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Instantons in QCD with many colors
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We study instantons in QCD with many colors. We first discuss a number of qualitative arguments concern-
ing the largeNc scaling behavior of a random instanton ensemble. We show that most hadronic observables are
compatible with standard largeNc counting rules provided the average instanton size isO(1) and the instanton
density isO(Nc) in the largeNc limit. This is not the case for the topological susceptibility and the mass of the
h8. For these observables consistency with conventional largeNc counting requires that fluctuations in the
instanton liquid are suppressed compared to Poissonian fluctuations. Using mean field estimates and numerical
simulations we show that the required scaling behavior of the instanton density is natural in models in which
the instanton density is regularized in terms of a classical repulsive core. We also show that in these models
fluctuations of the topological charge are suppressed and thatmh8

2
5O(1/Nc). We conclude that the instanton

liquid model is not necessarily in conflict with the 1/Nc expansion.

DOI: 10.1103/PhysRevD.66.076009 PACS number~s!: 11.15.Pg, 12.38.Lg
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I. INTRODUCTION

Quantum chromodynamics~QCD!, the theory of the
strong interactions, is an essentially parameter free the
The QCD Lagrangian contains a coupling constant,g, but
because of the phenomenon of dimensional transmuta
this parameter is replaced by a dimensionful scale param
LQCD . As a consequence, there is no obvious expans
parameter in QCD. ’t Hooft proposed to use the number
colors,Nc , as a parameter@1#. He suggested that QCD sim
plifies in the limitNc→` and that 1/Nc can be treated as a
expansion parameter.

We do not know how to solve QCD in the largeNc limit.
However, by analyzing theNc dependence of classes
Feynman diagrams we can make certain qualitative st
ments about the structure of largeNc QCD. We expect, for
example, that the masses of mesons and glueballs areO(1)
whereas the masses of baryons areO(Nc). Also, meson de-
cay constants areO(Nc

1/2) and meson-meson scattering am
plitudes areO(1/Nc). As a result, largeNc QCD is a theory
of weakly interacting mesons and glueballs.

The fate of theU(1)A anomaly in the largeNc limit is an
interesting question. The problem is complicated by the f
that if theu term,

L5
ig2u

32p2
Gmn

a G̃mn
a , ~1!

is added to the QCD Lagrangian, then in perturbation the
there is no dependence on the parameteru. Witten suggested
that non-perturbative effects generateu-dependence in the
pure gauge theory and that the topological susceptibility,

x top5
d2E

d u2U
u50

, ~2!
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is O(1) in the largeNc limit @2,3#. Standard largeNc count-
ing suggests that the contribution of fermions tox top is sub-
leading in 1/Nc . We know, however, that this is not correc
because there is nou dependence in QCD with massle
fermions. Witten argued that this apparent contradiction
be resolved if the mass of theh8 meson scales asNc

21/2 in
the largeNc limit. Witten @4# and Veneziano@5# derived a
relation between the mass of theh8 and the topological sus
ceptibility in pure gauge theory,

f p
2

2Nf
mh8

2
5x top . ~3!

Using x top5O(1) and f p
2 5O(Nc) we observe that indeed

mh8
2

5O(1/Nc). This result implies that theU(1)A anomaly
is effectively restored in the largeNc limit.

The u dependence of vacuum energy is related to to
logical properties of QCD. In the semi-classical approxim
tion these features can be described in terms of instant
Instantons are localized field configurations that carry to
logical charge@6#:

Qtop5
g2

32p2E d4xGmn
a G̃mn

a 561. ~4!

In 1978 Witten observed that classical effects, such as ins
tons, scale as exp(21/g2);exp(2Nc) which seems to con-
tradict the assumptionx top5O(1) @2#. On the other hand, it
was also found that the assumption that topological fluct
tions are semi-classical leads to a very successful pictur
the QCD vacuum, termed the instanton liquid model@7–10#.
The instanton liquid model postulates that forNc53 the den-
sity of instantons is approximately (N/V).1 fm24 while the
average size isr.1/3 fm. These numbers reproduce the t
pological susceptibility in the pure gauge theoryx top

.(200 MeV)4 and the chiral condensate^c̄c&.
2(230 MeV)3. More detailed calculations show that the i
©2002 The American Physical Society09-1
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stanton liquid model successfully describes an impres
amount of data on hadronic correlation functions@10–12#.

Topological properties of the QCD vacuum have a
been studied in lattice QCD. It was found that the topologi
susceptibility in pure gauge QCD isx top.(200 MeV)4 @13#,
as predicted by the Witten-Veneziano relation, Eq.~3!. How-
ever, it was also observed that the topological susceptib
is very stable under cooling, and appears to be dominate
semi-classical configurations. Lattice simulations also se
to confirm the values of the key parameters of the instan
liquid @14#, (N/V).1 fm24 and r.1/3 fm. Recent work
has focused on the relation of instantons and low-ly
eigenstates of the Dirac operator. The instanton model
dicts that the lowest eigenstates of the Dirac operator, wh
dominate chiral symmetry breaking, are linear combinatio
of localized, approximately chiral states associated with
fermionic zero modes of individual instantons and an
instantons@15#. This picture has been confirmed by lattic
calculations@16,17#.

In light of these results the question arises whether
success of the instanton model can be reconciled with
largeNc expansion. In order to address this problem we h
investigated the predictions of the instanton model for Q
with many colors. This paper is organized as follows. In S
II we present qualitative arguments based on a random
stanton liquid. In Secs. III and IV we discuss analytic resu
obtained in the mean field approximation. In Secs. V and
we discuss the results of numerical simulations of the in
acting instanton liquid.

II. RANDOM INSTANTON LIQUID

The simplest picture of the instanton liquid in QCD is t
random instanton liquid model proposed by Shuryak@8#.
This model is based on the assumption that the instan
ensemble is characterized by two key parameters, the ins
ton density (N/V) and the typical instanton sizer. Except
for the size, the collective coordinates of the instantons
distributed randomly. The model refers to an instanton liq
rather than an instanton gas because interactions betw
instantons cannot be ignored completely. This is particula
clear if massless fermions are present. If interactions are
nored then every instanton contributes an exact zero mod
the spectrum of the Dirac operator and the total density
instantons is exactly zero. Interactions lead to mixing
tween the zero modes and qualitatively change the spec
of the Dirac operator. As a consequence, chiral symmetr
spontaneously broken and the density of instantons is n
zero.

In order to understand the largeNc behavior of the instan-
ton liquid we have to understand the scaling behavior of
two parameters introduced above. In this paper we shal
gue that

N

V
5O~Nc!, r5O~1!. ~5!

In Sec. III we will show that Eq.~5! follows from the parti-
tion function of the instanton liquid if the instanton size d
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tribution is regularized by a classical repulsive core. Befo
we discuss this result we would like to provide some plau
bility arguments and explore simple consequences of
scaling relations.

We first consider the average instanton sizer. At one-
loop order the instanton action is given byS05(8p2)/g25
2b log(rL) whereb5(11Nc)/3 is the first coefficient of the
beta function in pure gauge QCD. In the ’t Hooft limitNc
→` with g2Nc5const we expectS05O(Nc) and r
5O(1). Wehave to keep in mind, however, that instanto
in QCD come in all sizes. In the semi-classical approxim
tion we cannot study instantons with sizer;L21 and action
S0;1. There is evidence, however, that chiral symme
breaking in QCD withNc53 colors is dominated by sma
instantons.A priori it is not clear whether this remains true
the largeNc limit. Our strategy in this work is to assume th
the semi-classical approximation remains valid and to sh
that this assumption leads to a consistent picture.

In the random instanton liquid model the instanton dens
is related to the non-perturbative gluon condensate

N

V
5

1

32p2
^g2Gmn

a Gmn
a &. ~6!

StandardNc counting suggests that^g2G2&5O(Nc) and we
are lead to the conclusion that (N/V)5O(Nc). This is also
consistent with the expected scaling of the vacuum ene
Using Eq.~6! and the trace anomaly relation

^Tmm&52
b

32p2
^g2Gmn

a Gmn
a &, ~7!

the vacuum energy density is given by

e52
b

4 S N

VD . ~8!

Using (N/V)5O(Nc) we find that the vacuum energy scal
as e5O(Nc

2) which agrees with our expectations for a sy
tem withNc

2 gluonic degrees of freedom. We should note th
Eq. ~8! requires interactions between instantons. The pa
tion function of a completely non-interacting gas of insta
tons givese;(N/V);Nc .

We also note that (N/V)5O(Nc) implies that the effec-
tive ‘‘packing fraction’’ of instantons remains constant in th
large Nc limit. Instantons with topological chargeQtop5
61 in SU(Nc) QCD are embeddings ofSU(2) instantons.
Since the number of mutually commutingSU(2) subgroups
of SU(Nc) scales asNc we can haveO(Nc) instantons
which overlap in space but are in fact weakly interactin
Witten argued that the only alternatives areS05O(Nc) and
(N/V)5O(e2Nc) or S05O(1) and (N/V)5O(eNc). How-
ever, as we shall see in the next section, it is possible for
instanton density to remain finite even ifS05O(Nc) because
the large entropy of instantons inSU(Nc) can overcome the
exponential suppression due to the action.
9-2
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If instantons are distributed randomly then fluctuations
the number of instantons and anti-instantons are expecte
be Poissonian. This leads to the predictions

^N2&2^N&25^N&, ~9!

^Q2&5^N&, ~10!

whereN5NI1NA is the total number of instantons andQ
5NI2NA is the topological charge. Equation~10! implies
that

x top5
^Q2&

V
5S N

VD . ~11!

Using (N/V)5O(Nc) we observe thatx top5O(Nc) which
is in contradiction to Witten’s assumptionx top5O(1). How-
ever, as we shall see in the next section, interactions betw
instantons cannot be ignored in the largeNc limit and the
fluctuations are suppressed compared to Eqs.~9!, ~10!.

Finally, we would like to study chiral symmetry breakin
in a random instanton liquid. For definiteness, we will co
sider the caseNf52 but the conclusions are of course ind
pendent of the number of flavors. Instantons induce an ef
tive 2Nf-fermion Lagrangian. After averaging over the col
orientation of the instanton the effective Lagrangian is giv
by @18,19#

L5E n~r!dr
2~2pr!4r2

4~Nc
221!

e f 1f 2
eg1g2S 2Nc21

2Nc
~ c̄L, f 1

cR,g1
!

3~ c̄L, f 2
cR,g2

!2
1

8Nc
~ c̄L, f 1

smncR,g1
!~ c̄L, f 2

smncR,g2
!

1~L↔R! D . ~12!

We observe that the explicitNc dependence is given b
1/Nc

2 . This is again related to the fact that instantons
SU(2) objects. Quarks can only interact via instanton z
modes if they overlap with the color wave function of th
instanton. As a result, the probability that two quarks w
arbitrary color propagating in the background field of an
stanton interaction isO(1/Nc

2).
Chiral symmetry breaking can be studied in the me

field approximation. We will address this problem in mu
more detail in the following section but we can give a simp
qualitative argument here. In the mean field approximat
we can derive a gap equation for the spontaneously ge
ated constituent quark mass. The gap equation is of the f

M5GNcE d4k

~2p!4

M

M21k2
, ~13!

whereM is the constituent mass andG is the effective cou-
pling constant in Eq.~12!. The factorNc comes from doing
the trace over the quark propagator. The coupling constaG
scales as 1/Nc because the density of instantons isO(Nc)
and the effective Lagrangian contains an explicit fac
07600
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1/Nc
2 . We conclude that the coefficient in the gap equation

O(1) and that the dynamically generated quark mass
O(1) also. This also implies that the quark condensa
which involves an extra sum over color, isO(Nc).

III. THE MEAN FIELD APPROXIMATION

In this section we shall make the arguments presente
the previous section more quantitative. Instead of consid
ing the average instanton size and instanton size densit
be arbitrary parameters, we shall determine these quant
from the partition function of the instanton ensemble. Th
means, in particular, that bothr and (N/V) are expressed in
terms of the fundamental scale parameter of QCD. For
purpose it is essential to take the interaction between ins
tons into account. If instantons are semi-classical,Sinst@1,
and if the interaction between instantons is weak,Sint
!Sinst , this can be accomplished using mean field meth
@20,9,21#. In this section, we shall follow the variationa
method of Diakonov and Petrov@9#.

We consider the partition function for a system of insta
tons in pure gauge theory:

Z5
1

NI !NA! )
I

NI1NA E @dV In~r I !#exp~2Sint!. ~14!

Here, V I5(zI ,r I ,UI) are the collective coordinates of th
instantonI andn(r) is the semi-classical instanton distribu
tion function @22#:

n~r!5CNcS 8p2

g2 D 2Nc

r25expF2
8p2

g~r!2G , ~15!

CNc
5

0.466exp~21.679Nc!

~Nc21!! ~Nc22!!
, ~16!

8p2

g2~r!
52b log~rL!, b5

11

3
Nc . ~17!

We have denoted the classical instanton interaction bySint .
If the instanton ensemble is sufficiently dilute we can a
proximate the instanton interaction as a sum of two-bo
terms, Sint5( IJSIJ . For a well separated instanton–an
instanton pair the interaction has the dipole structure@7#

Sint52
32p2

g2

r I
2rA

2

RIA
4

uuu2~124cos2u!. ~18!

Here r I ,A are instanton radii andRIA is the instanton–anti-
instanton separation. The relative color orientation is char
terized by a complex four-vectorum5(1/2i )tr(UIAtm

1),
whereUIA5UIUA

† depends on the rigid gauge transform
tions that describe the color orientation of the individual
stanton and anti-instanton andtm

15(tW ,2 i ). We have also

defined the relative color angle cos2u5uu•R̂u2/uuu2. The dipole
interaction is valid ifRIA

2 @r IrA . We will specify the inter-
action at shorter distances below.
9-3
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Diakonov and Petrov suggested to analyze the parti
function, Eq.~14!, using a variational single-instanton distr
bution m(r) @9#. The corresponding partition function is

Z15
1

NI !NA! )
i

NI1NA E dV Im~r I !5
1

NI !NA!
~Vm0!NI1NA

~19!

wherem05*dr m(r). The exact partition function is

Z5Z1^exp@2~S2S1!#&, ~20!

where S is the full action,S15 log@m(r)# is the variational
estimate and the average^•& is computed using the varia
tional distribution function. The partition function satisfie
the bound

Z>Z1exp~2^S2S1&!, ~21!

which follows from convexity. The optimal distribution func
tion m(r) is determined from a variational principle
(d logZ)/@dm(r)#50, where Z is computed from Eq.~21!.
One can show that the variational result for the free ene
F52 log(Z)/V provides an upper bound on the true free e
ergy.

The calculation of̂ S2S1& reduces to the calculation o
the average instanton interaction^Sint&. Since the variationa
ansatz does not include any correlations, we only need
average the instanton interaction over the collective coo
nates of the two instantons. The dipole interaction~18! van-
ishes when averaged over all color orientations. In Ref.@9# it
was proposed to compute the instanton interaction at all
tances using a specific ansatz~called the ‘‘sum ansatz’’! for
the two-instanton configuration. The result is that both
instanton-instanton (II ) and instanton–anti-instanton (IA)
are repulsive on average. We find

^Sint&5
8p2

g2
g2r I

2rJ
2 , g25

27

4

Nc

Nc
221

p2. ~22!

The interaction contains an explicit factorNc /(Nc
221)

;1/Nc which reflects the probability that two random insta
tons overlap in color space. Since the classical action sc
asS0;1/g2 we find that the average interaction between a
two instantons isO(1). Applying the variational principle,
one finds@9#

m~r!5n~r!expF2bg2S Nr̄2

V
D r2G , ~23!

whereb5b( r̄) is the average instanton action andr̄2 is the
average size. We observe that the single instanton distr
tion is cut off at large sizes by the average instanton rep
sion. The instanton density and average size are given b

N

V
5L4@CNc

b2NcG~n!~bng2!2n/2#2/(21n), ~24!
07600
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r̄25S nV

bg2N
D 1/2

, n5
b24

2
. ~25!

We note thatL is the only dimensionful parameter. The fre
energy is given by

F52
b

4 S N

VD , ~26!

which is in agreement with the trace anomaly. We can n
study the dependence of (N/V) andr on Nc ; see Fig. 1. We
note that to one-loop order the scale in the pre-expon
b( r̄) is not well determined. In practice we assume thatb
5Ncs0 with s055. Changings0 does affect both (N/V) and
r but the main effect can be absorbed in the scale param
The remaining dependence ons0 is very weak.

Figure 1 shows that forNc.4 the average instanton siz
is essentially constant while the instanton density grows
early withNc . This is easily verified by inspecting Eq.~24!.
Expanding log(N/V) in powers ofNc and log(Nc) we observe
that independent of the details of the interaction the instan
density scales at most as a power, not an exponential, inNc
@23#. Using the fact thatg25O(1/Nc), which is equivalent
to ^Sint&5O(1), we find that (N/V)5O(Nc). This result
depends on the instanton interaction, but as we noted ab
g25O(1/Nc) is a consequence of the fact that instantons
SU(2) gauge field configurations.

There is a simple argument that explains why the inst
ton density scales as the number of colors. In our model,
size distribution is regularized by the interaction betwe
instantons. This means that there has to be a balance bet

FIG. 1. Average instanton sizer, instanton density (N/V) and

quark condensatêq̄q& for different numbers of colorsNc . The
results shown in this figure were obtained using the mean fi
approximation. All quantities are given in units of the QCD sca
parameterL.
9-4
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the average single instanton action and the average inte
tion between instantons. If the average instanton action
isfiesS05O(Nc) we expect that̂ Sint

tot&5O(Nc) also. Using
^Sint

tot&5(N/V)^Sint& and the fact that the average interacti
between any two instantons satisfies^Sint&5O(1) we expect
that the density grows asNc .

Figure 2 shows the instanton size distribution for differe
numbers of colors. We observe that the number of sm
instantons is strongly suppressed asNc→` but the average

size stabilizes at a finite valuer̄,L21. We also note that
there is critical sizer* for which the number of instanton
does not change asNc→`. The value ofr* is easy to de-
termine analytically. We writen(r)5exp@NcF(r)# with
F(r)5a log(r)1br21c where the coefficientsa,b,c are in-
dependent ofNc in the largeNc limit. The critical value ofr
is given by the zero ofF(r). We find r* 50.49L21. The
existence of a critical instanton size for whichn(r* ) is in-
dependent ofNc was discussed by@25,24,26#. The problem
was studied on the lattice by Lucini and Teper@27#, who find
r* 56a50.43 fm.

Next we wish to study fluctuations in the instanton liqu
Fluctuations in the net instanton number are related to
second derivative of the free energy with respect toN. We
find

^N2&2^N&25
4

b
^N&. ~27!

This result is in agreement with a low energy theorem ba
on broken scale invariance@28#

FIG. 2. Instanton size distributionn(r) for different numbers of
colors Nc53, . . .,10. The results shown in this figure were o
tained using the mean field approximation.
07600
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~32p2!2E d4x$^g2G2~0!g2G2~x!&2^g2G2~0!&2%

5
4

b

1

32p2
^g2G2&. ~28!

This result is very general and based solely on the renorm
ization group equations. The left hand side is given by
integral over the field strength correlator, suitably regulariz
and with the constant term̂G2&2 subtracted. For a dilute
system of instantons Eq.~28! reduces to Eq.~27!. The result
~27! shows that fluctuations of the instanton ensemble
suppressed by 1/Nc . This is agreement with general argu
ments showing that fluctuations are suppressed in the l
Nc limit. We also note that the result~27! clearly shows that
even if instantons are semi-classical, interactions betw
instantons are crucial in the largeNc limit.

Fluctuation in the topological charge can be studied
adding au term to the partition function~14!. We find

^Q2&5^N&, ~29!

which is identical to the result in the random instanton liqu
and not in agreement with Witten’s hypothesisx top5O(1).
However, Diakonovet al. noticed that Eq.~29! is a conse-
quence of the fact that in the sum ansatz the average in
action between instantons of the same charge is identica
the average interaction between instantons of oppo
charge@29#. In general there is no reason for this to be t
case and more sophisticated instanton interactions do
have this feature@30–32#. If r denotes the ratio of the aver
age interaction between instantons of opposite charge
instanton of the same charge,r 5^SIA&/^SII &, then@29#

^Q2&5
4

b2r ~b24!
^N&. ~30!

This result shows that for any value ofrÞ1 fluctuations in
the topological charge are suppressed asNc→`. We also
note thatx top5O(1), in agreement with Witten’s hypoth
esis.

IV. CHIRAL SYMMETRY BREAKING

In this section we wish to study chiral symmetry breaki
in the mean field approximation. This can be done by stu
ing the Dyson-Schwinger equation for the quark propaga
or by analyzing the spectrum of the Dirac operator. In t
section we wish to use the more microscopic approach
analyze the spectrum of the Dirac operator. In a ba
spanned by the individual zero modes of the instantons
anti-instantons the Dirac operator has the structure

~ iD” !5S 0 TIA

TIA
† 0 D , ~31!

whereTIA is the overlap matrix element of the Dirac oper
tors between an instanton and anti-instanton zero mode.
matrix elements depend on the collective coordinates of
9-5
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instanton. If the interaction between instantons is weak,
matrix elements are distributed randomly with zero avera
but the second moment ofTIA is non-zero. Averaging ove
the positions and orientations of the instantons we get

^uTIA
2 u&5

2p2

3Nc

Nr2

V
. ~32!

The factor 1/Nc comes from the average overSU(Nc).
Equation~32! implies that the average matrix element of t
Dirac operators decreases as 1/Nc but the second moment i
the zero modes zone isO(1). If the matrix elements are
distributed according to a Gaussian unitary ensemble,
spectral density is a semi-circle

r~l!5
N

psV S 12
l2

4s2D 1/2

, ~33!

with s25uTIA
2 u. We observe that the width of the zero mo

zone is related tos, which isO(1). According to the Banks-
Casher formula the quark condensate is related to the s
tral density at zero virtuality:

^q̄q&52
1

pr S 3Nc

2

N

VD 1/2

. ~34!

Because (N/V)5O(Nc) the quark condensate also grows
Nc . This, of course, is the expected behavior. We note, h
ever, that the linear growth inNc is really a combination of
two effects. The linear increase in the number of modeN
provides one factor ofNc

1/2 and the decrease in the avera
matrix elementuTIAu contributes another factor ofNc

1/2.
The true spectral density of the Dirac operator in n

given by a semi-circle. Schematically, the spectrum of
Dirac operator in quenched QCD is shown in Fig. 3. Th
are several notable features. First, in a finite volume ther
a certain number of exact zero modes. This number is p
portional to (x topV)1/2 and therefore scales asNc

0 . We note
that in the infinite volume limit exact zero modes are n
important because their number scales asAV while the total
number of states increases linearly with the volume. T
second feature of the spectrum is the logarithmic enhan
ment of the spectrum at small virtuality. This enhancemen

FIG. 3. Schematic behavior of the spectrum of the Dirac ope
tor in quenched QCD with many colors.
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an artifact of the quenched approximation. From quenc
chiral perturbation theory we expect@33#

r~l!5
S

p H 12
m0

2

16p2f p
2
logS ulu

m D1 . . . J . ~35!

Here, S is a parameter that corresponds to the~negative!
unquenched chiral condensate andm0 is the mass of the
quenched ghost pole. This mass corresponds to the ma
the h8 in the chiral limit of full QCD. Usingm0

25O(1/Nc)
we find that the coefficient of the logarithmic enhancem
vanishes as 1/Nc in the largeNc limit. This, of course, is
consistent with the idea that the fermion determinant is
important in the largeNc limit. The third component of the
spectrum is given by the almost zero modes related to ch
symmetry breaking. This part of the spectrum is expected
scale asNc , as is the bulk of the spectrum which is n
related to chiral symmetry breaking.

At finite Nc the spectrum of the Dirac operator in fu
QCD with light fermions has a different behavior. The num
ber of exact zero modes is again proportional to (x topV)1/2

but in full QCD the topological susceptibility is suppresse
x top.2m^c̄c&. This implies that asNc increases the num
ber of exact zero modes initially increases asNc

1/2 and then
saturates at the value corresponding to the quenched t
logical susceptibility. In the infinite volume limit the spec
trum near the origin is linear. Chiral perturbation theory p
dicts the slope of the spectrum@34#:

r~l!5
S

p H 11
~Nf

224!S

32pNf f p
4

ulu1 . . . J . ~36!

We observe that the constant part of the spectrum grow
Nc whereas the linear part is independent ofNc . This im-
plies that in the largeNc limit the spectrum at the origin is
flat for any number of flavors as long asNf is not of the
orderNc .

V. THE INTERACTING INSTANTON LIQUID

In this section we wish to go beyond the mean field a
proximation and study the partition function of the instant
liquid using numerical simulations. These simulations ta
into account all correlations between instantons. The num
cal techniques are described in detail in Refs.@35–37#. In
order to perform these simulations we have to fully spec
the instanton interaction. We have used the ‘‘streamline’’
teraction determined in Refs.@31,32#. The streamline solu-
tion is characterized by the fact that the action of the
proximate instanton–anti-instanton solution is a loc
minimum except in the direction of the ‘‘valley’’ in configu
ration space that connects a well separated IA pair wit
very close pair. There is no interaction between two inst
tons of the same charge. The interaction between two ins
tons of opposite charge approaches22S0 if the relative
color orientation is attractive.

This implies that the streamline interaction lacks the
pulsive core that is required to stabilize the instanton

-

9-6
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INSTANTONS IN QCD WITH MANY COLORS PHYSICAL REVIEW D66, 076009 ~2002!
semble at the classical level. In order to correct this prob
we have added a purely phenomenological core to the ins
ton interaction. The interaction is given by

Score5
8p2

g2

A

l4
uuu2,

l5
R21r I

21rA
2

2r IrA
1S ~R21r I

21rA
2 !2

4r I
2rA

2
21D 1/2

~37!

in both II and IA channels. The dimensionless parameteA
controls the strength of the core and is adjusted to reprod
the phenomenological dilutenessr4(N/V) of the instanton
ensemble. In our simulations we have usedA5128. We note
that the hard core interaction Eq.~37! only acts between
instantons that overlap in color space. As a result, we ex
^Score&5O(1), in agreement with the interaction used in t
mean field treatment.

One might argue that there should not be any interac
between instantons of the same charge because there i
3(2Nc) parameter family of two-instanton solutions wi
action 23(8p2)/g2 @38#. However, there are two phenom
ena that lead to an effective instanton-instanton interact
The first is related to the fact that the collective coordin
measure for two close instantons is not just the produc
two single-instanton measures. Carter and Shuryak arg
that this will lead to an effective short range instanto
instanton repulsion@39,40#. Whether this effect has the sam
Nc dependence as the classical interaction, Eq.~37! is an
important problem. The second effect is that quantum cor
tions to a charge-two instanton solution do not factorize.
a quantum correction, this effect is naively suppressed
1/S0;1/Nc , but the suppression can be overcome if inst
tons with different color orientation interact.

In order to determine the instanton density and the f
energy of the instanton liquid we have to compute the pa
tion function, Eq.~14!. Monte Carlo simulations are ideall
suited for computing expectation values, but they do not
rectly provide the partition function. It is possible, howev
to compute free energy differences. This implies that Mo
Carlo simulations can be used to compute the ratio of
partition functions. In practice we calculate the ratio of t
exact partition function and the variational estimate, E
~19!. The exact partition function is given by@36#

logZ5 log~Z1!2E
0

1

da^~S2S1!&a . ~38!

Here,Z1 is the variational partition function, Eq.~19!, andS1
is the variational action. The expectation value^•&a is deter-
mined using the interpolating actionSa5S11a(S2S1). Sa
reduces to the variational action fora50 and the exact ac
tion for a51.

The free energy energy of the instanton liquid as a fu
tion of the instanton density forNc53, . . . ,6 isshown in
Fig. 4. The equilibrium density is determined by the min
mum of the functionF(N/V). The dependence of equilib
rium density and the free energy on the number of color
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shown in Fig. 5. We observe that (N/V) increases linearly
with Nc whereas the free energy is quadratic. The slope
(N/V) as a function ofNc is small, in agreement with the
mean field result shown in Fig. 1. In contrast to the me
field result the linear behavior already sets in at smallNc
.3. We have checked the stability of our results to chang
the strength of the hard core interaction and including hig
order corrections in the QCD beta function. Both chang
affect the results quantitatively but not qualitatively. How
ever, the results are crucially dependent on the assump
that the parameterA in Eq. ~37! is not a function ofNc .

We have also studied the instanton size distribution,
topological susceptibility, and the spectrum of the Dirac o
erator for different numbers of colors. In order to be able
distinguish more clearly between different scenarios we h
not used the exact instanton density determined in Fig. 4

FIG. 4. Free energyF of the quenched instanton liquid as
function of the instanton density (N/V) for Nc53, . . . ,6 colors.
Both (N/V) andF are given in units of the QCD scale paramet
The results shown in this figure were obtained using numer
simulations withN532 instantons.

FIG. 5. Instanton density (N/V) and free energyF in a pure
gauge instanton ensemble forNc53, . . . ,6colors. Both (N/V) and
F are given in units ofL4 whereL is the QCD scale parameter. Th
dashed lines show fits of the forma1Nc

21a2Nc1a3 ~for the free
energyF) anda2Nc1a3 ~for the instanton densityN/V).
9-7
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T. SCHÄFER PHYSICAL REVIEW D 66, 076009 ~2002!
have simply scaled (N/V);Nc . At large Nc this will only
introduce errors that are suppressed by 1/Nc . The instanton
size distribution is shown in Fig. 6. As expected small inst
tons are strongly suppressed as the number of colors
creases. We observe a clear fixed point in the size distr
tion at r* L.0.27.

Our simulations were carried out in the total topologic
chargeQtop50 sector of the theory. We can neverthele
determine the topological susceptibility by measuring the
erageQtop

2 in a sub-volumeV33 l 4 of the Euclidean box
V33L4 @35#. The finite volume susceptibility is given by

x top~ l 4!5
^Qtop

2 &V33 l 4

V33 l 4
S 12

l 4

L4
D 21

. ~39!

The factor (12 l 4 /L4)21 takes into account the constrai
from overall charge neutrality. This correction factor is d
rived under the assumption that the fluctuations are Ga
ian. In an ideal calculationL4@ l 4 and the correction for
overall neutrality is small. The topological susceptibiliti
are shown in Fig. 7. We observe thatx top( l 4) tends to a
constant asl 4 increases. We identify this constant with th
susceptibility in the thermodynamic limit. We find that fo
Nc53 the topological susceptibility agrees well with the e
pectation based on Poissonian statistics,x top.(N/V). For
Nc.3, however, fluctuations are significantly suppress
and the topological susceptibility increases more slowly th
the density of instantons. Figure 8 shows that our results
consistent with a scenario in whichx top remains finite as
Nc→`.

In Fig. 9 we show the spectrum of the Dirac operator
Nc53, . . . ,6. Since we calculate in theQtop50 sector of
the theory there are no exact zero modes. We clearly obs
the enhancement of the spectral density nearl50, but we
also note that this enhancement becomes weaker as the

FIG. 6. Instanton size distribution in a pure gauge instan
ensemble for different numbers of colors. The results were obta
using numerical simulations withN5128 instantons.
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ber of colors increases. The chiral condensate formq

50.1L is shown in Fig. 8. We clearly see that^q̄q& is linear
in Nc .

In the recent literature a number of authors have stud
the role of instantons in chiral symmetry breaking by anal
ing the local chiralityX(x) of low lying eigenstates of the
Dirac operator@17#. The quantityX(x) is defined by

n
d

FIG. 7. Finite volume topological susceptibilityx top( l 4) in a
pure gauge instanton ensemble for different numbers of colors.
results were obtained using numerical simulations withN5128 in-
stantons.

FIG. 8. Dependence of the chiral condensate^c̄c& and the to-
pological susceptibilityx top on the number of colors. The instanto
density (N/V) was assumed to scale as (N/V);Nc . The dashed

lines show fits of the forma1Nc1a2 ~for ^c̄c& andN/V) anda2

1a3 /Nc ~for x top).
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INSTANTONS IN QCD WITH MANY COLORS PHYSICAL REVIEW D66, 076009 ~2002!
tanS p

4
@11X~x!# D5S c†~11g5!c

c†~12g5!c
D 1/2

, ~40!

where c is an eigenfunction of the Dirac operatoriD” c
5lc in a given gauge configuration. In order to study chi
symmetry breaking one only considers the lowest few eig
vectors. The instanton liquid model predicts that these eig
vectors are linear combinations of instanton and a
instanton zero modes. This implies that at pointsx where the
wave functionc†c is large it is either left or right handed
X(x).61. In order to test this prediction one has to choo
a cutoff on the eigenvaluel and some cutoff on the magn
tude ofc†c. Typically, the pointsx are restricted to the top
few percent of the eigenfunction. The instanton model s
gests that this fraction should be no larger than the diluten
of the instanton liquid, and that the maximum eigenva
should be smaller than the widthuTIAu of the zero mode
zone.

In Fig. 10 we show numerical results for the local chira
ity distribution in the instanton liquid model. We have in
cluded all states in the zero mode zone and used the top
of the wave function. TheNc dependence is similar if mor
restrictive cuts are used. We observe that the double p
structure is very pronounced for allNc53, . . . ,6.There is a
small shift of the peaks toward smaller values ofX as the
number of colors increases. We have verified that forNc
.10 the double peak structure disappears. This is relate
the fact that the instanton density increases and instan
overlap in space. The instanton liquid remains dilute, ho
ever, because instantons do not overlap in color space.
is easily verified by computing chirality distributions fo
eigenstates of the Dirac operator projected on aSU(2) sub-
group. Cundy et al. computed local chirality distributions

FIG. 9. Spectrum of the Dirac operator in a pure gauge instan
ensemble for different numbers of colors. The eigenvalues are g
in units of the QCD scale parameter. The results were obta
using numerical simulations withN5128 instantons.
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lattice QCD forNc52, . . . ,5 @41#. In their calculations the
double peak structure disappears much more quickly as
number of colors increases. This implies that either the
stanton ensemble is not as dilute as we have assumed, o
mixing with non-zero modes is more important. Given t
fact the value ofr* in our simulations is also smaller tha
the value obtained by Lucini and Teper, it seems likely th
the instanton liquid in QCD is not quite as dilute as su
gested in Ref.@8#.

VI. HADRONIC CORRELATION FUNCTIONS

We have also studied hadronic correlation functions in
instanton liquid for different numbers of colors. We ha
considered, in particular, correlation functions of curre
with the quantum numbers of the pion, the rho meson,
the h8 meson. The currents are given by

j p5d̄ig5u, j r
m5d̄gmu, j h85

1

A2
~ ūig5u1d̄ig5d!.

~41!

The pion and rho meson are flavor non-singlet mesons.
corresponding correlation functions only involve the co
nected contribution

P I 51~x!5^Tr@Sab~0,x!GSba~x,0!G#&, ~42!

with G5 ig5 ,gm for the pion and rho meson, respective
Here, Sab denotes the quark propagator in a given gau
configuration,a,b are color indices, and the trace runs ov
Dirac indices. The averagê•& is performed with respect to

n
en
d

FIG. 10. Local chirality distribution function in a pure gaug
instanton ensemble for different numbers of colors. The local chi
ity X is defined in the text. The results were obtained using num
cal simulations withN5128 instantons.
9-9
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T. SCHÄFER PHYSICAL REVIEW D 66, 076009 ~2002!
the partition function, Eq.~14!. The h8 meson is a flavor
singlet meson and the correlation function has an additio
disconnected, term. We find

P I 50~x!5^Tr@Sab~0,x!GSba~x,0!G#&

22^Tr@Saa~0,0!G#Tr@Sbb~x,x!G#&, ~43!

with G5 ig5. The masses of thep,r, andh8 mesons can be
extracted by fitting the correlation functions to a spect
representation. At large Euclidean separation the correla
function is determined by the lowest hadronic resonance
good model for the contribution of excited states is given
the free quark–anti-quark continuum above some thresh
invariant massAs0. The threshold roughly corresponds
the location of the first excited state. For the pion and
meson we use

Pp~x!5lp
2 D~mp ,x!1

Nc

8p2Es0

`

dssD~As,x!, ~44!

Pr~x!5 f r
2mr

4D~mr ,x!1
2Nc

8p2Es0

`

dssD~As,x!,

~45!

whereD(m,x) is the Euclidean space propagator for a fr
scalar meson with massm:

D~m,x!5
m

4p2x
K1~mx!. ~46!

In full QCD the h8 meson can be described by the sa
spectral representation as the pion. In quenched QCD, h
ever, the spectral function in theh8 channel is not positive
definite. There is a well established method for dealing w
this problem. In quenched chiral perturbation theory it
assumed that the disconnected part of theh8 correlation
function corresponds to a ghost pole in the spectrum@42–
44#. In momentum space the pole contributions are given

Ph8~q!5
lp

2

q21mp
2

2
lp

2

q21mp
2

m0
2 1

q21mp
2

. ~47!

Going from quenched to unquenched QCD correspond
summing the geometric series

Ph8~q!→
lp

2

q21mp
2 1m0

2
~48!

andmh8
2

5m0
21mp

2 in full QCD. This result is expected to b
exact in the largeNc limit. In addition to that there is evi-
dence from the lattice that the mass of theh8 meson can be
extracted from the ghost pole propagator even forNc53
@44#. In coordinate space Eq.~47! corresponds to
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Pp~x!5lp
2 D~mp ,x!2lp

2 m0
2D8~mp ,x!

1
Nc

8p2Es0

`

dssD~As,x!, ~49!

with

D8~m,x!5
1

8p2
K0~mx!. ~50!

We have used the spectral representation, Eq.~49!, to deter-
mine the quenchedh8 massm0 for different Nc .

Before we come to the numerical studies we would like
present several analytical results. If we study correlat
functions at distances small compared to the average sep
tion between instantons,x!(N/V)21/4, it is sufficient to take
into account the contribution from the closest instanton on
The quark propagator is given by

S~x,y!.
c0~x2z!c0

†~y2z!

m*
, ~51!

where c0(x) is the zero mode wave function andz is the
location of the instanton. The effect of all other instanto
only enters via the effective mass m*
.pr(2/Nc)

1/2(N/V)1/2. The single instanton contribution t
the correlation function is found by inserting the propagat
Eq. ~51!, into Eqs. ~42! and ~43! and averaging over the
collective coordinates of the instanton.

Because of the chiral structure of the rho meson curr
there is no zero mode contribution to the rho meson corr
tion function. In the pion andh8 meson channel we find@45#

Pp,h8
SIA

~x!56E drn~r!
6r4

p2

1

~m* !2

]2

]~x2!2

3H 4j2

x4 S j2

12j2
1

j

2
log

11j

12j D J , ~52!

with j25x2/(x214r2). As is well known, the instanton con
tribution is attractive in the pion channel, and repulsive in t
h8 channel. The contribution of one instanton of given s
does not involve any factors ofNc , and is the same, up to th
sign, in the pion andh8 channel. This is illustrated in Fig
11. Perturbative contributions to the disconnected correla
function are suppressed by a factor 1/Nc compared to the
connected correlator. However, the single instanton contr
tion to the disconnected correlator is exactly the same as
instanton contribution to the connected correlator. After in
gration over the instanton distribution the correlation fun
tion scales asNc because the instanton density is propo
tional toNc . This is the expected behavior in the case of t
pion correlation function but it implies that in the sing
instanton approximation the anomalousp-h8 splitting does
not disappear in the largeNc limit.

In order to go to large distances,x.(N/V)21/4, we have
to resum the instanton interaction. This can be achieved
9-10
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INSTANTONS IN QCD WITH MANY COLORS PHYSICAL REVIEW D66, 076009 ~2002!
ing the mean field~Hartree! and random-phase approxim
tion ~RPA! methods @46#. The mean field approximation
gives the constituent quark propagator

SQ~x!5E d4p

~2p!4
eip•x

p”1 iM ~p!

p21M ~p!2
, ~53!

whereM (p) is the dynamically generated quark mass. T
momentum dependence ofM is determined by the Fourie
transform of zero mode wave function. In the rho mes
channel there is no direct instanton induced interaction
the correlation function is given by two non-interacting co
stituent quarks. We have

PG~x!MFA5NcTr@SQ~x!GSQ~2x!G#, ~54!

where the trace is over the Dirac indices only andG5gm . In
the pion andh8 channel there is a direct instanton interacti
that can be resummed using the RPA. We have@10,46–48#

Pp,h8~x!5Pp
MFA~x!1Pp,h8

RPA ~55!

with

Pp,h8
RPA

~x!5NcS NcV

N D E d4qeiq•xG5~q!
61

17C5~q!
G5~q!.

~56!

The loop and vertex functionsC5 andG5 are given by

C5~q!54NcS V

ND E d4p

~2p!4

M1M2~M1M22p1•p2!

~M1
21p1

2!~M2
21p2

2!
,

~57!

G5~q!54E d4p

~2p!4

~M1M2!1/2~M1M22p1•p2!

~M1
21p1

2!~M2
21p2

2!
,

~58!

FIG. 11. Comparison of perturbative and instanton contributi
to connected and disconnected correlation functions. The pertu
tive contribution to the disconnected correlator~b! is suppressed by
a factor 1/Nc compared to the connected correlator~a!. The single
instanton contribution to the two correlation functions, shown in~c!
and ~d!, is the same, up to a sign.
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where p15p1q/2, p25p2q/2 and M1,25M (p1,2). Using
(N/V);Nc andM;1 we observe that the pion andh8 cor-
relation functions in the largeNc limit depend onNc only
through an overall factor ofNc . This implies f p

2 5O(Nc)
andmp ,mh85O(1).

Numerical results for the constituent quark massMQ as
well as the pion massmp and pion decay constantf p are
shown in Fig. 12. We have used the average instanton
and density determined in Sec. III. The current quark mas
mq50.025L. There is some variation in the constitue
quark and pion masses for smallNc,10 but the size of 1/Nc
corrections is not large, about 20% forNc53. The pion de-
cay constant shows the expectedNc

1/2 behavior but in this
case 1/Nc corrections are large, about 80% forNc53.

In Fig. 13 we show the correlation functions in the pio
rho meson, andh8 meson channel. The correlation function
are normalized to free field behavior. The overall factor
Nc drops out if the correlator is normalized in this way. W
observe that ther meson correlation function is essential
independent ofNc already for smallNc . There are substan
tial 1/Nc corrections in thep andh8 channel. The splitting
between thep and h8 correlation functions is reduced i
going fromNc53 to Nc56 but it remains finite and large a
Nc→`.

The correlation functions measured in numerical simu
tions of the instanton liquid forNc53, . . . 6 areshown in
Fig. 14. The meson masses extracted from the spectral
resentation Eqs.~44!, ~45!, ~49!, are shown in Fig. 15. The
results were obtained from simulations withN5128 instan-
tons in a Euclidean volumeVL45V335.76. V3 was ad-
justed such that (N/V)5(Nc/3)L4. In order to avoid finite
volume artifacts the current quark mass was taken to

s
a-

FIG. 12. Constituent quark massMQ , pion massmp , and pion
decay constantf p as a function of the number of colorsNc . All
quantities are given in units of the QCD scale parameterL. The
results shown in this figure were obtained using the mean fi
approximation.
9-11
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T. SCHÄFER PHYSICAL REVIEW D 66, 076009 ~2002!
rather large,mq50.2L. We observe that the rho meson co
relation function exhibits almost perfect scaling withNc and
as a result the rho meson mass is practically independe
Nc . The scaling is not as good in the case of the pion. A

FIG. 13. Correlation functions in the pion, rho meson, andh8
meson channel. The correlators are shown as a function of the
tance in units of the inverse scale parameter. The correlation f
tions are normalized to free field behavior,P0(x);Nc /x6. The
results shown in this figure were obtained using the mean fi
approximation.

FIG. 14. Meson correlation function in a pure gauge instan
ensemble for different numbers of colors. We show the correla
function of the pion, the rho meson, and theh8 meson normalized
to the corresponding free correlation functions.
07600
of
a

consequence there is some variation in the pion mass. H
ever, as one can see from the fit shown in Fig. 15, this ef
is consistent with 1/Nc corrections that amount to about 40
of the pion mass forNc53. Finally, we study the behavior o
theh8 correlation function. There is a clear tendency towa
U(1)A restoration, but the correlation function is still ver
repulsive forNc56. As one can see from Fig. 15 the result
consistent withmh8

2 ;1/Nc although the error bars are quit
large.

For comparison, we show the expected behavior of
correlation functions based on standard largeNc counting in
Fig. 16. We have used the spectral representation, Eqs.~44!,
~49!, together with the phenomenological valuesmp

5139 MeV, lp5(450 MeV)2, E051.3 GeV and m0

5900 MeV (Nc53). We assume thatlp
2 ;Nc and m0

2

;1/Nc . We observe that theh8 correlation function only
approaches the pion correlation for fairly large values ofNc .
For example, theh8 correlation function does not show in
termediate range attraction unlessNc.15. The variation in
going from Nc53 to Nc56 is not dramatic, in agreemen
with the results shown in Fig. 14.

VII. SUMMARY

In summary we have studied instantons in the largeNc
limit of QCD. We have argued that it is possible for th
instanton liquid model to have a smooth largeNc limit which
is in agreement with scaling relations derived from Feynm
diagrams. In this limit the density of instantons grows asNc
whereas the typical instanton size remains finite. Interacti
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FIG. 15. Masses of the pion, the rho meson, and theh8 meson
extracted from meson correlation function in a pure gauge instan
ensemble for different numbers of colors. The results were c
verted to physical units usingL50.2 GeV. The quark mass wa
chosen to bemq50.2L540 MeV. The dashed lines show fits o
the forma11a2 /Nc ~for mp
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INSTANTONS IN QCD WITH MANY COLORS PHYSICAL REVIEW D66, 076009 ~2002!
between instantons are important and suppress fluctua
of the topological charge. As a result theU(1)A anomaly is
effectively restored even though the number of instant
increases. Using mean field arguments@9# and numerical
simulations we have shown that this scenario does not
quire fine tuning. It arises naturally if the instanton ensem
is stabilized by a classical repulsive core. In this case
obtain a picture in which the instanton density is large
the instanton liquid remains dilute because instantons are
strongly overlapping in color space. Further investigatio
will have to show whether this scenario is indeed correct.
example, it would be useful to study the exact moduli sp
for multi-instanton configurations in the largeNc limit.

Of course, there is noa priori reason why instantons hav
to be compatible with standard largeNc counting rules. In-
stantons are not part of the diagrammatic expansion and
not need to satisfy scaling relations derived from diagra

FIG. 16. Expected behavior of the quenched pion andh8 corre-
lation functions in the largeNc limit. The correlation functions were
computed from the spectral representation Eqs.~44!, ~49! using the
phenomenological valuesmp5139 MeV, lp5(450 MeV)2, E0

51.3 GeV andm05900 MeV (Nc53). We assume thatlp
2 ;Nc

andm0
2;1/Nc .
n,

07600
ns

s

e-
e
e
t
ot
s
r
e

do
s.

On the other hand it would be hard to reconcile the qua
tative success of the instanton liquid model in describ
chiral symmetry breaking and the mass of theh8 with the
phenomenological success of the 1/Nc expansion if instanton
effects strongly violateNc counting rules.

We should emphasize that the numerical results prese
in this work only cover fairly small values ofNc , Nc<6,
and that all the analytical results were obtained in the m
field approximation. We cannot exclude the possibility th
there is a phase transition as the number of colors beco
large@24,39,49#. Carter and Shuryak suggested, for examp
that for clusters involvingO(Nc) instantons 1/Nc suppressed
color singlet exchanges become dominant and lead to
formation of tightly bound molecules. We did not obser
this phenomenon in our simulations even if a short ran
color singlet interaction was included, but the number
colors (Nc<10) may have been too small. We also did n
investigate the possibility that instantons in the largeNc limit
melt or dissociate into constituents with fractional topolo
cal charge. The latter scenario was investigated in the cas
the CPN21 model in Ref.@50#.

Our results can be compared to the lattice results of
cini and Teper@27# and Cundy, Teper, and Wenger@41#. Lu-
cini and Teper find a fixed point in the instanton size dis
bution, in agreement with our results shown in Figs. 2 and
However, they do not find any suppression of large size
stantons. Cundy et al. studied the local chirality distributio
They find that the double peak structure of this distributi
disappears in the largeNc limit. Our results shown in Fig. 10
are in qualitative, but not in quantitative agreement with th
findings. In our calculations the effect is much less p
nounced. This implies that either the instanton liquid is n
as dilute as it is in our calculations, that mixing with no
zero modes becomes more important asNc increases, or tha
instantons are no longer semi-classical.
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