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Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance
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At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to
a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models.
In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We
show that, under certain physically motivated and quite generic assumptions on the high energy corrections,
one obtaing1=0 for the spectrum of scalar perturbations in the original pre-big bang nfaitela vanishing
potentia). With the same assumptions, when an exponential potential for the dilaton is included, a scale
invariant spectrumr{(=1) of adiabatic scalar perturbations is produced under very generic matching condi-
tions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for
arbitrary power law scale factors matched to a radiation-dominated era.
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[. INTRODUCTION nations of the size and the flatness of the universe and of the
observed scale invariant spectrum of adiabatic scalar fluctua-
Observational cosmology has made enormous progresions in the context of modern high energy physics.
during the last couple of years. Most observations seem to In this paper we discuss two attempts in this direction
agree with the fact that the total energy density of the uniwhich are both motivated by string theory: the pre-big bang
versep is very close to its critical valug,, Q=p/p.=1, model [12,13 and the ekpyrotic mode[14-16. Even
and it is distributed in the form of pressureless dark mattethough the high energy pictures of these models are very
pm and dark energy with negative pressuPe,<—0.6p,, different, the four-dimensional low energy effective actions
Q=0,+Q,=1 with Q,=0.7 andQ,,=0.3. The cluster- agree and the models predict the same cosmology at low
ing properties of the observed universe agree with a scalénergy up to possible high energy “relics.” In the following
invariant spectrum of adiabatic scalar perturbatiams,1,  we call a model of the universe a “pre-big bang model” if it
with or without a tensor component. Many recent cosmologi-contains a low curvature phase before the big bang. In this
cal experiments measure one or several of these parametegense also the ekpyrotic scenario is a pre-big bang model.
most notably cosmic microwave background anisotropy ex- The original pre-big bang model consists just of the dila-
periments[1-3], supernovae type la measuremefss], ton and the metric, the two low energy degrees of freedom
cluster abundancd$], analysis of the observed galaxy dis- Which are present in every string theory. The presence of the
tribution [7,8], and of peculiar velocitief9] (see alsd10]). dilaton leads to a new symmetry called “scale factor duality”
Although the presence of dark enerdy, #0, remains ©Of cosmological solutions: To each solution for the scale fac-
very mysterious, inflation explains wHy=1 andn=1. tor a(t) corresponds a solutioa(t) ~*, ora(—t)~* if com-
The basic idea of inflation is simple: If the energy densitybined with time reversal symmetry. {(t) is an expanding,
in a sufficiently smooth patch of space is dominated by thelecelerating solutiom(—t)‘lzé(f) is an expanding accel-
potential energy of some slowly varying scalar field, thiserating solution, since
patch will expand very rapidly and evolve into a large, very

homogeneous, isotropic and flat universe. During this rapid da 1 da
expansion, the causal horizon becomes much larger than the == a> 0, (1)
Hubble horizon, alleviating the horizon problem. In addition, dt a
guantum fluctuations in the scalar field get amplified and
grow larger than the Hubble scald, *. They then “freeze and
in” as classical fluctuations in the energy density or, equiva- oa ) 5
lently, in the geometry, which obey a scale invariant spec- da_1d a+ da -0
——=—— =zt —=| o . 2
trum. dt? a2 dt 3\ dt

This standard picture of inflation does not emerge in a
direct way from any modern high energy physics model.rpq 1y e parameteh‘l of this “super-inflating” solution
This makes it very flexible which is probably one of the main
reasons why the basic picture has survived for so long. If £12 13 grows ast =t increases. The solution approaches
given model does not work, one is free to slightly change thdrivial flat spacetime and vanishing couplings in the past,
potential or other couplings of the scalar field. This has lead——o, and a curvature singularity in the futute»0~
to many different models of inflation presented in the litera- In this pre-big bang model, one supposes that curvature
ture [11]. This flexibility may be considered either as a and strong coupling corrections of string theory “bend” the
strong point or as a drawback. It is in any case certainly verevolution away from this singularity into an expanding, de-
important to investigate whether there are alternative explacelerating radiation-dominated Friedmann model. Several
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studies of toy models where this can be achieved have bedghese models are promising candidates for alternatives to in-
presented in the literatursee[17-20). flation: They certainly do not suffer from a horizon problem
It has been showfR1] that a pure dilaton without poten- since their age can be arbitrarily large and is not related to
tial cannot lead to a scale invariant spectrum of adiabati¢he Hubble time. They do not dynamically imply flatness, but
scalar fluctuations. For this reason it has been proposed th#tis comes from very natural vacuugfor the original pre-
fluctuations may be induced by axions via the so-called seeBig bang or BPS(for the ekpyrotic modelinitial conditions
mechanisn{22]. Axions naturally display a scale invariant which are posed at low curvature. Nevertheless, it is well
spectrum. However, the axion seed perturbations are dfnown that these models are not very efficient in smoothing
isocurvature nature, which is not in agreement with preserut classical inhomogeneitig83] and global anisotropies
observations. Mechanisms which may convert the axioni¢34l, and this may remain a problem. In the most recent
isocurvature fluctuations into adiabatic ones have been proersion of the ekpyrotic model, a cyclic universe, flatness is
posed[23]. also a consequence of a period of exponential expansion in
In this paper we will instead repeat the basic arguments ofhe previous cycl¢35]. A critical comparison of the ekpy-
[21], but we will show that the spectrum of perturbations rotic scenario and ordinary inflation is given in RE36].
which one obtains in the radiation-dominated post-big bang [N this paper we do not address the important debate of
phase generically has the spectral inaiex0 and notn=4 the flatness problem, but we investigate the spectrum of per-
as claimed inf21]. We shall also show that when giving an turbations generated during the pre-big bang phase. The aim
exponential potential to the dilaton, one can obtain a scal€f this paper is to learn as much as possible about such
invariant spectrumn=1. models without specifying the details of the high energy
The high energy picture behind the ekpyrotic scenario, thé@hase. _ . . _
second pre-big bang model discussed in this paper, is quite N the next section we write down the modified pre-big
different. There one starts with a five-dimensional universé?@ng action and the action of the ekpyrotic model. We show
containing two perfectly parallel 3-branes at rgit, 15, in a that they are rel_ated by a c_onfo_rmal tran§form_at|on and.we
Bogomol'nyi-Prasad-SommerfieldBPS state. One then solve the equations of motion in both Einstein and string

supposes that the two branes approach each other with sorf@me. In Secs. Il and IV, which are the heart of this paper,
very small initial velocity. It is argued that, from the four- We discuss scalar perturbations and the matching conditions

dimensional point of view of an observer on one of thePetween a contracting, scalar field dominated phase and an

branes, this situation corresponds to a collapsing Friedmar@xpanding, radiation-dominated phase. In particular we show

universe with a scalar fielg, which is related to the distance that, under certain well defined conditions, without knowing

between the two branes before the collision. After the colli-the details of the matching, one expents 1 for the modi-

sion the solution is supposed to turn into a radiation-fied pre-big-bang and the ekpyrotic model. In Sec V we gen-

dominated Friedmanfil4,15 (see, however[24—26§ for eralize our results to arbitrary power law scale factors

criticisms. matc_:hed to a radiation-dominated era. We end with our con-
It is assumed that the scalar field is minimally coupledclusions and an outlook.

and has a negative exponential potentfalvhich describes

the attraction of the two branes. The scalar field potential is Il. THE BACKGROUND

due to non-perturbative string corrections but has not been , ) . )

derived from any string theory, so far. In Ref$5,14 it has The low energy effect|ve_ action of the original pre-big

been argued that, W= — Vyexp(—ce) at low curvature, with bang model is simply gravity with a dilatogp. Here we

c>1, a scale invariant spectrum of scalar perturbations del'0dify it by allowing for a dilaton potential. We assume that
velops. This result has been criticized in Ref27—32 we have a four-dimensional effective theory, any extra di-

where a spectral inder=3 has been obtained. We shall mensions being frozen at a very small scale. The low energy

show here that, even if the detailed arguments put forward i@ction for this theory is therefors7]

Refs.[15,16 might not be valid, under quite generial- L

;crr:gggzgir?tr|V|a] assumptions, one does obtain the spectral 5= Z_Kzf dx4\/—_ge‘¢[R+(V¢)2—2V(¢>)], 3)

Like the original pre-big bang, the ekpyrotic model starts

out at low curvature and develops a singularity in the future,yith 2=8+G=1/M2 , where Mp=2.4x 10! GeV is the
Like there, the belief is that string theory corrections will
change the behavior of the scale factor and of the scalar fiel
away from this singular evolution. In the five-dimensional
picture, this apparent “singularity” corresponds to the colli-
sion of the two branes which then should result in the pro

reduced Planck mass. This action is written in the so-called
ring frame. The caret indicates that the corresponding
quantities have to be computed using the metric in this

frame. Therefor@, R, V, andV are the determinant of the
metric, the Riemann scalar, the covariant derivative, and the

duction of radiation leading to a thermal, radiation- . ; ) . . , .
dominated Friedmann model. We call the phase before thgllaton potential, respectively, in the string frame. With this
action ¢ is dimensionless and the usual scalar field with

high curvature regime the “pre-big bang phase” and the re-" - . X
gi%e after the biggbang theF‘)‘post?]big bgn%” phase. dimension of mass is simply p¢. Correspondingly, the po-

Even if the string theory corrections, which must becometentia[\A/ has dimensions of (energiand the usual potential
important close to the singularity, are not fully understood,is ME,V. We use the metric signature + + +.
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String cosmology and, in particular, the original pre-big negative dilator(at early time, and does not spoil the initial
bang scenario, has been developed based on a&iomith conditions of the pre-big bang model.
the dilaton potential set to zero. It is possible to rewrite this Varying Eq.(8) with respect top we obtain the equation
action in a conformally relatedand physically equivaleit of motion
frame. If we perform a conformal transformatiog,s

=029, the action is modified to He—V(e),=He—cVee *=0, (12)
1 where[d1=V,V*. Varying the action with respect to the met-
S= _Zf dX41/_gQ—2e—¢[R+(V¢)2+ 6(VInQ)? ric yields the Einstein equations,
2k

~ Ga,B: KZTa,B ' (12)
+6(Vp-VInQ)—20"2V(¢)]. (4

where T,z is the energy-momentum tensor of the scalar
When choosing)=exp(—¢/2), we can obtain the Einstein fie|d,
frame action,

1
2 — 2
1 1 KT og=Vao V=50, (Ve) +2V(p)]. (13
sf;f dx‘w-g[R— 5(Ve2-2V(¢)|, (5 2
K
We want to consider a flat homogeneous and isotropic uni-
where verse with metricds’= —dt?+a?dx?. In this case Eq(11)

R . becomes
9up=€ ?9.s and V(¢)=e’V(¢) (6)

are the metric and the dilaton potential, respectively, in the
Einstein frame. Equation5) is the action for a minimally  \yhere the overdot is a derivative with respect to the cosmic
coupled scalar field. Notice that the dilaton has not bee'ﬂimet, and Eq.(12) turns into the Friedmann equation
changed by the conformal transformation.

We can also allow for a rescaling of the scalar fiejd, 2 1. 1
= ¢/, so that H2:§p=gcp2+ 3 V(o). (15)

¢+3Hp+V =0, (14)

R— %,82(ch)2—2V(<p) G Equations(14), (15) have the “ekpyrotic solution15]

1
S =—J’ dx*y—
BT, 2 g

2
Since we want to obtain here the usual scalar field action a()=(-t)", ()= In(=M1), (16)
presented if14] starting from the string cosmology action
(3), we have to requirg8?/2=1. This fixesB==*+2. In  with
terms of the new fieldp, the Einstein frame action now

becomes 2 Vo
_2!

M2=———.
p(1-3p)

p= (17)

1 C
SE:_QJ dx*J—g[R—(V¢)*—2V(¢)]. 8 o

2k At first it may seem strange that the enthalpy=P/p and
the sound speed?=P/p are much larger than one2=w

For an exponential ntial
or an exponential potentia >1, for small values op (largec),

V(g)=e "V(¢)=—Vee’, ) »
, : w= (1/2).—(Pvzc2=£—l. (18)
where A= —(1+c/B) with c>1, or equivalently for (1/2) 9%+ V s 3p
V(g)=—Vee , (10)

On the other hand, as long as we concentrate on a time

- : : : interval bounded away from the singularity, we can always
we obtain precisely the low energy effective action of the'"'c o o
P y gy split the potential intoV=V,(¢)+V,, whereV, is a very

ekpyrotic scenari$¢15,16. The interpretation of the fielg i tant and. is al tive. Int "
is, however, quite different. There is related to the brane negative constant and, 1S always positive. Interpre Ny
as a negative cosmological constant, we have

separatiof15]. At early times when the two branes are sepa-
rated by a large distance, the scalar figlds very big and
positive, ¢—. Therefore the relation between the string
cosmology dilatong which tends to—« for very early
times,t— —o, and the fieldp of the ekpyrotic scenario is
b=—\2¢, B=—\2. Sincec>1 andg is negativeA>0  as well as—1<ci<1 andw,=c3=—1. However, since
so that the potentiald) goes asymptotically to zero for very Q1=p,/(p1+V2)>1 and Q,=V,/(p1+V,)<—1, the

1/2) 92—V
Cpew, RV (19
(1/2) %+ V,
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“effective” w=w;0;—Q, can become much larger than 1  In this section we have first shown that, from a purely
without implying any pathological or even acausal behaviorfour-dimensional point of view the ekpyrotic scenario is
of the scalar field “fluid.” equivalent to the pre-big bang scenario when the dilaton has

We shall see that the perturbations generated in this coln exponential potential that tends to zero at small coupling.
lapse phase acquire a scale invariant spectrum only if then doing so we have presented the equations for these mod-
collapse proceeds very slowly, i.e. whemrsp<1. In the els, written in the string and Einstein frames, and we have
ekpyrotic scenario the collapse is followed by an expandingvritten down the solutions that hold in either frames. These
phase. Shortly before the bouncetat0~, when the scalar solutions are useful for discussing perturbations, which is the
field, after having become negative, goes to minus infinitysubject of the next section.
¢— —, the shape of the potential has to change from the
exponential expression, and turn upwards in such a way that
V—0 for ¢— — oo,

Let us give here, for completeness, the equations derived We now want to study linear perturbations of a generic
from the string frame action Eq3), where the potential universe dominated by a minimally coupled scalar field with
V() is given by Eq(9), and their solutions. By varying this an exponential potential or an adiabatic fluid with= c§

Ill. SCALAR PERTURBATIONS

action with respect to the fielgp we obtain =const. This last condition is automatically satisfied for a
. R o ) scalar field with exponential potential.
2V, Vep—(Vp)2+R—2V+ 2V 4=0. (20 As discussed in the preceding section, pre-big bang ex-
. pansion in the string frame is equivalent to contraction in the
Varying the action with respect @*# yields Einstein frame, where the dilaton is minimally coupled.

Therefore, pre-big bang expansion with a dilaton is included
in our study. It is important to note that physical quantities,
like the spectral index or the perturbation amplitude, are
frame independent but they are more easily computed in the
For a homogeneous and isotropic universe with spatially flaEinstein frame where linear perturbation theory is well es-

A A 4 1" c VAY Y
Gup==VuVpd— 204 (V9)2-29, 90+ 2V]. 21

sections, Eqs(20) and(21) reduce to tablished(see, e.g. the review88,39).
. o . To discuss perturbations we work mainly in conformal
$+3Hp— ¢*+2V+2V ,=0, (22 time », which is related to physical timeby adyp=dt. The

derivative with respect to conformal time is denoted by a
prime. For the sake of simplicity we neglect a possible cur-
vature of the spatial sections. In a flat universe dominated by
a fluid or a scalar field with energy densjyand pressur@
where the overdot here refers to cosmic time in the stringhe background Friedmann equations are

frame, 1.

a1 1l
AZ-Ag+ 52— 3V=0, (23

To find a solution to these equations we can simply trans- K2
form the solution found in the Einstein frame using the rela- H?= gpaz, (28)
tions
di=e??dt=e"¢"2dt, a=e??a=e ¢2a. (24 K2 143w
@49 H’=—€(p+3P)a2=—HZT, (29

The first relation gives
_,\‘,lf:(_Mt)l—VﬁB, (25) whereH=a'la.
If the energy density is dominated by a scalar field, we
whereM =M (1— yp). For smallp, p<1, { is very close to Nave
tand, as long ap<1, t grows from— to 0 witht. Insert-

ing the ekpyrotic solutions in expressiof&) for a and ¢, 1
we obtain Kp=2® +V(e), (30
a=(-Mb)~P, (26)
2 1 12
and K P:E(P —V(e), (39)
¢=—2¢=—2 In(— M), (27  and
1-vp
up to possible integration constants which we have fixed to W 1= @'? (32)
obtaina=a andt=t in the limit p—0. 3H?
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Whenw=c3=const, the solution to the Friedmann equation Mp
is a power law. In terms of conformal timg it is given by u= Wa\lf. (37)
4 2 Equation(36) can then be written in terms of as
azi , q: , H:ﬂ, H/:_i' q ( )
71 1+3w Y 7]2 ” 2 "
33 u"+[Yk“—a(l/a)"Ju=0. (38

Let us now suppose that the collapsitwy pre-big bany
phasen<— »; is dominated by the scalar field so thet
=1. Equation(38) then has the general solution

where we have chosen the normalization constgnsuch
that — ;<0 is a very small negative time at whi¢higher
ordep corrections to the scalar field action become impor-
tant. Sincea(7;)=1, n;=a(n,) n,~1t, corresponds to a
physical quantity, e.g. the string scale in the pre-big bang
model, 1, ~10'" GeV. Comparing Eq(33) with the ekpy- 4 p=0+1/2. HereH) is the Hankel function of théth

r_otl(): solutions in terms of physical time, we firg=p/(1 kind and of ordernw. One can generalize this solution to the
P)- case of a fluid-dominated universe simply by replading

. Let us now perturl_) the ”.‘et“c- In Iongltqdmal gauge andbly csk#. This solution has to be generated from the incom-
in the absence of anisotropic stresses, as is the case for P Vacuum. So we assume that idig|>1
fect fluids and for scalar fields, scalar metric perturbations 9 ' Y '

are given by

u= (K| 7" C(kHP(kn) +D(K)HP (kn)], (39)

e*ikr]

lim u=

7=

ds?=a2(7)[ — (1+2W)d 72+ (1—2W) 5, dX dx]. (40

(34)

k3/2 '

. . ) This assumption corresponds to normalizing the canonical
In this gauge the metric perturpauoh.corresponds to the variable which diagonalizes the perturbed second order ac-
gauge invariant Bardeen potential. Without gauge fixing thg;o (calledy in [38]) to quantum vacuum fluctuations. With
latter is given by a more complicated expressions of the me this normalization, theH® mode, which approaches

ric perturbations[38—40. The scalar fieldy is also per- _
; - , . o expkz) for k|»|>1, has to be absen€(k)=0, and the
turbed so that it can be divided intg(#) satisfying the solution to Eq.(36) becomes

background equatiofil4), and a perturbatiode( 7,x).

We now want to compute the spectrum of metric pertur- q
bations generated from vacuum initial conditions. Generi- ¥ _(k,7)= =——D(K)(Kl 7)"*HP(k7n), (4D
cally, ¥ satisfies the equatidi88,39 Meaz

U+ 3H(1+cA) W +[2H +(1+3cH)H2—YAw=0,  Where

(35 D (k) = a2k~ %2, 42)

For adiabatic perturbations of a fluid, one findfs=c2,
where cg is the adiabatic sound speed, while for a simple
scalar field one find¥' =1 (see, e.g. Ref.38]). For a non-
vanishing potentialV#0 and hencec?#1, simple scalar H
field perturbations are not adiabatic in a thermodynamic \Ifﬁ(k,n)zAi(k)—z—{—Bi(k), (43
sense. a

If we restrict ourselves to the case=c2=const, the . .
mass term in Eq(35), 2K’ + (1+3c2)H2, vanishes by the whereA _ ar'ldB,. are detgrmlned by the exact solutigtl)
use of the background Einstein equati@$). Thus, for sca- (UP to logarithmic corrections
lar perturbations we obtain nearly the same equation as for u
tensor perturbations, which we can write in terms of Fourier A (K)= 2K () !

modulo some irrelevant phase.
At late timek| 7| <1, this solution approaches

modes as Mp 79 ' (44
P+ 3H(1+w)¥' +Yk>¥ =0. (36) -
_ N _ Bo(K)=———kt L, (45)
This equation is valid in both phases of the universe, before Mp2#T (u+1)

and after the big bang, depending on the corresponding value

of wandY. We call ¥ _ the solutions obtained in the pre- The result(43) can be found directly by solving E¢36) and
big-bang collapsing phase an#l, the one obtained in the neglecting thek? term. The full solution is, however, needed
radiation-dominated phase. In the following we shall work into determine the pre-factord_(k) and B_(k) from the

Fourier space. vacuum initial condition. TheA_ mode grows during the
Let us now define the variablein order to simplify Eq.  pre-big bang phase and becomes much larger than the con-
(36) [38]. We set stantB_ mode.
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In the original pre-big bang model, where the dilaton hasorder to match the spacetime manifold _ before the big
no potential, i.,ew=c2=1 and henceg=1/2, we haveu bang to the spacetime manifoltl(, after.
=1. The A_ mode then has an=0 spectrum,A_|%k®
ok 1tk while the B_ mode corresponds tm=4, A. Matching the background
|B_|?k3=k3=k""1, If we have an exponential potential as
for the ekpyrotic model such thgi<1, and thereforg
<1, we haveu=1/2 and hencgA_|%k® is k independent.
The A_ mode has a scale invariant spectrums 1, while
|B_|?k3=ck?, which corresponds to a blue spectrums; 3.

If the A_ mode has a red spectrum, as in the original
pre-big bang scenario, we need to discuss its amplitude on Qap=0upt NaNg, (47)
large scales. It has been showrn #1] that a red (=0) A_
mode does not invalidate linear perturbation theory duringvheren,, is the normal to the;= const hypersurface, on the
the pre-big bang phase. Geometrically meaningful quantitiematching hypersurface= = »,. Thus we have
like C,p,sC*#?7°IR?=A?, whereC,,,; is the Weyl tensor
and R is the curvature scalar, remain small. In fak® [dapl==0, (48
«|(kp)?¥|?k3. We can therefore continue to use the .

Bardeen potential even though it may become large for cerWhere we define
taink _modes. However, a re(_j spectrum leads to serious prob- [h].= lim (h(7)—h(—7))=h,—h_, (49)
lems in the subsequent radiation era where the Bardeen po- N

tential is constant on superhorizon scales axfd grows

larger than unity at horizon entrigy~ 1, for large scales. In  for an arbitrary functionh(z). Here 7 », indicates the
the modified pre-big bang models discussed here, this prolsight-hand limit, i.e.» is decreasing towards;.

lem does not occur, sinc&_ has a scale invariant spectrum.  Our conformal time coordinateg itself jumps,

At very early timeafter the big bang, in the radiation-
dominated phase, we can neglect the tafkf=k?/3 in Eq. [7]-=27,. (50)

;%?.n\{\(l)edg;en have the same type of solution for SUperhorI"I'his simply means that the coordinates/of . and M, are

well defined only on the intervalgye (—o,— 7] and »

e[ n1,2), respectively. The limit(49) is well defined for
H every function which is continuous, monotonic and bounded
a

Before specifying the matching of the perturbations, we
have to match the backgrounds, i.e. we have to impose the
Israel junction conditions on the scale factoand its first
derivative. These conditions require the continuity of the in-
duced metric,

V. (k,7)=AL (k) — +B. (k). (46)  in open intervals € 7,,— 77) and (1,7,), With 7,> 74,
even if their value att , is not defined.
Equation (48) implies a, =a_=a. . According to our

In the next section we will work out the matching conditions normalization of the scale factor, E(3), a.=1. We nev-
between this solution and EG43), in order to determine the ertheless prefer to leava. in all the expressions where it
coefficientsA, andB, . appears, so that its normalization can be conveniently
changed.

The second lIsrael junction condition concerns the extrin-
sic curvatureK, on the matching hypersurface with normal

We suppose that the solution given in E43) holds until N
n=—n4, Where higher order corrections begin to play a
r_oIe. The;e corrections may be quite differe_nt for the modi— Kaﬁ:E(qPV ng+asv,n,). (51)
fied pre-big bang model and for the ekpyrotic model, but in 2 7« A
both cases they are supposed to lead over to a radiation- . . o
dominated Friedmann model. Here we do not want to argud’ @ Friedmann universe this is

IV. MATCHING CONDITIONS

about the nature of the corrections and how to determine ,
them from string theory(even if this probably has to be Kiz_ a 5i_:_ﬂ§i_ (52
considered as the most difficult and the main problem of ! a2 ! a l’

these mode)s but we study which statements can be made

under certain assumptions on the transition. For this we nefhe derivativea’ changes sign in the transition from a con-
glect the details of the transition and match our pre-big bangdracting to an expanding phase. Hence, the extrinsic curva-
solution atnp= — », to a radiation-dominated universe at ture is discontinuous in the four-dimensional, low energy
=+ 7,. In other words we suppose that the slice of spacepicture if we simply “glue” the contracting phase to the ex-
time “squeezed” between- 7, and 7, is so thin compared panding phase with opposite sign ff and conformal time

to the scales we are interested in, that it can be replaced byzs= + 7;. On the other hand, the Israel junction conditions
spacelike hypersurface. Therefore we can consistently usalow for the existence of a surface stress tensor,

the thin shell formalism and apply the Israel junction condi- . )

tions[41] for surface layers on thg= =+ 7, hypersurface, in [Kjl-=«%S;, (53
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which in our case is nonvanishing and diagonal, and it is - 1 ) , ,
characterized by a negative surface tensir 0, Kj= AV +HV+(H' -HAT}5+T). (59
[Ki]+:—M§i:K2PS§l. (54) The matching conditions for the perturbations are ob-
e A+ : : tained by perturbing Eq$48) and(53) on the = 7, hyper-

Within the four-dimensional picture we have no explanationsurface' They become

for this surface tension; it has to be introduced by hand in
order for the extrinsic curvature to jump. Equati@) is a
possibility to “escape” the violation of the weak energy con- . P ~ -
dition, p+P<0, which is needed for a smooth transition From the above ex_pressmns Tﬁgf” andan ! the cont|n~u
from collapse to expansion. This has been one of the objedly of the perturbation of the induced metrég;; on the
tions to the ekpyrotic scenario in Rd#2]. Of course for = 71 hypersurface leads to

7= 74 the combinatiorp+ P+ P,8(7»— 7,) becomes nega- _

tive, which, in the widest sense, can also be interpreted as an [W+HT]..=0. (61)
“effective” violation of the weak energy condition. Clearly, For reasons that become clear below, we assume in the

this is the slmplest way of_ connecting a contracting phase t ollowing thatT =7~ 7, the lapse of time between the back-
an expanding phase, but it is relatively close to an approac ~ i
motivated from the five-dimensional picture, where the sin-9round value, and the perturbed valug, remains a small

gularity ata=0 becomes a narrow “throaff15]. Here we perturbation on large scales. This implies that &€. has

replace this throat by a stiff “collar” whose length we ne- to r?r_nain_small. Wr;at s the meaning OT “small perturba-
glect (see alsd 16]). tion” in this context? Once a gauge is fixed, the Bardeen

potential'¥V is the only degree of freedom characterizing the
perturbations. For dimensional reasons, it is natural to expect

T to be given as a linear combination ¥f andW¥’, in terms
Let us now perturb the Israel junction conditio@®) and  of

(53). Instead of considering they= n,; hypersurface we
want, in general, to consider a hypersurface which is linearly T=7nP(kn)¥+7°Q(kn) V', (62

grir;lljlrbee?tlzrr?agtigh d?'];:gequray}:isn:o-\l;v:rzgli;lver:jergn-rtﬁea er_whereP and Q are polynomials ofkz, which may have
P | Jump P nl n, dependent coefficients. Here we assume that these

[39j1.=0, [3K|].=«?3S. (60)

B. Matching the perturbations

turbed hypersurfacey= 7, polynomials do not contain any negative powerkof, i.e.
. ~ ~ that
[h].= lim {h(n)—h(=n)}=h, —h_, (55) o
T [T/ 7% |~ |T1 2% |~ |P(k)| +[ Q)| — finite.
and in principle we cannot say anything about the continuity (63

of T, which is also allowed to jump, On large scale3 grows with scale at most ak or V',

[Tle=[7—n]-=2n1—[7]- . (56) The reason fo_r this is that we do not want the 7,
hypersurface to diverge arbitrarily from thge= », hypersur-
Nonetheless, this jump should be always small as it willface on large scales. In other words, we require the time at
become clear below. which the bounce happens to be stable under large scale
We assume that the old coordinates,X') are those of perturbations. It is clear that this assumption is not entirely
longitudinal gauge, so that the metric perturbations are givetrivial. It limits somewhat the large scale power of the “new
by Eq.(34), but we want to determine the perturbation of the physics” which is needed to convert contraction into expan-
Israel junction conditions in the coordinate systemx) on  Sion. This new physics may not induce very strong infrared

the surfaces;=const. The metric in this coordinate system perturbations, which is very reasonable and confirmed by
is given by(see e g[ég]) numerical examples on pre-big bang moddi4].

Under this assumption the anisotropic term on the right-
(P 22( )V =142 — 2(HT+T")1d 72 hand side of Eq(59), d'9;T, is n(_egligible on large scales anq
ds'=a’(m){-I (1 )]d7 we shall not discuss the possible, but sub-dominant, aniso-
+2T,;,d7dX + (1-2¥ - 2HT) 5, dxdx}. (57)  tropic surface stresses in what follows. On superhorizon

. scales the perturbation of the extrinsic curvature is domi-

Hence the perturbation of the normal to the: const slices nated by the trace pardK|=(3K) 8} with

is .

1 5K = 5{xlf'+71fx1f+(H’—HZ)T}. (64)
Bn=—{(—W+HT+T) - Tdih, (59)

The matching conditions for the perturbations become Eq.
and the extrinsic curvature is given p43] (61) and
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[V +HV+(H —H?)T]. = k?a. 6P, (65) These matching conditions are often used in inflationary
- - models to go from the inflationary phase to the Friedmann
radiation-dominated phase. The difference with inflationary
models is that her&{ jumps. Furthermore¥y in general will
not be continuous at the transition, since evenhig continu-
ous, HT is not. Notice that, even thougK jumps at the
transition from contraction to expansion, and hehtecon-
tains a Dirac delta functior],T]. is well defined as it is a
continuous, bounded, monotonic function in some open in-
- - k—0 tervals (- 7,,— 71) and (1,72).
SKI(HWY), SK/V' — finite. (66) Inserting ansat#43) and (46) in the continuity condition
for the metric, Eq(70), yields

where 5P, is the perturbation of the surface tension.

The condition posed in Eq463) has the following impor-
tant consequences: from E(4) we see that withT not
being “redder” than¥ and¥’, also K has typically the
samek dependence a¥ or V'. Therefore it remains small
(of the same order a& or ¥’ in k) whenk#; tends to 0,

From Eq.(65) we then infer thatdP, may as well have a

non-trivial k behavior but it remains small on large scales, H, —2H> (H’_—ZHZ_ 71
- - —— T R W
OPI(HW), 6P,/¥' — finite. (67)

_ Clearly, sinceB, couples only toB_ it inherits the blue
The k dependence ofP; may become important when spectrum oB_ . This is the main argument of Ref27-32
matching the perturbations but it cannot dominate on largegainst the ekpyrotic model. As we shall see below, this is
scales. also the matching condition which leads to the4 spec-
The assumption&3) and its consequencé86) and(67)  trum in the pre-big bang model given in RE21].
become important in Sec. IV D where we try to derive a There are two subtleties which have been left out in this
general result from these matching conditions. First, let usirgument. The first one is obvious: the surface tengign

discuss some examples. the only ingredient of the high energy theory in this ap-
proach, may well also have a perturbatiéR, requiring
C. Two examples [6K].=kZ5P.#0. If this is the case, the matching cannot

The matching conditiong61) and (65), which the un- be defined on the constant energy hypersurfaces,
known details of the transition have to determine, fix the=dp/p’. Secondly, and more importantly, in this model
coefficientsA, (k) and B, (k). So far, in the literature, for Wwhere contraction goes over to expansion, a transition sur-
inflation [43] as well as for the ekpyrotic scenar[@7—  face with a physical surface tension is required and this sur-
30,45, the hypersurface on which the matching has beeifiace does need not to agree with {hé 5p=const.
performed was always chosen to be the constant energy hy- As a concrete example, let us simply assume that this
persurfacep+ dp= constant. In this casd,= ép/p’. matching surface is given by the condition that its shear van-

The perturbed Einstein equations gisee e.g[39], Eqs.  ishes. This is actually just thg= const surface in longitudi-
(2.45 and(2.46), and usesp=pDy in longitudinal gaugg  nal gauge, hence we haWe=0 in Egs.(61) and(65). The

junction conditions on superhorizon scales then become

o2 3K+ HAW+HY'
PR Al ! [¥].=0, (72)
= 2(V+H 1), (68) [HY+W¥'].=a.k?6Ps. (73

on superhorizon scales. Wigh =2p(H’ —H?)/’H we have  For our general solution@3) and (46) this gives

—1 A HfA ai(B B.) (74)
- > T, =—A_+—(B_—
T=5plp H,_HZ(H\I’ N (69) N . +

Equation(61) then leads to

+

Ho(H IH_—H)—H, +H2 \ H_ A
2H2 —H, a2

(R¥+¥")| =[{].=0, (70

H_H,.—H>
+ +

H —H?
2H% —H! B‘+2H2—H’
+ + + +

1+ k?a. 5P;.

where( is the curvature perturbation introduced by Bardeen
[40]. Furthermore, using Eq69), one finds tha%K”:O on
large scales and we obtdidK].=0. Hence, this matching Alternatively, we can express the matching conditions in

condition can be satisfied only if the surface tensRis  terms of ¢ given in Eq.(70) and its canonically conjugate
unperturbedsP,=0. variableIl defined in Ref[46], by

(79
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5 2a2 and¥’, and determin&’ _ in terms of ¥ _, ¥’ | and of the
I1=2Mpk" V. (76)  surface stress perturbatiaiP. The general result we are
about to derive is based on one important assumption, the
On superhorizon scales we have smallness off, as given in Eq(63). As explained there, this

assumption precisely limits the “infrared power” of the

H?2 “new physics” needed to convert contraction into expansion.
(=1~ W) B(k), (77)  As we have seefEgs.(66) and(67)], as a consequence the
extrinsic curvature and tension perturbatiod§ and 5P,
a2 have the sam& dependence a& andV'.
H:2|\/|§,k2(A(|<)Jr —B(k)). (78) This assumption fixes completely the final spectrum,
H avoiding any arbitrariness such as the one founfBiH for

the ekpyrotic scenario. Then, in Eq&l) and (65) the k
dependence is given entirely in terms of the coefficiehts
andB. As a result, thek dependence of the coefficiens,
and B, is a mixture of thek dependence oA_ and B_
given by Egs.(44) and(45),

The perturbation variablé is constant and proportional to
the constanB(k) while its conjugate momenturll is pro-
portional toA(k)k? and constant up to a decaying part pro-
portional to B(k) which will be negligible at the time
— 74, when we impose the matching conditions.

On the zero shear hypersurface we can write the matching AL (K)=ak ATW 4 g k= 1Hx (83)
conditions of the perturbations in terms ofandIl as

[HIT]. =0 79 B..(k)=agk ")+ Bgk 1+, (84)

} where thea terms come from thé&_ mode and thg8 terms
) ) K? l ) come from theB_ mode. According to our assumption, the
(H'—H") 2k2a2H_ H =ak“oPs. (80) coefficientsag and B¢ generically contain a constant and

positive powers okz,. The A, mode is decaying and we
may neglect it soon after the matching. Generically we ex-

Therefore we have pect, according to the amplitudes of the andB_ modes,

H thata, andag are much larger thag, andBg. Comparing
I, = H_+H” (81) theA_ andB_ modes we expect
, ) , S, O(ak™ 7#)~O((kny) "Bk M), (85
H, H_—H_)g LK (H H_—H_H ) .
TR\ a2 | > 2 - T L2t hence, for superhorizon modeskn,;<1, we expect
H—Hy 2k"as Hi—H ak 1"#s> Bk 1*# aslong agu=q+ 1/2 is positive. There-
H fore, one typically inherits the spectrum of theerms in the
<II_ — —+23+K25ps_ (82)  radiation era, leading to
HL—HL
Py=|V|?k3=|ag|?k' 2 (=k"7Y). (86)

Hence, using matching conditions on the zero shear hyper-
surface{ acquires, in the radiation-dominated era, a moddn this generic situation, we obtain a scale invariant spectrum
«I1_k ?xA_, which has a spectral inder=1—2q of 1=n=2-2u=1-2q if qis close to zero, as in the ekpy-
A_ . Interms ofA, andB, this leads again to Eqé74) and  rotic and modified pre-big bang case.
(75). Only if the matching conditions are such that ag term
As A_ represents the growing mode during the contractis suppressed by a factor smaller th&m()>*, the B term
ing phase|A_H/a?| is much larger thahB_|, and the spec- comes to dominate and the spectrum becomes blue,
trum of B, inherits the scale invariant spectrumAf . It is 203 1 120140 N1
easy to see from pure sign considerations that the pre-factor Py =|W|*K*=[ B[k (k™). (87)

of A in Eq. (75) does not vanish. Then, the spectral index=2+2u =3+ 2q results.

As an estimate, for scales of the order of the present
Hubble parameter, relevant for the perturbations in the cos-

As we have seen, the important question is to determingiic microwave backgroundk~Hgags, and for 1fp
the correct matching hypersurface and the perturbation of its- 1/(a.. ;) ~10'" GeV we havekzn,~10 *. Hence we
tension. This can only be done by studying the high energgypically expect the3 terms to be about £8times smaller
corrections of a specific model. Nevertheless, we now wanthan the « terms on cosmologically relevant scales,
to provide an argument why we think that a scale invariantvgk 1 #~10°Bgk 1" #.
spectrum is obtained in models where the collapsing phase is For the constant energy hypersurface we have obtained
characterized by (— 7)% with g<1. ag=0 and hence the generic inequaligk 1 #> gk 1T+

As we have seen in the above examples, the matching violated. But if the matching hypersurface deviates by
conditions are fixed by, given as some combination df more than about-10~3° from the p+ 8p=const hypersur-

D. A more general treatment
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face, we expect thé_ term, ak 1"#, to dominate in the k4245|2749 for q>1/2,

Bardeen potential and to determine the final spectrum. P§=|§|2k3oc[ K2+ 20 for  a<1/2 (90)
For a scalar field without potential, as in the original pre- d k

big bang model, we hawvg= 1/2 which in the “generic case” . . . .

leads to a spectral index=1-2g=0 and only under very giving a spectral index for the variablg

special matching conditions, like matching on the constant 5_2q f ~1/2

energy hypersurface withP =0, the spectral inder=4 is :{ q for q ’ (91)

obtained. £ 13+2q for qg<1/2.

In the case of ordinary inflatiorg~—1, whereu=1/2
+ ¢ is negative, the situation is quite different. There,#he  Since in Ref[45] the matching conditiof{].=0 is used,
mode is decaying and the Bardeen potential at the end dhe spectral index of translates directly into the spectral
inflation is dominated by the constaBt. mode. Hence, we index of scalar perturbations in the radiation era, wHeaad
generically expect to inherit in the radiation phase the spec¥ essentially agree on superhorizon scales. This is the rea-
tral index from theB_ mode withn=3+2(q, leading to a son why these authors obtain a scale invariant spectrum also
scale invariant spectrum for ordinary inflatiaq;- —1. This  for g=2 (while they obtainn=3 for the ekpyrotic mode!
is also the spectrum obtained when matching on the constant We have found the following behavior of thié spectrum
energy hypersurface. on superhorizon scales during the pre-big bang phase

In Ref. [47], a radiation-dominated contracting phase isEq. (41) in the limit k| 7| <1],
connected smoothly to a radiation-dominated expanding

phase, via a scalar field with negative energy density which k=24 |~ 49 for q>-1/2,

comes to dominate in the high curvature regime. Here a W“[ K2+2d for q<-—1/2. (92)
=—1 spectrum of perturbation is found with analytical ar-

guments and via numerical simulation. This agrees with OURpis leads to the spectral index uf

result. In this case, in facg=1 and according to our argu- '

ment we would generically expeat=1—-2g=—1, as ob- _ _

tained in Ref[47]. It is interesting to note that the matching n\v:{1 2q for q>-172, (93)
conditions of Ref[47] corresponds to the matching on the 3+2q for g<-1/2

hypersurfaces determined By= —H ~ ¥ from the longitu-
dinal gauge. According to Eq57), this corresponds to the Comparing Eq(90) and Eq.(92) we see that
gauge with~5gi0¢0, the “off-diagonal gauge,” which has
also been considered in R4R1] as the gauge in which P=kn|*Py=<Py, (94
perturbations remain small during the pre-big bang phase.
This is our main result: When matching a collapsing uni-With
verse to an expanding one, we expect the Bardeen potential

in the expanding phase to inherit the spectrum of the mode 0 for qgq<-—-1/2,
which grows during the collapse phase, leading to y={1+2q for —1/2<q<1/2, 95)
Pyorck 29 n=1-2q, (89 2 for g>1/2.

whereq is the exponent with which the scale factor contractsAs we have mentioned above, for cosmologically relevant
in conformal time,ax|7|% We note that this result holds scales, the factdik| becomes of the order of 18° at the
only if we assume, as explained in Sec. IV B, thds small  matching surface. We have argued in Sec. IVD that the

on large scalefsee Eq.(63)]. larger variablel should be relevant at the matching surface,
and only under very special matching conditions is the spec-
V. USING ¥ OR ¢? tral index of ¢ inherited after the big bang. Generically we

therefore expeah=ny, to be the spectral index in the radia-

In the above discussion we have used mainly the Bardeefion era. If q< —1/2, ¥ and ¢ agree up to a constant pre-
potential V. Several author$28-30,43 use the curvature factor, and this distinction becomes irrelevant for the spectral
perturbation given in Eq.(70). In particular, Ref[45] has  index. This is exactly what happens in “ordinary inflation”
found whereq~ — 1. The functionsiy, andn, are shown in Fig. 1.

Finally, for completeness, we want to emphasize that the
Bardeen potential in a radiation-dominated universe really
determines the spectral indexvia Py =|W¥|?k3k" "1, A
scale invariant spectrum is defined as one for which
This also follows from the definition of [see Eq.(70)],  ((dM/M)?),. is scale independent, where the angular
together with the solutiori4l) for . During the pre-big brackets denote spatial average and the subscript “h.c.” in-
bang phasey< — »4, this leads to the following spectrum dicates the scale of horizon crossing. Therefore, the spectral
for ¢ on superhorizon scales, modulo logarithmic correc-index is defined by(6M/M)?), .=k %, so thatn=1 rep-
tions, resents a scale invariant spectrum.

|771/2 " -
(o ——HP(ky),  v=|q-1/2. (89)
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(R

energy corrections of the theory. It is this surface tension
which determines the correct matching surface and it will
generically not be parallel to the+ dp=const surfaces.

We have found that if the matching is performed at the
p+ dp=const hypersurface, the growing mode from the pre-
big bang phase is converted entirely into the decaying mode
in the radiation phase. In this case the spectral inue?3
+2q is obtained, leading tm=3 for the ekpyrotic and
modified pre-big bang model, amd=4 for the original pre-
big bang model. However, if the matching hypersurface is
chosen to be somewhat different fromt dp=const, one
obtainsn=1-2q. Hence, the ekpyrotic and the modified
pre-big bang model can lead to a scale invariant spectrum of
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_2 _1 o " > 3 Our result is based on the assumption that perturbing our
q background bouncing universe does not change completely
the time and duration of the bounce on large scales. We have

FIG. 1. The spectral indiceay (solid and n, (dashedl are  formuylated this requirement precisely by restricting the al-
shown as a function afj="H». As argued in the text, we expect a lowed “infrared power” of T

op
p

2
. (96)

resulting spectral inder=ny in the radiation era. Notice that the generic spectral index;: 1—2q, resulting
On the other hand, from our matching conditions of a pre-big bang transition is
growing as soon as they exit the horizon until the end of the
pre-big bang phase. Hence large scales, which exit earlier,
not strongly gauge dependent, so we may choose whateveiiictuations, one consideré®|?k® at horizon crossing re-
gauge we please. We use comoving gauges a simple  quiring that this behaves like"*. Applying this procedure

never bluen<1. This is not so surprising: On subhorizon
) scales, the perturbations are in their vacuum state. They start
ﬂ =K3
M
. _ . have more time to grow.

On subhorizon scales and also at horizon crossiipgp is Often, as a heuristic approach to obtain the spectrum of
estimate to verify the same behavior, e.g. for longitudinalguring the pre-big bang phase at the first horizon crossing
gauge. In comoving gauge we have the constraint equationexit), one obtains the blue spectna 3 for the ekpyrotic or

[39], the modified pre-big bang model amd=4 for the original
pre-big bang model, respectively. However, if one deter-
3H2( 8p mines the same quantity at tisecondhorizon crossingre-
k2@ = —( —) (97 entry), during the radiation-dominated phase one obtains the
2 1P/ com correct spectral indices=1 andn=0, respectively. Since

in an expanding universe the Bardeen potential does not
grow on superhorizon scales, it does not matter at which
horizon crossing, exit or re-entry, the spectrum is determined
in the case of ordinary inflation. In a pre-big bang model,

Using thatH=k at horizon crossing and that is time in-
dependent on superhorizon scales, we get

Sp 2 however, this difference is crucial as we have seen.
’(—) =|¥|?, (98 The discussion presented in this paper does not affect the
P T comlp.c. gravity wave spectrunfid8] which still leads to the spectral

indexny=3 for the original pre-big bang and;=2 for the
ekpyrotic model. This is a potentially important observable
to discriminate them from ordinary inflation.
(| SMIM|2)}, o =K3| W |2= Py ok 2. The main open problem when studying these bouncing
- models remains the high energy transition from the pre- to
In the radiation-dominated erais roughly equal to¥ and the post-big bang phase. There, corrections should become

hence

the above equation therefore holds alsoRr. important, and we have assumed here that for superhorizon
scales they can be summarized into a tension on the match-
V1. CONCLUSIONS ing surface. Furthermore, it has not yet been shown from

string theory that the dilaton can obtain an exponential po-
We have discussed the matching from a collapsing to atential (in the modified pre-big bang modedr that the brane
expanding Friedmann universe. We have noted that a nonvalistance simply obeys the equation of motion of a minimally
nishing surface tension at the matching surface is needed toupled scalar field with exponential potential from the
turn the pre-big bang collapse into expansion. This surfacérane point of view for the ekpyrotic model. Also the quan-
tension and its perturbation have to be specified by the higtum production of other modes possible in these models, e.g.
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the axions and moduli in the modified pre-big bang, or theopen questions, especially concerning the high energy cor-

“graviphoton” and “graviscalar” coming from the extra di-
mension in the ekpyrotic model, have to be investigated.

Nevertheless, we conclude that models where high energy

rections, and flatness, still have to be properly addressed.
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