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Flavor mixing, gauge invariance, and wave-function renormalization
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We clarify some aspects of the LSZ formalism and wave-function renormalization for unstable particles in
the presence of electroweak interactions when mixing @Rdviolation are considered. We also analyze the
renormalization of the Cabibbo-Kobayashi-Maskai@&M) mixing matrix which is closely related to wave-
function renormalization. We critically review earlier attempts to define a set of “on-shell” wave-function
renormalization constants. With the aid of extensive use of the Nielsen identities complemented by explicit
calculations we corroborate that the counterterm for the CKM mixing matrix must be explicitly gauge inde-
pendent and demonstrate that the commonly used prescription for the wave-function renormalization constants
leads to gauge parameter dependent amplitudes, even if the CKM counterterm is gauge invariant as required.
We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting
wave-function renormalization constants necessarily possess absorptive parts, but we verify that they comply
with the expected requirements concerni@® and CPT. The results obtained using this prescription are
different (even at the level of the modulus squared of the ampljtfiden the ones neglecting the absorptive
parts in the case of top decay. The difference is numerically relevant.
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[. INTRODUCTION These corrections are of several types. With an on-shell
scheme in mind, we need counterterms for the electric

One of the pressing open problems in particle physics igharge, Weinberg angle, and wave-function renormalization
to understand the origin of th@P violation phase and fam- (WFR) for the W gauge boson. We shall also require WFR
ily mixing. In the minimal standard modéBM) the infor- for the external fermions and counterterms for the entries of

mation about these quantities is encoded in the Cabibbot-he CKM matrix. The latter are in fact related in a way that

- - : : will be described below3]. Finally, one needs to compute
Eﬁ;?ﬁiﬂgtgﬁgar\rllvaét?ismmIxmg matrix. In this work we the one particle irreducebl@Pl) vertex parts of the different
ij -

As is well known, some of the entries of this matrix are processes one is interested in.
remarkably well measured, while othefsuch as thek In the.on-.shell scheme, all counterterms can be expressed
K., andK,y elements are [;oorly known and the onl;br,eal as combinations of self-energip4|. These are standard and

Sy

: g L : well known at one loop in perturbation theory, and in some
experimental constraint comes from unitarity requwementscases at least for the leading pieces. up to two loobs in the
A lot of effort in the last decade has been invested in thisS,vI I—iowever a lon standing pcontrdve?s exists inpthe lit-
particular problem and this dedication will continue in the™ " ’ g 9 y

L P ?rature concerning the appropriate way to define both an ex-
foreseeable future aiming to precision in the charged current I WER and CKM counterterms. The issue becomes in-

sector comparable to that already reached in the neutral sec- . . i )
. : volved because we are dealing with particles which are
tor. As a guide, let us mention that the expected accuracy in

sin 28 after the CERN LHCb is expected to be beyond theunstable(and therefore the self—energles develop branch' cuts;
: ven gauge dependent ones in the)2d because of mix-
1% level, and a comparable accuracy is expected by thaller%1

time from the ongoing generation of experimexBaBar, Several proposals have been put forward in the literature

Belle) [1]. to define appropriate counterterms both for the external legs

In the neutral sector it is totally mandatory to include ; - o
-~ . . .and for the CKM matrix elements. The original prescription
electroweak radiative corrections to bring theory and experiz ; . "
) . . . for a WFR diagonalizing the on-shell propagator was intro-
ment into agreement. Tree level results are incompatible with

: - . duced in[5]. In [6] the WFR “satisfying” the conditions of
experiment by many standard deviatidia. Ob V'OUS|y. we 5] was derived. However, sin¢é] does not take care about
are not there yet in the charged current sector, but in a fe

- : i . - the branch cuts present in the self-energies those results must
years electroweak radiative corrections will be required in . . . .
the studies analvzing the “unitarity” of the CKM matrix be considered only consistent up to absorptive terms. Later it
yzing y ' was realized 7] that the on-shell conditions defined [iB]
were inconsistent and in fact impossible to satisfy for a mini-
mal set of renormalization constahiue to the imaginary
branch cuts present in the self-energies. The authdi7pf
circumvented this problem by introducing a prescription that
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The CKM matrix is certainly unitary, but the physical observ-
ables that at tree level coincide with these matrix elements certainly -
do not necessarily fulfil a unitarity constraint once quantum correc- “By minimal set we mean a set where the WFRIgf=¥Z"?and
tions are switched on. W,=Z"2F are related byz/?= 4071210,
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de factoeliminates such branch cuts, but at the price of notails. In Sec. VII and VIII we return t&V and top decay to

diagonalizing the propagators in flavor space. implement the previous results, and finally we conclude in
Ward identities based on the SU(2gauge symmetry re- Sec. IX.

late WFR and counterterms for the CKM matrix elements

[3]. In [8] it was seen that if the prescription (] was used  Il. STATEMENT OF THE PROBLEM AND ITS SOLUTION

in the counterterms for the CKM matrix elements, the results

;’_V:r:gdm tvh'gl?ggnltgf _?ﬁgaj%%'?]\é?r&nacle‘ rf\)s ;’\:F ha\tlﬁ {Lﬁzt g;)en'that guarantees the correct properties of the fermionic propa-
! ’ s Properly wi gator in thep?—m? limit and at the same time renders the

sorptive terms appearing in the self-energies; which in addiE)bservable uantities calculated in such a scheme gauge pa-
tion happen to be gauge dependent. In spite of the problems q gauge p

with the prescription for the WFR given §f6], the conclu- rameter independent. In the first place up- and down-type

sions reached i8] are correct: a necessary condition for propagators have to be family diagonal on shell. The condi-

gauge invariance of the physical amplitudes is that countert—Ions necessary for that purpose were first given by Aoki

terms for the CKM matrix element;. are by themselves et al.in [5]. Let us introduce some notation in order to write
i ) o

gauge independent. This condition is fulfilled by the Ckm NEM down. We renormalize the bare fermion fieldls and
counterterm proposed if8] as it is in minimal subtraction Yo as
[3,9]. .
Other proposals to handle CKM renormalization exist in Vo=7Y2p, W,=wz!2 (2.9
the literaturg9—211]. In all this work either the external WFR . . :
proposed originally if6] or [7] is used, or the issue is side- For reasons that Wlll_become clear through the discussion,
stepped altogether. In either case the absorptive part of tH¥€ shall allowZ andZ to be independent renormalization
self-energiegand even the absorptive part of the 1P| vertexconstants. These renormalisation constants contain flavor,
part in one particular instan¢&0]) is not taken into account. family and Dirac indices. We can decompose them into
As we shall see doing so leads to physical amplitudes—

. . .. 1/2__ 1/2 d1/2_d
S-matrix elements—which are gauge dependent, and this is £ =Z' T +Z% 74,
irrespective of the method one uses to renormatizepro-

vided the redefinition oK;; is gauge independent and pre- .t 1 4nd 9 the up and down flavor projectors, and fur-

serves unitarity. . . thermore each piece in left and right chiral projectborand
Because of the structure of the imaginary branch cuts i respectively

turns out, however, that the gauge dependence present in the

amplitude using the prescription pf] cancels in the modu-  zu12_ZuL 112 | ZuR12p  Zul2_Zul 2R ZUR1Z

lus squared of the physic8matrix element in the SM. This 2.3
cancellation has been checked numerically by the authors in .

[12]. In this work we shall provide analytical results showing Analogous decompositions hold fa® *? and z% 2. Be-

that this cancellation is exact. However, the gauge depereause of radiative corrections the propagator mixes fermion

We want to define an on-shell renormalization scheme

Zl2_Zu 12 uy Z7d1/2.d
(2.2

dence remains at the level of the amplitude. of different family indices. Namely
Is this acceptable? We do not think so. Diagrams contrib- o
uting to the same physical process outside the SM elec- iS™Y(p)=Z2Y4p—m-sm—3(p)]1Z*?

troweak sector may interfere with the SM amplitude and re- . ) o
veal the unwanted gauge dependence. Furthermore, gaujiere the bare self-ener@y is nondiagonal and is gl\_/enlzby
independent absorptive parts are also discarded by the pré—'zzlElpl- Within one-loop accuracy we can Wf'kl
scription in[7]. These parts, contrary to the gauge dependent 1+ 7 6Z etc. Introducing the family indices explicitly we
ones, do not drop in the squared amplitude as we shall shoRave
In addition, one should not forget that the schemgridoes Y .
not deliver on-shell renormalized propagators that are diag- iS;;7(p)=(p—m;) & —2ij(p),
onal in flavor space. ) : 3 P

This work is dedicated to substantiating the above claims\.’vhere the one-loop renormalized self-energy is given by
We shall compute the gauge dependence of the absorptive A 1
parts in the self-energies and the vertex functions. We shall 2i(p)=2i(p)— §5Zij(¢— m;)
see how the requirements of gauge invariance and proper
on-shell conditiongincluding exact diagonalization in flavor 1
space single out a unique prescription for the WFR The - E(p_mi)‘szij+5mi dij - (2.9
problem is presented in detail in the next section. The ex-
plicit expressions for the renormalization constants are giveisince we can project the above definition for up- and down-
in Secs. Il and IV. Implementation fo/ and top decay are type quarks, flavor indices will be dropped in the following
shown in Sec. V. A technical discussion where extended use
of the Nielsen identities has been done to extract the gauge——
dependence of all absorptive terms is presented in Sec. VI®This immediately raises some issues about Hermiticity, which we
and it can be omitted by readers not interested in these dehall deal with below.
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and will only be restored when necessary. Recalling the foling two sets of renormalization constants is a standard prac-

lowing on-shell relations for Dirac spinorp?—m?) tice in the on-shell schemiet], so one should not be con-
cerned by this facper se In case one is worried about the
(p—m)u(p)=0, consistency of using a set of WFR constants not satisfying
Eq. (2.10 for the external legs while keeping a Hermitian
Ui(s)(p)(p—mi)zo, Lagrangian, it should be pointed out that there is a complete
equivalence between the set of renormalization constants we
(p—mp)v®(—p)=0, shall find below and a treatment of the external legs where
diagrams with self-energie@ncluding mass counterterms
;i(s)(_ p)(p—m;)=0, (2.5 are inserted instead of the WFR constants; provided, of
course, that the mass counterterm satisfies the on-shell con-
the conditiong5] necessary to avoid mixing will Be dition. Proceeding in this way gives results identical to ours
R and different from those obtained using the WFR proposed in
Si(pu(p)=0 (p?>—md) [7], which do satisfy Eq(2.10. Further consistency checks
) ) ) are presented in the following sections.
(incoming particlg, (2.6 In any case, self-energies develop absorptive terms and
. this makes Eq(2.10 incompatible with the diagonalizing
;i(s)(—p)Eij(p)=0 (p?—m?) conditions(2.6)—(2.9). Therefore in order to circumvent this

problem one can give up diagonalization conditid@s6)—
(2.9 or alternatively the Hermiticity conditiori2.10. The
—, 5 ) approach taken originally if7] and work thereafter was the
ui”(p)2ij(p)=0 (p“—my) former alternative, while in this work we shall advocate the
second one. The approach [of] consists in dropping out

(incoming antiparticle, — (2.7)

(outgoing particlg, (28 absorptive terms from condition®.6)—(2.9). That is, fori
< (s) 2 2 #J,
(P (=p)=0 (p°—my)
(outgoing antiparticle  (2.9) RES; (P Iu®(p)=0 (p?>—m?)
where no summation over repeated indices is assumed and (incoming particle,
i#]. These relations determine the nondiagonal partg of
andZ as will be proven in the next section. Here, as a side )\ BES _ 2 2
remark, let us point out that the need of different “incoming” vi”(—PIREZ;(p)]=0  (p"—m)
and “outgoing” WFR constants was already recognized in (incoming antiparticlg,

[13]. Nevertheless, that paper was unsuccessful in reconcil-
ing the on-shell prescription with the presence of absorptive 9SS 5 )
terms in the self-energies. However, since its results are con- U (p)ReZij(p))=0 (p°—m;)
cerned with the leading contribution of an effective Lagrang-
ian, no absorptive terms are present and therefore the con-
clusions still hold. A
To obtain the diagonal part&;, Z;, and Sm, one im- R (PP (—p)=0 (p?—m?)
poses mass pole and unit residue conditidase discussed
below). Here it is worth making one important comment re-
garding the above conditions. First of all we note that in the (2.1D
literature the relation

(outgoing particle,

(outgoing antiparticlg

where Reincludes the real part of the logarithms arising in
loop integrals appearing in the self-energies but not of the
rest of coupling factors of the Feynmann diagram. This ap-
proach is compatible with the hermiticity conditid@.10

?./2: ,YOZ(1/2)T,yO (21@

is taken for granted. This relation is tacitly assumed5h

and explicitly required in[7]. Imposing Eq.(2.10 would

guarantee Hermiticity of the Lagrangian written in terms of PUt on the other hand has several drawbacks. These draw-
the renormalized physical fields. However, we are at thid?acks include the following: . _
point concerned with external leg renormalization, for which (1) Since only the Repart of the self-energies enters into

it is perfectly possible to use a different set of renormalizathe diagonalizing conditions the on-shell propagator remains

tion constant§even ones that do not respect the requiremenfondiagonal. -

(2.10], while keeping the Lagrangian Hermitian. In fact, us-  (2) The very definition of Reelies heavily on the one-
loop perturbative calculation where it is applied. In other
words Reis not a proper function of its argume(ih contrast

“Notice that, as a matter of fact, [i5] the conditions over anti- to Re and it is presumably cumbersome to implement in
fermions are not stated. multiloop calculations.
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(3) As will become clear in the next sections, the on-shell Rop L op 1 o
scheme based in th?REescription leads to gauge param- 2ii(p):'éR(ziyj (p%)— §5Zii - §5Zii)
eter dependent physical amplitudes. The reason for this un-
wanted dependence is the dropping of absorptive gauge pa-
rameter dependent terms in the self-energies that are
necessary to cancel absorptive terms appearing in the verti-
ces. As mentioned i_n the Introduction, in the SM, the gauge +R(Eﬁ(p2)+ 1(525 m;+m; 5Zﬁ)+ 8ij 5mi)
dependence drops in the modulus squared of the amplitude, 2
but not in the amplitude itself, and it could be eventually

+pL 5

1 1
37 (p?) - 552}] ——5zh)

1
observable. N L zh(p2)+§(a§ﬁmj+mi 8Z5)+ 5”5mi).
Having stated the unwanted features of thedpgroach
let us briefly state the consequences of dropping condition (3.2
(2.10

(1) Conditions (2.6—~(2.9 readily determine the off- Repeated indices are not summed over. Hence from Egs.

diagonalZ and Z WFRs which coincide with the ones ob- (3.2, (2.9, and(2.6) we obtain

tained using théT?prescription up to finite absorptive gauge
parameter dependent terms.
(2) The renormalized fermion propagator becomes exactly 1 1
diagonal on .shell, unlike iq the Rg:heme. o EﬁL(mf)mj— _5Zh m, +2iFJ€(mj2)+ —m, 525,420_
(3) Incoming and outgoing particles and antiparticles re- 2 2

quire different renormalization constants when computing %xactly the same relations are obtained from E@s2)

physical amplitude. Annihilation of particles and creation of
antiparticles are accompanied by the renormalization con(-2'5)’ and(2.9.. Analogously, Eqs(3.2), (2.5), and(2.7) [or

stantZ, while creation of particles and annihilation of anti- Eq. (28] lead to
particles are accompanied by the renormalization congtant

(4) These constant& and Z are in what relates to their
dispersive parts identical to the ones[if]. They differ in 1 1
their absorptive parts. This might suggest to the alert reader miEﬁL(miz)— -m, 5ZL]_ +2h(mi2)+ —525m,- =0.
that there could be problems with fundamental symmetries 2 2
such agCP or CPT. We shall discuss this issue at the end of , , . : . . .

S ; Using the above expressions we immediately obtain
the paper. Our conclusion is that everything works out con-
sistently in this respect.

1 1
S 7R(m?ym; — §5Ziijj+Eh(mj2)+ > 8Z§=0,

1 1
m;37R(m?) - >m SZp+ 3R (m?)+ Eéfh m;=0,

I L__ R 2 L 2 2
For explicit expressions forZ and Z the reader should 0Z;j= m_z_m_z[ziyj (my)mym; + 2 3(mp)m;
consult formulag3.3), (3.4 and(4.10 in the next two sec- o
tions. As an example of how to implement them see Sec. V. +mI(m)+ 2T (mHm],
The explicit dependence on the gauge paramgter sim-
plicity only the W gauge parameter is considereaf the R 2 Lo R, 2 2
absorptive parts is given in Sec. VII. 0Zij= m_z_mg[ziyi (mp)ymim; + 277 (mi)m;
i i
+mE (M) + 25 (mHymy], (3.3
I1l. OFF-DIAGONAL WAVE-FUNCTION
RENORMALIZATION CONSTANTS and
This section is devoted to a detailed derivation of the — 2 - L o
off-diagonal renormalization constants derived entirely from 5Zi,-=m2_m2[2i7j (mi)mym; + 25 (m)m;
the on-shell conditiong2.6)—(2.9 and allowing for Z/? b
#y07(M21,0  First of all we decompose the renormalized +mEE(md)+3R(mAm],
self-energy into all possible Dirac structures
2
SZR= mz_mz[EﬁL(miz)mimijEiij(miz)miz
(P =P PR+ (pP)L] L
AR oL +miZ(mP) + X5 (mo)my]. (3.9
+30(p?)R+25(p7)L, (3.1
At the one-loop level in the SM we can define
and use Eqgs(2.3), (2.4), and(3.1) to obtain SRPH=25(pHm;,  SE(pH=mIE(p?),
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and therefore In the limit p?>—~m? the chiral structures in the numerator
have to canceld—b andc—d); this requirement leads to
2
—L 2 2
62Zjj— 62 = {[X ()~ X% (mf) Jmymy
i ]

SF)-hn?
75— o2 =3~ Sy + ST
+H[S M2 =S (M) Tm? + (mf+m?) m

Sim2) =3 S* (m?2
X[Eij(mi) EJ, (m{)]}#0, Ei'?(miz)—Eh(miZ)

6Z}i— 6Z;;=3)%(mf) =X} (mf)

and a similar relation holds fo:?ZFf— 52{?*. The above non- m

vanishing difference is due to the presence of branch cuts in (4.3

the self-energies that invalidate the pseudo-Hermiticity rela-

tion After this, we require the inverse propagator to have a zero in
its real part ap?—m?

(P # Y2 (p)¥°. (35
Equation(3.5) is assumed ifi5] and if we temporarily ignore lim Re(p’b—cda *)=0, (4.4
those branch cut contributions our results reduce to the ones pP—m

depicted in[6] or [7]. In the SM these branch cuts are ge- _ _ _
nerically gauge dependent as a cursory look at the approprfrom which ém; is obtained,
ate integrals shows at once.

1
IV. DIAGONAL WAVE-FUNCTION RENORMALIZATION omy=— ERe{miEﬁL(mﬁ) +mER+3E(m?) + 3R (m?)L.
CONSTANTS 4.5

Once the off-diagonal WFRs are obtained we focus our N ] )
attention on the diagonal sector. Near the on-shell limit wel his condition defines a mass and a width that agree at the

can neglect the off-diagonal parts of the inverse propagatdPne-loop level with the ones given [d4], [15], [16], and

and write [17]. The mass and width are defined as the real and imagi-
nary parts of the propagator pole in the complex plane re-
i Y p)=[p—m _iii(p)]gi. spectively. Note also that from Eqgl.2), (4.3), and(4.5 we
N . have
=[p(aL+bR)+cL+dR]5;, 4.0
i
and therefore after some algebra lim (—ca Y=m+ Elm(Ef{R(mf)mi
p2—>mi2
_ p(aL+bR)—dL—cR _ L, N el
—iSjj(p)= R 3 +35(m2)m+SR(m?) +35(md)), (4.6
in our case we have and therefore
Lin2 1 —L 1 L .
a=1-3(p?)+ §5Zii+ §5Zii , i p(aL+bR)—dL—cR p+m—il'/2
o2 m? pZab—cd imIl 7
1 1 '
=1-32R(p?)+ 5 628+ 628
b PY) 2 o2 where the width is defined as
4.2
1 1 =_ RemAm + S (m2)m: + SR (m?) + S5 (m?
c= _Eil_i(pz)_ 1+ Eﬁzﬁ+ §5Zh) m; — 5mi , r= |m(2” (m| )m|+2|| (m| )m|+2n(m| )+2||(m| ))
This quantity is ultraviolet finite. In order to find the residue
1 1 i
SRy 2\ e R S I in the complex plane we expand the propagator around the
d=—2i(p7)—| 1+ 2 0Zii T 5 %Zi ) m = om; . physical mass, obtaining fqr’~m?
i[p+m—iT/2+O(p>—md)]
Si(p)=" ' ' +O((p?=m?)?), 4.7

imT+(p?—m?)a {ab+m?(a’b+ab’)—(c’'d+cd’)]
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wherea=b andc=d are evaluated ap’=m?. Hereafter by diagonal matrices. These redefinitions do not change the
primed quantities denote derivatives with respect tophysical observables provided thg are pure imaginary
p?- O[(p?—m?)"] stands for nonessential corrections of or- numbers. This ambiguity corresponds in perturbation theory
der (p2_mi2)n_ Note that the(’)(pz—miz) corrections in the to the well known freedom in phase redefinitions of the

numerator do not mix with the ones of the same order in thé€ KM matrix. Except for this last freedom, the on-shell con-
denominator since the first ones are of oréiert and the ditions determine one unique solution, the one presented

second ones are of orddr 2. Taking into account these here, withZ/%# 071210,
comments the unit residue condition amounts to requiring
V. WH AND TOP DECAY

at+b
— 201 ’ ; ' ’
1=——+mi@+b")+(m—-il/2)(c’+d"), (4.8 Let us now apply the above mechanisms™ and top
decay. We write

from which o
1 1 W' (q)—fi(p)fj(p2), (5.1
—(8ZE+ 82D =3 (m?) + 3 R(m?) — = (625 + 628
2 ) () (m)= 3 ) fi(p) =W () fj(p2), (5.2
+2mf(E) (M) + 277 (mf)) wheref indicates particle anél antiparticle. The latin indices

are reserved for family indices. Leptonic and quark channels

can be considered with the same notation, and confusion
hould not arise. For the proce&l) there are at next-to-
eading order two different types of Lorentz structure:

+2m (S5 (mA)+ 3R (m?)). (4.9

We have already required all the necessary conditions to fi
the correct properties of the on-shell propagator but still
there is some freedom left in the definition of the diagonal W_—
Z's. This freedom can be expressed in terms of a set of finite Mi@=ui(p)é(a)luj(pz) (L=R),
coefficientse; given by o (5.3
MP=ui(py)Loj(p2)p1-e(d) (L=R),

1 L Ri_1 oL, SR

E(gziiJ”SZii):E(‘Szii+5zii)+ai' where ¢ stands for the vector polarization of the/*.
Equivalently, for the proces®.2) we shall use
Bearing in mind that ambiguity and using Edg.3) and

(4.9 we obtain M{Y=Uj(p2)#* ()L ui(p1) (LR,

@ B (5.9
8Zi=3]H(mf)=X= - +D, M{Z=uj(p;)Lui(p)pa-e*(a)  (L=R).

o The transition amplitude at tree level for the proceg$ed
SZR=3R(m?)+X— 3'+D, and(5.2) is given by

ekKj;
: My=——MD),

5ZE =32 (M) + X+ = 1D, 0" 2s, t

2
where Eq.(5.3) is used forM{" in W' decay and Eq(5.4)
5ZﬁzziyiR( miz)—X+ ﬂ+ D, (4.10 instegd forM (Ll) int dgcay. The one-loop corrected transition
2 amplitude can be written as

where v e M@k (14 se 5SW+152 )
1= — 52 M ii — = —+ =62y
" 1 3R(m?) -3k (md) 25y ] e sy 2
B E m ! 1 _ g
+ 5Kii + 2 Z (5ZiruKrj +Kj, 5er )
D=m{(Z}" (m?)+Z % (mP))
e
+mySh (M) +3R (md). - Ev(5,:(L1>,\,|(L1)+,\,,(Lz>5,:(Lz>
Note that sinceX=0 at the one-loop level and choosiag +MOSFD+ M@ sFD). 5.5

=0 we obtain 5ZL =675 and 6ZF=5ZF. However, we

have the freedom to choogg+# 0. This does not affect the In this expressiorﬁF(Lly'Ff) are the electroweak form factors
mass terms or neutral current couplings, but changes theoming from one-loop vertex diagrams. The renormalization
charged coupling currents by multiplying the CKM matkix  constants are given by
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S 1 A A A the gauge independence 6K is in contradistinction with
. 5 [(625—6Z1)+ 6Z5] the conclusions of10] and in addition these authors have a
nonunitary bare CKM matrix which does not respect the
1 JTIAA Ward identity.
=— S_WHZA(O) +Z (0), As we shall see, if instead of using our prescriptiondar
cwM? 2 K2 and 5Z one makes use of the WFR constant$ &fto renor-

malize the external fermion legs, it turns out that the gauge
cancellation dictated by the Nielsen identities does not actu-
ally take place in the amplitude. The culprits are of course
the absorptive parts. These absorptive parts of the self-
energies are absent @] due to the use of the Rerescrip-

tion, which throws them away. Notice, though, that the ver-

M3, 6M2

My, M2

Ssw  Ch

cd e(HWW(M\ZN) IPH(MY)

23\2,\, M\ZN M% ' tex contribution has gauge dependent absorptive parts
(calculated in the next sectipand they remain in the final
ww result.
0Zyw=— 5 (M\ZN), One might think of absorbing these additional terms in the
K counterterm forsK. This does not work. Indeed one can see

L . . from explicit calculations that WFR constants decompose as
and the fermionic WFR constants are depicted in E§S), P P

(3.4), and(4.10 where the indices or d must be restored in . =1 .
the masses. The indeXrefers to the photon field. SZH=A'HIBI, Sz =AM HiB
As for the 6K;; renormalization constants, a &) Ward (L—R,u—d), (5.7
identity [8] fixes these counterterms to be
1 where the matriceé\ and B contain the dispersive and ab-
I sSul_ ssultyi _ Sdl_ s5dLty 7. sorptive parts of the self-energies, respectively. Moreover, if
K 4[(‘(SZ 02K =K (62T =02 N ], (5.6 one substitutes E@5.7) back into Eq.(5.5 one immediately
. sees that a necessary requirement allowingAheand A¢
where Z means that the WFR constants appearing in théB" andBY) contributions to be absorbed into a CKM matrix
above expression are not necessarily the same ones usedctiunterterm of the form given in E¢5.6) is thatAY and A®
renormalize and guarantee the proper on-shell residue for th@" and BY) were anti-Hermitian(Hermitian matrices. By
external legs, as has already been emphasised. One may, flirect inspection one can conclude that Alk or B's are
instance, use minimal subtracti@’s for the former. neither Hermitian nor anti-Hermitian matrices and therefore
We know [18] that the combinationse/e— dsy /sy is  any such redefinitions are impossible unless one is willing to
gauge parameter independent. All the other vertex functiongive up the unitarity of the bar&. A problem somewhat
and renormalization constants are gauge dependent. For teamilar to that was encountered [it0] (but different in that
reasons stated in the Introduction we want the amplitudehey did not consider absorptive parts at all; the inconsis-
(5.5 to be exactly gauge independent—not just itstency already showed up with the dispersive parts of the
modulus—so the gauge dependence must cancel between afi-shell scheme df6]).
the remaining terms. It turns out that in the SM these gauge dependent absorp-
In the next section we shall make use of the Nielsen identive parts, leading to a gauge dependent amplitude if they are
tities [19-22 to determine that three of the form factors dropped, do actually cancel, at least at the one-loop level, in
appearing in the vertets.5) are by themselves gauge inde- the modulus of theS matrix element. Thus at this level the

pendent, namely, use of Rds irrelevant. It is also shown in Sec. VI that gauge
@) ) @) independent absorptive parts do survive even in the modulus
9¢6F "= 0.0Fr’=0.0FR’=0. of the amplitude for top quark or top antoquark decagd

only in these casesTherefore we have to conclude that the

¢ is the gauge fixing parameter. We shall also see that thgifference between usinERas advocated ifi7], or not, as

gauge depend.ence in the rema_ining' form fa@E{l) can- e do, is not just a semantic one. As we have seen, this
Cils exactly with the one contained &z, and in 6Z and difference cannot be attributed to a finite renormalization of
oZ. Therefore to guarantee a gauge fixing parameter indek, provided the baré& remains unitary as required by the
pendent amplitud@K must be gauge independent as well. Ward identity(5.6).

The difficulties related to a proper definition 6K were
first pointed out in[8,19], where it was realized that using
the on-shellZ’s of [6] in Eq. (5.6) led to a gauge dependent
K and amplitude. Those authors suggested a modification of In this section we derive in detail the gauge dependence
the on-shell scheme based on a subtractiop?at0 for all  of the vertex three-point function. It is therefore rather tech-
flavors that ensured gauge independence. We want to stresikal and it can be omitted by readers just interested in the
that the choice forsK is not unique and different choices physical conclusions. In order to have control on gauge de-
may differ by gauge independent finite pari®]. Note that pendence, a useful tool is provided by the so-called Nielsen

VI. NIELSEN IDENTITIES
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identities[20]. For such purpose in addition to the “classi- F\%l =—2( @

— +,- 1ﬂw*w**'r(l)+ - Terwo)
cal” LagrangianZsy, we have to take into account the gauge Ve W, Tap WY - el
fixing term Lge, the Fadeev-Popov termigp, and source (6.9
terms. Such source terms are the ones given by Becchi- oI —_op® T FENC I
Rouet-Stora-Tyutin (BRST) ~ variations ~ of  matter gwie,” ( W T Wo G T W g Glc,)-
(#", 7", ...) andgauge fields together with Goldstone and (6.5

ghost fields(not including antighosjsWe refer the reader to
[4,19] for notation and further explanations. We also include©On shell these reduce to

source terms x) for the composite operators whose BRST T(1) 1
L + ) H T(1 wHw-
variations generat€ge+ Lrp. Schematically, Fxf,vly;v('\/'\zfv)z N Eaf PG _(q2)|q2:M\2N= §0g52w,
1 _
L= Loyt Lopt+ Lep— == x((I*W, —iEM G )ct
TR 2 o rie (a-o, (6.6
XWT g
: — g :
+((9“Wz—|§MWG+)c‘)+ TﬂiuKirLdr where the superscriff refers to the transverse part and the
2 superscript (1) makes reference to the one-loop order cor-
i rection.
— ﬁEErKrT_ Ry¥+stu; +u;si+s3d, + d;sd+ - - -, Using these two sets of results and restricting @) to
V2 e ™ = the 1P| function appropriate fdpn-shel) top quark decay,
where the ellipsis stands for the remaining source terms. The m(pi)e“(q)&gl“f,tlgd_vd( —pj)
effective actionl” is introduced in the standard manner, pot
— — g J—
F[X1 7]u, 77U,UC|,UC|1 . ] = Euu(pi)( FXE’I[FJK"J. EL+ KiréLF;(rjde
IW[)(,;“J]“,E‘,S“, o] 1
—(sfuf'+uf'st+sid +d'st+ ), (6.0) +§‘9552WK‘jéL]Ud(_pi)' .9
with At the one-loop level we also have the Nielsen identity
1
T2 (P) = (P (B=m) +(B=m, (P), (6.9

eW=27[y, 7" ", s" s, .. .]Ef D®expil). (6.2

which is the fermionic counterpart of Eq®.4) and(6.5). A
._similar relation holds interchanging—d. With the use of

From the above expressions and us{BiRST) transforma-
Eq. (6.8 and an analogous decomposition to Ej2) for I,

functions(see[20] for details:
=BT e PR+ T (p?L)

f?grw/ﬁidj: _FXW; y;vaFWZUidj_rxiin:‘FW;Erdj XU 7; xu; XU 7j
~Twa L Lo g Dotu, T PORA T a(pPIL
- Fwéfidjreﬁwﬁ B FXV\X/andeW;W; F%li“)“jx(p) B mr%?‘(ijl;( POR* F%:J‘(’Jl;(pz)l_)
T w0~ Tao Do g, (63 FITL (PRI (2L, (6.9

where we have omitted the momentum dependence and dere obtain after equating Dirac structures

fined
R _rt® R(1)
o IR (PY) =T (P?) T 1L (p®)
r 0 0 0 r R(1) R(1)

M= Y———— , R 2y _ 7 2F 2

X7 5x sull(p) 57°(p) +Fr/i“ujx(p ) m'rni“ujx(p )s
> > L(1 R(1

PR 72 1P = P15 u(p?) =My (p?)

Ul i) suip) o R R
N +PPTIL (P = mITL) (p%), (6.10

In the rest of this section we shall evaluate the on-shell con-

tributions to Eq.(6.3). Analogously, we can also derive and analogous expressions exchanging:R and u«d.

Nielsen identities for two-point functions: Moreover from Eqs(6.7) and (6.9) we obtain
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J— g J— J—
udp»e#(q)%ﬁiﬁdjvd(—p,—>=E (P (T EEMIZ) + T 0 (M) K Lo g( = py) + Uul P Ky LT 2565 (mi?)
STYD (m2))04(— py)+ = 26 Zuiy( Ky £l — P) (6.10)
”?de i ))val = P; 2 794wty Pi)KijeLvg(—Pj) (- .
[
Using Eqgs.(3.3), (3.4), and(6.10 one arrives at ﬁgzﬁ"(pz)=2(Aij(p2)+Cij(p2)),
1
MU 25 (mi2) + TR (mi2) =2 9,670 (i#]),
Potup T e T2 935 (p?) = (p?Bij(p?) — Cij(p?) — Ayj(p?)m; ,
(6.12
i — L _
miurzgi(;;](miuz)+F)F:l(]—i13]r(miuz):5(9552;11'- (i#]), 9255 (p%) =m;(p®B;j(p?) — Cij(p?) — Ajj(p?)). (6.15
(6.13

o ) The above system of equations is overdetermined and there-
and once more similar relations hold exchanging R and  fore some consistency identities between bare self-energies
u~d. Notice that absorptive parts are present in the 1Pyise, namely,

Green’s functions and hence & and 6Z too. If we forgot
about such absorptive parts we would have pseudo-

Hermiticity; namely, ag(miiﬁ(pz)—ih(pz)ijO, (6.16
v _ oprMT o
FXUWJ”_Y Fni“ujxy ' and
whereFT;uu_X means complex conjugatiri@;uujx and inter-
i) !
changingboth Dirac and family indices. However, the imagi- I(PZ2R(p?) + S (p?)mym
nary branch cut terms prevent the above relation from hold- R, 2 L, _
ing and then Eq(2.10 does not hold. +mMi(p%) + 25 (p)m;) =0. (6.17

At this point one might be tempted to plug expressions
(6.12, (6.13 into Eqg. (6.11). However such relations are ) )
obtained only in the restricted cais#j. Fori=| Egs.(6.10 _The_se constraints must hold independently of any renormal-
are insufficient to determine the combinations appearing ifzation scheme and we have checked them by direct compu-
the left-hand sidgLHS) of Egs. (6.12), (6.13 and further tation. Actually _the former holds trivially since, at least at the
information is required. That is also necessary even in th@n€-loop level in the SM,
actual case where the RHSs of E¢6.12, (6.13 are not
singular atm;—m; [11]. In the rest of this section we shall R, 2 N
proceed to calculate such diagonal combinations and as a mizij(p )_Eij(p )m;=0. (6.18
by-product we shall also cross-check the results already ob-
tained for the off-diagonal contributions and in addition pro- ) o )
duce some new ones. Finally, projecting Eq(6.14) over spinors we also have

By direct computation one finds generically

_ 1 _

r —(pmiBY(p?)+CY(p?)+Al(p2)R, uu(pi)F(Xg)i,,}Jzuu(pi)(miUZBi“j(m;‘z)+c;}(miu2)

i
(1) U [ 23 U T) T) .19 +Aiuj(miuz))R'

F;iuqu:L(pBij(p ym;+Cii(p%) +Ajj(P9),
and analogous relations interchanging-d. The A function F%)d_xvd(— p;)=L(BJ(m*)m®*+C(m?)
comes from the diagram containing a charged gauge boson v
propagator andB and C from the diagram containing a +Aidj(m?2))vd(_pj)- (6.19

charged Goldstone boson propagator. From E§$®) and
(6.14 we obtain

- 5 The RHS of the previous expressions can be evaluated in
92 17(p%) = —2m;B;;(p9)m;, terms of the WFR via the use of Eq§.15):
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(Mm% (p?) + P22 (%) + mySiT(p?) + miS (%))
=B} (p?) (pA(m{?+m{?) — 2m{”mi?) + (2p?— mi* — m{"?) (A} (p?) + Cfj (p?)), (6.20
I SIR(pPHmim’+ 39 (p?) p2+ mfZ8H(p?) + 3% (p?)m?)
=B (p?) (pA(m?+ m?) — 2m*m?) + (2p2— m>— m{?) (A (p?) + C{|(p?)). (6.20

Hence, using the off-diagonal WFR expressi¢8s), (3.4) one of the crucial results and special care should be taken not
we re-obtain to ignore any of the absorptive parts—including those in the
WFR constants. As a consequence,

W(ps 57602 R=U(P)T g .

L (6.22 ﬁ§M1=—2—M( 90K ,

L E&géZﬂLUd( - pJ) = F(;lid)djxvd( - pj)
and if we want a gauge independent amplitude the counter-

For the diagonal WFR we use Edd.10 together with Eqs. term forK;; must be separately gauge independent, as origi-

(6.15 and(6.19, obtainingexactlythe same result as in Eq. nally derived in[8]. _

(6.22 with i=]j therein. Note, however, that since in Eq.  Finally, since each structund (L")R must cancel separately

(6.19 we have no derivatives with respect pd, obtaining we have that the Nielsen identities enforce

Eq. (6.22 involves a subtle cancellation between fifede-

rivatives of the bare self-energies appearing in the definition (2)_ (1)_ ) _

of the diagonal WFR. 9165 ApPERTng 9eOF 7= d¢0F R = 0;0F g =0.

Before proceeding let us make a side remark concerning

the regularity properties of the gauge derivative in Egs. VIl. ABSORPTIVE PARTS

(6.20 and(6.20 in the limit m;—m; . Note that in evaluat-

ing Eq. (6.20 at p2—mu2 and Eq.(6.22) at pz—mdz a Having determined in the previous section, thanks to an

gIobaI factor my2 mu2) appears in the first equation and extensive use of the Nielsen identities, the gauge dependence

(m ) in the second one. Therefore it can be immedi-Of the different quantities appearing in top quarkvgidecay

ately seen that Nielsen identities together with the informa!N terms of the self-energies, we shall now proceed to list the

tion provided by Eq(6.14) assure the regularity of the gauge absorptive parts of the WFR constants, with special attention

derivative for the off-diagonal WFR constants whem to the'lr gauge dependence. The aim of this sectlc_)n is tp state

—m;,. Moreover, we have seen that this limit is not only the differences between the WFR constants given in our

regular but also equal to the expression obtained from th&cheme and the ones [i7]. Recall that at one loop this

diagonal WFR which is not obvious priori [8,11]. difference reduces to the absorptive lgontribution to the
Replacing Eq(6.22 in Eq. (6.7) we obtain 6Z’'s. In what concerns the gauge dependent paith &
=0) the absorptive contribution (lphin the fermionicéZ’s
de(uy (D)E"(q)FW+udud(—pj)) amounts to
=_—MMa,(6Z0" — iKinK]
_2 M 55(52 Kii +K 52” +5ZWK|J) i|m§(5ZiL}L)=2 - |h2 hdz H(m“—mﬂ—\/EMW)
h 8wvm;

]
2 d2 2
X (M2 —miZ— M3,

XM —m)2— EMG) ((mi'+mf) %= M),

e
=— E@(M{”&FSM M2 sF (2

+MPFD+MPSFD), (6.23

where Eq.(5.5 and the gauge independence of the electric §
charge and Weinberg angle have been used in the last equc@£ _ 35{ n 4 }
ity. In the previous expressmll L r are understood with the / \

physical momentg, and p, of Eq. (5.3 replaced by the

diagrammatic momentg; and —p;, respectively. Note that FIG. 1. Pictorial representation of the on-shell Nielsen identity
Eq. (6.23 states that the gauge dependence of the on-shefiven by Eq.(6.23. The blobs in the LHS. represent bare one-loop
bare one-loop vertex function cancels out the renormalizacontributions to the on-shell vertex and the blobs in the RHS WFR
tion counter terms appearing in E&.5) (see Fig. L Thisis  counterterms.
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~ = iKinK} 2hy TS : L
iimg( 8z} =§h‘, ﬁa(mi“—mﬂ—\EMw) Ay~ K] Re(||m5zw)+Rﬁ’lKi’}Z [IM(5Z9K,;
X (miZ2—mf?—¢M§) +Kiriﬁ1’(5z?jL)]}.

XM= mp)? = EMG) ((mi'+mp) = EM), _
In the case oféZ,, one can easily check that ($Z)
Im(6zZy%) =1m, (62} =0, =Im(5Z,,), obtaining

where@ is the Heaviside function andis the Higgs vacuum - =uL aL
expectation value. For the dowsZ we have the same for- iR 'Kijzr: [Im(6ZiHK+ K Im(szfH]. (7.4
mulas replacingu—d and K—K'. Note that using these

results we can write Thus from Eq.(7.2), (7.3, and(7.4) we immediately obtain
—ulL dL
mglm[E (878K 4+ Kip 8789 + 6ZK . e[IK.JZ (ST,
=K d A o(mi'—md— JVEMy) m(szdt

However, gauge independent absorptive parts, included if
our prescription is used but not if one uses thalt7df which
makes use of the Relo contribute to Eq(7.4). In order to
see that we can tak&=1 obtaining for the physical values
of the masses

1
X (mi2—mi?—eME) + Wﬁ(m?—mi“— VEMy)

X (m2—mi?— M)

= dLy
X (M —mP)2— MG (M +m)2— MG Img-1(6Z;7)=0,
P KinKl o a(mi—md—My)
+|Im§(5ZW)} (71) Im 5zuL |h hr 1 h
=1 ; gmv’m?  mi2—m?
In the casgm;'—m{|< &M,y the above expression reduces X A(MP2 = (My—m3)2) (m*2— (My+md)?)

to

763, T(OZ4HK K 575 =0, 7.2 x| 5 (24 mi+ 2ME) (M + mi? - M)
; .

— (M2 mef)me? ), (7.6

while for |m'—mf|=éMy, we have

0. T 5Z”LK K, 5Zd") where only the results for#j have been presented. Note
3
r

that Im§ 1(5Z Y#0 only wheni=3, that is, when the
_ o ) renormalized up particle is a top quark. In addition, since the
s [ |mi'e—mi<[ = EMyy, m!'? dependence in Eq7.6) does not vanish, CKM phases
CUTE g2 mi“2+m?2+|mi“2—mjd2| do not disappear from E@7.4), and therefore
(7.7

(7.3
) o Equations(7.5 and(7.7) show that even though the differ-

Moreover the¢ dependent absorptive contribution 8y,  enceA; is gauge independent, it does not actually vanish.
(im¢(6Z,)) has no dependence on quark masses since thehere are genuine gauge independent pieces that contribute
diagram with a fermion loop is gauge independent. Becausgot only to the amplitude, but also to the observable. As
of that we can conclude that the derivative in E61) does  discussed, these additional pieces cannot be absorbed by a
not vanish. Defining\;; as the difference between the vertex redefinition of Kj; . Numerically such gauge independent
observable calculated in our scheme and the same in th&rrections amount roughly td3=5x10" 30yee Where
scheme using Reve have Oyee is the observable quantity calculated at leading order.
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VIII. CP VIOLATION AND CPT INVARIANCE being their momentum and polarization. Recalling that the

incoming fermion and outgoing antifermion spinors are

In this sectio.n we want to show th_at_ using WFR constants e ormalized with a common constgdsee Eq(2.1)] as are
that do not satisfy a pseudo-Hermiticity condition does noEhe outgoing fermion and incoming antifermion ones, it is

lead to any unvx{ante_:d pathologl_es. In _p_art|cu(a), no new immediately clear that
sources ofCP violation appear in addition to the ones al-
ready present in the SMb) the total widths of particles and

M(p)—tM(p)) =y (n)
antiparticles coincide, thus verifying th@P T theorem. Let M(t™(p) =t (p)) =u™(p)Ass(p)u™(p),
us start with the latter, which is not completely obvious since . . . .
not all external particles and antiparticles are renormalized M(t™M(p)—t™(p))=—v™M(p)Ass(—p)v™(p),
with the same constant due to the different absorptive parts.
The optical theorem asserts that where the minus sign comes from an interchange of two
fermion operators and where the subscriptsAirindicate
r—~>3 j dIT,| M (D (p)—F)[2 family indices. Using the fact that
f
— n n = —_—
=2IMM(tM(p)—tM(p))], (8.1) uP(p)eut(p)=— - ———,
I~> de M(t™(p)—f)2 - —- —p+m 1+
t z f| p | _v(n)(p)®v(n)(p): om > s

=2ImM(t™(p)—t"M(p))], (8.2 — . .
with n=[1/V/(p®)2— (p-n)?](p-n,p°n) being the polariza-
where we have considered, just as an example, top quation four-vector and performing some elementary manipula-
[t™M(p)] and anti-top quark t{(™(p)) decay, withp andn  tions we obtain

p+m 1+ y°h
2m 2

U (p)Assp)u™(p) =Tr[( [a(p?)pL+Db(p?)pR+c(p?)L+ d(pz)R)}

1 (—pﬂ—m

=2 2m

[p+m

S tLap?) +b(p?)]p+c(p?) + d(pz)}]

{—[a(p2)+b(pz)]|b+c(p2)+d(p2)}}

—p+m 1+%h
prmity [—a<p2>pL—b<p2>pR+c<p2>L+d(p2>R]}

=Tr

=~ (p)Ags — P (p),

where we have decomposeth,(p) into its most general nal renormalization constants have dispersive parts does not

Dirac structure. We thus conclude the equality between Egsilter this conclusion. This is of course expected on rather

(8.1) and (8.2 verifying that the lifetimes of top quark and general grounds, so the following discussion has to be taken

top antiquark are identical. The detailed form of the WFRreally as a verification that no unexpected difficulties arise.

constants, or whether they have absorptive parts or not, does T0 illustrate this point let us consider the top quark decay

not play any role. channeli(Bl)—>W+(Bl—£>2)+b(Bz) and itsCP conjugate
Even though total decay widths for top quark and topprocesst(p;)—W (p;—p,) +b(p,). Let us denote the re-

antiquark are identical, the partial ones need not b  spective amplitudes byl and 3, which are given as

violation is present, and some compensation between differ-

ent processes must take place. This issue is discussed in de- _

tail in [23]. Here we shall show that whet=K* the CP A= ul®)(py)A,utd(py),

invariance of the Lagrangian manifests itself in a zero asym-

metry between the partial differential decay rate of the top

quark and itsSCP conjugate process. The fact that the exter- B=—¢(py)B v (py),
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wherea*=a L= (@ —a') for any four-vector. Considering asymmetries for the different channels. Once we sum over all
contributions. up to and including next-to-leading correctionschannels and integrate over the final state phase space a com-
we have pensation must take place, as we have seen, guaranteed by
unitarity andCP T invariance. Using a set of WFR constants
with absorptive parts as advocated héamd required by

— —DbL 1724, t7tL 1/2 T T
Au=— \/_s A K'Z +KISy+ oKDy, L+ 6F ], gauge invariangeleads to different results from using the
W prescription originally advocated ifY]; in particular, using
e s Eq. (7.7 for K#K* we expectA§ 9@ —Afdec 20,
BMI—IZ—SW[(Z KZ +Koy+ 5K)’yML+5GM],
with 8y = dele— dsy/sw+36Zy and 6F, and 6G, are IX. CONCLUSIONS

given by the one-loop diagrams. From a direct computatlon

5 . ) Let us recapitulate our main results. We hope, first of all,
it can be seen that K=K* this implies b b

to have convinced the reader thatere isa problem with
ZL v2_ (z- )T ZR1/2_ (ZR V3T what appears to be the commonly accepted prescription for
' ' dealing with wave-function renormalization when mixing is
present. The situation is even further complicated by the ap-
pearance o€ P violating phases. The problem has a twofold
aspect. On the one hand the prescription[df does not
diagonalize the propagator matrix in flavor space in what
pertains to the absorptive parts. On the other hand it yields
gauge dependentamplitudes, albeit gaugendependent
moduli squared of the amplitudes. This is not satisfactory:
interference with, e.g., strong phases may reveal an unac-
WO )iy — SU_(S)(E), cegﬁglﬁngljaugtla ergndence.
y solution is to accept WFR constants that do not
) o ) PO satisfy a pseudo-Hermiticity condition due to the presence of
wheres=*+1, depending on the spin direction on thexis,  the absorptive parts, which are neglected#h This imme-
we obtain diately brings about some gaugedependentabsorptive
ie parts which appear even in the modulus squared of the am-
- w1 (S2) ZbL 121 t7tL 172 ot + plitude and which are neglected in the treatmenit7gf Fur-
A MU (p)[(Z77 TKIZE T K Gy 0K )y, L thermore, these partand the gauge dependent oneannot
be absorbed in unitary redefinitions of the CKM matrix
+6F ,Ju)(py) which are the only ones allowed by Ward identities. We have
checked that—although unconventional—the presence of the
absorptive parts in the WFR constants is perfectly compat-
ible with basic tenets of field theory and the standard model.
Numerically we have found the differences to be important,
+ 5K*)7;+ 5F,TL]BSZ)T(D2) at the order of 0.5%: small, but relevant in the future. This
information will be relevant to extract the experimental val-

"56 =gty 5FM7 , 8.3
where the superscrigf means transposition with respect to

all indices(family indices in the case &' ¥ andzR 2 and
Dirac indices in the case affF ). Using

172U (p)=su(p),

Sw

—ie _
— \/ES SMU(Sl)T(pl)[L((ZtL 1/2)TK*(ZbL 1/2)T+ K* 5\/
W

ues of the CKM mixing matrix.

_Z9side ghu 0 (py) Y[ L((Ztt YR TR* (ZPL 12T Traditionally, wave-function renormalization seems to
\/— Sw have been the “poor relative” in the standard model renor-
. T T2 (s malization program. We have.s_een here that it is important
+K*6y+ oK)y, + 6F 1y v (p2) on two counts. First, because it is related to the counterterms
for the CKM mixing matrix, although the on-shell values for
—s;Sie . — wave-function constants cannot be directly used there. Sec-
= \/—Z—SWSMU(Sl)(pl)[((ZtL YT (20 13T+ K> 8y ond, because it is crucial to obtain gauge indepen8ena-

trix elements and observables. While using our WFR con-
+0K* )y L+ 42FT 42102 (p,), stants(but not the ones ifi7]) for the external legs is strictly
” K’ equivalent to considering reducible diagrafasth on-shell
Now, using Eq.(8.3) we see that if naCP violating phases mass countertermsthe former procedure is considerably
are present in the CKM matriK [and therefore neither in more practical.
5K, Eq. (5.6)] we obtain thatd= —s;s,B and thus
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