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Noncommutative gauge theory without Lorentz violation
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The most popular noncommutative field theories are characterized by a matrix parafifetieat violates
Lorentz invariance. We consider the simplest algebra in whictftharameter is promoted to an operator and
Lorentz invariance is preserved. This algebra arises through the contraction of a larger one for which explicit
representations are already known. We formulate a star product and construct the gauge-invariant Lagrangian
for Lorentz-conserving noncommutative QED. Three-photon vertices are absent in the theory, while a four-
photon coupling exists and leads to a distinctive phenomenology.
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[. INTRODUCTION reproduced by replacing ordinary multiplication by a star
product. For example, in the canonical case, one defines a

Over the past few years, the thrust of “beyond the stanmapping between functions of noncommuting coordinates
dard model” particle theory has undergone a fundamentaind functions of the number coordinates* via the Fourier
shift, from exploration of extensions of the standard model intransform
flat, four-dimensional spacetime to those that follow from
modifications of the structure of spacetime itself. One such .
possibility is the existence of extra spatial dimensions with f(x)=
either large or infinite radii of compactification, an idea mo-
tivated by the desire to eliminate the hierarchy between th
gravitational and the weak scale. Aside from the existence o
extra dimensions themselves, the reduction in the fundamen- tg=Fxg 1.3
tal scale in these scenarios opens the possibility that new ’ '

phenomena arising in string theory may also become of eX:e_that the function§(x) andg(x) yield a representation of
perimental relevance. One fascinating possibility that haghe algebra under star multiplication, allows one to define the

time may become noncommutative at distance scales jugiey| result:

below those currently accessible in experimdits13). In

the canonical version of noncommutative spacetime, the po-

sition four-vectorx* is promoted to an operator satisfying (f*g)(x)zf(x)exp( E&Meﬂ”ay)g(x). (1.9
the commutation relation

(277)”f d"k e‘”‘;‘f d'x eF(x). (1.2

he requirement that

1 — —

S vy o A field theory action can now be represented as a functional
[X*,x"]=16"", (1D of fields that depend only on commuting spacetime coordi-

. . . nates
where #*" is a real, constant matrix of ordinagynumbers.

Precisely this situation is realized in string theory when open
strings propagate in the presence of a constant background SZJ d*XL((X),d,B(X))., (1.5
antisymmetric tensor field14]. Keeping in mind that all
scales in nature may not be far above the weak scale, it is n@fhere thex subscript indicates that all multiplications be-
unreasonable to consider the possibility that Bgl) could  tween fields are defined by EffL.4). This representation of
lead to observable consequences. the action is nothing more than the mapping of the operator
Connecting Eq(1.1) to experimental observables requires trace
that one formulate quantum field theories on a noncommuta-
tive spacd 15—22. While ordinary fields are functions of a S=Tr [ (1.6)
commuting, classical position four-vectat, the algebraic
properties of the underlying noncommutative theory can beo the space of ordinary functions.
Formulating gauge theories on noncommutative spaces
introduces additional complications. For example, the sim-

*Email address: carlson@physics.wm.edu plest formulation of noncommutative(l) gauge theoryone
"Email address: carone@physics.wm.edu that does not require working order by order in the parameter
*Email address: zobin@math.wm.edu 0) is only consistent if matter fields have charges O+d;
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adding additional states with other charges makes it imposzonstructing Lorentz-invariant Lagrangians for fields that are
sible to define a covariant derivatiy&6]. While U(N) gauge  functions ofx* alone. In the case of gauge theories, we ac-
theories follow with relatively little effort after promoting complish this last step using the type of nonlinear field re-
ordinary to star multiplicatiof17], SUN) gauge theories definitions introduced in the context of noncommutative
cannot be constructed in such a straightforward manneBSU(N) gauge theorie§21]. As a concrete example, we for-

These problems have been surmounted byaJatal.[21], =~ mulate Lorentz-invariant noncommutative QED and show
who have shown that it is possible to maintain gauge invarifhat 4-photon interactions are present, while vertices with an
ance and noncommutativity simultaneously by employing &dd number of photons do not occur. In the fourth section we

nonlinear field redefinition that is determined order by ordefiNdertake a brief phenomenological investigation of light-
in an expansion in the parametér This approach has al- by-light scattering in this theory, and in the final section we

lowed construction of the full noncommutative standarg>t!Mmarize our conclusions.
model[22,23, without relying on awkward embeddings of
the standard model gauge group. Il. ALGEBRA AND STAR-PRODUCT

The most notable phenomenological feature of canonical ) i L ,
noncommutative field theories is the violation of Lorentz in- I__et us c_on3|der the simplest gengrall_zatmn of Gg1) in
variance following from Eq.(1.1) [2-7]. Both ¢© and  Which 6*” is promoted to an operata“” in the same alge-
€k, are fixed three-vectors that define preferred direction®'@ as the coordinates:
in a given Lorentz frame. Phenomena such as the diurnal
variation of collider cross sections have been noted in studies [)“(u,)‘(v]: i 9~
of noncommutative QEDN?2,3], even though some bounds
[5-7] from low-energy tests of Lorentz invariance seem to L
suggest that effects at colliders are likely to be negligible. [6~",x*]=0,

Such constraints have been shown to be even more signifi-
cant in noncommutative QC[Y], and are likely to persist in
more general canonical models.

One approach to this problem is to ignore it, on the
grounds thatmost of the bounds in question are obtained in One could proceed immediately to discuss the algebra of
theories whose Lagrangians are known only at lowest ordefunctionsf(x, 6), as well their mapping to ordinary functions
in 0. These theories have not been shown to be renormaliz(x, #) and the associated star product. However, it is useful
able, while the most dangerous effects are obtained only .« 15 gisplay an explicit representation of the operators

through loop correctionfs,7]. On the other hand, in simple - ) . .
situat?ons pWhere both all-orders and Iowest—(E)rderand ¢ that makes the Lorentz invariance of #@.1) mani-

Lagrangians are known, the bounds on Lorentz violatior{eSt‘ _We accomplish this _by contracting _another Lorentz-
from loop effects are evestrongerin the full theory[6]. We Invariant algebra for which representations are already
take the position that low-energy tests of Lorentz invarianc&nown' .

[24] are likely to present a generic impediment to formulat- . Snyder proposed an algebra of noncc.)mmlljtatwe' space-
ing a noncommutative standard model that is based on thtéme c_oordlnates leading to a Lorentz-invariant discrete
canonical relation Eq(1.1) and that is also phenomenologi- Spacetimg 25},

cally relevant. One alternative is to push the noncommuta-

tivity into extra dimension§8—10], leaving the four ordinary [X* X"]=ia2M~?,

spacetime dimensions commutative and Lorentz invariant

[8,9]. This has added benefits, for example, in allowing one R R

to formulate a simple noncommutative QED including mat-  [M#*,x*]=i(x*g"*—Xx"g"*s),

ter fields with arbitrary charges, provided these fields are
restricted to an orbifold fixed poiri8]. A more challenging
approach is to formulate noncommutative field theories that

[6~7,6%F]=0. 2.0

[KAA2 K1) = (K1 #Bgva + N vagrb— [ magre — K »Bne)

are free from Lorentz violating effectsb initio. It is this (2.2
approach we wish to explore in our present work.
In this paper we will consider a new class of noncommu-where g#”=diag(+,—,—,—). The last two commutation

tative theories in which the paramet@rin Eq. (1.1) is pro-  relations involving theV#” are those of the generators of the
moted to an operata#”” that isnot constant, but transforms Lorentz group, while the first is nef25,26. [ Together they

as a Lorentz tensor. In the next section, we show that thignply M and X/a can be identified as the generators of
algebra can be interpreted as a contraction of a famougQ(4,1).] Snyder’s representation of this algebra is obtained
Lorentz-invariant algebra due to Snyd@5] for which ex- by considering a 5-dimensional space with coordinates
plicit representations are known. By treatigas an un-  7q, . .. ,7, and metric diag¢,—,—,—,—), on which ordi-
physical parameter, we find the appropriate generalizationsary Lorentz transformations act only on the first four coor-
of the star product and operator trace for functions of béth  dinates. Let us definen,=(7q,71,72,73), 7*=(70,

and #**. We then show how these results may be applied in- 7,,— 7,,— 73), and
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24 7,#_), ?(a,B)=J (dx)(do)e' "B (x,0). (2.9

R In these equations, the measures of integrations are defined
M/‘”zi( “ - 77”—). (23 by (da)=(27) *d*a, (dB)=(2w) °d°B, (dx)=d*x and
(d9)=d®p; the B, and ¢*” are antisymmetric parameters,

Transformations that leave both, and the quadratic form ang é”df)é Con;ff;‘;“?r?] is implicit in the produaisc= a,x*
72— 52— 52— 52— 42 invariant are Lorentz transformations 2"dB0=B,,0%"/2. The measure

of the 7, ; such transformations induce ordinary Lorentz d5B = d By, B,4d Ba;d By;d Byyd By (2.10
transformations on the coordinate$. From Eq.(2.3), it is

not hard to show that the spatial coordinate operaﬁb@o can be shown to be Lorentz invariant8f,, transforms like
not have a continuous spectrum, but rather have eigenvalu@ssecond-rank Lorentz tensor. Thé are a set of ordinary
that are integers times the length scal@he time coordinate commuting coordinates, and ti#" (no haj are a set of new
x%, on the other hand, can be shown to have a continuousommuting parameters in ordinary function space that corre-
spectrum. spond to the9””. While the operators and 6 are related
The contraction of an algebra is a simpler one obtained byhrough commutation relations, the commuting parameters
taking the limit of some parameter. We consider the rescalingind § are completely independent of each otHdihis re-
R R flects the degrees of freedom associated with the 10 linearly
M#“Y= g**[b (2.4  independent generators of 801).]
The mapping from the operator algebra to the space of
and the limit ordinary functions allows one to define a star-product
through the requirement E@L.3). The derivation, as usual,
b—0, a-0, (2.9 pegins with the product

with the ratio ofa? andb held fixed, L o
, fg:J (da)(dB)(d,y)(dA)ef|(ax+BH)efl(7x+A0)
a

F—>1. (2.6)

xF(a,B)g(r.A), (2.1
The result of this contraction is the set of commutation relawhich is then simplified using the Baker-Campbell-
tions given in Eq.(2.1). Lorentz transformations in the op- Hausdorff formula,

erator algebra are generated ldy*”, which has the follow-

ing commutation relation witt9*#: ATBTUAABITAZAABIRAB B AT,

efeB=¢
(2.12

[M#7,0°F]=i(6mFg + 6" ghP— oreg P — "Pghe). As a consequence of E(.1), the expansion in Eq2.12)
(2.7 terminates after the first commutator and, after some manipu-
lation, one obtains the sameproduct as in the canonical

This is sufficient to establish tha&*” transforms as a Lor- case except for the presence of the extra argurdient

entz tensor and that EQR.1) is Lorentz covariant. One may
also define a momentum operator whose commutation rela- - o

tions withM and @ are identical to that of, but this will not (f*g)(x,9)=f(x,0)exp( Eaﬂeway) g(x,0). (2.13
be relevant to the subsequent discussion. Notingaha0 is
part of the limit, we see that the contracted algebra corre

sponds to a continuum limit of Snyder's quantized SPaCC%ntz transformation properties éfare identical to those of

time. -
o . #, as one can show via the mapping defined in E2®) and
With 6" as an additional fundamental operator, elementi2 9 W pping detl !

of the group defined locally by E¢2.1) depend on botkx* We also require a generalization of the operator trace. As
and 6#”. Ordinary c-number functions can again be related a trace is a mapping from an operator algebra to numbers
to these elements through a Fourier transform, though in thighat is linear, positive (Tff=0), and cyclic (Tfg
case over an extended set of variablesf#f(x,0) is a  =Trg%), we propose

member of the operator algebra, we define a relation to or-

This star product is manifestly Lorentz covariant; the Lor-

dinary functionsf(x, 8) b -
Y (x.0) by Trfzf d*xd®oW(9)f(x,6). (2.19
2 _ —i(ax+BO)F
f J (da)(dB)e f(a.B), 28 The weighting functionW/(d) will allow us to work with
_ truncated power series expansions of functiong.imhere-
wheref is the Fourier transform fore, we assume that the weighting function is positive and
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for any large| 6**| falls to zero quickly enough so that all

i
integrals are well defined. Moreover, we assumis even in AL(X,0)—A (X, 0)=UxA (x,0)xU _1+EU*(9,LU -
0, so that (3.6)
J deOW( 6) 94 =0. (2.15  Where
U=(e"),. (3.7

Field theory actions follow from Eq1.6),
It is straightforward to confirm that the Lagrangian

s:f d*xd®oOW(0) L( P, ), . (2.16 . 1 e
£=f d GW(H)[_ZF#V*FM +¢*(|D—m)*¢}
As L($,dd), depends in general on battand 6, the object (3.8

that takes the role of the ordinary Lagrangian will be the, ) _ .
g-integrated quantity, is gauge invariant, provided that

D,=d,—ieA,, (3.9
L(x)zf dSOW(0)L(p,d), . (2.17)

and

Ill. GAUGE THEORY Fu=0,A,—d,A,—ie[A,"A,] (3.10

The star product that we have formulated allows us taSuperficially, Eqs(3.8)—(3.10 are the same as in the case of

reproduce the noncommutativity of the operatotsand##*  canonical noncommutative QE[L6], aside from the fact
while working instead with functions of the classical vari- that our construction of the trace averages over the parameter
ablesx* and ¢*”. Ordinary quantum field theories involve 6. One must keep in mind, however, that the fields in Egs.
fields that are functions of alone, suggesting two possible (3.8—(3.10 are functions of bothx and ¢, and cannot be
ways to proceed. For a theory without gauge invariance, wédentified with the ordinary quantum fieldg(x) andA*(x).

may simply choose our fieldg(x,6) to be functions ofx To proceed, we will expand the fields as a power series in
only the variabled, and demonstrate that the coefficients, which
are functions ok alone, can be expressed solely in terms of

d(X,0)=p(X), (3.1)  ordinary quantum fields. The nonlinear field redefinition is

fixed by the constraints of noncommutativity and gauge in-
and construct an action using the trace described in the prerariance. This approach is largely the same as the one em-
vious section. For example, the Lagrangian §drtheory is  ployed in the construction of M) noncommutative gauge
theories in Refs[21,22. The expansion ird in our case is
1 " 1., M ) valid given the presence of the weighting functig 8) that
L=50upd = 5m "~ Zf d>OW(0)(px )°. renders the integral of higher order terms small. Let us dem-
(3.2 onstrate this approach by constructing the Lagrangian for
thepure gauge sector of our(l) theory.

Here we have used We begin by expanding both the gauge paramatemd
the gauge field &+
f d4Xf*g=f d4ng, (33) Aa(x,0)=a(x)+ Q#VAEL:LB(X;Q')
vno A (2) .
and the normalization condition HOOTTN L (@) (3.1
A (x,0)=A (x)+ 0*"AL) (x)
f dSOW(6)=1, (3.4) ’ ! (2)“ ?
+ 6*v 97 AMW]W(X)vL cee (3.12
to simplify the result. We identify the first term in each expansion as the ordinary,

On the other hand, if the fielgh transforms as some rep- ,_jependent gauge parameter and gauge field, respectively.
resentation of a gauge gro@ then it is no longer possible |, an Abelian gauge theory, two gauge transformations pa-

Fo choose¢ tp be a function ofx only, asé depenr:ience IS rametrized bya(x) and B(x) satisfy the property that
introduced via the noncommutative generalization of the

gauge transformation. Consider g1 gauge theory with a (8a05— 858, (x)=0, (3.13

matter fieldys and gauge field\. Under a gauge transforma-

tion parametrized by\(x, 6), the fields transform as where s is a matter field transforming infinitesimally as
P(X,0)— ¢ (X,0)=Ux (X, 0), (3.5 S th(X) =T a(X) h(X). (3.19
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In the noncommutative theory, we require that the field 1
(X, 0) satisfy f dGQW(e)9#”9”P:1_2<92>(gﬂ77g1/ﬂ_gMpger),

(5a5ﬂ_ 6,(35&)1;0()(,0):0, (315) (325

e . where we have defined the expectation value
where the infinitesimal transformation

Bath(X,6) = A (X, 0)% (X, 6) (316 (%)= @ ow(0) 0,0 (3.2

follows from Eq.(3.5). Equation(3.15 requires that the pa-

- Photon self-interaction terms that are oddéivanish under
rameterA satisfy

this integration, so that the lowest-order nonstandard vertex
1 6,A 5= 1 05A o +[A o *Ag]=0, 3.17 Isgvenby

from which the transformation properties &f") andA ) in L= E<92>[|:2V|:0VV|:3”3|:0PM_ (FO,Fo)2]. (3.27)
Eq. (3.12) may be deduced. It may then be shoj#d] that 12
the following functions of the ordinary gauge parameter an

gauge field satisfy this consistency condition: Notice that the( #?) Y4 is an energy scale that characterizes

the onset of new physics; since one generally likes to keep
this scale a free parameter in phenomenological studies, one

e
Aillv)(x;a)=§aua(x)A,,(x), (3.18 need not specify anything more about the form of the
weighting functionW(#6), at least at the order to which we
o2 are working. It is interesting to note that E®.27) reduces
AZ) (@) == d,a(0A,XdAX). (319 ©
_rme, » 2_p2\2 2
Similarly, the requirement that the noncommutative gauge L=~ (E°~B)"+2(E-B)’] (3.28

field A(x, ) transforms infinitesimally as
_ . when expressed in terms of classical electric and magnetic
OoPe= 0N HI[A AL, (3.20  fields, which differs in form from the famous Euler-

_ _ o _ Heisenberg low-energy effective Lagrangian following at the
which follows from Eq.(3.6), is sufficient to determine the gne-joop level in QEL27]

correct transformation properties AfY) andA®). These are
reproduced by 242
£E7L24

[(E?=B?)?+7(E-B)?]. (3.29

e
AL == SAL(3,A,+FD), (3.20) ©
Equation(3.29 is valid at energies small compared to the
5 electron mass, while our expectation is thaf) ~* will be
e .
A® (x)=—(AA 3. F —a A9 AA+AFOFO) of order a TeV, based on the type of bounds that are typical
prnap A in extensions of the standard model that modify the gauge
(3.22 sector. We therefore turn briefly to the high-energy collider

0 ] o physics of our scenario, where the effects of honcommuta-
whereF ,, represents the ordinary Abelian field strength ten'tivity are more likely to be manifest.

sor

F2VZ5MAV_&VAM- (3.23 IV. PHENOMENOLOGY

o The vertices that follow from our Lorentz-invariant con-
We may now express the noncommutative field strength tenstryction of noncommutative QED provide a rich hunting

sor in terms of the ordinary gauge fiedd'(x). We find ground for the origins of new phenomena at colliders. De-
0 0 0 0 viations in observable scattering cross sections follow from
Fuv=FL,ted0(F Fu—AdFL) modifications to vertices that occur at tree level in the stan-
e2 dard model, as well as from the existence of new vertices.
+5 o o FO RS RS —FOFS FO, Examples of the latter include direct two-photon-two-
fermion couplings, as well as the four-photon interaction dis-
+AK(2F2 %F%V—ZFS (9>\F97M+ng5n':2y cussed in _detail in the previous _section. Here \_/viII focus_on
the scattering procesgsy— vy, which has been discussed in
- 19prwt9xAn) +AKAP¢?,7¢9XF2V]. (3.29 the recent literature as a potential window on physics beyond

the standard mod¢R8,29.
Photon self-interactions may be isolated by substituting this Given the labeling of momenta and Lorentz indices
result into Eq(3.8) and integrating ove#. For any Lorentz- shown in Fig. 1, the interaction in E¢3.27) leads to the
invariant weighting functionV(9)=W(4,,,6""), Feynman rule
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1
T L G A A A A A A A Y i S v v A Rl

—4pipsPphPp,t+ Py pL tps 2R, 3 PP, s e, 2 +{g 1 (P PpS A+ PSP ) Pa- Pat 4P, %P5 P1- P2
=P, P P2 P3— P, ePS P1 Pa— P4 RS P2 Pa— P5EPS*P1- P4l +[(12)(34)—(34)(12)]+[(12)(34)—(13)(42)]
+[(12)(34)—(42)(13)]+[(12)(34)—(14)(23) ] +[(12)(34) —(23)(14) ]} + {gH1r2gH3ha —Ap; - PoP3- Py

+P1-PaP2- P3+ P1- P3Pz P4l +[(12) (34— (13)(42)]+[(12)(34)—(14)(23) ]}). 4.1

Placing the photons on shell, we may compute the differwhere the dominant helicity amplitudes are mostly imaginary
ential scattering cross section in the photon center-of-massnd
frame. The noncommutative amplitude is 90° out of phase

with the leading logarithmic contributions to the standard , S S
model backgroundsee below, so we may write IMF .+ 4+ =—16ma%) —In 2|t 7in eyl (4.9
W W
o~oNct Tgm- 4.2 ot
ImF, _, _=—12ra’>—
For unpolarized beams, we find A T
2
do—NC 197 <02> 2 2.3 %12 2 u u u t
. A —16wa| —In| — |+ —=In|—| |, 4.
Tcos67 128( > a’s®(3+cog %)%, (4.3 o ey e s (4.7

where /s and®* are the center-of-mass energy and scatterwith
ing angle, respectively. It then follows that the noncommu-
tative contribution to the total cross section (O®* ImF,__.(stu)=ImF,._,_(s,ut). (4.9

<180°) is given b . ,
)isg y Figures 2 and 3 show the comparison between our non-

1337 ( ( 02))2 commutative result and the expectation in the standard
2.3
o

R (4.4  model. Since the scale of new physikgc is characterized

by a root-mean-square average of the component$ ‘gfwe

To compare our result to the expectation in the standaréi efine
model, we use the amplitudes given in R&B8] for light-by- ( 12 )1/4
NC™ )

ONC™ 80

light scattering in the high-energy limst |t|, |u] >m3,. So
that our discussion is self-contained, we reproduce the rel-
evant results. The differential cross section is given by

(6°)

which also is a natural choice given E.25. Note that the
effective expansion parameter in the scattering amplitude is

do [(MF, . ,)?
= m
dcos®* | 128ws B 0.1 .

4.9

2 ’ /0.75TeV .~ 1.0 TeV
+(mF, )+ (ImF )7, !

’ ‘
’ ot
’ X e
. o
. ’ E
’ T 2
’ g
’ i

06 08 1 12 14
CoM Energy (TeV)

0.001 !

FIG. 2. Total crosssectionsyc and ogy for 30°<®* <150°.
Noncommutative results are labeled by the value\Qt, defined
FIG. 1. Four-photon vertex. in the text.
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4 V. CONCLUSIONS

3.5 W— vy s'2-075 TeV | We have formulated a new class of noncommutative field
' theories in which the coordinate commutation relations are

3 A =1TeV -
\ NC © Lorentz covariant:

25} E
[XH,X"]=16m". (5.2)

(do/dcos®")/c
N

-
o

Here the paramete#*” of canonical noncommutative theo-

ries has been promoted to an opera?ﬁdl” that transforms
like a Lorentz tensor and all other relevant commutators are
N T vanishing. We showed how Eq5.1) may be realized

08 06 04 02 0 02 04 06 08 through the contraction of a larger Lorentz-invariant algebra
for which explicit representations are already known.

Functions in the algebra of E¢.1) depend on botk and
—0.75 TeV andAc=1.0 TeV, normalized to o:(30°<©* 0. We may map these to functions of commuting variables

<150°). The dashed line indicates the standard model backgroun'am\”ddedh the rule f((j)r mulltlfpllcajtl%n IS mﬁdlfled. We ﬁre-
and the solid line indicates the result when both the standard mod(§eme the star product of functiofigx,§) that mimics the

and Lorentz-invariant NCQED interactions are present. multiplication of operator function§(x, 8). By necessity, the
commuting functions may depend not only on the familiar
s%(6%)/12=s?/A}c, and each curve in Fig. 2 falls within a commuting variables”, but also on a new se#”, that we
range where this ratio is less than 1. The reader may easilyeat as unphysical parameters; the operator trace may be
estimate the size of higher-order corrections at any point irexpressed as an integral over batand 6. With a star prod-
Fig. 2 by computings?/ A§c. While the total cross section uct and trace at hand, we showed how to formulate field
rises ass®, which one would expect generically given the theories in terms of functions of* alone, and how to main-
presence of new, effective contact interactions, the angulaain gauge invariance through nonlinear field redefinitions.
distribution is less forward and backward peaked in compari- We applied our formalism in constructing a Lorentz-
son to the standard model result. From the effective fieldnvariant version of noncommutative QED. New vertices are
theory point of view, any new physics can be parametrizegresent in this theory that are not found in ordinary QED,
by  gauge-invariant interactions of the  form including two-fermion-two-photon and four-photon interac-
ciF ., F"7F WFP“+CZ(FWF"“”)2, for some coefficiente;  tions, to name a few. However, unlike canonical noncommu-
andc,. (Other possible interactions involving derivatives aretative QED, no three-photon vertex is present. As an example
irrelevant for a process in which all the photons are on ghell.of what might be observed experimentally if Lorentz-
While the scaling of the cross section with energy followsinvariant noncommutative QED describes nature, we consid-
simply from dimensional analysis, the precise form of theered photon-photon elastic scattering at high energies, and
dependence on scattering angle depends on the relative valbtained contributions that are significant with respect to the
ues of these coefficients. Note that our plots are evaluated fatandard model background. The new noncommutative am-
30°<@®* <150°, the same angular range adopted in Refplitude is present at tree level and at lower ordeefrthan
[28], which eliminates events close to the beam directionthe one-loop standard model result. The scattering cross sec-
For this choice, there are points in Fig. 2 where the noncomtion was shown to differ in both its energy dependence and
mutative cross section substantially exceeds the standaethgular distribution. At a photon-photon collider wits
model result, higher-order correctionsérare under control, =500 GeV and an annual integrated luminosity of
and our initial kinematical assumptions are satisfied. In a00 fb !, one expects thousands of standard model events,
more complete phenomenological study, one would take intgvhile for Ayc=0.75 TeV the noncommutative effects can
account the energy distribution of the initial photons, whichyield O(100%) corrections. Our results suggest that there is
are not monochromatic when produced via laser backscatteg clear opportunity at colliders to see the effects of Lorentz-
ing at ane’e” linear collider such as the CERN Linear conserving noncommutative QED if the noncommutativity
Collider CLIC or the Next Linear CollidefNLC). Moreover,  scale is on the order of a TeV.
one can extract additional information from the polarized
cross section since the polarization of the incident photpn ACKNOWLEDGMENTS
beams can be controlled to a large extentby the polarization
of the lepton beams. We hope it is clear from the present C.E.C. and C.D.C. thank the National Science Foundation
example that our scenario may lead to potentially distinctivor support under Grant No. PHY-9900657. In addition,
collider signals, and defer a complete investigation of thes€.D.C. thanks the Jeffress Memorial Trust for support under
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