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Off-diagonal Goldberger-Treiman relation and its discrepancy
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We study the off-diagonal Goldberger-Treiman relation~ODGTR! and its discrepancy~ODGTD! in the N,
D, p sector throughO(p2) using heavy baryon chiral perturbation theory. To this order, the ODGTD and axial
vector N to D transition radius are determined solely by low-energy constants. Loop corrections appear at
O(p4). For low-energy constants of natural size, the ODGTD would represent a;2% correction to the
ODGTR. We discuss the implications of the ODGTR and ODGTD for lattice and quark model calculations of
the transition form factors and for parity-violating electroexcitation of theD.
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I. INTRODUCTION

The Goldberger-Treiman relation~GTR! @1# plays an im-
portant role in theoretical hadronic and nuclear physics
relates hadronic matrix elements of the weak axial-vec
current~the nucleon axial chargegA and the pion decay con
stant Fp) to quantities governed by the strong interacti
~the pion-nucleon strong coupling constantgpNN and
nucleon massmN):

gpNN5
gAmN

Fp
. ~1!

The GTR represents an approximation, sincegpNN is deter-
mined experimentally at the pointq25mp

2 while gA is mea-
sured close to the pointq250. In the chiral limit, the GTR
would be exact, while, in the physical world, it holds to a
astonishing level of accuracy. The small difference betw
the physical value ofgpNN and the right-hand side of Eq.~1!
when the physical values ofgA , Fp , and mN are used is
called the Goldberger-Treiman discrepancy~GTD!. Physi-
cally, the GTD is driven by the explicit chiral symmetr
breaking introduced by the nonzero current quark mass.

Many theoretical discussions of this chiral symmet
breaking effect have appeared in the literature@2–6#. Re-
cently the GTD in the context of SU(3)L3SU(3)R chiral
symmetry was analyzed by Goityet al. @7# within the frame-
work of heavy baryon chiral perturbation theory (HBx PT)
@8,9#. These authors found that chiral loop corrections app
at O(p4). The dominant contribution comes from the low
energy counterterm appearing in theO(p3) Lagrangian.
Their result is consistent with more conventional approac
where the current quark mass plays an explicit role@2,3#.

In this work we analyze the off-diagonal Goldberge
Treiman relation ~ODGTR! and its discrepancy for the
SU(2)p,N,D sector. As we show below, both the magnitu
of, and theoretical uncertainty in, the off-diagon
Goldberger-Treiman discrepancy~ODGTD! are ;mp

2 /Lx
2

;0.01, whereLx54pFp;1 GeV is the scale of chira
symmetry breaking. Consequently, the ODGTR provide
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useful benchmark for both experimental and theoretical st
ies of the axial vectorN→D transition form factors. In prin-
ciple, the ODGTR can be tested using charged current re
tions, such as neutrino excitation of theD, or weak neutral
current processes, such as parity-violating~PV! electroexci-
tation. These processes are sensitive to axial-vector trans
form factors, which can be related to the strongpND cou-
pling via the ODGTR. The values for these form facto
obtained from charged current scattering are fairly uncert
A measurement of the PV asymmetry for neutral curr
electroexcitation will be performed at the Jefferson Lab
the G0 Collaboration@10# in hopes of providing a more pre
cise determination of the axial-vector transition form facto
The ODGTR also provides a check on lattice QCD and h
ron model calculations of the axial transition form facto
From either perspective, the theoretical analysis of
ODGTR using HBx PT appears to be a timely endeavor.

II. NOTATION

We follow the standard HBx PT formalism@8,9# and in-
troduce the following notation:

S5j2, j5eip/Fp, p5
1

2
pata ~2!

with Fp592.4 MeV being the pion decay constant. The c
ral vector and axial vector currents are given by

Dm5Dm1Vm ,

Am5
i

2
j†~DmS!j†,

Vm5
1

2
~j]mj†1j†]mj!2

i

2
j†r mj2

i

2
j l mj†,

DmS5]mS2 ir mS1 iS l m ,

r m5 ṽm1am ,
©2002 The American Physical Society08-1



to

he
in

ry

, i

n
d

-
e

een

tral

nal

q.

s of

r-

S.-L. ZHU AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW D66, 076008 ~2002!
l m5 ṽm2am ,

FR
mn5]mr n2]nr m2 i @r m,r n#,

FL
mn5]ml n2]nl m2 i @ l m,l n#,

f 6
mn5jFL

mnj†6j†FR
mnj,

x52B0~s1 ip !,

x65j†xj†6jx†j, ~3!

wheres,p,am ,ṽm are the scalar, pseudoscalar, pseudovec
and vector external sources withp5pit i andam5am

i t i /2.
For theD, we use the isospurion formalism, treating t

D field Tm
i (x) as a vector spinor in both spin and isosp

space@11# with the constraintt iTm
i (x)50. The components

of this field are

Tm
3 52A2

3S D1

D0 D
m

,

Tm
15S D11

D1/A3
D

m

,

Tm
252S D0/A3

D2 D
m

. ~4!

The field Tm
i also satisfies the constraints for the ordina

Schwinger-Rarita spin-3
2 field:

gmTm
i 50 and pmTm

i 50. ~5!

We eventually convert to the heavy baryon expansion
which case the latter constraint becomesvmTm

i 50 with vm

being the heavy baryon velocity.
In order to obtain proper chiral counting for the nucleo

we employ the conventional heavy baryon expansion, an
order to consistently include theD we follow the small scale
expansion developed in@11#. In this approach, external en
ergy and momenta and theD and nucleon mass differenc
d[mD2mN and 1/mN are all treated asO(e) in chiral power
counting.

The leading order HBx PT Lagrangian reads

L v
(1)5N̄@ iv•D12gAS•A#N

2 i T̄ i
m@ iv•Di j 2d i j d1g1S•Ai j #Tm

j

1gpND
0 @ T̄i

mvm
i N1N̄vm

i†Ti
m#

1
Fp

2

4
Tr@DmSDmS†1xS†1x†S#1••• ~6!

where Sm is the Pauli-Lubanski spin operator andvm
i

5Tr(t iAm).
At subleading order we collect only thepND interaction

pieces which are relevant in the following discussion:
07600
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L v
(1)5

1

Lx
T̄i

mF i b̃3vnvmn
i 2

b̃8

mN
vmn

i DnGN1H.c.1••• ~7!

where

vmn
i 5Tr~t i@Dm ,An#!. ~8!

III. OFF-DIAGONAL GOLDBERGER-TREIMAN
RELATION AND ITS DISCREPANCY

It is convenient to introduce thepND form factorGpND

via the effective Lagrangian:

LpND52
GpND

mN
D̄m

i ]mp iN1H.c. ~9!

In terms of the couplings appearing in Eq.~6!, one has

GpND5
gpNDmN

Fp
, ~10!

wheregpND is the renormalizedpND coupling constant. We
also express the matrix elements of the axial current betw
D1 and proton in terms of the Adler form factors@12–14#:

^D1~p8!uAm
3 uP~p!&

5D̄1n~p8!H C5
A~q2!gmn1

C6
A~q2!

mN
2 qmqn

1FC3
A~q2!

mN
gl1

C4
A~q2!

mN
2 p8lG ~qlgmn2qnglm!J u~p!,

~11!

where we have displayed only matrix elements of the neu
componentAm

3 5q̄gmg5(t3/2)q for brevity. Experimentally,
one expects contributions fromC5

A to give the dominant ef-
fect. For future reference, we also define the off-diago
charge radiusr A

2 :

r A
256

d

dq2 ln C5
A~q2!uq250 . ~12!

To arrive at the ODGTR, it is useful first to contract E
~11! with qm, yielding

^D1~p8!u]mAm
3 uP~p!&

5 i D̄1n~p8!FC5
A~q2!1

C6
A~q2!

mN
2 q2Gqnu~p!. ~13!

We compute the same matrix element from the amplitude
Fig. 1. The pion pole contribution~Fig. 1b! depends on
GpND(q2) andP(q2), the coupling of the pseudoscalar cu
rent to pions. At lowest order, one hasP(q2)5mp

2 Fp . We
parametrize the nonpole contributions~Fig. 1a! in terms of a
function C(q2). We thus obtain
8-2
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^D1~p8!u]mAm
3 uP~p!&

52A2

3
i D̄1n~p8!

D~q2!

q22mp
2 1 i e

qnu~p! ~14!

with

D~q2!5
GpND~q2!Pp~q2!

mN
1~q22mp

2 !C~q2!. ~15!

Equating~13! and ~14!, using Eq.~15!, and taking the limit
q2→0, leads to

C5
A~0!52A2

3 F2
GpND~0!Pp~0!

mNmp
2

1C~0!G . ~16!

We emphasize that Eq.~16! involves no approximation
However, neitherGpND(0) nor Pp(0) is experimentally ac-
cessible. To the extent that these quantities vary gently
tweenq25mp

2 andq250 we may replace them in Eq.~16!
with their values atq25mp

2 . Assuming pion pole dominanc
and neglectingC(0) would then lead to the ODGTR. Th
off-diagonal Goldberger-Treiman discrepancyDp embodies
the corrections to these approximations. IncludingDp we
have the corrected ODGTR:

C5
A~0!5A2

3

GpND~mp
2 !Pp~mp

2 !

mNmp
2 ~12Dp! ~17!

where, to leading order in light-quark masses, we have

Dp5mp
2 d

dq2 ln D~q2!uq25m
p
2 . ~18!

An analogous expression for the diagonal GTD case was
derived in Ref.@7#. Indeed, our treatment here largely fo
lows the outline of that work.

FIG. 1. Relevant Feynman diagrams in the derivation of
off-diagonal Goldberger-Treiman relation and its discrepancy.
filled circle denotes the pseudoscalar or pseudovector source.
double, solid, and dashed lines correspond to the delta, nucleon
pion, respectively.
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e-

st

In order to obtainDp , one requires theq2 dependence of
bothGpND(q2) andPp(q2) as well as the nonpole amplitud
C(0). To that end, we first observe that, sinceP(q2)
5mp

2 Fp at lowest order,C5
A(0) starts off asO(p0). The

nonpole termC(0) generates anO(p2) correction, as we
discuss in the following section. In principle, sinceP(q2) is
O(p2) at leading order, one might expect itsq2 dependence
to arise atO(p4). However, there exist no operators in th
O(p4) Lagrangian~see Ref.@15#! which contribute to thisq2

dependence, nor do the corresponding loop graphs contri
at this order.

The q2 dependence ofGpND(q2) requires more care. As
we show explicitly below, loop contributions to thisq2 de-
pendence arise first atO(p4), and thus, for our analysis, ma
be neglected. However, in the nonrelativistic theory obtain
via the heavy baryon expansion, theb̃31b̃8 terms contribute
to theq2 dependence via the factor

v•q5
mD

2 2mN
2 2q2

2mN
. ~19!

Note that this term is nominallyO(p) in the small scale
expansion, sincemD

2 2mN
2 /2mN'd. However, it contains an

O(p2) contribution~the q2 term! as a consequence of kine
matics. Since we derive expressions below valid in the n
relativistic theory, we should include this contribution
GpND(q2).

To complete analysis ofGpND(q2), we observe that loop
corrections renormalize the barepND coupling gpND

0

→gpND atO(p2). However, theq2 dependence of the verte
due to loop corrections appearO(p4). Since we truncate a
O(p2), these corrections can be neglected, and all we n
to do is to replacegpND

0 by gpND . A similar situation holds
for the diagonal GTD, as shown in the analysis of Ref.@7#. In
our case this observation directly leads to the conclusion
the Dp and r A

2 are solely determined by the counterterms
It is useful to examine theq2 dependence of loop effect

in some detail. To that end, we first classify the various d
grams contributing to the ODGTR. Diagrams~a!, ~e!, ~g!, ~i!,
~j!, and ~k! contribute to the tensor structuregmn while the
remaining diagrams contribute to the structureqmqn . The
first diagram~a! in Fig. 1 is the tree level one. The secon
diagram~b! is the pion pole contribution. Diagrams~c! and
~d! renormalizePp(q2) and their contribution is ofO(p4) as
explained above. The loops in diagrams~e! and ~f! contain
no q2 dependence. Diagrams~g!–~n! are similar to each
other, so we take diagram~g! as example. The amplitud
reads

iM (g);
gA

2gpND

Fp
2 E dDk

~2p!D

kmS•qS•k

k22mp
2 1 i e

3
1

v•k1@k22~v•k!2#/2mN

3
1

v•~k1q!1$~k1q!22@v•~k1q!#2%/2mN

~20!

e
e
he
nd
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whereq is the external momentum and we include the le
ing recoil correction in the nucleon propagator. According
HB x PT, the recoil corrections may be included perturb
tively, so we expand the baryon propagators in Eq.~20! as
follows:

iM (g);E dDk

~2p!D

kmS•qS•k

k22mp
2 1 i e

1

v•k

1

v•k1d

3F12
k22~v•k!2

mN~v•k!
1

~v•q!222k•q

2mNv•k
1

v•q

mN
G1•••.

~21!

The first term inside the square brackets generate
q2-independent contribution ofO(p2). Upon integration, the
terms in the integrand containing explicit factors ofq gener-
ate an additional factor ofv•q/mN relative to the leading
term. According to Eq. ~19!, this factor contains a
q2-dependent term which varies as2q2/2mN

2 . Thus, theq2

dependence of this integral occurs atO(p4). Similar argu-
ments hold for the other loops in diagrams~h!–~n!.

IV. THE LOW-ENERGY COUNTERTERMS

Consider first Dp . We collect theO(p3) low-energy
counterterms which may contribute toDp :

L CT
(3)52

c1

Lx
2T̄i

m@Dm ,x2# iN1
c2

Lx
2T̄m

i @Dn , f 2
mn# iN

1
c3

Lx
2T̄i

mig5@x2Am# iN1H.c.1••• ~22!

where@Dm ,x2# i5Tr$(t i /2)@Dm ,x2#%, etc. The ellipsis de-
notes otherO(p3) terms which do not contribute toDp .
Detailed expressions of these terms can be found in R
@16#. After carrying out the heavy baryon expansion, t
third term in Eq.~22! is of O(p5), where one power ofp
arises from a factor ofp/mN generated by theig5 tensor
structrure. Also the third term contains two pion fields. So
contribution toDp involves one additional loop and is fur
ther suppressed by 1/Lx

2 . In other words, this piece can b
neglected.

Since we obtained our general expression forDp using
matrix elements of]mAm

3 , we may deduce its dependence
ci by varying L CT

(3) with respect to the pseudoscalar sour
pi . To that end, we use the chiral Ward identity of QCD:

]mF q̄gmg5

t i

2
qG5m̂@ q̄ig5t iq# ~23!

with m̂5(mu1md)/2. Moreover,

q̄ig5t iq5
dL QCD

dpi
. ~24!

From Eqs. ~23!, ~24! and the leading-order relationx2
i

54iB0pi we obtain
07600
-

-
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]mAm
i 54im̂B0

dLHBxPT

dx2
i

. ~25!

Equations~13!, ~14!, ~15!, and~25! then imply that

C5
A~q2!1

C6
A~q2!

mN
2 q252A2

3F mp
2

q22mp
2 H gpND1~ b̃31b̃8!

3S mD
2 2mN

2 2q2

2mNLx
D J 12c1

mp
2

Lx
2 G ~26!

where we have used 2B0m̂5mp
2 . With Eq. ~18! we arrive at

the off-diagonal GTD toO(p2):

Dp5S mp

Lx
D 2F 2c1

gpND
2

b̃31b̃8

2gpND
S Lx

mN
D G . ~27!

The ODGTD—whose scale is of order (mp /Lx)2;0.01
—depends on three low-energy constants:gpND , c1, and
b̃31b̃8 ~we count the latter as a single constant!. Since we
have scaled out explicit factors of 1/Lx in L CT

(2,3) , we expect
these constants to be of order unity. In fact, determination
gpND and b̃31b̃8 from pN scattering in the resonance re
gion yield @16#

gpND50.9860.05,

b̃31b̃850.5960.10.

Werec1 also to be of order unity, we would expectDp to be
of order a few percent. This magnitude forDp is consistent
with previous estimates@5,17#. As in the diagonal GTR the
ODGTR should hold to within a few percent accuracy, a
consequence of chiral symmetry.

Consider now the leadingq2 dependence ofC5
A(q2).

Since loops do not contribute to theq2 dependence of
C5

A(q2) at O(p2) we need consider only the tree-level co
tributions generated byL CT

(3) . They are most easily obtaine
by considering the dependence ofL CT

(3) on the pseudovecto
sourceam

i :

Am
i 5

dLHBxPT

dam
i

. ~28!

We then arrive at

C5
A~q2!5A2

3FgpND1~ b̃31b̃8!S mD
2 2mN

2 2q2

2mNLx
D

22c1

mp
2

Lx
2 2c2

q2

Lx
2G ~29!

so that

r A
252

6

Lx
2 F c2

gpND
1

b̃31b̃8

gpND
S Lx

mN
D G , ~30!

where we have dropped higher-order contributions~e.g., cor-
rections of orderd/mN). From Eq.~26! we also conclude
that
8-4
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C6
A~q2!52A2

3
mN

2 gpNDF 1

q22mp
2 26r A

2 G1O~q2,mp
2 !

52A2

3
mNFpGpNDF 1

q22mp
2 26r A

2 G1O~q2,mp
2 !.

~31!

Note that the low-q2 behavior of the induced off-diagona
pseudoscalar form factor is completely determined~oncer A

2

is known!, since it is expressed in terms of the physical a
measurable parameters as can be seen from the second
ity in Eq. ~31!.

V. IMPLICATIONS FOR EXPERIMENT AND THEORY

In principle, an experimental test of the ODGTR could
carried out by drawing upon precise measurements ofC5

A(0)
andGpND(mp

2 ). A value for C5
A(0) has been obtained from

charged current neutrino scattering from hydrogen and d
terium @18#:

C5
A~0!5

1

A3
~2.060.4!, ~32!

where the prefactor is due to relative normalization
charged and neutral current amplitudes.

For the strongpND form factor, one may rely on the
analysis ofpN scattering given in Ref.@16#, which gives

GpND~mp
2 !511.661.3. ~33!

Substituting this result into Eq.~17! and dropping the correc
tion Dp yields the leading-order ODGTR prediction fo
C5

A(0):

C5
A~0! l.o.50.9360.10. ~34!

A comparison of this value with the experimental result
Eq. ~32! leads to an experimental constraint on the ODGT

Dp
expt520.2460.3, ~35!

where the error is dominated by the experimental error
C5

A(0).
Alternately, one may draw upon the older analysis of

K matrix for pion photoproduction@19,20# in the D reso-
nance region to obtain

GpND~mp
2 !514.360.2, ~36!

which implies

Dp
expt50.0160.2. ~37!

In both cases, the value ofDp
expt is consistent with zero

and thus in line with our expectations that the ODGTD be
order a few percent at most. At present, however, the un
tainty Dp

expt is an order of magnitude larger than one wou
like in order to test this theoretical expectation. Since t
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d
ual-

u-

f

:

n

e

f
r-

s

uncertainty is dominated by the error inC5
A(0), it would be

advantageous to reduce this uncertainty through more pre
form factor measurements.

Such measurements could also reduce the present u
tainty in r A

2 , which has been determined from charged c
rent neutrino scattering data. An empirical parametrization
C5

A(q2) obtained from these data gives@21#

C5
A~q2!5C5

A~0!
111.21q2/~2 GeV22q2!

~12q2/MA
2 !2

~38!

with MA51.14→1.28 GeV. From this parametrization, on
would deduce

r A
2

6
5S 1.21

2
1

2

MA
2 D 5~1.82→2.14! GeV22. ~39!

Accordingly we determine

c252~3.1→3.5!. ~40!

While the value forc2 is consistent with expectations that
be of order unity, its uncertainty is roughly 10%.

Parity-violating electroexcitation of theD, as approved to
run at Jefferson Lab@10#, will provide new, precise measure
ments of the axial-vectorN→D amplitude at a variety ofq2

points. At first glance, this program of measurements co
yield a determination of bothC5

A(0) andr A
2 . However, the

extraction of these quantities from experiment requires re
lution of two theoretical issues. The first involves the over
normalization of the axial-vector amplitude and, thus, t
determination ofC5

A(0). Thenormalization—which could be
obtained from a fit to the measuredq2 dependence@22#—is
strongly affected by electroweak radiative correctionsRA

D as
discussed in detail in Ref.@23#. As emphasized in that work
these corrections are theoretically uncertain, as a resu
nonperturbative QCD effects, and the corresponding un
tainty could be on the order of 10–20% relative to the tre
level amplitude. The radiative corrections always come
tandem with the axial-vector amplitude for PV electroexci
tion and cannot be determined independently~e.g., by proper
choice of kinematics or target!. Thus, they introduce an in
trinsic, theoretical uncertainty in the extraction ofC5

A(0)
from this process. Given the estimated size of the unc
tainty, it appears unlikely that PV electroexcitation will im
prove upon the result in Eq.~32!.

Nevertheless, determining the normalization of the ax
vector amplitude via the Jefferson Lab measurement wo
be interesting from another perspective. Because the the
ical uncertainty in the ODGTD is considerably smaller th
both the current experimental error inC5

A(0) as well as the
estimated theoretical uncertainty inRA

D , one might use the
ODGTR prediction forC5

A(0), in tandem with the normal-
ization of the axial-vector amplitude extracted from PV ele
troexcitation, to determineRA

D . Recently, the study of axia
vector electroweak corrections has taken on added intere
light of the results of the SAMPLE experiment@25#, which
imply that the magnitude ofRA for elastic, PV electron scat
8-5
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tering may be considerably larger than implied by theo
@26#. Understanding these corrections could have impor
implications for the interpretation of other precision ele
troweak measurements, such as neutronb decay@27#, so it
would be of interest to study them in both the elastic a
inelastic channels.

A second interpretation issue involves theq2 dependence
of the PV asymmetry and thus the determination ofr A

2 . In
contrast to the situation for elastic, PV electron scattering
where the PV asymmetry vanishes linearly withq2 at low
uq2u—the asymmetry for PV electroexcitation contains
q2-independent term. In the framework of Ref.@24#, this
term is characterized by a low-energy constantdD . On the
scale of the expected asymmetry, the magnitude of thedD

contribution could be significant, particularly at lowuq2u
where one would want to determiner A

2 . In order to deter-
mine the latter reliably, one also requires knowledge ofdD .

The second issue could, in principle, be resolved thro
a measurement ofAg , the asymmetry for PV photoproduc
tion of the D. Since Ag is proportional todD , and since
chiral corrections to the asymmetry are small, its measu
ment could remove thedD-related uncertainty in PV electro
excitation. Thus, measurements of bothAg and the PV elec-
troexcitation asymmetry at a variety ofq2 points could yield
values forr A

2 , dD , andRA
D .

New, precise neutrino scattering experiments wo
complement this program. Since neutrino scattering pro
of the axial-vector transition amplitude are free from t
large and theoretically uncertain radiative corrections en
ing PV electroexcitation, such experiments could, in pr
ciple, provide a theoretically clean determination ofC5

A(0).
Finally, we observe that the ODGTR could provide a th

oretical self-consistency check on lattice QCD and had
ys
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model computations of the axial vectorN→D transition
form factors. While there exist lattice calculations of th
electromagneticN→D amplitudes, the axial-vector ampli
tudes remain to be computed. The lattice electromagn
amplitudes appear to differ significantly from experimen
values, and it would be useful to have a corresponding co
parison in the axial-vector channel. Historically, a variety
hadron model calculations ofC5

A(0) have been performed
with predictions generally lying in the range 0.8→2.0 ~see
Ref. @28# for a compilation!. Those lying near the lower en
of this range are most consistent with the ODGTR, based
the value ofGpND(mp

2 ) from Ref. @16#. For example, the
quark model calculation of Ref.@5# predictsC5

A(0) in terms
of gA and the nucleon andD masses:

C5
A~0!Q.M.5

1

1.17

6

5A3
S 2mD

mD1mN
DgA50.87. ~41!

The leading-order ODGTR prediction is given in Eq.~34!,
where the uncertainty is dominated by the error
GpND(mp

2 ) obtained from Ref.@16#. Thus, the quark mode
appears to be consistent with the expectations derived f
chiral symmetry and the latest analysis of strong interact
data. Having in hand similar agreement with future latti
calculations would be similarly satisfying.
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