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Real-time pion propagation in finite-temperature QCD
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We argue that in QCD near the chiral limit, at all temperatures below the chiral phase transition, the
dispersion relation of soft pions can be expressed entirely in terms of three temperature-dependent quantities:
the pion screening mass, a pion decay constant, and the axial isospin susceptibility. The definitions of these
quantities are given in terms of equal-time~static! correlation functions. Thus, all three quantities can be
determined directly by lattice methods. The precise meaning of the Gell-Mann–Oakes–Renner relation at finite
temperature is given.
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I. INTRODUCTION

Properties of hadrons at high temperatures and dens
are of great interest from both experimental and theoret
perspectives. One motivation for studying temperature
fects on hadrons comes from the suggestion that some
tures of the dilepton spectrum observed in heavy-ion co
sions can be explained by the modification of masses
widths of mesons by the thermal medium@1#. Nevertheless,
reliable information on the temperature modification of ha
ronic properties is still lacking. Lattice simulations, whic
rely on the imaginary-time formulation of quantum fie
theory, have serious difficulties with real-time quantitie1

The absence of Lorentz invariance at finite temperature
plies that there is no direct relationship between real-ti
characteristics of hadrons~for example, the so-called ‘‘pole
masses,’’ which are supposedly the positions of poles
propagators! and quantities that can be extracted from E
clidean propagators~e.g., the ‘‘screening masses,’’ whic
characterize the exponential falloff of static Euclidean co
elators!. Thus, as a rule, lattice measurements of correla
functions at finite temperature cannot be used to draw c
clusions about real-time propagation of hadrons.

The aim of this paper is to demonstrate that pions pres
an exception to this rule. We shall argue that it is possible
determine the dispersion relation of soft pions~more pre-
cisely, its real part! at all temperatures below the chiral pha
transition, knowing only equal-time~or static! correlation
functions, which, in principle, can be determined on the l
tice. It should be emphasized that we do not assume
temperatureT to be small compared to the chiral phase tra
sition temperatureTc : we must haveT,Tc , but T/Tc is
allowed to be of order 1. Our results are valid in the no
trivial regime where neither perturbative QCD nor chiral p

*Electronic address: son@phys.washington.edu
†Electronic address: misha@uic.edu
1Some progress, however, may have been made recently@2#.
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turbation theory are reliable. Moreover, our method, w
minimal modification, can be applied to any field theory wi
a broken symmetry, at temperatures below symmetry re
ration.

That the dispersion relation of a mode can be expres
fully in terms of static correlation functions is nontrivial, bu
by no means unprecedented. We recall the sound wa
whose velocity isu5(]p/]e)1/2, wherep ande are the pres-
sure and the energy density, respectively. The sound sp
while being a real-time quantity~the pole in the correlator o
the energy densityT00), can be determined solely from the
modynamics. The relation between the speed of sound
the thermodynamic functions is an exact consequence of
existence of the hydrodynamic description. A less famil
example is the variational Feynman-Bijl formula which r
lates the phonon spectrum in superfluid helium to the st
density-density correlation function@3#. The example most
closely related to our problem, however, is that of spin wa
in antiferromagnets@4#: The velocity of spin waves at an
temperature below phase transition is equal to the ratio of
stiffness and the magnetic susceptibility in a direction p
pendicular to magnetization. Both quantities can be defi
from the static response of the system to external fields.
only difference between QCD and antiferromagnets is tha
the former case the symmetry is SU(2)V3SU(2)A.O(4),
which is spontaneously broken to SU(2)V.O(3), while in
ferromagnets O(3) is broken down to O(2)@5,6#.

The paper is constructed as follows. In Sec. II we su
marize the findings of the paper. In Sec. III we use simp
but nonrigorous, arguments relying on an effective Lagra
ian to understand these results. In Sec. IV the results
derived in a more rigorous way from a set of assumptio
about the real-time correlation functions, which comes fro
hydrodynamics. In Sec. V we show that our result holds
the simplest field-theoretical model of a scalar field theo
with broken symmetry. In the Appendix we give a simp
derivation of the known result about the dynamical critic
exponentz, and derive the critical scaling of a diffusion co
efficient.
©2002 The American Physical Society11-1
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II. SUMMARY OF RESULTS

We claim that, in QCD with two light flavors, at temper
tures below the chiral phase transition, the real part of
dispersion relation of sufficiently soft pions is given by t
following equation:

vp
25u2~p21m2!. ~2.1!

In this paper the following terminology is used:u is the pion
velocity ~although, strictly speaking, it is the pion veloci
only when m50), andm is the pionscreening mass~we
shall show that it is the same screening mass as define
the lattice!. The energy of a pion atp50, mp5um is called
the pionpole mass.

At finite temperature, the meaning of soft pions may ne
some clarification. We shall understand Eq.~2.1! as a state-
ment that the correlators of operators carrying pion quan
numbers have a pole at the frequency with the real part
termined by Eq.~2.1!.

The pion velocityu is the ratio of two statically measur
able quantities, thetemperature-dependentpion decay con-
stant f2 and theaxial isospin susceptibilityx I5,

u25
f 2

x I5
. ~2.2!

The axial isospin susceptibilityx I5 can be defined as th
second derivative of the pressure with respect to the a
isospin chemical potential~see Sec. III!. Equivalently, it can
be defined via the staticEuclideancorrelator of the axial
isospin charge densities,

dabx I55E
0

1/T

dtE dx^A0
a~t,x!A0

b~0,0!&, ~2.3!

where

A0
a[c̄g0g5

ta

2
c, ~2.4!

c is the quark field,a,b51,2,3, ta are isospin Pauli matri-
ces, Trtatb52dab, and ^•••& denotes thermal averaging
which can be taken by evaluating a Euclidean Feynman p
integral with appropriate boundary conditions. The quan
x I5 has been considered previously@7#.

The pion decay constantf and the screening massm can
be determined from the static Euclidean pion correlators
small momenta, which are predicted to have the form

E
0

1/T

dtE dxe2 iq•x^wa~t,x!wb~0,0!&5
1

f 2

dab

q21m2
,

~2.5!

where the scalar fieldwa is defined as

wa[
i c̄g5tac

^c̄c&
. ~2.6!
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Equation~2.5! is supposed to be valid whenuqu!ms , where
ms is the ~temperature-dependent! screening mass of thes
meson.

The waym enters Eq.~2.5! explains why we term it the
pion screening mass. As far asf is concerned, the conven
tional definition of the pion decay constant,f ppm
5^0uAmup(p)&, cannot be used at finite temperature, sin
neither the vacuum stateu0& nor the one-pion stateup& al-
lows generalization in thermal media. BothAx I5 and f ap-
proachf p asT→0, so both can be viewed as the genera
zation of f p to finite temperature. We, however, reserve t
name ‘‘pion decay constant’’ for the quantityf defined in Eq.
~2.5!.2 In contrast to the susceptibilityx I5 , f cannot be de-
fined at temperatures above critical.

We shall also show that the Gell-Mann–Oakes–Ren
~GOR! relation can be generalized to finite temperature, a
does in fact become two separate relations for the scree
and pole masses of the pions,

f 2m25x I5mp
252mq^c̄c&. ~2.7!

For simplicity, in this paper we assumemu5md5mq .
Equation~2.2! is the direct analogue of a similar equatio

for the velocity of spin waves in a quantum antiferromagn
at temperatures below the phase transition@4#. The counter-
part of f is the stiffness~denoted asrs in Ref. @4#!, while x I5
is similar to the magnetic susceptibility in a direction perpe
dicular to magnetization.

An important point we wish to emphasize is that the
lations~2.1!—~2.7! are exact in the chiral limit, i.e., the limi
when mp ~vacuum pion mass! and p are infinitesimally
small, at any temperature in the interval from 0 toTc . Al-
though the methods we use to derive them may look sim
to chiral perturbation theory, unlike the chiral perturbati
theory, we do not consider perturbations aroundmp50, T
50, treating bothmp andT as small parameters. Rather, w
consider perturbations aroundmp50 at a fixedT, the latter
not assumed to be small. Therefore, unlike in chiral pert
bation theory, we are not able to calculate the tempera
dependence of parameters such asx, f, u, or c̄c. However,
we are able to show that their temperature dependence
be such that relations~2.1!–~2.7! hold.

Given these equations, exact in the chiral limit, it is legi
mate to ask how useful these relations can be at the phy
value of the pion massmp5140 MeV. To answer this ques
tion quantitatively, a~perhaps lattice! calculation of theT and
mp dependence is needed, which is beyond the scope of
paper. However, we shall attempt to give a semiquantita
answer to this question.

It is easier to begin withT50. In this case formula~2.1!
becomes trivial: The dispersion relation is exact, simply
Lorentz invariance, for anyp andm5mp . It is a straightfor-
ward exercise to show, using PCAC~partial conservation of
axial vector current!, that to leading order, i.e.,O(mp

2 ), the
correlator in Eq.~2.3! whose value atmp50 is x I5, does not

2See Sec. IV E for a discussion related to this point.
1-2
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depend onmp . Thus one can expect that measuring the c
relator~2.3! even at the physicalmp ~or higher, as is typical
in a lattice calculation due to the high price of simulati
with light quark masses! is not significantly different from
x I5. In order to extract the value off from the relation~2.5!
reliably, one requires that higher mass states in the cha
with pion quantum numbers do not significantly contamin
the exponential falloff of the correlator in coordinate spa
Since the masses of such states are typically above 1 G
the exponential tail contribution from the light state of ma
mp5140 MeV should be easy to separate.

At nonzeroT the region of applicability of Eq.~2.2! is
limited by terms of higher powers inp. For simplicity, in the
exact chiral limit mp50 the dispersion relation takes th
form v5upu2( i /2)D8p21•••, whereD8 is a temperature-
dependent parameter~see Sec. IV and the Appendix!. The
condition on momenta which is required to neglect nonl
earity in the dispersion relation isupu!1/D8. Calculation of
the diffusion constantD8 is a challenging task. Taking a
estimate from Ref.@8#, D85CT3/ f p

4 , with a numerically
rather smallC;0.1, we can conclude that even forT; f p at
momenta of orderupu;100 MeV the nonlinearity in the dis
persion relation is still small.

As T5Tc the dispersion relation is essentially nonline
which manifests itself in the divergence ofD8 asT→Tc ~see
the Appendix!. As T→Tc the maximum momentum at whic
the dispersion relation can be considered linear~in the chiral
limit ! decreases and vanishes atTc . Although the power
with which the width of the linearity window shrinks to zer
can be determined~by extension of arguments given in th
Appendix!, the preexponent is unknown, and a nonpertur
tive calculation is, in principle, required to determine qua
titatively the size of the nonlinearity in the dispersion re
tion at a givenT and upu. Such a calculation is beyond th
scope of the paper.

Equations~2.1!–~2.7! were used in Ref.@9# to extract in-
formation about the critical behavior of the pion velocity a
masses near the critical temperature. A brief derivation
Eqs.~2.1!–~2.7! was also sketched in Ref.@9#. We present a
more extended version of this derivation in Sec. III.

In Sec. IV we provide a new derivation of the relatio
~2.1!–~2.7! using the operator approach based on hydro
namic equations. For this purpose we shall need express
for x I5 and f in terms of equal-time rather than static~zero
frequency! correlators. These relations follow from defin
tions ~2.3! and ~2.5! in the exact chiral limit (mp50) or
when the temperature is high enough (T@mp):

dabx I55
1

TE dx^A0
a~ t,x!A0

b~ t,0!&. ~2.8!

In the chiral limit, the equality of the static correlator@Eq.
~2.3!# and the equal-time correlator@Eq. ~2.8!# of A0

a is a
consequence of the conservation of the axial isospin cha
Similarly,

1

TE dxe2 iq•x^wa~ t,x!wb~ t,0!&5
1

f 2

dab

q21m2
. ~2.9!
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Note that, in contrast to Eqs.~2.3! and ~2.5!, Eqs. ~2.8!
and ~2.9! require an additional conditionT@mp . This con-
dition is, however, not so dramatic, if one recalls that t
relavant energy scale of orderT is the lowest nonzero Mat
subara frequency, 2pT. Thus, in practice, one require
2pT@mp , which is satisfied reasonably well forT of order
Tc'160 MeV and the physical pion mass.

However, a much stronger condition is required for t
applicability of the hydrodynamic description:upu ~andmp)
must be smaller than the typical collision ratet21;T5/ f p

4

~according to Ref.@14#!. At small T! f p this condition is
much stronger than the conditions that are required for
effective Lagrangian derivation to hold~typically upu,mp

!ms—see Sec. III!. However, both derivations apply in th
required regime infinitesimally close to the chiral limit. Th
fact that the hydrodynamic derivation has a smaller valid
range, however, does not mean that the result is not v
outside this range. As an example, consider the case oT
50, where the results~2.1!,~2.2! hold trivially, while hydro-
dynamics does not apply at all. A less trivial example
presented in Sec. V, where explicit calculation verifies E
~2.2!. This weak-coupling calculation, however, does not
quire any notion of hydrodynamics.

The advantage of the hydrodynamic approach is tha
allows us to consider properly the effects of the dissipati
which are inherently beyond the Lagrangian approach.
fore proceeding to the new operator derivation~Sec. IV! we
review the derivation based on the effective Lagrangian
proach.

III. EFFECTIVE LAGRANGIAN APPROACH

A. Axial isospin susceptibility and f p at TÄ0

Since an important role in our analysis is played by t
axial isospin susceptibility, we first consider this quantity
zero temperature and its relation to the pion decay const
The quark part of the QCD Lagrangian at finite axial isosp
chemical potentialm I5 is given by

Lquark5 i c̄gmDmc2mqc̄c1m I5c̄g0g5

t3

2
c, ~3.1!

where Dm is the color covariant derivative. This chemic
potentialm I5 is coupled to the axial isospin chargeA0

3 @cf.
Eq. ~2.4!#, which generates the SU(2)A part of the SU(2)V
3SU(2)A chiral symmetry.

The response of the QCD vacuum tom I5 can be found
from the effective chiral Lagrangian. The latter, to lowe
order of momenta, masses, and chemical potential, is c
pletely fixed by the chiral symmetries and is given by

Leff5
f p

2

4
Tr ¹nS¹nS†1

f p
2 mp

2

2
Re TrS, ~3.2!

where S is an SU(2) matrix whose phases describe
pions,S5ei tapa/ f p, and¹ denotes the covariant derivative
which is defined as
1-3
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¹0S5]0S2
i

2
m I5~t3S1St3!, ¹iS5] iS, i 51,2,3.

~3.3!

At m I550, the Lagrangian~3.2! is the standard chiral La
grangian with two phenomenologically determined consta
f p andmp . The waym I5 enters the effective description
completely fixed by symmetries to lowest order. This can
seen by promoting the SU(2)A symmetry to a local symme
try and treatingm I5 as the time component of the SU(2)A
vector potential@10#.

The Lagrangian~3.2! and its derivation is analogous t
the case of the effective Lagrangian at finite~vector! isospin
chemical potentialm I considered in Ref.@11#. A significant
difference between the cases studied here and in Ref.@11# is
that the QCDvacuumbreaks the SU(2)A ~axial isospin!
symmetryspontaneously, but remains symmetric under th
SU(2)V ~vector isospin! symmetry. It is important to note
however, that the SU(2)A is a symmetry of the Lagrangia
~at mq50), as good as the SU(2)V . In particular, the axial
isospin currentAm

a is conserved in the chiral limit. Thus, it i
entirely legitimate to consider the theory at finitem I5 and use
symmetry arguments to fix them I5 dependence of the effec
tive Lagrangian.

The vacuum energy density depends nontrivially onm I5
already for arbitrarily smallm I5. ~This is in contrast to the
case of the isospin chemical potentialm I , wherem I needs to
be larger than a threshold equal tomp in order to change the
ground state.! The isospin axial susceptibility, atm I550, is
easy to determine using the effective Lagrangian~3.2!:

x I5[
]2Evac

]m I5
2 U

m I550

52
]2Leff

]m I5
2 U

S51

5 f p
2 . ~3.4!

This result is of potential importance for lattice QCD ca
culations because, in principle, it allows one to determinef p

directly by measuring the axial isospin susceptibility. To o
knowledge, this has not been done on the lattice for temp
tures below the chiral phase transition. The isospin susce
bility ~as well as the isoscalar, i.e., baryon number susce
bility ! measurement has been done using staggered ferm
in @12#. In the formulation used in Ref.@12#, introducing the
axial isospin chemical potential would require replaci
exp(2ma) on the links~wherea is the lattice spacing! with
exp(2mazx), where zx is the usual staggered factorzx[
(21)x11x21x31x4—the representation ofg5 in the staggered
fermion action.

B. Pion velocity

To obtain Eq.~2.2!, we expand the previous discussion
nonzero temperature. We first presume that the dynamic
the pions is described by some effective LagrangianLeff .
Strictly speaking, this is not correct since dissipative effe
cannot be included in the effective Lagrangian. We can
pect to recover the correct answers if, in the infrared,
pion thermal width is negligible compared to its energy. T
has been seen in explicit calculations at lowT, where chiral
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perturbation theory can be used@13,14#. We furthermore as-
sume that this Lagrangian is local and can be expande
powers of momenta. To lowest order, the Lagrangian is fix
by symmetries up to three coefficients,f t , f s , andm,

Leff5
f t

2

4
Tr ¹0S¹0S†2

f s
2

4
Tr ] iS] iS

†

1
m2f s

2

2
Re TrS. ~3.5!

Due to the lack of Lorentz invariance,f t
2 and f s

2 are indepen-
dent parameters. The covariant derivative¹0 is the same as
defined in Eq.~3.3!. The dispersion relation following from
this Lagrangian has the form~2.1! where

u5
f s

f t
. ~3.6!

At zero temperaturef t5 f s5 f p , and the pion velocityu is
equal to the speed of light. We now show that, at finite te
perature, all three parametersf t , f s , and m can be deter-
mined from equal-time~or static! correlation functions.

Repeating the same argument as in Sec. III A, we
show thatf t is related to the axial isospin susceptibility,

x I55 f t
2 , ~3.7!

but nowx I5 is defined as the susceptibility at finite temper
ture. Note that, as a susceptibility with respect to a conser
charge,x I5 is free of ultraviolet divergences.

We now need a prescription to computef s and m from
static correlation functions. In order to make the connecti
we generalize the mass term in Eq.~3.1!,

Lquark5 i c̄gmDmc2~ c̄LMcR1H.c.!1m I5A0
3 , ~3.8!

and regardM as an externalfield, M5M (x). The Lagrang-
ian ~3.8! possesses the symmetrycL→LcL , cR
→RcR , M→LMR†, where L,RPSU(2). If M (x) is a
slowly varying function ofx, its effect can be captured in th
effective chiral Lagrangian. The requirement that the eff
tive Lagrangian preserves this symmetry fixes the form of
mass term,

Leff5
f t

2

4
Tr ¹0S¹0S†2

f s
2

4
Tr ] iS] iS

†

2
1

2
^c̄c&Re TrM†S. ~3.9!

We shall limit ourselves to a particular ansatz of the exter
field M (x):

M ~x!5mqeiaa(x)ta
. ~3.10!

The second derivative of the partition function with r
spect toaa can be computed in both the microscopic theo
~3.8! and in the effective theory~3.9!. In the microscopic
theory, we find
1-4
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d2 ln Z
daa~x!dab~0!

5mq
2^c̄c&2^wa~x!wb~0!&, ~3.11!

wherewa is defined in Eq.~2.6!. On the other hand, from th
the effective Lagrangian~3.2! we find

d2 ln Z
daa~x!dab~0!

5mq
2^c̄c&2^fa~x!fb~0!&

where fa~x![Re Tr i taS~x!/2.

~3.12!

Comparing Eqs.~3.11! and ~3.12!, we see that correlation
functions ofwa(x) defined in the microscopic theory and
fa(x) defined in the effective theory are equal. This equa
should hold for small momenta when the effective theory
applicable.

The correlation function offa(x), on the other hand, ca
be calculated by expanding the effective Lagrangian to s
ond order infa. The Matsubara propagator offa is

E
0

1/T

dtE dxeiq•x^fa~x!fb~0!&

5
dab

f t
2q0

21 f s
2~q21m2!

, q052pTn. ~3.13!

This propagator, forq050 and smallq, should be equal to
the propagator ofwa. This establishes Eq.~2.5!, with the
identification f 5 f s . Together with Eqs.~3.6! and ~3.7!, this
is our result for the pion dispersion relation. Furthermore
is natural to assume that, for smallq, the dynamics ofwa is
slow, so at high enough temperature (T@mp) one can regard
wa(t,x) as independent oft. In this case the left hand sid
of Eq. ~3.13! is equal to that of Eq.~2.9!.

It is instructive to write Eq.~2.9! in coordinate space,

^wa~0,x!wb~0,0!&5
T

4p f s
2

e2muxu

uxu ~ uxu@T21,ms
21!.

~3.14!

We see that measuring, in the microscopic theory, the la
distance equal-time correlation function of thewa defined in
Eq. ~2.6! we can extract the screening massm and the decay
constantf. Combined with the determination of the suscep
bility x I5 and Eq.~3.7!, the dispersion relation of soft pion
is now completely known.

Below we shall provide a more systematic proof of the
relationships using an operator approach, with crucial inp
from the hydrodynamic theory. We shall also demonstrate
validity of the relation~2.2! in an explicit lowest order per
turbative calculation in the linear sigma model.
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IV. HYDRODYNAMIC „OPERATOR… APPROACH

From a modern perspective, hydrodynamics is an eff
tive theory operating at sufficiently large distance and ti
scales.~By ‘‘sufficiently large’’ normally we mean scales
larger than the mean free path, or the relaxation time.! As
such, it is the most suitable framework to discuss low-ene
degrees of freedom~like pions! at finite temperatures. This
modern point of view, as opposed to the view of hydrod
namics as a purely phenomenological description, has b
in existence for a long time@15#. From this philosophy, it is
not surprising that the same hydrodynamic theory descr
systems with very different microscopic dynamics, and t
systems with different symmetries~like normal fluids and
superfluids! correspond to different hydrodynamic theorie
Similarly to the effective Lagrangian, hydrodynamic equ
tions can also be viewed as a particular way to satisfy W
identities at finite temperatures@16#. In our case, hydrody-
namics is nontrivial due to the chiral symmetry breaki
@17#. We will derive the constraints placed by hydrodynam
on the dynamics in our problem, and show how our resu
on the pion dispersion relation follow from there. Our trea
ment is similar, to some degree, to that of Ref.@4#.

A. Basic assumptions of hydrodynamics

We shall assume that, as one goes sufficiently far into
infrared, the dynamics of any interacting finite-temperatu
system can be described in terms of a finite number of fie
which will be called hydrodynamic variables. To be releva
in the infrared, the fluctuations of these fields~either thermal
fluctuations, or those due to external sources! should relax
arbitrarily slowly. This requirement eliminates most of th
degrees of freedom, which typically relax during a relaxati
time determined by the microscopic dynamics. However,
following fields are obvious hydrodynamic variables.

~i! The densities of conserved quantities, including t
energy densityT00, the momentum densityT0i , and the den-
sities of conserved global charges~i.e., the zeroth compo-
nents of conserved currents!. These fields cannot rela
quickly because of the conservation laws. A configurat
where charges fluctuate over a length scaleL much larger
than the mean free path can relax only by diffusion, wh
takes place over a time proportional toL2. The relaxation
time diverges with the wavelength of the perturbation.

~ii ! The phases of the condensates which break glo
symmetries. At zero temperature the fluctuations of su
phases correspond to Goldstone bosons, whose energy
be arbitrarily small. At finite temperature below symmet
restoration, one should also expect the long-wavelength fl
tuations of the condensate phases to relax slowly.

~iii ! Near the critical temperatures of second-order ph
transitions, the order parameters themselves~not just the
phases! should be considered hydrodynamic variables@18#.
For example, it is believed that, in QCD with two massle
flavors, the chiral phase transition is of the second ord
where thes meson becomes degenerate with the pions. N
Tc , hence,s should be included in the hydrodynamic d
scription. In contrast to the fields in the categories~i! and~ii !,
the rate of relaxation of order parameters is controlled by
1-5
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closeness ofT to Tc , but not by the wavelength o
perturbations.3

If one makes a further assumption that the fields listed
~i!–~iii ! exhaust all slowly relaxing ones, then the set of h
drodynamic degrees of freedom is completely fixed once
symmetries of the theory and the pattern of symmetry bre
ing at the given temperature are known. In this paper
shall limit ourselves to temperatures far away from any s
ond order phase transition, so order parameters are excl
from hydrodynamics. This set of hydrodynamic variables
ways contains the energy and momentum densitiesT00 and
T0i . For QCD below the chiral phase transition, one has
addition, the densities of baryon, isospin, and axial isos
charges, and the phases of the chiral condensate.

After identifying the hydrodynamic degrees of freedo
one can proceed in various ways. One can ask about
equations of motion that the hydrodynamic variables ob
For our case, it is a rather nontrivial task, because of
multitude of the fields involved. In Ref.@17#, the Poisson-
bracket technique is used to derive the dissipationless hy
dynamic equations. One finds a system of fully nonline
coupled differential equations, generalizing the equations
fluid dynamics and equations of motion of the nonline
sigma model. However, the connection of this procedure
the fundamental~microscopic! field theory has not been
made, and the physical meaning of several temperat
dependent parameters appearing in the final equations~called
f t , f s , and f v in Ref. @17#! is not at all clear.

Alternatively, one can ask the question: What are the c
straints that hydrodynamics places on the correlation fu
tions of the hydrodynamic variables? It is clear from t
discussion above that the real-time correlators of the hyd
dynamic variables@i.e., ^O(t,x)O(0,0)&, where O is the
variable# are long range, i.e., have power-law~but not expo-
nential! falloff, at least in the timelike regimet→`, x
5fixed.4 It is less trivial to decide about the correlators
the operators not belonging to the set of hydrodynamic v
ables. To this end, the following additional assumption
made.

~iv! All local operators can be expressed as local functi
of the hydrodynamic operators and theirspatial derivatives,
up to corrections which have short-ranged correlations
go to zero exponentially when either temporal or spa
separation goes to infinity (t or x→`). ~These short-range
parts correspond to the ‘‘noises’’ in the hydrodynam
theory.!

Physically, these assumptions mean that the dynamic
the infrared can be described in terms of hydrodynamic v
ables only, and is equivalent to the assumption of local th
modynamic equilibrium: The values of all variables are d
termined by specifying a few. The assumptions~i!–~iv! form

3We shall not consider the possibility of Abelian gauge fields
the Coulomb phase~as opposed to the Higgs phase! present in
magnetohydrodynamics.

4The hydrodynamic correlators are not required to have pow
law decay in the regimet5fixed, x→`.
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the starting point of our construction of the hydrodynam
equations.

B. Linearized hydrodynamics for soft pions

To be less abstract, let us consider QCD in the chiral lim
at a finite temperature below the chiral phase transitions,
zero chemical potentials. The hydrodynamic operators
the energy densityT00, the momentum densityT0i , the
baryon densityc̄g0c, the densities of vector and axial iso
pin charges,

V0
a5c̄g0

ta

2
c, A0

a5c̄g0g5
ta

2
c, ~4.1!

and the pion field, defined as Eq.~2.6!,

wa5
i c̄g5tac

^c̄c&
. ~4.2!

As we shall see below, tolinear order the dynamics ofA0
a

andwa is decoupled from other modes.
Let us consider the equation forA0

a . Infinitesimally close
to the chiral limit, we can derive from the QCD Lagrangia
the familiar PCAC relation:

]mAam5mq^c̄c&wa. ~4.3!

The left hand side contains, in addition toA0
a , the spatial

components of the axial currentAai, which are not hydrody-
namic variables. According to the assumption~iv!, we can
expressAai as local functions of the hydrodynamic operato
and their spatial derivatives, plus a short-ranged part. If
work to leading order in the power of the fields~which
means the linear order!, the only ones suitable arewa and
A0

a , which are parity odd and isovectors. The spatial index
Aai forces one to have at least one spatial derivative. Thus
leading orders in fields and derivatives, the only terms c
sistent with symmetries are

Aai52 f 2] iw
a2D] iA0

a2jai, ~4.4!

where f 2 and D are coefficients depending on the tempe
ture, andj i

a is the short-range~‘‘noise’’ ! part ofAai. ~At this
step, we have not yet relatedf 2 to the static correlation func
tions. We will do it later on.! Equation~4.3! now takes the
form

]0A0
a5 f 2¹2wa1mq^c̄c&wa1D¹2A0

a1] ij
ai. ~4.5!

The parameterD can be interpreted as the diffusion coef
cient for A0

a ; however, Eq.~4.7a! is more complex than a
diffusion equation. Now let us discuss the equation forwa.
The time derivative ofwa, not being a hydrodynamic opera
tor, can be expanded as

]0wa5
1

x
A0

a2k18w
a1k2¹2wa1ha, ~4.6!r-
1-6
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where x, k18 , and k2 are again coefficients dependent
temperature, andh is a short-range noise. We have kept t
term with the second derivative ofwa as well as the term
with no derivative. The reason for doing so is thatk18 is
suppressed by the quark masses. Indeed, in the chiral
the state with^wa&5” 0, ^A0

a&50 can be another vacuum
which stays unchanged with time. This is consistent with
~4.7b! only if k1850 in this limit, thus at small quark masse
k18 is small. For this reason we keep the¹2wa term.

Introducing the parameterm2 defined so thatf 2m25

2mq^c̄c& ~which we still have to relate to static correla
tors!, andk1 so thatk185k1m2, Eqs.~4.5! and ~4.6! can be
written as

]0A0
a5 f 2~¹22m2!wa1D¹2A0

a1] ij
ai, ~4.7a!

]0wa5
1

x
A0

a1~k2¹22k1m2!wa1ha. ~4.7b!

Equations~4.7! are the linearized hydrodynamic equ
tions governing the evolution ofA0

a andwa. The correlation
functions ofA0

a andwa can be found if one knows the cor
elators of the ‘‘noises’’jai and ha. By construction, these
fields have only short-range correlations, so, if one is in
ested only in the dynamics at large distance and time sca
these correlations can be replaced by delta functions. Iso
symmetry and rotational invariance require the correlator
be of the following forms:

^jai~x!jb j~y!&5Fjd
abd i j d4~x2y!, ~4.8a!

^ha~x!hb~y!&5Fhdabd4~x2y!, ~4.8b!

^jai~x!hb~y!&50. ~4.8c!

up to corrections proportional to derivatives ofd4(x2y)
which will be neglected since they are of higher order
momentum. Equations~4.7! and ~4.8! completely determine
the hydrodynamics of soft pions, to the linearized order.

C. Relation to static correlators

Our next task is to relate, as much as possible, the par
eters appearing in Eqs.~4.7! and ~4.8! with the equal-time
correlators ofA0

a andwa.
First, we multiply Eq.~4.7b! by Ab, taken at the same

time moment, and integrate over space. One finds

E dx^ẇa~ t,x!A0
b~ t,0!&5E dxF1

x
^A0

a~ t,x!A0
b~ t,0!&

2k1m2^wa~ t,x!A0
b~ t,0!&

1^ha~ t,x!A0
b~ t,0!&G . ~4.9!

In the right hand side, the second term is proportional tom2,
which is small in the chiral limit, and hence can be n
glected. The last term in the integrand will be shown later
vanish,
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^ha~ t,x!A0
b~ t,0!&50. ~4.10!

Equation ~4.10! is trivial if understood as ^ha(t
1«,x)A0

b(t,0)&50: A0
b cannot be correlated with the nois

h in the future. What is somewhat less trivial~and will be
checkeda posteriori! is that ^ha(t2«,x)A0

b(t,0)& also van-
ishes: the equal-time correlator ofh andA0 does not depend
on how the equal-time limit is taken. Therefore, only the fi
term survives; and by definition ofx I5 it is equal to

E dx
1

x
^A0

a~ t,x!A0
b~ t,0!&5

Tx I5

x
. ~4.11!

On the other hand, the left hand side of Eq.~4.9! can be
computed explicitly. To this end, we write

^ẇa~x!A0
b~0!&5 iTr $e2bH@H,wa~x!#A0

b~0!% ~4.12!

~we drop the time variablet which is an argument of al
operators!. We now make use of the following expansion:

@e2bH,wa#52be2bH@H,wa#

2
b2

2
e2bH

†H,@H,wa#‡1•••. ~4.13!

The expansion parameter here isbq0[q0 /T whereq0 is the
frequency of variation ofwa. Since we are dealing with the
low-frequency modes inwa, we can ignore all terms beyon
the first in Eq.~4.13!. Equation~4.12! now becomes

^ẇa~x!A0
b~0!&52 iT Tr $@e2bH,wa~x!#A0

b~0!%

52 iT^@wa~x!,A0
b~0!#&5Tdabd3~x!.

~4.14!

In the last transformation, we make use of the commutat
relation

@wa~x!,A0
b~0!#5 idabd3~x!

c̄c

^c̄c&
. ~4.15!

Comparing to Eq.~4.11!, we find

x5x I5 . ~4.16!

Thus, we show thatx is the axial isospin susceptibility of th
system, which is a static quantity. The proof we have j
presented is similar to that of the equipartition theorem
statistical mechanics.

Analogously, we can show that

E dxe2 iq•x^Ȧ0
a~x!wb~0!&52Tdab. ~4.17!

On the other hand, from Eq.~4.7a!
1-7
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E dxe2 iq•x^Ȧ0
a~x!wb~0!&

52 f 2~q21m2!E dxe2 iq•x^wa~x!wb~0!&

2Dq2E dxe2 iq•x^A0
a~x!wb~0!&, ~4.18!

where we dropped the term proportional to

^] ij i
a~ t,x!wb~ t,0!& ~4.19!

as it will be shown to vanish in the same manner as^haA0
b&

in Eq. ~4.9!. Moreover,Dq2^A0
awb& can be neglected com

pared to^Ȧ0
awb&;q0^A0

awb&, since we expect the pion t
have a linear dispersion relation and, for small enough m
menta,q0@Dq2. Equating Eqs.~4.17! and ~4.18!, we find
that equal-time correlators of the pion field must have
form of a Yukawa potential,

E dxe2 iq•x^wa~x!wb~0!&5
T

f 2

dab

q21m2
. ~4.20!

Thus, the parametersf 2 andm2 appearing in Eq.~4.7a! are
the same ones defined in Eq.~2.9! via the equal-time cor-
relator ofwa.

The parametersD, k1 , k2 , Fj , and Fh cannot be ex-
pressed individually in terms of the equal-time correlato
but some relations between them will be derived below.

D. Hydrodynamic correlation functions

From Eqs.~4.7! and ~4.8! one can easily compute th
real-time correlators ofA0

a andwa:

E d4xeiq•x^A0
a~x!A0

b~0!&

5dab
q0

2q2Fj1x I5
2 vq

4Fh

F ~q02vq!
21

1

4
Gq

2GF ~q01vq!
21

1

4
Gq

2G ,

~4.21a!

E d4xeiq•x^wa~x!wb~0!&

5dab
x I5

22q2Fj1q0
2Fh

F ~q02vq!
21

1

4
Gq

2GF ~q01vq!
21

1

4
Gq

2G ,

~4.21b!

where

vq
25

f 2

x I5
~q21m2!, ~4.22a!

Gq5k1m21~D1k2!q2. ~4.22b!
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The correlation functions~4.21! peak aroundq0'6vq , and
the width of the peaksGq is much smaller thanvq at smallq.
The correlators have poles corresponding to the pion col
tive excitations with the dispersion relationq05vq
2( i /2)Gq . We note, moreover, that all parameters enter
the real part of the dispersion relation~4.22a! can be deter-
mined from the static correlation functions.

It is now possible to explicitly check that the noise-fie
correlators appearing in Eqs.~4.10! and ~4.19! vanish. In-
deed, by using Eqs.~4.7! and ~4.8! we find

^h~ t,x!A0~ t8,0!&5dabE d4q

~2p!4e2 iq0(t2t8)1 iq•x

3
x I5vq

2Fh

q0
22vq

21 iq0Gq

, ~4.23a!

^] ij i~ t,x!w~ t8,0!&52dabE d4q

~2p!4e2 iq0(t2t8)1 iq•x

3
x I5

21q2Fj

q0
22vq

21 iq0Gq

. ~4.23b!

The integrands in Eqs.~4.23! have two poles, both located i
the upper half plane:q056vq1( i /2)Gq . Whent.t8, when
taking integrals overq0, one can close the contour in th
lower half plane, so the integrals are obviously zero, wh
corresponds to our previous remark that the fields can
correlate with the noises in the future. If one takest→t8
from below, the integrals are also zero since they are equ
the sums of the residues of the integrands~which are zero
because these functions behave asq0

22 at largeq0.! There-
fore, we have checked that the equal-time noise-field corr
tors ~4.10! and ~4.19! indeed vanish.

One can find the relations between the amplitude of
noise correlators,Fj andFh , and the parameters characte
izing the damping in Eq.~4.22b!. One integrates Eqs.~4.21!
over q0 and obtains the equal-time correlation functions

E dxe2 iq•x^A0
a~ t,x!A0

b~ t,0!&5dab
q2Fj1x I5

2 vq
2Fh

2Gq
,

~4.24a!

E dxe2 iq•x^wa~ t,x!wb~ t,0!&5dab
q2Fj1x I5

2 vq
2Fh

2x I5
2 vq

2Gq

.

~4.24b!

Comparing these correlators with Eqs.~2.8! and~2.9!, taking
into account Eqs.~4.22!, one finds

Fj52Tx I5~D1k22k1!, ~4.25a!

Fh5
2Tk1

f 2 . ~4.25b!

Our results for the hydrodynamic correlations functions
given by Eqs.~4.21! and ~4.25!. For completeness, we giv
here also the result for the cross correlator ofwa andA0

a :
1-8
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E d4xeiq•x^wa~x!A0
b~0!&

5
2iTq0Gq

F ~q02vq!
21

1

4
Gq

2GF ~q01vq!
21

1

4
Gq

2G .

~4.26!

It is instructive to compare the correlator of the axial iso
pin charge densityA0

a @Eq. ~4.21a!# with that of the vector
isospin charge densityV0

a . The dynamics of the latter is
completely diffusive and is given by the equations

]0V0
a2DI¹

2V0
a5] iz

ai, ~4.27a!

^zai~x!zb j~0!&52TDIx Id
abd i j d4~x!, ~4.27b!

whereDI is the diffusion constant for the isospin charge, a
x I is the ~vector! isospin susceptibility. The correlator ofV0

a

is

E d4xeiq•x^V0
a~x!V0

b~0!&5
2TDIx Iq

2

q0
21DI

2q4
. ~4.28!

The pole of the correlator is located at purely imaginary f
quenciesq056 iD Iq

2, as it should be for a purely diffusive
mode.

Using Eqs.~4.28! and~4.24! we can understand the limi
tations of the Lagrangian approach and the role of the di
pative processes. For example, one could try to apply
method of Sec. III to determine the vector isospin susce
bility x I , introducing an isospin chemical potentialm I . At
zero temperature such a method was used in Ref.@11#. As
expected, the isospin susceptibilityx I vanishes atT50 since
it takes finite energy to excite isospin degrees of freed
~pions! and change the isospin density. However, atnonzero
temperature, the naive application of the effective Lagra
ian method would predict thatx I50 also.5 On the other
hand, we should expectx I5” 0 at finite temperature, even a
very small T, because of the presence of isospin-carry
pions in the thermal medium. Looking at the correla
~4.28!, one sees that the equal-time correlator definingx I ,
being the integral of Eq.~4.28! over q0 in the limit q→0,
receives the main contribution from very slow~diffusive!
modes:q0;DIq

2. However, the effective Lagrangian~3.5!
only describes faster~propagating! modes of thew field with
q05vq@DIq

2. The slow diffusive modes which contribut
to x I are not present in the Lagrangian~3.5!. For the axial
isospin susceptibilityx I5, the situation is different, for the
integral of Eq.~4.28! over frequencies in the limitq→0 is
concentrated entirely near valuesq056vq . Thus, unlike
x I , the value ofx I5 at finite T can be found correctly using
the effective Lagrangian approach.

5We thank T. Scha¨fer for pointing this out to us.
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E. Comparison to previous results

As a by-product of our analysis, we obtain a generali
tion of the Gell-Mann–Oakes–Renner relation to finite te
perature:

f 2m252mq^c̄c&. ~4.29!

This equation has the same form as at zero temperature
finite temperature,m should be understood as the pio
screening mass, and the exact meaning of the tempera
dependent ‘‘pion decay constant’’f 2 is given by Eq.~4.20!.
One can also write the GOR relation in an alternative for

x I5mp
252mq^c̄c&, ~4.30!

wheremp5um is the ‘‘pole mass’’ of pions.
That the velocity of pions at finite temperature is differe

from the velocity of light has been seen in the second or
of chiral perturbation theory~i.e., in orderT4/ f p

4 ) @19,20#.
The authors of Ref.@19# also introduced two pion deca
constantsf t and f s, which correspond to ourAx I5 andf, and
checked the validity of the GOR relation~4.30!. However,
these constants were defined only in chiral perturbat
theory, and only at smallT; there has not been any attempt
give a precise definition of the constantsf t and f s at tem-
peratures comparable toTc . We have, in contrast, given
precise meaning to the constantsx I5 andf in terms of equal-
time correlation functions that can be measured on the
tice. The GOR relation now contains only well-defined qua
tities. Although Eq.~4.30! cannot be checked on the lattic
since it contains the pionpolemass, the version~4.29! can be
verified numerically since all quantities entering it are sta
cally measurable.

We also note that Eqs.~4.7!, without the noise and dissi
pation terms, can be obtained by linearizing the hydro
namic equations obtained in Ref.@17# by the Poisson-bracke
technique. One can then identify the parametersf t and f s in
Ref. @17# as f t

25x I5 , f s
25 f 2 ~the parameterf v

2 of Ref. @17#!
is equal to the vector isospin susceptibility!. We did not try to
reproduce the full nonlinear hydrodynamic equation of R
@17# in the present approach.

V. AN EXPLICIT EXAMPLE: A LINEAR SIGMA MODEL

It is instructive to explicitly verify our relation~2.2! be-
tween the velocity of the Goldstone bosons, the axial isos
susceptibility, and the temperature-dependent decay con
in a model where weak-coupling calculations are possib
The simplest theory with spontaneous breaking of a conti
ous symmetry is the linear sigma model. We shall show t
Eq. ~2.2! indeed holds in this model to leading order of pe
turbation theory.

It is important to emphasize that the sigma model cons
ered in this section is only meant to serve as an example
theory where we can explicitly check our results by pert
bative calculations. These models do not describe QCDT
of orderTc—a theory with no apparent small parameter. W
claim, however, that the connection between the dispers
relation of the pions and static correlation functions is mo
1-9



er

,

p

.
en

f
s

-

r

we

oson
hs,

the
u-
an

D. T. SON AND M. A. STEPHANOV PHYSICAL REVIEW D66, 076011 ~2002!
independent, and can be derived from only a few gen
assumptions stated in Sec. IV.

We start with the following Lagrangian

L5
1

2
]mfa]mfa1

m2

2
fafa2

l

4
~fafa!2, ~5.1!

where a51,2, . . . ,N. We assumel!1, so perturbation
theory can be applied. Whenm2.0, theO(N) symmetry is
spontaneously broken at zero temperature. We choose
vacuum to align in thefN direction. At zero temperature
and at tree level, the vacuum expectation value offN is

^fN&[v05
m2

l
. ~5.2!

At finite temperature the expectation value offN is different
from v0. Denoting it asv and replacingfN5v1s in the
Lagrangian~5.1!, we obtain

L5
1

2
~]ms!21

1

2
~]mp!22~lv22m2!vs

2
1

2
~3lv22m2!s22

1

2
~lv22m2!p22lvs32lvsp2

2
l

4
s42

l

4
~p2!22

l

2
s2p2, ~5.3!

wherep5(f1,f2, . . . ,fN21). From Eq.~5.3! the Feynman
rules can be easily written down.

The value ofv is determined by the condition that^s&
50. For computation, we will use the Matsubara~Euclid-
ean! formalism, in which this condition reads, to one-loo
order,

~lv22m2!v1lvT(
p0

E dp

~2p!3 S 3

P21ms
21

N21

P2 D 50.

~5.4!

In this section,P25p0
21p2, p5upu. The sum integral in Eq

~5.4! is ultraviolet divergent. This temperature-independ
divergence can be absorbed into the redefinition ofm2. The
temperature dependence ofv comes from the thermal part o
the Lagrangian. We shall be interested in temperature
orderv0, soT@ms . In this case,

lv22m21
N12

12
lT250, ~5.5!

or

v2~T!5v0
2S 12

T2

Tc
2D with Tc

25
12

N12

m2

l
. ~5.6!

Equation~5.6! is valid everywhere except for a narrow Gin
zburg region nearTc .

The masses ofs andp are computed, e.g., in Ref.@21#.
At the one-loop levelms receives contributions from fou
diagrams
07601
al

the

t

of

~where s propagators are denoted by solid lines, andp
propagators are drawn as dashed lines!. The last two bubble
diagrams are negligible in the finite-temperature regime
consider, so

ms
253lv22m21lvT(

p0

E dp

~2p!3 S 3

P21ms
2 1

N21

P2 D
52lv2, ~5.7!

and thus decreases with temperature. The Goldstone b
receives corrections to its mass from three one-loop grap

and remains massless since

mp
2 5lv2m22m21lvT(

p0

E dp

~2p!3 S 1

P21ms
2 1

N21

P2 D
24l2v2T(

p0

E dp

~2p!3

1

P2~P21ms
2 !

50. ~5.8!

To find the dispersion relation of the pion nearq50, one
has to expand the pion self-energyS(q) in powers ofq0 and
q. The only one-loop diagram that depends onq is the
bubble diagram, which can be evaluated either by using
Schwinger-Keldysh real-time formalism, or by doing calc
lations in the Matsubara formalism and then performing
analytic continuation from imaginary to realq0. By either
method one finds

S~q!524l2v2E dp

~2p!32vp1q2Vp

3H @ f ~vp1q!1 f ~Vp!11#S 1

Vp1vp1q2q0

1
1

Vp1vp1q1q0
D1@ f ~vp1q!2 f ~Vp!#

3S 1

Vp2vp1q2q0
1

1

Vp2vp1q1q0
D J , ~5.9!

wherevp andVp are the energies of thep ands particles
with momentump: vp5p, Vp5(p21ms

2)1/2; and f (v) is
the Bose-Einstein distribution functionf (v)5(ebv21)21.

We need to compute the coefficients ofq0
2 andq2 in the

expansion ofS(Q). To compute the coefficient ofq2, one
can setq050 and Eq.~5.9! becomes
1-10
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S~0,q!54l2v2E dp

~2p!3

1

Vp
22vp1q

2

3F f ~Vp!1
1

2

Vp
2

f ~vp1q!1
1

2

vp1q

G . ~5.10!

The right hand side of Eq.~5.10! can be expanded in power
of q. The constant is compensated by the other diagrams.
q2 term gives rise to an integral which is dominated in t
infrared regionp;ms , and is of order

S~0,q!;
l2v2T

ms
3 q25O~l1/2!q21•••. ~5.11!

In the last equation we assumedT;v0, andms
2;lT, which

is valid whenT is not very close toTc .
Now let us putq50 and expand inq0. Since the constan

term is canceled out by other diagrams, one has to look o
at terms of orderq0

2. One finds

S~q0 ,0!528l2v2q0
2E dp

~2p!32vp2Vp

3F f ~vp!1 f ~Vp!11

~Vp1vp!
3

1
f ~vp!2 f ~Vp!

~Vp2vp!
3 G .

~5.12!

The first term in the square brackets gives rise to an inte
that is dominated by the infrared, i.e., byp;ms , and so is
completely analogous to the coefficient ofp2 above. The
coefficient ofq0

2 coming from the first term is hence of orde
O(l1/2). In contrast, the integral of the second term in t
square brackets is dominated byp;T. For suchp one can
write, approximately,

Vp2vp5
ms

2

2p
, f ~vp!2 f ~Vp!52

ms
2

2p

]n~p!

]p
,

~5.13!

which gives

S~q0 ,0!5
8l2v2

ms
4 q0

2E dp

~2p!3

] f ~p!

]p

52
4l2v2

3ms
4 T2q0

2 . ~5.14!

Substitutingms
252lv2, we finally find

S~q0 ,q!52
T2

3v2 q0
2 . ~5.15!

SinceT andv are both of orderv0, the coefficient in front of
q0

2 is of orderO(l0), in contrast to that ofq2. The velocity
of pions in our model is
07601
he

ly

al

u25S 11
T2

3v2D 21

, T@ms . ~5.16!

It is instructive to compare this result to the one obtained
the framework of the chiral perturbation theory:u51
2O(T4/ f p

4 ) @19,20#. One should bear in mind that the re
gime in which the chiral perturbation theory result appli
corresponds toT!ms . In our linear sigma model we con
sider a different regime:T;v@ms;Alv. In the chiral per-
turbation theoryT/ f p serves as an expansion parameter.
our weak-coupling calculation the expansion is inl while
the T dependence is included to all orders inT/v.

Now we need to check that this coincides withf 2/x I5.
Recall that our definition off 2 is as follows: if we define
wa5pa/v, then

E dxe2 iq•x^wa~ t,x!wb~ t,0!&5
T

f 2

dab

q2
. ~5.17!

The left hand side is proportional to thep Matsubara propa-
gator, summed overq0,

T

v2 (
q0

1

q0
21q2

. ~5.18!

When uqu!T the dominant term in the sum is the one wi
q050; therefore,

f 25v2. ~5.19!

Taking into account one-loop graphs, as we have seen,
changef 2 only by an amount of orderO(l1/2).

Now to compute the susceptibilityx I5 we need to turn on
a chemical potential coupled to a broken charge. There
N21 broken generators. Let us consider the one that tra
formss andp1 into each other. The change of the Lagran
ian when the corresponding chemical potential is turned o

dL5m~p1]0s2s]0p1!1
m2

2
@~v1s!21p1

2#.

~5.20!

The susceptibility can be computed in Matsubara form
ism. There are two contributions: one from them2 term in
dL, the other from the bubble graph:

x I55v212T(
p0

E dp

~2p!3

1

p0
21p2

24T(
p0

E dp

~2p!3

p0
2

~p0
21p2!2

5v21
1

2TE dp

~2p!3
sinh22

p

2T
5v21

T2

3
. ~5.21!

The interpretation of this formula is rather direct:v2 is the
contribution of the condensate, andT2/3 is the contribution
from the free gas ofs andp1. The square of the velocity o
1-11
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pions, Eq.~5.16!, is equal to the ratio off 2 in Eq. ~5.19! and
x I5 in Eq. ~5.21!, which is what we need to verify. We di
not, however, attempted to turn on an explicit symme
breaking and verify, e.g., the GOR relation at finite tempe
ture. Such a calculation should be straightforward.

VI. CONCLUSION

Our goal has been to demonstrate that the dispersion
lation of pions can be expressed in terms of quantities
tainable from equal-time or static correlation functions. T
precise relation is given in Sec. II. Our result enables one
find the real part of the pion dispersion relation on the latti
However, it does not enable one to compute the imagin
part, which characterizes the damping of pion modes.

Nowhere in our treatment did we assume any condit
on the temperature~exceptT,Tc), as long as we stay infini
tesimally close to the chiral limit. Thus, ifmq is infinitesi-
mally small, our result applies to all temperatures sma
than the temperature of the chiral phase transitionTc . How-
ever, at any fixed~small! value of mq , our results do not
apply at temperatures too close to critical, where the p
screening mass becomes of the same order as the scre
mass of the sigma meson. The width of this region nearTc

shrinks to zero as a power ofmq ~more precisely, asmq
1/bd).

Our treatment must fail there because, as explained in
IV, the sigma boson also needs to be included into the
drodynamic theory. However, the scaling of different qua
tities in this temperature region can be determined us
scaling and universality arguments, as discussed in Ref.@9#.
In the Appendix of the present paper we derive some a
tional interesting scaling properties omitted in Ref.@9#.

Finally, assumingmq to be very small, asT→Tc , the
chiral condensatêc̄c&→0. As shown in Ref.@9#, this im-
plies that alsof→0 ~although with a slightly different criti-
cal exponent!. On the other hand, the axial isospin suscep
bility x I5 becomes degenerate with the~vector! isospin
susceptibility atTc , where both remains finite. One con
cludes from Eq.~2.2! that the pion velocityu tends to zero as
one approaches the critical temperature. In fact, it can
shown thatu approaches zero faster than the divergence
the screening massm, so the pion pole massmp5um goes to
zero asT→Tc @9#.
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APPENDIX: DYNAMICAL SCALING AT THE CHIRAL
TRANSITION

In this appendix we provide a simple derivation of t
dynamical critical exponentz characterizing critical slowing
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down near the QCD chiral phase transition. It is based o
scaling argument similar to the one used in Ref.@18# to find
z in antiferromagnets.

For simplicity, here we consider the chiral limitmq50.
Scaling and universality arguments presented in Ref.@9# pre-
dict that the velocityu vanishes asT approachesTc from
below. The quantityu2 scales asu2;t (d22)n, wheret[(Tc
2T)/Tc . Since the inverse correlation length of the ord
parameterc̄c, i.e., the static screening mass of the sigm
particlems , scales asms;tn, we conclude that fort!1

u2;ms
d22 . ~A1!

The fact thatu→0 at Tc means that the dispersion rela
tion ceases to be linear. Moreover, the effect of damping a
becomes important; in other words, we expect the real
imaginary parts ofv to become comparable. In such a sit
ation on cannot refer tov as a quasiparticle energy. Rather,
is a characteristic frequency, or inverse relaxation time, o
mode of a given wave numberp. Scaling hypothesis dictate
that the relation betweenp and v should be homogeneous
i.e., v;upuz. The dynamical scaling exponentz is, in a ge-
neric case, new exponent independent of the static ex
nents, e.g.,n andh. However, in the case of QCD~similar to
the case of an antiferromagnet@6,18#!, since the dispersion
relation of pions is given in terms of static quantities only,
turns out thatz, as one would expect, can be derived fro
static scaling laws only.

To determinez we observe that the dispersion relationv
;upuz applies at scalesms!upu!T. At softer scales,upu
!ms , the dispersion relation is still linear,v5uupu. Requir-
ing that the two expressions forv match atupu;ms we find

ms
z ;ums;ms

d/2 , ~A2!

where to obtain the last scaling relation we used Eq.~A1!.
Therefore, at the QCD chiral phase transition the dynam
critical exponent is given by

z5
d

2
~A3!

~see also an alternative derivation in Refs.@6,18#!.6

A similar argument can be applied to determine the sc
ing of the diffusion coefficientD85D1k2, characterizing
the pion damping in the chiral limit@Eq. ~4.22b!#. The small
momentum expansion ofv is uupu2( i /2)D8p21•••. The
scaling hypothesis dictates that all terms in this expans
become of the same order in magnitude whenupu;ms ~oth-
erwise, another scale, e.g.,u/D8, appears in addition to the
inverse correlation lengthms). This requires

D8;ms
(d24)/2;tn(d24)/2. ~A4!

Thus D8 diverges near the chiral phase transition in QC
(d53).

6This result agrees with@6,18#, but disagrees with@22#.
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