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Supermassive black holes in scalar field galaxy halos
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Ultralight scalar fields provide an interesting alternative to WIMPS as halo dark matter. In this paper we
consider the effect of embedding a supermassive black hole within such a halo, and estimate the absorption
probability and the accretion rate of dark matter onto the black hole. We show that the accretion rate would be
small over the lifetime of a typical halo, and hence that supermassive central black holes can coexist with
scalar field halos.
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[. INTRODUCTION as the smooth scalar profiles. In Sec. IIl, we use two comple-
mentary views of the interaction of a scalar halo and a black
The standard assumption concerning galaxy dark mattdrole: the classical Newtonian picture and the semiclassical
halos is that they are comprised of some weakly interacting@pproximation. The latter will give us information about the
massive particléWIMP). However recently there has been absorption probability and the accretion rate of scalar matter
increased interest in an alternative possibility that the darl@nto the black hole, the main result of this paper. Finally, we
matter halo may be comprised of some ultralight scalar fieldliscuss the main results and some points deserving further
[1-11]. A large number of such scalar particles, all in their Investigation.
ground state, can be bound by their self-gravity; the configu-
rations possess a core radius related to the Compton wave- Il. SCALAR FIELD HALOS
length of the particles in question, and for suitable choices of
parameters such halos can give a good description of ob- We briefly describe a galaxy halo assuming that it is made
served rotation curvel,10], and optimistically may even only of scalar field matter. A description including, for in-
provide possibilities to alleviate the “cuspy corB,7,10,1]  stance, an exponential disk of luminous mattga.0], would
and “Substructure”[5,8,9] prob|ems of the standard WIMP not significantly Change the final results. Two similar but
hypothesig12,13. distinct kinds of scalar field objects have been proposed in
Development of this scenario is at a primitive stage comihe literature to explain galaxy halo structure: boson “stars”
pared to the WIMP hypothesis. While it is known that the (comprised of a complex scalar fi¢lffl5-18 and oscilla-
linear theory evolution of perturbations matches the standartPns (made from a real scalar figld11,19,2Q. For simplic-
scenario, and that time-independent equilibrium configuraity, we restrict ourselves to the case of boson stars, though
tions can broadly reproduce desired halo properties, the scéie main results can be easily extended to the case of oscil-
nario has not been developed in a full cosmological settindatons.
where halo formation is tracked. Nevertheless, what is The simplest boson stars are those possessing spherical
known so far is sufficiently intriguing that the scenario mer-Symmetry, for which the metric is written in the form
its further study.
In this paper, we address one requirement of the scalar-dsz=gwdx"dx”= —Bdt2+Adr2+r?(d#?+sirfade?),
field halo model, which is that such a halo must be able to 1)
survive the existence of a supermassive black hole at its cen-

ter, as it is widely believed that such black holes residgynerea(t,r) andB(t,r) are functions to be determined self-
within many or perhaps even all galaxy haldsl]. In the  cqongistently from the matter distribution. At the classical
WIMP scenario, the angular momentum of the individual|eye| a complex scalar fiel endowed with a scalar poten-

dark matter particles, combined with their low interaction ;) V(|®|) is described by the energy-momentum tensor
rate, ensures that the capture cross section for halo particles

by the central black hole is sufficiently small. However, the 1

scal_ar—fleld halo regime is markedly different; the |r}d|V|duaI T'uvzz[q)’ﬂq):ky—f— q>qu>’V_gW(q>,frq)ir+V)]. 2

particles do not possess angular momentum and indeed are

expected to have a Compton wavelength upwards of one

parsec so that the individual particles occupy a considerablé self-gravitating boson star is found by solving the coupled

volume of space. It is important to verify that the halos areEinstein-Klein-Gordon(EKG) equations

able to survive the presence of a central black hole if the

scenario is to remain feasible. Gu,=koT
This paper is constructed as follows. In Sec. Il, we de-

scribe the basic steps to model a spherical scalar halo without qv

luminous matter. The main intention is to provide a simple Odb=

panorama of the modeling and its appealing properties, such do*

uvo
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satisfy the boundary conditions stated above and to find
Oo* = 40’ n-node solutions of the scalar fielfl(x).
To give an order of magnitude estimation of the quantities
whereG,,, is the Einstein tensor corresponding to the metricinvolved, the scalar halo models in thezglteratlﬂlez,g—ljl
Eq. (1), ko=87G (we are taking units such that=4=1)  consider an ultralight boson mass-10"“" eV, whose cor-
andO is the covariant d’Alambertian operator. responding Compton lengthig=m™*~1 pc. On the other
The EKG equations(3), admit solutions of the form hand, the central amplitude of the scalar field would be pro-
Jio® = p(r)e . With such an ansatz, the scalar energy_portional ';o the_gra_vitational weI_I in galaxie_,-s, and t_h$5|
momentum tensor Eq¢2) and the metric functions,,, in ~[Uo| ~0*~10"" with v the rotational velocity of luminous
Eq. (1) are time independent. If we now search for regularMatter in galaxiegin units ofc). ,
and asymptotically flat solutions, we should set the boundar)t/ (Allinformation of the properties of the scalar halo is con-
conditions &' (r=0)=0, A(r=0)=1 and ¢(r=%)=0, ained in Egs.(4) and (5). Of special interest are the
A(r=o)=1, respectively. The EKG equations are then re-asymptotic behaviors of the scalar and gravitational fields
duced to an eigenvalue problem: for each central value of thB€ar the center. It is easy to show tha]
field ¢(r=0)=¢,, it is necessary to determine the

(eigenvalues of the fundamental frequeneyand B(r =0) B(X) = o[ 1+ (1/6)Uox*+ O(x)], v
=B, to find solutions in which the field has nodes and
satisfy the above boundary conditions. U(x)=Ug+(1/6) pgx?+ O(x*), ®

In principle, we should also impose the boundary condi-
tion B(r==)=1. However, the eigenvalue problem is fur- and so the scalar field remains constant up to radii of the
ther simplified since we caabsorb into the metric func-  order r~|Uy| " Y2\c~1 kpc. Therefore, the resulting self-
tion B. In this way,» does not appear explicitly in the EKG gravitating object has a smooth central profile up to distances
equations and then it becomes an output value determined liyuch larger than the Compton length of its particles.
w/m=1/yB(r==). The normalized temporal metric coeffi-
cient is calculated vi@tt=_—(wlm)ZB(r).. _ . Il THE CENTRAL BLACK HOLE

According to observations, the gravitational well in gal-
axies is quite weak, which suggests that we should seek bo- The geodesics of scalar halos allow massive particles to
son star solutions in the weak-field limit. It is then appropri-reach the center of the halo, and in principle the accumula-
ate to choose a quadratic scalar potenéld|)=m?®|2  tion of matter at the center is not prohibitt@herefore, a
[1,2,10. This choice is made not only for simplicity, as a black hole can form in the center of bosonic objects and
quadratic potential can also be considered an approximatiopecome a threat to their existence. Such a caveat has been
to more complicated ones possessing a mininigr9,11. recognized beforg23], but it is only recently that the inter-

Using the dimensionless radial coordinatesrm, the action between black holes and cosmic scalar fields has be-
EKG equations become the so-called Scimger-Newton gun to be studied serious|24,25.

(SN) equations[2,10,16,17,21 in the weak-field limit: Our aim now is to outline the physical consequences of
(¢o,—9u—1.9,, —1)<1. Thus, we need only solve the sim- the interaction between black holes and the scalar halos con-
pler set of ordinary differential equations sidered above. For this, we will take the two simplest ap-
proximations at hand: the classical picture, in which the
(X¢)"=xUd, (4)  black hole is taken as a central pointlike gravitational source,
and the semiclassical picture in which the scalar field lives in
(xU)"=x¢?, (5)  the curved space-time outside a black hole. As we shall see

below, these approximations are complementary and can be
where primes denote derivatives with respect.tm orderto  matched into the scalar halo picture of Sec. II.

clarify the meaning of functiotJ (x), we take a look at the

metric coefficients in the weak-field limit, ) .
A. The classical picture

—g=1+U(X)—U,, Taking into account that the Schwarzschild radius
~ ’ M
Grr =1H+XU' (). 6) [=2GMpy=9.57 10~ pe " 9
©

Hence, the usual Newtonian potential is given bl
=(1/2)[U(r) —U..], while the value of the fundamental fre- of a central black hole is much smaller than any of the typi-
quency is given by ¢/m) ?=1+U., with U(x==)  cal length scales present in realistic scalar Helg. the op-
=U,,.

Despite its simplicity, the system above still has to be
SOlVed numel’ica”y, W|th the different SO|uti0nS Characterized 1However’ it has been shown tmat|ng Newtonian boson stars
by, for example, the central valug,. As in the relativistic  could provide extra repulsive forces at the cefiggt], which sug-
case, the solution of Eq$4) and(5) is an eigenvalue prob- gests that the inclusion of rotation could avoid the excessive accu-
lem; we have to find the one valug(0)=U, in order to  mulation of matter at the center of scalar objects.
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tical radiusr o or the scalar Compton length™!; see Ref. pating the classical result in which the fundamental fre-
[14] and references therginwe can deal with it within the quency does not appear explicitly. The change of variable
Newtonian regime. preserves the notation of Sec. Il.

In the classical picture, the total gravitational potential is At this point, it is convenient to take the Schwarzschild
the superposition Uy=(1/2)[U(r)—U,.—r¢/r], where factorg(r) itself as the independent variable. Then, the dif-
U(r) is the scalar self-gravitational well and¢(r) is the ferential equation ofs(r) near the horizon is
gravitational field of the black hole, which can be seen as a
solution in vacuum. Thus, we need only modify E4g) to 9?¢"+g¢’ +mPri(1—g)2¢=0, (14)
include the gravitational influence of the black hole

(X)"=x(U—mrg/X) b, (100  where prime denotes derivative with respecgto
The ingoing solution of Eq.(14) is given, aroundg
which resembles the Schiimger equation in a Coulomb-like =0(r=ry), in the series formfound using the computer
potential ~ 1/r. We can still construct regular solutions for algebra packag®apPLE, www.maplesoft.com
the scalar field and the other metric functions, but we need to

change the boundary condition of the radial derivative of the

scalar field ar =0 to <D(v,r)=<b(°)(v,r)[1—(mrs)2
¢'(0)=—pomry2. (11) .

The other boundary conditions remain the same. an‘l (Pn+imrSQn)g”}, (15

In this classical picture, we notice that the black hole only
affects the behavior of the field at small but the scalar
profile is still regular. At large distances, the scalar profile iswhere
unperturbed by the presence of the central black hole. In

other words, in the Newtonian regime the existence of the ®O)(y,r)y=g imv-r=rdnr/rgl (16)
scalar halo is not threatened by the central gravitational
source.

Herev=t+r, is the advanced time coordinate defined via
the usual Kruskal coordinate, =r+rgJn(r/rs—1) and we

The approximation we now make is to consider that the
scalar field lives near the horizon of the black hole in a fixed grs(r):errr*rén(r/rs)_ 17
Schwarzschild background:
dr2 The coefficientsP,,, Q, in Eqg. (15 have the complicated
dsz=—g(r)dt2+W+r2(d02+sir120d<p2), (12 form
whereg(r)=1-r¢/r, and then its properties are determined 3

by the field theory in such a curved space-time. This is rea- Py
sonable since, as stated above, the self-gravitating effects of
the scalar field appear only at distances of ordem ™!
>r..

Recalling that we are working with a quadratic scalar po-
tential, ans-scalar wav&obeys the Klein-Gordon equation in
metric Eq.(12):

1+4m?r2’

3 2+5m?ri+emird
22 (1+m?r2)(1+4m?r2

2

0 ob\ 152D b L _40% 110m?r 2+ 15Im*r ¢+ 36m°r
R Pl B ———" = ,
o (r gar) s e (13 72232 (14 (419m?r2)(1+m?r2)(1+4m?r2)

r

with the corresponding equation for the complex conjugate ~ _
field ®*. Equation (13) is separable in the form
Vio®(t,r)=¢(r)e ™ where we have seb=m, antici-

9 6
o . Y 1+4mr?
This is the scalar wave with lowest angular momenten®, and
hence also the lowest energy. This condition is satisfied for the
scalar halos considered so far, which are supposed to form a 3 2_m2r§
(ground stateBose condensate. The results could be also applied Qo= ey > 2 N
for the case of cosmological scalar fields at late times. 2% (1+mrg)(1+4msrg)
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1 80—266m2r2—319m*ri—108m°r¢
223% (1+(4/19)m?r2)(1+m?r2)(1+4m?r2)’

Qs

In the particular case in whicinr,<1, we can approximate
P.,Q, by their leading terms. Then, we find the approximate

expressions

_ 1 ~n
Pn—ﬁ(n+1)(n+2)—§Qn. (18

With these approximate formulas, the sums in Edp) can

PHYSICAL REVIEW D66, 083005 (2002

which gives the absorption probability of &m0 spherical
wave ag 26|

D . 2
/2
1+—Ce
r=1-

=47m(mrg)3, (25)

D .
— a—im2
1+ Ce

where we have again assumed that<1. The interpreta-
tion of I is that it gives the fraction of the ingoing wave, and
hence the fraction of the incoming particles, which is ab-
sorbed by the black hole.

The last result indicates that for typical valu@srg

be written in terms of known functions, which indicates that~10"’, we havel'~10~?° which implies that the absorp-

the series diverges faz— 1(r — ).

However, we find that for distancesi 1>r>r [for
which we can neglectr¢/r)? and higher-order termsthe
radial equation for the scalar field becomes

2
"+ F¢’+m2r5$=0, (19

where primes now denote derivatives with respeat. tdbhe
new solutions are of the form

d(r)=r"YCI+DY ](2ymryg), (20)

whereJ andY are the Bessel functions of the first and secondh

kind, andC andD are arbitrary constants.
The overlap region between the two solutions Ed$)

and (20) is mI>r>r . As we said above, using the ap- be
proximate formulag(18), we can estimate the sum of the

series in Eq(15). For example, ifr=103rs,

O=0O(y 1PrY[1—(mr9?(512+14imry]. (21

tion of the scalar field is negligible and that, from the semi-
classical point of view too, a central black hole and a scalar
halo can be put together. Equati¢®b) coincides with pre-
vious calculations, which also indicate that the absorption
probability of highed modes is further suppressed by a fac-
tor of the order tnr9? [27].

Summarizing, we can say that the solutions of the scalar
halo are given by Eqg10) and(5) for r=m™%, by Eq.(20)
for m™1>r>rg and by Eq.(15) for r~r, with the absorp-
tion probability Eq.(25) calculated in the overlap regian
<r<m~!. Formally speaking, the three different solutions
are well matched to each other if we multiply E¢$5) and
(20) by the central amplitudeb, calculated for the scalar
alo in Egs.(10) and (5). Since the latter is just an overall
factor, the absorption probability E€R5) remains the same.
Observe that the second solution in EB0) could have
en obtained within the classical picture in Ef0), but it
was not taken into account because it diverges at the origin
and our purpose was to construct regular solutions. But, as
we have seen in this section, this second solution contains
the information of the interaction between the black hole and

The factor ('an)2 highly suppresses the contribution of the the scalar field, since it is through it that we obtained a non-
series in Eq.(15), so that we can safely approximate the null absorption probability.

radial part of the latter in this region as
H(r)=1—imr2/r. (22)

On the other hand, for distancessm™?!, Eq. (20) re-
duces to

2
mer o
1— s +.”}

¢(r):(m2rs)1’20[ —

( er 5) - 1/2D

r

(23

Notice that we have included a first-order term in E2p),

Another important issue that can be calculated is the ac-
cretion rate of the scalar field into the black hole by using the
formula Eq.(3.1) in Ref.[24]. The scalar energy-momentum
tensor should be written in the new variablesr(), and then
we obtain for the flux of Killing energy across the horizon

dM/dt=47r2XT,,(v,rd=(2G) X pomry?, (26)
in which we have included the overall factgp. Using typi-
cal numberspomre~10-13 the accretion rate is quite small,
dM/dt=10 Moy 1, a result that is consistent with the
small absorption probability given by E®R5).

IV. CONCLUSIONS

just to show that the next-to-order correction is simply the
Coulomb-like one, which coincides with the classical picture We have analyzed the impact of a central supermassive

above Eq(11).
Matching Eq.(23) onto Eq.(22) in the overlap region, we
find

D . 3
E—lw(mrs) , (24

black hole on galactic halos comprised of ultralight scalar
particles. From simple physical grounds, we should expect
that the accretion rate of a scalar halo onto a black hole is
small, since the boson particles cannot “fit” into the horizon
due to their large Compton length. In addition, the absorption
probability should be proportional to the ratio of the effective
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‘area’ of the two objects, and hence proportionalrorf)? as Arelated issue is the interaction of primordial black holes
happens for massless scalar fidlg§]. with cosmic scalar fields, prior to the gravitational collapse
We found that the absorption probability is decreased byf density perturbations, as recently outlined in Refs.
an extra factomr,, which assures the coexistence of the[24,25. For a cosmic scalar field endowed with a quadratic
bosonic halo and the central black hole. For this, we showe@otential, the accretion rate would also be given by formula
how to construct consistent and regular solutions on differenkd. (26), and then the field would have the oscillatory be-
scales. In addition, the accretion rate of scalar matter onto thgavior Eq.(15) near the black hole horizon. That is, the mass
black hole is so small that the matter absorbed by the blackf the bosonic field still prevents a strong interaction be-
hole is much less than a solar mass in the whole lifetime ofween black holes and cosmic scalar fields. Other kinds of
the Universe. On the other hand, this result would indicatéscalar potentials would lead to more interesting pict{i2&g
that the current observed accretion in galaxy black holes
would not be due to matter provided by a scalar halo.

We have only investigated the equilibrium state of a re-
laxed scalar halo and a central black hole, and it would be L.A.U.-L. was supported by CONACyT, Mexico under
interesting to have a more dynamical view studying the for-grant 010385, and A.R.L. in part by the Leverhulme Trust.
mation (simultaneously or notof the two objects. This We thank Ricardo Becerril, F. Siddhartha Guzmadulien
would require the evolution of the full Einstein equations, Lesgourgues, Tonatiuh Matos, lsuMendes and lan Moss
which is well beyond the scope of this paper. for useful discussions.
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