
PHYSICAL REVIEW D 66, 083503 ~2002!
Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance

Ruth Durrer and Filippo Vernizzi
Département de Physique The´orique, Universite´ de Gene`ve, 24 quai E. Ansermet, CH-1211 Gene`ve 4, Switzerland

~Received 29 March 2002; published 11 October 2002!

At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to
a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models.
In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We
show that, under certain physically motivated and quite generic assumptions on the high energy corrections,
one obtainsn50 for the spectrum of scalar perturbations in the original pre-big bang model~with a vanishing
potential!. With the same assumptions, when an exponential potential for the dilaton is included, a scale
invariant spectrum (n51) of adiabatic scalar perturbations is produced under very generic matching condi-
tions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for
arbitrary power law scale factors matched to a radiation-dominated era.
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I. INTRODUCTION

Observational cosmology has made enormous prog
during the last couple of years. Most observations seem
agree with the fact that the total energy density of the u
verser is very close to its critical valuerc , V[r/rc51,
and it is distributed in the form of pressureless dark ma
rm and dark energy with negative pressure,PL&20.6rL ,
V5VL1Vm51 with VL.0.7 andVm.0.3. The cluster-
ing properties of the observed universe agree with a s
invariant spectrum of adiabatic scalar perturbations,n.1,
with or without a tensor component. Many recent cosmolo
cal experiments measure one or several of these parame
most notably cosmic microwave background anisotropy
periments@1–3#, supernovae type Ia measurements@4,5#,
cluster abundances@6#, analysis of the observed galaxy di
tribution @7,8#, and of peculiar velocities@9# ~see also@10#!.

Although the presence of dark energy,VLÞ0, remains
very mysterious, inflation explains whyV51 andn.1.

The basic idea of inflation is simple: If the energy dens
in a sufficiently smooth patch of space is dominated by
potential energy of some slowly varying scalar field, th
patch will expand very rapidly and evolve into a large, ve
homogeneous, isotropic and flat universe. During this ra
expansion, the causal horizon becomes much larger than
Hubble horizon, alleviating the horizon problem. In additio
quantum fluctuations in the scalar field get amplified a
grow larger than the Hubble scale,H21. They then ‘‘freeze
in’’ as classical fluctuations in the energy density or, equi
lently, in the geometry, which obey a scale invariant sp
trum.

This standard picture of inflation does not emerge in
direct way from any modern high energy physics mod
This makes it very flexible which is probably one of the ma
reasons why the basic picture has survived for so long.
given model does not work, one is free to slightly change
potential or other couplings of the scalar field. This has le
to many different models of inflation presented in the lite
ture @11#. This flexibility may be considered either as
strong point or as a drawback. It is in any case certainly v
important to investigate whether there are alternative ex
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nations of the size and the flatness of the universe and o
observed scale invariant spectrum of adiabatic scalar fluc
tions in the context of modern high energy physics.

In this paper we discuss two attempts in this directi
which are both motivated by string theory: the pre-big ba
model @12,13# and the ekpyrotic model@14–16#. Even
though the high energy pictures of these models are v
different, the four-dimensional low energy effective actio
agree and the models predict the same cosmology at
energy up to possible high energy ‘‘relics.’’ In the followin
we call a model of the universe a ‘‘pre-big bang model’’ if
contains a low curvature phase before the big bang. In
sense also the ekpyrotic scenario is a pre-big bang mod

The original pre-big bang model consists just of the di
ton and the metric, the two low energy degrees of freed
which are present in every string theory. The presence of
dilaton leads to a new symmetry called ‘‘scale factor dualit
of cosmological solutions: To each solution for the scale f
tor a(t) corresponds a solutiona(t)21, or a(2t)21 if com-
bined with time reversal symmetry. Ifa(t) is an expanding,
decelerating solution,a(2t)21[â( t̂ ) is an expanding accel
erating solution, since

dâ

d t̂
5

1

a2

da

dt
.0, ~1!

and

d2â

d t̂2
52

1

a2

d2a

dt2
1

2

a3 S da

dt D
2

.0. ~2!

The Hubble parameterĤ of this ‘‘super-inflating’’ solution
@12,13# grows ast̂52t increases. The solution approach
trivial flat spacetime and vanishing couplings in the past̂

→2`, and a curvature singularity in the future,t̂→02.
In this pre-big bang model, one supposes that curva

and strong coupling corrections of string theory ‘‘bend’’ th
evolution away from this singularity into an expanding, d
celerating radiation-dominated Friedmann model. Seve
©2002 The American Physical Society03-1
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studies of toy models where this can be achieved have b
presented in the literature~see@17–20#!.

It has been shown@21# that a pure dilaton without poten
tial cannot lead to a scale invariant spectrum of adiab
scalar fluctuations. For this reason it has been proposed
fluctuations may be induced by axions via the so-called s
mechanism@22#. Axions naturally display a scale invarian
spectrum. However, the axion seed perturbations are
isocurvature nature, which is not in agreement with pres
observations. Mechanisms which may convert the axio
isocurvature fluctuations into adiabatic ones have been
posed@23#.

In this paper we will instead repeat the basic argument
@21#, but we will show that the spectrum of perturbatio
which one obtains in the radiation-dominated post-big ba
phase generically has the spectral indexn50 and notn54
as claimed in@21#. We shall also show that when giving a
exponential potential to the dilaton, one can obtain a sc
invariant spectrum,n51.

The high energy picture behind the ekpyrotic scenario,
second pre-big bang model discussed in this paper, is q
different. There one starts with a five-dimensional unive
containing two perfectly parallel 3-branes at rest@14,15#, in a
Bogomol’nyi-Prasad-Sommerfield~BPS! state. One then
supposes that the two branes approach each other with s
very small initial velocity. It is argued that, from the fou
dimensional point of view of an observer on one of t
branes, this situation corresponds to a collapsing Friedm
universe with a scalar fieldw, which is related to the distanc
between the two branes before the collision. After the co
sion the solution is supposed to turn into a radiatio
dominated Friedmann@14,15# ~see, however,@24–26# for
criticisms!.

It is assumed that the scalar field is minimally coupl
and has a negative exponential potentialV which describes
the attraction of the two branes. The scalar field potentia
due to non-perturbative string corrections but has not b
derived from any string theory, so far. In Refs.@15,16# it has
been argued that, ifV52V0exp(2cw) at low curvature, with
c@1, a scale invariant spectrum of scalar perturbations
velops. This result has been criticized in Refs.@27–32#,
where a spectral indexn53 has been obtained. We sha
show here that, even if the detailed arguments put forwar
Refs. @15,16# might not be valid, under quite generic~al-
though nontrivial! assumptions, one does obtain the spec
index n51.

Like the original pre-big bang, the ekpyrotic model sta
out at low curvature and develops a singularity in the futu
Like there, the belief is that string theory corrections w
change the behavior of the scale factor and of the scalar
away from this singular evolution. In the five-dimension
picture, this apparent ‘‘singularity’’ corresponds to the col
sion of the two branes which then should result in the p
duction of radiation leading to a thermal, radiatio
dominated Friedmann model. We call the phase before
high curvature regime the ‘‘pre-big bang phase’’ and the
gime after the big bang the ‘‘post-big bang’’ phase.

Even if the string theory corrections, which must beco
important close to the singularity, are not fully understoo
08350
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these models are promising candidates for alternatives to
flation: They certainly do not suffer from a horizon proble
since their age can be arbitrarily large and is not related
the Hubble time. They do not dynamically imply flatness, b
this comes from very natural vacuum~for the original pre-
big bang! or BPS~for the ekpyrotic model! initial conditions
which are posed at low curvature. Nevertheless, it is w
known that these models are not very efficient in smooth
out classical inhomogeneities@33# and global anisotropies
@34#, and this may remain a problem. In the most rec
version of the ekpyrotic model, a cyclic universe, flatness
also a consequence of a period of exponential expansio
the previous cycle@35#. A critical comparison of the ekpy-
rotic scenario and ordinary inflation is given in Ref.@36#.

In this paper we do not address the important debate
the flatness problem, but we investigate the spectrum of
turbations generated during the pre-big bang phase. The
of this paper is to learn as much as possible about s
models without specifying the details of the high ener
phase.

In the next section we write down the modified pre-b
bang action and the action of the ekpyrotic model. We sh
that they are related by a conformal transformation and
solve the equations of motion in both Einstein and str
frame. In Secs. III and IV, which are the heart of this pap
we discuss scalar perturbations and the matching condit
between a contracting, scalar field dominated phase an
expanding, radiation-dominated phase. In particular we sh
that, under certain well defined conditions, without knowi
the details of the matching, one expectsn51 for the modi-
fied pre-big-bang and the ekpyrotic model. In Sec V we g
eralize our results to arbitrary power law scale facto
matched to a radiation-dominated era. We end with our c
clusions and an outlook.

II. THE BACKGROUND

The low energy effective action of the original pre-b
bang model is simply gravity with a dilatonf. Here we
modify it by allowing for a dilaton potential. We assume th
we have a four-dimensional effective theory, any extra
mensions being frozen at a very small scale. The low ene
action for this theory is therefore@37#

Ŝ5
1

2k2E dx4A2ĝe2f@R̂1~¹̂f!222V̂~f!#, ~3!

with k258pG51/M P
2 , where M P52.431018 GeV is the

reduced Planck mass. This action is written in the so-ca
string frame. The caret indicates that the correspond
quantities have to be computed using the metric in t
frame. Thereforeĝ, R̂, ¹̂, andV̂ are the determinant of the
metric, the Riemann scalar, the covariant derivative, and
dilaton potential, respectively, in the string frame. With th
action f is dimensionless and the usual scalar field w
dimension of mass is simplyM Pf. Correspondingly, the po
tential V̂ has dimensions of (energy)2 and the usual potentia
is M P

2 V̂. We use the metric signature2111.
3-2
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String cosmology and, in particular, the original pre-b
bang scenario, has been developed based on action~3! with
the dilaton potential set to zero. It is possible to rewrite t
action in a conformally related~and physically equivalent!
frame. If we perform a conformal transformationgab

5V2ĝab the action is modified to

S5
1

2k2E dx4A2gV22e2f@R1~¹f!216~¹ ln V!2

16~¹f•¹ ln V!22V22V̂~f!#. ~4!

When choosingV5exp(2f/2), we can obtain the Einstei
frame action,

SE5
1

2k2E dx4A2gFR2
1

2
~¹f!222V~f!G , ~5!

where

gab5e2fĝab and V~f!5efV̂~f! ~6!

are the metric and the dilaton potential, respectively, in
Einstein frame. Equation~5! is the action for a minimally
coupled scalar field. Notice that the dilaton has not be
changed by the conformal transformation.

We can also allow for a rescaling of the scalar field,w
5f/b, so that

SE5
1

2k2E dx4A2gFR2
1

2
b2~¹w!222V~w!G . ~7!

Since we want to obtain here the usual scalar field ac
presented in@14# starting from the string cosmology actio
~3!, we have to requireb2/251. This fixesb56A2. In
terms of the new fieldw, the Einstein frame action now
becomes

SE5
1

2k2E dx4A2g@R2~¹w!222V~w!#. ~8!

For an exponential potential

V̂~f!5e2fV~f!52V0elf, ~9!

where l52(11c/b) with c@1, or equivalently for

V~w!52V0e2cw, ~10!

we obtain precisely the low energy effective action of t
ekpyrotic scenario@15,16#. The interpretation of the fieldw
is, however, quite different. Therew is related to the brane
separation@15#. At early times when the two branes are sep
rated by a large distance, the scalar fieldw is very big and
positive, w→`. Therefore the relation between the strin
cosmology dilatonf which tends to2` for very early
times, t→2`, and the fieldw of the ekpyrotic scenario is
f52A2w, b52A2. Sincec@1 andb is negative,l.0
so that the potential~9! goes asymptotically to zero for ver
08350
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negative dilaton~at early time!, and does not spoil the initia
conditions of the pre-big bang model.

Varying Eq.~8! with respect tow we obtain the equation
of motion

hw2V~w! ,w5hw2cV0e2cw50, ~11!

whereh5¹a¹a. Varying the action with respect to the me
ric yields the Einstein equations,

Gab5k2Tab , ~12!

where Tab is the energy-momentum tensor of the sca
field,

k2Tab5¹aw¹bw2
1

2
gab@~¹w!212V~w!#. ~13!

We want to consider a flat homogeneous and isotropic u
verse with metricds252dt21a2dx2. In this case Eq.~11!
becomes

ẅ13Hẇ1V,w50, ~14!

where the overdot is a derivative with respect to the cos
time t, and Eq.~12! turns into the Friedmann equation

H25
k2

3
r5

1

6
ẇ21

1

3
V~w!. ~15!

Equations~14!, ~15! have the ‘‘ekpyrotic solution’’@15#

a~ t !5~2t !p, w~ t !5
2

c
ln~2Mt !, ~16!

with

p5
2

c2
, M25

V0

p~123p!
. ~17!

At first it may seem strange that the enthalpyw[P/r and
the sound speedcs

2[ Ṗ/ ṙ are much larger than one,cs
25w

@1, for small values ofp ~largec),

w5
~1/2!ẇ22V

~1/2!ẇ21V
5cs

25
2

3p
21. ~18!

On the other hand, as long as we concentrate on a t
interval bounded away from the singularity, we can alwa
split the potential intoV5V1(w)1V2, whereV2 is a very
negative constant andV1 is always positive. InterpretingV2
as a negative cosmological constant, we have

21,w15
~1/2!ẇ22V1

~1/2!ẇ21V1

,1, ~19!

as well as21,c1
2,1 and w25c2

2521. However, since
V15r1 /(r11V2)@1 and V25V2 /(r11V2)!21, the
3-3
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RUTH DURRER AND FILIPPO VERNIZZI PHYSICAL REVIEW D66, 083503 ~2002!
‘‘effective’’ w5w1V12V2 can become much larger than
without implying any pathological or even acausal behav
of the scalar field ‘‘fluid.’’

We shall see that the perturbations generated in this
lapse phase acquire a scale invariant spectrum only if
collapse proceeds very slowly, i.e. when 0&p!1. In the
ekpyrotic scenario the collapse is followed by an expand
phase. Shortly before the bounce att→02, when the scalar
field, after having become negative, goes to minus infin
w→2`, the shape of the potential has to change from
exponential expression, and turn upwards in such a way
V→0 for w→2`.

Let us give here, for completeness, the equations der
from the string frame action Eq.~3!, where the potentia
V̂(f) is given by Eq.~9!, and their solutions. By varying thi
action with respect to the fieldf we obtain

2¹̂a¹̂af2~¹̂f!21R̂22V̂12V̂,f50. ~20!

Varying the action with respect toĝab yields

Ĝab52¹̂a¹̂bf2
1

2
ĝab@~¹̂f!222¹̂a¹̂af12V̂#. ~21!

For a homogeneous and isotropic universe with spatially
sections, Eqs.~20! and ~21! reduce to

f̈13Ĥḟ2ḟ212V̂12V̂,f50, ~22!

Ĥ22Ĥḟ1
1

6
ḟ22

1

3
V̂50, ~23!

where the overdot here refers to cosmic time in the str
frame, t̂ .

To find a solution to these equations we can simply tra
form the solution found in the Einstein frame using the re
tions

d t̂5ef/2dt5e2w/A2dt, â5ef/2a5e2w/A2a. ~24!

The first relation gives

2M̂ t̂5~2Mt !12Ap, ~25!

whereM̂5M (12Ap). For smallp, p!1, t̂ is very close to
t and, as long asp,1, t̂ grows from2` to 0 with t. Insert-
ing the ekpyrotic solutions in expressions~24! for â andf,
we obtain

â5~2M̂ t̂ !2Ap, ~26!

and

f52A2w522
Ap

12Ap
ln~2M̂ t̂ !, ~27!

up to possible integration constants which we have fixed
obtain â5a and t̂5t in the limit p→0.
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In this section we have first shown that, from a pure
four-dimensional point of view the ekpyrotic scenario
equivalent to the pre-big bang scenario when the dilaton
an exponential potential that tends to zero at small coupl
In doing so we have presented the equations for these m
els, written in the string and Einstein frames, and we ha
written down the solutions that hold in either frames. The
solutions are useful for discussing perturbations, which is
subject of the next section.

III. SCALAR PERTURBATIONS

We now want to study linear perturbations of a gene
universe dominated by a minimally coupled scalar field w
an exponential potential or an adiabatic fluid withw5cs

2

5const. This last condition is automatically satisfied for
scalar field with exponential potential.

As discussed in the preceding section, pre-big bang
pansion in the string frame is equivalent to contraction in
Einstein frame, where the dilaton is minimally couple
Therefore, pre-big bang expansion with a dilaton is includ
in our study. It is important to note that physical quantitie
like the spectral index or the perturbation amplitude, a
frame independent but they are more easily computed in
Einstein frame where linear perturbation theory is well e
tablished~see, e.g. the reviews@38,39#!.

To discuss perturbations we work mainly in conform
time h, which is related to physical timet by adh5dt. The
derivative with respect to conformal time is denoted by
prime. For the sake of simplicity we neglect a possible c
vature of the spatial sections. In a flat universe dominated
a fluid or a scalar field with energy densityr and pressureP
the background Friedmann equations are

H 25
k2

3
ra2, ~28!

H852
k2

6
~r13P!a252H 2

113w

2
, ~29!

whereH5a8/a.
If the energy density is dominated by a scalar field,

have

k2r5
1

2a2
w821V~w!, ~30!

k2P5
1

2a2
w822V~w!, ~31!

and

w115
w82

3H 2
. ~32!
3-4
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Whenw5cs
25const, the solution to the Friedmann equati

is a power law. In terms of conformal timeh it is given by

a5U h

h1
Uq

, q5
2

113w
, H5

q

h
, H852

q

h2
,

~33!

where we have chosen the normalization constanth1 such
that 2h1,0 is a very small negative time at which~higher
order! corrections to the scalar field action become imp
tant. Sincea(h1)51, h15a(h1)h1;t1 corresponds to a
physical quantity, e.g. the string scale in the pre-big ba
model, 1/h1;1017 GeV. Comparing Eq.~33! with the ekpy-
rotic solutions in terms of physical time, we findq5p/(1
2p).

Let us now perturb the metric. In longitudinal gauge a
in the absence of anisotropic stresses, as is the case for
fect fluids and for scalar fields, scalar metric perturbatio
are given by

ds25a2~h!@2~112C!dh21~122C!d i j dxidxj #.
~34!

In this gauge the metric perturbationC corresponds to the
gauge invariant Bardeen potential. Without gauge fixing
latter is given by a more complicated expressions of the m
ric perturbations@38–40#. The scalar fieldw is also per-
turbed so that it can be divided intow(h) satisfying the
background equation~14!, and a perturbationdw(h,x).

We now want to compute the spectrum of metric pert
bations generated from vacuum initial conditions. Gene
cally, C satisfies the equation@38,39#

C913H~11cs
2!C81@2H81~113cs

2!H 22YD#C50.
~35!

For adiabatic perturbations of a fluid, one findsY5cs
2 ,

where cs
2 is the adiabatic sound speed, while for a simp

scalar field one findsY51 ~see, e.g. Ref.@38#!. For a non-
vanishing potential,VÞ0 and hencecs

2Þ1, simple scalar
field perturbations are not adiabatic in a thermodynam
sense.

If we restrict ourselves to the case,w5cs
25const, the

mass term in Eq.~35!, 2H81(113cs
2)H 2, vanishes by the

use of the background Einstein equation~29!. Thus, for sca-
lar perturbations we obtain nearly the same equation as
tensor perturbations, which we can write in terms of Four
modes as

C913H~11w!C81Yk2C50. ~36!

This equation is valid in both phases of the universe, bef
and after the big bang, depending on the corresponding v
of w andY. We call C2 the solutions obtained in the pre
big-bang collapsing phase andC1 the one obtained in the
radiation-dominated phase. In the following we shall work
Fourier space.

Let us now define the variableu in order to simplify Eq.
~36! @38#. We set
08350
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u5
M P

H aC. ~37!

Equation~36! can then be written in terms ofu as

u91@Yk22a~1/a!9#u50. ~38!

Let us now suppose that the collapsing~or pre-big bang!
phaseh,2h1 is dominated by the scalar field so thatY
51. Equation~38! then has the general solution

u5~kuhu!1/2@C~k!Hm
(1)~kh!1D~k!Hm

(2)~kh!#, ~39!

with m5q11/2. HereHm
( i ) is the Hankel function of thei th

kind and of orderm. One can generalize this solution to th
case of a fluid-dominated universe simply by replacingkh
by cskh. This solution has to be generated from the inco
ing vacuum, so we assume that forkuhu@1,

lim
h→2`

u5
e2 ikh

k3/2
. ~40!

This assumption corresponds to normalizing the canon
variable which diagonalizes the perturbed second order
tion ~calledv in @38#! to quantum vacuum fluctuations. Wit
this normalization, theHm

(1) mode, which approache
exp(ikh) for kuhu@1, has to be absent,C(k)50, and the
solution to Eq.~36! becomes

C2~k,h!5
q

M Pah
D~k!~kuhu!1/2Hm

(2)~kh!, ~41!

where

D~k!5Ap/2k23/2, ~42!

modulo some irrelevant phase.
At late timekuhu!1, this solution approaches

C2~k,h!.A2~k!
H
a2

1B2~k!, ~43!

whereA2 andB2 are determined by the exact solution~41!
~up to logarithmic corrections!,

A2~k!.
2mG~m!

M Ph1
q

k2m21, ~44!

B2~k!.
h1

q

M P2mG~m11!
km21. ~45!

The result~43! can be found directly by solving Eq.~36! and
neglecting thek2 term. The full solution is, however, neede
to determine the pre-factorsA2(k) and B2(k) from the
vacuum initial condition. TheA2 mode grows during the
pre-big bang phase and becomes much larger than the
stantB2 mode.
3-5
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RUTH DURRER AND FILIPPO VERNIZZI PHYSICAL REVIEW D66, 083503 ~2002!
In the original pre-big bang model, where the dilaton h
no potential, i.e.w5cs

251 and henceq51/2, we havem
51. The A2 mode then has ann50 spectrum,uA2u2k3

}k21}kn21, while the B2 mode corresponds ton54,
uB2u2k3}k3}kn21. If we have an exponential potential a
for the ekpyrotic model such thatp!1, and thereforeq
!1, we havem.1/2 and henceuA2u2k3 is k independent.
The A2 mode has a scale invariant spectrum,n51, while
uB2u2k3}k2, which corresponds to a blue spectrum,n53.

If the A2 mode has a red spectrum, as in the origin
pre-big bang scenario, we need to discuss its amplitude
large scales. It has been shown in@21# that a red (n50) A2

mode does not invalidate linear perturbation theory dur
the pre-big bang phase. Geometrically meaningful quanti
like CabgdCabgd/R2[D2, whereCmngd is the Weyl tensor
and R is the curvature scalar, remain small. In factD2

}u(kh)2Cu2k3. We can therefore continue to use th
Bardeen potential even though it may become large for
tain k modes. However, a red spectrum leads to serious p
lems in the subsequent radiation era where the Bardeen
tential is constant on superhorizon scales andD2 grows
larger than unity at horizon entry,kh;1, for large scales. In
the modified pre-big bang models discussed here, this p
lem does not occur, sinceA2 has a scale invariant spectrum

At very early timeafter the big bang, in the radiation
dominated phase, we can neglect the termYk25k2/3 in Eq.
~38!. We then have the same type of solution for superh
zon modes,

C1~k,h!5A1~k!
H
a2

1B1~k!. ~46!

In the next section we will work out the matching conditio
between this solution and Eq.~43!, in order to determine the
coefficientsA1 andB1 .

IV. MATCHING CONDITIONS

We suppose that the solution given in Eq.~43! holds until
h52h1, where higher order corrections begin to play
role. These corrections may be quite different for the mo
fied pre-big bang model and for the ekpyrotic model, but
both cases they are supposed to lead over to a radia
dominated Friedmann model. Here we do not want to ar
about the nature of the corrections and how to determ
them from string theory~even if this probably has to b
considered as the most difficult and the main problem
these models!, but we study which statements can be ma
under certain assumptions on the transition. For this we
glect the details of the transition and match our pre-big b
solution ath52h1 to a radiation-dominated universe ath
51h1. In other words we suppose that the slice of spa
time ‘‘squeezed’’ between2h1 andh1 is so thin compared
to the scales we are interested in, that it can be replaced
spacelike hypersurface. Therefore we can consistently
the thin shell formalism and apply the Israel junction con
tions @41# for surface layers on theh56h1 hypersurface, in
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order to match the spacetime manifoldM2 before the big
bang to the spacetime manifoldM1 after.

A. Matching the background

Before specifying the matching of the perturbations,
have to match the backgrounds, i.e. we have to impose
Israel junction conditions on the scale factora and its first
derivative. These conditions require the continuity of the
duced metric,

qab5gab1nanb , ~47!

wherena is the normal to theh5const hypersurface, on th
matching hypersurfaceh56h1. Thus we have

@qab#650, ~48!

where we define

@h#6[ lim
h↘h1

~h~h!2h~2h!![h12h2 , ~49!

for an arbitrary functionh(h). Here h↘h1 indicates the
right-hand limit, i.e.h is decreasing towardsh1.

Our conformal time coordinateh itself jumps,

@h#652h1 . ~50!

This simply means that the coordinates ofM2 andM1 are
well defined only on the intervalshP(2`,2h1# and h
P@h1 ,`), respectively. The limit~49! is well defined for
every function which is continuous, monotonic and bound
in open intervals (2h2 ,2h1) and (h1 ,h2), with h2.h1,
even if their value at6h1 is not defined.

Equation ~48! implies a15a25a6 . According to our
normalization of the scale factor, Eq.~33!, a651. We nev-
ertheless prefer to leavea6 in all the expressions where
appears, so that its normalization can be convenie
changed.

The second Israel junction condition concerns the ext
sic curvatureKm

n on the matching hypersurface with norm
na,

Kab5
1

2
~qa

r ¹rnb1qb
r ¹rna!. ~51!

In a Friedmann universe this is

K j
i 52S a8

a2D d j
i 52

H
a

d j
i . ~52!

The derivativea8 changes sign in the transition from a co
tracting to an expanding phase. Hence, the extrinsic cu
ture is discontinuous in the four-dimensional, low ener
picture if we simply ‘‘glue’’ the contracting phase to the e
panding phase with opposite sign fora8 and conformal time
h51h1. On the other hand, the Israel junction conditio
allow for the existence of a surface stress tensor,

@K j
i #65k2Sj

i , ~53!
3-6
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which in our case is nonvanishing and diagonal, and i
characterized by a negative surface tensionPs,0,

@K j
i #652

H12H2

a6
d j

i 5k2Psd j
i . ~54!

Within the four-dimensional picture we have no explanat
for this surface tension; it has to be introduced by hand
order for the extrinsic curvature to jump. Equation~54! is a
possibility to ‘‘escape’’ the violation of the weak energy co
dition, r1P,0, which is needed for a smooth transitio
from collapse to expansion. This has been one of the ob
tions to the ekpyrotic scenario in Ref.@42#. Of course for
h5h1 the combinationr1P1Psd(h2h1) becomes nega
tive, which, in the widest sense, can also be interpreted a
‘‘effective’’ violation of the weak energy condition. Clearly
this is the simplest way of connecting a contracting phas
an expanding phase, but it is relatively close to an appro
motivated from the five-dimensional picture, where the s
gularity at a50 becomes a narrow ‘‘throat’’@15#. Here we
replace this throat by a stiff ‘‘collar’’ whose length we ne
glect ~see also@16#!.

B. Matching the perturbations

Let us now perturb the Israel junction conditions~48! and
~53!. Instead of considering theh5h1 hypersurface we
want, in general, to consider a hypersurface which is linea
perturbed from it, defined byh̃5h1T5h1, whereT is a
small perturbation. The jump is now realized on the p
turbed hypersurfaceh̃5h1,

@h#6[ lim
h̃↘h1

$h~ h̃ !2h~2h̃ !%[h12h2 , ~55!

and in principle we cannot say anything about the continu
of T, which is also allowed to jump,

@T#65@h̃2h#652h12@h#6 . ~56!

Nonetheless, this jump should be always small as it w
become clear below.

We assume that the old coordinates (h,xi) are those of
longitudinal gauge, so that the metric perturbations are gi
by Eq.~34!, but we want to determine the perturbation of t
Israel junction conditions in the coordinate system (h̃,xi) on
the surfacesh̃5const. The metric in this coordinate syste
is given by~see e.g.@39#!

ds̃25a2~ h̃ !$2@112C22~HT1T8!#dh̃2

12T, idh̃dxi1~122C22HT!d i j dxidxj%. ~57!

Hence the perturbation of the normal to theh̃5const slices
is

d̃n5
1

a
$~2C1HT1T8!]h̃2T, i] i%, ~58!

and the extrinsic curvature is given by@43#
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d̃K j
i 5

1

a
$C81HC1~H82H 2!T%d j

i 1T, j
,i . ~59!

The matching conditions for the perturbations are o
tained by perturbing Eqs.~48! and~53! on theh̃5h1 hyper-
surface. They become

@ d̃qj
i #650, @ d̃K j

i #65k2d̃Sj
i . ~60!

From the above expressions ford̃gmn and d̃nm, the continu-
ity of the perturbation of the induced metricdqi j on the h̃
5h1 hypersurface leads to

@C1HT#650. ~61!

For reasons that become clear below, we assume in
following thatT5h̃2h, the lapse of time between the bac
ground valueh and the perturbed valueh̃, remains a small
perturbation on large scales. This implies that also@T#6 has
to remain small. What is the meaning of ‘‘small perturb
tion’’ in this context? Once a gauge is fixed, the Barde
potentialC is the only degree of freedom characterizing t
perturbations. For dimensional reasons, it is natural to exp
T to be given as a linear combination ofC andC8, in terms
of

T5hP~kh!C1h2Q~kh!C8, ~62!

where P and Q are polynomials ofkh, which may have
h/h1 dependent coefficients. Here we assume that th
polynomials do not contain any negative power ofkh, i.e.
that

uT/hCu;uT/h2C8u;uP~kh!u1uQ~kh!u →
k→0

finite.
~63!

On large scalesT grows with scale at most asC or C8.
The reason for this is that we do not want theh̃5h1

hypersurface to diverge arbitrarily from theh5h1 hypersur-
face on large scales. In other words, we require the time
which the bounce happens to be stable under large s
perturbations. It is clear that this assumption is not entir
trivial. It limits somewhat the large scale power of the ‘‘ne
physics’’ which is needed to convert contraction into expa
sion. This new physics may not induce very strong infrar
perturbations, which is very reasonable and confirmed
numerical examples on pre-big bang models@44#.

Under this assumption the anisotropic term on the rig
hand side of Eq.~59!, ] i] jT, is negligible on large scales an
we shall not discuss the possible, but sub-dominant, an
tropic surface stresses in what follows. On superhoriz
scales the perturbation of the extrinsic curvature is do
nated by the trace part,d̃K j

i 5( d̃K)d j
i with

d̃K5
1

a
$C81HC1~H82H 2!T%. ~64!

The matching conditions for the perturbations become
~61! and
3-7
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@C81HC1~H82H 2!T#65k2a6d̃Ps , ~65!

whered̃Ps is the perturbation of the surface tension.
The condition posed in Eq.~63! has the following impor-

tant consequences: from Eq.~64! we see that withT not
being ‘‘redder’’ thanC and C8, also d̃K has typically the
samek dependence asC or C8. Therefore it remains smal
~of the same order asC or C8 in k) whenkh1 tends to 0,

d̃K/~HC!, d̃K/C8 →
k→0

finite. ~66!

From Eq. ~65! we then infer thatd̃Ps may as well have a
non-trivial k behavior but it remains small on large scales

d̃Ps /~HC!, d̃Ps /C8 →
k→0

finite. ~67!

The k dependence ofd̃Ps may become important whe
matching the perturbations but it cannot dominate on la
scales.

The assumptions~63! and its consequences~66! and~67!
become important in Sec. IV D where we try to derive
general result from these matching conditions. First, let
discuss some examples.

C. Two examples

The matching conditions~61! and ~65!, which the un-
known details of the transition have to determine, fix t
coefficientsA1(k) and B1(k). So far, in the literature, for
inflation @43# as well as for the ekpyrotic scenario@27–
30,45#, the hypersurface on which the matching has be
performed was always chosen to be the constant energy
persurface,r1dr5 constant. In this case,T5dr/r8.

The perturbed Einstein equations give@see e.g.@39#, Eqs.
~2.45! and ~2.46!, and usedr5rDs in longitudinal gauge#,

dr

r
52

2

H 2$~3k21H 2!C1HC8%

.22~C1H 21C8!, ~68!

on superhorizon scales. Withr852r(H82H 2)/H we have

T5dr/r8.
21

H82H 2
~HC1C8!. ~69!

Equation~61! then leads to

FC2
H

H82H 2
~HC1C8!G

6

[@z#650, ~70!

wherez is the curvature perturbation introduced by Barde
@40#. Furthermore, using Eq.~69!, one finds thatd̃Ki j 50 on
large scales and we obtain@ d̃K#6[0. Hence, this matching
condition can be satisfied only if the surface tensionPs is
unperturbed,d̃Ps[0.
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These matching conditions are often used in inflation
models to go from the inflationary phase to the Friedma
radiation-dominated phase. The difference with inflationa
models is that hereH jumps. Furthermore,C in general will
not be continuous at the transition, since even ifT is continu-
ous, HT is not. Notice that, even thoughH jumps at the
transition from contraction to expansion, and henceH8 con-
tains a Dirac delta function,@T#6 is well defined as it is a
continuous, bounded, monotonic function in some open
tervals (2h2 ,2h1) and (h1 ,h2).

Inserting ansatz~43! and ~46! in the continuity condition
for the metric, Eq.~70!, yields

B1S H18 22H1
2

H18 2H1
2 D 5B2S H28 22H2

2

H28 2H2
2 D . ~71!

Clearly, sinceB1 couples only toB2 it inherits the blue
spectrum ofB2 . This is the main argument of Refs.@27–32#
against the ekpyrotic model. As we shall see below, this
also the matching condition which leads to then54 spec-
trum in the pre-big bang model given in Ref.@21#.

There are two subtleties which have been left out in t
argument. The first one is obvious: the surface tensionPs ,
the only ingredient of the high energy theory in this a
proach, may well also have a perturbationd̃Ps , requiring

@ d̃K#65k2d̃PsÞ0. If this is the case, the matching cann
be defined on the constant energy hypersurfaces,T
5dr/r8. Secondly, and more importantly, in this mod
where contraction goes over to expansion, a transition
face with a physical surface tension is required and this s
face does need not to agree with ther1dr5const.

As a concrete example, let us simply assume that
matching surface is given by the condition that its shear v
ishes. This is actually just theh5const surface in longitudi-
nal gauge, hence we haveT50 in Eqs.~61! and ~65!. The
junction conditions on superhorizon scales then become

@C#650, ~72!

@HC1C8#65a6k2dPs . ~73!

For our general solutions~43! and ~46! this gives

A15
H2

H1
A21

a6
2

H1
~B22B1! ~74!

B15S H1~H28 /H22H2!2H18 1H1
2

2H1
2 2H18

DH2

a6
2

A2

1S 11
H2H12H1

2

2H1
2 2H18

D B21
H1

2H1
2 2H18

k2a6dPs .

~75!

Alternatively, we can express the matching conditions
terms ofz given in Eq. ~70! and its canonically conjugate
variableP defined in Ref.@46#, by
3-8
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P52M P
2k2

a2

H C. ~76!

On superhorizon scales we have

z5S 12
H 2

H82H 2D B~k!, ~77!

P52M P
2k2S A~k!1

a2

H B~k! D . ~78!

The perturbation variablez is constant and proportional t
the constantB(k) while its conjugate momentumP is pro-
portional toA(k)k2 and constant up to a decaying part pr
portional to B(k) which will be negligible at the time
2h1, when we impose the matching conditions.

On the zero shear hypersurface we can write the matc
conditions of the perturbations in terms ofz andP as

@HP#650, ~79!

F ~H82H 2!S k2

2k2a2
P2

z

HD G
6

5ak2dPs . ~80!

Therefore we have

P15
H1

H2
P2 , ~81!

z15
H1

H2
S H28 2H 2

2

H18 2H1
2 D z21

k2

2k2a6
2 S H22

H28 2H2
2

H18 2H1
2
H1D

3P22
H1

H18 2H1
2

a6k2dPs . ~82!

Hence, using matching conditions on the zero shear hy
surfacez acquires, in the radiation-dominated era, a mo
}P2k22}A2 , which has a spectral indexn5122q of
A2 . In terms ofA1 andB1 this leads again to Eqs.~74! and
~75!.

As A2 represents the growing mode during the contra
ing phase,uA2H/a2u is much larger thanuB2u, and the spec-
trum of B1 inherits the scale invariant spectrum ofA2 . It is
easy to see from pure sign considerations that the pre-fa
of A2 in Eq. ~75! does not vanish.

D. A more general treatment

As we have seen, the important question is to determ
the correct matching hypersurface and the perturbation o
tension. This can only be done by studying the high ene
corrections of a specific model. Nevertheless, we now w
to provide an argument why we think that a scale invari
spectrum is obtained in models where the collapsing phas
characterized bya}(2h)q with q!1.

As we have seen in the above examples, the match
conditions are fixed byT, given as some combination ofC
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andC8, and determineC1 in terms ofC2 , C28 , and of the
surface stress perturbationdPs . The general result we ar
about to derive is based on one important assumption,
smallness ofT, as given in Eq.~63!. As explained there, this
assumption precisely limits the ‘‘infrared power’’ of th
‘‘new physics’’ needed to convert contraction into expansio
As we have seen@Eqs.~66! and ~67!#, as a consequence th
extrinsic curvature and tension perturbationsd̃K and d̃Ps
have the samek dependence asC andC8.

This assumption fixes completely the final spectru
avoiding any arbitrariness such as the one found in@31# for
the ekpyrotic scenario. Then, in Eqs.~61! and ~65! the k
dependence is given entirely in terms of the coefficientsA
andB. As a result, thek dependence of the coefficientsA1

and B1 is a mixture of thek dependence ofA2 and B2

given by Eqs.~44! and ~45!,

A1~k!5aAk2(11m)1bAk211m, ~83!

B1~k!5aBk2(11m)1bBk211m, ~84!

where thea terms come from theA2 mode and theb terms
come from theB2 mode. According to our assumption, th
coefficientsad and bd generically contain a constant an
positive powers ofkh1. The A1 mode is decaying and we
may neglect it soon after the matching. Generically we
pect, according to the amplitudes of theA2 andB2 modes,
thataA andaB are much larger thanbA andbB . Comparing
the A2 andB2 modes we expect

O~ak212m!;O„~kh1!22mbk211m
…, ~85!

hence, for superhorizon modes,kh1!1, we expect
ak212m@bk211m, as long asm5q11/2 is positive. There-
fore, one typically inherits the spectrum of thea terms in the
radiation era, leading to

PC5uCu2k35uaBu2k122m ~}kn21!. ~86!

In this generic situation, we obtain a scale invariant spectr
1.n5222m5122q if q is close to zero, as in the ekpy
rotic and modified pre-big bang case.

Only if the matching conditions are such that theaB term
is suppressed by a factor smaller than (kh1)2m, thebB term
comes to dominate and the spectrum becomes blue,

PC5uCu2k35ubBu2k112m ~}kn21!. ~87!

Then, the spectral indexn5212m5312q results.
As an estimate, for scales of the order of the pres

Hubble parameter, relevant for the perturbations in the c
mic microwave background,k;H0a0, and for 1/h1
51/(a6h1);1017 GeV we havekh1;10230. Hence we
typically expect theb terms to be about 1030 times smaller
than the a terms on cosmologically relevant scale
adk212m;1030bdk211m.

For the constant energy hypersurface we have obta
aB[0 and hence the generic inequalityak212m@bk211m

is violated. But if the matching hypersurface deviates
more than about;10230 from the r1dr5const hypersur-
3-9
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RUTH DURRER AND FILIPPO VERNIZZI PHYSICAL REVIEW D66, 083503 ~2002!
face, we expect theA2 term, ak212m, to dominate in the
Bardeen potential and to determine the final spectrum.

For a scalar field without potential, as in the original pr
big bang model, we haveq51/2 which in the ‘‘generic case’
leads to a spectral indexn5122q50 and only under very
special matching conditions, like matching on the const
energy hypersurface withdPs[0, the spectral indexn54 is
obtained.

In the case of ordinary inflation,q;21, wherem51/2
1q is negative, the situation is quite different. There, theA2

mode is decaying and the Bardeen potential at the en
inflation is dominated by the constantB2 mode. Hence, we
generically expect to inherit in the radiation phase the sp
tral index from theB2 mode withn5312q, leading to a
scale invariant spectrum for ordinary inflation,q;21. This
is also the spectrum obtained when matching on the cons
energy hypersurface.

In Ref. @47#, a radiation-dominated contracting phase
connected smoothly to a radiation-dominated expand
phase, via a scalar field with negative energy density wh
comes to dominate in the high curvature regime. Heren
521 spectrum of perturbation is found with analytical a
guments and via numerical simulation. This agrees with
result. In this case, in fact,q51 and according to our argu
ment we would generically expectn5122q521, as ob-
tained in Ref.@47#. It is interesting to note that the matchin
conditions of Ref.@47# corresponds to the matching on th
hypersurfaces determined byT52H 21C from the longitu-
dinal gauge. According to Eq.~57!, this corresponds to the
gauge withd̃gi0Þ0, the ‘‘off-diagonal gauge,’’ which has
also been considered in Ref.@21# as the gauge in which
perturbations remain small during the pre-big bang phas

This is our main result: When matching a collapsing u
verse to an expanding one, we expect the Bardeen pote
in the expanding phase to inherit the spectrum of the m
which grows during the collapse phase, leading to

P C}k22q, n5122q, ~88!

whereq is the exponent with which the scale factor contra
in conformal time,a}uhuq. We note that this result hold
only if we assume, as explained in Sec. IV B, thatT is small
on large scales@see Eq.~63!#.

V. USING C OR z?

In the above discussion we have used mainly the Bard
potential C. Several authors@28–30,45# use the curvature
perturbationz given in Eq.~70!. In particular, Ref.@45# has
found

z}
uhu1/2

a
Hn

(2)~kh!, n5uq21/2u. ~89!

This also follows from the definition ofz @see Eq.~70!#,
together with the solution~41! for C. During the pre-big
bang phase,h,2h1, this leads to the following spectrum
for z on superhorizon scales, modulo logarithmic corre
tions,
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Pz5uzu2k3}H k422quhu224q for q.1/2,

k212q for q,1/2,
~90!

giving a spectral index for the variablez,

nz5H 522q for q.1/2,

312q for q,1/2.
~91!

Since in Ref.@45# the matching condition@z#650 is used,
the spectral index ofz translates directly into the spectra
index of scalar perturbations in the radiation era, wherez and
C essentially agree on superhorizon scales. This is the
son why these authors obtain a scale invariant spectrum
for q52 ~while they obtainn53 for the ekpyrotic model!.

We have found the following behavior of theC spectrum
on superhorizon scales during the pre-big bang phase@see
Eq. ~41! in the limit kuhu!1],

PC}H k22quhu2(214q) for q.21/2,

k212q for q,21/2.
~92!

This leads to the spectral index ofC,

nC5H 122q for q.21/2,

312q for q,21/2.
~93!

Comparing Eq.~90! and Eq.~92! we see that

P z.ukhu2gPC<PC , ~94!

with

g5H 0 for q,21/2,

112q for 21/2,q,1/2,

2 for q.1/2.

~95!

As we have mentioned above, for cosmologically relev
scales, the factorukhu becomes of the order of 10230 at the
matching surface. We have argued in Sec. IV D that
larger variableC should be relevant at the matching surfac
and only under very special matching conditions is the sp
tral index of z inherited after the big bang. Generically w
therefore expectn5nC to be the spectral index in the radia
tion era. If q,21/2, C and z agree up to a constant pre
factor, and this distinction becomes irrelevant for the spec
index. This is exactly what happens in ‘‘ordinary inflation
whereq;21. The functionsnC andnz are shown in Fig. 1.

Finally, for completeness, we want to emphasize that
Bardeen potential in a radiation-dominated universe re
determines the spectral indexn via PC5uCu2k3}kn21. A
scale invariant spectrum is defined as one for wh
^(dM /M )2&h.c. is scale independent, where the angu
brackets denote spatial average and the subscript ‘‘h.c.’’
dicates the scale of horizon crossing. Therefore, the spe
index is defined bŷ (dM /M )2&h.c.}kn21, so thatn51 rep-
resents a scale invariant spectrum.
3-10
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On the other hand,

K S dM

M D 2L 5k3Udr

r U2

. ~96!

On subhorizon scales and also at horizon crossing,dr/r is
not strongly gauge dependent, so we may choose what
gauge we please. We use comoving gauge~it is a simple
estimate to verify the same behavior, e.g. for longitudi
gauge!. In comoving gauge we have the constraint equat
@39#,

k2C5
3H 2

2 S dr

r D
com.

. ~97!

Using thatH.k at horizon crossing and thatC is time in-
dependent on superhorizon scales, we get

US dr

r D
com.

U
h.c.

2

.uCu2, ~98!

hence

^udM /M u2&h.c..k3uCu25P C}kn21.

In the radiation-dominated eraz is roughly equal toC and
the above equation therefore holds also forPz .

VI. CONCLUSIONS

We have discussed the matching from a collapsing to
expanding Friedmann universe. We have noted that a no
nishing surface tension at the matching surface is neede
turn the pre-big bang collapse into expansion. This surf
tension and its perturbation have to be specified by the h

FIG. 1. The spectral indicesnC ~solid! and nz ~dashed! are
shown as a function ofq5Hh. As argued in the text, we expect
resulting spectral indexn5nC in the radiation era.
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energy corrections of the theory. It is this surface tens
which determines the correct matching surface and it w
generically not be parallel to ther1dr5const surfaces.

We have found that if the matching is performed at t
r1dr5const hypersurface, the growing mode from the p
big bang phase is converted entirely into the decaying m
in the radiation phase. In this case the spectral indexn53
12q is obtained, leading ton53 for the ekpyrotic and
modified pre-big bang model, andn54 for the original pre-
big bang model. However, if the matching hypersurface
chosen to be somewhat different fromr1dr5const, one
obtainsn5122q. Hence, the ekpyrotic and the modifie
pre-big bang model can lead to a scale invariant spectrum
scalar perturbations.

Our result is based on the assumption that perturbing
background bouncing universe does not change comple
the time and duration of the bounce on large scales. We h
formulated this requirement precisely by restricting the
lowed ‘‘infrared power’’ of T.

Notice that the generic spectral index,n5122q, resulting
from our matching conditions of a pre-big bang transition
never blue,n<1. This is not so surprising: On subhorizo
scales, the perturbations are in their vacuum state. They
growing as soon as they exit the horizon until the end of
pre-big bang phase. Hence large scales, which exit ear
have more time to grow.

Often, as a heuristic approach to obtain the spectrum
fluctuations, one considereduCu2k3 at horizon crossing re-
quiring that this behaves likekn21. Applying this procedure
during the pre-big bang phase at the first horizon cross
~exit!, one obtains the blue spectran53 for the ekpyrotic or
the modified pre-big bang model andn54 for the original
pre-big bang model, respectively. However, if one det
mines the same quantity at thesecondhorizon crossing~re-
entry!, during the radiation-dominated phase one obtains
correct spectral indicesn51 andn50, respectively. Since
in an expanding universe the Bardeen potential does
grow on superhorizon scales, it does not matter at wh
horizon crossing, exit or re-entry, the spectrum is determi
in the case of ordinary inflation. In a pre-big bang mod
however, this difference is crucial as we have seen.

The discussion presented in this paper does not affect
gravity wave spectrum@48# which still leads to the spectra
index nT53 for the original pre-big bang andnT52 for the
ekpyrotic model. This is a potentially important observab
to discriminate them from ordinary inflation.

The main open problem when studying these bounc
models remains the high energy transition from the pre-
the post-big bang phase. There, corrections should bec
important, and we have assumed here that for superhor
scales they can be summarized into a tension on the ma
ing surface. Furthermore, it has not yet been shown fr
string theory that the dilaton can obtain an exponential
tential ~in the modified pre-big bang model! or that the brane
distance simply obeys the equation of motion of a minima
coupled scalar field with exponential potential from t
brane point of view for the ekpyrotic model. Also the qua
tum production of other modes possible in these models,
3-11
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the axions and moduli in the modified pre-big bang, or
‘‘graviphoton’’ and ‘‘graviscalar’’ coming from the extra di
mension in the ekpyrotic model, have to be investigated.

Nevertheless, we conclude that models where high en
corrections lead a slowly collapsing universe over into
expanding radiation-dominated phase may represent vi
alternatives to usual ‘‘potential inflation,’’ in generating
scale invariant spectrum of perturbations. However, m
Sc
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no
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open questions, especially concerning the high energy
rections, and flatness, still have to be properly addressed
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