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One loop calculations in gauge theories regulated on anx¿-p¿ lattice

Skuli Gudmundsson* and Charles B. Thorn†

Institute for Fundamental Theory, Department of Physics, University of Florida, Gainesville, Florida 32611
~Received 28 June 2002; published 2 October 2002!

In earlier work, the planar diagrams ofSU(Nc) gauge theory have been regulated on the light cone by a
scheme involving both discretep1 andt5 ix1. The transverse coordinates remain continuous, but even so all
diagrams are rendered finite by this procedure. In this scheme quartic interactions are represented as two cubics
mediated by short-lived fictitious particles whose detailed behavior could be adjusted to retain properties of the
continuum theory, at least at one loop. Here we use this setup to calculate the one loop three gauge boson
triangle diagram, and so complete the calculation of diagrams renormalizing the coupling to one loop. In
particular, we find that the cubic vertex is correctly renormalized once the couplings to the fictitious particles
are chosen to keep the gauge bosons massless.
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I. INTRODUCTION

The largeNc limit of SU(Nc) gauge theory, introduced
long ago by ’t Hooft@1#, remains unsolved even though th
limit singles out the planar Feynman diagrams of pertur
tion theory. Although a dramatic simplification, the sum
all planar diagrams still represents a rich enough dynamic
frustrate many imaginative approaches to their solution@2#.
But even if an exact analytic solution is out of reach, th
should not mean that the nonperturbative physics of the l
is hopelessly intractable. Indeed, in the face of the e
richer dynamics of gauge theory at finiteNc , much insight
has been gleaned by numerically studying lattice ga
theory @3–5# on a finite lattice as a useful nonperturbati
model of the continuum gauge theory. Moreover, since
lattice could in principle be taken ever larger in size, latt
gauge theory can provide a concrete definition of continu
gauge theory.

Of course, one approach to the largeNc limit would be
simply to study lattice gauge theory for ever largerNc @6#.
This is certainly a well-posed and interesting formulation
the problem. However, it is somewhat removed from
appealing and intuitive idea@7# that the large planar dia
grams known as fishnets could, in a confining theory, prov
a model of a QCD string ‘‘world-sheet.’’ This idea is no
even more compelling because of the conjectured equ
lence of certain supersymmetric largeNc gauge theories to
supergravity or superstring theories@8#. It would be nice to
have an explicit discretized model representation of the s
of planar diagrams, which, if analytic methods fail, can
least be analyzed numerically.

Accordingly, Bering, Rozowsky, and Thorn~BRT! @9# re-
considered and refined earlier attempts@10–12# to construct
a lattice model of the sum of planar diagrams by working
an infinite momentum frame~i.e. on a light front! and dis-
cretizing t5 ix1, imaginary light-cone time, andp1, the
kinematic light-cone momentum (p2 is the light-cone
Hamiltonian!. This x1-p1 lattice cuts off all ultraviolet and

*Email address: skulig@phys.ufl.edu
†Email address: thorn@phys.ufl.edu
0556-2821/2002/66~7!/076001~19!/$20.00 66 0760
-

to

it
n

e

e

f
e

e

a-

m
t

infra-red divergences because the discretization oft andp1

excludes zero values for these variables. The motivation
this approach is certainly not to simplify the calculation
individual Feynman diagrams: lattice calculations are rat
more complicated than continuum ones@13–15#, and consid-
erably more complicated than those using the Mandelst
Leibbrandti e prescription@16–18#. Rather the goal is to se
up a systematic scheme which can be used to go bey
perturbation theory by summing diagrams. For example
setup is particularly helpful in identifying the sum of plan
diagrams as a worldsheet system in the spirit of Bardakci
Thorn ~BT! @19,20#.

The purpose of this article is to further explore the viab
ity of the BRT formalism as a regulator of perturbative di
grams and to deepen our understanding of how that form
ism works. BRT calculated the one-loop gluon self-ene
diagram, as a first check on the faithfulness of thex1-p1

lattice as a regulator of divergences, obtaining agreem
with an earlier continuum calculation. However, to che
asymptotic freedom, one still needs to calculate the one l
three gluon triangle in the same formalism. We therefore
the necessary additional one loop calculations in the p
SU(Nc) gauge theory using the BRT discretization. In pa
ticular, we confirm that this scheme does not disturb
light-cone gauge asymptotic freedom calculations done
lier, using a ‘‘principal value’’ treatment ofp150 singulari-
ties Refs.@13–15#. We obtain expressions for the comple
triangle diagram to one loop order and show that co
charge is indeed correctly renormalized as in@15#. Further,
we extract all of the divergences arising from the infrar
region of smallp1. Although in individual diagrams there
are double logarithms, we show that in the complete s
only single logarithms remain. It is an interesting highlig
of the calculation that the double logarithms cancel betw
triangle and self-energy diagrams, term by term in the s
over the internal discretizedp1. In the context of the BT
worldsheet formalism, this means that the cancellation
curs locally on the worldsheet, an encouraging outcome.

The Feynman rules used in@9# are unusual in severa
respects. First, the basic propagators are given in the m
ix1,p1,p representation, withix15ka and p15 lm, with
k,l 51,2,3, . . . . Thetransverse polarization of the gluon
©2002 The American Physical Society01-1
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FIG. 1. Summary of dis-
cretized Feynman rules using onl
cubic vertices. We have explicitly
inserted a factor ofa/m[1/T0 for
each vertex arising from the dis
cretization.
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in a
given in the complex basis̀ 5(11 i2)/A2, ~5(1
2 i2)/A2, represented graphically by an arrow attached
the transverse gluon line. Next, since we focus on the pla
diagrams of theNc→` limit, there is no need for the doubl
line notation, and allNc dependence can be absorbed in
coupling constantg[gsANc. The resulting vertices for this
restricted context accordingly depend on the cyclic order
of the lines entering the vertex. Finally, all the quartic ver
ces, including those induced by integrating outA1 in A2

50 gauge, are represented as the concatenation of two c
vertices, with fictitious particles mediating the quartic inte
action. The one mediating the induced quartic interact
~the instantaneous ‘‘Coulomb’’ exchange! can be thought of
as a remnant of theA1 field, whereas that mediating th
Tr@Ak ,Al #

2 vertex can be thought of as a remnant ofFkl in
the first order form of the action. These fictitious particl
would not propagate in the continuous timea→0 limit, but
with a finite are allowed to propagate a limited number
time steps. This is implemented by including ak-dependent
factor f k or hk in the propagator for each fictitious particl
These must satisfy(k f k5(khk51 and must fall off rapidly
with k, in order that the correct tree amplitudes be correc
produced. The Lorentz invariance of perturbation theory p
further constraints on theirk dependence. Indeed, the fle
ibility offered by tuning these coefficients may even obvia
the need for further explicit counterterms to guarantee L
entz invariance. One constraint has already been put on
behavior in@9# by requiring the gauge boson to remain ma
less to one loop. We shall find that with no further co
straints, color charge is correctly renormalized. The final
of Feynman rules for the transverse gauge bosons and
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fictitious scalars in the context of planar diagrams is summ
rized in Fig. 1.

In this article we shall use this formalism exclusively.
Sec. II we illustrate how the cubic vertices with fictitiou
particles reproduce tree diagrams by calculating a four ga
boson amplitude, and by showing how thep150 diver-
gences are resolved in the tree approximation. Next we
to the triangle diagram to one loop order. In Secs. III and
we calculate the triangle diagram for three off-shell exter
transverse gluons. We extract all of the divergent pa
showing how the double logarithms arising from the e
tanglement of ultraviolet and infra-red divergences in lig
cone gauge cancel in physical quantities.1 Concluding re-
marks are given in Sec. V.

II. FOUR GLUON TREE DIAGRAMS

Because of the unusual nature of the Feynman rules in
discretized light-cone gauge, we introduce the reader to
formalism by discussing the tree approximation to the t
gluon scattering diagrams shown in Fig. 2. We label the
ternal momenta entering a diagram counterclockwise star
from the lower left and denote byk the discretized time
difference between the vertices. Note thatpi

15mMi . The
t-channel exchange amplitudes for two up gluons to two

1As stated earlier, the Mandelstam-Leibbrandt~ML ! trick to avoid
this entanglement isnot employed in the setup used here. Indee
one point we wish to stress is that, although the ML prescription
convenient for certain purposes, it is by no means necessary
consistent formulation of perturbation theory.
1-2
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FIG. 2. The four gluon tree
diagrams witht channel gluon ex-
change considered in this section
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gluons associated with these diagrams are then given by

A15
4g2

T0
2

2M1M3

2M2M4uM12M4u3

3
~M3p2

`2M2p3
`!~M1p4

~2M4p1
~!

e(p12p4)2/2uM12M4uT021

A25
4g2

T0
2

2M2M4

2M1M3uM12M4u3

3
~M3p2

~2M2p3
~!~M1p4

`2M4p1
`!

e(p12p4)2/2uM12M4uT021
~2.1!

A35
g2

T0
(
k51

`

f ke
2k(p12p4)2/2uM12M4uT0

3
~M11M4!~M21M3!

~M12M4!2

A45
g2

T0
(
k51

`

hke
2k(p12p4)2/2uM12M4uT0.

Note that we have supplied a wave function factoreakpi
1

(e2akpi
1

) for each outgoing~incoming! particle, and we re-
strict the energies by the conservation lawp3

11p4
15p1

1

1p2
1 . Also, the absolute values account for the differe

treatment of the caseM1,M4 from the caseM1.M4.
These expressions illustrate the essential features of the
discretization.A1 andA2 show thet channel poles due to on
gluon exchange:

1

e(p12p4)2/2uM12M4uT021
;

2uM12M4uT0

~p12p4!2 . ~2.2!

Notice that time discretization has cut off the large2t
5(p12p4)2 behavior of the amplitude exponentially. R
calling thatT05m/a, we see that sendinga→0 at fixed t
and fixedmuM12M4u just leads to the usual 1/t factor of the
Feynman tree amplitude. Notice also the role ofp1 discreti-
zation in cutting offp150 singularities. In particular, with
both a,mÞ0 and t,0 the amplitudes are strictly zero fo
M15M4, whereas after the continuum limit they are infini
at this point. WithT0 fixed, we can also reach the continuu
limit by taking all Mi→` as well asuM12M4u→`. Either
way, it is important to keep in mind that the correctp1

1

→p4
1 behavior of the continuum limit is only obtained if th

continuum limit is first taken withp1
1Þp4

1 .
The expressions forA3 andA4 contain the so far undeter

mined parametersf k ,hk . Since they limit the range of thek
summation, the formal continuum limit just discussed on
involves them in the combinations(k f k , (khk , both of
07600
t

RT

which are constrained to be unity. Thus, in the continu
limit, the sum of all four diagrams,A5A11A21A31A4 is
given by

A5
g2

T0
F2

4p1
1p3

1

p2
1p4

1~p1
12p4

1!2

3
~p3

1p2
`2p2

1p3
`!~p1

1p4
~2p4

1p1
~!

~p12p4!2 2
4p2

1p4
1

p1
1p3

1~p1
12p4

1!2

3
~p3

1p2
~2p2

1p3
~!~p1

1p4
`2p4

1p1
`!

~p12p4!2

1
~p1

11p4
1!~p2

11p3
1!

~p1
12p4

1!2 11G . ~2.3!

It is significant that in the continuum limit no absolute valu
signs are needed.

The individual terms contributing to the continuum lim
A show quadratic singularities asp1

1→p4
1 , typical of the

light-cone gauge. But in the sum, these singularities are s
ened off shell and disappear on shell. To show this, we n
the following identities:

~p3
1p2

`2p2
1p3

`!~p1
1p4

~2p4
1p1

~!

5
1

2
~p3

1p22p2
1p3!•~p1

1p42p4
1p1!

1
1

2
~p1

12p4
1!@~p1

12p4
1!~p2

`p1
~2p2

~p1
`!

2~p12p4!~~p1
1p2

`2p2
1p1

`!

1~p12p4!`~p1
1p2

~2p2
1p1

~!# ~2.4!

~p3
1p2

~2p2
1p3

~!~p1
1p4

`2p4
1p1

`!

5
1

2
~p3

1p22p2
1p3!•~p1

1p42p4
1p1!

2
1

2
~p1

12p4
1!@~p1

12p4
1!~p2

`p1
~2p2

~p1
`!

2~p12p4!~~p1
1p2

`2p2
1p1

`!

1~p12p4!`~p1
1p2

~2p2
1p1

~!#. ~2.5!

Furthermore, by using energy momentum conservation
can rewrite the common first term on the right-hand s
~rhs! of these identities:
1-3
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~p3
1p22p2

1p3!•~p1
1p42p4

1p1!

5
p1

1p3
11p2

1p4
1

2
~p12p4!21

~p1
12p4

1!2

2
~p11p2!21

p1
12p4

1

2
@p2

1p4
21p4

1p2
22p1

1p3
22p3

1p1
2#. ~2.6!

The contribution of Eq.~2.6! to the continuum limit ofA11A2 is

~A11A2! I52
g2

T0
F ~p1

11p4
1!~p2

11p3
1!

~p1
12p4

1!2 111
~p1

11p2
1!2~p1

1p3
11p2

1p4
1!

p1
1p2

1p3
1p4

1 1
~p1

12p3
121p2

12p4
12!~p11p2!2

p1
1p3

1p2
1p4

1~p12p4!2

1
~p1

12p3
121p2

12p4
12!@p2

1p4
21p4

1p2
22p1

1p3
22p3

1p1
2#

p1
1p3

1p2
1p4

1~p1
12p4

1!~p12p4!2 G , ~2.7!

and we denote the rest ofA11A2 by (A11A2)II . Thus, adding onA31A4, we can write the total amplitude

A5~A11A2! II2
g2

T0
F ~p1

11p2
1!2~p1

1p3
11p2

1p4
1!

p1
1p2

1p3
1p4

1 1
~p1

12p3
121p2

12p4
12!~p11p2!2

p1
1p3

1p2
1p4

1~p12p4!2

1
~p1

12p3
121p2

12p4
12!@p2

1p4
21p4

1p2
22p1

1p3
22p3

1p1
2#

p1
1p3

1p2
1p4

1~p1
12p4

1!~p12p4!2 G . ~2.8!

We find that (A11A2)II has a continuum limit which has nop1
12p4

1 denominators:

~A11A2! II52
2g2

T0
F ~p1

1p3
11p2

1p4
1!~p1

11p2
1!p4

1~p1
`p2

~2p1
~p2

`!

p1
1p3

1p2
1p4

1~p12p4!2

2
~p1

1p3
11p2

1p4
1!~p1

11p2
1!@~p2

1p1
`2p1

1p2
`!p4

~2~p2
1p1

~2p1
1p2

~!p4
`#

p1
1p3

1p2
1p4

1~p12p4!2 G . ~2.9!
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Note that the quadratically singular first term in squa
brackets on the rhs of Eq.~2.7! has been exactly canceled b
the continuum limit ofA3, leaving only a linear singularity
as p1

12p4
1→0, which disappears when all of the extern

gluons are on shell (pi
250):

Adiv5
~p1

12p3
121p2

12p4
12!@p2

1p4
21p4

1p2
22p1

1p3
22p3

1p1
2#

p1
1p3

1p2
1p4

1~p1
12p4

1!~p12p4!2
.

~2.10!

This singular contribution has opposite signs forp1
1.p4

1

andp1
1,p4

1 , so we can expect that, when this term occ
as a sub-diagram whereM12M4 is summed, a principa
value definition of the continuum integral approximation
the sum will be appropriate and no divergence will occur
is also interesting to notice that when the particles in
initial and final state are equally off energy shell, i.
p1

2/M15p2
2/M2 and p3

2/M35p4
2/M4, the quantity in square

brackets becomes (p1
11p2

1)(p4
12p1

1)(p3
2/p3

11p1
2/p1

1),
with no singularity asp1

1→p4
1 . The softening ofp150

singularities in this particular off-shell situation has also be
noted in @21# in the radiative corrections to another fo
point ~branion! process.
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Finally, we comment that the on-shell four point amp
tude assumes a fairly compact form in the Galilei center
mass framep252p1. In this case we obtain

Aon shell
CM 52

g2

T0
F ~p1

12p3
121p2

12p4
12!s

p1
1p3

1p2
1p4

1t

1
~p1

11p2
1!2~p1

1p3
11p2

1p4
1!

p1
1p2

1p3
1p4

1

3S 112
p1

`p4
~2p1

~p4
`

t D G
where we have introduced the usual Mandelstam invaria
s52(p11p2)2 and t52(p42p1)2. In this form it is easy
to check that the diagram has the correct value.

For comparison, we record here the value of the diagr
with s channel poles, also in the Galilei center of mass:

As
CM52

4g2

T0

~p1
11p2

1!4p1
`p4

~

p1
1p2

1p3
1p4

1s
~2.11!
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52
g2

T0

~p1
11p2

1!4

p1
1p2

1p3
1p4

1 F t

s
12

p1
`p4

~2p1
~p4

`

s G
2

g2

T0

~p1
11p2

1!2~p1
1p3

11p2
1p4

1!

p1
1p2

1p3
1p4

1 . ~2.12!

III. SIMPLE TRIANGLE WITH THREE
TRANSVERSE GLUONS

We will now calculate the one loop three point functio
where all external gluons are transverse. We start with a
ticularly simple process in which the arrows on all extern
lines point inward. Since this process has no contribution
tree order, it cannot have ultraviolet divergences. In fact,
shall find that the diagram also has no infrared divergen
and so is completely finite.

Using the discretized Feynman rules we see that only
two diagrams shown in Fig. 3 contribute to this choice
external momenta. One of these is shown in more deta
Fig. 4. The loop momentum isq and the momenta shown ar
routed along the arrows. This means that the momentap1 ,
p2 and p3 are directed into the vertex and momentum co
servation reads(pi50. We use the convention that th
discretized1component of momentapi is mMi and that ofq
is ml. Accordingly we haveM1 ,M2.0 and M352M1
2M2,0. For convenience we shall also useM[2M3.0
and p[2p3.0 in the following analysis. The discretize
times are given byt5ak and by translational invariance w
can choose one of the vertices to be att50. We then have a
transverse loop integral to do, the integral overq1 becomes
a sum overl and finally we must sum over the two dis
cretized timesk1 andk2. Whenk1.0 ~so alsol .0), k1 and
k28[k22k1 are independently summed from 1 to1` and l
is summed from 1 toM121. Whenk1,0 ~so alsol ,0),
k18[2k1 and k2 are independently summed from 1 to1`
andl 8[2 l is summed from 1 toM221. By writing out the
expression for the two diagrams, shifting the transverse l

FIG. 3. Triangle with incoming arrows.

FIG. 4. Conventions when calculating theG```.
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momentum and simplifying~note that a factor ofe2akp2

comes from each of the ingoing external lines!, we obtain

G```5(
k,l

g3

T0
3

2~M1M2M3!21

~M12 l !~M21 l !u l u
e2H

3E d2r

~2p!3
e2STr2S T1

ST
K232M3r D `

3S T2

ST
K312M1r D `S T3

ST
K122M2r D `

5S g

T0
D 3

(
k,l

e2H

4p2

~M1M2M3!21

~M12 l !~M21 l !u l u

3
T1T2T3

ST4
~K12

` !3. ~3.1!

The sum onk,l is constrained as described above and
brevity we have made the following definitions:

T15
1

2T0

k1

l
, T25

1

2T0

k22k1

M21 l
, T35

1

2T0

k2

M12 l
~3.2!

ST5T11T21T3 ~3.3!

H5
1

ST
~T1T3p1

21T1T2p2
21T2T3p3

2! ~3.4!

Ki j 5Mipj2M j pi . ~3.5!

Note the constraint lT11(M21 l )T22(M12 l )T350,
which implies that for fixedl, only two of theT’s are inde-
pendent. Also, momentum conservation implies thatKi j is
cyclically symmetric and we therefore useK[K125K23
5K31.

In general one must take the continuum limit with ca
because of ultraviolet and infrared divergences that migh
present. Since we expect no ultraviolet divergences we
immediately takea→0. However, it turns out there are n
infrared divergences either and we can see this by taking
continuum limit a→0 and m→0 simultaneously. In thea
→0 limit we can replace the sums overk1 ,k28 for k1.0 by
integrals overT1 and T2 and in them→0 limit we can re-
place the sum overl by an integral overT3. The continuous
transformation betweenT1 ,T2 ,T3 andak1 ,ak2 ,ml is given
by Eq. ~3.2! and the Jacobian isST/4mu l u(mM1
2ml)(mM21ml). Notice that integrating theT’s from 0 to
1` accounts for summing over thewhole range; l .0,k1
.0 and l,0,k1,0. We obtain
1-5
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G```5S g

T0
D g2

p2

~K`!3

M1M2M3

3E dT1dT2dT3

e2H(T1 ,T2 ,T3)T1T2T3

~T11T21T3!5
~3.6!

5S g

T0
D g2

p2

~K`!3

M1M2M3
E

0

`

dx ~3.7!

3E
0

`

dy
xy

~xp1
21xyp2

21yp3
2!~11x1y!4 ~3.8!

where we have scaledx5T1 /T3 andy5T2 /T3 and note that
H(T1 ,T2 ,T3)5T3H(x,y,1). Notice that for allpi ’s off-shell
the double integral converges. For the special off-shell po
q2[p1

25p2
25p3

2 we get

G```5S g

T0
D g2

p2

~K`!3

M1M2M3

x

q2
~3.9!

where

x[E
0

`

dxE
0

`

dy
xy

~x1xy1y!~11x1y!4

'0.030080945 . . . . ~3.10!

IV. TRIANGLE CONTRIBUTING TO CHARGE
RENORMALIZATION

We turn now to the main task of this paper, the calculat
of one-loop diagrams that contribute to charge renormal
tion. The self-energy diagrams have been evaluated in@9#, so
it remains to calculate the vertex corrections, i.e. the th
transverse gluon triangle diagram. The kinematics of
three gluons are chosen as before. We start with the exp
sions for the diagrams that emerge after integrating over
transverse loop momentum. In this section we describe
analysis of the remaining sums over two discretized tim
k1a,k2a and one discretized loop momentump15 lm in the
continuum limit,a,m→0.

A. All internal lines transverse

We denote the complete three transverse gluon ve
with polarization labels `,`,~ for gluons 1,2,3 by
G``~

(p1 ,p2 ,p3). The triangle diagrams displayed in Fig.
which have only transverse gluons on the internal lines, p
duce the following expression:
07600
t

n
-

e
e
s-
e
e

s,

x

-

G I
``~

5
g3K`

16p2T0
3

M

M1M2
(

l ,k1 ,k2

e2H

u l u~M21 l !~M12 l !

3S T1T2T3K2 A

M2~T11T21T3!4
1

T1B11T2B21T3B3

~T11T21T3!3 D
~4.1!

whereK,H and theTi ’s are as before and

A5
M2M1

2

l 2~M12 l !2
1

M2M2
2

l 2~M21 l !2
1

~M21 l !2

~M12 l !2

1
~M12 l !2

~M21 l !2
~4.2!

B15
M2M1

3

l 2~M12 l !2
1

M1M2
3

l 2~M21 l !2
~4.3!

B252
MM2

3

l 2~M21 l !2
2

M2~M21 l !2

M ~M12 l !2
2

M2~M12 l !2

M ~M21 l !2

~4.4!

B352
MM1

3

l 2~M12 l !2
2

M1~M21 l !2

M ~M12 l !2
2

M1~M12 l !2

M ~M21 l !2
.

~4.5!

The triangles with only two transverse gluon internal line

denotedG II
``~

will be dealt with in the following subsec
tion. We introduce the following notation that will hel
streamline some of the formulas:Pi* [pi

2/Mi , P* [p2/M
52P3* . For example,

K252M1M2M3~P1* 1P2* 1P3* !

5M1M2M ~P1* 1P2* 2P* !. ~4.6!

The vertex function should be antisymmetric under t
interchangep1 ,M1↔p2 ,M2. In view of the explicit overall
factor of K` which is odd under this transformation, th
coefficient of K` should be even. Inspection of the abo
expression for the triangle diagram shows that this symm
is realized in the following way. The expression for the su
mation rangek152k18 ,l 52 l 8,0 is precisely equal to tha
for the rangek1 ,l .0 with the interchange of variables

FIG. 5. Diagrams with all internal lines transverse.
1-6
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p1 ,M1↔p2 ,M2. Thus, it is only necessary to explicitly ca
culate for one time ordering, sayk1 ,l .0. Then adding to
this the result of the interchange gives the complete ans

We are now dealing with potentially ultraviolet diverge
diagrams. To reveal the ultraviolet structure we consider
continuum limit in the ordera→0 followed by m→0. Re-
call that aÞ0 serves as our ultraviolet cutoff. In thea→0
limit we can attempt to replace the sums overk1 ,k28 (k18 ,k2)
for k1.0 (k1,0) by integrals overT1 andT2 (T3) just as in
-

r

t
fe
we

07600
er.

e

the preceding section. Since we wish to keepl fixed in this
first step, for the casek1.0 we expressT3 in terms of
T1 and T2 : T35@ lT11(M21 l )T2#/(M12 l ). For the case
k1,0, it is more convenient to expressT2 in terms ofT1
and T3 : T25@ l 8T11(M11 l 8)T3#/(M22 l 8). We find ST
5(MT21M1T1)/(M12 l )5(MT31M2T1)/(M22 l 8). For
the A term, this procedure encounters no obstac
and we obtain~displaying explicitly the contribution for
k1 ,l .0)
GA
``~→ g3K`

4p2T0

M

M1M2
H (

l
E dT1dT2

~M12 l !2T1T2„lT11~M21 l !T2…K
2 A

M2~M1T11MT2!4
e2H(T1 ,T2)1~1↔2!J

5
g3K`

4p2T0

M

M1M2
H (

l
E dT

~M12 l !2T„lT1~M21 l !…K2 A

M2H~T,1!~M1T1M !4
1~1↔2!J . ~4.7!
rite
r,

of

t
by

rms

by
It will be useful to note thatH can be written in the alterna
tive forms

H5~M21 l !T2P* 1 lT1P1* 1
K2

M1M F ~M12 l !T1T2

MT21M1T1
G
~4.8!

5~M11 l 8!T3P* 1 l 8T1P2* 1
K2

M2M F ~M22 l 8!T1T3

MT31M2T1
G ,

~4.9!

where the first is useful whenk1 ,l .0 and the second fo
k1 ,l ,0.

However, theB terms produce logarithmically divergen
integrals with this procedure, so they must be handled dif
ently. To deal with these logarithmically divergent terms,
first note the identities

T1

~T11T21T3!352
]

]T2

~M12 l !3

2M

T1

~MT21M1T1!2 ~4.10!

52
]

]T3

~M22 l 8!3

2M

T1

~MT31M2T1!2 ~4.11!
r-

T2

~T11T21T3!352
]

]T2

~M12 l !3

2M2

M1T112MT2

~MT21M1T1!2

~4.12!

T3

~T11T21T3!352
]

]T3

~M22 l 8!3

2M2

M2T112MT3

~MT31M2T1!2 ,

~4.13!

where the partial derivatives are taken withT1 fixed.
Because of the divergences we cannot immediately w

the continuum limit of theB terms as an integral. Howeve
we can make the substitutione2H→(e2H2e2H0)1e2H0,
whereH0 is chosen to be an appropriate simplified version
H, which coincides withH at T250. Fork1 ,l .0, it is con-
venient to chooseH05@ lT11(M21 l )T2#P1* , whereas for
k1 ,l ,0 H085@ l 8T11(M11 l 8)T3#P2* is more convenient.
Then the factor (e2H2e2H0) regulates the integrand a
small Ti so that the sums may then safely be replaced
integrals. We shall denote the contributions from these te

by GB1
``~

. Then using the above identities, an integration
parts~for which the surface term vanishes! makes the inte-

grand similar to that inGA
``~

and simplifications can be
achieved~for details see Appendix A1!:
GA
``~

1GB1
``~→ g3K`

4p2T0

M

M1M2
H (

l 51

M121 E
0

`

dTF TK2~M12 l !2A8

M2H~M1M1T!31
lT~H02H !~M12 l !M1A8

M2H~ lT1M21 l !~M1M1T!

2
lT~H02H !~M12 l !M1A

M2H~M1M1T!2 G1~1↔2!J , ~4.14!

where
1-7
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A85
M2M2

2

lM 1~M21 l !2 2
M2~M21 l !2

M1M ~M12 l !
2

M2~M12 l !3

M1M ~M21 l !2 . ~4.15!

Since the integrand of Eq.~4.14! is a rational function ofT the last integral can also be done. We sketch the evaluatio
Appendix B.

There remains the contribution of the terme2H0 which would give a divergent integral. However, because theT1 ,T2
(T1 ,T3) dependence in the exponential is disentangled by our choice ofH0, the sums can be directly analyzed in thea→0
limit, giving an explicit expression for the divergent part in terms of the lattice cutoff. We denote this contribution, cont

the ultraviolet divergence of the triangles, byGB2
``~

. Referring to Appendix A2 for details we obtain

GB2
``~

5
g3K`

8p2T0

M

M1M2
XH (

l 51

M121
M12 l

MM1
S N1l

M1
1

N2~M21 l !

M D F ln
2p1

1

ap1
2 1 f S a

b D G
2 (

l 51

M121
M12 l

MM1
S N1l

M1
2

N2~M21 l !

M Da

b
f 8S a

b D J 1~1↔2!C
52

g3K`

4p2T0

M

M1M2
X (

l 51

M121 H B8

M F ln
2p1

1

ap1
2 1 f S a

b D G1
AM2~M12 l !2

M3M1

a

b
f 8S a

b D J 1~1↔2!C,
~4.16!

where we have defined

B85
~M12 l !3

M2~M21 l !
1

MM1

l ~M12 l !
1

~M21 l !3

M2~M12 l !
~4.17!

and

N1[
B1~M12 l !

l
1B3 , N2[

B2~M12 l !

M21 l
1B3 ~4.18!

f ~x!5
ln x

12x
2xE

0

`

dte2xt
12xt2e2xt

~12e2xt!2
ln~12e2t! ~4.19!

a[
M1

l
, b[

M

M21 l
. ~4.20!

In GB2
``~

we can further simplify the term proportional to ln(2p1
1/ap1

2), which contains the ultraviolet divergence of th
triangle diagrams. We obtain

Gdiv
``~

52
g3K`

4p2T0

M

M1M2
H (

l 51

M121
1

M F ~M12 l !3

M2~M21 l !
1

MM1

l ~M12 l !
1

~M21 l !3

M2~M12 l !G ln2p1
1

ap1
2 1~1↔2!J

52
g3K`

4p2T0

M

M1M2
H ln

2p1
1

ap1
2 Fc~M11M2!2c~M211!13c~M1!13g

1
M121

M3 S 2
11

3
M1

227M1M224M2
21

M1

3 D G1~1↔2!J ~4.21!

wherec is the digamma function.
Writing out the terms from interchanging 1↔2 in this expression, and simplifying we obtain
076001-8
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Guv
``~

5
g3K`

16p2T0

M

M1M2
H F ln

2p1
1

ap1
2 1 ln

2p2
1

ap2
2 G F24@c~M !1c~M1!1c~M2!13g#12S 11

3
2

8

M
1

M

M1M2
1

2M1M2

M3 1
1

3M2D G
2 ln

p1
1p2

2

p1p1
2 F8@c~M1!2c~M2!#1

2~M12M2!

3M3 ~211M212M1M221!2
M12M2

M1M2
G J

→ g3K`

16p2T0

M

M1M2
H 2(

i 51

3

ln
2upi

1u
api

2 F24~ lnuMi u1g!1
22

9 G1F ln
p2p1

1

p1p1
2 1 ln

p2p2
1

p1p2
2G F24~ ln M1g!1

22

9 G
24S ln

M1

M2
D ln

p1
2p2

1

p1
1p2

22 ln
p1

1p2
2

p2
1p1

2 F8 ln
p1

1

p2
1 1

2~p1
12p2

1!

3p1 S 2111
2p1

1p2
1

p12 D G J ~4.22!

where the final expression, valid at largeM ,M1 ,M2, has been arranged so that theuv divergence appears symmetrical
among the three legs of the vertex.

Putting everything together, the amplitude for the triangle with only transverse internal lines is given in the continuu
by

G I
``~

5
g3K`

4p2T0

M

M1M2
H 1

M1
(
l 51

M121 F E
0

`

dTI11S1G1~1↔2!J 1
g3K`

16p2T0

M

M1M2
H 2(

i 51

3

ln
2upi

1u
api

2 F24~ lnuMi u1g!1
22

9 G
1F ln

p2p1
1

p1p1
2 1 ln

p2p2
1

p1p2
2G F24~ ln M1g!1

22

9 G2 ln
p1

1p2
2

p2
1p1

2 F4 ln
p1

1

p2
1 1

2~p1
12p2

1!

3p1 S 2111
2p1

1p2
1

p12 D G J ~4.23!
nd
off

led
Eq.
where

I 15I S T,p1 ,p2 ,
l

M1
D

[
M1~M12 l !2TK2A8

M2H~T,1!~M1T1M !3

1
lT~H02H !~M12 l !M1

2A8

M2H~ lT1M21 l !~M1M1T!

2
lT~H02H !~M12 l !M1

2A

M2H~M1M1T!2 ~4.24!

S15SS M1 ,M2 ,
l

M1
D

[2FM1B8

M
f S a

b D1
AM2~M12 l !2

M3

a

b
f 8S a

b D G
~4.25!

I 25I S T,p2 ,p1 ,
l

M2
D , S25SS M2 ,M1 ,

l

M2
D

~4.26!

and where we recall, for convenience, our definitions~appro-
priate to the casek1 ,l .0)
07600
A5
M2M1

2

l 2~M12 l !2
1

M2M2
2

l 2~M21 l !2
1

~M21 l !2

~M12 l !2
1

~M12 l !2

~M21 l !2

A85
M2M2

2

lM 1~M21 l !22
M2~M21 l !2

M1M ~M12 l !
2

M2~M12 l !3

M1M ~M21 l !2

B85
~M21 l !3

M2~M12 l !
1

~M12 l !3

M2~M21 l !
1

MM1

l ~M12 l !

H5H~T,1!5~M21 l !P3* 1 lTP1* 1
~M12 l !T

M1M1T

K2

M1M

H05H0~T,1!5~M21 l !P1* 1 lTP1*

a

b
5

M1~M21 l !

lM
. ~4.27!

To complete the continuum limit we assumeM ,M1 ,M2
large and attempt to replace the sums overl by integrals over
a continuous variablej5 l /M1, with 0,j,1. This proce-
dure is obstructed by the singular behavior of the integra
for j near 0 or 1. When this occurs, we introduce a cut
e!1, and only do the replacement fore,j,12e, dealing
with the sums directly in the singular regions. The detai
analysis is presented in the Appendixes. Referring to
~B30!, we see that we can write
1-9
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G I
``~

5G I ,finite
``~

1
g3K`

16p2T0

M

M1M2
H 2(

i 51

3

ln
2upi

1u
api

2 F24~ lnuMi u1g!1
22

9 G
1 ln

p2p1
1

p1p1
2F24 ln

M

M1
1

22

9 G1 ln
p2p2

1

p1p2
2F24 ln

M

M2
1

22

9 G J
1

g3K`

4p2T0
X2p2

3
1

M

M1M2
F ~ ln M11g!H S M1p21Mp1

2

M1p22Mp1
21

M1p2
22M2p1

2

M1p2
21M2p1

2D ln
M1p2

Mp1
2 231

p2

6 J
1~ ln M21g!H S M2p21Mp2

2

M2p22Mp2
22

M1p2
22M2p1

2

M1p2
21M2p1

2D ln
M2p2

Mp2
2 231

p2

6 J G C. ~4.28!
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B. Charge renormalization

As we have mentioned,G I
``~

contains the complete ul
traviolet divergence in the one-loop vertex function, so
pause to discuss how the coupling renormalizes. Compa
the zeroth order vertex,22gK`M /M1M2T0, to Eq. ~4.28!,
we see that the ultraviolet divergence of the triangle is c
tained in the multiplicative factor

11
g2

16p2
ln

2

a F4~ ln M1 ln M11 ln M213g!2
22

3 G .
~4.29!

Note the entanglement of ultraviolet@ ln(1/a)# and infrared
(ln Mi) divergences, typical of light cone gauge. The lnM’s
multiplying ln(1/a) must cancel to give the correct charg
renormalization. To see how this happens, recall that the s
energy calculation of@9# implies the gluon wave function
renormalization factor

Z~Q!512
g2Nc

16p2 H F8~ ln M1g!2
22

3 G ln2Q1

aQ2 2
4

3J .

~4.30!

Thus the appropriate wave function renormalization fac
for the triangle,AZ(p1)Z(p2)Z(p), contains the ultraviolet
divergent factor

12
g2Nc

16p2
@4~ ln MM1M213g!211# ln

2

a
, ~4.31!

so the divergence for the renormalized triangle is contai
in the multiplicative factor

FIG. 6. Diagrams contributing to the renormalization. Thel 0

next to a line denotes the discretep1 of that line. The three dia-
grams shown naturally go together for fixedl 0.
07600
e
ng

-

lf-

r

d

11
11

3

g2Nc

16p2
ln

2

a
~4.32!

implying the correct relation of renormalized to bare char

gR5gS 11
11

24p
asNcln

2

aD , ~4.33!

whereas5g2/2p.
It is interesting to note that if the calculation is organiz

differently there is no entanglement of infrared and ultrav
let divergences. As suggested by the recent worldsheet
proach to planar diagrams@20#, it is natural to combine self-
energy and vertex diagrams at each value of the discretep1

of the loop. For example, consider the diagrams of Fig.
which contribute to renormalization. It then turns out that t
terms 1/l 0 , 1/(M2 l 0), 1/(M12 l 0) , whose sums give rise to
the lnM’s, cancel among the three diagramsbefore the p1

sum is done. With the arithmetic organized this way the
tangled divergences never arise.

C. Longitudinal internal gluons

In addition to the diagrams with three transverse glu
internal lines discussed in the preceding section, there
diagrams where one of the internal lines is a longitudi
gluon ~solid line with no arrow! or a fictitious gluon, whose
exchange represents the four gluon vertex as the conca
tion of two cubic vertices~dashed line!. The various possi-
bilities are shown in Fig. 7.

Again we start with the expression for the sum of the
diagrams obtained after doing the transverse momentum
tegrals:

FIG. 7. Diagrams with one solid or dashed internal line.
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G II
``~

52
g3

16p2T0
2

K`(
l

1

l ~M21 l !~M12 l !
e2H

3S T1

~T11T21T3!2
C11

T2

~T11T21T3!2
C2

1
T3

~T11T21T3!2
C3D , ~4.34!

where

C15 f k1

M3~2M12 l !~2M21 l !

l ~M12 l !~M21 l !

1hk1

M3l

~M21 l !~M12 l !
~4.35!

C25 f k22k1

~M22 l !~M31M12 l !~M12 l !

u l u~M21 l !M1

1hk22k1

~M12 l !~M21 l !

M1u l u
~4.36!

C352 f k2

~M11 l !~M31M21 l !~M21 l !

u l u~M12 l !M2

2hk2

~M21 l !~M12 l !

u l uM2
. ~4.37!

Since thef k ,hk are assumed to fall off rapidly withk, the
corresponding sum can never be replaced by an integ
Consider first the term withC1. Then fork1.0 ~,0! only
the k28 (k2) sum ranges freely from 1 tò . Writing out
H(T1 ,T2) explicitly in terms ofk1 ,k28 ,

H5
p2k28

2MT0
1

p1
2k1

2M1T0

1
K2k1

2T0MM1

~M12 l !k28

Mlk281M1k1~M21 l !
, ~4.38!
07600
al.

we see that, due to the limited range ofk1, the only term that
can get large is the first one. Furthermore, all the other te
stay of orderO(a) in the limit a→0 at fixedm, which we
are studying. Thus, writingu5e2p2/2MT0, we see that we
require the sum

(
k2851

`
uk28

~k281z!2
5c8~z11!1O„~12u!ln~12u!…

~4.39!

in the a→0 limit. Thus theC1 contribution has thea→0
limit

GC1
``~

52
g3

8p2T0

K`

M H (
k51

`

(
l 51

M121
k

l
c8S 11k

M1~M21 l !

lM D
3F f k

~2M12 l !~2M21 l !

l 2 1hkG1~1↔2!J .

~4.40!

For the C2 contribution,k28 is limited by f ,h. Then k1

ranges freely from 1 tò for l .0, but for l ,0, 1<k18
<k2821. In the first case, only the second term ofH can get
large, and in the second case no term can get large. So

u15e2p1
2/2M1T0, we need Eq.~4.39! ~with u→u1 and k28

→k18) for l .0 and

(
k1851

k2821
1

~k181z!2 5c8~z11!2c8~z1k2811!

2
1

~k281z!2 for l ,0. ~4.41!

TheC3 contribution is similar but with the roles ofl .0 and
l ,0 switched. In fact, inspection shows that interchang
1↔2 takes theC2 contribution forl .0 (l ,0) into theC3
contribution forl ,0 (l .0). So we need only display thel
.0 cases explicitly. Combining all three contributions w
have fora→0
e result
GC1
``~

1GC2
``~

1GC3
``~

'2
g3

8p2T0

K`

M H (
k51

`

(
l 51

M121
k

l
c8S 11k

M1~M21 l !

lM D F f k

~2M12 l !~2M21 l !

l 2 1hkG
1 (

k51

`

(
l 51

M121
k~M12 l !2M

~M21 l !M1
3 c8S 11k

lM

M1~M21 l ! D F f k

~M22 l !~M1M12 l !

~M21 l !2 1hkG
1 (

k51

`

(
l 51

M121
k~M21 l !2M

~M12 l !M2
3 F M2

2~M12 l !2

k2M1
2~M21 l !21c8S 11k

M1~M21 l !

M2~M12 l ! D2c8S 11k
lM

M2~M12 l ! D G
3F f k

~M11 l !~M1M21 l !

~M12 l !2 1hkG1~1↔2!J . ~4.42!

The l sum can be rewritten and evaluated approximately and the details can be found in Appendix A3. This yields th
of the continuum limit of the triangle with internal longitudinal gluons:
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G II
``~

'2
g3

8p2T0

K`

M H (
k51

` E
e

1

dj
k

j
c8S 11k

M21jM1

jM D F f k

~22j!~2M21jM1!

j2M1
1hkG

1 (
k51

` E
0

1

dj
k~12j!2M

M21jM1
c8S 11k

jM

M21jM1
D F f k

~M22jM1!„M1M1~12j!…

~M21jM1!2 1hkG
1 (

k51

` E
0

12e

dj
k~M21jM1!2M

~12j!M2
3 F M2

2~12j!2

k2~M21jM1!21c8S 11k
M21jM1

M2~12j! D2c8S 11k
jM

M2~12j! D G
3F f k

~11j!~M1M21jM1!

M1~12j!2 1hkG2
2M2

eM1M2
1~1↔2!J

2
g3

4p2T0

K`

M F1
2Mp2

3
2

M2

M1M2
~ ln e2M1M212g!S 32

p2

6 D G . ~4.43!

As e→0 the rhs approaches a finite result. Then the divergence asM→` is contained entirely in the last line. Thus we ca
write in the continuum limit

G II
``~

5G II ,finite
``~

2
g3K`

4p2T0
F2p2

3
2

M

M1M2
~ ln M1M212g!S 32

p2

6 D G . ~4.44!

Notice that these divergent terms cancel some of the divergent terms inG I
``~

leading to the complete vertex

G``~
5Gfinite

``~
1

g3

16p2T0

~p1
1p2

`2p2
1p1

`!p1

p1
1p2

1 H ln
p*

p1*
F24 ln

p1

p1
1 1

22

9 G1 ln
p*

p2*
F24 ln

p1

p2
1 1

22

9 G J
1

g3

4p2T0

~p1
1p2

`2p2
1p1

`!p1

p1
1p2

1 H 1

2 (
i 51

3

ln
2

aupi* uF24~ lnuMi u1g!1
22

9 G1~ ln M11g!F S p* 1p1*

p* 2p1*
2

p1* 2p2*

p1* 1p2*
D ln

p*

p1*
G

1~ ln M21g!F S p* 1p2*

p* 2p2*
1

p1* 2p2*

p1* 1p2*
D ln

p*

p2*
G J ~4.45!
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where for further brevity we have defined the continuu
limit finite variablespi* [Pi* /m5p1

2/p1
1 .

As already discussed, the uv divergences in the sec
line are canceled up to the standard asymptotic freedom
sult by the wave function renormalization factors. The
maining divergences in the last two lines are only linear
ln Mi , and are unavoidable in the off-shell amplitude. Not
that there is a special off-shell point,p1* 5p2* 52p* , for
which they disappear. The finite part depends in detail on
choice of f k ,hk . The requirement of Lorentz invariance
expected to limit these parameters sharply, if not ov
determine them. If the latter holds, additional counterter
will be required to achieve Lorentz invariance.

V. CONCLUSIONS

In this article we have extended previous work@9# by
further exploring the discretizedSU(Nc) gauge theory pro-
posed there. Although the discretized theory is comple
regulated, there is no guarantee that gauge invariance
been respected. Since we have chosen a non-covariant g
violations of gauge invariance would show up as violatio
07600
nd
e-
-

e

r-
s

ly
as
ge,

s

of Lorentz invariance in the continuum limit. It is therefor
important to check whether it reproduces known weak c
pling results. We have shown here that to one loop order
obtain the correct renormalization of the coupling, E
~4.33!. The remaining infrared divergences shown in the l
two lines of Eq.~4.45! must be considered in the context
a physical quantity. There is no reasona priori to expect
these divergences to disappear until one considers fully
shell, color singlet external states. It is, however, reassu
that only single logarithmic divergences appear. As poin
out earlier these divergences do disappear at the specia
shell pointp1

2/p1
15p2

2/p2
15p3

2/p3
1Þ0.

The simplest on-shell scattering process is gluon-glu
scattering. Thus the complete resolution of the remain
infra-red divergence issues at one loop must await the an
sis of one-loop four gluon amplitudes, the obvious next s
in this investigation. As confidence is gained that the d
cretized theory is faithful to the gauge invariant continuu
theory, the application of the formalism to calculate QC
fishnet diagrams or to formulate a worldsheet description
QCD in the spirit of@19# becomes more compelling.
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APPENDIX A: DETAILS OF CALCULATIONS

1. Evaluation of GB1
``~

In the calculation ofGB1
``~

we start by integrating by
parts. This transfers the derivative to the factor (e2H

2e2H0). For definiteness take the casel .0. Then we com-
pute

]

]T2
~e2H2e2H0!

52e2H
H2T1lP1*

T2
1e2H0

H02T1lP1*

T2

1e2H
K2

M1
F ~M12 l !T1T2

~MT21M1T1!2G . ~A1!
07600
f

The first two terms on the rhs partly cancel after integrat
over T1 ,T2. This is because the integrals are separately
nite, so one can change variablesT15T2T in each term sepa
rately. For the first term we find

2E
0

`

dT1dT2I~T1 ,T2!
H~T1 ,T2!2T1lP1*

T2
e2H(T1 ,T2)

52E dTdT2I~T,1!@H~T,1!2TlP1* #e2T2H(T,1)

52E dTI~T,1!F12
TlP1*

H~T,1!
G , ~A2!

and the second term yields the same expression w
H(T,1)→H0(T,1), so the two terms combine to

E
0

`

dTI~T,1!Tl
H0~T,1!2H~T,1!

H~T,1!~ lT1M21 l !
. ~A3!

Simplifying the contribution to theT integrand from these
terms leads to the continuum limit
the
GB1
``~→ g3K`

4p2T0

M

M1M2
H (

l 51

M121 E
0

`

dTF lT~H02H !

H~ lT1M21 l !
1

~M12 l !TK2

HM1~M1M1T!2G ~M12 l !2

~M1M1T!2

3F T

2M
B11

M1T12M

2M2 B21
M2T~M12 l !12MlT

2M2~M12 l !
B31

M21 l

M ~M12 l !
B3G1~1↔2!J

5
g3K`

4p2T0

M

M1M2
H (

l 51

M121 E
0

`

dTF lT~H02H !

H~ lT1M21 l !
1

~M12 l !TK2

HM1~M1M1T!2G ~M12 l !2

~M1M1T!2

3
M1

M2 FM1M1T

M12 l
A82

lT1M21 l

M12 l
AG1~1↔2!J , ~A4!

where we have defined

A85
M2M2

2

lM 1~M21 l !2 2
M2~M21 l !2

M1M ~M12 l !
2

M2~M12 l !3

M1M ~M21 l !2 . ~A5!

Notice that this result combines neatly withGA
``~

to give Eq.~4.14!.

2. Evaluation of GB2
``~

We analyze the continuum limit of theGB2
``~

contribution to theB terms, which will be retained as discrete sums over
k’s. Again for definiteness we display the casel .0 in detail:

GB2
``~

5
g3K`

16p2T0
3

M

M1M2
H (

l 51

M121
1

u l u~M21 l !~M12 l ! (
k1 ,k28

FT1B11T2B21T3B3

~T11T21T3!3 Ge2H01~1↔2!J
5

g3K`

4p2T0

M

M1M2
H (

l 51

M121
M12 l

u l u~M21 l ! (
k1 ,k28

F k1N11k28N2

~k1a1k28b!3Gu
1
k11k281~1↔2!J , ~A6!
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where

a[
M1

l
, b[

M

M21 l
, N1[

B1~M12 l !

l
1B3

N2[
B2~M12 l !

M21 l
1B3 , u1[e2p1

2/2M1T05e2ap1
2/2p1

1

,

u2[e2p2
2/2M2T05e2ap2

2/2p2
1

, ~A7!

whereu2 is to be used in the casek1 ,l ,0 instead ofu1.
Clearly the continuum limit entailsu1 ,u2→1, causing thek
sums to diverge logarithmically. To make this explicit, w
first note the integral representation

(
k1 ,k28

u
1
k11k28

~k1a1k28b!2
5E

0

`

tdt
u1

2

~eat2u1!~ebt2u1!
~A8!

'E
e

`

tdt
1

~eat21!~ebt21!

1E
0

e tdt

~12u11at !~12u11bt !
~A9!

where the approximate form is valid for 12u1!e!a,b.
Doing the integral in the second term leads to

(
k1 ,k28

u
1
k11k28

~k1a1k28b!2
'

1

ab F ln
2p1

1

ap1
2 1

b ln a2a ln b

b2a G
1

1

ab
ln e1E

e

`

tdt
1

~eat21!~ebt21!
.

~A10!

The sums we require can be obtained from this identity
differentiation with respect toa or b. To present the result
it is convenient to define a functionf (x) by

f ~x![
1

2

11x

12x
ln x1 lim

e→0
F ln e1E

e

` tdt

~etAx21!~et/Ax21!
G

~A11!

5
ln x

12x
2xE

0

`

dte2xt
12xt2e2xt

~12e2xt!2
ln~12e2t!

~A12!
07600
y

where the second form is obtained by integration by parts
is evident from the first form thatf (x)5 f (1/x). Also one
can easily calculatef (1)52p2/6. From the second form
one easily sees thatf (x); ln x for x→0, whence from the
symmetry,f (x);2 ln x for x→`. Exploiting the functionf
and its symmetries, we deduce

(
k1 ,k28

u
1
k11k28

~k1a1k28b!2
'

1

ab F ln
2p1

1

ap1
2 1 f S a

b D G ~A13!

(
k1 ,k28

k1u
1
k11k28

~k1a1k28b!2
'

1

2a2b F ln
2p1

1

ap1
2 1 f S a

b D G2
1

2ab2 f 8S a

b D
~A14!

(
k1 ,k28

k28u1
k11k28

~k1a1k28b!2
'

1

2ab2 F ln
2p1

1

ap1
2 1 f S a

b D G1
1

b3 f 8S a

b D

'
1

2ab2 F ln
2p1

1

ap1
2 1 f S b

a D G2
1

a2b
f 8S b

a D .

~A15!

Inserting these results into Eq.~A6! produces Eq.~4.16!.

3. Evaluation of G II
``~

For largeMi , the sum overl can be approximated by a
integral overj5 l /M1 from e!1 to 12e, plus sums for 1
< l<eM1 and M1(12e)< l<M121 which contain the di-
vergences. These divergences are only present in the
sum on the rhs of Eq.~4.42! for l !M1 and in the last sum
for M12 l !M1. The middle sum contains no divergence a
can be replaced by an integral from 0 to 1 with noe cutoff.
To extract these divergent contributions, we can use the la
argument expansion ofc8

c8~z11!;
1

z
2

1

2z2 1OS 1

z3D ~A16!

to isolate them. It is thus evident that their coefficients w
be proportional to the moments( f k /kn, (hk /kn for k
50,1, which are precisely the moments constrained by
requirement that the gluon remain massless at one loop.

For the end point nearl 50, we put z5kM1(M2
1 l )/ lM and write

k

l
c8~z11!;

M

M1~M21 l !
2

l

2k

M2

M1
2~M21 l !21 . . . ,

~A17!

so the summand for smalll becomes
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(
k

H f k

M ~2M12 l !~2M21 l !

l 2M1~M21 l !
1

hkM

M1~M21 l !
2

f k

2k

M2~2M12 l !~2M21 l !

lM 1
2~M21 l !2 2

hk

2k

lM 2

M1
2~M21 l !2J

;
M ~2M12 l !~2M21 l !

l 2M1~M21 l !
1

M

M1~M21 l !
2

p2

12

M2~2M12 l !~2M21 l !

lM 1
2~M21 l !2 1

p2~ l 21!

36l

lM 2

M1
2~M21 l !2

;
4M

l 2 2
2M2

lM 1M2
2

p2

3

M2

lM 1M2
. ~A18!

Summingl up to eM1 gives

(
l 51

eM1 F4M

l 2 2
2M2

lM 1M2
2

p2

3

M2

lM 1M2
G' 4Mp2

6
2

4M

eM1
2

M2

M1M2
~ ln eM11g!S 21

p2

3 D . ~A19!

Inserting these results into Eq.~4.40! and writing out explicitly the 1↔2 terms for the divergent part gives

GC1
``~

'2
g3

8p2T0

K`

M H (
k51

` E
e

1

dj
k

j
c8S 11k

~M21jM1!

jM D F f k

~22j!~2M21jM1!

j2M1
1hkG1~1↔2!2

4M2

eM1M2
1

8Mp2

6

2
M2

M1M2
~ ln e2M1M212g!S 21

p2

3 D J . ~A20!
g

.

-

Only the third sum contributes nearl 5M1. We again use
the large argument expansion ofc8. But this time one only
gets a logarithmic divergence, because the difference ofc8’s
is of order (M2 l )2 as is the explicit rational term. Puttin
z15kM1(M21 l )/M2(M12 l ) and z25klM /M2(M12 l ),
we have

c8~z111!2c8~z211!

;S 1

z1
2

1

z2
D S 11

1

2z1
1

1

2z2
D

;2
M2

2~M12 l !2

klMM1~M21 l !
@11O~M12 l !#

;2
M2

2~M12 l !2

kM1
2M2 . ~A21!

Thus thel;M1 end point divergence is just

2
g3

8p2

K`

M

4M2

M1M2
(
k51

` S f k

k
2 f kD (

l 5M1(12e)

M121
1

M12 l

52
g3

8p2

4MK`

M1M2
S p2

6
21D ~ ln eM11g!. ~A22!

Putting everything together we obtain Eq.~4.43! for the con-
tinuum limit of the triangle with internal longitudinal gluons

APPENDIX B: DIVERGENT PARTS OF INTEGRALS
AND SUMS

The T integral in Eq.~4.14! can be evaluated by expand
ing the integrand
07600
I[
M1TK2~M12 l !2A8

M2H~M1M1T!3 1
lT~H02H !~M12 l !M1

2A8

M2H~ lT1M21 l !~M1M1T!

2
lT~H02H !~M12 l !M1

2A

M2H~M1M1T!2 ~B1!

in partial fractions. First note that since (M1T1M )H is a
quadratic polynomial, it may be factored as

~M1T1M !H5 lp1
2~T2T1!~T2T2! ~B2!

where T2;2(K21M1M2p2)/ lMp1
2 and T1;2MM2p2/

(K21M1M2p2) when l !M1. Then the partial fraction ex-
pansion reads

I 5
R1

T2T1
1

R2

T2T2
1

R3

lT1M21 l
1

R4

~M1T1M !2

1
R5

M1T1M
, ~B3!

with the Ri independent ofT. Of course theRi are such that
I falls off at least as 1/T2 for large T, i.e. R11R21R3 / l
1R5 /M150. This identity is helpful for determiningR5.
Thus we have

E
0

`

dTI52R1ln~2T1!2R2ln~2T2!1
R3

l
ln

l

M21 l

1
R4

MM1
1

R5

M1
ln

M1

M
. ~B4!

The Ri are given explicitly by
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R15
M1~M12 l !T1

lM 2p1
2~T12T2!

F ~M12 l !K2A8

~M1T11M !2 1 lp1
2A8

2
lp1

2~M21 l 1 lT1!A

M1T11M G ~B5!

R252
M1~M12 l !T2

lM 2p1
2~T12T2!

F ~M12 l !K2A8

~M1T21M !2 1 lp1
2A8

2
lp1

2~M21 l 1 lT2!A

M1T21M G ~B6!

R352 l
~M21 l !M1

2A8

M2M2
~B7!

R45M1
2~M12 l !

A8

M
2 lM 1~M12 l !

A

M
~B8!

R55
lM 1~M12 l !A

M2 S 12
p1

2MM2

K2 D 1
lM 1

2A8

MM2

2
M1

2~M12 l !A8

M2 F12
M

M1T11M

2
M

M1T21M G . ~B9!

When theM ’s are large, the sum overl can be replaced by a
integral overj5 l /M1 as long asj is kept away from the end
points j50,1. We can isolate the terms that give rise
07600
singular end point contributions and simplify them consid
ably. We shall then separate the divergent contributions
display them in detail.

First note that the worst end point divergence isj21ln j
nearj50 or 1/(12j) nearj51. Thus we can drop all term
down by a factor ofl /Mi for small l or by (M12 l )/Mi for l
nearM1. Thus for l !Mi , we note thatlT2(M1M1T1);
2K2/p1

2 andT1 /(M1M1T1);2M2p2/K2 and obtain

R1;2
p2M1

2M2

lK 2

K21M1M2p222M2Mp1
2

~K21M1M2p2!

52
p2M1

2M2

lK 2

M1p2
22M2p1

2

M1p2
21M2p1

2 ~B10!

R2;2
M1

l
1

2M1M2p1
2

l ~M1p2
21M2p1

2!

52
M1

l

M1p2
22M2p1

2

M1p2
21M2p1

2 ~B11!

R3;2M1 ~B12!

R4;2
MM1

2

l
~B13!

R5;
M1

2

l F11
MM1p2

22MM2p1
2

K2 G . ~B14!

Combining thel'0 end point contributions gives
E
0

`

dTI;2R1ln
MM2p2

K21M1M2p2 2R2ln
K21M1M2p2

lMp1
2 1

R3

l
ln

l

M2
1

R4

MM1
1

R5

M1
ln

M1

M

;
M1

l H M1p2
22M2p1

2

M1p2
21M2p1

2 FM1M2p2

K2 ln
MM2p2

K21M1M2p21 ln
K21M1M2p2

lMp1
2 G

2 ln
l

M2
1F11

MM1p2
22MM2p1

2

K2 G lnM1

M
21J

;
M1

l H M
M1p2

22M2p1
2

K2 ln
M1M2p2

K21M1M2p21
M1p2

22M2p1
2

M1p2
21M2p1

2 ln
~K21M1M2p2!2

lM 2M2p2p1
2

2 ln
lM

M1M2
21J for l !Mi . ~B15!
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For the other end point,M12 l !Mi , the roots of the poly-
nomial (M1M1T)H approach T152M /M1 and T25
2p2/p1

2. Which of these roots is approached byT6 depends
on the parameter values, but since the formulas are sym
ric under their interchange, we can choose to use the firs
place ofT1 and the second in place ofT2 . Since the de-
nominatorM1M1T150 in this limit, we need to carefully
evaluate

M12 l

M1M1T1
;2

M1~Mp1
22M1p2!

K2 .

Then we obtain for smallM12 l ,

R1;
M1M2~Mp1

21M1p2!

~M12 l !K2 2
2MM1p1

2

~M12 l !~Mp1
22M1p2!

~B16!

R2;2
2p2M1

2

~M2 l !~M1p22Mp1
2!

~B17!

R3; l
M1

M12 l
~B18!

R4;2
2MM1

2

M12 l
~B19!

R5;
M1

2

~M12 l !
2

M1
2M2~Mp1

21M1p2!

~M12 l !K2 . ~B20!

Combining thel'M1 end point contributions gives
07600
et-
in

E
0

`

dTI;FR11
R31R5

M1
G lnM1

M
2R2ln

p2

p1
2

1
R4

MM1
for M12 l !Mi

;
2M1

~M12 l ! F M1p2

M1p22Mp1
2 ln

M1p2

Mp1
2 21G .

~B21!

In writing the l sum as an integral these end point dive
gences can be separated by pickinge!1 and summingl in
the ranges 1< l<eM1 andM1(12e)< l<M121. For these
parts of the sum the above approximations can be made
the sum evaluated:

(
l 51

eM1 1

l
5 (

l 5M1(12e)

M121
1

M12 l
5c~11eM1!1g; ln eM11g

(
l 51

eM1 ln l

l
52g@c~11eM !1g#2E

0

`

dt ln t
e2t2e2M1et

12e2t

;
1

2
ln2~M1e!1

z~2!2g2

2
1

1

2E0

`

dt
t ln2t

et21

[
1

2
ln2~M1e!1C. ~B22!

The rest of the sum is replaced by an integral overe<j
<12e
1

M1
(
l 51

M121 E
0

`

IdT;E
e

12e

djE
0

`

IdT1~ ln eM11g!F S 2M1p2

M1p22Mp1
21

M1p2
22M2p1

2

M1p2
21M2p1

2D ln
M1p2

Mp1
2 231S M

M1p2
22M2p1

2

K2

22
M1p2

22M2p1
2

M1p2
21M2p1

2D ln
M1M2p2

K21M1M2p2G2F ln
M

M1M2
~ ln eM11g!1

1

2
ln2~eM1!1CG 2M1p2

2

M1p2
21M2p1

2 .

~B23!

Finally, we must extract the divergent contributions that arise from replacing the sums

(
l 51

M121

Sl52 (
l 51

M121 FM1B8

M
f S a

b D1
AM2~M12 l !2

M3

a

b
f 8S a

b D G ~B24!

in Eq. ~4.23! by an integral. First, forl'M1 , a/b'1 and only the first term gives a singular end point contribution,

(
l 5M1(12e)

M121

Sl;22M1f ~1!@c~11eM1!1g#;
p2

3
M1@ ln eM11g#. ~B25!

On the other hand, forl'0, we have

f S M1M2

lM D;2 ln
M1M2

lM
2E

0

`

dt e2tln t
12t2e2t

~12e2t!2
5 ln

lM

M1M2
~B26!
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M1M2

lM
f 8S M1M2

lM D;211
lM

M1M2
Fp2

12
1 ln

M1M2

lM
21G . ~B27!

The integral in the first line is zero because the integrand is a derivative of a function vanishing at the end points.
these approximations, we obtain

(
l 51

eM1

Sl;
M1

2M2

M (
l 51

eM1 2

l 2 1M1H (
l 51

eM1 1

l
ln

lM

M1M2
2@c~11eM1!1g#

p2

6 J . ~B28!

Putting Eqs.~B23!, ~B25!, ~B28! together, some simplification occurs and we obtain

1

M1
(
l 51

M121 FS~ l /M1!1E
0

`

IdTG;E
e

12e

djE
0

`

IdT1E
e

12e

djS~j!1
M1M2p2

3M
2

2M2

eM
1~ ln eM11g!F S 2M1p2

M1p22Mp1
2

1
M1p2

22M2p1
2

M1p2
21M2p1

2D ln
M1p2

Mp1
2 1S M

M1p2
22M2p1

2

K2 22
M1p2

22M2p1
2

M1p2
21M2p1

2D ln
M1M2p2

K21M1M2p2 231
p2

6 G
2F ln

M

M1M2
~ ln eM11g!1

1

2
ln2~eM1!1CGM1p2

22M2p1
2

M1p2
21M2p1

2 . ~B29!

When we add the contribution with 1↔2, the antisymmetry of some of the coefficients leads to further simplification a
as a reduction in the degree of divergence of some of the terms:

1

M1
(
l 51

M121 FS~ l /M1!1E
0

`

IdTG1~1↔2!

;E
e

12e

djE
0

`

IdT1E
e

12e

djS~j!1~1↔2!2
2

e
2 ln e

p1
1p2

22p2
1p1

2

p1
1p2

21p2
1p1

2 ln
p1

1

p2
1

1 ln eF 2p1
1p2

p1
1p22p1p1

2ln
p1

1p2

p1p1
21

p1
1p2

22p2
1p1

2

p1
1p2

21p2
1p1

2ln
p1

1p2
2

p2
1p1

21
2p2

1p2

p2
1p22p1p2

2ln
p2

1p2

p1p2
2 261

p2

3 G
1 ln

p1
1

p2
1 F S M

M1p2
22M2p1

2

K2 22
p1

1p2
22p2

1p1
2

p1
1p2

21p2
1p1

2D ln
M1M2p2

K21M1M2p21
1

2
ln

p1
1p2

1

M2

p1
1p2

22p2
1p1

2

p1
1p2

21p2
1p1

2G
1

2p2M1M2

3M
1F ~ ln M11g!H S 2M1p2

M1p22Mp1
21

M1p2
22M2p1

2

M1p2
21M2p1

2D ln
M1p2

Mp1
2 231

p2

6 J
1~ ln M21g!H S 2M2p2

M2p22Mp2
22

M1p2
22M2p1

2

M1p2
21M2p1

2D ln
M2p2

Mp2
2 231

p2

6 J G . ~B30!

As e→0 the first two lines on the rhs approach a finitee independent answer. The third line is explicitly finite. All divergen
are shown in the last two lines. AsMi→` there is a leading linear divergence as well as a single logarithmic sub-le
divergence.
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