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Supermassive black holes in scalar field galaxy halos

L. Arturo Ureña-López and Andrew R. Liddle
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

~Received 24 July 2002; published 18 October 2002!

Ultralight scalar fields provide an interesting alternative to WIMPS as halo dark matter. In this paper we
consider the effect of embedding a supermassive black hole within such a halo, and estimate the absorption
probability and the accretion rate of dark matter onto the black hole. We show that the accretion rate would be
small over the lifetime of a typical halo, and hence that supermassive central black holes can coexist with
scalar field halos.
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I. INTRODUCTION

The standard assumption concerning galaxy dark ma
halos is that they are comprised of some weakly interac
massive particle~WIMP!. However recently there has bee
increased interest in an alternative possibility that the d
matter halo may be comprised of some ultralight scalar fi
@1–11#. A large number of such scalar particles, all in th
ground state, can be bound by their self-gravity; the confi
rations possess a core radius related to the Compton w
length of the particles in question, and for suitable choice
parameters such halos can give a good description of
served rotation curves@4,10#, and optimistically may even
provide possibilities to alleviate the ‘‘cuspy core’’@5,7,10,11#
and ‘‘substructure’’@5,8,9# problems of the standard WIMP
hypothesis@12,13#.

Development of this scenario is at a primitive stage co
pared to the WIMP hypothesis. While it is known that t
linear theory evolution of perturbations matches the stand
scenario, and that time-independent equilibrium configu
tions can broadly reproduce desired halo properties, the
nario has not been developed in a full cosmological set
where halo formation is tracked. Nevertheless, what
known so far is sufficiently intriguing that the scenario me
its further study.

In this paper, we address one requirement of the sca
field halo model, which is that such a halo must be able
survive the existence of a supermassive black hole at its
ter, as it is widely believed that such black holes res
within many or perhaps even all galaxy halos@14#. In the
WIMP scenario, the angular momentum of the individu
dark matter particles, combined with their low interacti
rate, ensures that the capture cross section for halo part
by the central black hole is sufficiently small. However, t
scalar-field halo regime is markedly different; the individu
particles do not possess angular momentum and indeed
expected to have a Compton wavelength upwards of
parsec so that the individual particles occupy a consider
volume of space. It is important to verify that the halos a
able to survive the presence of a central black hole if
scenario is to remain feasible.

This paper is constructed as follows. In Sec. II, we d
scribe the basic steps to model a spherical scalar halo wit
luminous matter. The main intention is to provide a simp
panorama of the modeling and its appealing properties, s
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as the smooth scalar profiles. In Sec. III, we use two comp
mentary views of the interaction of a scalar halo and a bl
hole: the classical Newtonian picture and the semiclass
approximation. The latter will give us information about th
absorption probability and the accretion rate of scalar ma
onto the black hole, the main result of this paper. Finally,
discuss the main results and some points deserving fur
investigation.

II. SCALAR FIELD HALOS

We briefly describe a galaxy halo assuming that it is ma
only of scalar field matter. A description including, for in
stance, an exponential disk of luminous matter@1,10#, would
not significantly change the final results. Two similar b
distinct kinds of scalar field objects have been proposed
the literature to explain galaxy halo structure: boson ‘‘sta
~comprised of a complex scalar field! @15–18# and oscilla-
tons ~made from a real scalar field! @11,19,20#. For simplic-
ity, we restrict ourselves to the case of boson stars, tho
the main results can be easily extended to the case of o
latons.

The simplest boson stars are those possessing sphe
symmetry, for which the metric is written in the form

ds25gmndxmdxn52Bdt21Adr21r 2~du21sin2udw2!,

~1!

whereA(t,r ) andB(t,r ) are functions to be determined sel
consistently from the matter distribution. At the classic
level, a complex scalar fieldF endowed with a scalar poten
tial V(uFu) is described by the energy-momentum tensor

Tmn5
1

2
@F ,mF ,n* 1F ,m* F ,n2gmn~F ,sF ,s* 1V!#. ~2!

A self-gravitating boson star is found by solving the coupl
Einstein-Klein-Gordon~EKG! equations

Gmn5k0Tmn ,

hF5
dV

dF*
, ~3!
©2002 The American Physical Society05-1
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hF* 5
dV

dF
,

whereGmn is the Einstein tensor corresponding to the me
Eq. ~1!, k058pG ~we are taking units such thatc5\51)
andh is the covariant d’Alambertian operator.

The EKG equations,~3!, admit solutions of the form
Ak0F5f(r )e2 ivt. With such an ansatz, the scalar energ
momentum tensor Eq.~2! and the metric functionsgmn in
Eq. ~1! are time independent. If we now search for regu
and asymptotically flat solutions, we should set the bound
conditions f8(r 50)50, A(r 50)51 and f(r 5`)50,
A(r 5`)51, respectively. The EKG equations are then
duced to an eigenvalue problem; for each central value of
field f(r 50)[f0, it is necessary to determine th
~eigen!values of the fundamental frequencyv andB(r 50)
[B0 to find solutions in which the field hasn nodes and
satisfy the above boundary conditions.

In principle, we should also impose the boundary con
tion B(r 5`)51. However, the eigenvalue problem is fu
ther simplified since we canabsorbv into the metric func-
tion B. In this way,v does not appear explicitly in the EKG
equations and then it becomes an output value determine
v/m51/AB(r 5`). The normalized temporal metric coeffi
cient is calculated viagtt52(v/m)2B(r ).

According to observations, the gravitational well in ga
axies is quite weak, which suggests that we should seek
son star solutions in the weak-field limit. It is then approp
ate to choose a quadratic scalar potentialV(uFu)5m2uFu2

@1,2,10#. This choice is made not only for simplicity, as
quadratic potential can also be considered an approxima
to more complicated ones possessing a minimum@5–9,11#.

Using the dimensionless radial coordinatex5rm, the
EKG equations become the so-called Schro¨dinger-Newton
~SN! equations @2,10,16,17,21# in the weak-field limit:
(f0 ,2gtt21,grr 21)!1. Thus, we need only solve the sim
pler set of ordinary differential equations

~xf!95xUf, ~4!

~xU!95xf2, ~5!

where primes denote derivatives with respect tox. In order to
clarify the meaning of functionU(x), we take a look at the
metric coefficients in the weak-field limit,

2gtt.11U~x!2U` ,

grr .11xU8~x!. ~6!

Hence, the usual Newtonian potential is given byUN
5(1/2)@U(r )2U`#, while the value of the fundamental fre
quency is given by (v/m)22511U` , with U(x5`)
[U` .

Despite its simplicity, the system above still has to
solved numerically, with the different solutions characteriz
by, for example, the central valuef0. As in the relativistic
case, the solution of Eqs.~4! and ~5! is an eigenvalue prob
lem; we have to find the one valueU(0)[U0 in order to
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satisfy the boundary conditions stated above and to
n-node solutions of the scalar fieldf(x).

To give an order of magnitude estimation of the quantit
involved, the scalar halo models in the literature@1,2,9–11#
consider an ultralight boson massm;10223 eV, whose cor-
responding Compton length islC5m21;1 pc. On the other
hand, the central amplitude of the scalar field would be p
portional to the gravitational well in galaxies, and thenf0
;uU0u;v2;1026 with v the rotational velocity of luminous
matter in galaxies~in units of c).

All information of the properties of the scalar halo is co
tained in Eqs. ~4! and ~5!. Of special interest are the
asymptotic behaviors of the scalar and gravitational fie
near the center. It is easy to show that@21#

f~x!5f0@11~1/6!U0x21O~x4!#, ~7!

U~x!5U01~1/6!f0
2x21O~x4!, ~8!

and so the scalar field remains constant up to radii of
order r;uU0u21/2lC;1 kpc. Therefore, the resulting sel
gravitating object has a smooth central profile up to distan
much larger than the Compton length of its particles.

III. THE CENTRAL BLACK HOLE

The geodesics of scalar halos allow massive particle
reach the center of the halo, and in principle the accumu
tion of matter at the center is not prohibited.1 Therefore, a
black hole can form in the center of bosonic objects a
become a threat to their existence. Such a caveat has
recognized before@23#, but it is only recently that the inter
action between black holes and cosmic scalar fields has
gun to be studied seriously@24,25#.

Our aim now is to outline the physical consequences
the interaction between black holes and the scalar halos
sidered above. For this, we will take the two simplest a
proximations at hand: the classical picture, in which t
black hole is taken as a central pointlike gravitational sour
and the semiclassical picture in which the scalar field lives
the curved space-time outside a black hole. As we shall
below, these approximations are complementary and ca
matched into the scalar halo picture of Sec. II.

A. The classical picture

Taking into account that the Schwarzschild radius

r s[2GMbh.9.57310214 pc
Mbh

M (

~9!

of a central black hole is much smaller than any of the ty
cal length scales present in realistic scalar halo~e.g. the op-

1However, it has been shown thatrotating Newtonian boson stars
could provide extra repulsive forces at the center@22#, which sug-
gests that the inclusion of rotation could avoid the excessive a
mulation of matter at the center of scalar objects.
5-2
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tical radiusr opt or the scalar Compton lengthm21; see Ref.
@14# and references therein!, we can deal with it within the
Newtonian regime.

In the classical picture, the total gravitational potential
the superposition UN5(1/2)@U(r )2U`2r s/r #, where
U(r ) is the scalar self-gravitational well and (r s/r ) is the
gravitational field of the black hole, which can be seen a
solution in vacuum. Thus, we need only modify Eq.~4! to
include the gravitational influence of the black hole

~xf!95x~U2mrs/x!f, ~10!

which resembles the Schro¨dinger equation in a Coulomb-like
potential;1/r . We can still construct regular solutions fo
the scalar field and the other metric functions, but we nee
change the boundary condition of the radial derivative of
scalar field atr 50 to

f8~0!52f0mrs/2. ~11!

The other boundary conditions remain the same.
In this classical picture, we notice that the black hole o

affects the behavior of the field at smallr, but the scalar
profile is still regular. At large distances, the scalar profile
unperturbed by the presence of the central black hole
other words, in the Newtonian regime the existence of
scalar halo is not threatened by the central gravitatio
source.

B. The quantum field theory picture

The approximation we now make is to consider that
scalar field lives near the horizon of the black hole in a fix
Schwarzschild background:

ds252g~r !dt21
dr2

g~r !
1r 2~du21sin2udw2!, ~12!

whereg(r )512r s/r , and then its properties are determin
by the field theory in such a curved space-time. This is r
sonable since, as stated above, the self-gravitating effec
the scalar field appear only at distances of orderr @m21

@r s.
Recalling that we are working with a quadratic scalar p

tential, ans-scalar wave2 obeys the Klein-Gordon equation i
metric Eq.~12!:

1

r 2

]

]r S r 2g
]F

]r D2
1

g

]2F

]t2
5m2F, ~13!

with the corresponding equation for the complex conjug
field F* . Equation ~13! is separable in the form
Ak0F(t,r )5f(r )e2 imt, where we have setv5m, antici-

2This is the scalar wave with lowest angular momentuml 50, and
hence also the lowest energy. This condition is satisfied for
scalar halos considered so far, which are supposed to for
~ground state! Bose condensate. The results could be also app
for the case of cosmological scalar fields at late times.
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pating the classical result in which the fundamental f
quency does not appear explicitly. The change of varia
preserves the notation of Sec. II.

At this point, it is convenient to take the Schwarzsch
factor g(r ) itself as the independent variable. Then, the d
ferential equation off(r ) near the horizon is

g2f91gf81m2r s
2~12g!23f50, ~14!

where prime denotes derivative with respect tog.
The ingoing solution of Eq.~14! is given, aroundg

50(r 5r s), in the series form~found using the compute
algebra packageMAPLE, www.maplesoft.com!

F~v,r !5F (0)~v,r !F12~mrs!
2

3 (
n51

`

~Pn1 imrsQn!gnG , ~15!

where

F (0)~v,r !5e2 im[v2r 2r sln(r /r s)] . ~16!

Here v5t1r * is the advanced time coordinate defined v
the usual Kruskal coordinater * 5r 1r sln(r/rs21) and we
have used the relationship

gr s~r !5er
*

2r 2r sln(r /r s). ~17!

The coefficientsPn , Qn in Eq. ~15! have the complicated
form

P15
3

114m2r s
2

,

P25
3

22

215m2r s
216m4r s

4

~11m2r s
2!~114m2r s

2!
,

P35
1

2232

401110m2r s
21151m4r s

4136m6r s
6

„11~4/9!m2r s
2
…~11m2r s

2!~114m2r s
2!

,

. . . 5 . . .

Q15
6

114m2r s
2

,

Q25
3

22

22m2r s
2

~11m2r s
2!~114m2r s

2!
,

e
a
d
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Q35
1

2233

802266m2r s
22319m4r s

42108m6r s
6

„11~4/9!m2r s
2
…~11m2r s

2!~114m2r s
2!

,

. . . 5 . . . .

In the particular case in whichmrs!1, we can approximate
Pn ,Qn by their leading terms. Then, we find the approxima
expressions

Pn.
1

2n2
~n11!~n12!.

n

2
Qn . ~18!

With these approximate formulas, the sums in Eq.~15! can
be written in terms of known functions, which indicates th
the series diverges forg→1(r→`).

However, we find that for distancesm21.r @r s @for
which we can neglect (r s/r )2 and higher-order terms#, the
radial equation for the scalar field becomes

f91
2

r
f81m2r s

f

r
50, ~19!

where primes now denote derivatives with respect tor. The
new solutions are of the form

f~r !5r 21/2@CJ11DY1#~2Am2r sr !, ~20!

whereJ andY are the Bessel functions of the first and seco
kind, andC andD are arbitrary constants.

The overlap region between the two solutions Eqs.~15!
and ~20! is m21@r @r s. As we said above, using the ap
proximate formulas~18!, we can estimate the sum of th
series in Eq.~15!. For example, ifr 5103r s,

F.F (0)~v,103r s!@12~mrs!
2~512114imrs!#. ~21!

The factor (mrs)
2 highly suppresses the contribution of th

series in Eq.~15!, so that we can safely approximate th
radial part of the latter in this region as

f~r !.12 imrs
2/r . ~22!

On the other hand, for distancesr !m21, Eq. ~20! re-
duces to

f~r !.~m2r s!
1/2CF12

m2r sr

2
1•••G

2
~m2r s!

21/2D

pr
. ~23!

Notice that we have included a first-order term in Eq.~23!,
just to show that the next-to-order correction is simply t
Coulomb-like one, which coincides with the classical pictu
above Eq.~11!.

Matching Eq.~23! onto Eq.~22! in the overlap region, we
find

D

C
5 ip~mrs!

3, ~24!
08300
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which gives the absorption probability of anl 50 spherical
wave as@26#

G512U 11
D

C
eip/2

11
D

C
e2 ip/2

U 2

.4p~mrs!
3, ~25!

where we have again assumed thatmrs!1. The interpreta-
tion of G is that it gives the fraction of the ingoing wave, an
hence the fraction of the incoming particles, which is a
sorbed by the black hole.

The last result indicates that for typical valuesmrs
;1027, we haveG;10220 which implies that the absorp
tion of the scalar field is negligible and that, from the sem
classical point of view too, a central black hole and a sca
halo can be put together. Equation~25! coincides with pre-
vious calculations, which also indicate that the absorpt
probability of higherl modes is further suppressed by a fa
tor of the order (mrs)

2l @27#.
Summarizing, we can say that the solutions of the sca

halo are given by Eqs.~10! and~5! for r>m21, by Eq.~20!
for m21.r @r s and by Eq.~15! for r;r s, with the absorp-
tion probability Eq.~25! calculated in the overlap regionr s
!r ,m21. Formally speaking, the three different solutio
are well matched to each other if we multiply Eqs.~15! and
~20! by the central amplitudef0 calculated for the scala
halo in Eqs.~10! and ~5!. Since the latter is just an overa
factor, the absorption probability Eq.~25! remains the same

Observe that the second solution in Eq.~20! could have
been obtained within the classical picture in Eq.~10!, but it
was not taken into account because it diverges at the or
and our purpose was to construct regular solutions. But
we have seen in this section, this second solution cont
the information of the interaction between the black hole a
the scalar field, since it is through it that we obtained a n
null absorption probability.

Another important issue that can be calculated is the
cretion rate of the scalar field into the black hole by using
formula Eq.~3.1! in Ref. @24#. The scalar energy-momentum
tensor should be written in the new variables (v,r ), and then
we obtain for the flux of Killing energy across the horizon

dM/dt54pr s
23Tvv~v,r s!5~2G!21~f0mrs!

2, ~26!

in which we have included the overall factorf0. Using typi-
cal numbersf0mrs;10213, the accretion rate is quite smal
dM/dt.10214M (y21, a result that is consistent with th
small absorption probability given by Eq.~25!.

IV. CONCLUSIONS

We have analyzed the impact of a central supermas
black hole on galactic halos comprised of ultralight sca
particles. From simple physical grounds, we should exp
that the accretion rate of a scalar halo onto a black hol
small, since the boson particles cannot ‘‘fit’’ into the horizo
due to their large Compton length. In addition, the absorpt
probability should be proportional to the ratio of the effecti
5-4
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‘area’ of the two objects, and hence proportional to (mrs)
2 as

happens for massless scalar fields@26#.
We found that the absorption probability is decreased

an extra factormrs, which assures the coexistence of t
bosonic halo and the central black hole. For this, we show
how to construct consistent and regular solutions on differ
scales. In addition, the accretion rate of scalar matter onto
black hole is so small that the matter absorbed by the b
hole is much less than a solar mass in the whole lifetime
the Universe. On the other hand, this result would indic
that the current observed accretion in galaxy black ho
would not be due to matter provided by a scalar halo.

We have only investigated the equilibrium state of a
laxed scalar halo and a central black hole, and it would
interesting to have a more dynamical view studying the f
mation ~simultaneously or not! of the two objects. This
would require the evolution of the full Einstein equation
which is well beyond the scope of this paper.
,

ro
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A related issue is the interaction of primordial black hol
with cosmic scalar fields, prior to the gravitational collap
of density perturbations, as recently outlined in Re
@24,25#. For a cosmic scalar field endowed with a quadra
potential, the accretion rate would also be given by form
Eq. ~26!, and then the field would have the oscillatory b
havior Eq.~15! near the black hole horizon. That is, the ma
of the bosonic field still prevents a strong interaction b
tween black holes and cosmic scalar fields. Other kinds
scalar potentials would lead to more interesting pictures@25#.
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62, 061301~R! ~2000!; T. Matos and F.S. Guzma´n, Class.
Quantum Grav.18, 5055~2001!.

@5# P.J.E. Peebles, Astrophys. J. Lett.534, L127 ~2000!; J. Good-
man, New Astron.5, 103 ~2000!.

@6# M.C. Bento, O. Bertolami, R. Rosenfeld, and L. Teodo
Phys. Rev. D62, 041302~R! ~2000!; O. Bertolami, M.C.
Bento, and R. Rosenfeld, astro-ph/0111415.

@7# A. Riotto and I. Tkachev, Phys. Lett. B484, 177 ~2000!.
@8# V. Sahni and L. Wang, Phys. Rev. D62, 103517~2000!.
@9# T. Matos and L.A. Uren˜a-López, Class. Quantum Grav.17,
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