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We study instantons in QCD with many colors. We first discuss a number of qualitative arguments concern-

ing the largeN,. scaling behavior of a random instanton ensemble. We show that most hadronic observables are
compatible with standard lardé. counting rules provided the average instanton size(it) and the instanton

density isO(N.) in the largeN. limit. This is not the case for the topological susceptibility and the mass of the

n'. For these observables consistency with conventional IBkgeounting requires that fluctuations in the
instanton liquid are suppressed compared to Poissonian fluctuations. Using mean field estimates and numerical
simulations we show that the required scaling behavior of the instanton density is natural in models in which
the instanton density is regularized in terms of a classical repulsive core. We also show that in these models
fluctuations of the topological charge are suppressed andnj;;at O(1/N.). We conclude that the instanton

liquid model is not necessarily in conflict with theNL/ expansion.
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I. INTRODUCTION

Quantum chromodynamic$QCD), the theory of the

PACS nuniderl11.15.Pg, 12.38.Lg

is O(1) in the largeN, limit [2,3]. Standard larg®&. count-
ing suggests that the contribution of fermionsytg, is sub-
leading in 1IN.. We know, however, that this is not correct,

strong interactions, is an essentially parameter free theorjpecause there is né dependence in QCD with massless

The QCD Lagrangian contains a coupling constaptbut

fermions. Witten argued that this apparent contradiction can

because of the phenomenon of dimensional transmutatiobe resolved if the mass of the’ meson scales as_ 2 in
this parameter is replaced by a dimensionful scale parametehe largeN, limit. Witten [4] and Veneziand5] derived a

Agcp- As a consequence, there is no obvious expansiopelation between the mass of th¢ and the topological sus-
parameter in QCD. 't Hooft proposed to use the number okeptibility in pure gauge theory,

colors,N., as a parametdd]. He suggested that QCD sim-
plifies in the limitN.— o and that 1N, can be treated as an

expansion parameter.
We do not know how to solve QCD in the largg limit.
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However, by analyzing théN. dependence of classes of Using x,,=0(1) andf2=0(N,) we observe that indeed
Feynman diagrams we can make certain qualitative statqﬁZ,:O(llNc). This result implies that theJ(1), anomaly

ments about the structure of largg QCD. We expect, for
example, that the masses of mesons and glueball® ét¢
whereas the masses of baryons @@.). Also, meson de-

cay constants ar@(Ng/Z) and meson-meson scattering am-

plitudes areO(1/N;). As a result, largédN. QCD is a theory
of weakly interacting mesons and glueballs.
The fate of theJ (1), anomaly in the larg®\. limit is an

interesting question. The problem is complicated by the fact

that if the 6 term,

in 2
1g“6 ga
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is %ﬁectively restored in the largd. limit.

The 6 dependence of vacuum energy is related to topo-
logical properties of QCD. In the semi-classical approxima-
tion these features can be described in terms of instantons.
Instantons are localized field configurations that carry topo-
logical chargg6]:

9° .
Qtop:@J d4XGzVG2V= *1. 4

In 1978 Witten observed that classical effects, such as instan-
tons, scale as exp(l/g?) ~exp(—N.) which seems to con-
tradict the assumptiof,,=O(1) [2]. On the other hand, it
was also found that the assumption that topological fluctua-

is added to the QCD Lagrangian, then in perturbation theoryions are semi-classical leads to a very successful picture of

there is no dependence on the paramétéditten suggested
that non-perturbative effects generatedependence in the
pure gauge theory and that the topological susceptibility,

the QCD vacuum, termed the instanton liquid mddet1Q].
The instanton liquid model postulates that fgy= 3 the den-
sity of instantons is approximatelN(V) =1 fm~* while the
average size ip=1/3 fm. These numbers reproduce the to-

d2E pological susceptibility in the pure gauge theopy,,

Xiop= 02 : (20 =(200 MeV)y* and the chiral condensate(y)=
01 -0 — (230 MeV)®. More detailed calculations show that the in-
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stanton liquid model successfully describes an impressivéibution is regularized by a classical repulsive core. Before
amount of data on hadronic correlation functiga®—12. we discuss this result we would like to provide some plausi-
Topological properties of the QCD vacuum have alsobility arguments and explore simple consequences of the
been studied in lattice QCD. It was found that the topologicalkcaling relations.
susceptibility in pure gauge QCD jg,,=(200 MeV)* [13], We first consider the average instanton sizeAt one-
as predicted by the Witten-Veneziano relation, B). How-  loop order the instanton action is given By=(872)/g?=
ever, it was also observed that the topological susceptibility-b log(pA) whereb= (11IN.)/3 is the first coefficient of the
is very stable under cooling, and appears to be dominated lyeta function in pure gauge QCD. In the 't Hooft limik,
semi-classical configurations. Lattice simulations also seem-« with g?N.=const we expectS,=0(N,) and p
to confirm the values of the key parameters of the instantor=0O(1). We have to keep in mind, however, that instantons
liquid [14], (N/V)=1 fm~* and p=1/3 fm. Recent work in QCD come in all sizes. In the semi-classical approxima-
has focused on the relation of instantons and low-lyingtion we cannot study instantons with sigze- A ~* and action
eigenstates of the Dirac operator. The instanton model pres,~1. There is evidence, however, that chiral symmetry
dicts that the lowest eigenstates of the Dirac operator, whichreaking in QCD withN.=3 colors is dominated by small
dominate chiral symmetry breaking, are linear combinationsnstantonsA priori it is not clear whether this remains true in
of localized, approximately chiral states associated with thehe largeN, limit. Our strategy in this work is to assume that
fermionic zero modes of individual instantons and anti-the semi-classical approximation remains valid and to show
instantons[15]. This picture has been confirmed by lattice that this assumption leads to a consistent picture.
calculationg16,17). In the random instanton liquid model the instanton density

In light of these results the question arises whether thés related to the non-perturbative gluon condensate
success of the instanton model can be reconciled with the

largeN, expansion. In order to address this problem we have N 1
investigated the predictions of the instanton model for QCD = (9?°G? G2 ). (6)

with many colors. This paper is organized as follows. In Sec. V. 3242 pros

Il we present qualitative arguments based on a random in-

stanton liquid. In Secs. Il and IV we discuss analytic resultsStandardN,, counting suggests th4g°G2)=0(N,) and we
obtained in the mean field approximation. In Secs. V and Vlare lead to the conclusion that{V)=O(N.). This is also

we discuss the results of numerical simulations of the interconsistent with the expected Sca"ng of the vacuum energy.
acting instanton liquid. Using Eq.(6) and the trace anomaly relation

II. RANDOM INSTANTON LIQUID b
<TMM>: -

2~a a
G:,G%.), 7
The simplest picture of the instanton liquid in QCD is the (976Gl 0

random instanton liquid model proposed by Shuryak
This model is based on the assumption that the instantoge vacuum energy density is given by
ensemble is characterized by two key parameters, the instan-
ton density N/V) and the typical instanton size. Except b/N
for the size, the collective coordinates of the instantons are e= — _<_)_ (8)
distributed randomly. The model refers to an instanton liquid 4
rather than an instanton gas because interactions between
instantons cannot be ignored completely. This is particularlyJsing (N/V)=O(N.) we find that the vacuum energy scales
clear if massless fermions are present. If interactions are igas e= O(N?) which agrees with our expectations for a sys-
nored then every instanton contributes an exact zero mode tem with Ng gluonic degrees of freedom. We should note that
the spectrum of the Dirac operator and the total density ofq. (8) requires interactions between instantons. The parti-
instantons is exaCtIy zero. Interactions lead to miXing be'tion function of a Comp|ete|y non_interacting gas of instan-
tween the zero modes and qualitatively change the spectrufgns givese~ (N/V)~N,.
of the Dirac operator. As a consequence, c_hiral symm_etry IS We also note thatN/V)=0O(N,) implies that the effec-
spontaneously broken and the density of instantons is nonjye “packing fraction” of instantons remains constant in the
Zero. _ _ large N limit. Instantons with topological charg®,,=

In order to understand the lar@g, behavior of the instan-  +1 ip SU(N,) QCD are embeddings &U(2) instantons.
ton liquid we have to understand the scaling behavior of thesjnce the number of mutually commuti®iJ(2) subgroups
two parameters introduced above. In this paper we shall agyf SU(N,) scales asN, we can haveO(N,) instantons
gue that which overlap in space but are in fact weakly interacting.
Witten argued that the only alternatives &g=O(N,) and
(N/V)=0(e Ne) or Sy=0(1) and (N/V)=0(eNc). How-
ever, as we shall see in the next section, it is possible for the
instanton density to remain finite everS§= O(N,) because
In Sec. Il we will show that Eq(5) follows from the parti- the large entropy of instantons $lU(N.) can overcome the
tion function of the instanton liquid if the instanton size dis- exponential suppression due to the action.

3272
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If instantons are distributed randomly then fluctuations in1/N§. We conclude that the coefficient in the gap equation is
the number of instantons and anti-instantons are expected ©(1) and that the dynamically generated quark mass is
be Poissonian. This leads to the predictions O(1) also. This also implies that the quark condensate,

which involves an extra sum over color, 3 N,).
(N%)=(N)?=(N), 9 ‘

lll. THE MEAN FIELD APPROXIMATION
(Q%)=(N), (10

In this section we shall make the arguments presented in
the previous section more quantitative. Instead of consider-
ing the average instanton size and instanton size density to
be arbitrary parameters, we shall determine these quantities
@ (N from the partition function of the instanton ensemble. This

= (_) (11) means, in particular, that boghand (N/V) are expressed in
terms of the fundamental scale parameter of QCD. For this
, _ _ . purpose it is essential to take the interaction between instan-
pgmg (vaé'_ Q(NC)V:’/\.'e ol?serve thaktop__o(gNlc) Vl‘_lih'Ch tons into account. If instantons are semi-classi€qls>1,
IS in contradiction to Witten's assumptioio,= ( ) OW"  and if the interaction between instantons is wesk,
ever, as we shall see in the next section, interactions betweegSi this can be accomplished using mean field methods
. . . P nst»
Instantons cannot be ignored in the lafge limit and the [20,9,21. In this section, we shall follow the variational
fluctuations are suppressed compared to E9s.(10). method of Diakonov and Petrd@]
. Finally, we would I'ke. to.study chlral_symmetry bre_akmg We consider the partition function for a system of instan-
in a random instanton liquid. For definiteness, we will COM-tons in pure gauge theory:
sider the cas@l;=2 but the conclusions are of course inde- '

whereN=N,+ N, is the total number of instantons ay
=N,—N, is the topological charge. Equatiqh0) implies
that

Xtop:T v/

pendent of the number of flavors. Instantons induce an effec- 1 NitNa

tive 2N¢-fermion Lagrangian. After averaging over the color 2= N 11 [dQn(p)]exp(—Sn). (14
orientation of the instanton the effective Lagrangian is given NiINal 5

by [18,19

Here, Q,=(z ,p,,U,) are the collective coordinates of the
2(2mp)tp? 2N~ 1 instantonl andn(p) is the semi-classical instanton distribu-

No—1 . ;

/J:f n(p)dp —(¢L,fl¢R,gl) tion function[22]:
SWZ)ZNC “Se [{ 8772} (15
em” “ — '
o) ° d(p)?

a(N2-1) 0l TN,

_ 1 o e
X("valeflijgz)_ 8_|\](:(¢va10-/“’1’va91)(l'vafga-//-VwR,gz) n(p) Ne

co 0.466exp—1.67N,) 16
We observe that the expliciN. dependence is given by 872 11
1/NZ. This is again related to the fact that instantons are 5~ Pblog(pA),  b=—=Nc. 17)
SU(2) objects. Quarks can only interact via instanton zero 9°(p)

modes if they overlap with the co_k_)r wave function of the We have denoted the classical instanton interactios;py.
instanton. As a result, the probability that two quarks W.'thlf the instanton ensemble is sufficiently dilute we can ap-

arbitrary color propagating in the background field of an in-p o imate the instanton interaction as a sum of two-body
stanton interaction i©(1/N). terms, S=3,;S,;. For a well separated instanton—anti-

~ Chiral symmetry breaking can be studied in the meannstanton pair the interaction has the dipole strucfiie
field approximation. We will address this problem in much

more detail in the following section but we can give a simple 30772 Puzpf\
qualitative argument here. In the mean field approximation Sint=—— —4|u|2(1—4co§0). (18
we can derive a gap equation for the spontaneously gener- 9° Ria

ated constituent quark mass. The gap equation is of the form ) . . ) )
Here p, 5 are instanton radii an&,, is the instanton—anti-

d%k M instanton separation. The relative color orientation is charac-
(13) terized by a complex four-vectouﬂz(1/2i)tr(U|A7-;),
WhereU|A=U,UL depends on the rigid gauge transforma-
. . . . tions that describe the color orientation of the individual in-
whereM is the constituent mass ar@lis the effective cou-

pling constant in Eq(12). The factorN, comes from doing Stanton and anti-instanton and, = (7, —i). We have also
the trace over the quark propagator. The coupling con§ant defined the relative color angle é@s-|u-R%|u[>. The dipole
scales as N; because the density of instantonsQgN.) interaction is valid ifR%>p;ps. We will specify the inter-
and the effective Lagrangian contains an explicit factoraction at shorter distances below.

M=GNJ _,
‘) (2m* M2+K?
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Diakonov and Petrov suggested to analyze the partiton 25———71———71— . — T

function, Eq.(14), using a variational single-instanton distri- &
bution x(p) [9]. The corresponding partition function is I G P s
G (N/V) e
N, +N 21— o <qq> @/@ —
Z,= ! I]'[A dQ — V)Nt Na » /
L NINA L im(pr)= W( o) «f

19

1, <qq> [A
G
[
|

whereuo=fdp w(p). The exact partition function is s and

Z=Z(exd —(S—S)]), (20

—

where S is the full action,S;=log[u(p)] is the variational
estimate and the average) is computed using the varia-
tional distribution function. The partition function satisfies 0.5
the bound

p AT, (N/V) [AY,

Z=Z.exp—(S—S,)), (21 | . | | | |
. . . o %) 4 6 8 10 12 14
which follows from convexity. The optimal distribution func- N,
tion w(p) is determined from a variational principle,
(810g2)/[ 5u(p)]=0, whereZ is computed from Eq(21). FIG. 1. Average instanton size instanton densityN/V) and

One can show that the variational result for the free energyjuark condensatéqq) for different numbers of color\;. The

F=—log(2)/V provides an upper bound on the true free en-results shown in this figure were obtained using the mean field

ergy. approximation. All quantities are given in units of the QCD scale
The calculation of S—S;) reduces to the calculation of parameterA.

the average instanton interacti¢®,;). Since the variational

ansatz does not include any correlations, we only need to

average the instanton interaction over the collective coordi- =

nates of the two instantons. The dipole interacti®8 van-

ishes when averaged over all color orientations. In F&fit . . .

was proposed to 20mpute the instanton interaction at all disWe ”Ot? thz_atA is the only dimensionful parameter. The free

tances using a specific ansdtalled the “sum ansat2"for energy is given by

the two-instanton configuration. The result is that both the b(N)

instanton-instanton1{) and instanton—anti-instantor X) F:_Z v

v= . (25

(26)
are repulsive on average. We find

g2 7 N which is in agreement with the trace anomaly. We can now
[

_9T 222 2_ 2 study the dependence dfi(V) andp onN.; see Fig. 1. We
=— , =— . 22 c
(Sine) g2 YPiby Vg N§_1Tr 22 note that to one-loop order the scale in the pre-exponent
B(p) is not well determined. In practice we assume tBat
The interaction contains an explicit factdﬁC/(Ng—l) =N_.sy with sp=5. Changings, does affect bothN/V) and

~ 1/N; which reflects the probability that two random instan- p but the main effect can be absorbed in the scale parameter.
tons overlap in color space. Since the classical action scaléhe remaining dependence epis very weak.

asSy~ 1/g? we find that the average interaction between any Figure 1 shows that foN.>4 the average instanton size
two instantons i90(1). Applying the variational principle, is essentially constant while the instanton density grows lin-
one finds[9] early withN, . This is easily verified by inspecting ER4).
Expanding logl/V) in powers ofN. and log(\;) we observe
Np? that independent of the details of the interaction the instanton
wip)=n(p)expg — By? T)pz , (23 density scales at most as a power, not an exponentidl;in
[23]. Using the fact thaty?=0(1/N,), which is equivalent
. ) R to (S, )=0(1), we findthat (N/V)=0O(N.). This result
where3=(p) is the average instanton action aidlis the  gepends on the instanton interaction, but as we noted above,
average size. We observe that the single |n§tanton d|str|buyzzo(1/NC) is a consequence of the fact that instantons are
tion is cut_off at large sizes by the average instanton repulsu(z) gauge field configurations.
sion. The instanton density and average size are given by  There is a simple argument that explains why the instan-
N ton density scales as the number of colors. In our model, the
N4 2N 2\ — vI272/(2+ v size distribution is regularized by the interaction between
V_A [Cr BT () (Bry?) ] e, 29 instantons. This means that there has to be a balance between

076009-4
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2 T T T T . T 1

(3272)?

f d*x{(g?G?(0)g*G*(x)) —(9?G?(0))?}

(9°G?). (28)

b 3252

This result is very general and based solely on the renormal-
ization group equations. The left hand side is given by an
integral over the field strength correlator, suitably regularized
and with the constant terriG2)2 subtracted. For a dilute
system of instantons E@28) reduces to Eq(27). The result
(27) shows that fluctuations of the instanton ensemble are
suppressed by WIl,. This is agreement with general argu-
ments showing that fluctuations are suppressed in the large
N, limit. We also note that the resul27) clearly shows that
even if instantons are semi-classical, interactions between
instantons are crucial in the lardé, limit.

Fluctuation in the topological charge can be studied by
adding a#@ term to the partition functioril4). We find

(Q@%)=(N), (29)
FIG. 2. Instanton size distributiom(p) for different numbers of
colors N.=3, ...,10. The results shown in this figure were ob- Which is identical to the result in the random instanton liquid
tained using the mean field approximation. and not in agreement with Witten's hypothegig,=O(1).
However, Diakonowet al. noticed that Eq(29) is a conse-

. . . . quence of the fact that in the sum ansatz the average inter-
the average single instanton action and the average interac- . . e .
ction between instantons of the same charge is identical to

fuo.n between instantons. If the a\t/éetrage instanton act!on safr average interaction between instantons of opposite
'Sf:etSSO:O(Nc) we expect tha{Si) = O(N.) also. Using  ¢arqe[29]. In general there is no reason for this to be the
(Siny = (N/V)(Siy) and the fact that the average interactioncase and more sophisticated instanton interactions do not
between any two instantons satisf{&,)=O0(1) we expect have this featur¢30—32. If r denotes the ratio of the aver-
that the density grows &, . age interaction between instantons of opposite charge and
Figure 2 shows the instanton size distribution for differentinstanton of the same charges (S4)/(S;), then[29]

numbers of colors. We observe that the number of small
instantons is strongly suppressedMys—« but the average

size stabilizes at a finite value<A ~1. We also note that
there is critical sizep* for which the number of instantons
does not change d$.—«. The value ofp* is easy to de-
termine analytically. We writen(p)=exgdN:F(p)] with
F(p)=alog(p)+bp?+c where the coefficienta,b,c are in-

n(p)
T

(@)= (N 30
b_r(b_a) N

This result shows that for any value of 1 fluctuations in
the topological charge are suppressed\as-~. We also
note thaty.,,=0(1), in agreement with Witten’s hypoth-

dependent oN. in the largeN. limit. The critical value ofp esls.

is given by the zero of (p). We find p*=0.4 1. The

existence of a critical instanton size for whiolfp*) is in- IV. CHIRAL SYMMETRY BREAKING

dependent oN was discussed b}25,24,26. The problem In this section we wish to study chiral symmetry breaking

was studied on the lattice by Lucini and Tep27], who find i, the mean field approximation. This can be done by study-
p*=6a=0.43 fm. ing the Dyson-Schwinger equation for the quark propagator

Next we wish to study fluctuations in the instanton liquid. oy by analyzing the spectrum of the Dirac operator. In this
Fluctuations in the net instanton number are related to thgection we wish to use the more microscopic approach and
second derivative of the free energy with respecNtoVe  analyze the spectrum of the Dirac operator. In a basis
find spanned by the individual zero modes of the instantons and

anti-instantons the Dirac operator has the structure

T, 0 D

2\ _ 2:f : _
(N2 =(N)2= L (N). 27 (iD)=

whereT,, is the overlap matrix element of the Dirac opera-
This result is in agreement with a low energy theorem basetbrs between an instanton and anti-instanton zero mode. The
on broken scale invariand@8| matrix elements depend on the collective coordinates of the
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quenched log an artifact of the quenched approximation. From quenched
n=O(I/N ) bulk chiral perturbation theory we exp€g@&3]

PV ) 1=0(N)

exact zero modes & N)= 2 1 m(z) | |)\| + 35

n=0(1) \ p(N)= P —167721‘72709 7 cee (- (39

\_,. chiral symmetry breaking Here, Y is a parameter that corresponds to tinegative

n=0(N ) unquenched chiral condensate amg is the mass of the
quenched ghost pole. This mass corresponds to the mass of
A the %' in the chiral limit of full QCD. Usinng=O(1/NC)

we find that the coefficient of the logarithmic enhancement
vanishes as N in the largeN, limit. This, of course, is
consistent with the idea that the fermion determinant is not
. : . : . important in the largeN. limit. The third component of the
instanton. If the interaction between instantons is weak, thgpectrum is given by the almost zero modes related to chiral

bmatr|r>]< elemenés are d'Str'C%Uted randomly thh ZEI0 averag€qy mmetry breaking. This part of the spectrum is expected to
hu” € secon ;non_went Thia 1S fnc;}n-z.ero. tveragmg OVET scale asN,, as is the bulk of the spectrum which is not
the positions and orientations of the instantons we get related to chiral symmetry breaking.

At finite N; the spectrum of the Dirac operator in full

(32) QCD with light fermions has a different behavior. The num-

ber of exact zero modes is again proportional ,Q(pogV)l’2

but in full QCD the topological susceptibility is suppressed,
The factor 1N, comes from the average ove&U(Nc).  y, ~—m(yy). This implies that a®. increases the num-
Equation(32) implies that the average matrix element of f[he ber of exact zero modes initially increasesN#z and then
Dirac operators decreases abldbut the second moment in gatyrates at the value corresponding to the quenched topo-
the zero modes zone i©(1). If the matrix elements are |ggical susceptibility. In the infinite volume limit the spec-
distributed according to a Gaussian unitary ensemble, thgum near the origin is linear. Chiral perturbation theory pre-

FIG. 3. Schematic behavior of the spectrum of the Dirac opera
tor in quenched QCD with many colors.

2 2
(e
AV 3N, VO

spectral density is a semi-circle dicts the slope of the spectrufg4]:
N A2\ s (N2—a)y

N=——|1-—| , 33 AN)=—41+——FI\|+ ... . 36

pN=—F 402) (33 p(M)=— 2N A (36)

with o2=|T%|. We observe that the width of the zero mode We observe that the constant part of the spectrum grows as

zone is related tor, which isO(1). According to the Banks- N whereas the linear part is independentN\yf. This im-

Casher formula the quark condensate is related to the speplies that in the large\, limit the spectrum at the origin is

tral density at zero virtuality: flat for any number of flavors as long && is not of the
orderN,.

(39

(qay=—-— Y]

P

1 (3N, N\*2
V. THE INTERACTING INSTANTON LIQUID

_ In this section we wish to go beyond the mean field ap-
Because I/V) =O(N,) the quark condensate also grows asy,yimation and study the partition function of the instanton

N.. This, of course, is the expected behavior. We note, Nowyqiq ysing numerical simulations. These simulations take

ever, that the linear growth iN, is really a combination of jn5 account all correlations between instantons. The numeri-
two _effects. The linear 1|/r210rease in the numper of mobles techniques are described in detail in RéB5—37. In
provides one factor oN;™ and the decrease in the averagegrger to perform these simulations we have to fully specify
matrix elemen{T,,| contributes another factor of’. the instanton interaction. We have used the “streamline” in-
The true spectral density of the Dirac operator in notteraction determined in Ref§31,32. The streamline solu-
given by a semi-circle. Schematically, the spectrum of thejon is characterized by the fact that the action of the ap-
Dirac operator in quenched QCD is shown in Fig. 3. Thereproximate instanton—anti-instanton solution is a local
are several notable features. First, in a finite volume there iginimum except in the direction of the “valley” in configu-
a certain number of exact zero modes. This number is proration space that connects a well separated IA pair with a
portional to (x;,,V)*? and therefore scales && . We note  very close pair. There is no interaction between two instan-
that in the infinite volume limit exact zero modes are nottons of the same charge. The interaction between two instan-
important because their number scales/&swhile the total  tons of opposite charge approache®S, if the relative
number of states increases linearly with the volume. Theolor orientation is attractive.
second feature of the spectrum is the logarithmic enhance- This implies that the streamline interaction lacks the re-
ment of the spectrum at small virtuality. This enhancement ipulsive core that is required to stabilize the instanton en-
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semble at the classical level. In order to correct this problem 0 I
we have added a purely phenomenological core to the instan
ton interaction. The interaction is given by

8m? A
core:__|u|2’
g2 )\4

_ R+pl+pR
2p1pa

1/2

(R*+pf+p)?

40202 -1 (37)
P1PaA

in both Il andlA channels. The dimensionless paraméter

controls the strength of the core and is adjusted to reproduc: | | |

the phenomenological dilutenepé§(N/V) of the instanton '0'310 0.15 0.2 0.3 0.4

ensemble. In our simulations we have uged128. We note (N/V) [AY

that the hard core interaction E¢37) only acts between

instantons that overlap in color space. As a result, we expect FIG. 4. Free energyr of the quenched instanton liquid as a

(Seorey=0(1), in agreement with the interaction used in the function of the instanton densityN(V) for N.=3, ... ,6 colors.

mean field treatment. Both (N/V) andF are given in units of the QCD scale parameter.
One might argue that there should not be any interactioﬂ-_he re_sults s_hown in _this figure were obtained using numerical

between instantons of the same charge because there is a9'ulations withN =32 instantons.

X (2N arameter family of two-instanton solutions with N . .
(2Nc) p y shown in Fig. 5. We observe thaN(V) increases linearly

action 2x (872)/g? [38]. However, there are two phenom- ith N.. wh he 1 _ drafic. The <l ¢
ena that lead to an effective instanton-instanton interactionV'th Nc whereas the free energy is quadratic. The slope o

The first is related to the fact that the collective coordinate(N/V) as a function och_|s s_mall, in agreement with the
measure for two close instantons is not just the product of€an field result shown in Fig. 1. In contrast to the mean
two single-instanton measures. Carter and Shuryak argudlf!d result the linear behavior already sets in at small
that this will lead to an effective short range instanton-=3- e have checked the stability of our results to changing

instanton repulsiofi39,40. Whether this effect has the same the strength of the hard core interaction and including higher
N, dependence as the classical interaction, &) is an order corrections in the QCD beta function. Both changes
C )

important problem. The second effect is that quantum correcaffect the results quantita}ively but not qualitatively. HOW_'
tions to a charge-two instanton solution do not factorize. AE€VE": the results are crucially dependent on the assumption
a quantum correction, this effect is naively suppressed bihat the parametek in Eq. (37) is not a function ofN. .
1/S,~ 1IN, but the suppression can be overcome if instan- We have also st_uq[ed the instanton size dlstnbuyon, the
tons with different color orientation interact. topological .susceptlblllty, and the spectrum of the Dirac op-
In order to determine the instanton density and the fre&rator for different numbers of colors. In order to be able to
energy of the instanton liquid we have to compute the partidistinguish more clearly between different scenarios we have
tion function, Eq.(14). Monte Carlo simulations are ideally not used the exact instanton density determined in Fig. 4 but

suited for computing expectation values, but they do not di- : . :
rectly provide the partition function. It is possible, however, 0-2# - e .

to compute free energy differences. This implies that Monte = .
Carlo simulations can be used to compute the ratio of two ok |
partition functions. In practice we calculate the ratio of the
exact partition function and the variational estimate, Eq.g i 1
(19). The exact partition function is given B36] = 02+ : (I\;/V) -
1 s ]
logZ=log(Z,)— f da((S—Sy))q- 38 & @ .
o T AT e |
Here,Z, is the variational partition function, E€L9), ands, | e ®...
is the variational action. The expectation valug,, is deter- 06 e ]
mined using the interpolating acti®),=S,;+ «(S—S,). S, - L L L L L *
reduces to the variational action far=0 and the exact ac- 3 4 N 3 6
tion for a=1. ¢
The free energy energy of the instanton liquid as a func- G, 5. Instanton densityN/V) and free energyF in a pure
tion of the instanton density foN.=3,...,6 isshown in  gauge instanton ensemble f§g=3, .. . ,6colors. Both N/V) and

Fig. 4. The equilibrium density is determined by the mini- F are given in units ofA* whereA is the QCD scale parameter. The
mum of the functionF(N/V). The dependence of equilib- dashed lines show fits of the forayN2+a,N.+a; (for the free
rium density and the free energy on the number of colors inergyF) anda,N.+ a; (for the instanton densiti{/V).
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1.0x10°

0.0

FIG. 6. Instanton size distribution in a pure gauge instanton 0.4 ! ' ' ' ! ' !
ensemble for different numbers of colors. The results were obtainec 0:3 } 1.5
using numerical simulations witN= 128 instantons. LA

. . . FIG. 7. Finite volume topological susceptibility;,(14) in a
have simply scaledN/V)~N,. At large N; this will only 516 gauge instanton ensemble for different numbers of colors. The

introduce errors that are suppressed by1/The instanton  resuits were obtained using numerical simulations Wita 128 in-
size distribution is shown in Fig. 6. As expected small instansiantons.

tons are strongly suppressed as the number of colors in-
creases. We observe a clear fixed point in the size distrib
tion atp* A=0.27.

Our simulations were carried out in the total topological .
chargeQ,,=0 sector of the theory. We can neverthelessN Ne-

determine the topological susceptibility by measuring the av:_ In tlhe ;chnt Iiterat.urehg r:umber of agtholrf hat\)/e stuldied
eragthzop in a sub-volumeVsx|, of the Euclidean box the role of instantons in chiral symmetry breaking by analyz-

V35X L, [35]. The finite volume susceptibility is given by E‘Sa?i;gfaatloﬂiﬁli_tryh)é()é)u;f] t:'([);)\l( (I))(/;ni% ﬁgfnneséaéis of the

Yer of colors increases. The chiral condensate iy
=0.1A is shown in Fig. 8. We clearly see th@q) is linear

2 -1
()= Quophvarty () 1a 39 < |
Xtop 4 VaX| L . N
37l 4 - o (NV)]
- -
-1 . . —_— B \\\ O <qq> -
The factor (+-14/L,)" " takes into account the constraint < » o X
from overall charge neutrality. This correction factor is de- = 3 © *op -
rived under the assumption that the fluctuations are GaussI S e
ian. In an ideal calculatio,>1, and the correction for Vv [F T
A - o - S ==
overall neutrality is small. The topological susceptibilities =~ -
are shown in Fig. 7. We observe thgf,,(l4) tendstoa > ar n
constant ad, increases. We identify this constant with the ~~ | o R ]
susceptibility in the thermodynamic limit. We find that for & <p- e - e
N.=3 the topological susceptibility agrees well with the ex- =~ 1} I e =
pectation based on Poissonian statistigg,,=(N/V). For B
N.>3, however, fluctuations are significantly suppressed " T
and the topological susceptibility increases more slowly than . | . |
the density of instantons. Figure 8 shows that our results are 0.1 0.2 0.3
consistent with a scenario in whick,, remains finite as 1/NC
N.— .
In Fig. 9 we show the spectrum of the Dirac operator for FIG. 8. Dependence of the chiral condensates) and the to-
Nc.=3,...,6.Since we calculate in th®;,,=0 sector of pological susceptibility,,, on the number of colors. The instanton

the theory there are no exact zero modes. We clearly obsendensity (N/V) was assumed to scale a/{/)~N,. The dashed
the enhancement of the spectral density neai0, but we lines show fits of the forma;N.+a, (for () andN/V) anda,
also note that this enhancement becomes weaker as the numaz /N, (for xop).
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A[A] local chirality X
FIG. 9. Spectrum of the Dirac operator in a pure gauge instanton 15 19 |ocal chirality distribution function in a pure gauge

ensemble for different numbers of colors. The eigenvalues are givepqianion ensemble for different numbers of colors. The local chiral-

in units of the QCD scale parameter. The results were obtainefy v is gefined in the text. The results were obtained using numeri-
using numerical simulations witN= 128 instantons. cal simulations withN =128 instantons

+ 1+ 1/2 . _ . )
tar(g[lﬂLX(x)]) :( Y (1+ys) , (40) lattice QCD forN,=2, ... ,5[41]. In their calculations the

P (1= ys) o double peak structure disappears .muc_h more q_uickly as .the
number of colors increases. This implies that either the in-
where ¢ is an eigenfunction of the Dirac operato  Stanton ensemble is not as dilute as we have assumed, or that
=\ in a given gauge configuration. In order to study chiralmixing with non-zero modes is more important. Given the
symmetry breaking one only considers the lowest few eigenfaCt the value ofp* in our simulations is also smaller than
vectors. The instanton liquid model predicts that these eigerthe value obtained by Lucini and Teper, it seems likely that
vectors are linear combinations of instanton and antithe instanton liquid in QCD is not quite as dilute as sug-
instanton zero modes. This implies that at poitshere the — gested in Ref[8].
wave functiony'y is large it is either left or right handed,
X(x)==1. In order to test this prediction one has to choose
a cutoff on the eigenvalug and some cutoff on the magni-
tude of " . Typically, the pointsx are restricted to the top We have also studied hadronic correlation functions in the
few percent of the eigenfunction. The instanton model Suginstanton liquid for different numbers of colors. We have
gests that this fraction should be no larger than the diluteneggpnsidered, in particular, correlation functions of currents
of the instanton liquid, and that the maximum eigenvaluewith the quantum numbers of the pion, the rho meson, and
should be smaller than the wid{ff,| of the zero mode the " meson. The currents are given by
zone.

In Fig. 10 we show numerical results for the local chiral-
ity distribution in the instanton liquid model. We have in-
cluded all states in the zero mode zone and used the top 30%
of the wave function. Th&l, dependence is similar if more
restrictive cuts are used. We observe that the double peak . _
structure is very pronounced for 8l.=3, . .. ,6.There is a The pion ar_1d rho meson are flayor non—smglet mesons. The
small shift of the peaks toward smaller values)ohs the correspondm_g c_orrelauon functions only involve the con-
number of colors increases. We have verified thatMor ~ Nected contribution
>10 the double peak structure disappears. This is related to
the fact that the instanton density increases and instantons
overlap in space. The instanton liquid remains dilute, how-
ever, because instantons do not overlap in color space. Thiith I'=iys,y, for the pion and rho meson, respectively.
is easily verified by computing chirality distributions for Here, S2%° denotes the quark propagator in a given gauge
eigenstates of the Dirac operator projected ddli2) sub-  configuration,a,b are color indices, and the trace runs over
group. Cundy et al. computed local chirality distributions in Dirac indices. The average) is performed with respect to

VI. HADRONIC CORRELATION FUNCTIONS

1 _

jﬂn':a’)%uv jg:ayl-‘uy j7]’=\/—
(41

I, -1 (x)=(T S2(0x)'S*3(x,0T']), (42)
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the partition function, Eq(14). The »" meson is a flavor HW(X)ZRiD(mW-X)—KiméD’(mmX)
singlet meson and the correlation function has an additional,

disconnected, term. We find N. (=
*3 zf dssD(vs,x), (49)
T, o(X) = (T S*(0X) T SP3(x,0)T']) L
— 2T S(0,0T T SP(x,x)T]), (43  With
with I'=iys. The masses of the,p, and»’ mesons can be D’(m,x)= iKo(mx). (50)
extracted by fitting the correlation functions to a spectral 872

representation. At large Euclidean separation the correlation

function is determined by the lowest hadronic resonance. AVe have used the spectral representation, (&), to deter-
good model for the contribution of excited states is given bymine the quenched’ massm; for differentN,.

the free quark—anti-quark continuum above some threshold Before we come to the numerical studies we would like to
invariant mass\/s—o. The threshold roughly corresponds to present several analytical results. If we study correlation
the location of the first excited state. For the pion and rhdunctions at distances small compared to the average separa-
meson we use tion between instantons<(N/V) %4 it is sufficient to take

into account the contribution from the closest instanton only.
The quark propagator is given by

Hw(x)=)\iD(mW,x)+N—C2fxdssI1Jg,x), (44)
87w )sy

_ ho(x=2)y(y—2)

S(x.y) (51)

2N, (=
Hp(x)zfﬁmﬁD(mp,xHQL dssD(ys,x), where iy(x) is the zero mode wave function amdis the
0 (45) location of the instanton. The effect of all other instantons
only ent%rs \ﬂg the  effective mass m*
whereD(m,x) is the Euclidean space propagator for a free__ Wp(z/NC)? (N/V) L T_he single Instanton contribution to
scalar meson with mass: the correlgtlon function is found by inserting t_he propagator,
Eqg. (51), into Egs.(42) and (43) and averaging over the
collective coordinates of the instanton.
Because of the chiral structure of the rho meson current
there is no zero mode contribution to the rho meson correla-
tion function. In the pion andy’ meson channel we find5]

D(m,x)=

22y Ki(mx). (46)

In full QCD the " meson can be described by the same 4 )

spectral representation as the pion. In quenched QCD, how- A (x)= +f dpn(p)ﬁi 1 J

ever, the spectral function in thg’ channel is not positive ™ B % (m*)? 9(x?)?
definite. There is a well established method for dealing with

this problem. In quenched chiral perturbation theory it is a4g% & & 1+¢

assumed that the disconnected part of thie correlation “Na IOngg (52
function corresponds to a ghost pole in the spectfd@+
44]. In momentum space the pole contributions are given by, iy, £2=x2/(x2+4p?). As is well known, the instanton con-

tribution is attractive in the pion channel, and repulsive in the

A2 A2 , 1 n' channel. The contribution of one instanton of given size
I, (q)= 2 2 - 24 2 Mg 2 2 (47) does not involve any factors &f., and is the same, up to the
q = 4 - g sign, in the pion andy’ channel. This is illustrated in Fig.

) 11. Perturbative contributions to the disconnected correlation
Going from quenched to unquenched QCD corresponds tfnction are suppressed by a factoN1/compared to the
summing the geometric series connected correlator. However, the single instanton contribu-

tion to the disconnected correlator is exactly the same as the
instanton contribution to the connected correlator. After inte-
(48) gration over the instanton distribution the correlation func-
tion scales as\. because the instanton density is propor-
tional toN.. This is the expected behavior in the case of the
andm?, =mg3+m? in full QCD. This result is expected to be pion correlation function but it implies that in the single
exact in the largeN. limit. In addition to that there is evi- instanton approximation the anomalowsy’ splitting does
dence from the lattice that the mass of themeson can be not disappear in the largd, limit.
extracted from the ghost pole propagator even Nge=3 In order to go to large distances>(N/V)~ ¥4 we have
[44]. In coordinate space E¢7) corresponds to to resum the instanton interaction. This can be achieved us-

xtl1-g2 2

)\2
I, ()— 5

n
a2+ m2+ma
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a) b) 1.5 T T T

O ) oW

©) d)

My, f.m_[A]
i
1

O(N/V) O(N/V) 05+ .

FIG. 11. Comparison of perturbative and instanton contributions
to connected and disconnected correlation functions. The perturba 0 oM,
tive contribution to the disconnected correlatby is suppressed by i oaf, 7
a factor 1N, compared to the connected correlatay. The single oo m,
instanton contribution to the two correlation functions, showtcjn

B B | | | | | |
and(d), is the same, up to a sign. 0 s T T 5

N

C

ing the mean fieldHartreg and random-phase approxima-
tion (RPA) methods[46]. The mean field approximation FIG. 12. Constituent quark madég, pion massm,, and pion

gives the constituent quark propagator decay constant . as a function of the number of coloks,. All
guantities are given in units of the QCD scale paramdteiThe
d4p i p+iM(p) results shown in this figure were obtained using the mean field
SQ(X)ZJ richie 5 (53)  approximation.
(27) p=+M(p)

wherep;=p+0/2, p,=p—0q/2 andM, ,=M(p;,). Using
whereM(p) is the dynamically generated quark mass. The(N/V)~N, andM~1 we observe that the pion ang cor-

momentum dependence f is determined by the Fourier relation functions in the largél,, limit depend onN, only
transform of zero mode wave function. In the rho Mesomnthrough an overall factor oN,. This |mp||esf2 O(Nc)
channel there is no direct instanton induced interaction angndm ,m, =0(1).

the correlation function is given by two non-interacting con- Numencal results for the constituent quark madg as

stituent quarks. We have well as the pion mass, and pion decay constarit, are
MEA_ shown in Fig. 12. We have used the average instanton size
IIr(x) =NeTSe()I'S(—=x)I'], (54) and density determined in Sec. Ill. The current quark mass is

m,=0.025\. There is some variation in the constituent
quark and pion masses for smhall<<10 but the size of N,
corrections is not large, about 20% fdg=3. The pion de-
cay constant shows the expectiidf> behavior but in this
case 1N, corrections are large, about 80% fdg= 3.

In Fig. 13 we show the correlation functions in the pion,
rho meson, andy’ meson channel. The correlation functions
are normalized to free field behavior. The overall factor of
N, drops out if the correlator is normalized in this way. We

T's(q). observe that the@ meson correlation function is essentially

1+Cs(q) independent oN, already for smalN,. There are substan-
(56)  ftial 1/N, corrections in ther and ' channel. The splitting

between ther and ' correlation functions is reduced in

where the trace is over the Dirac indices only dihdy,, . In
the pion andy’ channel there is a direct instanton interaction
that can be resummed using the RPA. We hia\&46-48

I, (%) =T1%FA0) + 11577 (55)
with

+

7700 =N ( )fd“qe'q “T's(q)

The loop and vertex functionSs andl’s are given by going fromN,=3 to N.=6 but it remains finite and large as
4 N.— 0.
() =4N (V)f d’p M;My(M;My—p;-py) The correlation functions measured in numerical simula-
Cs , . : Son > .
(2m*  (M2+p2)(M2+pd) tions of the instanton liquid foN.=3, ... 6 areshown in

(57) Fig. 14. The meson masses extracted from the spectral rep-
resentation Eqs44), (45), (49), are shown in Fig. 15. The
(MM ) YA(M M, — D1 Dy) results were obtained from simulations whth=128 instan-
S(q)= J L 22 - ! 22 21 2 tons in a Euclidean volum&A*=V;x5.76. V3 was ad-
(2m)*  (Mi+p)(M3+p)) justed such thatN/V)=(Ng/3)A*. In order to avoid finite
(58) volume artifacts the current quark mass was taken to be
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FIG. 13. Correlation functions in the pion, rho meson, arid FIG. 15. Masses of the pion, the rho meson, andsheneson
meson channel. The correlators are shown as a function of the digxtracted from meson correlation function in a pure gauge instanton
tance in units of the inverse scale parameter. The correlation funensemble for different numbers of colors. The results were con-
tions are normalized to free field behavidiy(x)~N./x®. The  verted to physical units using =0.2 GeV. The quark mass was
results shown in this figure were obtained using the mean fieldhosen to ben,=0.2A =40 MeV. The dashed lines show fits of
approximation. the forma, +a, /N, (for m% andm?) anda, /N, (for mf?,).

rather largemy=0.2A. We observe that the rho meson cor- consequence there is some variation in the pion mass. How-
relation function exhibits almost perfect scaling withh and  ever, as one can see from the fit shown in Fig. 15, this effect
as a result the rho meson mass is practically independent @ consistent with M, corrections that amount to about 40%
N.. The scaling is not as good in the case of the pion. As @f the pion mass foN.= 3. Finally, we study the behavior of

10

—

I () /TT(0)

0.1

the »’ correlation function. There is a clear tendency toward
U(1), restoration, but the correlation function is still very
repulsive forN.=6. As one can see from Fig. 15 the result is
consistent witrmfy,~1/NC although the error bars are quite
large.

For comparison, we show the expected behavior of the
correlation functions based on standard lagecounting in
Fig. 16. We have used the spectral representation, Bds.
(49), together with the phenomenological values,
=139 MeV, \,=(450 MeVy?, E,=1.3 GeV and mj
=900 MeV (N.=3). We assume thah?’~N, and mj
~1/N.. We observe that they’ correlation function only
approaches the pion correlation for fairly large valueslgf
For example, they’ correlation function does not show in-
termediate range attraction unle§ds>15. The variation in
going fromN;=3 to N.=6 is not dramatic, in agreement
with the results shown in Fig. 14.

VIl. SUMMARY

In summary we have studied instantons in the lage
limit of QCD. We have argued that it is possible for the

FIG. 14. Meson correlation function in a pure gauge instantoinstanton liquid model to have a smooth lafdglimit which
ensemble for different numbers of colors. We show the correlatiorS In agreement W'_th _scallng relatlons_ derived from Feynman
function of the pion, the rho meson, and thé meson normalized diagrams. In this limit the density of instantons growd\as

to the corresponding free correlation functions.

whereas the typical instanton size remains finite. Interactions
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1 T ' ' ' On the other hand it would be hard to reconcile the quanti-
tative success of the instanton liquid model in describing
chiral symmetry breaking and the mass of the with the
phenomenological success of thé&llexpansion if instanton
effects strongly violatéN. counting rules.

We should emphasize that the numerical results presented
in this work only cover fairly small values dfl;, N.<6,
and that all the analytical results were obtained in the mean
field approximation. We cannot exclude the possibility that
there is a phase transition as the number of colors becomes
large[24,39,49. Carter and Shuryak suggested, for example,
that for clusters involvind(N,) instantons M. suppressed
color singlet exchanges become dominant and lead to the
formation of tightly bound molecules. We did not observe
this phenomenon in our simulations even if a short range
color singlet interaction was included, but the number of
colors (N.=<10) may have been too small. We also did not
investigate the possibility that instantons in the lakgdimit
[ melt or dissociate into constituents with fractional topologi-

0 0.2 04 0.6 0.8 1 1.2 cal charge. The latter scenario was investigated in the case of
the CPN! model in Ref[50].

FIG. 16. Expected behavior of the quenched pion ahdorre- Our results can be compared to the lattice results of Lu-
lation functions in the largdl, limit. The correlation functions were ~ Cini and Tepef27] and Cundy, Teper, and Wengdeil]. Lu-
computed from the spectral representation E44), (49) using the cini and Teper find a fixed point in the instanton size distri-
phenomenological valuesi,=139 MeV, \_.=(450 MeV), E,  bution, in agreement with our results shown in Figs. 2 and 6.
=1.3 GeV andm,=900 MeV (N.=3). We assume that2~N,  However, they do not find any suppression of large size in-
andmz~ 1/N,. stantons. Cundy et al. studied the local chirality distribution.

They find that the double peak structure of this distribution
between instantons are important and suppress fluctuatiomisappears in the larde, limit. Our results shown in Fig. 10
of the topological charge. As a result th€1), anomaly is  are in qualitative, but not in quantitative agreement with their
effectively restored even though the number of instantonéindings. In our calculations the effect is much less pro-
increases. Using mean field argumef® and numerical nounced. This implies that either the instanton liquid is not
simulations we have shown that this scenario does not reas dilute as it is in our calculations, that mixing with non-
quire fine tuning. It arises naturally if the instanton ensemblezero modes becomes more importanigsncreases, or that
is stabilized by a classical repulsive core. In this case wénstantons are no longer semi-classical.
obtain a picture in which the instanton density is large but
the instanton liquid remains dilute because instantons are not
strongly overlapping in color space. Further investigations
will have to show whether this scenario is indeed correct. For | would like to thank D. Diakonov, D. Gross, E. Shuryak,
example, it would be useful to study the exact moduli spacéJ. Wenger, and A. Zhitnitsky for useful discussions. | would
for multi-instanton configurations in the lardé, limit. also like to acknowledge the hospitality of the Institute for

Of course, there is na priori reason why instantons have Theoretical Physics at UCSB where this work was com-
to be compatible with standard lar@& counting rules. In-  pleted. This work was supported in part by U.S. DOE grant
stantons are not part of the diagrammatic expansion and doE-FG-88ER40388 and by the National Science Founda-
not need to satisfy scaling relations derived from diagramstions under grant PHY99-07949.
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