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Can the clustered dark matter and the smooth dark energy arise from the same scalar field?
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Cosmological observations suggest the existence of two different kinds of energy densities dominating at
small (=500 Mpc) and large £1000 Mpc) scales. The dark matter component, which dominates at small
scales, contribute§),,~0.35 and has an equation of state-0, while the dark energy component, which
dominates at large scales, contribues~0.65 and has an equation of st@te —p. It is usual to postulate
weakly interacting massive particlé8VIMPs) for the first component and some form of scalar field or
cosmological constant for the second component. We explore the possibility of a scalar field with a Lagrangian
L=—-V(¢)J1—-4d¢d;¢ acting asboth clustered dark matter and smoother dark energy and having a scale-
dependent equation of state. This model predicts a relation between ther #atip/ppy Of the energy
densities of the two dark components and an expansiomrafethe universgwith a(t)«t"] in the formn
=(2/3)(1+r). Forr=~2, we getn~2 which is consistent with observations.
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The most conservative explanation of the current cosmorecently proposed3] candidate—a rolling tachyon arising
logical observations will require two components of darkfrom string theory—can explain dark matter observatiahs
matter.(a) The first one is a dust component with the equa-both small and large scales
tion of statep=0 contributingQ),,~0.35. This component The structure of this scalar field can be understood by a
clusters gravitationally at small scales<(500 Mpc, say  Simple analogy from special relativity. A relativistic particle
and will be able to explain observations from galactic toWith (one-dimensional position q(t) and massm is de-
supercluster scale) The second one is a negative pressurescribed by the Lagrangidn=—my/1—¢?2. It has the energy
component with an equation of state suchpaswp with E=m/V1—-g? and momentunp=mg/v1—q? which are
—1<w<—0.5 contributing abou},~0.65. There is some rejated byE?=p?+m?. As is well known, this allows the
leeway in the p/p) of the second component but it is certain possibility of having massless particles with finite energy for
that p is negative and [{/p) is of order unity (for recent \yhjch EZ=p2. This is achieved by taking the limit ah

reviews, se€g1]). The cosmological constant will provide .0 and q%l, while keeping the ratio irE:m/\/l——qz

w=- 1 Wh'.le SeVEf?" othe_r can_dldates based on s<_:alar field inite. The momentum acquires a life of its own, unconnected
with potentials[2] will provide different values fomw in the

acceptable range. By and large, the compofienis noticed with the velocityq, and the energy i; expressed in terms of
only in the large scale expansion and it does not clustethe momentuntrather than in terms af) in the Hamiltonian
gravitationally to a significant extent. formulation. We can now construct a field theory by upgrad-
Neither componenta) nor componentb) has laboratory ing q(t) to a field ¢. Relativistic invariance now requires
evidence for its existence directly or indirectly. In this senseto depend on both space and tifng= ¢(t,X)] anqu to be
cosmology requires invoking untested physics twice to exreplaced by ¢d' ¢. It is also possible now to treat the mass
plain the current observations. It would be nice if a candidatgyarametem as a function ofp, say,V(¢) thereby obtaining
could be found which can explain the observations at botfy field-theoretic Lagrangiah = —\V(¢)\1—d ¢d;¢. The
small and large scalgso that untested physics needs to beHamiltonian structure of this theory is algebraically very
invoked only oncg The standard cold dark matter model of similar to the special relativistic example we started with. In
the 1980’s belongs to this class but—unfortunately—cannoparticular, the theory allows solutions in whici—0,
explain the observations. It is obvious from the description iny. 45i 1 simultaneously, keeping the energensity fi-
the first paragraph that any su@ingle candidate must have pite. Such solutions will have finite momentum density
the capacity of leading _to different _e_quations of state at dif'(analogous to a massless particle with finite momenf)m
ferent scales and making a transition frgm=0 at small  and energy density. Since the solutions can now depend on
scales tp=—p (say at large scales. Normal particlé®at  hoth space and timéainlike the special relativistic example
is, one-particle-excitations of standard quantum field theoryjn which q depended only on timethe momentum density
such as weakly interacting massive partif@8MPs) will - can be an arbitrary function of the spatial coordinate. This
usually lead to the equation of staie-0 at all scales. Onthe  provides a rich gamut of possibilities in the context of cos-
other hand, homogeneous field configurations in scalar fielghology [4].
models will behave like dark energy with negative pressure To examine this scenario in more detail, we will begin

and cannot cluster effectively at small scales. with the action which couples such a scalar field to gravity at
In this paper we examine the possibility of whether ajow energies:

R

s=f d“xJ—_g(l&TG—val—ﬁ'M@ .
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where ¢ is the field andv(¢) is the potential. Though mo- Unless the clustering property of this scalar field is suffi-
tivated from string-theoretic considerations, we shall takeciently different from that of matter witp=0, we will need
this action as the starting point and investigate its conseto still invoke a separate component to describe cosmologi-
guences without worrying about its origifin this spirit, we  cal observations. More generally, if one assumes that the
refer to ¢ as simply ascalar field rather than as a tachyonic field ¢ has the same configuration at all length scales, then
field). The Einstein equations are one would end up getting the same density-pressure relation
(equation of stateat all scales. However, in the real uni-
verse, we know that the dynamics of structure formation and
clustering at galactic scales is dominated by the pressureless
fluid componentdark mattey, while at large scales, the dy-
where the stress tensor for the scalar field can be written in aamics of the expansion of the universe is governed by the
perfect fluid form spatially averaged mean density of a pressureless component
i i . and a smooth component with negative pressure. In order to
Ti=(p+p)u'u—pdy () understand these effects, we need to model the scalar field in
such a manner that we get different equations of state at
different scales. This is possible if we assume that the teld
has some sort of stochastic behavior so that its properties at

1

5 SIR=87GT} 2)

R, —

with

u :M k=1 — V(9) different scales can be obtained by carrying out an averaging
K ST dd b bod k ' N—d¢od over the corresponding scales. _
To tackle this complicated issue, we shall define an aver-
p=—V($)\J1— 3 ¢hd;¢. (4)  age of any quantityA[ ¢(t,x)] over a length scal®, such

that the averaged quantity describes the behavior of the field
The remarkable feature of this stress tensor is that it could bat that length scalgThis is a fairly standard practice in the
considered ashe sum of two components)(and (b) de-  study of structure formation; see, for example, Chap. 5 of
scribed in the first paragraph. To show this explicitly, we[7].) The average of\(¢) over a length scalR is defined by
break up the density and the pressurp and write them in ~ smoothing it with a window functioWg. Mathematically,

a more suggestive form as this is expressed as
p=pvtpom, P=PvtPom )
where A(R)E<A(¢)>R:J (ZT)B»Ak(¢)WR(k)a
_V($)d piid . |
M T dgag M Ad$)= f dXA(g(x))e'™, v
(6)
pv=V(P)N1=3d'¢di¢,  py=—py. whereWg(k) «cexp(—k?R?/2) if the window function can be

. taken to be Gaussian, say. In this case, the behavior at a scale
This means that the stress tensor can be thought of as made . — — :
Il be described by an average potentgl(¢) obtained

up of two components—one behaving like a pressurelesgZ wi
fluid, with the other having a negative pressure. by eliminatingR between the average of potentig|R) and

If V() decreases witlp and has a minimum &(=0 as  the average of fieldb(R) when all the average quantities are
¢— then itis possible to obtain pressureless dust solutionsbtained using the same window function. In such a descrip-
by taking the limitV—0, d;¢9'¢p— 1 simultaneously and tion, ¢ will sample different parts of(¢) at different scales
keeping the energy density finite in tlpg,, component. If and it is possible to have different equations of state at small
this happens globallat all scales then—in this limit—the and large scales.
scalar field will behave as pressureless disll scales In To see how it works, consider a simple case in which the
this limit py, will vanish. Linear perturbation analysis shows field configuration evolves as
[5] that this component will cluster gravitationally somewhat

similar to dustlike particles. In this scenario, the scalar field £(x)
will merely act agyet anothercandidate for dark mattéb]. H(t,x)=A(X)t+ — (8)
(It may be noted that there are still some subtleties related to t

clustering properties, timescales, etc., which have to be
sorted out. But we believe this is indeed possible. For exwhich is a simple generalization of the evolution described in
ample, some of the problems related to velocities of the consome of the previous worksee, e.g.[3,8—10). When av-
densate particles can be addressed by using solutions whieliaged over a length scaRewe obtain an effective field
are Lorentz boosted, as explained &).
It is, however, unlikely that such a scenario will be cos- £(R)
mologically acceptable in the absence of another component S(t,R)=A(R)t+ —. (9)
(b) with negative pressure described in the first paragraph. t3
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The dependence &(R) andf(R) on R will determine the 2 n 2
behavior of the field at different scales. The time dependence A(R)= 3 Vo¢§=m 1- an (14

of the second term is appropriate if the effective potential at

scalarR behaves as Thus the average value ap being different at different

5 scales allows the possibility of the same scalar field exhibit-
10 ing different equations of state at different scales. The rate of
(10 expansion of the universe is essentially determined@y)

at the larger scales.

which was considered earlier jB,11]. For a different poten- Since the same physical entity provides the dark matter at

tial, the time dependence will be different but in general ford!! scales in this scenario, one certainly expects a relation
t>1, the second term will be small compared to the first.PEtween the energy densities contributed by dark matter

[For example, if the potential has the forn?R(a) (Q,,) and dark energyQ@,,). In our model, the energy den-

iy i sities for the two components are given by
cexp(—d¢l/¢py), the appropriate form of the second term
would bef(R)exp(—2t)]. We shall now show that for a par- V0¢§ 1 n 1
ticular choice ofA(R), we shall be able to produce the ex- POM™ —= —,
pected behavior of the equation of state at large as well as VI-AR)? t? 47G 2

oo

¢(t.R)

Vr(#(1,R)=V,

galactic scales. (15
At small scales, evolution could have proceeded to the VodaV1-A(R)?  3n? 2\1
asymptotic limit so thatv—0,d;¢d'¢»—1 and a dust like pv= AR “s-all 3 2

component prevails, which would requiggR)—1. Then

we get for the average field (It may be necessary to choose the value/@{zsé in a par-

ticular range to match the values of the energy densities we

VI=d ga~1- =" pd, ¢ observe today. This could be considered a fine tuning of the
TN parameters, which we need to resort to at this stage in the
= 61(R) (34) (11)  absence of a more fundamental understanding of the scalar
t2 t field. It is no worse or better than the fine tuning which is
required in any other model for dark enengfowever, the
Thus, at these scales, in the linhit>, we have ratio of the energy densitigs,/ppy is independent of time,
and is related to the mean value of the scalar field at large
Vob3 scales by
pom~ ===, pv~0. (12
V6f(R) 1
Py -1 (16)
This means that the dynamics at galactic scales is dominated pom  A(R)?

by the pressure-less component, whose the energy density is o ) .
independent of timé3,5]. This resembles the noninteracting !N fact, a similar equation holds for the ratio of the two
dark matter, which can cluster and is crucial for structurecomponents at all scales. As one proceeds from smaller to
formation in the universe. The time dependence of the sedarger scales, the .dark matter contribution decreases and the
ond term in the righ-hand side of E() was chosen so as to dark energy contribution increases. o
make the energy densipp,y independent of time. In a more This result can be _converted into a cle_ar _predlctlon for
general scenario, this energy density will be time dependerfSMology by expressing the above equation in terms of the
and will represent the standard growth of structure in thd @€ Of expansiom:
dustlike component in an expanding universe.

Let us now turn into large scales to study the expansion of
the universe. Since the fluctuations are likely to decrease
with the averaging scaleg(R) will be a decreasing func-
tion of R and we expecA(R) to have a value less than unity F°2r the values accepted at prespptppy~2, we geta(t)
at large scales. Takingé;ﬁ(R):A(R):const, and V oct?, Sych a rate of growth is co.nS|sten't with supernova.ob—
=VO¢S/A(R)2t2 one can find a consistent set of Solutionsservatlons.(The age of the universe in any accelerating

B . . model [with Q.;=1a(t)«t",n>1] will be ty~n/H,,
fornanQ—l FRW model with a power Ia_w eXp"’.‘”S'W) which is higher than the conventional models with
«t", where(see[8] for a description of this solution

~1/MH,. Any model which agrees with the superno{&\)

5 3n2 51 observations and has entered an accelerating phase in the
H(H)= /—t+bo V()= \ /1_ —= (13 recent past will have this feature and our model with2 is

3n ’ 87G 3nt no different) This relation betweelii) the amounts of dark
matter and dark energy present in the universe @ndhe

with by being a constant. Our model reproduces the correaéxpansion rate is potentially testable by observations. It may
behavior expected at large scales, provided we identify ~ be stressed that in our model, the evolution of the single

_2
=3

1+ ﬂ). (17)
PbmMm
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scalar field governs the time dependenceboth ppy and The really serious test of the model will arise from the
py . This is equivalent to saying that there is interaction anchonlinear small scale dynamics of the clustering and galaxy
energy exchange between the two components and the efermation scenarios. This is a hard problem which we have
ergy is not conserved locally for the dark matter and dark not studied in this paper; instead we have introduced an an-
energy components separatelwhich would imply ppy  satz for the form of scalar field at different scales by hand. It
«a”* andp,=const). is necessary to investigate this model further and show that
Incidentally, it may be possible to put constraints ©n  the basic ansatz is correct and the details do not run into any
from cosmic microwave backgrou@MB) observations as contradiction. While this remains to be done, we consider it
well. The pressure term |n.the linear perturbation equation IRery attractive that the single entity can possibly exhibit dif-
this model has a factor (4 ¢?)k? wherek is the wave num-  ferent equations of state at different scales in the universe.
ber [5]. For the solution(13), this factor is[1—(2/3n)]k*  Such a scenario has nuandésr example, for CMB obser-

and the standard results can be used with a rescalifig of yations[12]) which have not been explored in conventional
But since the angular scales of features in CMB anisotropy:osmology before.

depends on this rescaling, it will lead to ardependent res- . _ .
caling of Doppler peaks, etf12]. Hence, CMB observations We thank Ashoke Sen for useful discussions. T.R.C. is
can provide another constraint on supported by the University Grants Commission, India.
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