our problem.
1 4 Our iteration scheme is to write the metdg, as a sum
e ’Qy— ZQZ—E“ﬁEQB=V“Va¢+V“¢Va¢— 2 of local tensors built out of the induced metric on the brane,
(14) with the number of derivatives increasing with the order of
iteration, that isQ((1/L)?"), n=0,1,2 . ... Hence, we seek
the metric as a perturbative series

3
V32— -V Q=0. (15)
LA 9y XM =a2(y, X)L, (x4) + gLy, x*)
juncti iti (2)
The junction conditions are +gw(y,x”)+ -, (20
2
spoa0Q|| =S (owaaTv), g 9RT0X9=0, n=123.., 2y
y=0 where the factor?(y,x) is extracted for a reason explained
3 K2 _ later and we use the Dirichlet boundary conditign,(y
Sh— Z(S’;Q ‘ =- 7(—055’5+TB“V). (17 =0x)=h,,(x) at theA-brane. We do not need to know the
=

geometry of theB-brane when we focus on the effective

. . . equations on thé\-brane. In other words, from a viewpoint
The problem now |s.separated Into two parts. .F'rSt’ we musp, theA-brane, the junction condition at tigzbrane simply
solve the bulk equations of motion with the Dirichlet bound-

ives the boundary condition for the bulk geometry. Other
ary condition at thé\-braneg,,,(y=0,x*)=h ,,(x*). Then, aw N y n w9 y

) . O ! uantities are also expanded as
the junction condition is imposed at each brane. As the Juncg P

tion conditions constrain the induced metrics on both branes, S#—3sOu ysWu ys@u 4 (22)
they naturally give rise to the effective equations of motion g g g g

for gravity on the branes. In Appendix A, we illustrate our method using a simple sca-
lar field example to clarify the relation of the low energy
B. Low energy expansion scheme expansion to the zero mode and Kaluza-Klein modes in lin-

Unfortunately, it is a formidable task to solve the five- €&rized theory.

dimensional Einstein equations exactly. However, notice that

typically the length scale of the internal spacé<s0.1 mm. lll. BACKGROUND GEOMETRY
On the other hand, the usual astrophysical and cosmological As we can ignore the matter at the lowest order, we obtain
phenomena take place at scales much Ia_rger than this Sca!aevacuum brane; namely, we have an almost flat ’brane com-
Thus we need only the low energy effective theory to ana'pared with the curvature scale of the bulk spacetime. At the
lyze a variety of problems, for example, the formation of a

. e zeroth order, we can neglect the curvature term. Then we

black hole, the propagation of gravitational waves, the eVOop ,ve
lution of cosmological perturbations, and so on. It should be
stressed that low energy does not necessarily implies weak e ¢3 Ok _ O3 Okr _q 23
gravity on the branes. vy~ Q v 23

Along the normal coordinatg, the metric varies with the 3 12
characteristic length scaleg,, ,~d,,/l. Denote the char- _Q(O)Z_E(O)aﬁz(o)ﬁa: —, (24)
acteristic length scale of the curvature on the brand..as 4 '
Then we haveR~gW/L2. For the reader’s reference, let us 1 4
takel=1 mm, for example. Then the relations in the RS1 — $~(0) (0)2_ 5 (0)aps (0) _
model e fQy - QT R R = (25
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(O 3 © IV. HOLOGRAPHIC QUASI-SCALAR-TENSOR GRAVITY
Y -=V =0. 26
S 2 7uQ (26) A. Bulk geometry

The next order solution is obtained by taking into account
the terms neglected at zeroth order. It is at this order that the
) effect of matter comes in. At the first order, Eq$2)—(15)

K
== %0 S5 27) become

The junction condition is

3
E(O)MV_ ZggQ(O)}

y=0

4 (4)
e ¢2(1)MV , l_z(l)#vz —[R* —V“V ¢
2 )

{E(O)M - E 5MQ(0)} = K_O.B5M_ (28) ()
. y=I 2 ! _V'ufl’vvqs]trace less (34
(&N
Using Eq.(11), Eq. (23) can be readily integrated, 6 @
g Eq.(1D), Eq. (23 y integ l_sz{R | -
CH(x#)
3Ok =———,  c*, =0, (29) 2
V=g ! e QY- TQW=[VV,p+ VoV, h] Y,
. . . . . (36)
whereC* is a “constant” of integration. This term is not
allowed to exist because of the junction conditid@g) and o 3
(28). Thus, it is easy to solve the remaining equations. The B — ZVMQ(”:O, (37
result is
where the subscript “traceless” represents the traceless part
4 of the quantity in square brackets. The junction conditions
Ou — 0)=_
2T,=0,Q e B0 are given by
. _— 3 K2
Using the definition sk — — srQt) =T, (38)
4 y=0 2
19 1
KO—= _ = _— (0):_e¢g(0) (3D 3 K2
Ky 2 9y Hr | mv? D _ = snn(l) — _ _ FBu
y [2 Y 45,,Q }y=l 2T o
we get the zeroth order metric as (39

where the superscript (1) represents the order of the gradient
expansion. Here[R®* 1) means the Ricci tensor of
a’h,,. Note that nowa=exg —ye’/l]. It is convenient to

(32 introduce the Ricci tensor dii,,, denoted byR/(h), and
expresg RY* 1M in terms ofR* and ¢;

ds?=e??Xdy?+a?(y,x)h,, (x*)dx*dx,

1y
a(y,x)=ex;{ - I_J dyetyX)
0

where the tensoh,,, is the induced metric on the positive
tension brane. Note that the metric derived by Charmousis
etal, e?=1+2f(x)e?'/l, is consistent with this solution

(4) () y
RAQ)| =3 | RE(h)+27e(gl,+ glrgy,)

[7]. To proceed further, we take the coordinate system to be Y 4 e la y? 26 4|
d(y,X)=¢(x). Then we havea(y,x)=exd—ye/l]. Al- + 0,7t D bla) T 2287 P,
though this choice of the coordinate system is generally pos-

sible at least locally, there may be a global obstruction. How- y?

: (40)

. .. _ w2 ~2¢ gla
ever, as we show below, we can consistently get nontrivial 29, |2 e Pla
solutions. Moreover, we explicitly demonstrate the validity

of our choice at the level of linear theory in Appendix B.  where| denotes the covariant derivative with respedhfg.

Given the zeroth order solution, junction conditiaf2s) Similarly, it is convenient to express the second derivatives

and(28) lead to the well known relations of ¢ as
1 y y w
K20_A:|§, KZO'B: _ |§ (33) [Vﬂvy(ﬁ](l):; ¢|M‘V+ 2|_e¢¢"u¢|,,_ I—ed;&ff(ﬁ‘ ¢\a .
(41)
Note that¢(x) andh,,(x) are arbitrary functions ok at Substituting the trace of E@40) into the right-hand side
zeroth order. of Eq. (35), we obtain
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202¢ This equation is nothing but the Einstein equation with gen-
eralized dark radiatiory,,, . It should be noted thay,,, is
undetermined at this level, exhibiting the nonlocal nature of
(42 EA.(47D. y o

The junction condition at th8-brane is given by

— ¢,

ye' |
SR+ (81"t ¢l ) —

|
M=_—
QW=

Note that Eq.(36) is trivially satisfied now. Hereafter, we

omit the argument of the curvature for simplicity. Substitut- [ e?

ing Egs.(40) and (41) into Eq. (34) and integrating it, we ~ 552G",* E((bmlf 55¢‘a\a+ P, — 8Pl P
obtain the traceless part of the extrinsic curvature as

I 1 ye¢ 1 I * ¢\,u¢ + = 5ﬂ¢|a¢ XM - K TBw
2(1)Mvza_ 5 R¥, __wa ¢‘“|V_Z55¢|a|a lv la| T Q4 202 v
y2e??  yed . 5M 5 (48)
* |2 +_ PEb 700 P Pla where Q(x)=a(y=I,x)=exd—e?]. Here, the index of

TB“V is the energy-momentum tensor with the index raised
+X'§(X) (43 by the induced metriti,, on theA-brane, whileT®*  is the
' one raised by the induced metric on tBebrane. At the
present order, we have the following relations:
where x;, is an integration constant with the propeny,

_=O. And x*, must b(_a t_ransversc;'y_(,"ymzo, in order to sat- -|-B _T,Eiw TBH =278~ | (49)
isfy Eq. (37). The definition(11) gives
1 To reveal the role of the radion field, we must write E4B)

1
-5e ¢g(°)‘“‘ gM=3®r 4= SMQ(” (44) usmg the induced metric on th@-brane,g5%®"=Q%(h,,,
y* +g{)=f,,+0%). At this order, the Ricci tensdR¥ of
Integrating Eq.(44), we obtain the metric in the bulk: the induced metric on thB-brane is equal to that df '
Using this fact, we rewrite Eq48) to obtain the effectlve

2 equations on th®&-brane:

g(l)__l_

1
—1]| R~ gh#vR

21a?
| x" K2
12/ 1 2ye? 1 ey v~ FBu
3| p-1- yl— ) bt g AU T L 50
_ye” e2¢’ I 1 Again, we have the nonconvention@honloca) Einstein

22 —1)qu equations, as in the case of tAebrane.
Although Eqs.(47) and (50) are nonlocal individually,
(45  with undeterminedy,,,, one can combine the two equations
) e to reduce them to local equations for each brane. This hap-
where we have imposed the boundary conditigff)(y ens to be possible singg,, appears only algebraically; one
=0x*)=0. From these results, one can calculate the WeyEan easily eliminatg,, from Egs.(47) and(48). Defining a

b= 35 W¢ “ODa )

tensor as new field¥=1-0Q2, we find
2XM K2 2
— v 1-¥ 1
o= ge WO e = T (mf ron 4 7 ()

Hence, the terny,, is essentially the Weyl tensor at this w(P) 1
order. Note that we have obtained the bulk metric in terms of - 5’;‘1"“\&) tg7 Yl — —5”‘1’|“‘I’|a ,

#(X), h,,(x), andx (). (51)

B. Quasi-scalar-tensor gravity

We shall deduce the equations fef(x),h,,(x), and
Xu»(X) from the junction conditions. Using Eq$42) and

where the coupling functiom (V) takes the following form:

(43), one gets the junction conditions. The junction condition w(P)== 3 ¥ (52)
at theA-brane is written as 21-V"
| K2 Wi . Lo “
L on _ % A e can also determing, by eliminatingG* from Egs.(47)
Go(M+x", 2 L2 a7 and(48). Then,
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u K*(1—V) C. Effective action

X =~ 2
()
+

!
(TA, 4T ) = o (Wl = aiwle)

Let us consider an effective action fby,,(x) and ¢(x).
If one wants to calculate the quantum fluctuations in the
ey, — §5¢‘I’|aq’|aﬂ- (53) inflationary scenario, for example, one needs the action to
determine their magnitude. The action has to be derived from
The conditiony” , =0 gives rise to the field equation fdr: the original five-dimensional action by substituting the solu-
N tion of the equations of motion in the bulk and integrating
K2 TA+T 1 do out over the bulk coordinate. We shall start with the follow-

- - |
V=T 2073 20:3av ¥ Vi (54 ing action:

where we have used the explicit form ef{ V). This equa-

tion tells us that the trace part of the energy-momentum teng— f d5x\/_

sor determines the radion field and hence the relative bend- 2x*

ing of the brane, ang,, is determined by the traceless part > 6 6

of the rlght-har_ld side of Eq53). Remarkablyy,, is now a - _Zf d*x\/—fQB— _zf d*x—h+ _zf d*\—f

secondary entity. K Kl Kl
Equationg51) and(54) are the basic equations to be used

in cosmological or astrophysical contexts when the charac- +J d4x\/__th+f d*x\—f LB, (56)

teristic energy density is less tham;|. Notice that the con-

servation law with respect to the metiic,, reads

R-i—

f d*x/—hQ*

By v, 1V, 4 where we have taken into account the boundary term, the

=0, T,=12 q,T v 7=y - 59 so-called Gibbons-Hawking term, instead of introducing
delta-function singularities in the curvature. The factor 2 in

In contrast to the usual scalar-tensor gravity, this theorythe Gibbons-Hawking term comes from tdg symmetry of
couples with two kinds of matter, namely, the matter on botrthis spacetime. As we substitute the solution of the bulk
positive and negative tension branes, with different effectiveequations of motion, we can use the equatids — 2012
gravitational coupling constants. For this reason, we call thisvhich holds in the bulk. It should be stressed that the bulk
theory quasi-scalar-tensor gravity. Thus, thenloca) Ein-  metric is solved without using junction conditions and is
stein equatiori47) with generalized dark radiation has trans- expressed in terms @f, h,,, andy,,,. That is why we can
formed into the(local) quasi-scalar-tensor gravitpl) with  get the effective action on the brane by simple substitution of

TAR

v

the coupling functionn (V). the solution. Now, up to first order, we obtain
—z—zf d*x\/— J dza 1+ = hwg“) fd“x\/ —+ = R} —ZJ d*xy—hQ4 1+ = h‘”g(l)
|3 R+|e¢ O¢+ ¢le 6™ jle ° fd“ \/_h+ fd“ J-ha41 hf” (1)
rteazRt qz(Hot 999 ?d’ Pla| 2y | dX X +5h*'g,;
+j d4x\/—h£A+f d*xy—hQ4LB. (57)

Using Eq. (45) and the definiton¥=1—0Q2, we finally = normalization, which is important for quantization of the
have the action: theory.
Here, it should be noted that:, which appeared ig ),
w(V) is a nonlocal quantity. In fact, eliminatingg from Eq. (53)
TR— ‘1’“‘1’4 by solving Eq.(54) yields a nonlocal expression far, . If
we substitute this nonlocal expression into Ej7), we ob-
tain a nonlocal theory. Conversely, one can see that introduc-
+f d4x\/—_h£A+f d*xy—h(1-¥)2£B, (58  ing the radion disentangles the nonlocality in the nonconven-
tional Einstein equatior(47) and yields the quasi-scalar-
tensor gravity given by Eqg51) and (54). This important
This is a complete derivation of the action with the correctpoint is more transparent in the derivation of the effective

=—f d*x\/—h| ¥
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action. Indeed, the nonlocal payf disappears because of 3 &
the traceless naturey,=0. A similar mechanism is dis- ‘*’(‘I’):_E 1+ (63
cussed by Gen and Sas4R] in the context of linear theory.

The equation of motion for the radion becomes
D. Holographic brane gravity

We have obtained four-dimensional quasi-scalar-tensor _ _ "
. nea four-c . . O OHD.,. (64
gravity from the five-dimensional action. The bulk metric I 20+3 20+3d® :

corresponding to the four-dimensional effective theory is
given by Thus, we have shown that the gravity on the negative tension

brane is described by quasi-scalar-tensor gravity with the
v Tﬁy, oY) ] coupling functionw(®)=—3d/2(1+ D).
(59 It should be noted that the dynamics on the two branes are
not independent. We know the gravity on tBebrane once

wherey,,, in Eq. (45) '15 eliminated by using E(53). Here, e know that on the\-brane, and vice versa. The transfor-
they dependence of'}) is explicitly known. Thus the bulk mation rules are

metric is completely determined by the energy-momentum

tensors on the two branes, the radion, and the induced metric )

on the A-brane. Therefore, once the four-dimensional solu- P=15" (65)

tion of quasi-scalar-tensor gravity is given, one can recon-

struct the bulk geometry from these data. Quasi-scalar-tensor B brane_

gravity works as a hologram at low energy. In this sense, one v

can call the quasi-scalar-tensor gravity the holographic brane

grawty. Equatlon(SS_)) gves a holo_graphlc picture of the This relation is useful when we consider concrete applica-
rane world. Recalling that the radion specifies the posmor%

of the second brane, the radion can be interpreted as a king s

of “phase” in the holographic picture of the brane world.

o= (1=¥)'h,,00+g)(h

MY

(1-®)[h,, <1>(h ¥ Th, TS, y=D1.

mv v
. (66)

V. KALUZA-KLEIN CORRECTIONS

E. Effective theory on B-brane As explained in Appendix A, our analysis so far to first

For completeness, we shall derive the effective equationgrder in the gradient expansion corresponds to the zero mode
of motion on theB-brane. To do so, let us simply reverse the truncation in the language of a linearized theory. Although it
role of the A-brane and that of thé-brane. Substituting IS obscure to use the words “Kaluza-Klein corrections” in a

hMV=Q*2f/” into the junction conditions yields n_onlinear theory, we shall .caII _their. nonlinear counterpart
simply Kaluza-Klein corrections in this paper.
I x“ Py 5 In principle, we can continue our analysis up to a desired
5Gu(H+ Y > (60)  order using the following recursive formulas:
and o 1 . (4) (n)
ro—= Mmook M
) > v at dya’) |R*,—VEV, 0= V44V, ¢ traceless part
Q) . .
TG’;HQZ (logQ)*. ,— &) (logQ):y n-1
_ 21 Q(p)Ef,”_p)”“] , (67)
1 P=
+(log)*(logQ);,+ 5 8,(log Q) “(log ) o | + x3,
n—-1 (4) (n)
1202 . Q(n):|g 2 {—;Q(p)Q(”_p)+E(p)“52(”_p)5a+ R ,
= TA® (61) p=1
2 14
(68)
where ; denotes the covariant derivative with respect to the
metric f ,,. Thus, definingb=0"2—1, we obtain the ef- n~1q
fective equation on th&-brane: Q- Q(”)— 2 (ZQ(")Q(”F‘HE‘D)“BE(H”B p)]
2 21+ " »
G%(f)‘%TB“V %TAM (DF, = D, ) +H[VVahpt+ VbV, ], (69)
n—-1
w(P 1 o
(;2) DD, — SO D,, |, (62) N Q(”)+E {reseem,
where ~rPrsPe =0, (70)
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These equations give the solution as an infinite sum. The Although we need the explicitdependence of the bulk to
existence of an infinite series is a manifestation of the nonebtain the action, as long as we are interested only in the
locality of the brane moddl15]. effective equations on the brane, we do not have to solve the
To get the effective equations of motion with second ordemulk explicitly. The reason is as follows. We can write down
corrections using the above formula is straightforward. How+the nonlocal Einstein equations Corresponding to qu).
ever, carrying out the calculation is laborious and the resultang(50) without knowing the bulk geometry. Then, since we
ant expression is too long to write down. As for the linearnow how the nonlocal term, i.e., the generalized dark radia-

theory, we will obtain the explicit effective equations of mo- oy term, behaves in the bulk, we may eliminate it just as in

tion with Kaluza-Klein corrections in Appendix B. Here, We i1a first order case.
will only sketch how the Kaluza-Klein corrections appear  tna nonlocal Einstein equations on the branes] 22
using an easy method.

(4) 7 K2 A |2 |2 1 2 3 app I a a |
GMV(h):_I_(X;LV+t;LV)+I_T;LV_ E‘S,u,v_l_z RR,LLV_Eh,lLVR +Zh,uVRﬁRa +§[X M\Va+X vipa ™ Xpuvla ]
w | 1 . B
_l)(,u,a/R V+€RXMV_ZhMVXBXC¥’ (71)
2 K? 02 12 3 | 1
4 Bb — B 2 2 B b a a
G,Su?(g rans__ |Q4(X,uv+t;l,v)_|_Tp,v_| 1+ 2 )S,uv_ 1_29 (RR;LV_ Eg,uvran?BRg)—’_Z 1+ Q4 [X miva
1 1 | 3 |2 2
o e o B bl o B b @ 2
+Xx V;p.a_X/.w;a]_z 1+ Q4 (X,uaRv_ng,vran%(aﬁ’R B+ 6Q4RX,4.LV_Zguvran{Z(RBRg_gR )

apf | apf 1 a_ B
+5aaXsRaT gXRaT 3B XBXa |

wheret,, is an integration constant at second order and wegunction conditions, to deduce the effective equations of mo-
have defined the quantity tion for gravity on the brane. As a result, we have shown that
gravity on the brane world is described by a quasi-scalar-
tensor theory with a specific coupling functiom(WV)
=3V¥/2(1—V) on the positive tension brane argP)=
—3®/2(1+®) on the negative tension brane, whdreand
& are Brans-Dicke-like scalars on the positive and negative

S“=R“R“—ERRQ‘—15" R RE._ 1R?
v alv 3 4°v B @ 3

_E R 4 R® ln _ERM —[OR*+ Eb‘“DR
2 |va v |a 3 |v v.ogv .
(73

Here, ; represents the covariant derivative with respet fo
and all the curvatures in Eq(72) are calculated from
gh,"™". What we should do is to eliminatg,, from Egs.

(71) and (72) and substitute the relatiogﬁfra”e:(lz[hw

tension branes, respectively. In contrast to the usual scalar-
tensor theory, the quasi-scalar-tensor theory couples with
matter on both branes but with different effective gravita-
tional coupling constants. In particular, the radion disguised
as the scalar field¥ and ® couples with the sum of the
traces of the energy-momentum tensors on both branes.
Moreover, we have derived the effective action by substitut-

+9§le)] into the resulting equation. Then we obtain a highering the solution of the bulk equations of motion into the

derivative but local theory on the brane.

original action. This direct method determines the normaliza-

Noticeably, the same is true for all higher order correc-tion of the effective action, which is indispensable for quan-
tions. Thus, one can infer that the radion disentangles th#éizing the theory.

nonlocality in the system to all orders at the expense of in-

troducing higher derivative terms.

VI. CONCLUSION

In the process of derivation of the effective equations of
motion, we have clarified how quasi-scalar-tensor gravity
emerges from Einstein’s theory with a generalized dark ra-
diation term described by, . A brane can feel the nonlocal
effect of the bulk geometry only throughy,, , irrespective of

We have developed a method to deduce a low energthe existence of another brane. This is the picture given to us
effective theory for a two-brane system. The five-by Einstein equations with generalized dark radiation. Then,
dimensional equations of motion in the bulk are solved usingvhat is the role of the radion? In order to make the connec-
a low energy expansion method. This allows us, through théon between the radion ang,, , we have to know the bulk
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geometry. In the case of a single brage, is determined by ~expansion even in the two-brane system. Cosmology with
the boundary conditions at the Cauchy horizon. If we requirenonlocal fields from this point of view deserves further in-
that the geometry is asymptotically anti—de Sitter there, thewestigation.

X v Must vanish[16]. In the two-brane case, we have no  As we have succeeded in obtaining the effective action for
asymptotic region; instead we have the second brane in theonlinear brane gravity, various problems can now be inves-
bulk. The radion determines the location of the second brantigated. Two-brane inflation is under investigation using our
where the junction conditions are imposed. The junction conmethod[17]. Astrophysical applications such as gravitational
ditions givey,, as a function of the energy-momentum ten-waves from binary stars are also intriguing. Extension of our
sor and the radion. The resultant equation is nothing but thérmalism to more general models that include bulk scalars
holographic quasi-scalar-tensor gravity. Thus, the differencer vector fields might be interesting.

between the Einstein equations with generalized dark radia-

tion and quasi-scalar-tensor gravity is just superficial. The ACKNOWLEDGMENTS

radion has converted the nonlocal nonconventional Einstein ) )
equations to local quasi-scalar-tensor gravity. We would like to thank M. Sasaki for valuable sugges-

We have also given a systematic method to calculate th#onS which improved the presentation of the paper signifi-
corrections due to Kaluza-Klein massive modes. It is conjecS@ntly. This work was supported in part by Monbukagakusho
tured that all of the nonlocality arising from the integration is Grant-in-Aid No. 14540258.
disentangled by the radion in the two-brane system. We have
also emphasized the holographic aspect of our result. It turns APPENDIX A: SCALAR FIELD EXAMPLE

out that the effect of bulk grayity on low energy physics in In order to illustrate the method used in the main text, we
the brane world can be described solely in four-dlmensiona\éxamine a toy model in this appendix. Let us considér a

language. Conversely, the bulk geometry can be recon- g

structed from knowledge of the four-dimensional data. Irr]\ﬂassless scalar field in the background
this sense, the quasi-scalar-tensor gravity we have found in y
this paper works as a hologram and hence can be called ds’=dy?+ eX;{—Zl—
holographic brane gravity.

Let us discuss some implications of our results. Cosmolyhere the branes are locatedyat 0 andy=d. The equation

However, superstring theory suggests that nonlocal field

theories are ubiquitous. Although a nonlocal field theory is OGg=eYg[e g p]+e?'0¢
not easy to treat properly, the holographic description opens A B

a new possibility for studying cosmology with nonlocal =J37(x)8(y) +I%(x) 8(y —d). (A2)
terms. Brane world_ cosmology_ can be regarded as a reallziafrom this equation, one can deduce the junction conditions
tion of a nonlocal field theoretic approach to cosmology. In

the single brane picture, nonlocal terms due to the integration

constant appedf.2]. Furthermore, there are infinite series of dydly-o0= EJA(X), (A3)
higher derivative terms in the low energy expansion scheme.

This is also a manifestation of the nonlocality of brane world 1

gravity [12,15. In the two-brane system, the above two ay¢|y=d=——JB(x)_ (A4)
types of nonlocality exist also. Intriguingly, the radion disen- 2

tangles the npnlocallty of the hqmogeneous solutlops ang_et us focus on the\-brane aty=0 and put

leads to quasi-scalar-tensor gravity. Hence, the quasi-scalar-
tensor theory is a nonlocal theory disguised as a local theory. H(y=0,X)= do(X). (A5)

In fact, integrating out the scalar field yields a nonlocal field

theory. In addition, the nonlocality due to Kaluza-Klein type The Green’s function with the Neumann boundary condition
corrections remains as an infinite series in the low energys easily calculated as

7,,dxdX”, (A1)

dp 1 J1(qle?HP(ql) = Io(ghHP(gled)
As(0X;0x") = | ———exdip-(x—x')]=
#0X05) f<2ﬂ>“exmp g 3 @e D (ah — Jaan HD(gle?)

_ d4p H 2 2 212 3 1 —2d/1 1 d
_f (277)49XF[|p'(X—X )]qzl(l—e’zc‘”) 1+q | g_ge —ml— +..., (A6)

and
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Ziedll d4p
As(0x;d,x") == ——

dp
:JWEXFDP‘(X—

1
Wexp[ip-(x—x’)]

x")]
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1
@ J,(qle?HP(ql) — I, (g HP(gled!)

1+ 922

1 1 1 d

1 /|

8" 8° 2<1—e2"“)'>+ l
(A7)

q2|(1_e72dll)

whereq?=— 7,,P*P”. Thus, the standard Green’s function method gives the solution fo(A2).as

1 1
Pdo(X)= Ef d*'Ag(0x;0x")IAX") + EJ d*x’e AL (0x;d,x")IB(x"). (A8)

This gives

1 1
O po(X) = Ef d*' OAs(0x;0x")IAX) + Ef d*x'e *¥OAL(0x;d,x")JIB(x")

=
|(1_e—2d/|)

3 1
_ Te—2di_

X_
8 8

11y

X
8 8

A(X)+ |(1_e—2d/|)

2(1_e—Zd/|) |

2(1_e72d/|) |

—4d/l

e74d/IJB X) 4+
( ) |(1_e—2d/|)

—4d/l

12Z00A(X) + ————e 4!
( ) |(1_e—2d/|)

1

d 12038(x)+ - - -. (A9)

Note that the first two terms come from the zero mode andvhere C and D are homogeneous solutions. The junction
the rest are Kaluza-Klein corrections. Now we shall compareonditions(A3) and (A4) become

the above result EQA9),with our method.

1. Zeroth order

At zeroth order, we ignore gradients on the brane; thus we

get

e4y"ay[e—4y"ay¢(°>]:o.
The solution of Eq(A10) is given by

¢0=po+ ey

| 1
ay¢|y:0:§D¢0+ C=§JA(X), (A14)

| 1
dydly-a=5€" Do+ Ce*l=— 5 35(x).

(A10) (A15)
Eliminating C from these equations, we obtain
1 ef4dll
(A11) Dd"):“l_e—zd/l)JAJr |(1_e—2d/|)‘]B' (A16)

However, as we are regarding the source terms as first orddihis agrees with the zero mode part of E49). Thus our

guantities, the junction condition®\3) and (A4) imply g

=0. Hence, we simply obtaig(¥= ¢,,.

2. First order

At first order, we must solve

e4y“(9y[e_4y“(9y¢(l)] — e2y/| ] ¢O(X) .

The result is

12 |
¢pM=7e¥ Do+ 7e'C(x)+D(x)

method to first order corresponds to the zero mode truncation
when linearized. The homogeneous part is also determined

as
C(X)= ——————[JA+e 2938], Al7)
(A12)
3. Second order
At the second order, we have
eYofe” Mo pP=—-eM'TOpM(x).  (A18)
(A13)

Equation(A18) can be integrated as
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12 I 1
(')ly¢(2):_Z(ye4y/|+562y/|)|:|2¢0 Dd)O: i [JA+e*4d/|JB]
I(1—e )
|2
@byl a2yl ayll 12 1d 1
8(e +e?"OC(x)+e™'D(x). T 024,
4 2 (1_e—2d/|)
(A19)
I
Hence, the junction condition@\3) and (A4) yield — ZeZd"[l—e*Zd"]DC. (A22)
| 8 12 1 - _ . .
§D¢o+ C(x)— §DZ¢O_ ZDC(X)+ D(X)= EJA(X)’ Substituting Eqs(A16) and(A17) into the right-hand side of
Eq. (A22) yields Eq.(A9). Thus, we have shown that the
(A20) second order equations in our method correspond to taking
2 into account the Kaluza-Klein corrections when the equa-
I I | . . .
EeZy/ID(;[,OjL C(x)eV— 7 deM+ EeZWI mE tions are linearized.

|2 1 APPENDIX B: LINEARIZED GRAVITY
— —(e™'+eYhOc(x)+e?'D(x)= — = JB(x). _ o
8 2 Let us now turn to our case of interest, that is, linearized

(A21) gravity. In linearized gravity, following the method [iB], the
solution is explicitly given in terms of the scalar Neumann
Combining both Eqs(A20) and(A21), we get Green’s functiomAs in Egs.(A6) and(A7):

2

1x 4 A
_§|_77;wf A" Ag(x# X )TA(X)

1
A ’ Ary!
Tur(X) = 5 1w T (X7)

hA (x“)z—xzf d*x’ Ag(0x*;0x*")

mv

: (B1)

1
B ’ B/y/
TE (X)) =5 7, TBX)

- Kzf d*x’ e 29 A (0 x#;d,x*")

whereﬁAV is the small fluctuation in the metric on tiebrane. Applyingd] to this equation and expandirg; as Eqs(A6)
and(A?i we obtain

221 A B) 1x2 e 2 A B) 21 [3 1
WA - - —2d/l - - - o T Z_ T amed
O === T Tt € T4 5 T el THT =2 g 5 ge
d/l P . 2K2 e 2! 1,1 d/l T e T [,
_2(1_6—2d/|) wr” g el | T AT T om2ail| 8 g® _2(1_e—2d/|) wr= g vt |- (B2)

This may be regarded as the effective Einstein equation cords?=(1+248¢)dy?
rected toO((I/L)%). Now we demonstrate that our low en-
ergy expansion scheme leads to linearized quasi-Brans-Dicke
gravity. Then we will show that our method correctly repro-
duces Eq(B2).

Our solution for the bulk metric is

2
+e‘(2")y( Nt hw(x“)—l—y 7],”,5¢(x“)) dx“dx;
(B4)

thus
2
ds?=e?¢Ndy?+ exp{ - I—f dye‘b(y'x)} h,,,(x*)dx*dx". ©
(B3) 89,,(x,y)=a

2y —yil
hW(X)—l—mwf?(b(X)} a=e Y,
(B5)
Here, two branes are located g&=0 andy=1. We will
assume that(y,x*)= ¢(x*) for simplicity. After some ob- whereh,,, and 6¢ represent tensor and scalar fluctuations,

vious changes of variables and rescalings of coordinatesespectively. Now the two branes are locate¢at0 andy
small fluctuations in the metric can be represented as =d, because of the relatioa?=d/I. Decomposing the ex-
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trinsic curvature into the traceless part and the trace part, the (1) 1 X"
small fluctuations of each part are oK# = —| R}— < 6" R) + —5¢|" =
2a? 6 a*
4 (B16)
Sh=534, Q=|—+6Q. (B6)
1) 12[ 1 1
Here we used our results in E€B0). The equations off the 09w="7% ;‘1 Ry~ EW“VR)
brane, Eqs(12)—(15), are linearized to become
(Iy 12 +|2)5¢ N
624y~ T‘léz’jz_ Ry — %&V‘R—wvﬂm a2 202 2) 02| qa )X
(B17)
1
+ Zﬁ’;V“Vaﬁd)}, (B7) From Eq.(B10), we obtain the constraing*,;,=0 for the
homogeneous solution. The junction conditions are
I - ;
6Q==[R], (B8) (1) 3 @ | K2 A
6 TGO =58 X = 5T,
Il,e 2 2
2 (B19)
0Q y— I—5Q=V“Va6¢, (B9)
W 3 ] |
3 52” A icts 2(5¢‘ﬂ|v
V0% — 7 V.0Q=0. (B10) Sly=d
X",
The junction conditions become
3 2 A K2 B
o2 — =546 ==T, B11 =——=T",. (B19)
14 4 v Q y=o 2 14 ( ) 292
B
2B _ B
SSH §5”5Q __ _T,L (B12) Here, we used the relatio@9) betweenT*, andT#,. The
va y—d 2 homogeneous solutiory”, can be eliminated from Egs.

(B18) and (B19) to yield
We now work with our low energy iteration scheme. The
goal is to construct the metric fluctuation as k2 1

mo—
1-Q

A B )
2
) 5 T, +QTH |+ v

2y (1) !
huu(X) = 77 700 (X) + 69,4,(X,Y) —8'068¢). (B20)

89,.,(X,y)=a®

We now introduce a linearized version of the fieldin-
(B13)  troduced in Eq(51) by ¥ =(1-Q2)+2025¢=V¥,+ oV¥.
The linearized effective equations can then be written as

(2)
+09,,(Xy)+ - |

1. First order 2 ([ A B ) 1
The solution at the first order is G’Lv:m T+ (1-W T, |+ \ITO(NMIV_ o,ow).
oo , (B21)
5Q_ (h)+ D&j) (B14) Equations(B11) and (B12) determine the homogeneous so-
lution x*, as
& | 1 | K2 ) A B [
S2H = RY——6R| + w ——5“D5 1-
222 4 el ¢ Xi=— = T O a e >——(5‘I’”| — 8 06V).
14 2 0 14 14 2’\1}0 14 14
" (B22)
+=, x*,=0, (B15) B
a The traceless condition ¢f’ leads to
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A B (2) 2(2)
- 2 T4T s 3Qy— 76Q=0, (B31)
Tl 20+3° (B23
@ 3 @
Thus we found that linearizing our method leads to “linear- VO3, — 7 VudQ=0. (B32
ized quasi-Brans-Dicke gravity” with the Brans-Dicke pa-
rameter The junction conditions are
3/ 1 3 I ]
_ T a2 S p2dn (2) 3 @ K2A2)
) 2(92 1) 2(e 1). (B24) 5EMV_Z555Q :7T“y, (B33
L J y=o
By linearizing G*  in Eq. (B20) and definin i ;
y 9G*, in Eq. (B20) 9 @ 3 ©@ k2 B2
SSH — —518Q =——TK
_ 1 14 4 14 2 v
h=h,— 5 7,0, B25 - Hy-a 29
y7a% y7a% 2 7];,LV ( ) (834)
one gets From Egs.(B29) and (B30), the solution is
1 o o o (2)
S (ot he # ,—Oh*,— 84h8, ) 5Q=0 (B35)
202 21 and
= (8¢, — 8,00 6¢)+ —
1-02 " | l1-0? A L DO O T O RN o
A B T P Y AL PURIPY i U
X\ T# + Q2T+ ). (B26)
c*,=0. (B36)
Note thath” (x) is the fluctuation of the induced metric on
the A-brane located at=0. The gauge freedom can be usedHere we have introduced the tens®f ,
to set
1 1
B 202 S#V=§R‘#|V—DR¢+ 59".0R, (B37)
het = o', B2
| 1_02 ¢ ( 7)

with the propertiess”, ,=S8*,=0.

()
and then Eq(B26) becomes Equation(B31) is trivially satisfied bysQ in Eq. (B35).
(2)

_ 2k% 1 A B To satisfy Eq.(B32), the homogeneous solution i * is
Oht=— —— TH 4+ Q2TH . . . » v
v | 1-02 v v constrained aé:“ymzo. The junction condition$B33) and
(B34) then give
2 2 A B
k- Q
+ar S T+T/. B28 12, 1° K2 A2
3h1-0%2" (B28) gt 7Oxt e =5 T, (B38)
This is in agreement with the leading order term in EBR) ) 5
and of course is the same as the one derived by Garriga and Pla, Ve B[22 2
Tanaka[6]. 4\ 04 2002)C v 8l s g2 X
“ 2 B(2)
2. Second order - - C_4V= _ K_z T (B39
Next we compute the second order solution. The basic Q 2Q

equations become
By combining Eqs(B38) and(B39) with the junction con-

2 4 @ @) o - : : .
52#”/_ |—52“V: |Re - Z&‘R , (B29) ditions at first order, we obtain the following equations:
| 3 |2 K2 A
@ 5GH X, eS8, - Ox", +CF =T,
— _rp1®2 2 8 4 2
5Q=5[RI®, (B30 (B40)

083506-13



S. KANNO AND J. SODA PHYSICAL REVIEW D66, 083506 (2002

If we rewrite this equation using’, we get

IG"+XM”+|2 d+I SH ’ 1+1D”
2% e a2z e e T PN
CH K2 B
151, — 4O 8¢)+ —r=— T+, (BAD K2 A B ) 1
Q Gt =t | T+ (1= W) T, | + == (V¥ — 54016W)
v I’\I}O 14 14 '\Iro 14 14
Eliminating C*, from the above two equations, we obtain
the effective four-dimensional theory of gravity with correc- 2
tion terms: + | d_%o SH L Yo Ox* B43
| 20,1 2 % Ty, X B
2 A B 2 ‘
Gt =— ——(TF +O°T* | + S

Y102 Y awrriligl

|2 d 1-02 Note thaty’ , given by the traceless part of E@®22), sat-
—6,16¢)+ 2(1-02?) (I__ 2 ) o isfies the transverse-traceless condition. Thus we have ob-
( tained the linearized quasi-Brans-Dicke theory with Kaluza-
| 1—072 Y Klein corrections. Usingh,, defined by Eq.(B25), Eq.
"1 o Ox*,. (B42  (B42) leads to
1 — — _ K2 A B 2
E(haulya_l_ hav\ula_ Oh*,— 5ffh“ﬂ|ag): T a2 T“V+QZT“V + 1_02(5¢W|V— on6¢)

12 d 1-02 g o oL, 1o 1o
§h [ +€Dh |V—§\:|h ‘Va—z\:‘h vl

oo\ 2 a8 v
1 1 1 _\
2Rk 4 T osm laB_ ~ our2
+ 5 0%+ g oiah, P -2 80 h)
| 1208 10° e _smzsg)— S mqe 4T
TaTgr |1 T T g e AT
(B44)
Imposing the gauge condition
208 |42 07 d/l 1) 12 D6¢|“+|2 d/l - ©45)
[ 1-02 3 1-02\21-02 4/ 4 6|21-02) 4]
we get the following equation:
— 2> 1 [ A B kP 0P ACBlL 21k2 (3 1 0 dl A A
Oh*,=— — T+ Q2TH |+ — SMT+T) - ——| - 50%- O| T#,— = 8T
I 1-02 3l 1-02 1-02%(8 8 2(1-0? 6
27071 1 1 d/l D(Ti 15M-Ef-> 846
1-02|8 802 2(1-0? rer )

This result coincides with the result of the standard linear theory given irf{B&].
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