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The ESA mission BepiColombo will explore the planet Mercury with equipment allowing an extremely
accurate tracking. While determining its orbit around Mercury, it will be possible to indirectly observe the
motion of its center of mass, with an accuracy several orders of magnitude better than what is possible by radar
ranging to the planet’s surface. This is an opportunity to conduct a relativity experiment which will be a
modern version of the traditional tests of general relativity, based upon Mercury’s perihelion advance and the
relativistic light propagation near the Sun. We define the mathematical methods to be used to extract from the
data of the BepiColombo mission, as presently designed, the best constraints on the main post-Newtonian
parameters, especiallyb,g and the Nordtvedt parameterh, but also the dynamic oblateness of the SunJ2( and
the preferred frame parametersa1 ,a2. We have performed a full cycle simulation of the BepiColombo radio
science experiments, including this relativity experiment, with the purpose of assessing in a realistic~as
opposed to formal! way the accuracy achievable on each parameter of interest. Forg the best constraint can be
obtained by means of a dedicated superior conjunction experiment, with a realistic accuracy.231026. Forb
the main problem is the very strong correlation withJ2( ; if the Nordtvedt relationshiph54b2g23 is used,
as it is legitimate in the metric theories of gravitation, a realistic accuracy of.231026 for b and
.231029 for J2( can be achieved, whileh itself is constrained within.1025. If the preferred frame
parametersa1 ,a2 are included in the analysis, they can be constrained within.831026 and.1026, respec-
tively, at the price of some degradation inb, J2( andh. It is also possible to test the change with time of the
gravitational constantG, but the results are severely limited because of the problems of absolute calibration of
the ranging transponder, to the point that the improvement as compared with other techniques~such as lunar
laser ranging! is not so important.

DOI: 10.1103/PhysRevD.66.082001 PACS number~s!: 04.80.Cc, 95.30.Sf, 95.55.Pe, 96.30.Dz
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I. INTRODUCTION AND MOTIVATION

A. Historical perspective

Among all bodies in the solar system, Mercury is the b
placed to probe the theory of gravitation since it feels m
than any other planet the gravity field of the Sun and mo
with the highest velocity. Only a few near-Earth astero
reside on temporarily stable orbits with perihelia closer to
Sun, but their larger semimajor axes decrease the magn
of the relativistic orbital effects. Moreover, their smaller si
results in significant nongravitational forces, with a typica
low model accuracy, which perturb their orbit~e.g. @1,2#!.

The fascinating story of Mercury’s contribution to th
tests of the theory of gravitation starts with the Vulcano
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hypothesis by Le Verrier~see, e.g.,@3#!. Even today, every
misfit of the orbital data of cosmic bodies can be approac
from two radically different standpoints:~i! either assume
the validity of the gravitation theory and seek for the ‘‘mis
ing mass,’’ or~ii ! put in question the gravitation theory~for
the sake of simplicity we neglect in this discussion the r
of nongravitational effects!. Le Verrier leaned toward the firs
approach mentioned above. To explain the excess in Me
ry’s perihelion drift, he postulated the existence of an
tramercurian planet named Vulcan. Soon he realized tha
anything, ‘‘Vulcan’’ should be a belt of many small bodie
rather than a single object. Interestingly, this subject is s
alive today~e.g. @4–6#! but the total mass of the Vulcanoi
belt, as it is hypothesized now, must be many orders of m
nitude smaller than required to cause any observable eff
on Mercury’s orbit.

At the end of the 19th century, after several decades
unsuccessful search for Vulcanoids and with Newcom
©2002 The American Physical Society01-1
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more complete and precise computation of Mercury’s p
helion drift, the problem had a brilliant solution throug
adopting the second approach: a radical change of the g
tation theory. Although Mercury’s perihelion drift was no
the primary topic for Einstein to complete his general re
tivity ~GR! theory, he was apparently very excited to real
the new theory explains Newcomb’s result~Einstein obtained
this result on Nov 18, 1915; see@7#!. A little later, in August
and September 1916, de Sitter@8# computed precisely
enough of this relativistic drift within a fully relativistic for-
mulation of planetary motion and concluded that there w
an excellent agreement with the observations.

After the pioneering period, this test of general relativ
went into what has been called a ‘‘hibernation period’’@9#
because the technologies for more accurate measureme
the orbit of Mercury were not available. Starting in 1959, t
new technology of interplanetary radar allowed the meas
ment of the Earth-Mercury distance with accuracies of a f
km. Taking into account that the general relativistic effe
displace Mercury with respect to the Newtonian orbit by s
eral tens of km per year, just a few years of data allow
constrain the values of the post-Newtonian~PN! parameters
at the level of 1% or better. By accumulating many years
data an estimate of the combination 2g2b consistent with
GR within 0.003 was obtained@10#. Although the radar tech
nology and the knowledge of the plasma effects on ra
waves propagation have improved considerably, still tod
the accuracy of the observations of the orbit of Mercury
limited by the uncertainty of the topographic height of t
radar bounce point.

Moreover, the first viewpoint was revived. Dicke@11# in-
troduced another form of ‘‘missing mass’’ by postulating th
the dynamical oblateness of the Sun,J2( , could be larger
than expected from a rigid rotation of the solar interior, a
could contribute to Mercury’s perihelion precession a
mask deviations of the values of the PN parametersb andg
from their GR value 1. The spectrum of motivations rang
from better accommodation of Mach’s principle within th
gravitation theory@12# to suggestions that the solar interi
might be rotating significantly faster than the surface~per-
haps due to the drain of the angular momentum of the s
envelope to the planetary nebula!. Although these expecta
tions were not later fulfilled, Dicke was right in prompting
serious investigation of theJ2( contribution to the observed
effects@13#. This is especially true if we are aiming to reac
the 1024 or better level in determination of the PN param
etersb andg, since it is easy to see thatJ2( must contribute
to Mercury’s perihelion motion at this level. Unfortunate
the orbit of Mercury is not inclined enough with respect
the solar equator~only 3.3°) to allow for a separation of th
b and theJ2( effects ~if the only orbit used is the one o
Mercury!. Precise independent measurements of the s
quadrupole coefficient are not available: note that the p
ently available disk-oblateness data@14,15# and the SOHO-
GONG measurement of the splitting of the solar norm
modes@16# still yield somewhat controversial results. Thu
the value ofb is currently better measured from lunar las
ranging@17# than from radar ranging to Mercury.
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The PN parameterg appears in the perihelion precessio
of Mercury but also has other effects, such as the light
flection which can be measured by very high accuracy
trometry. Thus, after the pioneering phase of the meas
ments of light deflection during a total eclipse, th
hibernation period for the experiments ong ended when the
very long baseline interferometry~VLBI ! technique became
available@10,18#. Moreover,g appears in the light propaga
tion apparent delay, which can be measured by trackin
spacecraft passing behind the Sun~even if it is not close to
the Sun!. Experiments based on this principle are under w
now @19#. Thus the new generation of Mercury based expe
ments being designed now need to compete, as far asg is
concerned, also with these independent determinations.

In the context of our work, the Eddington parametersb
andg are regarded as purely phenomenological factors
are to be determined or constrained from the observatio
We note, however, that these parameters have a deepe
oretical significance since they are directly linked to the fu
damental constants by which the assumed additional sc
fields mediating gravity are coupled to the metric field~see,
e.g.,@20#!. Since the tensor-scalar theories represent the m
viable extension of the Einsteinian gravitation theory, th
observational verification is very important. We shall th
pay special attention, and devote particular effort, to wh
level of accuracy our experiment can constrainb andg.

Nevertheless, there are other parameters which can be
termined or constrained together with these two and are
themselves valuable scientific goals. The most importan
the Nordtvedt parameterh describing violations of the
strong equivalence principle~SEP!. Since the late 1960s@21#
it was understood that the coupling of gravitation with t
self-gravitational energy of a large body could violate t
equivalence principle and lead to observable effects in
orbits of the planets and of the Moon. This form of violatio
is different from the composition dependence of the grav
tional constant, which has been the subject of intense exp
mental efforts in the last decades@22#, but as a matter of
principle it has to be constrained experimentally.

B. The BepiColombo opportunity

Although there are theoretical arguments@23,24# for the
necessity to obtain constraints onb, g and h well beyond
the 1024 level, the state of the art in gravitation theory
such that there is no compelling prediction of the level
accuracy at which a violation of GR would be detected.
has been clear for a long time that a space mission to M
cury, with either a surface long-lasting transponder or
orbiter, could achieve a very significant improvement in t
determination of the PN parameters@25–27#. However, to
justify such a complex~and expensive! mission uniquely for
a relativity experiment, not being able to claim that som
violation of GR would be discovered, proved to be difficu

According to@9#, the best way to proceed in the prese
period with the verification of GR in weak field conditions
to adopt ‘‘an opportunistic approach,’’ in which new tes
result from available technologies exploited in new wa
Analogously, already planned space missions need to be
1-2
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TESTING GENERAL RELATIVITY WITH THE . . . PHYSICAL REVIEW D 66, 082001 ~2002!
vestigated to detect opportunities for relativistic experimen
by exploiting as much as possible existing instruments, av
able spacecraft capabilities and already established mis
plans.

The opportunity arose during the European Space Age
~ESA! study for a Mercury Orbiter mission. Two members
the Mercury Orbiter study team, L. Iess and one of the
thors ~A.M.!, proposed a comprehensive radio science
periment which would coordinate agravimetry experiment, a
rotation experimentand arelativity experiment, by process-
ing in a complex way the same data, namely, ultra-accu
range and range rate tracking~based on a higher frequenc
communication system@29#!, the readings from an on-boar
accelerometer@28#, and the images from the most accura
cameras~pointing at both ground features and stars!. This
experiment was included in the baseline design of the m
sion, which in the meantime had been renamedBepiColombo
@30# and is now a fully approved~and funded! ESA mission.
To appreciate how good is the ‘‘opportunity’’ provided by th
BepiColombo mission to Mercury, we need to consider
following features of this mission.

First, the orbit around Mercury of the main spacecraft
the ESA BepiColombo mission, with altitude between 4
and 1500 km@30#. Previous studies assumed much mo
elliptic orbits. Since the ESA project includes a separa
orbiter for the investigation of the Mercury’s magnetosph
~requiring a highly elliptic orbit!, the main orbiter may reside
on a much less eccentric orbit. This is favorable for surfa
observations but also in the solution for the gravity field a
for the center of mass determination for Mercury@31#. The
nominal mission plan includes one full year of operations
orbit around Mercury; this paper assumes this nominal du
tion, although there is always hope for an extension of
mission if the spacecraft main subsystems are found to
robust enough.

Second, the range and range rate measurements wi
performed by using a full 5-way link@29# to the main orbiter
~the magnetospheric orbiter is not involved in this expe
ment!. By exploiting the frequency dependence of the refr
tion index, the differences between the delay and Dopp
measurements done in the different channels~in the Ka band,
in the X band and in mixed mode with both! provide infor-
mation on the plasma content along the path followed by
radio waves between Earth and the spacecraft orbi
around Mercury. In this way most of the measurement err
introduced, in a single channel, by the plasma can be
moved. The expected performances correspond to an
provement of about two orders of magnitude with respec
what was possible with the previous technology, and
briefly discussed in Sec. IV A. Third, we have the on-boa
accelerometer. Around Mercury the illumination, mostly
visible light from the Sun and mostly in the infrared fro
Mercury, is fierce~for each of the two sources one order
magnitude larger than the solar flux at the Earth’s distan!.
This results in radiation pressure, which is very difficult
model also because the spacecraft reflects~in the visible! and
reradiates~in the infrared! in a very complex way. Thus the
propagation of the orbit of an artificial satellite around Me
cury is affected by large errors, unless the nongravitatio
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accelerations are measured by an on-board three axis a
erometer. In this case the readings of the acceleromete
just added to the equations of motion containing the grav
tional terms only, and the orbit propagation error is co
trolled by the accelerometer measurement error~see Sec.
IV A !, which is typically two orders of magnitude less tha
the perturbations. This allows an orbit determination w
unprecedented accuracy~for an interplanetary probe!.

C. Purpose of this work

Given the need for tighter verification of GR or detectio
of its smaller violations, if any, and given the opportuni
represented by the BepiColombo mission to Mercury, o
purpose is to establish which of the PN parameters can
determined, and with which accuracy, given the current m
sion design and instrument performance assumptions.

Although the choice of the PN parameters and solar s
tem model constants to be determined is discussed in fu
Secs. II and IV, we need to anticipate that our choice of
target PN parameters is somewhat different from the one
previous studies. In comparison with the study of Ash
Bender and Wahr@27#, we neglect some parameters we co
sider of less importance; however, we include the planet
test of the strong equivalence principle~due to the polariza-
tion of Mercury’s and Earth’s orbits in the gravity fiel
of Jupiter; see@32#!. In fact, the solution for the related
Nordtvedt parameterh may be employed to remove the co
relation between the solution ofb and theJ2( , which used
to be the weak point of the Mercury-based tests of GR.

The main achievement of our work consists of performi
a full cycle of numerical simulation of the radio-science e
periment of BepiColombo, out of which the determination
the relativistic parameters is only a part. Since the solut
for the gravitational field of Mercury and other paramete
may in principle produce systematic effects in the obse
ables used to determine the relativistic parameters, it is
fundamental importance to adopt this global approach.
this way, ‘‘internal’’ systematic effects may result from th
correlated solution of different parameters, but we also
the influence of the ‘‘external’’ systematic effects due to po
sibly biased observations. These latter include both effect
ranging measurements, such as the degradation of the
board transponder, but also correlated noise in the on-bo
accelerometer readings. Details of our strategy has been
lined in Ref. @33# and will be recalled only to a minimum
extent related to the solution for the relativistic paramete
the main focus in this paper.

The paper is organized as follows: in Sec. II we give
brief overview of our approach and the necessary mathem
cal formulas to evaluate the effects of the different ways
violations of GR; some results required for the evaluation
the effects of violating the strong equivalence principle a
relegated to the Appendix. In Sec. III we present in tw
separate steps the methods used to fit the data to solve fo
mercurycentric orbit of the satellite and for the orbit of th
planets. In Sec. IV we discuss the simulations and their
sults, and conclude in Secs. V and VI with indications for t
work to be done between now and the time of the experim
1-3
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MILANI et al. PHYSICAL REVIEW D 66, 082001 ~2002!
and with an assessment of the quality and value of th
results.

II. MATHEMATICAL FORMULATION

Within the metric theories of gravitation, each violation
the principles of GR is reflected in a corresponding mod
cation of the space-time metric and thus affects all sector
the observation model:~i! the connection between local an
global coordinate systems,~ii ! the equations of motion, an
~iii ! the propagation of the electromagnetic signal.

The coordinate transformation effects@34,35#—item ~i!
above—are too small to probe the PN parameters. For
stance, the transformation between the barycentric and
centric coordinate systems alters the position of an E
station by about 6 cm in general relativity. Though we ta
this effect into account, we do not consider its depende
on the PN parameters (g in particular!. Moreover, we shall
not introduce in this work a truly relativistic local referenc
frame ~and time scale! of Mercury but rather formally ex-
press the spacecraft solar system barycentric position
respect to Mercury.

The relativity test then consists of investigating the P
parameter dependence of the equations of motion and
propagation effects@items ~ii ! and ~iii ! above#. The role of
the equations of motion in our approach deserves a b
discussion. As is usual, the satellite motion is best referre
the planet it is orbiting around. The solar system state ve
of the spacecraft~that enters in definition of the observable
i.e. the delay and Doppler shift measurements! is then com-
posed of the local motion of the satellite and the motion
Mercury’s center of mass in the solar system. Both th
components are affected by the relativistic~i.e. }1/c2) per-
turbations in their own way. It can, however, be easily se
that the satellite local dynamics, i.e. the motion around M
cury’s center of mass, does not have the capability of prob
these phenomena. Indeed, like in the lunar case, the la
effect is the geodetic precession due to the solar gravity fi
~the perihermian drift due to Mercury’s relativistic monopo
gravity is significantly smaller!. The geodetic precession ca
be represented as a constant rotation of the spacecraft
with respect to distant stars, resulting in a displacemen
about 30 cm over one month. This value is far too small to
detected. The method we use to solve for the mercurycen
motion, discussed in Sec. III A, essentially gives up any
tempt to define a long term reference system based upon
satellite orbit. In fact, the local dynamics of the satell
around Mercury is modeled with sufficient accuracy
purely Newtonian equations of motion.

Thus it is only the Mercury’s center of mass heliocent
motion that is capable of determining the PN paramet
The output of the mercurycentric orbit determination, used
input for the orbit determination of the planet, contains on
a set of ‘‘synthetic observations’’ of the Earth-Mercury ran
and range rate, one for each of the arcs in which we split
satellite orbit~see Sec. III B!. This two-dimensional observa
tion of Mercury’s heliocentric motion is at a level of acc
racy superior to the ground-based radar measurements,
because of the higher frequencies and plasma compens
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scheme and because the ‘‘equivalent bounce point’’ is
center of mass of the planet, without loss of accuracy du
topographic model problems. These observations may
confronted with a theoretical model depending on the
parameters. Obviously, the light propagation relativistic
fects in both range and range rate should be taken into
count. This happens mainly when Mercury gets in supe
conjunction with the Sun as seen from Earth.

In the next two subsections the relevant orbital effects a
the light-propagation relativistic effects are summarized
the level needed for our study.

A. The orbital effects

The most compact way to describe the orbital effects
lated to the PN parameters is to express them through a
tional terms in the Lagrangian describing the planetary
namics ~which follow in a straightforward way from the
corresponding terms in metric!. Let us assume that the mo
tion of the planets, as given by the Jet Propulsion Laborat
~JPL! ephemerides, is described by the LagrangianLGR ,
used here as a zero order approximation. The subscriptGR
indicates that all necessary Newtonian and general relat
tic effects have been considered@36#. Since the BepiCo-
lombo data are of superior quality to those used in constr
tion of the JPL ephemerides, we assume that their descrip
needs an extended dynamical framework that can be g
by the Lagrangian

L~ b̄,ḡ,d̄,a1 ,a2 ,Ġ/G, . . . !

5LGR1$L b̄1L ḡ1L d̄1La1
1La2

1LĠ/G1 . . . %,

~1!

with the new terms in the curly brackets. These latter ter
are individually linked to some of the parameters to be
termined, such asḡ5g21 and b̄5b21. Hereafter we
briefly overview their nature, but refer to earlier studies fo
more detailed analysis. The classical textbook@13# is a gen-
eral reference here.

The velocity-dependent modification of the two-body i
teraction is parametrized by the Eddington parameterḡ5g
21:

L ḡ 5
1

2c2 ḡ (
AÞB

GMAMB

r AB
vAB

2 , ~2!

while the modification of the non-linear three-body gene
relativistic interaction depends upon the Eddington para
eter b̄5b21 through

L b̄52
1

c2 b̄ (
AÞB,C

G2MAMBMC

r ABr AC
. ~3!

Here vAB denotes the mutual~barycentric! velocity of the
body A with respect to the bodyB, r AB their mutual~bary-
centric! distance andc the speed of light. Since we are dea
ing with gravitational interaction, the definition of the con
stantsG andMA deserves a special attention:G denotes the
1-4
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coupling constant for the composition-independent part
the gravitational interaction andMA denotes the inertial mas
of the bodyA.

The second type of the orbital effects to be included in
study are caused by a possible violation of the equivale
principle. They can be described by an additional Lagrang
term

L d̄5
1

2 (
AÞB

~ d̄A1 d̄B!
GMAMB

r AB
, ~4!

with

d̄A5 d̂A1h
EA

grav

MAc2
, ~5!

and represent the combined effect of the compositi
dependent gravitational couplings@ d̂AÞ0; violation of the
‘‘weak equivalence principle’’~WEP!# and of the Dicke-
Nordtvedt contribution due to the coupling with the gravit
tional self-energy@hÞ0; violation of the ‘‘strong equiva-
lence principle’’ ~SEP!#. Within the frame of the metric
theories of gravitation, the parameterh is related to the othe
PN parameters through the relationh54b̄2ḡ2a12 2

3 a2
@13,37,38#. It can be easily checked that the BepiColom
data do not have the capability to bring new results regard
WEP, since the laboratory and lunar laser ranging exp
ments constrained WEP with a higher precision@13,17#. On
the other hand, exploiting the large value of the solar gra
tational self-energy@(E(

grav/M (c2).23.5231026#, our ex-
periment may result in better constraining the SEP throug
tighter limit on the parameterh.

The effect ofh in the planetary equations of motion
twofold: ~i! it contributes to a redefinition of the solar an
planetary masses and~ii ! it produces a polarization of th
Mercury and Earth orbit around the Sun in the gravitatio
field of other planets~mainly Jupiter!. However, the bulk of
the first effect can be interpreted as an unobservable re
nition of the gravitational constant in the solar syste
namely:G→G!5G@11h (E(

grav/M (c2)#. In what follows
we assume such a recalibration ofG and we shall focus on
orbit perturbations due to the polarization phenomena~ii !.
Since this is a somewhat delicate issue, we devote the
pendix to a closer description of the related perturbation
Mercury’s orbit ~see also the discussion in@26,32#!.

As gravity is a long-range force, one mighta priori ex-
pect the universe’s global matter distribution to select a p
ferred rest frame for local gravitational physics. As shown
@13,39,40#, the preferred frame effects in the first pos
Newtonian limit are phenomenologically describable by
many as six parameters, but only two of these,a1 and a2,
can be different from zero without violating some fundame
tal theoretical constraints@41#. These parameters are asso
ated with the following terms in the Lagrangian describi
the gravitational dynamics ofN-body systems:

La1
52

a1

4 (
AÞB

GMAMB

r ABc2
~vA

0
•vB

0 !, ~6a!
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La2
5

a2

4 (
AÞB

GMAMB

r ABc2
@~vA

0
•vB

0 !

2~nAB•vA
0 !~nAB•vB

0 !#. ~6b!

Here,vA
0 represents the velocity of bodyA with respect to the

gravitationally preferred frame. Many~though not all! of the
observable effects linked toa1 anda2 depend on the choice
of the gravitationally preferred frame. We shall follow th
standard assumption@13# that the latter frame, being of cos
mological origin, can be~at least approximately! identified
with the rest frame of the cosmic microwave backgroun
This means that the center of mass of the solar system
the velocity w with respect to the preferred frame of res
with uwu.370610 km/s in the direction (a,d)5(168°,
27°) @42–44#. The cosmic velocity of a bodyA then reads
vA

05w1vA , wherevA is the velocity of the body with re-
spect to the center of mass of the system. Notice thatw is
larger than vA , but the Mercury’s perihelion velocity
('58 km/s) is not much smaller~thus the Mercury test of
the preferred-frame effects is different from the correspo
ing tests using the dynamics of satellites of the Earth, e
@45#!. In what follows, we have neglected a term quadratic
the cosmic velocityw in Eqs.~6!, since it is equivalent to a
constant redefinition of the gravitational parameterG
→G @12(a12a2) w2/4c2# in the solar system and thu
does not lead to observable effects.

Many alternative theories of gravitation also allow for th
time dependence of the gravitational coupling constant~e.g.,
because of the cosmological evolution of some coupled s
lar fields!. Since the characteristic time scale is compara
to the inverse of the Hubble constant, the solar system
periments could probe just the rate by whichG changes~e.g.
@13#!. The corresponding dynamical effect, parametrized
d(ln G)/dt, is expressed by the Lagrangian

LĠ/G5t
d~ ln G!

dt (
AÞB

GMAMB

r AB
, ~7!

wheret is time measured from some conventional origin.
is well known that this perturbation produces mainly a qu
dratic change in the planetary longitude in its orbit~e.g.
@46#!.

Together with testing the PN parameters we must cons
other ‘‘Newtonian’’ effects that may cause their mismode
ing. These effects belong to two classes:~i! Newtonian pa-
rameters that have been taken into account in the JPL
emerides, but their uncertainty produces orbital effe
comparable to or larger than the expected perturbation du
the tested relativistic effects, and~ii ! effects not modeled by
the JPL ephemerides~e.g., the gravitational perturbations o
some asteroids!. In our solution we shall consider~i!, but the
effects of~ii ! will not be modeled directly; see the discussio
in Sec. VI.

The first class,~i!, includes essentially two effects: a sma
change in the solar mass and a small changedJ2( in its
quadrupole coefficientJ2( ~characterizing the solar gravity
field ‘‘oblateness’’!. As mentioned above, the second ter
1-5
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MILANI et al. PHYSICAL REVIEW D 66, 082001 ~2002!
has been considered for a long time as a primary cause o
uncertainty in Mercury’s perihelion modeling, but at th
level of precision of the Mercury orbiter data even the fi
effect has to be taken into account.

Apart from the previously considered set of PN para
eters (b̄,ḡ,h,a1 ,a2 ,Ġ/G), we shall thus extend our mode
by two more parametersm anddJ2( . The first characterizes
a fractional change of the solar mass (m5DM ( /M () and
the second characterizes change of the solarJ2( coefficient
~the JPL DE405 ephemerides use a value of 231027). The
corresponding Lagrangians are

Lm5m (
AÞ(

GM(MA

r A(

,

~8!

L
dJ2(

52
dJ2(

2 (
AÞ(

GM(MA

r A(
S R(

r A(
D 2

@3~nA(•e(!221#,

whereM ( is the solar mass,R( its radius,rA( is the helio-
centric position of the bodyA, nA( is the corresponding uni
vector ande( is the unit vector along the solar rotation ax
This latter is slightly tilted from the normal to the eclipt
plane as described in@47#.

Obviously, our analysis also contains a solution of st
vectors of the Earth and Mercury at some epoch, but
requires taking into account suitable constraints, as discu
in Sec. III B.

Given the Lagrangian terms which, in our approach,
tend the standard description of the planetary motion,
shall investigate their orbital effects. LetrA be the solar sys-
tem barycentric position of theAth body. Then the standar
model, represented by the JPL ephemerides, yields a solu
of

d2rA

dt2
52 (

BÞA
gAB1pA , ~9!

wheregAB5GMBrAB /r AB
3 , rAB5rA2rB andMB is the mass

of bodyB; pA abbreviates a large number of perturbing ter
due to higher-degree multipole Newtonian effects, tidal p
nomena and GR post-Newtonian effects (}1/c2).

In what follows, we shall consider a small variationDrA
of the JPL-determined planetary positions (rA→rA1DrA).
Obviously, we assume that the magnitude ofDrA remains
within the uncertainty tube of the JPL solution and we stu
how it may be constrained by the very precise measurem
of the BepiColombo radio-science experiment. Omitting
quadratic~and higher order! terms, the planetary displace
mentsDrA satisfy

d2DrA

dt2
52 (

BÞA

GMB

r AB
3

DrAB13 (
BÞA

~rAB•DrAB!
gAB

r AB
2

1(
e

H ]Le

]rA
2

d

dt

]Le

]vA
J , ~10!

with the same notation as before, ande stands for any of the
parameters introduced above. We shall not give her
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straightforward, but lengthy, expression for the terms in la
curly brackets at the right-hand side of Eq.~10!. We only
note that the sensitivity of the planetary ranging data on
Nordtvedt parameterh is discussed explicitly in the Appen
dix.

Notice that in Eq.~10! we have neglected the ‘‘secon
order’’ effect due to the variation of the planetary state ve
tors in the smaller termspA , but we need to retain the cor
responding variations from the dominant terms~i.e.
2(BgAB). Out of these, the free variations of the Kepleri
heliocentric motion are the most important, also because
their frequency spectrum. It contains the anomalistic revo
tion frequency of the planet~and its multiples for an eccen
tric orbit like that of Mercury!. Whenever these frequencie
are close to those of the analyzed perturbations@the terms in
large curly brackets in Eq.~10!#, a resonant amplification
appears. Notably, the preferred frame effects related to
a1 and a2 parameters mainly depend on the sidereal m
motion frequency. In theory, the slight difference betwe
Mercury’s anomalistic and sidereal frequencies should s
ably amplify the corresponding perturbation and also all
decorrelation from other effects. In practice, however,
two frequencies are too close to each other~due to the slow
perihelion motion of Mercury!. Thus it is not easy to decor
relate them from the other perturbations that mainly act
the anomalistic frequency. These preliminary considerati
help in better understanding the results reported in Sec.

B. The light-propagation effects

Simulation and analysis of the radio-science data for
BepiColombo satellite are demanding, mainly because
complicated aberration effects. The classical astronom
methods, even those used for satellite geodesy, do not m
the required accuracy. Note that the light distance to the
ellite from the Earth telescope may be up to 11 min, a
during this time both planets and the spacecraft move b
significant distance. A rigorous tracing of the radio bea
from the telescope, at the instant of transmission, to the
ellite, at the instant of retranslation, and back to the Ea
antenna, at the instant of reception, is programmed. This
cedure bears similarities with that used for radar tracking
the near-Earth asteroids~e.g. @48#!, but it is more compli-
cated, since visibility of the satellite might become violat
between transmission and the eventual retransmission by
satellite. The time readings at the transmission and recep
are assumed in the terrestrial time~equivalent to the coordi-
nated atomic time scale!, but these are then referred to th
solar system barycentric time scale by usual transformatio

The range-rate measurements with the accuracy indic
in Sec. II A require inclusion of the quadratic Doppler effe
The third-order Doppler effect}(v/c)3, on the level of the
measurement accuracy, has been also included in our c
putation. Though these terms are necessary for interpre
the data, they do not probe the gravitation theory.

On the contrary, the accumulated delay effect along
path of the radio beam toward the spacecraft and bac
Earth—the Shapiro effect at the PN level of accuracy—
sensible to the value of the PNg parameter. At the level of
1-6
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TESTING GENERAL RELATIVITY WITH THE . . . PHYSICAL REVIEW D 66, 082001 ~2002!
accuracy of ranging to Viking landers (.7 m), only the first
order effect was needed and led to a tight constraint og
@10#. With an accuracy in range at the decimeter level,
second order light-time effect should be accounted for@49#
~note that the solar quadrupole influence is negligible in t
respect@50#!. However, it is still the first order~Shapiro!
term that solely has the capability to constrain theg param-
eter. Put in terms of an equivalent change of Mercury’s d
tance from the telescope along the light of sight, we hav

DR5ḡ
GMS

c2 lnS r 11r 21r 12

r 11r 22r 12
D1~DR!GR , ~11!

wherer1 is the heliocentric position vector of the observin
station (r 15ur1u), r2 is the heliocentric position vector of th
spacecraft (r 25ur2u) andr125r12r2 (r 125ur12r2u). In Eq.
~11! we give explicitly only the part depending onḡ, while
the Einsteinian terms, including the higher-order delay a
the aberration terms of the}1/c3 level, are denoted by
(DR)GR . Note that thea1 parameter appears inDR at the
}1/c3 level, but given the current knowledge of this para
eter this term can be considered as known to the requ
accuracy.

Bertotti et al. @19,51,52# have also discussed the gravit
tional Doppler shift corresponding to the effective change
the overall optical distance to the spacecraft. This is the b
of the proposed experiment with the Cassini conjunctio
which is being done now@19#. As discussed in Sec. IV A the
Doppler measurements at the superior conjunction of B
Colombo cannot give constraint on theḡ parameter superio
to the orbital solution from one year of observations. Th
the Cassini experiment, with a Doppler measurement ac
racy equivalent to the one assumed for BepiColombo, sho
improve the current knowledge ofg, but not as much as th
experiment we are now proposing. The superior conjunc
experiment~Sec. III C! thus fundamentally relies on the de
lay measurements and their analysis through Eq.~11!.

Finally, we should comment on the role of the plasma
the solar corona for the time delay. In what follows, we a
sume a perfect compensation of this effect by using a d
ranging in X and Ka bands@29#. It has been estimated@53#
that down to'3 solar radii the size of the turbulent cells
the coronal environment is typically smaller than the diffe
ence of the impact parameters for the X and Ka-band bea
under these conditions the data in the two frequencies
be successfully used to compensate the plasma effects.
we have assumed, in the simulation of our superior conju
tion experiment, that the data are without degradation u
the Mercury-Sun angle, as seen from Earth, is 0.7°, and
data at all below this limit: of course this is a simplificatio
in reality the data would gradually degrade in accura
around this boundary.

III. ORBIT DETERMINATION AND PN
PARAMETERS SOLUTION

An experiment for the determination of the PN paramet
by tracking a Mercury orbiter uses as observables the ra
and range rate between the satellite and Earth@54# ~for a
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description of the BepiColombo tracking method and geo
etry see Sec. IV!. The variables to be solved include not on
the PN parameters, but also the parameters defining the
curycentric satellite orbit and the parameters defining a s
system model. The latter include the initial conditions for t
heliocentric orbits of the planets and parameters, such
masses and PN parameters, appearing in the planetary e
tions of motion. The orbit of the satellite depends upon
initial conditions and upon the parameters appearing in
mercurycentric equations of motion, such as the mass
Mercury and the harmonic coefficients of the gravity field
the planet. We are not discussing here the nongravitatio
perturbations, which are important but are handled in
BepiColombo experiment with the special technique alrea
outlined in Sec. I B.

As a matter of principle we could use all the observatio
that is range and range rate measurements taken ove
entire operational time span of the assumed Mercury orb
and solve for all the parameters: the ones of interest for
experiment, the ones which serve other purposes and e
the ones which serve no scientific purpose at all but nee
be included in the solution because their value is not w
enough knowna priori ~e.g., the initial conditions of the
satellite!. The computational complexity for such a singl
step solution is so high that we could run only a limite
number of simulations. On the contrary we are interested
testing different assumptions and even in exploring the
tistical properties of a large set of simulations, to ident
systematic effects as well as random ones. To limit com
tational complexity and to have a better insight in the phys
of the problem we have developed an original method se
rating the global solution into two separate steps. In the fi
step the mercurycentric orbit of the satellite is determin
together with the synthetic range and range rate observat
of Mercury. In the second step the orbits of Mercury and
Earth are determined, together with the PN parameters.

This section is organized as follows: Sec. III A presen
the multiarc method, which is used to determine the sate
orbit taking into account the problems resulting from inacc
racy of the dynamical model. Section III B presents the P
corrector, which solves for the orbits of Earth and Mercu
as a single arc, taking into account the complicated geom
ric properties resulting from symmetries and constrain
Section III C describes the only case in which the two s
method does not need to be used~and indeed has not bee
used in our simulations!, the so-called superior conjunctio
experiment. It solves separately forḡ by exploiting a short
time span during which the radio waves pass close to the
in their path from Earth to the satellite and back.

A. The multiarc method

As a matter of principle, the trajectory of a spacecraft c
be considered as a single orbit, depending upon a single
of initial conditions and upon the parameters appearing in
equations of motion. However, the equations of motion
pend upon a theoretically infinite~and practically extremely
large! set of parameters, out of which only those with larg
effects can be determined. To attack this problem it is c
1-7



d
tw
e

n
te
ti
pa
am
T
t

w
t

io

er
m
o
of
tia
s
,
fo
n
nc
g
re
ro

we

b

e
i-

va

en
d
ba

fo
e

an
ca
rm
b
rs
ro

d

nto
the

a
in
nal

obal

d
e.
of

sult

e

,
to
r-
be
de

uced
on-

rst
ond
of

and

in a

re-

, as
, are

e
di-

f

s
ted.
e-
ter
d in
de-
e

ll
ons
e

MILANI et al. PHYSICAL REVIEW D 66, 082001 ~2002!
tomary, in the orbit determination problems of satellite geo
esy, to separate the set of dynamical parameters into
subsets: the ones corresponding to well understood, and
plicitly modeled, perturbations and the ones introduced o
to absorb the effects which cannot be modeled accura
enough. This technique allows us to reduce the observa
residuals, therefore to improve the determination of the
rameters of interest, but the values of the additional par
eters are not physically significant, at least not directly.
understand the need for such a method, in our case, note
in Ref. @33# we have determined that the systematic, lo
frequency components in the accelerometer measuremen
rors result in about 10 m uncertainty of the satellite posit
after one day.

Among the methods used to realize this ov
parametrization of the problem, the multiarc method deco
poses the orbit in arcs, each one with its separate initial c
ditions. There is no constraint, for the initial conditions
some arc, to coincide with the propagation at the new ini
time of the orbit with the initial conditions of the previou
arc. This violation of the causal connection between arcs
if they did not belong to the same physical body, allows
unmodeled perturbations for which the explicitly know
equations of motion cannot account. Since the low-freque
noise of the accelerometer may cause orbital error propa
ing up to }t2, short arcs, not longer than a few hours, a
needed to meet the requirement of accumulated orbit er
comparable to the accuracy of ranging.

There are different versions of the multiarc method;
are following the formulation of@55#. The basic idea is as
follows: the set of observations are subdivided into arcs,
longing to non-overlapping time intervals. The orbit is com
puted, for arci, only starting from an initial condition~mer-
curycentric positionsi and velocity ṡi) corresponding to a
reference timet i belonging to the arc time span. Then th
observations of arci do not depend upon the initial cond
tions of arcj for iÞ j . The initial conditions (si ,ṡi), possibly
together with other parameters affecting only the obser
tions of arci, form the set oflocal parameters, i . The union
of the local parameters for all the arcs forms the vectorL of
all the local parameters. All the observations also dep
upon a set ofglobal parametersG, such as the mass an
gravitational harmonic coefficients of the planet; the glo
parameters are the same for each arc, that is, they are
sumed not to depend upon time@56#.

A suitable mathematical technique allows us to solve
bothL andG in such a way that the principle of least squar
~for the observation residuals! is satisfied. This can be
achieved without inversion of the full normal matrix~which
could be too large for numerical stability!, and this solution
is exact, in particular does not neglect the fact that local
global parameters become correlated. In this way we
check whether it is indeed possible to separate the dete
nation of all parameters in two steps, one to solve the glo
parameters and one to use separately the local paramete
determined, like observables for a separate fit: for this p
cedure to be legitimate, the local-global correlations nee
be low @57#.
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The need to decompose the orbit of a Mercury orbiter i
arcs, the way to select the time intervals according to
natural time structure of the set of observations~depending
upon the visibility conditions for the spacecraft from
ground station! and the problem of selecting the arc length
a way appropriate to absorb the unmodeled non-gravitatio
perturbations are discussed in@33#. Here we would like to
discuss only which parameters are to be considered gl
and which local.

The observations of arci depend upon the position an
velocity of Mercury’s center of mass at the observation tim
Let DM (t) be the difference between the actual position
Mercury and the reference orbit, which we assume to re
from an exact GR orbit propagation for all planets@36#; let
DṀ (t) be the corresponding difference in velocity. Th
changes with time of these quantities are slow~with respect
to the duration of an arc, i.e., few hours!, thus we can use the
valuesDM i5DM (t i),DṀ i5DṀ (t i) for all the observations
of arc i. In principle the valuesDM i are causally connected
namely there is a single arc orbit of Mercury. However,
allow for the decoupling of the orbit determination of Me
cury from the one of the satellite, we consider them to
independent. Thus the list of local parameters could inclu
12 parameters, i5(si ,ṡi ,DM i ,DṀ i). As we will see in the
next section, this number of parameters needs to be red
to account for symmetries. However, some parameters c
cerning the orbit of Mercury can be determined in the fi
step multiarc solution and fed as observations to the sec
step. To ignore, in the second-step fit, the initial conditions
the satellite requires that the correlations among them
the corrections to the orbit of Mercury be small~if this was
not the case, a corrected orbit of Mercury could be used
second iteration of the first step!. The global parametersG, in
the first step fit, include the goals of thegravimetry experi-
ment, whose results are in this way decoupled from the
sults of the relativity experiment, which results from the
second-step fit. The results of the gravimetry experiment
well as many other details we do not need to repeat here
discussed in@33#.

B. The PN corrector

A common problem in orbit determination is that thenor-
mal matrix, the coefficient matrix of the normal system to b
solved to obtain the least squares solution, is badly con
tioned @58#. As a result, there are directions~in the space of
parameters being determined! along which the uncertainty o
the solution is large, even if the fit is good~i.e., the observa-
tion residuals are small!. Obviously this phenomenon need
to be controlled to avoid results much poorer than expec

It is known @59# that whenever there is an exact symm
try, that is a Lie group of transformations of the parame
space such that all the observations, both in range an
range rate, are left invariant, then the normal matrix is
generate, withk null eigenvalues if the dimension of th
group isk @60#: in this case the problem is said to haverank
deficiency of order k. When the symmetry is broken but sti
holds approximately, that is the change in the observati
contains a small parametere, then the normal matrix has th
1-8
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TESTING GENERAL RELATIVITY WITH THE . . . PHYSICAL REVIEW D 66, 082001 ~2002!
same numberk of eigenvalues of the order ofe2: in this case
the problem is said to have anapproximate rank deficiency o
order k.

The normal matrix for the set of 12 paramete

si ,ṡi ,DM i ,DṀ i has an approximate rank deficiency of ord
5. The small parameters are the small angleDu by which the
Earth-Mercury vector is changing over the time span of o
arc, the ratios/R between the satellite-Mercury and th
Earth-Mercury distances and the relative sizee of the pertur-
bation from the Sun with respect to the gravitation of t
planet ~e.g., e can be the Roy-Walker parameter@61,62#!.
The approximate symmetry group contains the full thr
dimensional group of rotations~centered on the Earth! ap-
plied simultaneously to both Mercury and the spacecr
This would be an exact symmetry, that is both the range
range rate to the spacecraft would be invariant, if we co
neglect the motion of Mercury over the time span of one a
Additionally there are the approximate symmetries obtain
by changing the components ofDṀ i orthogonal to the Earth
Mercury vectorRi5R(t i). Such a change in the velocity o
Mercury changes the range rate only, and by an amount
taining the small parameter (s/R).

This degeneracy can be cured by a combination of
changes to the fit. First, the parameters to be solved are
ited to 8:si ,ṡi ,DRi ,DṘi , whereDRi5DR(t i) is a change in
the Earth-Mercury distanceR(t i), at the reference time o
arc i; similarly for DṘi5DṘ(t i). Second, after this reductio
there is still an approximate rank deficiency of order 1, w
as a symmetry group the rotations aroundRi . It can be
shown, with the same technique used in@59#, Section 3, that
there are no other symmetries~apart from the particular case
in which the satellite orbital plane either contains or is
thogonal to the Earth-Mercury direction!. As discussed in the
same paper, Section 6, there are three possible metho
remove this approximate degeneracy, which would occur
ready in the simpler case of orbit determination for a spa
craft orbiting a planet with a well known orbit.

We conclude that it is possible to solve, simultaneou
with the initial conditionssi ,ṡi for each arc, for two ‘‘syn-
thetic’’ observations of Mercury at the reference timet i .
Then DRi and DṘi can be used, in the second-step fit,
observations essentially of the same nature as the radar r
and range rate data points, with the non-negligible advan
that the ‘‘radar bounce point’’ is the center of mass of t
planet and is not subject to errors due to the topograph
the planet.

The second step fit, thePN corrector, has the rangeR(t)
and range rateṘ(t) as observables, although each ‘‘observ
tion’’ actually corresponds to the output of a fit with all th
tracking data of one arc. The parameters to be determined
the corrections to the initial conditions of MercuryDM0

5DM (t0) and DṀ05DṀ (t0) at a singlereference time t0
@63#; analogous correctionsDE0 andDĖ0 for the initial con-
ditions of the Earth; the mass of the Sun multiplied by t
universal gravitational constantM05GM( ; the PN param-
eters we are interested in determining; the change of
dynamical oblateness of the sundJ2( ~with respect to the
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standard value 231027). The exact list of PN parameter
can be changed, depending upon the assumptions~i.e., pre-
ferred frame parameters may or may not be included!, but all
the other parameters are needed. Note that a change in
Earth-Mercury rangeDRi can be the result of a change in th
orbit of Earth as well as of a change in the orbit of Mercu
@64#: the orbit of our planet is by no means well enou
determined by the presently available measurements
theories.

On the contrary, the orbits of the other planets are w
determined enough, taking into account the weak coup
with the orbits of Mercury and Earth. The masses of all t
planets~including Earth! are determined well enough by th
tracking of spacecraft and/or by planetary perturbation th
ries ~with the case of Jupiter being of principal importanc
e.g.@65#!. The case of the asteroids will be discussed in S
V. All these parameters do not need to be part of the adj
ment, thus, if the number of PN parameters we are includ
in the solution~includingdJ2() is p, there are 131p param-
eters to be determined.

An approximate rank deficiency of order 3 is obviou
resulting from the full rotation group applied to the orbits
Mercury and Earth. The symmetry would be exact if the
were only the Sun, Earth and Mercury, andJ2( was zero.
Because of the coupling with the other planets, if the orb
of the other planets are kept fixed~as read in the JPL eph
emerides!, the symmetry is broken but only by an amou
containing the small parametere, wheree is the relative size
of the mutual perturbations by the other planets on the or
of Earth and Mercury~with respect to the attraction by th
Sun!, such as the Roy-Walker parameters@61,62#. It is also
broken by an amount containing the factorJ2( because of
the asphericity of the Sun, while the relativistic perturbatio
are also spherically symmetric~apart from the preferred
frame effects!.

Thus it is necessary to constrain the rotations of the pl
etary initial conditions. However, the approximate rank de
ciency is of order 4@66#, and this is due to another symmet
which would be exact if only the Sun, Earth and Mercu
were present. Suppose we change all lengths by a factol,
all masses by a factorm and all time intervals by a factort.
By the method of similarities@67#, if these factors are relate
by l35t2m ~Kepler’s third law! then the equations of mo
tion of the gravitational 3-body problem are unchanged.
can assumet51, because there are accurate definitions
time scales based upon atomic clocks. If we have the mas
the Sun among the parameters, by rescaling it bym51
1Dm ~and keeping the mass ratios fixed! we can rescale the
initial positions and velocities~by l.11Dm/3). This is
also expressed by the well known fact that it is not possi
to solve simultaneously for the mass of the Sun and for
value ~in terrestrial units, such as km! of the astronomical
unit.

Since the coordinates of the other planets, as read f
the JPL ephemerides, cannot be rescaled, the exact simil
symmetry becomes an approximate symmetry, with small
rameters containing again the Roy-Walker small parame
~also the relativistic perturbations do not scale as the N
tonian attraction!. Nevertheless we need to remove the c
1-9
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MILANI et al. PHYSICAL REVIEW D 66, 082001 ~2002!
responding approximate rank deficiency. This can be don
two ways: either by removing the mass of the Sun from
list of parameters, or by constraining the scale of the sys
by fixing some length.

The removal of all the approximate rank deficiencies
the PN corrector can be done in several different ways.
have selected as more convenient the following: we h
removed all three components ofDE0 from the list of pa-
rameters to be adjusted, and we have constrainedDĖ0 , DM0

andDṀ0 in such a way that rotations around the unit vec
Ê0 are not allowed. Thus we have fixed the lengthE0
5uE0u, making rescaling impossible. The method to co
strain the parameters to inhibit a rotation, by adding ona
priori observation, is described in Ref.@55#. Thus we are
solving for 101p parameters with one constraint, equivale
to a free solution with 91p parameters.

Additional constraints~in the space of parameters to b
solved with the PN corrector! can be optionally added. As w
will see in Sec. IV, the most important one is the Nordtve
relation @13,37,38#

h54b̄2ḡ2a12
2

3
a2 , ~12!

which is justified if we assume that gravitation must be d
scribed by a metric theory. The technique to apply this c
straint to the PN corrector least square fit is the same
cussed above, by adding onea priori observation. It is also
possible to assume that there are no preferred frame eff
that is to constraina15a250. As we will see in Sec. IV, we
have tested the sensitivity of our results with respect to th
varying assumptions.

C. The superior conjunction experiment

As discussed in Secs. II A and II B, the PN parameteg
appears both in the equations of motion for Mercury~and
Earth! and in the equations for radio wave propagatio
However, these two effects change with time in a very d
ferent way. The changes in the orbit of Mercury under
oscillations with periods of the order of the orbital and sy
odic periods, and have also a secular component~accumulat-
ing linearly with time!; the effects over a few days are ve
small. On the contrary the light propagation delay depe
quite sharply upon the Sun-Mercury angle as seen fr
Earth, when this angle is small, with Mercury beyond t
Sun~this condition is calledsuperior conjunction!, as can be
seen from Eq.~11! and from Fig. 1.

Thus it is possible to devise asuperior conjunction ex-
periment (SCE)using only the spacecraft tracking data ov
a time span of a few weeks around the epoch of a supe
conjunction, and solving for a parameterg2 appearing in Eq.
~11!, as if it was a logically different PN parameter from th
g1 appearing in the equations of motion Eq.~2!. That is, the
data from the entire mission are used to solve forg1, and the
orbit of Mercury obtained from this solution is used as
reference orbit for the SCE. Of courseg15g2 and this con-
straint must be used in the final results. This can be don
two ways. One method is to include in the runs of the P
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corrector ana priori knowledge ofg1, introduced asa priori
observation, which is not based upon previous work
upon the output of the SCE, i.e., is on the knowledge ofg2.
The second method, applicable only if the information ava
able ong2 is significantly superior to the one ong1, is to
removeg from the list of parameters to be solved by the P
corrector, and to use directly the results ong2 as results on
g. The choice between these two methods is discusse
Sec. IV B.

Since only a short span of data is used, for the SCE i
not necessary to resort to the two step fit described
Secs. III A and III B:g2 is just added to the listG of global
parameters to be solved in the multiarc fit. The only tric
point is what should be done about the corrections to
orbit of Mercury,DRi ,DṘi , appearing in the solution for the
few arcs included in the SCE. Logically they should not
included, that is they should be constrained to be zero, s
the orbit of Mercury has been already corrected. Howev
we need to ensure that the errors in the measuremen
range, which is affected by a comparatively large system
error, has a zero mean. For this purpose we also add a si
constant,DR correction to the set of global parametersG.
~The same could be done with a single correctionDṘ, but
this is less important because the range rate is not assum
have large long term systematics; see Sec. IV A!.

IV. THE EXPERIMENT SIMULATIONS

Having established, in the preceding two sections, a s
able theoretical and mathematical framework, we can n
describe the simulation of the BepiColombo relativity e

FIG. 1. The total sensitivity of the light propagation delay b
tween a ground station and a Mercury orbiter to the value ofg ~here
we have assumed the GR valueg51) as a function of time~in
days! near the best superior conjunction with the Sun. Here the li
propagation delay is represented in km, that is, as an increase i
distance to Mercury with respect to the distance along a flat sp
time. The gap in the data corresponds to the time interval du
which the radio waves would be passing at less than 3 solar r
the shorter interruptions are due to occultations of the satellite
hind Mercury.
1-10
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TESTING GENERAL RELATIVITY WITH THE . . . PHYSICAL REVIEW D 66, 082001 ~2002!
periment and present its results. Essentially we need to
cuss the assumptions and results of the PN corrector: as
clear from Sec. III B, the input for this second-step fit is
part of the output from the simulation of the gravimetry e
periment of the same mission, which is described in R
@33#. Thus we begin in Sec. IV A by briefly recalling th
assumptions on the data volume and error models used in
gravimetry simulation, and present the accuracies achie
as a result of these assumptions, in the determination of
correctionsDRi , DṘi to the orbit of Mercury.

In Sec. IV B we discuss the determination ofg, which
turns out to be essentially the outcome of a suitable SCE
Sec. IV C we describe the setup for the PN corrector, solv
for most PN parameters and using the data from the en
mission, that is the observations of the orbit of Mercury ov
an entire year. In the same section we list thea priori infor-
mation on the PN parameters we have used, which co
sponds to an assessment of the current level of knowle
~based upon the references we have found!. Finally Sec.
IV D presents the results on all the other PN parameters~be-
sideg).

A. Assumptions

The assumptions in our simulations of the BepiColom
radio science experiment are described in Ref.@33#, Section
2. Note that these assumptions are consistent with the ‘‘o
cial’’ mission design as described in@30#. In short, we as-
sume a mission with one year of operations in orbit arou
Mercury ~no extended mission! in a 40031500 km polar
orbit. We assume a single ground station with Ka-band tra
ing capability. In the simulation, the station is located
Perth, Australia, where the ESA has a tracking station
which an upgrade to Ka-band is planned. The orbital a
tracking geometry of BepiColombo is shown in Fig. 2. B
sically, on board the spacecraft, the instruments used for
relativity experiment are the Ka-band transponder and
accelerometer.

Range rate measurements are taken continuously~one
data point every 20 s! whenever the spacecraft is visible fro

FIG. 2. Geometry of the system, given by the ground stati
Mercury and the BepiColombo spacecraft. The visibility conditio
from the ground station~elevation of the spacecraft larger than 20
and the limiting Sun-Mercury angle are shown.
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the ground station: this results in data taken only over ab
26% of the time. The observing sessions are controlled
the visibility of Mercury above the horizon at the statio
with gaps resulting mainly from occultation by Mercury. An
other visibility condition results from the Sun-Mercury ang
as seen from Earth: in the full year simulation we have
sumed that no data are taken when this angle is less than
On the contrary we have assumed that for a time span o
days around the most favorable superior conjunction the
servations are performed from three ground stations, all w
Ka-band tracking capabilities, and down to a Sun-Mercu
angle of 0.7°; these data are used only in the SCE.

The range data are taken within the same intervals
visibility, but only over intervals of 2 min every 15 min~this
is to avoid reducing the bandwidth of the downlink!. How-
ever, for the superior conjunction experiment the range d
are taken continuously. The accelerometer is assumed t
on all the time~indeed, to turn off the accelerometer wou
be a mistake, given the problems with the thermal tra
sients!.

The error model for the range and range rate tracking
described in Ref.@29#, the one for the accelerometer in Re
@28#. The main property of these error models is that th
contain not only noise, but also systematic errors. This pr
erty needs to be exploited to generate, with the simulatio
an assessment of the systematic as well as the random
in the final results, that is in the estimated values of the
parameters.

The main systematic effects in the tracking data are
parent in Fig. 4 of Ref.@33#. The random components resu
in a rms error of 10 cm for the range and 1.831023 cm/s for
the range rate. The main systematic effect is given by a n
linear drift of 50 sin(p/23t/365) cm, wheret is the time
from the beginning of the Mercury orbiting phase in day
~This drift is assumed to represent the degradation with t
of the on-board transponder, for which an absolute calib
tion is difficult.!

The error components of the accelerometer measurem
acting over intermediate time scales (103 to 104 sec), shown
in Fig. 5 of Ref.@33#, model the temperature change of th
accelerometer sensing units. Longer term drifts matter m
less, because calibration constants can be determined
each arc~they are added to the set of local variables, i). The
main effect of the accelerometer inexact measurements
degrade the orbital solution, at a level depending upon
duration of the arc. If we use an arc length corresponding
one observing session from the ground station~with a dura-
tion depending upon the season, but averaging 8 h), then
systematic errors in the arc initial positions are of the or
of 1 m, but the errors in the corrections to Mercury’s cen
of mass have a rms of 1.831023 cm/s2 for DṘi . For DRi
there is a short term noise with the rms 4.5 cm superimpo
to a systematic drift which of course exactly mimics the s
tematic range noise of 50 sin(p/23t/365) cm. Indeed there
is no way to differentiate, by range measurements, a cali
tion drift from a displacement of Mercury along the line
sight.

The conclusions from this discussion can be summari
as follows. First, the accelerometer measurement error d

,
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MILANI et al. PHYSICAL REVIEW D 66, 082001 ~2002!
not affect very much the determination of the synthetic o
servations of the orbit of Mercury. Second, the system
errors in ranging are the main source of systematic error
the relativity experiment. Third, the range rate measu
ments, and their error model, do not matter very much for
relativity experiment~while they contain most of the infor
mation for the gravimetry experiment!. This last conclusion
arises from the simple fact that information on the range r
accurate to a few 1023 cm/s, if used to estimate rang
changes, is more accurate than range measurements ac
to a few 10 cm if the time scale is just a few 103 seconds
~e.g., over an orbital period of the satellite, 2.3 h), but le
accurate if the time scale is months. The intermediate cas
the SCE, where the time scale is a few days, is not obvio
Although this is a simplification, we can roughly say that t
orbit of the spacecraft around Mercury is determined by
range rate measurements, the orbit of the planet is de
mined by the range measurements.~We have nevertheles
used both the range and range rate data both in the mul
fit and in the PN corrector!.

B. Determination of g

The circumstances for possible superior conjunction
periments, given the assumptions on the mission plan of
BepiColombo Planetary Orbiter from Ref.@30#, are shown in
Fig. 3. There is one especially good superior conjunction
which the tracking data can be taken from radio waves p
ing as close to the Sun as allowed by the plasma noise c
pensation procedure, supposedly down to'3 solar radii.

FIG. 3. The angular distance of the BepiColombo spacec
from the center of the solar disk~in degrees! vs time~in days! since
the expected injection into the mercurycentric orbit, over the no
nal mission duration of one year. Three superior conjunctions
marked by shaded strips~when the elongation is less than5°). The
most promising conjunction occurs on day 197.7 of the miss
when the spacecraft will actually be occulted by the solar disk. T
other two superior conjunctions have minimum elongation 1.7
and 2°, respectively, thus they can contribute complementary,
not essential, data.
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We have simulated such a SCE with the assumption
three ground stations, well distributed in longitude, wou
provide a continuous tracking~apart from occultations of the
satellite behind Mercury!. Thus the dataset is not natural
subdivided into arcs: we have selected an arc length
80000 s, thus formed 20 arcs, 10 before and 10 after the.1
day interruption of the tracking due to an elongation le
than 0.7°. Then we have performed a multiarc solution w
local parameters amounting only to the satellite initial co
ditions and to accelerometer calibrations, and with glo
parametersg2 and a single, constantDR ~to absorb the av-
erage, over the time span of 20 days, of the range calibra
shift!. Note that we are assuming that both the orbit of M
cury ~apart from a constant shift in distance from Earth! and
the gravity field of Mercury are known, supposedly from t
processing of the rest of the data. In the simulation we h
assumed that the orbit of Mercury is according to GR, a
alsog251.

The main advantage of such a SCE is to reduce the in
ence of the systematic range error, because its variation f
a constant over.20 days is less than 5 cm, and thus is le
than the random error in theDRi ~if these were determined
as local parameters!. However, it is not the case that there a
no systematic effects: also the accelerometer measure
error has some influence, and we need to assess how m
the systematics degrade the result with respect to the for
random error as expressed by the covariance matrix. Thu
have performed 300 simulations of the SCE, with differe
seeds for the random number generators used to simulat
random error component of the range, range rate, and ac
erometer measurements. Figure 4 shows the histogram o
values ofg221 derived in these 300 tests compared with t

ft

i-
re

,
e
°
ut

FIG. 4. SCE solution forg2: ~i! the light curve 1 corresponds t
the formal solution,~ii ! the histogram shows the actual distributio
of the 300 results from our simulations, and~iii ! the light curve 2
indicates the Gaussian approximation of the solutions~for the sake
of comparison, all data normalized to unity!. Note the factor.4
between the actual rms of the results forg2 and the formal rms.
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Gaussian corresponding to the rms ofg2 from the covariance
matrix of any one of them.

The conclusion is that the formal uncertainty, with rm
2.531027, gives an illusory precision and should be r
placed, in a realistic assessment of the achievable accu
by a far larger value, which could be 231026 ~this corre-
sponds to 23 rms of the distribution of the results shown
Fig. 4!.

We have tested the intuitive idea that the range rate m
surements contribute very little information to the relativ
experiment even in the SCE setting, by running a simulat
with the range observations strongly underweighted with
spect to the range rate ones. The result was that the un
tainty of g2 increased by more than one order of magnitu
and this already at the formal level. We conclude that
range measurements are the critical ones, and that the
sources of the systematic error ing2 must be the systemati
drift in range and the accelerometer measurement error.

For comparison purposes, we need to cite the res
which could be obtained by includingg5g15g2 among the
parameters to be solved in a full PN corrector simulat
with one year of data. We have indeed tried this method
although we do not discuss elsewhere the results, prec
because they were not as good as the ones obtained b
SCE. Depending upon the assumptions on the Nordtv
constraint we can have errors ing, from a solution not using
a SCE, ranging between 131025 and 1.531025. These re-
sults are strongly affected by systematic errors, that is
formal uncertainties are significantly less.

We can now draw the conclusions on how the results
the superior conjunction experiment should be inserted in
global solution for all the PN parameters~and other solar
system model constants!. The solution of combining the in
formation ong2 from the SCE and the information ong1
from the one year solution has a problem of weight bala
ing. Indeed the information from both solutions should
combined by using weights derived from the actual erro
not from the formal errors. Anyway the contribution from th
one year solution to the combined result forg would be
minor. Therefore we have adopted the simpler soluti
which is to assume the solution forg2 obtained from the
SCE, with the realistic error estimation given above as
final result ong and to remove altogetherg from the set of
parameters to be solved in the PN corrector. In this way
information ong5g2, as obtained from the SCE, is co
rectly employed to strengthen the solution for the other
rameters. We have tried to obtain a final solution in ma
different ways, and this method indeed gives the best s
tion for all the PN parameters.

C. The one year simulations

Having reached the conclusions of Sec. IV A from
~small! number of multiarc fits, we can now simulate a lar
number of PN corrector runs. First, we assume that GR h
exactly ~and the other solar system parameters, includ
J2( andGM( , have their nominal value!. For each run of
the PN corrector, we generate values ofDRi ,DṘi , one for
each arc, according to the error model described above,
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always the same systematic component for range and
random components in both range and range rate from
random generator of Gaussian distributions. We typica
perform 2000 runs for each simulation with different a
sumptions~e.g., with and without the Nordtvedt constrain
with and without preferred frame parameters!. Then we per-
form another 2000 runs with no systematic error compone
to show by comparison the relevance of the systematic c
ponent. The output is then presented in a plot showing,
each parameter being solved,~1! the histogram of the result
from the simulations with random error only,~2! the Gauss-
ian distribution predicted by the covariance matrix,~3! the
histogram of the results from the simulations with systema
as well as random errors,~4! the Gaussian distribution bes
fitting to the previous histogram: note that the average is
most cases, significantly different from zero, thus there i
bias in the results~on the contrary the rms of the results wi
systematic error is not significantly different from the val
predicted from the covariance matrix!.

In Table I we list the present knowledge of the PN para
eters, as we have found in the literature. This information
two purposes. On one hand, we use it as a benchmar
evaluate the increase in accuracy achievable with the B
Colombo relativity experiment. On the other hand, this info
mation is used asa priori, e.g. an ‘‘observation’’b51 with
weight corresponding to a rms of 331023 is added. This
helps in stabilizing the solution, in particular in the presen
of high correlations, but is a legitimate way to combine t
previous with the current information.

TABLE I. Current constraints on the PN parameters. Note t
these are rms results from the corresponding least square fits. C
pare with the possible results from the BepiColombo mission gi
in Table II.

Parameter Value Primary reference

b̄ 331023 Ref. @10#a

ḡ 1.731023 Ref. @18#b

h 1023 Ref. @17#

d(ln G)/dt 4310212 Ref. @70#c

a1 331024 Ref. @71#d

a2 331024 Ref. @13#e

aIf the best value ofḡ parameter is combined with the lunar las

ranging~LLR! solution forh one may obtain a better value forb̄,
notably 631024, Ref. @17#.
bThough a combination of a large number of VLBI observatio
may eventually yield a better solution, e.g., Ref.@68#, we conserva-
tively adopt the best value from a single experiment~not relying on
a statistical decrease of the formal uncertainty!.
cRecent reanalysis of the LLR data may have the capability of
creasing the limit to 10212 as quoted in Ref.@69#.
dLLR and binary pulsar data result in comparable values, Ref.@72#
and Ref.@73#.
eHere we intentionally use the bestexperimentalconstraint on this
parameter. Nordtvedt in Ref.@74# gives a plausible, buttheoretical
argumentfor much better value of 431027, which our data could
confirm experimentally.
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TABLE II. A summary of the results from our experiments. The numbers in parentheses indicate exponent of basis 10 by which t
is multiplied.

a15a250 All parameters
Expt. A ~non-metric! Expt. B ~metric! Expt. C ~non-metric! Expt. D ~metric!

Parameter rms Real. rms Real. rms Real. rms Real. Param

b̄ 6.7 (25) 2.2 „À4… 7.5 (27) 2.0 „À6… 7.6 (25) 5.6 „À4… 9.2 (27) 7.0 „À6… b̄
a1 – – – – 7.3 (27) 8.7 „À6… 7.1 (27) 7.8 „À6… a1

a2 – – – – 2.1 (27) 1.6 „À6… 1.9 (27) 1.1 „À6… a2

h 4.4 (26) 1.5 „À5… 3.0 (26) 7.9 „À6… 5.1 (26) 4.5 „À5… 3.3 (26) 2.0 „À5… h
d(ln G)/dt 4.0 (214) 5.2 „À13… 3.9 (214) 5.3 „À13… 4.0 (214) 4.7 „À13… 3.9 (214) 5.2 „À13… d(ln G)/dt

dJ2 7.9 (29) 2.8 „À8… 2.4 (210) 2.1 „À9… 8.9 (29) 6.2 „À8… 6.2 (210) 4.8 „À9… dJ2

m 1.9 (212) 5.9 „À12… 3.3 (213) 1.0 „À12… 2.1 (212) 1.5 „À11… 4.1 (213) 1.0 „À12… m
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D. Results

We have performed a large number of tests with the
corrector, but the main simulated experiments are four,
sulting from the combinations of two binary choices. We d
include the constraint corresponding to the Nordtvedt re
tion @Eq. ~12!# in experiments B and D, while experiments
and C correspond to non-metric theories (h is solved as a
parameter independent from the others!. We did assume no
preferred frame effects in experiments A and B, while
solved fora1 anda2 in experiments C and D.

All the results are summarized in Table II. For each of t
parameters we give~i! the formal rms uncertainty from th
covariance matrix of the solution, and~ii ! a ‘‘realistic’’ level
of accuracy~bold! at which this parameter can be determin
from the experiment. This latter accounts for all systema
effects in the observation model~plus the random-noise com
ponent! and was defined as a mean value of this param
from the 2000 simulations with systematic effects p
2 3 rms of the formal uncertainty~this amounts to.93%
confidence level of this formal solution!. Note thatg is not
included in the table because the results forg2 are to be
used. Thus the rms forg is 2.531027, the formal rms of the
SCE, and a realistic error estimate is given by 23rms of the
histogram of Fig. 4, which is 231026. We are not including
in this case a bias term because there is no obvious bia
the histogram.

1. The rate of change of G

The least satisfactory result is the one for the rate
change of the gravitational constantG. As it is clear from
Table II, in all the four experiments the systematic errors
one order of magnitude larger than the formal ones. This
be understood as follows.

As is apparent from Fig. 5, this parameter is the only o
for which the bias is so much dominant with respect to
random component of the error. The main orbital signature
a secular change of gravity with time is that Mercury’s me
motion has a linear drift. This results in an accumula
along track displacement, which can be estimated b
simple formula to be.15 cm after one year ford(ln G)/dt
510213. Thus the quadratic component of the range calib
tion drift aliases almost perfectly with this signature, and t
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FIG. 5. Distribution of the results for the PN and solar para
eters from the 2000 simulations of the one-year orbital arc of M
cury, experiment A. The preferred frame PN parameters are
considered and the Nordtvedt parameterh is assumed independen
The distribution histograms are normalized to unity. The light h
tograms correspond to the simulations where systematic effec
observations were removed and the noise contains only a ran
component; the bold histograms correspond to the simulations
the complete noise model~systematic and random!. The smooth
overlapping curves are formal Gaussian distribution from the co
riance matrix of the solution~the shaded area indicates formal rm
of the unbiased solution!. The wide Gaussian curve is a forma
solution, with only a random noise in the observations having r
of 25 cm, namely half of the principal systematic effect in rang
Note the seriously corrupted solution of thed(lnG)/dt parameter
due to systematic effect in the realistic solution.
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explains in a qualitatively satisfactory way the systema
error for d(ln G)/dt.

Unfortunately, the currently known constraint is just o
order of magnitude larger than the accuracy of our exp
ment as planned now. Moreover, we are aware that the lu
laser ranging measurements are going on, and they are
lieved to be capable of reaching an accuracy of 10212 well
before the time when BepiColombo will be around Mercu
The conclusion is that the limitation to the accuracy
d(ln G)/dt is due essentially to the assumed drift in the ran
calibration. Thus the only way to obtain a result superior
that of other methods would be to significantly improve t
stability of the ranging transponder.

2. Non-metric theories

The main problem with the results of experiment A~and
C! is the strong correlation betweenb andJ2( , as is appar-
ent from the covariance matrix obtained in the least squa
fit ~see Table III!. The main orbital effect ofb is a precession
of the argument of perihelion, which is a displacement tak
place in the plane of the orbit of Mercury;J2( affects the
precession of the longitude of the node, i.e., generates a
placement in the plane of the solar equator@75#. The angle
between these two planes is onlye53.3° and cose50.998,
thus it is easy to understand how the correlation betweeb
andJ2( can be 0.997. The correlations betweenb, J2( and
the mass of the Sun~actually, the scale factor, which coul
be expressed as the value of the astronomical unit in km! are
also critical.

There is no way to decrease this correlation without
serving~with equivalent accuracy! some other celestial bod
moving around the Sun in an orbit with a quite differe
inclination and/or semimajor axis~e.g., @76#!. The effect of
such a strong correlation is illustrated in Fig. 6: the obser
tions of the orbit of Mercury can constrain very well som
linear combination ofb and J2( , but there is a ‘‘weak di-
rection’’ along which another combination of the same p
rameters is only weakly constrained. When the relations
of Eq. ~12! is used as a constraint, the confidence region
these two parameters collapses to a less elongated and
smaller region. In fact the smaller confidence region of
lower plot in the figure is contained in the intersection of t

TABLE III. Formal results for the PN and solar parameters fro
the analysis of one year Mercury’s orbital data. rms means stan
deviation from the diagonal terms in the covariance matrix. T
numbers in the triangular area are the correlation coefficie
~rounded to 2 digits! from the off-diagonal terms in the covarianc
matrix. The correlations larger than 90% are highlighted in bold

Parameter rms b̄ h
d~ln G!

dt
dJ2

b̄ 6.7 (25) –

h 4.4 (26) 20.73 –
d(ln G)/dt 4.0 (214) 20.23 0.16 –
dJ2 7.9 (29) 1.00 20.74 20.25 –
m 1.9 (212) 0.98 20.79 20.27 0.99
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longer confidence region with the strip parallel to theJ2(

axis representing the knowledge ofb as determined from the
value ofh. The conclusion is that the best way to solve f
b ~andJ2( , which is interesting by itself! is to use Eq.~12!;
of course this is an assumption, hence experiment B~and D!
cannot be considered as an experimental test of the hyp
esis that gravity is described by a metric theory.

3. Metric theories

In the experiment B, the Nordtvedt parameterh was as-
sumed to be linked to the other PN parameters through

rd
e
ts

FIG. 6. Values forb̄ anddJ2( as solved from 2000 simulation
of Mercury’s one year orbit. The full error model for the observ
tions ~containing both the random and systematic components! is
assumed. The upper plot is from experiment A, where the Nordtv
parameterh is independent, while the lower plot is from exper

ment B, whereh is constrained to be equal to 4b̄2ḡ ~no preferred
frame effects assumed!. The large correlation~99.7%! decreases the
quality of the solution of both parameters in experiment A, while
experiment B the correlation between these two parameters is
pressed and a much more accurate solution is obtained. The
curves indicate the formal 90% confidence level as deduced f
the respective covariance matrices.
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Nordtvedt relationh54b̄2ḡ2a12 2
3 a2 ~this is used as a

constraint in the least squares fit!. Since (ḡ,a1 ,a2) are kept
constant in this solution, the Nordtvedt relation used as c
straint in this experiment is justh54b̄. As a result the co-
variance matrix, described by Table IV, has a correlat
exactly 1 betweenb and h ~these are not independent p
rameters at all!, but the other correlations have been grea
reduced, especially the one betweenb̄ and J2( . Note that,
on top of the uncertainty indicated in Tables IV and II, w
should account for the effect of the uncertainty ong2 from
the SCE, since in facth54b̄2ḡ and ḡ5g221.

The results from 2000 simulations with systematic ran
errors and 2000 with random errors only are shown in Fig
The comparison with Fig. 5 and the values from Table
indicate a significantly better accuracy for all PN paramet
but d(ln G)/dt ~the quadratic systematic effect is the sam!.
Even accounting for the effect of the 231026 uncertainty on
g, h is anyway constrained to 1025. We can conclude that
within the framework of metric theories of gravitation, th
PN parametersb,g,h and the solar system model param
etersm, dJ2( can be determined with significantly improve
accuracy~two orders of magnitude better than the pres
knowledge!. In some sense, this is the best solution, bu
uses one additional assumption.

4. Preferred frame effects

The data from the BepiColombo relativity experiment c
also be used to test the possible preferred frame effect
particular by constraining the PN parametersa1 and a2.
Experiment C is the same as experiment A but witha1 and
a2 added to the list of parameters to be determined. From
data in Table II we can see that the accuracy ona1 anda2 is
significantly better than the previous knowledge. The price
some degradation in the accuracy forh, b, dJ2( , m. From
the data on the left~and below the main diagonal! in Table V
we can see that the high correlations betweenb, dJ2( and
m, found in experiment A, are still present, thus the accur
on these three parameters is not very satisfactory.

Therefore we have also run an experiment D in which
solve fora1 anda2, but also use the constrainth54b̄2ḡ

2a12 2
3 a2. As a matter of factḡ is kept fixed, assumed to

TABLE IV. Formal results for the PN and solar parameters fro
the analysis of one year Mercury’s orbital data, experiment B. T
conventions are the same as in Table III. In this solution,h is forced

to be equal 4b̄. Correlations larger than 90% are highlighted
bold.

Parameter rms b̄ h
d~ln G!

dt
dJ2

b̄ 7.5 (27) -

h 3.0 (26) 1.00 -
d(ln G)/dt 3.9 (214) 20.01 20.01 -
dJ2 2.4 (210) 20.26 20.26 20.41 -
m 3.3 (213) 20.56 20.56 20.21 0.71
08200
n-

n

y

e
.

I
s

t
it

in

e

is

y

e

be determined from the SCE. From the data on the right~and
above the main diagonal! in Table V we can see that th
correlation betweenb and dJ2( , m has been sharply de
creased. The correlation betweenh andb is high, although
not exactly 1, sinceb also depends upona1 anda2 ~indeed,
the correlation witha1 is rather high!. From Fig. 8 and the
data in Table II we can conclude that the accuracy is
proved with respect to experiment C forh, b, dJ2( andm,
while the accuracy fora1 anda2 is not much affected. If we
compare experiment D with experiment B there is some d
radation in the accuracy onb, h anddJ2( , which appears as
the price to pay for testing the presence of preferred fra
effects.

Note that the accuracy in the determination of the p
ferred frame parameters, especiallya1, depends upon the
orientation of the present orbit of Mercury with respect to t
assumed preferred frame direction. At present the line
apsides of Mercury is roughly orthogonal to the velocity
the solar system with respect to the cosmic microwave ba
ground, and this turns out to be an unfavorable configura
for the determination ofa1.

V. FUTURE WORK

There are of course some open problems, which des
further investigations to be conducted between now and
scheduled launch window. The main problems are to m

e

FIG. 7. The same as in Fig. 5, but for experiment B, assum
the relationship betweenh and b from Eq. ~12!. The correlation

betweenb̄ anddJ2( is thus suppressed in this solution, and the
parameters are determined with much better accuracy.
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TABLE V. Formal results for the PN and solar parameters from the analysis of one year Mercury’s orbital data, experiments C
The data on the left and the subdiagonal correlations correspond to experiment C withh taken as independent parameter; the data on
right and the superdiagonal correlations correspond to experiment C where the Nordtvedt relation forh was used. Correlations larger tha
90% are highlighted in bold.

Parameter rms b̄ a1 a2 h
d~ln G!

dt
dJ2 m rms Parameter

b̄ 7.6 ~25! - 0.58 20.04 0.98 0.03 0.46 20.54 9.2 (27) b̄
a1 7.3 (27) 20.21 - 20.02 0.43 0.06 0.92 20.28 7.1 (27) a1

a2 2.1 (27) 20.43 0.07 - 20.08 20.11 20.05 0.54 1.9 (27) a2

h 5.1 (26) 20.75 0.44 0.28 - 0.03 0.31 20.56 3.3 (26) h
d(ln G)/dt 4.0 (214) 20.22 0.11 0.00 0.19 - 20.09 20.24 3.9 (214) d(ln G)/dt
dJ2 8.9 (29) 1.00 20.15 20.44 20.74 20.23 - 20.06 6.2 (210) dJ2

m 2.1 (212) 0.98 20.26 20.33 20.82 20.27 0.98 - 4.1 (213) m
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sure that our observation model, our solar system dynam
model and the relativistic theories used are adequate to
extreme accuracy of the measurements.

The tracking of the BepiColombo main orbiter needs
be conducted from ground stations fully equipped for
Ka-band, with the electronic and thermo-mechanical stab
corresponding to the expected measurement accuracy.
water vapor content of the atmosphere needs to be meas
to account for tropospheric propagation delays. Interpl
etary tracking to this accuracy had never been achieved
recently: the first tests of the new generation tracking sys
on board the Cassini spacecraft have demonstrated tha
least for range rate, the requirements assumed in this p
can be achieved and possibly exceeded@78#. An in depth
analysis of the outcome of these experiments~and of other
tests already planned! is required before the time of the Bep
Colombo experiment.

The parameters of the solar system model not solve
our fit, that is on the basis of the Mercury-tracking data, ne
to be known well enough not to introduce aliased effects
the relativity experiment. While the planetary masses sho
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not be a problem, a source of concern is the unknown
poorly known, masses of the asteroids. The perturbations
Mercury are negligible, but Earth is displaced by the sh
period perturbations of Ceres by.3 m; since the mass o
Ceres is known only to about 5%, this effect alone is resp
sible for an uncertainty which is not negligible with respe
to the accuracy of the range measurements. The cumula
effect of the.100 asteroids capable of perturbing Earth
orbit ~over one year! by 1 cm or more is significant for ou
experiment@77#, and for most of these asteroids only a ve
rough estimate of the mass is available. Thus the ongo
work to improve our knowledge of the mass of Ceres and
largest asteroids is important, and we need to assess the
all effect of these poorly modeled perturbations on the ac
racy of the final results.

The accuracy of the BepiColombo relativity experiment
such that it reaches the threshold at which second p
Newtonian order effects become significant, e.g., some
these effects are discussed in Refs.@79# and@80#. We need to
carefully investigate the possible effects of this class, a
include in the model the ones which can affect the result
FIG. 8. The same as in Fig. 7, but here the preferred frame parametersa1 anda2 were included in the solution.
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VI. CONCLUSIONS

We conclude by summarizing the results we ha
achieved.

~1! We have shown that the relativity experiment of t
BepiColombo mission to Mercury is feasible as propos
More exactly, the results on almost all the PN parame
~and J2() can represent a significant improvement~about
two orders of magnitude! with respect to the current knowl
edge, provided the mission plan corresponds to the pre
baseline@30# and the instrument performances can be
sumed to be as expected now~as described in Refs.@28# and
@29#!.

~2! We have identified the range drift~in the calibration of
the on board transponder! as the main limitation to the accu
racy of the results. In particular, this effect is responsible
the unsatisfactory results ond(ln G)/dt, the only PN param-
eter for which it is possible to achieve only a small improv
ment~a factor.2) with respect to the accuracy expected
be available before the time of BepiColombo. To impro
the results ond(ln G)/dt it would be desirable to have a
extended mission, with up to two years in orbit around M
cury, but this is useful only if there is a good understand
of the behavior of the ranging transponder over two ye
@81#.

~3! The performance of the Doppler measurements
range rate, and of the accelerometer measurements, d
appear to be critical for the relativity experiment~while they
are critical for the gravimetry experiment, as described
Ref. @33#!. They contribute essentially only to the rando
error component, which is secondary with respect to the s
tematic errors due to the range measurements.

APPENDIX: PLANETARY TEST OF SEP

In this Appendix we discuss in more detail the planeta
test of the strong equivalence principle~SEP!. Our approach
is similar, but not identical, to that in Ref.@32#, where the
authors considered testingh from radar ranging to a Mars
landed transponder.

Testing any version of the equivalence principle mea
testing a hypothesis that the ratio of the gravitationalMi

g and
inertial Mi masses is not a universal constant~e.g., 1!, but
depends on the composition of a given object~in this appen-
dix we use the lettersi , j , . . . for numbering the bodies in
the planetary system!. In the context of celestial mechanic
this means testing the orbital effects of the Lagrangian te
described in Eqs.~4! and~5! in Sec. II A. We are concerne
with testing the strong equivalence principle, henced i
5h V i5h (Egrav/Mc2) i . Here V i is a gravitational com-
pactness factor; of course, among the solar system bodie
Sun has the largest value.23.5231026. Testing the
equivalence principle requires an experiment with at le
three bodies: two objects falling in the gravity field of a thi
body. We consider a motion of a complete planetary syst
but the principal bodies of interest are the Sun, Mercu
Earth and Jupiter. As in Ref.@32#, our method principally
tests whether bodies in the Sun-Mercury and Sun-Earth p
fall with the same acceleration in the gravitational field
Jupiter.
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We now focus on modifications of the planetary equatio
of motion due to the possible SEP violation. Assuming ba
centric coordinatesr i of the i th body we have

d2r i

dt2
52G(

j Þ i
@11h~V i1V j !#

M j

r i j
3

r i j , ~A1!

with r i j 5r i2r j . A number of additional terms~including
GR effects}1/c2) are neglected on the right-hand side
Eq. ~A1!. Assume the indexes span values 0,1, . . . ,(n21)
~for n21 planets!, with 0 meaning the Sun. Up to the ne
glected terms, the center of mass system is still defined

(
i 50

n21

Mir i50. ~A2!

This allows a suitable elimination of 6 variables, such as
position and velocity of the Sun. This reduction is obtain
by introducing heliocentric coordinatesqi : qi5r i2r0 for i
>1. The relative motion of planets around the Sun th
satisfies

d2qi

dt2
52G@11h~V01V i !#

M01Mi

qi
3 qi

2 (
j Þ0,i

G@11h~V i1V j !#M j S qi j

qi j
3

1
qj

qj
3D

2h~V02V i ! (
j Þ0,i

GMj

qj
3 qj , ~A3!

where qi j 5qi2qj @note that the indexes now spa
1,2, . . . ,(n21)]. If compared with the traditional planetar
equations of motion in heliocentric coordinates~e.g. @61#!,
we notice that the SEP terms affect~i! the ‘‘Keplerian term’’
on the first line,~ii ! the tidal perturbations due to the oth
planets on the second line and~iii ! produces an entirely new
perturbation~the third line!. This last term is of major im-
portance. It is formally equivalent to an anomalousindirect
planetary perturbation. For inner planets the contribution b
Jupiter dominates the sum in the last line, so that this ano
lous SEP perturbation is merely an acceleration in the he
centric direction of Jupiter. The sensitivity to theh param-
eter depends basically on the solar compactness factorV0
~with a very minor contribution2V i of the i th planet!. Since
V0 is so large, the planetary test of SEP is potentially ve
interesting. In the case of lunar laser ranging, the sensiti
on h is principally determined by the Earth value ofV, four
orders of magnitude smaller thanV0.

Note, however, thath is also present in the Kepleria
term @the first line of Eq.~A3!#. Quantitatively, the contribu-
tion of h to the attraction from the Sun is not negligible@82#.
However, this effect is identical to the effect of a change
the gravitational constant~or of the mass of the Sun, or of th
value of the astronomical unit!: G→G!5G @11h V0#. The
planetary equations~A3! rewritten withG! read
1-18
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d2qi

dt2
52G!@11hV i #

M01Mi

qi
3 qi

2 (
j Þ0,i

G!@11hV j #M j S qi j

qi j
3

1
qj

qj
3D

1h~V02V i ! (
j Þ0,i

G!M j

qi j
3

qi j . ~A4!

The presence of theh terms in the first two lines in Eq.~A4!
is negligible with the current observational accuracy. T
principal perturbation allowing us to test the SEP is still t
last term; moreover, sinceuV0u@uV i u for any i>1 we may
adopt V02V i'V0. Note that this SEP-testing term no
appears as an anomalousdirect planetary perturbation.
Clearly, it is again dominated by the Jupiter influence, a
over one year of the BepiColombo radio science experim
it is nearly a constant acceleration.

Adopting the approach of linear perturbationsDqi of a
reference solution~such as the planetary orbits from the JP
ephemerides!, the SEP effect principally arrives from th
forcing acceleration

d~d2qi /dt2!h.hV0 (
j Þ0,i

G!M j

qi j
3

qi j , ~A5!
e
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er
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with i standing for Mercury and Earth. Since in Eq.~10! we
are using the barycentric coordinates, we then perform
transformation

r i5qi2
1

M (
j Þ0

M jqj , ~A6a!

r052
1

M (
j Þ0

M jqj , ~A6b!

to obtain the corresponding perturbative accelerations
Dr i . These are then considered in the right-hand side of
system~10!, together with other PN and solar perturbation

We note that thanks to a combined reanalysis of the V
ager, Ulysses, Galileo and Cassini orbital tracking and
large number of the Earth-based astrometry the fractio
uncertainty in the total mass of Jupiter’s system has b
recently decreased to.831029 @65#. This value is suffi-
ciently small to prevent the uncertainty of the Newtoni
gravitational perturbation due to Jupiter to affect the det
mination ofh. Both effects are similar, but the indirect Ju
piter’s solar perturbation is enough to allow their decorre
tion at this level of accuracy.
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