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One loop calculations in gauge theories regulated on axn™-p* lattice
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In earlier work, the planar diagrams 8fU(N;) gauge theory have been regulated on the light cone by a
scheme involving both discrefg’ andr=ix". The transverse coordinates remain continuous, but even so all
diagrams are rendered finite by this procedure. In this scheme quartic interactions are represented as two cubics
mediated by short-lived fictitious particles whose detailed behavior could be adjusted to retain properties of the
continuum theory, at least at one loop. Here we use this setup to calculate the one loop three gauge boson
triangle diagram, and so complete the calculation of diagrams renormalizing the coupling to one loop. In
particular, we find that the cubic vertex is correctly renormalized once the couplings to the fictitious particles
are chosen to keep the gauge bosons massless.
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I. INTRODUCTION infra-red divergences because the discretization afdp*
excludes zero values for these variables. The motivation for
The largeN, limit of SU(N.;) gauge theory, introduced this approach is certainly not to simplify the calculation of
long ago by 't Hooft[1], remains unsolved even though the individual Feynman diagrams: lattice calculations are rather
limit singles out the planar Feynman diagrams of perturbamore complicated than continuum orj@8—15, and consid-
tion theory. Although a dramatic simplification, the sum of erably more complicated than those using the Mandelstam-
all planar diagrams still represents a rich enough dynamics tbeibbrandti e prescription[16—18. Rather the goal is to set
frustrate many imaginative approaches to their soluf®n  up a systematic scheme which can be used to go beyond
But even if an exact analytic solution is out of reach, thisperturbation theory by summing diagrams. For example this
should not mean that the nonperturbative physics of the limisetup is particularly helpful in identifying the sum of planar
is hopelessly intractable. Indeed, in the face of the evemliagrams as a worldsheet system in the spirit of Bardakci and
richer dynamics of gauge theory at fini&,, much insight  Thorn (BT) [19,20.
has been gleaned by numerically studying lattice gauge The purpose of this article is to further explore the viabil-
theory [3-5] on a finite lattice as a useful nonperturbative ity of the BRT formalism as a regulator of perturbative dia-
model of the continuum gauge theory. Moreover, since thgrams and to deepen our understanding of how that formal-
lattice could in principle be taken ever larger in size, latticeism works. BRT calculated the one-loop gluon self-energy
gauge theory can provide a concrete definition of continuungiagram, as a first check on the faithfulness of #iep™
gauge theory. lattice as a regulator of divergences, obtaining agreement
Of course, one approach to the laiye limit would be  with an earlier continuum calculation. However, to check
simply to study lattice gauge theory for ever lardér [6]. asymptotic freedom, one still needs to calculate the one loop
This is certainly a well-posed and interesting formulation ofthree gluon triangle in the same formalism. We therefore do
the problem. However, it is somewhat removed from thethe necessary additional one loop calculations in the pure
appealing and intuitive idefi7] that the large planar dia- SU(N.) gauge theory using the BRT discretization. In par-
grams known as fishnets could, in a confining theory, providdicular, we confirm that this scheme does not disturb the
a model of a QCD string “world-sheet.” This idea is now light-cone gauge asymptotic freedom calculations done ear-
even more compelling because of the conjectured equivdier, using a “principal value” treatment gb " =0 singulari-
lence of certain supersymmetric larke gauge theories to ties Refs[13—15. We obtain expressions for the complete
supergravity or superstring theorifg]. It would be nice to triangle diagram to one loop order and show that color
have an explicit discretized model representation of the suraharge is indeed correctly renormalized aqd15)]. Further,
of planar diagrams, which, if analytic methods fail, can atwe extract all of the divergences arising from the infrared
least be analyzed numerically. region of smallp®. Although in individual diagrams there
Accordingly, Bering, Rozowsky, and ThofBRT) [9] re-  are double logarithms, we show that in the complete sum
considered and refined earlier attem#t6—12 to construct only single logarithms remain. It is an interesting highlight
a lattice model of the sum of planar diagrams by working inof the calculation that the double logarithms cancel between
an infinite momentum framé.e. on a light front and dis-  triangle and self-energy diagrams, term by term in the sum
cretizing 7=ix", imaginary light-cone time, angg™, the  over the internal discretized™. In the context of the BT
kinematic light-cone momentump( is the light-cone worldsheet formalism, this means that the cancellation oc-
Hamiltonian. Thisx*-p* lattice cuts off all ultraviolet and curs locally on the worldsheet, an encouraging outcome.
The Feynman rules used {®] are unusual in several
respects. First, the basic propagators are given in the mixed
*Email address: skulig@phys.ufl.edu ix",p*,p representation, withix "=ka and p™ =Im, with
TEmail address: thorn@phys.ufl.edu k,/=1,2,3 ... . Thetransverse polarization of the gluon is
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given in the complex basis\=(1+i2)/\2, \y=(1 fictitious scalars in the context of planar diagrams is summa-
—i2)/4/2, represented graphically by an arrow attached tdized in Fig. 1. . . .
the transverse gluon line. Next, since we focus on the planar In this article we shall use this formalism exclusively. In

diagrams of theé\,— o limit, there is no need for the double S€c. Il we illustrate how the cubic vertices with fictitious
line notation, and alN. dependence can be absorbed in theParticles reproduce tree diagrams by calculating a four gauge

coupling constany=g.JN,. The resulting vertices for this °0SO" amplitude, and by showing how the' =0 diver-

restricted context accordingly depend on the cyclic orderin ences are resqlved in the tree approximation. Next we trn
) : . . -0 the triangle diagram to one loop order. In Secs. Il and IV
of the lines entering the vertex. Finally, all the quartic verti- : .
ncluding th induced by int i N A we calculate the triangle diagram for three off-shell external
ces, Including those Induced by ntegrating M n A transverse gluons. We extract all of the divergent parts,
=0 gauge, are represented as the concatenation of two cullif,ying how the double logarithms arising from the en-
vertices, with fictitious particles mediating the quartic 'nter'tanglement of ultraviolet and infra-red divergences in light-

action. The one mediating the induced quartic interaction,one gauge cancel in physical quantifie€oncluding re-
(the instantaneous “Coulomb” exchangean be thought of ks are given in Sec. V.

as a remnant of thé\, field, whereas that mediating the
Tr[Ay,A]? vertex can be thought of as a remnantrgf in

the first order form of the action. These fictitious particles
would not propagate in the continuous tirae-0 limit, but Because of the unusual nature of the Feynman rules in our
with a finite are allowed to propagate a limited number of discretized light-cone gauge, we introduce the reader to this
time steps. This is implemented by including-@ependent  formalism by discussing the tree approximation to the two
factor f, or hy in the propagator for each fictitious particle. gluon scattering diagrams shown in Fig. 2. We label the ex-
These must satisfy, fy=>h,=1 and must fall off rapidly  ternal momenta entering a diagram counterclockwise starting
with k, in order that the correct tree amplitudes be correctlyfrom the lower left and denote bl the discretized time
produced. The Lorentz invariance of perturbation theory putsiifference between the vertices. Note thgt=mM;. The
further constraints on thek dependence. Indeed, the flex- t-channel exchange amplitudes for two up gluons to two up
ibility offered by tuning these coefficients may even obviate

the need for further explicit counterterms to guarantee Lor———

entz invariance. One constraint has already been put on thisias stated earlier, the Mandelstam-Leibbrafidt.) trick to avoid
behavior in[9] by requiring the gauge boson to remain mass-is entanglement isot employed in the setup used here. Indeed,
less to one loop. We shall find that with no further con-one point we wish to stress is that, although the ML prescription is
straints, color charge is correctly renormalized. The final setonvenient for certain purposes, it is by no means necessary in a
of Feynman rules for the transverse gauge bosons and thlensistent formulation of perturbation theory.

Il. FOUR GLUON TREE DIAGRAMS

076001-2



ONE LOOP CALCULATIONS IN GAUGE THEORIE.. ..

S R L

gluons associated with these diagrams are then given by

2

4q —M;M;
A= T2 SOMAIM = M
T5 2My|M, l
X(MgpzA—szsA)(Mlmv—MmY)
e(Dl*P4)2/2|M1*M4\T0_ 1
492 —~M,M,
A,

T3 2M MM~ M

. (M3p5 —Mopy) (M —Mapy)
e(P1=Pa)?/2M1-My|To_ 1

(2.9

2 o0
Ag= g_ 2 fke*k(P1*p4)2/2|M1*M4|To
To k=1

(M1+M4)(Mz+Mj)
(M1—My)?

2 o0
> hye KPP 2AM1—Mq[To,
k=1

g
A4:_|__O

Note that we have supplied a wave function facedkP

+
(e~2kP") for each outgoingincoming particle, and we re-
strict the energies by the conservation 14 +p, =p;
+p, . Also, the absolute values account for the different
treatment of the casél; <M, from the caseM;>M,.

These expressions illustrate the essential features of the BRT

discretizationA; andA, show thet channel poles due to one
gluon exchange:

1

_ 2IM1—My|T,
e(p17p4)2/2|M17M4|T0_ 1

(pl_p4)2

(2.2

Notice that time discretization has cut off the larget
=(p;—p4)? behavior of the amplitude exponentially. Re-
calling thatTo=m/a, we see that sending—0 at fixedt
and fixedm|M ;— M| just leads to the usualtifactor of the
Feynman tree amplitude. Notice also the rolgpof discreti-
zation in cutting offp™ =0 singularities. In particular, with
both a,m#0 andt<0 the amplitudes are strictly zero for
M;=M,, whereas after the continuum limit they are infinite
at this point. WithT fixed, we can also reach the continuum
limit by taking all M;— as well agM,;—M,|—c°. Either
way, it is important to keep in mind that the corrguf
—p, behavior of the continuum limit is only obtained if the
continuum limit is first taken withp; # p; .

The expressions fok; andA, contain the so far undeter-
mined parameterg,,h,. Since they limit the range of thie
summation, the formal continuum limit just discussed only
involves them in the combinations, f,, =:h,, both of
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FIG. 2. The four gluon tree
diagrams witht channel gluon ex-
change considered in this section.

which are constrained to be unity. Thus, in the continuum
limit, the sum of all four diagramsh=A;+A,+Az+A, is
given by

P 1=
Tol PyPs(P1—pg)?

X(pgpQ—pQPQ)(pIpY—pIpY) 4p3pi

(P1—Pa)? pips(p1—Pps)?
(p3pY—p3 PY)(Pi Py —pPspL)
X 7
(P1—P4)
* 4oV (pl + ot
(p1 pf)(pf 2p3)+ 2.3
(py —Ps)

It is significant that in the continuum limit no absolute value
signs are needed.

The individual terms contributing to the continuum limit
A show quadratic singularities gs; —pj , typical of the
light-cone gauge. But in the sum, these singularities are soft-
ened off shell and disappear on shell. To show this, we note
the following identities:

(P3 P2 = P3 P5)(PY Py — Py pY)
1
=5 (P3P2=P;3 P3)- (P1 P4~ P4 P1)

1
+ 5 (P =Pa)L(P1 — P2 )(P2PY —~P¥PL)
—(P1=Pa)V(P{ P2 —P3 P1)

+(p1—Pa) " (p1 pY —p3 pY)] (2.4

(P3P¥ = P2 PY)(P{ P4 —Ps PL)
1
=5(P3P2=P3 Pa) " (Pi P4~ P4 P1)

1
= 5(pf =p)L(P{ —Pa)(P2PY —PYPL)
= (P1=Pa)V(P1 P2 =P PY)

+(p1—pa)"(PT PY —P3 PY)]. (2.5

Furthermore, by using energy momentum conservation we
can rewrite the common first term on the right-hand side
(rhs) of these identities:
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(P3P2—P3 P3)- (Py Pa— P4 P1)

P1 P3 +Ps Py (py —p4)? P; — P4
= S (P Pt (pr PP [

3 P53+ Pip5—p; p5—ps pil. (2.6)

The contribution of Eq(2.6) to the continuum limit ofA; + A, is

9®| (p1 +P4) (P2 +P3) (P{ +P2)%(P1P3 +PsPa)  (P12P3 2+ Ps 2Pa ) (P1tP2)?
(A1+A2)|:_T_ T2 + F F F T + Tt T T >
0 (P1—Ps) P1P2P3 P4 P1 P3 P2 Ps (P1—Pa)
+(p1+2p§2+pzzpiz)[pip?fpIpi—pIpi—pgpi]l 07
P1P3 P2 P (P1 —Ps)(P1—Pa)? ’
and we denote the rest éf; + A, by (A;+A,), . Thus, adding oiA;+ A,, we can write the total amplitude
g%| (P1 +P2)%(P1P3 +P2Ps)  (P12P3°+P;2Ps ) (P1tP2)?
A:(A1+A2)II_T_ F o F AT AT + T T+t >
0 P1 P2 P3 P4 P1 P3 P2 P4 (P1—Pa)
, (P13 +pa?pi")p2 PI+ pipi—pfpi—pipi]l 08
P1P3 P2 P4 (P1 —Ps)(P1—Pa)?
We find that @, +A,), has a continuum limit which has nw —p, denominators:
Ay =L (P1P3 +P3P3)(P1 +P3)Pi (PLPY —PyPy)
P, P1P3 P2 Pa (P1—Pa)?
_(PYP3+P;Pa) (1 +P2)L(P2PY — Py P2)PY —(P3 PY —P1 Py )P ] 29

+ Attt

P1 P3 P2 Py (P1— Ps)?

Note that the quadratically singular first term in square Finally, we comment that the on-shell four point ampli-
brackets on the rhs of E€R.7) has been exactly canceled by tude assumes a fairly compact form in the Galilei center of
the continuum limit ofA3, leaving only a linear singularity mass frameg,= —p;. In this case we obtain

asp; —p, —0, which disappears when all of the external

gluons are on shellm-2=0):

o 92| (p12P3 2+ Py °ps2)s
F2 42 A2 AN+ 2+ 2 4 2 4D AonShe”:_T_o P: P4 papat
A_:(pl P3 "+ P2 “Pa )P, P4+ P4 P2~ P P53~ P3 P1 1HsF2Fa
o Py P3 P3 P4 (Py —PJ)(P1—Pa)? ' , (P+P3)°(pip3+P5ps)

(210 P1P; P3 P4

Py Py —pyps

This singular contribution has opposite signs fof >p;, x| 14 t4 T1F4

andp; <p, , SO we can expect that, when this term occurs t

as a sub-diagram wher®l;—M, is summed, a principal

value definition of the continuum integral approximation to . i .

the sum will be appropriate and no divergence will occur. [fWhere we have introduced the usual Mandelstam invariants
) . i ) : S e 2 e (p.—p.)2 ; i

is also interesting to notice that when the particles in theé= — (P11 P2)” andt=—(p,—p,)°. In this form it is easy

initial and final state are equally off energy shell, i.e.!0 check that the diagram has the correct value. _
pi/Mlz pgle and pg/M3=D§/M4, the quantity in square For comparison, we record here the value of the diagram
brackets _becomes p(+p§)(p+—p*)(p%/p3++p2/p+) with s channel poles, also in the Galilei center of mass:

4 1 1'~¥1/

with no singularity asp; —p, . The softening ofp™=0
singularities in this particular off-shell situation has also been 2 it ot AR ARV
_Ai(pl +p2)"P1PA

noted in[21] in the radiative corrections to another four ASM= — (2.11)
point (branion process. To PiP2P3Pss

076001-4



ONE LOOP CALCULATIONS IN GAUGE THEORIE.. .. PHYSICAL REVIEW D 66, 076001 (2002

momentum and simplifyingnote that a factor o™ 2kP
comes from each of the ingoing external linese obtain

-1
4 FARAL g_ 2(M;M,Ms5) !
) . . TS Mll)M+I|I|
FIG. 3. Triangle with incoming arrows.
+ +1\4 A A d?r —37Tr2 a
_ 9 (pitpz) PLPs —pyp; “] 2me® ET FKag— Mt
T AT
To P1 P2 P3 P4 T, AT, A
9% (P +p; )j(gl s +PzPy) 012 *| srKarMur| | gpKizMar
TO P1P2P3 P4
( g )32 el (MMMy) ™t
Il. SIMPLE TRIANGLE WITH THREE =\ —
TRANSVERSE GLUONS To/ &1 472 (M1=D(M2+D]l]
We will now calculate the one loop three point function T,1T,T3
e We o X123 (K13, 31

where all external gluons are transverse. We start with a par-
ticularly simple process in which the arrows on all external
lines point inward. Since this process has no contribution at
tree order, it cannot have ultraviolet divergences. In fact, welhe sum onk,| is constrained as described above and for
shall find that the diagram also has no infrared divergencebrevity we have made the following definitions:

3T

and so is completely finite.

Using the discretized Feynman rules we see that only the
two diagrams shown in Fig. 3 contribute to this choice of
external momenta. One of these is shown in more detail in

Fig. 4. The loop momentum igand the momenta shown are
routed along the arrows. This means that the mompnpta

p, andp5 are directed into the vertex and momentum con-

servation readsp;=0. We use the convention that the
discretized-component of momentg; is mM; and that ofg

is ml. Accordingly we haveM;,M,>0 and M3z=—M;
—M,<0. For convenience we shall also uge=—M3;>0
and p=—p3>0 in the following analysis. The discretized
times are given byr=ak and by translational invariance we
can choose one of the vertices to berat0. We then have a
transverse loop integral to do, the integral ogérbecomes
a sum overl and finally we must sum over the two dis-
cretized timek,; andk,. Whenk;>0 (so alsd >0), k; and
k;=k,—k, are independently summed from 1 to~ and|

is summed from 1 tdvi;—1. Whenk;<0 (so alsol <0),
k;=—k,; andk, are independently summed from 1 to=
andl’=—1 is summed from 1 td,— 1. By writing out the

expression for the two diagrams, shifting the transverse Ioo%e

n

D2

FIG. 4. Conventions when calculating thé\"\".

T_1k1 T_lkz—kl 1k
T 2Ty 1T 22Ty M+l BT 2T M|
(3.2
1 2 2 2
H= E—T(T1T3p1+T1T2p2+T2T3p3) (3.4
Mip;—M;p;. (3.9
Note the constraint IT;+(M,+1)T,—(M;—1)T3=0

which implies that for fixed, only two of theT’s are inde-
pendent. Also, momentum conservation implies tkgt is
cyclically symmetric and we therefore ude=K;,=K,;
=Kas;.

In general one must take the continuum limit with care
cause of ultraviolet and infrared divergences that might be
present. Since we expect no ultraviolet divergences we can
immediately takea— 0. However, it turns out there are no
infrared divergences either and we can see this by taking the
continuum limita—0 andm—0 simultaneously. In the&

—0 limit we can replace the sums over,k; for k;>0 by
integrals overT, and T, and in them—O0 limit we can re-
place the sum ovdrby an integral oveil ;. The continuous
transformation betweem,,T,,T; andak,,ak,,ml is given

by Eg. (3.2 and the Jacobian isXT/4m|l|(mM;
—ml)(mM,+ml). Notice that integrating th&'’s from O to

+ accounts for summing over thehole range;| >0k,

>0 and I<0k;<0. We obtain
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A=

To

glg® (K")3
w2 MMM,

[>0and k1 >0

e N T2 Ta)T T,T,

alaa
o AR

(Ty+To+Ty)°
l<0Oand k1 <0
|9 g_z—(K/\)a wdx (3.7
N\ To) 72 MMM J o ' FIG. 5. Diagrams with all internal lines transverse.
PAAV_ g’k M > e H
Xf“’dy Xy 38 " 16m2TE MaMa @, [IT(Mp+1)(My—1)
0 T(Xpi+xyps+yp3)(1+x-+y)?

T,T,T3K2A . T,B;+T,B,+T3B;
M2(T,+T,+Tg)? (Ty+T,+T3)°
where we have scaled=T,/T; andy=T,/T; and note that 4.2

H(T,,T,,T3)=T3H(X,y,1). Notice that for allp;’s off-shell
the double integral converges. For the special off-shell poinwhereK,H and theT;’s are as before and

q?=pi=p3=p3 we get

A M2M?2 M2M3  (M,+1)2
= + +
Z(M1=1)% 12(Mp+D)?  (My—1)?

2 /\\3
g\g= (K")® x
FA/\/\: —)—2——2 (39) (M _|)2
To) 72 M1M M3 q 4t 7 (4.2)
(My+1)2
where MzMi MlMg
B,= + 4.3
12(M;— D)2 12(My+1)2
:dexfmdy ad
A et 1 (X+xy+y)(L+x+y)* B._ MM3 Ma(Mp+1)?  Mp(My—1)?
277 2 2 2 2
~0.03008095 . . . . (3.10 (M +D7 M(My=D - M(Mp+1) )
3 2 2
IV. TRIANGLE CONTRIBUTING TO CHARGE B MM1  My(Mp+D" My(M;—1)
RENORMALIZATION (M= 12 M(Mp—D2 M(My+1)2°
(4.5

We turn now to the main task of this paper, the calculation

of one-loop diagrams that contribute to charge renormalizathe triangles with only two transverse gluon internal lines,

tion. The self-energy diagrams have been evaluat@llliso o qtaqr "\ will be dealt with in the following subsec-

it remains to calculate the vertex corrections, i.e. the thre(% / he followi . h il hel
transverse gluon triangle diagram. The kinematics of the o™ We introduce the following notaznon that will help
treamline some of the formula®;=p//M;, P*=p?/M

three gluons are chosen as before. We start with the expre§_ " |
sions for the diagrams that emerge after integrating over the — P3 . For example,
transverse loop momentum. In this section we describe the 5 kL ok
analysis of the remaining sums over two discretized times, K"=—=M;M,My(P1 + Pz +P3)

kla,l_<2a and. one discretized loop momentypti=Im in the =M3M,M (P +P% —P*). (4.6)
continuum limit,a,m—0.

The vertex function should be antisymmetric under the
interchangep,,M < p,,M,. In view of the explicit overall
factor of K”* which is odd under this transformation, the

We denote the complete three transverse gluon vertexoefficient of K\ should be even. Inspection of the above
with polarization labels /\,A\,\/ for gluons 1,2,3 by expression for the triangle diagram shows that this symmetry
FAAV(pl,pZ,ps), The triangle diagrams displayed in Fig. 5, is realized in the following way. The expression for the sum-
which have only transverse gluons on the internal lines, promation rangek; = —k;,l=—1"<0 is precisely equal to that
duce the following expression: for the rangek,;,|>0 with the interchange of variables

A. All internal lines transverse
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p1,M;<p,,M,. Thus, it is only necessary to explicitly cal- the preceding section. Since we wish to kedpxed in this
culate for one time ordering, sa,1>0. Then adding to first step, for the cas&;>0 we expressT; in terms of
this the result of the interchange gives the complete answeT; and T,: T3=[IT;+(M,+)T,]/(M;—1). For the case
We are now dealing with potentially ultraviolet divergent k,<0, it is more convenient to expreds in terms of T,
diagrams. To reveal the ultraviolet structure we consider thand T;: T,=[I'T;+(M;+1")T3]/(M,—1"). We find =T

continuum limit in the ordea—0 followed bym—0. Re-
call thata#0 serves as our ultraviolet cutoff. In tlee—0
limit we can attempt to replace the sums okerk; (ki ,k»)
for k;>0 (k;<<0) by integrals ovell; andT, (T3) just as in

=(MTo+MT)/(M;—=1)=(MT3+M,T;)/(M,—1"). For
the A term, this procedure encounters no obstacle,
and we obtain(displaying explicitly the contribution for
kq,I>0)

KN M M= D)2T TL(T 1+ (Ma+ D TKZ A
F/A\/\\/—’g D delde( 1= DT To(IT1+ (Mo +1)T5) e MM (1.2)
42Ty MM, | 5 M2(MT{+MT,)*
KN M M, —D2TAT+(My+1)K2A
ZQ__EJdT( 1 DPTATH (Mt KA @
42Ty MM | T M2H(T,H)(M,T+M)*
|
It will be useful to note thaH can be written in the alterna- T, g (M—D® M T;+2MT,
tive forms (Tt T, 1 T2 T, 2MZ  (MT,+ M.Ty)?
He (Mt ) T,P* TPt 4 | (Ma=DTaT, .42
=(M2+ DT, 1 MM | MT,+ M, T, T, 9 (M=) M,T +2MTy
(4.8 (T;+T,+T5)° 0Ty 2MZ  (MT3+M,Ty)?’
K2 (M I)TyTy “-13
=Myt IR+ TaP2 + M| MT,+M,T, |©  Where the partial derivatives are taken with fixed.
4.9 Because of the divergences we cannot immediately write

where the first is useful whek;,|>0 and the second for

the continuum limit of theB terms as an integral. However,
we can make the substitutiom H— (e " —e Ho)+e Mo,

kq,1<O. whereH, is chosen to be an appropriate simplified version of
However, theB terms produce logarithmically divergent H, which coincides wittH at T,=0. Fork,,I>0, it is con-

integrals with this procedure, so they must be handled differvenient to chooséd,=[IT,+ (M,+1)T,]P} , whereas for

ently. To deal with these logarithmically divergent terms, wek,,| <0 Hy=[1'T,;+(M,+1')T3]P% is more convenient.

first note the identities

Then the factor ¢ H—e "o) regulates the integrand at
small T; so that the sums may then safely be replaced by

T _ 9 (My—l)? Ty 1 integrals. We shall denote the contributions from these terms
(Ti+T,+Ta)° a1, 2M  (MT,+MT,)? (410 by I'4/*" . Then using the above identities, an integration by

parts (for which the surface term vanishesakes the inte-

g (My—1")3 T, - L AAV T
- , (4.17 9rand similar to that inl’,""" and simplifications can be
T3 2M  (MT3+M,Ty) achieved(for details see Appendix A1l
v oy KN M (M e TTRAM=1)?AT IT(Hp—H)(My— )M, A’
L N s v v D dT| 3t 2
47Ty MIM5| =1 Jo HM+MT) M“H(IT+M,+1H)(M+M4T)

IT(Ho—H)(M;—1)M;A
MZH(M+M;T)?

where

}+(1<—>2)],

(4.19
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_ MPM) Ma(Ma+1)2  My(My—1)3 1
TIM(M,+DZ T MMM —1) MiM(M,+1)Z (4.15

A/

Since the integrand of Eq4.14) is a rational function ofT the last integral can also be done. We sketch the evaluation in
Appendix B.

There remains the contribution of the temn ™ which would give a divergent integral. However, because TheT,
(T.,T3) dependence in the exponential is disentangled by our choitk)othe sums can be directly analyzed in #e:0
limit, giving an explicit expression for the divergent part in terms of the lattice cutoff. We denote this contribution, containing

the ultraviolet divergence of the triangles, BQZAV. Referring to Appendix A2 for details we obtain

v OKY M ([REE M= NG No(Mat]) IPZDIH(g)
B2 2Ty MiML\| S MM [ My M apl \B
M1
M;—1 [Nyl No(My+l
_ 1= Nol No(MtD) by +(152)
=1 MM\ M, M B \B
M{—1 , + 2
gk M [ ’B 2p; (a) AM,(M;—1)2 a (a] )
=— — It | = | |+ —g— — ' = | t +(152) |,
TR DI v v antb: wvem, B gl T2
(4.16
where we have defined
B/ — (M;—1)° MM, (Mp+1)° a1
TMAML D) (M=) MZ(M,—T) (4.17
and
~ By(M;—1) ~ Ba(My—1)
Ny=————+Bs, No=——5—+B; (4.18
(0= 1 th LT e 4.1
(X)—m—x o e mn( —e ) ( . 9)
Mg M 4.2
=T BEua (420

25" we can further simplify the term proportional to Ipgapy), which contains the ultraviolet divergence of the
triangle diagrams. We obtain

kA M (Mt 1T (my—1)3 MM M,+1)3 1 2pF
Y =-2 PO 1 (Mot | 2P )
4772T0M1M2 =1 M M (M2+I) I(Ml_l) M (Ml_l) apl
=—ﬂl|ln£ H(M1+My)— (Mot 1)+36(M;) + 3y
472Ty MiMo| " ap?| 7t T 2 '
Ml_l 11 2 2 Ml
+W —3M1—7M1M2—4M2+? +(1H2) (421)

where ¢ is the digamma function.
Writing out the terms from interchanging-12 in this expression, and simplifying we obtain
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e ool S
~In %@ BLU(M) ~ (M) ]+ 02 112 2 M, 1)_%“
1962<ziOMMM| i |p'| 4(In|M|+y)+22 Inngiﬂ Ezfg —4(|nM+'y)+2§2

where the final expression, valid at larye,M,M,, has been arranged so that the divergence appears symmetrically

among the three legs of the vertex.

Putting everything together, the amplitude for the triangle with only transverse internal lines is given in the continuum limit

by
M;—1 3 A\
K" M |1 1 g°K" M Ip. | 22
V= J dTI,+S; [+(12) | + ——— —4(n[M{|+ )+
47°T, MM, | My I= 1S+ ) 167m°T, MaM,| =1 ; (InfM[ +)
2+ 2.+ 2 + + + + At
p?;  p%p; 22 pip3| pi 2(p1—p2)( 2p; pz>
+|In +In—=|| —4(InM+y)+ —|—In 4In—+ ——F—"| - 11+ (4.23
PPl PP Al TV I K p+2
where M2 M2MZ  (Mp+1)? (My—1)?

| 2(My=1D)? 12(Mpt1)2 (My=1)? (My+1)?

|1:|(T,plap2:M—)

' po MME Ma(MptD?  Ma(My—1)?
MM = 1)?TKPA’ IM{(M,+1)2 MM(M;—1) M;M(M,+1)?
CMZH(T,)(M,T+M)3

(Mp+1)3 (My—1)3 MM,
_ _ NG ’_
|2T(Ho H)(Mi—)M3A M2(My—1) * MZ(Mp+1)  I(My—1)
M“H(T+My+1)(M+M4T)
IT(Ho—H)(M;—1)M3A . . (Mj—DT K2
R ML (4.24 H=H(T.1)=(Mo+1)P3 +ITPT + i iy
Slzs(Ml,Mz,_)
M,
M{(M,+1
_ [MB (a AMZ(Ml—l)Zaf, a %;% 4.27
B M B M? B \B
(4.29 To complete the continuum limit we assurive,M,M,
large and attempt to replace the sums dvey integrals over

| | a continuous variablg=1/M,, with 0<¢<1. This proce-

|2=|(T,p2,p1,—), SZ=S( MZ,Ml,—) dure is obstructed by the singular behavior of the integrand
M2 M (4.26 for £ near 0 or 1. When this occurs, we introduce a cutoff

and where we recall, for convenience, our definiti¢aygpro-
priate to the cas&;,|>0)

€<1, and only do the replacement fexx {<1— ¢, dealing
with the sums directly in the singular regions. The detailed
analysis is presented in the Appendixes. Referring to Eq.
(B30), we see that we can write
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3 A\ 3 +
g°K M 2|p;'| 22
Y =T et ——— ———1 2>, In —4(In[M| + ) + =
I I, finite 16’772T0 MM, 21 api2 (In[Mi|+) 9
2A~t 2A~TF
[y M PPz M 22
I — 4 I+ 2|+ Nl — 4 I+
PP My " 9] TpTp; M, 9
9K (272 Mip*+Mpi Mip5—M,pi| M,p? 7’
=\ 3 T vioms| InMat ) Py, 2 2|z 3+ %
47T, 1Mz Mip“—Mp1 Mipy+Mypi/  Mpj
Mop?+Mp3  Mip5—Mopi) M,p? 7
+(InMy+ 1) — In —3+—1 ] (4.28
? Mop?—Mp3  Myp3+Mopf/ Mp 6
|
B. Charge renormalization 11 gchI 2 4a
As we have mentioned;|""" contains the complete ul- "3l a (4.32

traviolet divergence in the one-loop vertex function, so we
pause to discuss how the coupling renormalizes. Comparingnplying the correct relation of renormalized to bare charge
the zeroth order vertex; 2gK”\M/M;M,T,, to Eq.(4.29,

we see that the ultraviolet divergence of the triangle is con-

2
, (4.33

11
tained in the multiplicative factor gr=0| 1+ Eachlna
g> 2 22 whereag=g%/27.
1+ 16772"‘5 4(InM+InMy+InMa+3y)— 3 It is interesting to note that if the calculation is organized

4.29 differently there is no entanglement of infrared and ultravio-

' let divergences. As suggested by the recent worldsheet ap-
Note the entanglement of ultraviolfin(1/a)] and infrared ~Proach to planar diagrani&0], it is natural to combine self-
(InM;) divergences, typical of light cone gauge. TheMlis ~ €nergy and vertex diagrams at each value of the disgréte
multiplying In(1/a) must cancel to give the correct charge Of the loop. For example, consider the diagrams of Fig. 6,
renorma”zation_ To see hOW th|s happens’ reca” that the Se|ho|Ch Contnbute to I’enormahzatlon. It then turns out that the
energy calculation of9] implies the gluon wave function terms o, 1/(M—lo), 1/(M;—1o) , whose sums give rise to

renormalization factor the InM,S, cancel among the three diagl’thJBforethe p+
sum is done. With the arithmetic organized this way the en-
92N, 22] 2Q° 4 tangled divergences never arise.
=1- +y)— =|In—— 5.
Z2(Q)=1 16772[ 8(INM+ ) 3 Inan 3]
(4.30 C. Longitudinal internal gluons

) . o In addition to the diagrams with three transverse gluon

Thus the appropriate wave function renormalization factofinternal lines discussed in the preceding section, there are
for the triangle,yZ(p1)Z(p2)Z(p), contains the ultraviolet diagrams where one of the internal lines is a longitudinal
divergent factor gluon (solid line with no arrow or a fictitious gluon, whose
exchange represents the four gluon vertex as the concatena-
tion of two cubic verticegdashed ling The various possi-
bilities are shown in Fig. 7.

Again we start with the expression for the sum of these
so the divergence for the renormalized triangle is containediagrams obtained after doing the transverse momentum in-
in the multiplicative factor tegrals:

2
N

1- g
16

2
“[4(INMM{M,+37y)— 1in_,  (4.30

77_2

M M M
3 L + . + 3
0 lo 1>0and ky >0
My My M, % ,%
FIG. 6. Diagrams contributing to the renormalization. Tije {<0and k1 <0
next to a line denotes the discrgté of that line. The three dia-
grams shown naturally go together for fixgd FIG. 7. Diagrams with one solid or dashed internal line.
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RE 1 we see that, due to the limited rangekef the only term that
/MVY= _ 5 ZKAE Mo D (M= e M can get large is the first one. Furthermore, all the other terms
167?15 T H(M2+D(My=1) stay of orderO(a) in the limit a—0 at fixedm, which we
T - are studying. Thus, writingi=e P’?To, we see that we
1 2 H
C.+ C require the sum
(TiHTo+Te)? - (Ty+ T+ T2
T S Y Do whaw)
=y'(z —uln(1—u
+——c,, (4.34 1 (kh+2)2
(Ty+Ty+Ta)2 o o=t 172
1t T2t T (4.39
where in the a—0 limit. Thus theC, contribution has the—0
limit
M3z(2M = 1)(2M5+1)
=f
1 k _ S
1 [(Mi=D(My+1) F/\/\v - RE KA[E MlEl d/( M, (M,+1)
Ml 84T = IM
+hy S (4.39 ™o
H Mo+ DMy =) (2My—1)(2M 4+ 1)
1 2
+ + (1< .
o (MMM DM [fk E N+ 2)]
27 Tkl [[(Ma+1)M; (4.40
ih, MamD(Mzt]) 4.36 For the C, contribution, k; is limited by f,h. Thenk,
2 il ranges freely from 1 toe for >0, but for <0, 1<k;

<k;—1. In the first case, only the second termtbtan get
(M1+D(M3+My+1)(My+1)

Ca=—f, large, and in the second case no term can get large. So with
— 2
? H(M1=DM; u;=e PUMiTo we need Eq.4.39 (with u—u; and kj
Mo+ (Ms—]1 —kj) for >0 and
iy, Mt DMyl 37
2 || | M2 ké—l

Since thef,,h, are assumed to fall off rapidly witk, the z (ka)z:W(ZJF 1)—y'(z+ky+1)
corresponding sum can never be replaced by an integral. k=1 ™M

Consider first the term witlC,. Then fork;>0 (<0) only
the k; (k;) sum ranges freely from 1 tee. Writing out
H(T,,T,) explicitly in terms ofk,,k;,

_(k,TZ)Z for 1<0. (4.41
2

2! 2 The C5 contribution is similar but with the roles 0 and
= Q+ P | <0 switched. In fact, inspection shows that interchanging
2MTy  2M4 Ty 12 takes theC, contribution forl >0 (I<0) into theCs
K2k (M1~ )k, contribution forl <0 (I>0). So we need only display tHe
1 2 2 . (438 >0 cases explicitly. Combining all three contributions we
|
3 A © Mp—
ANV AAV ANV g K E l(M2+I) (ZMl_l)(ZMZ'H)
| VAR WAVARE WA Py M[ 2 21 i ( v K 2 +hy
+§°°: Mt k(M- 1)2M (1+k (My—D)(M+M;—1) }
EL S (MM Mi(My+1) (My+1)? k
o Mp—1

k(M2+1)®M[ M3(M;—1)? ( M1<M2+I>) ,
& A oM liemzv 2t R ) Y

i
Mo(My—1)

Myt DM MtD) +(1<%2)}_ (4.42

k (M;—1)?

Thel sum can be rewritten and evaluated approximately and the details can be found in Appendix A3. This yields the result

of the continuum limit of the triangle with internal longitudinal gluons:
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v 9 KNSk M2+§M1) (2= 8)(2Mo+£EMy)
S vy glfedfé‘” =) em,
o (1, k(1-§)*M ( &M )[ (M= M) (M +My(1-§)) }
2 o, rem, VM K amy | T (M, + EM )2 e
c e #k(M2+§M1)2M[ M3(1—¢)? ( |v|2+g|v|1) , EM ”
NP2 P v v e e A B Vg e B Vg
(1+ &) (M+My+EMy) 2M?
{k My (1= &) k_ewlle“lHZ)]
g K[ 2M#7? WM? ) WZ)
_4772T0V T—Mle(lne MiM,+27y) 3—; . (4.43

As e—0 the rhs approaches a finite result. Then the divergendé-ase is contained entirely in the last line. Thus we can
write in the continuum limit

[AAV_pAAY 9
1 — L 11, finite

3 MM,

(INM;M,+27)

gl
3-5 | (4.49

Notice that these divergent terms cancel some of the divergent terﬁ{éﬁiF{ leading to the complete vertex

g®  (pipo—p;pLIP"( p* p' p* pt 22
| AN WA IN| —4 In—=+ —| +In"w| —4 In— + —
fine 1 62T, Pips | bt P 9] ps p, 9
3 + A + A\t 3 r * * * * *
9® (pip2—pop)p" [1 2 22 p*+pi pl—pz) p}
5 2 In —4(In|Mi|+ )+ |+ (InM+ - —
47T, P1 P2 | .21 alpy || (I[Mil+ )+ g +(nMy+) p*—p1 pItpz/ PI
P*+p; PI—P3| P
+(InMy+y) 0% — P | 0% 1 p Ing (4.45

where for further brevity we have defined the continuumof Lorentz invariance in the continuum limit. It is therefore
limit finite variablesp} =P} /m=p?/p; . important to check whether it reproduces known weak cou-
As already discussed, the uv divergences in the seconpling results. We have shown here that to one loop order we
line are canceled up to the standard asymptotic freedom rexbtain the correct renormalization of the coupling, Eg.
sult by the wave function renormalization factors. The re-(4.33. The remaining infrared divergences shown in the last
maining divergences in the last two lines are only linear intwo lines of Eq.(4.45 must be considered in the context of
In Mi , and are unavoidable in the off-shell amplitude. Noticea physica| quantity_ There is no reasanpriori to expect
that there is a special off-shell poinpy =p; =—p*, for  these divergences to disappear until one considers fully on-
which they disappear. The finite part depends in detail on thehell, color singlet external states. It is, however, reassuring
choice of f,h,. The requirement of Lorentz invariance is that only single logarithmic divergences appear. As pointed
expected to limit these parameters sharply, if not overpyt earlier these divergences do disappear at the special off-
determine them. If the latter holds, additional countertermsspell nointo2/p? =p2/ps =2/t #0.
will be required to achieve Lorentz invariance. POtPLP1 = P2'P2 = Pa/Ps ~ ;

The simplest on-shell scattering process is gluon-gluon
scattering. Thus the complete resolution of the remaining
infra-red divergence issues at one loop must await the analy-

In this article we have extended previous wdf] by  Sis of one-loop four gluon amplitudes, the obvious next step
further exploring the discretizeBU(N,.) gauge theory pro- in this investigation. As confidence is gained that the dis-
posed there. Although the discretized theory is completelgretized theory is faithful to the gauge invariant continuum
regulated, there is no guarantee that gauge invariance h#geory, the application of the formalism to calculate QCD
been respected. Since we have chosen a non-covariant gaufehnet diagrams or to formulate a worldsheet description of
violations of gauge invariance would show up as violationsQCD in the spirit of[19] becomes more compelling.

V. CONCLUSIONS
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APPENDIX A: DETAILS OF CALCULATIONS
—H(T1,T3)

H(TlaTZ)_TlIP;n

- f dTdT,Z(T,,Ty)
0 T,

1. Evaluation of FQlA\/
In the calculation ofT'4;"Y we start by integrating by
parts. This transfers the derivative to the factar {

—eHo). For definiteness take the cdse0. Then we com-

=— f dTdLZT,)[H(T,1)—TIP}Je” TH(TD

pute = deITl 1 TPy A2
= (T,1 ATD| (A2)
aT(e‘“—e‘HO) and the second term yields the same expression with
2 H(T,1)—Hy(T,1), so the two terms combine to
— * _ *
=—e7HH T1|P1+e*H0H0 TIP3 JroodTITlTl Ho(T,1)—H(T,1) s
T2 T2 o SO DT T S v, + 1) (A3)
2 _
+eHK_[L)T1T22} (A1)  Simplifying the contribution to thel integrand from these
M1 (MT,+M;Ty) terms leads to the continuum limit
M;—1
ARV g’k M 12 F‘” IT(Ho—H) (Mi—=D)TK? ] (M;—1)?
B1 47Ty MiM,| =1 Jo HAT+M,+1)  HM;(M+M;T)?|(M+M,T)?
am Bt oz Bt —opzm, oy Bet mam, o1y Be| T (12
_ ek, M (Mt fmd IT(Ho—H) (M;—DTK2 1 (M;—1)2
47°To MM, &1 o HAT+My+1)  HM;(M+M;T)?| (M+M;T)?
><|v|1 M+M;T IT+M2+IA Lo "
W Ml_l Ml_l +( - ) ! ( )
where we have defined
M2M2 My(M,o+1)2  My(M;—1)3
Al 2 2(Mz+1) 2(M1—1) (A5)

TIM(My+D)2 MM(Mi—1) M M(M,+DZ"

Notice that this result combines neatly wit,”"" to give Eq.(4.14).

2. Evaluation of I‘QZAV

We analyze the continuum limit of tHéQzAv contribution to theB terms, which will be retained as discrete sums over the

k’s. Again for definiteness we display the cdse0 in detail:

M,—1
v K MM 1 T,B,+T,B,+T3B; e Hos (1022)
2 16m? T MMy | S (Mt D(My=1) 5 | (T4 T,+ Ty)®
ek M (Mt M-l KaNp+ KON, |
= e = U+ (102) 1, (A6)
47°Ty MaMz| =1 [1[(M; ky k) (kia+k58)
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where where the second form is obtained by integration by parts. It
is evident from the first form that(x)=f(1/x). Also one
M, M By(M;—1) can eas!ly calculatd (1)=— 7%/6. From the second form
a=-, B= Mo N15|—+Bg one easily sees thd{x)~Inx for x—0, whence from the
2 symmetry,f(x) ~ —Inx for x—co. Exploiting the functionf
and its symmetries, we deduce
_ By(My—1) 212M 1 Tg— a—ap?/2)
No= Mo+ B;, uj;=e P1MiTo=g=2apPi/2p; o, 3 )
————~—|In= f(— (A13)
kl’ké (kla-l- kZIB) CYB apl ﬁ
u,=e p2/2M2T0_e ap§/2p2+’ (A7)
. ) ] K uk1+k§ 2
whereu, is to be used in the cadg,| <0 instead ofu,. 14y 1 P1 +f ajl 1 ol
Clearly the continuum limit entails; ,u,—1, causing th& <, (k o+ kyB)? 2a2,8 ,6’ 202\ B
sums to diverge logarithmically. To make this explicit, we *"2 (A14)
first note the integral representation
), kqtkp
ylatke u? o, ! | pl”( ) * = f,(a)
o0 n — —
> 1—,2:f tdt— 3 Bt (A8) K, (k1a+k2,8)2 2087 Vap; "\ B/ BB
kyky (KiatkyB) Joo (e —uy)(e”—uy) 2
~—21 _| —72p1+f '8)_——2—1 f’(é)
%J‘mtdt; 2a%| " ap; al| a"B \a)’
e (eM—1)(eft—1) (A15)
+ F tdt (A9) Inserting these results into EGA6) produces Eq(4.16).

3. Evaluation of T}V
where the approximate form is valid for-lu;<e<a,B.

_ _ ! For largeM;, the sum ovel can be approximated by an
Doing the integral in the second term leads to

integral overé=1/M, from e<1 to 1—¢, plus sums for 1
<|<eM; andM(1—¢€)<I<M;—1 which contain the di-
gk, vergences. These divergences are only present in the first

u, 2p; N Blna—alnp sum on the rhs of Eq4.42) for <M, and in the last sum

———~—lIn— — for M;—1<M;. The middle sum contains no divergence and
, " 2\2 1 1 g
k1.k; (katkzp)® @Bl ap; pre can be replaced by an integral from 0 to 1 with aioutoff.
1 . 1 To extract these divergent contributions, we can use the large
+—Ine+ f tdt—————— argument expansion af’
afB e (eM—=1)(ef'-1)

(A10)

! 1 ! ! O ! Al6
' (z+ )Nz—ﬁﬂL 3 (A16)

The sums we require can be obtained from this identity by

differentiation with respect ta or 8. To present the results g isolate them. It is thus evident that their coefficients will

it is convenient to define a functiof(x) by be proportional to the moment&f,/k", Sh,/k" for k

=0,1, which are precisely the moments constrained by the

requirement that the gluon remain massless at one loop.
For the end point neal=0, we put z=kM;(M,

f 1+I + i
(X)_——nx im +1)/IM and write

e—0

* tdt
In e+f — =
e (et\ex_ 1)(etlvx_1)

(A11)
| M2
Inx gt |‘/’(Z+1) My(Mp+1) 2Kk M2(Mpt 2 ="
=——XJ dte” wl )2 ——In(1-e™Y (A17)

(A12) so the summand for smdllbecomes
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5 M(2M;—D(2M,+1) ~ hM M2(2M;—1)(2M,+1) h, IM?2
21K IPM (M) M (M,+1) 2k IMZ(M,+1)2 2k M2(M,+1)2
M(2M;—1)(2M, +|) M w2 M2(2M,;—1)(2M,+1)  7?(1—1) IM?2
ZM(M,+1) M (Mp+1) 12 IM2(M,+1)2 360 MI(M,+1)?
AM  2M2 7?2 M? (AL8)
12 MM, 3 IM My,
Summingl up to eM, gives
52”':1 aM_ 2M2 a? MP ] aMa? AMm mP Ao
=1 |2 |M1M2 ?IM]_MZN 6 fMl Mle\nE 1 7) ? ( )
Inserting these results into EG.40 and writing out explicitly the 2 terms for the divergent part gives
3 2 2
ropY~ - “aes | 14k f +he|+(12)— +
sszo kz 5 ) em, S R VIV P
2 77_2
_ 2 I
MlMZ(Ine M1M2+2y)(2+ 3 } (A20)

Only the third sum contributes nelr M. We again use
the large argument expansion #f. But this time one only
gets a logarithmic divergence, because the differenag sf
is of order M —1)? as is the explicit rational term. Putting

Zl:le(M2+|)/M2(Ml_|) and ZZZkIM/Mz(Ml_l),
we have
P (z1+1)— ' (2,+1)
1 1 1 1 1
B\ 2
M3(M—1)?
T KIMM (M, LT OMa= D]
M3(M;—1)2
Thus thel ~M, end point divergence is just
g3 KA 4M2 i (fk f) Mlz—l 1
87 M MiMEL Lk X oMt g My —1

2

1)(In eM+ ). (A22)

Putting everything together we obtain E¢.43) for the con-
tinuum limit of the triangle with internal longitudinal gluons.

APPENDIX B: DIVERGENT PARTS OF INTEGRALS
AND SUMS

The T integral in Eq.(4.14 can be evaluated by expand-
ing the integrand

M, TK2(M,—1)2A’
M2H(M+M;T)?

IT(Ho—H)(M{—1)M2A’
M2H(IT+M,+1)(M+M,T)

IT(Ho—H)(M;—1)M3A
 MZH(M+M,T)?

(B1)

in partial fractions. First note that sincégT+M)H is a
quadratic polynomial, it may be factored as

(M{T+M)H=Ipi(T-T )(T-T_) (B2)
where T_~ — (K2+M;M,p?)/IMp? and T, ~—MM,p?/
(K2+M;M,p?) whenl<M,. Then the partial fraction ex-
pansion reads

R, R, R, R,

I = + + + 5
T-T, T-T_ IT+My+l (M;T+M)
b5 B3

MT M (®9

with the R; independent off. Of course theR; are such that
| falls off at least as 72 for large T, i.e. R;+R,+R3/I
+R5/M1=0. This identity is helpful for determiningrs.
Thus we have

© R3
fo dTI=—RyIn(=T,)—RyIn(=T_)+ I_InM2+I
Ry

Rs
M, "

M,

M,
TR (B4)

The R; are given explicitly by

076001-15



SKULI GUDMUNDSSON AND CHARLES B. THORN PHYSICAL REVIEW D66, 076001 (2002

My(M;—DT, {(Ml—I)KZA’ . singular end point contributions and simplify them consider-
= M2 2T, =T )L(M T+ M2 +IpiA aply. We shal! then separate the divergent contributions and
Prlts—1- 1 display them in detail.
First note that the worst end point divergencetistin &

(B5) nearé=0 or 1/(1—-¢) nearé=1. Thus we can drop all terms
down by a factor of/M; for smalll or by (M,—1)/M; for |
nearM,. Thus forl<M;, we note thalT _(M+MT,)~
—K?/p? andT, /(M+M;T,)~—M,p?K? and obtain

Ry

IpZ(Mo+1+1T,)A
M TL+M

My (M;—DT_ [(M;{=1)K?A’
Ry=— 21(2 - {( D 2 +IpiA’
IMZpI(T,—=T_)[(MT_+M) 2312 2 2 2
R pMiM; K+ M1Mop“—2M,Mp]
IpA(My+1+1T_)A ' IK? (K*+M;M,p?)
- (B6)
M;T_+M 2012 2 2
b MiM; Myp5—M2p3 (B10)
IK?  Mjp5+M,p?
(My+1)M2A’ 12 n e
Ry=—l—p—— (B7)
M2M, )
R M1+ 2M;1M;p7
T T T T A2 o2
A A © 1 I(Mipi+Mopi)
Ry=M3(M;—1) = —IM(M;~1)— (B8)
M M M. M1p2—M.p2
_ My Mypa—Mapy (B11)
~ | Myps+Mypi
IM(M;—1A PIMM,|  IM3A’
Rs= 2 A R VTV
2 R3""_M1 (B].Z)
Mi(Ml—UA'( M ;
- M?2 M T.+M MM
L 1+ Ry~ = ! (B13)
M (B9)
M T_+M|
! Mi MM p5—MM,p?
: Rs~—| 1+ . (B14)
When theM'’s are large, the sum ovércan be replaced by an 5 K2
integral overé=1/M as long as is kept away from the end
points £&=0,1. We can isolate the terms that give rise toCombining thel~0 end point contributions gives
|
o MM ,p? K2+M;M,p?> Ry | Ry, Rs M,
~—Ry4In —R,In +—In—+——+—In—=
fo dTl RllPKZJerMZpZ RsIn IMpi IInM2 MM, MllnM
My [M1p3—Mopi[MiMop?  MMop? L KZ+ M Mpp?
| M,p2+Mop2| KZ TKZEMMpZ " IMp2
| MM:p3—MMpi] M,
—InM—2+ 1+ K2 |nv—l
Nw‘Mwllp%—szir MiMop?  Mips—Mopi (K?+M;Mpp?)?
| K*® KZ+MiMop?  Mip5+Mopi  IM?M,p?ps
IM
_InM1M2_1 for I<M;. (B15)
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For the other end pointyl, —1<M;, the roots of the poly- o R;+Rs| My p?
nomial (M+M;T)H approach T;=—M/M; and T,= fo dTi~| R+ — mV—Rz'nEz
- pzlpf. Which of these roots is approached by depends ! .
on the parameter values, but since the formulas are symmet- R,
ric under their interchange, we can choose to use the first in + MM, for M;—I<M;
place of T, and the second in place @f_ . Since the de-
gsgbr:tl(taorMJerTl:O in this limit, we need to carefully N 2M, [ M,p? |erp2—1
(My—1)[Myp>~Mpi  Mp; "~ |
M-I M1(Mp5—Mp?) (B21)
M+MT, K* In writing the | sum as an integral these end point diver-
Then we obtain for smali-—| gences can be separated by pickigl and summind in
o the ranges £1<eM; andM(1—€)<I<M,—1. For these
M ;M (M p2+ M p?) 2MM ;p? parts of the sum the above approximations can be made and
~ the sum evaluated:
' (M;—DK? (M1=1)(Mpi—M;p?)
(B16) eMy 1 Mi—1 1
—= =y(l+eM)+y~IneM,+
2p2M? = |:M§1—E) M-I P+ eMyt+y~ineM,ty
Ro~— VR (B17)
(M=1)(M;p?—Mp?) . i} I
o M, 18 2 |—=—7[¢/(1+6M)+'y]—fo dtint Py
3 Ml_l
1 [2)—y? 1(= tin%t
ZMME ~E|n2(Ml€)+T+§f dtm
Ry~ — (B19) 0
Ml_l
1
=—|n2 +C.
Mi  MiMo(Mpi+M;p?) 2 M (Mae)+C (822
R (MK (820
The rest of the sum is replaced by an integral ower¢
Combining thel =M, end point contributions gives <l-e
|
M{—-1 2 2 2 2 2
13 fx 1me [~ 2Mp? M1p2_M2pl) Mip ( Mp3—M;pi
— IdT~f d f 1dT+(IneM 4+ + In -3+ M——
My Izl 0 € ¢ 0 ( 1Y) Mlpz—Mpi Mlp§+M2pi Mp% K*
M 1p3—M,p3 MM ,p? M 1 2M,p3
- ) —|In + )+ =In? +C|l—————.
M 1p3+M,p7 r\K2‘|“'\/|1sz2 IerMz(ln Mat) 2|n (eMa)+C M 1p5+Mp3
(B23
Finally, we must extract the divergent contributions that arise from replacing the sums
M;—1 M;—1 , 2
MlB (a AMz(Ml_l) a (01)
— fl=|+ —a——=f'| = B24
2572 vl M* B B (524

in Eq. (4.23 by an integral. First, fot=~M,, a/8~1 and only the first term gives a singular end point contribution,
Mi—1 2

S~ — 2M (D[ (1 +eMy)+ 7]~ =M ,[In eM,+ y]. (B25)
I=M1(1-¢) 3

On the other hand, fdr=0, we have

; MM, | MM, fwdt Y tl_t_e_t—l M B26
M )T o M ez MM, (B26)
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MiM, (MM, IM [72 MM,
( ~ o L (B27)

IM M _1+|v|1|v|2 +'

The integral in the first line is zero because the integrand is a derivative of a function vanishing at the end points. Inserting
these approximations, we obtain

M MM, Mo Mg M 2
12 T
2 S~ 2 |—2+M1{E I—Inm—[w(l—keMl)—ky]?]. (B28)

=1 =1

Putting Eqs(B23), (B25), (B28) together, some simplification occurs and we obtain

Mlz_l 1M +fw|dT fl_ed fldnfl_ed oy MiMom® oMz 2M,p®
M1p5—M,pd Ir‘Mlpz (M Mp3—M,pi Mlpg_sz%) N M ;M ,p? _3+7T_2
M1p3+Mops) " Mp? K*? M,p3+M,p?) " KZ+M;M,p? 6
1 M1p5—M,p}
—|In INneM,+y)+ =In’(eM,)+C . B29
Mle( 1ty 5 (eMq) M,p2+ Mp? (B29)

When we add the contribution with<22, the antisymmetry of some of the coefficients leads to further simplification as well
as a reduction in the degree of divergence of some of the terms:

Mi—1

S(|/Ml)+f:|dT +(12)

=

e e 1-e 2 pips—pspPi Py
~| 4 f |dT+j dES(E)+(152)— ——Ines2—2 7t
L ¢, . AS@rdeao P; P5+P; P Py

2pip®  prP® PiP3—PaPI PiP3 2p;P° PPt

+Ine In + In + In 6+ —
pip>—p'pl PRI PIP3tPIPI P3P Pi2p2—plps

PP 3
(MMlpi—szi pfpi—pz*pi) MiMop? 1 pyp; PiP3— PP

pf n —In
KZ+MM,p® 27 M2 pip3+p;p3

+In—
2

K2 p1 P53+ P3Pl

+2w2M1M2+ (M.t ) 2Mp? Mlpé—szi)l M1p? m?
3M vy Mlpz—Mpi Mlp§+M2pi Mpi 6
2M2p2 Mlpg_szi) M2p2 772]
+(InMy+y) In -3+ —1 . (B30)
2 M,p2—Mp3 M;p3+M,p2)" Mp3 6

As e—0 the first two lines on the rhs approach a firittndependent answer. The third line is explicitly finite. All divergences
are shown in the last two lines. Ad;,—o there is a leading linear divergence as well as a single logarithmic sub-leading
divergence.
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