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Real-time pion propagation in finite-temperature QCD
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We argue that in QCD near the chiral limit, at all temperatures below the chiral phase transition, the
dispersion relation of soft pions can be expressed entirely in terms of three temperature-dependent quantities:
the pion screening mass, a pion decay constant, and the axial isospin susceptibility. The definitions of these
guantities are given in terms of equal-tinigatig correlation functions. Thus, all three quantities can be
determined directly by lattice methods. The precise meaning of the Gell-Mann—Oakes—Renner relation at finite
temperature is given.
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[. INTRODUCTION turbation theory are reliable. Moreover, our method, with
minimal modification, can be applied to any field theory with
Properties of hadrons at high temperatures and densities broken symmetry, at temperatures below symmetry resto-
are of great interest from both experimental and theoreticalation.
perspectives. One motivation for studying temperature ef- That the dispersion relation of a mode can be expressed
fects on hadrons comes from the suggestion that some feé&ully in terms of static correlation functions is nontrivial, but
tures of the dilepton spectrum observed in heavy-ion colli-by no means unprecedented. We recall the sound waves,
sions can be explained by the modification of masses andhose velocity isi=(dp/de)'? wherep ande are the pres-
widths of mesons by the thermal mediddl. Nevertheless, sure and the energy density, respectively. The sound speed,
reliable information on the temperature modification of had-while being a real-time quantitithe pole in the correlator of
ronic properties is still lacking. Lattice simulations, which the energy densitf %), can be determined solely from ther-
rely on the imaginary-time formulation of quantum field modynamics. The relation between the speed of sound and
theory, have serious difficulties with real-time quantities. the thermodynamic functions is an exact consequence of the
The absence of Lorentz invariance at finite temperature imexistence of the hydrodynamic description. A less familiar
plies that there is no direct relationship between real-timexample is the variational Feynman-Bijl formula which re-
characteristics of hadror$or example, the so-called “pole lates the phonon spectrum in superfluid helium to the static
masses,” which are supposedly the positions of poles irdensity-density correlation functiof8]. The example most
propagatorsand quantities that can be extracted from Eu-closely related to our problem, however, is that of spin waves
clidean propagatorge.g., the “screening masses,” which in antiferromagnet$4]: The velocity of spin waves at any
characterize the exponential falloff of static Euclidean corr-temperature below phase transition is equal to the ratio of the
elators. Thus, as a rule, lattice measurements of correlatiorstiffness and the magnetic susceptibility in a direction per-
functions at finite temperature cannot be used to draw corpendicular to magnetization. Both quantities can be defined
clusions about real-time propagation of hadrons. from the static response of the system to external fields. The
The aim of this paper is to demonstrate that pions presertanly difference between QCD and antiferromagnets is that in
an exception to this rule. We shall argue that it is possible tahe former case the symmetry is SU(XQSU(2),=0(4),
determine the dispersion relation of soft piofmore pre-  which is spontaneously broken to SU(2)O(3), while in
cisely, its real pajtat all temperatures below the chiral phaseferromagnets O(3) is broken down to O([5),6].
transition, knowing only equal-timéor statig correlation The paper is constructed as follows. In Sec. Il we sum-
functions, which, in principle, can be determined on the lat-marize the findings of the paper. In Sec. Ill we use simple,
tice. It should be emphasized that we do not assume thieut nonrigorous, arguments relying on an effective Lagrang-
temperaturd to be small compared to the chiral phase tran-ian to understand these results. In Sec. IV the results are
sition temperaturel,: we must havelT<T., but T/T. is  derived in a more rigorous way from a set of assumptions
allowed to be of order 1. Our results are valid in the non-about the real-time correlation functions, which comes from
trivial regime where neither perturbative QCD nor chiral per-hydrodynamics. In Sec. V we show that our result holds for
the simplest field-theoretical model of a scalar field theory
with broken symmetry. In the Appendix we give a simple

*Electronic address: son@phys.washington.edu derivation of the known result about the dynamical critical
"Electronic address: misha@uic.edu exponentz, and derive the critical scaling of a diffusion co-
1Some progress, however, may have been made red@itly efficient.
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Il. SUMMARY OF RESULTS Equation(2.5) is supposed to be valid wheég|<m,., where
We claim that, in QCD with two light flavors, at tempera- m‘éslzr:he (temperature-dependgricreening mass of the

tures below the chiral phase transition, the real part of the
dispersion relation of sufficiently soft pions is given by the
following equation:

The waym enters Eq(2.5) explains why we term it the
pion screening mass. As far &d$s concerned, the conven-
tional definition of the pion decay constant.p,
=(0|A,|m(p)), cannot be used at finite temperature, since
neither the vacuum stat@) nor the one-pion stater) al-

In this paper the following terminology is usedis the pion ~ 10WS generalization in thermal media. Botfxs andf ap- _
velocity (although, strictly speaking, it is the pion velocity Proachf, asT—0, so both can be viewed as the generali-
only whenm=0), andm is the pionscreening masgwe zation of f _ to finite temperature. We, however, reserve the

shall show that it is the same screening mass as defined gifMe “pion decay constant” for the quantitylefined in Eq.

the lattice. The energy of a pion gi=0, m,=umis called (2.5).2 In contrast to the susceptibility,s, f cannot be de-
the pionpole mass P fined at temperatures above critical.

At finite temperature, the meaning of soft pions may need_ Ve shall also show that the Gell-Mann-Oakes—Renner
some clarification. We shall understand E2.1) as a state- (GOR) relation can be generalized to flmte temperature, and
ment that the correlators of operators carrying pion quanturd©€S in fact become two separate relations for the screening
numbers have a pole at the frequency with the real part de2nd Pole masses of the pions,
termined by Eq(2.1).

wi=u?(p?+m?). (2.1

The pion velocityu is the ratio of two statically measur- f2m2=X|5m§= —mq<Z¢>. (2.7
able quantities, théemperature-dependempion decay con-
stant £ and theaxial isospin susceptibility;s, For simplicity, in this paper we assurme,=mg=m,.
(2 Equation(2.2) is the direct analogue of a similar equation
ul=— (2.2) for the velocity of spin waves in a quantum antiferromagnet
X5 at temperatures below the phase transifibh The counter-

o _ o _ part off is the stiffnesgdenoted ag, in Ref.[4]), while x5
The axial isospin susceptibility,s can be defined as the is similar to the magnetic susceptibility in a direction perpen-
second derivative of the pressure with respect to the axiadicular to magnetization.

isospin chemical potentigbee Sec. Il. Equivalently, it can An important point we wish to emphasize is that the re-
be defined via the statiEuclideancorrelator of the axial |ations(2.1)—(2.7) are exact in the chiral limit, i.e., the limit
isospin charge densities, when m_ (vacuum pion magsand p are infinitesimally

o small, at any temperature in the interval from O0Ttp. Al-
52b :f d fd AZ(7 x)AR(0.0)), 23 though the methods we use to derlve them'may look swmlar
A1 0 7] dXAG(TX)A0.0) @3 to chiral perturbation theory, unlike the chiral perturbation
theory, we do not consider perturbations aroumg=0, T

where =0, treating bothm_ andT as small parameters. Rather, we
consider perturbations aroumd,.=0 at a fixedT, the latter
a_— o 573 not assumed to be small. Therefore, unlike in chiral pertur-
Ao=dy'y E‘/’v (2.4 bation theory, we are not able to calculate the temperature

dependence of parameters suchyad, u, or ¢¢y. However,

i is the quark fielda,b=1,2,3, 7 are isospin Pauli matri- we are able to show that their temperature dependence must
ces, Trr*r°=26%", and(---) denotes thermal averaging, be such that relation®.1)—(2.7) hold.
which can be taken by evaluating a Euclidean Feynman path Given these equations, exact in the chiral limit, it is legiti-
integral with appropriate boundary conditions. The quantitymate to ask how useful these relations can be at the physical
x5 has been considered previou$kj. value of the pion mass,=140 MeV. To answer this ques-

The pion decay constafitand the screening masscan  tion quantitatively, dperhaps latticecalculation of theT and
be determined from the static Euclidean pion correlators am,. dependence is needed, which is beyond the scope of this

small momenta, which are predicted to have the form paper. However, we shall attempt to give a semiquantitative
answer to this question.
T . 1 b It is easier to begin witi=0. In this case formul&2.1)
dr | dxe "9 o3(7,x)¢°(0,0)) = ——, becomes trivial: The dispersion relation is exact, simply by
0 f 2+ m2 . . . .
a Lorentz invariance, for ang andm=m_.. It is a straightfor-

(2.9 ward exercise to show, using PCA@artial conservation of
axial vector current that to leading order, i.e®(m?2), the

where th lar fielgh? i fin . .
ere the scalar fielg™ is defined as correlator in Eq(2.3) whose value ain_=0 is x5, does not

a

5. a
o= WYY 2.6

(Ew) . 2sSee Sec. IVE for a discussion related to this point.
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depend orm,,. Thus one can expect that measuring the cor- Note that, in contrast to Eq$2.3) and (2.5), Egs. (2.8
relator(2.3) even at the physicah,, (or higher, as is typical and(2.9) require an additional conditiofi>m_.. This con-

in a lattice calculation due to the high price of simulating dition is, however, not so dramatic, if one recalls that the
with light quark massesis not significantly different from relavant energy scale of ordéris the lowest nonzero Mat-
xi5- In order to extract the value dffrom the relation(2.5) subara frequency, 2T. Thus, in practice, one requires
reliably, one requires that higher mass states in the chann@kT>m_, which is satisfied reasonably well farof order
with pion quantum numbers do not significantly contaminateT ;~160 MeV and the physical pion mass.

the exponential falloff of the correlator in coordinate space. However, a much stronger condition is required for the
Since the masses of such states are typically above 1 Ge¥pplicability of the hydrodynamic descriptiofp| (andm.,)

the exponential tail contribution from the light state of massmust be smaller than the typical collision rate®~T%/f%
m,=140 MeV should be easy to separate. (according to Ref[14]). At small T<f_ this condition is

At nonzeroT the region of applicability of Eq(2.2) is  much stronger than the conditions that are required for the
limited by terms of higher powers in For simplicity, in the  effective Lagrangian derivation to holéypically |p|,m,,
exact chiral limitm_=0 the dispersion relation takes the <m,—see Sec. |). However, both derivations apply in the
form w=|p|—(i/2)D'p?*+ - - -, whereD’ is a temperature- required regime infinitesimally close to the chiral limit. The
dependent parametésee Sec. IV and the AppendixThe fact that the hydrodynamic derivation has a smaller validity
condition on momenta which is required to neglect nonlin-range, however, does not mean that the result is not valid
earity in the dispersion relation |p|<1/D’. Calculation of  outside this range. As an example, consider the casé of
the diffusion constanD’ is a challenging task. Taking an =0, where the result€.1),(2.2) hold trivially, while hydro-
estimate from Ref[8], D'=CT%fZ, with a numerically dynamics does not apply at all. A less trivial example is
rather smallC~0.1, we can conclude that even fbr-f at  presented in Sec. V, where explicit calculation verifies Eq.
momenta of ordefp|~100 MeV the nonlinearity in the dis- (2.2). This weak-coupling calculation, however, does not re-
persion relation is still small. quire any notion of hydrodynamics.

As T=T, the dispersion relation is essentially nonlinear, The advantage of the hydrodynamic approach is that it
which manifests itself in the divergencedf asT—T. (see allows us to consider properly the effects of the dissipation,
the Appendiy. As T— T, the maximum momentum at which which are inherently beyond the Lagrangian approach. Be-
the dispersion relation can be considered lin@athe chiral  fore proceeding to the new operator derivati®ec. IV) we
limit) decreases and vanishes Tt. Although the power review the derivation based on the effective Lagrangian ap-
with which the width of the linearity window shrinks to zero proach.
can be determinetby extension of arguments given in the
Appendix, the preexponent is unknown, and a nonperturba-
tive calculation is, in principle, required to determine quan-
titatively the size of the nonlinearity in the dispersion rela- A. Axial isospin susceptibility andf , at T=0
tion at a givenT and |p|. Such a calculation is beyond the
scope of the paper.

Equations(2.1)—(2.7) were used in Ref.9] to extract in-
formation about the critical behavior of the pion velocity and
masses near the critical temperature. A brief derivation o
Eqgs.(2.1)—(2.7) was also sketched in R€0]. We present a
more extended version of this derivation in Sec. Ill. _ _ _ 3

In Sec. IV we provide a new derivation of the relations Lauarc=17*D b= Mgpp+ msyoys - 3.1
(2.1)—(2.7) using the operator approach based on hydrody-
namic equations. For this purpose we shall need expressions . . o i i
for x;5 andf in terms of equal-time rather than statiero where D, is the color covariant derivative. This chemical
frequency correlators. These relations follow from defini- Potential s is coupled to the axial isospin chardg [cf.
tions (2.3 and (2.5) in the exact chiral limit (n,=0) or  Ed. (2.4)], which generates the SU(R)part of the SU(2)

when the temperature is high enoughs{m..): X SU(2)a chiral symmetry.
The response of the QCD vacuum igs can be found

) 1 ) from the effective chiral Lagrangian. The latter, to lowest
o® X|5=ff dx(A§(t,x)As(t,0)). (2.8)  order of momenta, masses, and chemical potential, is com-
pletely fixed by the chiral symmetries and is given by

lll. EFFECTIVE LAGRANGIAN APPROACH

Since an important role in our analysis is played by the
axial isospin susceptibility, we first consider this quantity at
zero temperature and its relation to the pion decay constant.

he quark part of the QCD Lagrangian at finite axial isospin
hemical potentiak,s is given by

In the chiral limit, the equality of the static correlatdgq.
(2.3] and the equal-time correlat¢Eq. (2.8)] of Aj is a
consequence of the conservation of the axial isospin charge.
Similarly,

f2 2.2
ﬁeﬁ:fTrvvzvyzu T

Re Tr, (3.2

. 1 g where 2, is an SU(2) matrix whose phases describe the
Z | dxe 1M oAt x)P(t,0)) = ——— . (2.9  Pions,S=e""""x andV denotes the covariant derivative,
Tf (@A(tx)@7(1.0)) 2 2+ m? 29 which is defined as
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i perturbation theory can be usgt3,14). We furthermore as-
Vo2 =002 — s ms(ms2+375), ViZ=0%, =123, sume that this Lagrangian is local and can be expanded in
3.3 powers of momenta. To lowest order, the Lagrangian is fixed
by symmetries up to three coefficienfs, f, andm,

At u5=0, the Lagrangian3.2) is the standard chiral La- (2 2

grangian with two phenomenologically de_termlned constants Eeﬁ=—tTr VOEVOE*——STr 0303
f.andm,_. The wayu,s enters the effective description is 4 4

completely fixed by symmetries to lowest order. This can be 2g2

seen by promoting the SU(Z)symmetry to a local symme- + ‘Re Tr3. (3.5
try and treatingu,s as the time component of the SU(R) 2

vector potentia[10]. , ) ) ,

The Lagrangian(3.2) and its derivation is analogous to Due to the lack of Lorentz myanancéf, andf_S are indepen-
the case of the effective Lagrangian at firwectoy isospin ~ dent parameters. The covariant derivatNgis the same as
chemical potentiajs, considered in Ref{11]. A significant defmed in Eq.(3.3). The dispersion relation following from
difference between the cases studied here and in[R8fis  this Lagrangian has the for(2.1) where
that the QCDvacuumbreaks the SU(2y) (axial isospin f
symmetryspontaneouslybut remains symmetric under the U= —.
SU(2), (vector isospin symmetry. It is important to note, fe
however, that the SU(2)is a symmetry of the Lagrangian
(atmy=0), as good as the SU(g) In particular, the axial
isospin currenAZ is conserved in the chiral limit. Thus, it is
entirely legitimate to consider the theory at finjitgs and use
symmetry arguments to fix the,s; dependence of the effec-
tive Lagrangian.

The vacuum energy density depends nontrivially0g
already for _arbitrgrily smglplg,. (Thi§ is in contrast to the XISthZ! (3.7)
case of the isospin chemical potentigl, whereu, needs to
be larger than a threshold equalrtg, in order to change the but nowy, s is defined as the susceptibility at finite tempera-
ground statg.The isospin axial susceptibility, at;s=0, is  ture. Note that, as a susceptibility with respect to a conserved
easy to determine using the effective Lagrangi@2): charge,;s is free of ultraviolet divergences.

We now need a prescription to computgand m from

(3.6

At zero temperaturd,=f,=f_, and the pion velocity is
equal to the speed of light. We now show that, at finite tem-
perature, all three parametefs, fg, andm can be deter-
mined from equal-timdor statig correlation functions.
Repeating the same argument as in Sec. lllA, we can
show thatf, is related to the axial isospin susceptibility,

B *Eyac Lot ) static correlation functions. In order to make the connection,
X15= 75 =TT =fz B4 e generalize the mass term in Eg.1),
Ipis 1

w5=0

L= 47D = (M gptH.c)+misA5, (3.9
This result is of potential importance for lattice QCD cal-

culations because, in principle, it allows one to deternfine and regardM as an externaiield, M=M(x). The Lagrang-
directly by measuring the axial isospin susceptibility. To ourian (3.8) possesses the symmetryy, —Liy, &g
knowledge, this has not been done on the lattice for tempera~Ryr, M—LMR', where L,ReSU(2). If M(x) is a
tures below the chiral phase transition. The isospin susceptslowly varying function of, its effect can be captured in the
bility (as well as the isoscalar, i.e., baryon number susceptieffective chiral Lagrangian. The requirement that the effec-
bility) measurement has been done using staggered fermiotige Lagrangian preserves this symmetry fixes the form of its
in [12]. In the formulation used in Refl12], introducing the  mass term,
axial isospin chemical potential would require replacing
exp(—ua) on the links(wherea is the lattice spacingwith
exp(—wpady), where ¢, is the usual staggered factdg=
(— 1)1+ XetXstX__the representation ofs in the staggered
fermion action.

2

N
,Ceﬁ—zTrVoEVoz - ZTraiEé’iz

- %@@Re T™MTS. (3.9

B. Pion velocit L .
y We shall limit ourselves to a particular ansatz of the external

To obtain Eq.{(2.2), we expand the previous discussion to field M (x):
nonzero temperature. We first presume that the dynamics of
the pions is described by some effective Lagrangiagn. M(X):mqeiaa(x)ra_ (3.10
Strictly speaking, this is not correct since dissipative effects
cannot be included in the effective Lagrangian. We can ex- The second derivative of the partition function with re-
pect to recover the correct answers if, in the infrared, thespect toa® can be computed in both the microscopic theory
pion thermal width is negligible compared to its energy. This(3.8) and in the effective theory3.9). In the microscopic
has been seen in explicit calculations at [@wwvhere chiral  theory, we find
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IV. HYDRODYNAMIC (OPERATOR) APPROACH

8°Inz S X
):qutﬂ) (e?(x)¢"(0)), (3.1

Sa?(x)8a°(0 From a modern perspective, hydrodynamics is an effec-

tive theory operating at sufficiently large distance and time
. . . scales.(By “sufficiently large” normally we mean scales
wheree? is defined |n.Eq(2.6). Or] the other hand, from the larger than the mean free path, or the relaxation tie.
the effective Lagrangiaf8.2) we find such, it is the most suitable framework to discuss low-energy
degrees of freedorflike piong at finite temperatures. This
modern point of view, as opposed to the view of hydrody-

&Inz — namics as a purely ph logical description, has b
o 2, ,a b purely phenomenological description, has been
Sa?(x) 5a°(0) = M) ($7(x) $°(0)) in existence for a long timgl5]. From this philosophy, it is
not surprising that the same hydrodynamic theory describes
where ¢3(x)=Re Trir3(x)/2. systems with very different microscopic dynamics, and that

systems with different symmetrigéike normal fluids and
(3.12 superfluid$ correspond to different hydrodynamic theories.

Similarly to the effective Lagrangian, hydrodynamic equa-
Comparing Eqgs(3.11) and (3.12, we see that correlation tions can also be viewed as a particular way to satisfy Ward
functions of ?(x) defined in the microscopic theory and of identities at finite temperaturd46]. In our case, hydrody-
¢?(x) defined in the effective theory are equal. This equalitynamics is nontrivial due to the chiral symmetry breaking
should hold for small momenta when the effective theory ig17]. We will derive the constraints placed by hydrodynamics
applicable. on the dynamics in our problem, and show how our results

The correlation function o$?(x), on the other hand, can on the pion dispersion relation follow from there. Our treat-

be calculated by expanding the effective Lagrangian to seanent is similar, to some degree, to that of Réfl.
ond order ing?. The Matsubara propagator ¢ is

A. Basic assumptions of hydrodynamics

T _ We shall assume that, as one goes sufficiently far into the
f de dxe'dX($?(x) $°(0)) infrared, the dynamics of any interacting finite-temperature
0 system can be described in terms of a finite number of fields,
52b which will be called hydrodynamic variables. To be relevant
= , Qo=27Tn. (3.13 in the infrared, the fluctuations of these fiel@gther thermal
ftzqg+f§(q2+ m?) fluctuations, or those due to external soujcasould relax

arbitrarily slowly. This requirement eliminates most of the

This propagator, fogy=0 and smallg, should be equal to degrees of freedom, which typically relax during a relaxation
the propagator ofo®. This establishes Eq2.5), with the time determined by the microscopic dynamics. However, the
identificationf =f. Together with Eqs(3.6) and(3.7), this follqwmg fields are obvious hydrodynam|_c_var|§bles._

is our result for the pion dispersion relation. Furthermore, it (i) The dgnssgles of conserved quaptg:es, including the
is natural to assume that, for smgllthe dynamics ofp? is energy densityi™, the momentum _den5|ﬂ] » and the den-
slow, so at high enough temperatuf{m. ) one can regard sities of conserved global chargése., the zeroth compo-

©%(7,x) as independent of. In this case the left hand side nents of conserved curreitsThese fields cannot relax
of Eq. (3.13 is equal to that of Eq(2.9) quickly because of the conservation laws. A configuration

L ; : : ; here charges fluctuate over a length sdalewuch larger

It is instructive to write Eq(2.9) in coordinate space, w e .
a(2.9 P than the mean free path can relax only by diffusion, which

takes place over a time proportional itd. The relaxation

e~ mixl time diverges with the wavelength of the perturbation.
<(pa(O,X)(pb(O,O)>=WW (X =T tm b. (i) The phases of the condensates which break global
s symmetries. At zero temperature the fluctuations of such

(3.14 phases correspond to Goldstone bosons, whose energy can
be arbitrarily small. At finite temperature below symmetry

We see that measuring, in the microscopic theory, the largeestoration, one should also expect the long-wavelength fluc-
distance equal-time correlation function of th& defined in  tuations of the condensate phases to relax slowly.
Eq. (2.6) we can extract the screening mass&nd the decay (iii) Near the critical temperatures of second-order phase
constant. Combined with the determination of the suscepti-transitions, the order parameters themsel(est just the
bility x,5 and Eq.(3.7), the dispersion relation of soft pions phasep should be considered hydrodynamic variatfl&8].
is now completely known. For example, it is believed that, in QCD with two massless

Below we shall provide a more systematic proof of theseflavors, the chiral phase transition is of the second order,
relationships using an operator approach, with crucial inputsvhere thes meson becomes degenerate with the pions. Near
from the hydrodynamic theory. We shall also demonstrate th& ., hence,o should be included in the hydrodynamic de-
validity of the relation(2.2) in an explicit lowest order per- scription. In contrast to the fields in the categofigand(ii),
turbative calculation in the linear sigma model. the rate of relaxation of order parameters is controlled by the
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closeness ofT to T., but not by the wavelength of the starting point of our construction of the hydrodynamic

perturbations. equations.
If one makes a further assumption that the fields listed in
(i)—(iii) exhaust all slowly relaxing ones, then the set of hy- B. Linearized hydrodynamics for soft pions

drodynamic degrees of freedom is completely fixed once all 14 e jess abstract, let us consider QCD in the chiral limit,

symmetries of the theory and the pattern of symmetry breaky; 5 finite temperature below the chiral phase transitions, and
ing at the given temperature are known. In this paper W&erg chemical potentials. The hydrodynamic operators are
shall limit ourselves to temperatures far away from any secipe energy densityT® the momentum densityl®, the

ond order phase transition, so order parameters are echungryon densitysy%y, the densities of vector and axial isos-
from hydrodynamics. This set of hydrodynamic variables al

: “pin charges,
ways contains the energy and momentum densitf¥sand
TY. For QCD below the chiral phase transition, one has, in Q — OTa a_— 0o STa
addition, the densities of baryon, isospin, and axial isospin Vo=uvy 5o Ag=dy v’ 5 ¢, 4.9

charges, and the phases of the chiral condensate.
After identifying the hydrodynamic degrees of freedom, and the pion field, defined as E@.6),
one can proceed in various ways. One can ask about the

equations of motion that the hydrodynamic variables obey. iJ)ﬁTa(/,
For our case, it is a rather nontrivial task, because of the @a:ﬁ- (4.2
multitude of the fields involved. In Refl7], the Poisson- v

bracket technique is used to derive the dissipationless hydr(}j\S we shall see below, tinear order the dynamics oh2
dynamic equations. One finds a system of fully nonlinear nd¢? is decoupled fro’m other modes 0

cogpled diffgrential equatiqns, generali_zing the equatiqns 0? Let us consider the equation f8§ . Infinitesimally close
flg|d dynamics and equations of m.otlon of.the nonllnearto the chiral limit, we can derive from the QCD Lagrangian
sigma model. However, the connection of this procedure the familiar PCAC relation:

the fundamental(microscopi¢ field theory has not been
made, and the physical meaning of several temperature-
dependent parameters appearing in the final equatiafied

fy, fs, andf, in Ref.[17]) is not at all clear. The left hand side contains, in addition &3, the spatial

Alternatively, one can ask the question: What are the CONzomponents of the axial curreAf!, which are not hydrody-

straints that hydrodynamics places on the correlation funcyamic variables. According to the assumptiéw), we can
tions of the hydrodynamic variables? It is clear from theeypressa@! as local functions of the hydrodynamic operators
d|scus§|on al_)ove that the real-time correlators of _the hydrogngd their spatial derivatives, plus a short-ranged part. If we
dynamic variabledi.e., (O(t,x)0(0,0)), where O is the  \work to leading order in the power of the fieldshich
variablg are long range, i.e., have power-ldut not expo-  means the linear orderthe only ones suitable arg® and
nentia) 4fa||9ff. at least in the timelike regime¢—o, x 2 which are parity odd and isovectors. The spatial index in
=fixed.” It is less trivial to decide about the correlators of ai forces one to have at least one spatial derivative. Thus, to
the operators not belonging to the set of hydrodynamic varieaging orders in fields and derivatives, the only terms con-
ables. To this end, the following additional assumption isgjstent with symmetries are
made.

(iv) All local operators can be expressed as local functions A= — 29, 02— DAL & (4.4)
of the hydrodynamic operators and thepatial derivatives,

up to corrections which have short-ranged correlations thayneref2 andD are coefficients depending on the tempera-
go to zero exponentlgll_y when either temporal or Spat'alture, andé? is the short-rangénoise” ) part of A\, (At this
separation goes to infinityt (0r x—c¢). (These short-range goh \e have not yet relatéd to the static correlation func-

tphaergsry)correspond to the “noises” in the hydrodynamicjong we will do it later on. Equation(4.3) now takes the

Physically, these assumptions mean that the dynamics ifr?rm
the infrared can be described in terms of hydrodynamic vari-
ables only, and is equivalent to the assumption of local ther-
modynamic equilibrium: The values of all variables are de-

. . o The parameteD can be interpreted as the diffusion coeffi-
termined by specifying a few. The assumptidns(iv) form cient for Aj; however, Eq.(4.79 is more complex than a

diffusion equation. Now let us discuss the equation ¢8r
The time derivative ofp?, not being a hydrodynamic opera-
tor, can be expanded as

3N =my( ) o2, (4.3

doAS=F2V203+ my(Yih) 2+ DV2AZ+ 9,62, (4.5

3We shall not consider the possibility of Abelian gauge fields in
the Coulomb phaséas opposed to the Higgs phageresent in
magnetohydrodynamics. 1
“The hydrodynamic correlators are not required to have power- a a_ 1 a 2
dop®=—Ag— + 1k, Vo2 + 72, 4.6
law decay in the regime=fixed, x—c. 0¥ o fa® TRV 4.6

076011-6



REAL-TIME PION PROPAGATION IN FINITE . .. PHYSICAL REVIEW D 66, 076011 (2002

where x, k1, and k, are again coefficients dependent on (na(t,x)Ag(t,0)>=0. (4.10
temperature, and is a short-range noise. We have kept the
term with the second derivative gf* as well as the term  Equation (4.10 is trivial if understood as (3(t

with no derivative. The reason for doing so is thatis  +2 x)AB(t,0))=0: A2 cannot be correlated with the noise

suppressed by the quark masses. Indeed, in the chiral limif in the future. What is somewhat less trivi@nd will be

the state with(¢®)#0, (AG)=0 can be another vacuum checkeda posteriori is that({ »?(t—e,x)AS(t,0)) also van-

which StayS unChanged with time. This is consistent with Eqishes: the equa'_time correlator afandAo does not depend

(4.70 only if ;=0 in this limit, thus at small quark masses on how the equal-time limit is taken. Therefore, only the first

« is small. For this reason we keep tRid¢? term. term survives; and by definition of;s it is equal to
Introducing the parametem? defined so thatf?m?=

—mq(%//) (which we still have to relate to static correla- 1 . b _Txis
tors), and k4 so thatx1=;<1m2, Egs.(4.5 and(4.6) can be dx;<A0(t’X)A0(t’o)>_ X (4.17
written as
. On the other hand, the left hand side of E4.9) can be
_f2(p2_ 2 2
A= FH(VE—m®) e?+ DVZAg+ ;¢ (4.78 computed explicitly. To this end, we write
1 . .
Tog™= T AT+ (k¥ = ki) %+ (4.7D (¢2(0A3(0)=iTr{e”[H,o%(x)]A3(0)} (4.12

Equations(4.7) are the linearized hydrodynamic equa- (We drop the time variablé which is an argument of all
tions governing the evolution d&2 and ¢®. The correlation ~©Perators We now make use of the following expansion:

functions ofA§ and ¢® can be found if one knows the corr-

X - i —BH _aj_ _ —BH a
elators of the “noises™é®' and 72 By construction, these (e " ¢7] pe "[H.¢7]
fields have only short-range correlations, so, if one is inter- 2
ested only in the dynamics at large distance and time scales, — ?efﬁ'“'[H,[H,cpa]]vL -0 (413

these correlations can be replaced by delta functions. Isospin

symmetry and rotational invariance require the correlators tq _ i :
be of the following forms: The expansion parameter hergigo=q,/T whereqg is the

frequency of variation ofp?®. Since we are dealing with the
(£4(x)€°)(y)) =F ;628 6% (x—y), (4.8a low-frequency modes ig?, we can ignore all terms beyond
the first in Eq.(4.13. Equation(4.12 now becomes

() 7°(y))=F 808 (x~y), (4.8D _
(£(x) 7°(y)) =0 (.80 (2 (0)A(0)=—IT Tr{[e” ", ¢*(x) JA3(0)}
= —iT([¢%(x),A5(0)]) =T 5% %(x).
up to corrections proportional to derivatives 6f(x—y) T([e%0. A0 o
which will be neglected since they are of higher order in (4.14

momentum. Equationgt.7) and (4.8) completely determine ] )
the hydrodynamics of soft pions, to the linearized order.  In the last transformation, we make use of the commutation

relation
C. Relation to static correlators _

Our next task is to relate, as much as possible, the param- [(Pa(x),Ag(o)]:igabb\?a(x)ﬂ. (4.15
eters appearing in Eq$4.7) and (4.8) with the equal-time (i)
correlators ofA§ and ¢2.

First, we multiply Eq.(4.7b by AP, taken at the same Comparing to Eq(4.11), we find
time moment, and integrate over space. One finds

X=Xis- (4.16

. 1
dx{ @2(t,x)AR(t,0 =f dx| —(A3(t,x)AL(t,0
f (@2t X)A(1,0)) X< ot X)Ag(1,0)) Thus, we show thay is the axial isospin susceptibility of the
system, which is a static quantity. The proof we have just

— 2/ .a b
k1M A(@*(t,X)Ao(t,0)) presented is similar to that of the equipartition theorem in

statistical mechanics.
+{((t,0)ANL,0)[. (4.9 Analogously, we can show that
In the right hand side, the second term is proportionahfo j ~ig-x/pa b — _Tsb 4.1
which is small in the chiral limit, and hence can be ne- dxe™""(Ag(x) ¢°(0)) 5% (4.17)

glected. The last term in the integrand will be shown later to
vanish, On the other hand, from E¢4.73
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Ciax aa b The correlation functiong4.21) peak aroundj,~ * w,, and
f dxe™ " (AG(X) ¢°(0)) the width of the peakk , is much smaller tham at smallq.
The correlators have poles corresponding to the pion collec-

g tive excitations with the dispersion relatiomy= w
— _f2(2 2 ig-x/ _a b 0 q
g™+ m )f dxe (0% (x)°(0)) —(i/2)I'y. We note, moreover, that all parameters entering
the real part of the dispersion relatigh.223 can be deter-
-D 2j dxe 19X A3(x) oP(0)), 4.1 mined from the static correlation functions.
a (AdX)¢7(0) (4.18 It is now possible to explicitly check that the noise-field
] correlators appearing in Eq$4.10 and (4.19 vanish. In-
where we dropped the term proportional to deed, by using Eqg4.7) and (4.8) we find
(3£, ¢(,0)) (4.19

’ _ gab qu —iqo(t—t')+ig-x
(n(t,x)Ag(t",0))= 062 77)43 do a

as it will be shown to vanish in the same mannex g8A5) (2
in Eq. (4.9. Moreover,Dg?(A3¢P) can be neglected com- Xi1505F
pared to(A3¢°)~qo(A3¢®), since we expect the pion to
have a linear dispersion relation and, for small enough mo-
menta,qo,>Dq?. Equating Eqs(4.17 and (4.18, we find
that equal-time correlators of the pion field must have the <&i§i(t,x)<p(t’,0)>=—5abf

—_—, (4.23a
95— wi+igoly

4
d C;Llefiqo(tft’)ﬂq»x
T

form of a Yukawa potential, (2
-1 2F
f dxe ™19 p?(x) b(0)>:T o (4.20 X%- (4.230
¢ @ 2 q +m2’ ) qo_a’q'HQOFq

The integrands in Eq$4.23 have two poles, both located in
the upper half planegy= * wq+ (i/2)I';. Whent>t’, when
taking integrals overny,, one can close the contour in the
lower half plane, so the integrals are obviously zero, which
corresponds to our previous remark that the fields cannot
ccorrelate with the noises in the future. If one takest’

from below, the integrals are also zero since they are equal to
the sums of the residues of the integrartadéich are zero

Thus, the parametef® andm? appearing in Eq(4.79 are
the same ones defined in E@.9) via the equal-time cor-
relator of 2.

The parameter®, i, «,, F;, andF, cannot be ex-
pressed individually in terms of the equal-time correlators
but some relations between them will be derived below.

D. Hydrodynamic correlation functions because these functions behavegg$ at largeq,.) There-
From Egs.(4.7) and (4.8) one can easily compute the fore, we have checked that the equal-time noise-field correla-
real-time correlators oA3 and ¢*: tors (4.10 and(4.19 indeed vanish.

One can find the relations between the amplitude of the
4o 0%/ A3y b noise correlators-; andF,,, and the parameters character-
f d*xe 9 (Ag(x)Ag(0)) izing the damping in Eq(4.22h. One integrates Eq$4.21)
over go and obtains the equal-time correlation functions

2.2 2 4
_ gab QodF ¢t XiswqF F o+ X F
1 1 ' —ig-x/ pa b _qap £ AIS®q 7
{(QO_“’Q)Z"” ZFS (dot wg)®+ Zré} f dxe " Ag(t,X) Ao(1,0)) = 57 2T, ’
(4.243
(4.213
. q2F§+X|25w2F
d*xe9(e%(x)9°(0)) 2Xiswql'q
) s , (4.24bh
s g F+qgF
= 5P X'Slq £ 0%y 1 , Comparing these correlators with E48.8) and(2.9), taking
[(QO—wq)er ZFS} (qo+ wg)2+ ng into account Eqs(4.22), one finds
(421b F§:2TX|5(D+K2_K1), (4ZSa
where 2Tk,
5 F,,Z f_2 (4.25b
w2=f—(q2+ m?) (4.223 : : :
9 x5 ' Our results for the hydrodynamic correlations functions are
given by Egs.(4.21) and(4.25. For completeness, we give
= KM%+ (D + k). (4.22h here also the result for the cross correlato8fand AJ :
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E. Comparison to previous results

4y, AiQ-X/ @ b
J' d™xeT ¢ (X)Ac(0)) As a by-product of our analysis, we obtain a generaliza-

) tion of the Gell-Mann—Oakes—Renner relation to finite tem-
2iTaol’y perature:

) 2, 1o 2. 1o > 5 —
(qo_wq) +qu (q0+wq) +qu f“m :—mq<lﬂlﬂ>. (4.29

(4.26  This equation has the same form as at zero temperature. At
finite temperaturem should be understood as the pion
It is instructive to compare the correlator of the axial isos-screening mass, and the exact meaning of the temperature-
pin charge densityA] [Eq. (4.213] with that of the vector ~dependent “pion decay constant? is given by Eq.(4.20.
isospin charge density§. The dynamics of the latter is One can also write the GOR relation in an alternative form,

completely diffusive and is given by the equations

XisMa=—mg( ), (4.30
doVe—D VAV5=0,¢?, 4.27
oVo~BIVVo=did (4.273 wherem,=um is the “pole mass” of pions.
. . - That the velocity of pions at finite temperature is different
b _ b
(¢(x)£°(0))=2TD, ;%" 5%(x), 427D from the velocity of light has been seen in the second order

) o ) ) of chiral perturbation theoryi.e., in orderT4/f%) [19,20.
whereD, is the diffusion constant for the isospin charge, andthe authors of Ref[19] also introduced two pion decay
X1 is the (vectoy isospin susceptibility. The correlator ¥ constantst andfS, which correspond to oufy,s andf, and

1S checked the validity of the GOR relatio@d.30. However,
these constants were defined only in chiral perturbation
e g s b 2TD, x 0 theory, and only at small; there has not been any attempt to
J d“xe' (Vo(X)Vo(0)>:W- (4.28  give a precise definition of the constarffsand f° at tem-
o id peratures comparable fb,. We have, in contrast, given a

) i i precise meaning to the constanyg andf in terms of equal-

The pole of the correlator is located at purely imaginary fré-time correlation functions that can be measured on the lat-
quenciegjo=*iD,g", as it should be for a purely diffusive {jce. The GOR relation now contains only well-defined quan-
mode_. .. tities. Although Eq.(4.30 cannot be checked on the lattice,

Using Eqs.(4.28 and(4.24 we can understand the limi-  since it contains the piopolemass, the versiof#.29 can be
tations of the Lagrangian approach and the role of the disSiyerified numerically since all quantities entering it are stati-
pative processes. For example, one could try to apply thga"y measurable.
method of Sec. Ill to determine the vector isospin suscepti- \\e also note that Eq$4.7), without the noise and dissi-
bility x,, introducing an isospin chemical potential . At pation terms, can be obtained by linearizing the hydrody-
zero temperature such a method was used in R&l. As  pamic equations obtained in REL7] by the Poisson-bracket
expected, the isospin susceptibiljpy vanishes al =0 since technique. One can then identify the paramefemndf in
it _takes finite energy to exci_te isospin degrees of freedonhef_[lﬂ asf?=y,s, f2=f2 (the parameteff of Ref.[17])
(pions and change the isospin density. Howevemaiizero g oqual to the vector isospin susceptibilitye did not try to

temperature, the naive application of the effective Lagrangzeproduce the full nonlinear hydrodynamic equation of Ref.
ian method would predict thag;=0 also®> On the other [17] in the present approach.

hand, we should expegt # 0 at finite temperature, even at
very small T, because of the presence of isospin-carrying
pions in the thermal medium. Looking at the correlator
(4.28, one sees that the equal-time correlator defining It is instructive to explicitly verify our relatior2.2) be-
being the integral of Eq(4.28 over qq in the limit g—0,  tween the velocity of the Goldstone bosons, the axial isospin
receives the main contribution from very sloiffusive)  susceptibility, and the temperature-dependent decay constant
modes:qo~D,0”. However, the effective Lagrangia®8.5  in a model where weak-coupling calculations are possible.
only describes fastépropagating modes of thep field with  The simplest theory with spontaneous breaking of a continu-
Jo=wq>D,¢?. The slow diffusive modes which contribute ous symmetry is the linear sigma model. We shall show that
to x, are not present in the Lagrangi&d.5. For the axial Eq.(2.2) indeed holds in this model to leading order of per-
isospin susceptibilityy,s, the situation is different, for the turbation theory.
integral of Eq.(4.28 over frequencies in the limig—O0 is It is important to emphasize that the sigma model consid-
concentrated entirely near valueg=*wy. Thus, unlike ered in this section is only meant to serve as an example of a
X1, the value ofys at finite T can be found correctly using theory where we can explicitly check our results by pertur-
the effective Lagrangian approach. bative calculations. These models do not describe QCD at

of orderT.—a theory with no apparent small parameter. We

claim, however, that the connection between the dispersion

SWe thank T. Schier for pointing this out to us. relation of the pions and static correlation functions is model

V. AN EXPLICIT EXAMPLE: A LINEAR SIGMA MODEL
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independent, and can be derived from only a few general
assumptions stated in Sec. IV.

We start with the following Lagrangian \ ( > _'_

_lya a/‘l’zaa A a sa\2
5—53 $°9,.¢ +7¢¢—2(¢¢), (5.0

(where o propagators are denoted by solid lines, and
propagators are drawn as dashed ling&e last two bubble

where a=1,2,... N. We assume\<1, so perturbation djagrams are negligible in the finite-temperature regime we
theory can be applied. Whew?>0, theO(N) symmetry is consider, so

spontaneously broken at zero temperature. We choose the

vacuum to align in thep" direction. At zero temperature, , dp 3 N—1
i i m;=3\v?—u?+ 0T +
and at tree level, the vacuum expectation valueptfis : vi— v ;0 (2 PErmZ P2 )
Ny % _ 2
(¢ >=UOZT. (5.2 =2\v°, (5.7

and thus decreases with temperature. The Goldstone boson
receives corrections to its mass from three one-loop graphs,

’ Ky
H |
N, s

1 1
£=§((9M0')2+ E(ﬂﬂfn')z—()\vz—,uz)va N

At finite temperature the expectation valuegt is different
from v,. Denoting it asv and replacinggN=v + o in the
Lagrangian(5.1), we obtain

_ %(3)\02_#)02_ %()\vz_ﬂz)ﬂz_)was_)\vaﬂz and remains massless since

dp 1 N—1

A A A 2_y.2.2 2

= — +

—20'4—2(172)2—50'2172, (5.3) mTf Av r K )\UTPEO (277)3 P2+mi P2 )
h =(¢t¢% ... ,¢"N"1). From Eq.(5.3 the F d 1

wherew= (¢, 7, " ). From Eq.(5.3) the Feynman — TS p 0. 5.9

rules can be easily written down.
The value ofv is determined by the condition théw)

=0. For computation, we will use the Matsub&auclid- To find the dispersion relation of the pion nepe 0, one

ean formalism, in which this condition reads, to one-loop 45 to expand the pion self-ener®yq) in powers ofg, and

order, g. The only one-loop diagram that depends gris the
bubble diagram, which can be evaluated either by using the

—0. Schwinger-Keldysh real-time formalism, or by doing calcu-
lations in the Matsubara formalism and then performing an

(5.4  analytic continuation from imaginary to regh. By either
method one finds

5 ) (2w PAPTTME)

dp
AoZ—u?) o+ Ao T
(A= u v +Av % (2

3 N-1
P2+mZ’ P?

o

In this sectionP?=p3+ p?, p=|p|. The sum integral in Eq.
(5.4) is ultraviolet divergent. This temperature-independent

d
divergence can be absorbed into the redefinitiop.&f The S(q)= —4)\2sz 3—p
temperature dependencewtomes from the thermal part of (2m) 2wy 240,
the Lagrangian. We shall be interested in temperatures of
ordervg, soT>m,. In this case, {0 )+F(Q)+1 | ———
[F(0peq + () + 1| g
Av? 2+N+2)\T2 0 (5.5
ViUt —/——— =0, .
12 - - _
M R LCR RO

or

T 12 2 %
1—T—g with TC:mT' (5.6

1 1
+ ” (5.9

Q,—wpig— Q—wy gt
v2(T) =02 p” @prqg~do 2p~ @Wp+qTUo

wherew, and (), are the energies of the and o particles
Equation(5.6) is valid everywhere except for a narrow Gin- with momentump: w,=p, Q,=(p*+m3)*% and f(w) is
zburg region near . the Bose-Einstein distribution functidi{w) = (ef*—1)"1.
The masses ofr and 7 are computed, e.g., in Re¢21]. We need to compute the coefficientsaff andqg? in the
At the one-loop leveim, receives contributions from four expansion off(Q). To compute the coefficient aj?, one

diagrams can setgy=0 and Eq.(5.9 becomes
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d 1 T2\1
E(O,q):m\?vzf P —— u?= 1+3—2) , T>m,. (5.16
(2m)° Qp—wp+q v

1 1 It is instructive to compare this result to the one obtained in
f(Qp)+ > flwprg)+ > the framework of the chiral perturbation theory=1
% — . (5.10 —O(T#/1%) [19,20. One should bear in mind that the re-
Qp @p+q gime in which the chiral perturbation theory result applies

. . , corresponds t@<m,. In our linear sigma model we con-
The right hand side of Eq5.10 can be expanded in powers sider a different regimeT ~v>m, ~ Jv. In the chiral per-

ogq. The constant is compensated bY th? other_d|agrams. Tr}ﬁrbation theoryT/f . serves as an expansion parameter. In
g“ term gives rise to an integral which is dominated in the

infrared T d is of ord our weak-coupling calculation the expansion ishinwhile
Infrared regionp~m,, and 1S ot order the T dependence is included to all ordersTifv.

2,2 Now we need to check that this coincides with ;5.
3(00)~ —5@P=0A)f+---. (5.1)  Recall that our definition of? is as follows: if we define
m; o?=m?v, then

In the last equation we assum&e- v, andmZ~\T, which _ T 520

is valid whenT is not very close tdl,. J dxe 9% 03(t,x) p°(t,0)) = e (5.17
Now let us putg=0 and expand im,. Since the constant q

term is canceled out by other diagrams, one has to look onl

Xhe left hand side is proportional to theMatsubara propa-
at terms of ordeq3. One finds prop prop

gator, summed ove,

dp T 1

3(q ,0)=—8)\2v2q2f — L
° °) (2m320,20, P

(5.18

| fep 1@ +1 fwp)— (D)
(Qp+ wp)® (Qp—wp)®

When |g|<T the dominant term in the sum is the one with
Jo=0; therefore,

(5.12 f2=p2, (5.19

The first term in the square brackets gives rise to an integrafaking into account one-loop graphs, as we have seen, will
that is dominated by the infrared, i.e., py-m,, and so is  changef? only by an amount of orde®(\*?).

completely analogous to the coefficient pf above. The Now to compute the susceptibility;s we need to turn on
coefficient ofg3 coming from the first term is hence of order a chemical potential coupled to a broken charge. There are
O(AY?). In contrast, the integral of the second term in theN—1 broken generators. Let us consider the one that trans-
square brackets is dominated py-T. For suchp one can forms o and; into each other. The change of the Lagrang-

write, approximately, ian when the corresponding chemical potential is turned on is
2 2 2
o m., an(p) _ K 2 2
Qp_wp:$7 f(wp)—f(Qp):—% p 5£—,u(771(?00—060171)4-7[(04-0) +71].
(5.13 (5.20
which gives The susceptibility can be computed in Matsubara formal-
ism. There are two contributions: one from tpé term in
822 dp df(p) oL, the other from the bubble graph:
2(0,0)=—= qgf 3
mo’ (277) (9p ) 2 dp 1
=p°+2T —_—
a2 NS ) @m pgrp?
T T°q;. (5.19 ,
7 dp Po
Y S , , —4T> P
Substitutingm?Z=2\v?, we finally find po J (2m)3 (PgtpP°)
) L 5.1 .- d 'h—zlo—2T2 5.2
(do. )= qu (5.19 =v +ﬁ 3Sln E—v +?. (5.21

(2)

SinceT andv are both of ordev,, the coefficient in front of ~ The interpretation of this formula is rather direct is the
g3 is of order®(\%), in contrast to that of?. The velocity  contribution of the condensate, afid/3 is the contribution
of pions in our model is from the free gas ofr and ;. The square of the velocity of
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pions, Eq.(5.16), is equal to the ratio of? in Eq.(5.19 and  down near the QCD chiral phase transition. It is based on a
X5 in Eq. (5.21), which is what we need to verify. We did scaling argument similar to the one used in R&8] to find
not, however, attempted to turn on an explicit symmetryz in antiferromagnets.
breaking and verify, e.g., the GOR relation at finite tempera- For simplicity, here we consider the chiral limit,=0.
ture. Such a calculation should be straightforward. Scaling and universality arguments presented in fafore-
dict that the velocityu vanishes ad approachesr, from
VI. CONCLUSION below. The quantity? scales asi>~t(@~2)", wheret=(T,

Our goal has been to demonstrate that the dispersion re=T)/T.. Since the inverse correlation length of the order
lation of pions can be expressed in terms of quantities obparameteryy, i.e., the static screening mass of the sigma
tainable from equal-time or static correlation functions. Theparticlem, , scales asn,~t”, we conclude that for<1
precise relation is given in Sec. Il. Our result enables one to

g

find the real part of the pion dispersion relation on the lattice. u2~m‘(’,’2. (A1)
However, it does not enable one to compute the imaginary
part, which characterizes the damping of pion modes. The fact thatu—0 at T, means that the dispersion rela-

Nowhere in our treatment did we assume any conditionion ceases to be linear. Moreover, the effect of damping also
on the temperatur@xceptT<T,), as long as we stay infini- becomes important; in other words, we expect the real and
tesimally close to the chiral limit. Thus, ify is infinitesi-  imaginary parts of» to become comparable. In such a situ-
mally small, our result applies to all temperatures smallefation on cannot refer ta as a quasiparticle energy. Rather, it
than the temperature of the chiral phase transifignHow- s a characteristic frequency, or inverse relaxation time, of a
ever, at any fixedsmal) value of mq, our results do not mode of a given wave number Scaling hypothesis dictates
apply at temperatures too close to critical, where the pionhat the relation betweep and » should be homogeneous,
screening mass becomes of the same order as the screening, »~|p|%. The dynamical scaling exponents, in a ge-
mass of the sigma meson. The width of this region rMgar neric case, new exponent independent of the static expo-
shrinks to zero as a power af, (more precisely, am;*’).  nents, e.g.y and#. However, in the case of QCBimilar to
Our treatment must fail there because, as explained in Sethe case of an antiferromagnd,18]), since the dispersion
IV, the sigma boson also needs to be included into the hyrelation of pions is given in terms of static quantities only, it
drodynamic theory. However, the scaling of different quan-turns out thatz, as one would expect, can be derived from
tities in this temperature region can be determined usingtatic scaling laws only.

scaling and universality arguments, as discussed in [Rgf. To determinez we observe that the dispersion relatien
In the Appendix of the present paper we derive some addi~|p|* applies at scalesn,<|p|<T. At softer scales)p|
tional interesting scaling properties omitted in ReéX]. <m,, the dispersion relation is still linean=u|p|. Requir-

Finally, assumingm, to be very small, aff—T., the  ing that the two expressions fer match at/p|~m, we find
chiral condensatéyy)—0. As shown in Ref[9], this im- a
plies that alsof —0 (although with a slightly different criti- me~ um,~mg*, (A2)
cal exponent On the other hand, the axial isospin suscepti- ] ] )
bility y,5 becomes degenerate with thgectop isospin where to obtain the last scahng relation we used &d.). _
susceptibility atT,, where both remains finite. One con- Thgrefore, at the.QC.D chiral phase transition the dynamical
cludes from Eq(2.2) that the pion velocity tends to zero as ~ cfitical exponent is given by
one approaches the critical temperature. In fact, it can be
shown thatu approaches zero faster than the divergence of 229 (A3)
the screening mass, so the pion pole masa,=umgoes to 2

zero asT— T, [9].
¢ (see also an alternative derivation in Ré®,18]).°
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Thus D' diverges near the chiral phase transition in QCD

APPENDIX: DYNAMICAL SCALING AT THE CHIRAL (d=3)

TRANSITION

In this appendix we provide a simple derivation of the
dynamical critical exponert characterizing critical slowing  ®This result agrees witf,18], but disagrees with22].

076011-12



REAL-TIME PION PROPAGATION IN FINITE . .. PHYSICAL REVIEW D 66, 076011 (2002

[1] G. Q. Li, C. M. Ko, and G. E. Brown, Phys. Rev. Left5, (200D)].

4007 (1999; Nucl. Phys.A606, 568 (1996; W. Cassing, W.  [12] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L.
Ehehalt, and C. M. Ko, Phys. Lett. 863 35 (1995. Sugar, Phys. Rev. Let69, 2247 (1987; S. Gottlieb, U. M.
[2] F. Karsch, E. Laermann, P. Petreczky, S. Stickan, and I. Wet- Heller, A. D. Kennedy, S. Kim, J. B. Kogut, C. Liu, R. L.

zorke, Phys. Lett. B530, 147 (2002. Renken, D. K. Sinclair, R. L. Sugar, D. Toussaint, and K. C.
[3] A. Bijl, Physica(Amsterdam 8, 655(1940; R. P. Feynman, in Wang, Phys. Rev. [35, 6852 (1997.

Progress in Low Temperature Physieglited by C. J. Gorter [13] E. V. Shuryak, Phys. Rev. B2, 1764(1990.

(North-Holland, Amsterdam, 1955Vol. 1; see alsctatistical [14] J. L. Goity and H. Leutwyler, Phys. Lett. B28 517 (1989.

Mechanics(Benjamin, Reading, MA, 1972 [15] L. P. Kadanoff and P. C. Martin, Ann. Phyé\.Y.) 24, 419
(4] B. 1. Halperin and P. C. Hohenberg, Phys. R&88 898 (1963; D. Forster,Hydrodynamic Fluctuations, Broken Sym-

(1969. . . L. .
metry, and Correlation FunctiongBenjamin, Reading, MA,
[5] R. D. Pisarski and F. Wilczek, Phys. Rev.Z3, 338 (1984). 1973' fon FunctiongBenjami "9

[6] K. Rajagopal and F. Wilczek, Nucl. PhyB399, 395 (1993. ) L

[16] L. G. Yaffe (private communication
71F.C.H d H. Leutwyler, Nucl. Ph¥&350, 201(1991).
[7] ansenan euwyler, huc S50 (1993 [17] D. T. Son, Phys. Rev. Let84, 3771(2000.

[8] A. V. Smilga, Phys. Rep291, 1 (1997). .

[9] D. T. Son and M. A. Stephanov, Phys. Rev. L&, 202302 [18] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Ph48. 435
(2002. (2977.

[10] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett, B [19] R. D. Pisarski and M. Tytgat, Phys. Rev.3, 2989 (1996.
464, 183(1999; J. B. Kogut, M. A. Stephanov, D. Toublan, J. [20] D. Toublan, Phys. Rev. 36, 5629(1997.

J. Verbaarschot, and A. Zhitnitsky, Nucl. PhyB582, 477 [21] J. 1. Kapusta,Finite Temperature Field TheoryCambridge

(2000. University Press, Cambridge, England, 1289
[11] D. T. Son and M. A. Stephanov, Phys. Rev. Led6, 592  [22] D. Boyanovsky and H. J. de Vega, Phys. Rev6® 085038
(2001); Yad. Fiz. 64, 899 (2001 [Phys. At. Nucl.64, 834 (2002.

076011-13



