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Noncommutative gauge theory without Lorentz violation
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The most popular noncommutative field theories are characterized by a matrix parameterumn that violates
Lorentz invariance. We consider the simplest algebra in which theu parameter is promoted to an operator and
Lorentz invariance is preserved. This algebra arises through the contraction of a larger one for which explicit
representations are already known. We formulate a star product and construct the gauge-invariant Lagrangian
for Lorentz-conserving noncommutative QED. Three-photon vertices are absent in the theory, while a four-
photon coupling exists and leads to a distinctive phenomenology.
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I. INTRODUCTION

Over the past few years, the thrust of ‘‘beyond the st
dard model’’ particle theory has undergone a fundame
shift, from exploration of extensions of the standard mode
flat, four-dimensional spacetime to those that follow fro
modifications of the structure of spacetime itself. One su
possibility is the existence of extra spatial dimensions w
either large or infinite radii of compactification, an idea m
tivated by the desire to eliminate the hierarchy between
gravitational and the weak scale. Aside from the existenc
extra dimensions themselves, the reduction in the fundam
tal scale in these scenarios opens the possibility that
phenomena arising in string theory may also become of
perimental relevance. One fascinating possibility that
met considerable interest in the recent literature is that sp
time may become noncommutative at distance scales
below those currently accessible in experiments@1–13#. In
the canonical version of noncommutative spacetime, the
sition four-vectorxm is promoted to an operator satisfyin
the commutation relation

@ x̂m,x̂n#5 iumn, ~1.1!

whereumn is a real, constant matrix of ordinaryc numbers.
Precisely this situation is realized in string theory when op
strings propagate in the presence of a constant backgro
antisymmetric tensor field@14#. Keeping in mind that all
scales in nature may not be far above the weak scale, it is
unreasonable to consider the possibility that Eq.~1.1! could
lead to observable consequences.

Connecting Eq.~1.1! to experimental observables requir
that one formulate quantum field theories on a noncomm
tive space@15–22#. While ordinary fields are functions of
commuting, classical position four-vectorxm, the algebraic
properties of the underlying noncommutative theory can
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reproduced by replacing ordinary multiplication by a s
product. For example, in the canonical case, one define
mapping between functions of noncommuting coordinatesx̂m

and functions of thec number coordinatesxm via the Fourier
transform

f̂ ~ x̂!5
1

~2p!nE dnk e2 ikx̂E dnx eikxf ~x!. ~1.2!

The requirement that

f̂ ĝ5 f !ĝ, ~1.3!

i.e. that the functionsf (x) andg(x) yield a representation o
the algebra under star multiplication, allows one to define
star product. In the canonical case, one obtains the Mo
Weyl result:

~ f !g!~x!5 f ~x!expS i

2
]m

←
umn]n

→ D g~x!. ~1.4!

A field theory action can now be represented as a functio
of fields that depend only on commuting spacetime coo
nates

S5E d4xL„f~x!,]mf~x!…! , ~1.5!

where the! subscript indicates that all multiplications be
tween fields are defined by Eq.~1.4!. This representation o
the action is nothing more than the mapping of the opera
trace

S5Tr L̂ ~1.6!

to the space of ordinary functions.
Formulating gauge theories on noncommutative spa

introduces additional complications. For example, the s
plest formulation of noncommutative U~1! gauge theory~one
that does not require working order by order in the parame
u) is only consistent if matter fields have charges 0 or61;
©2002 The American Physical Society01-1
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adding additional states with other charges makes it imp
sible to define a covariant derivative@16#. While U~N! gauge
theories follow with relatively little effort after promoting
ordinary to star multiplication@17#, SU~N! gauge theories
cannot be constructed in such a straightforward man
These problems have been surmounted by Jurcˇo et al. @21#,
who have shown that it is possible to maintain gauge inv
ance and noncommutativity simultaneously by employin
nonlinear field redefinition that is determined order by ord
in an expansion in the parameteru. This approach has al
lowed construction of the full noncommutative standa
model @22,23#, without relying on awkward embeddings o
the standard model gauge group.

The most notable phenomenological feature of canon
noncommutative field theories is the violation of Lorentz
variance following from Eq.~1.1! @2–7#. Both u i0 and
e i jku jk are fixed three-vectors that define preferred directi
in a given Lorentz frame. Phenomena such as the diu
variation of collider cross sections have been noted in stu
of noncommutative QED@2,3#, even though some bound
@5–7# from low-energy tests of Lorentz invariance seem
suggest that effects at colliders are likely to be negligib
Such constraints have been shown to be even more sig
cant in noncommutative QCD@7#, and are likely to persist in
more general canonical models.

One approach to this problem is to ignore it, on t
grounds that~most of! the bounds in question are obtained
theories whose Lagrangians are known only at lowest o
in u. These theories have not been shown to be renorm
able, while the most dangerous effects are obtained o
through loop corrections@6,7#. On the other hand, in simpl
situations where both all-orders and lowest-ord
Lagrangians are known, the bounds on Lorentz violat
from loop effects are evenstrongerin the full theory@6#. We
take the position that low-energy tests of Lorentz invarian
@24# are likely to present a generic impediment to formul
ing a noncommutative standard model that is based on
canonical relation Eq.~1.1! and that is also phenomenolog
cally relevant. One alternative is to push the noncommu
tivity into extra dimensions@8–10#, leaving the four ordinary
spacetime dimensions commutative and Lorentz invar
@8,9#. This has added benefits, for example, in allowing o
to formulate a simple noncommutative QED including m
ter fields with arbitrary charges, provided these fields
restricted to an orbifold fixed point@8#. A more challenging
approach is to formulate noncommutative field theories t
are free from Lorentz violating effects,ab initio. It is this
approach we wish to explore in our present work.

In this paper we will consider a new class of noncomm
tative theories in which the parameteru in Eq. ~1.1! is pro-
moted to an operatorûmn that isnot constant, but transform
as a Lorentz tensor. In the next section, we show that
algebra can be interpreted as a contraction of a fam
Lorentz-invariant algebra due to Snyder@25# for which ex-
plicit representations are known. By treatingû as an un-
physical parameter, we find the appropriate generalizat
of the star product and operator trace for functions of bothxm

andumn. We then show how these results may be applied
07500
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constructing Lorentz-invariant Lagrangians for fields that
functions ofxm alone. In the case of gauge theories, we
complish this last step using the type of nonlinear field
definitions introduced in the context of noncommutati
SU~N! gauge theories@21#. As a concrete example, we for
mulate Lorentz-invariant noncommutative QED and sh
that 4-photon interactions are present, while vertices with
odd number of photons do not occur. In the fourth section
undertake a brief phenomenological investigation of lig
by-light scattering in this theory, and in the final section w
summarize our conclusions.

II. ALGEBRA AND STAR-PRODUCT

Let us consider the simplest generalization of Eq.~1.1! in
which umn is promoted to an operatorûmn in the same alge-
bra as the coordinates:

@ x̂m,x̂n#5 i ûmn,

@ ûmn,x̂l#50,

@ ûmn,ûab#50. ~2.1!

One could proceed immediately to discuss the algebra
functionsf̂ ( x̂,û), as well their mapping to ordinary function
f (x,u) and the associated star product. However, it is use
first to display an explicit representation of the operatorsx̂

and û that makes the Lorentz invariance of Eq.~2.1! mani-
fest. We accomplish this by contracting another Loren
invariant algebra for which representations are alrea
known.

Snyder proposed an algebra of noncommutative spa
time coordinates leading to a Lorentz-invariant discr
spacetime@25#,

@ x̂m,x̂n#5 ia2M̂mn,

@M̂mn,x̂l#5 i ~ x̂mgnl2 x̂ngmls!,

@M̂mn,M̂ab#5 i ~M̂mbgna1M̂ nagmb2M̂magnb2M̂ nbgma!,

~2.2!

where gmn5diag(1,2,2,2). The last two commutation
relations involving theM̂mn are those of the generators of th
Lorentz group, while the first is new@25,26#. @Together they
imply M̂ and x̂/a can be identified as the generators
SO~4,1!.# Snyder’s representation of this algebra is obtain
by considering a 5-dimensional space with coordina
h0 , . . . ,h4 and metric diag(1,2,2,2,2), on which ordi-
nary Lorentz transformations act only on the first four co
dinates. Let us definehm[(h0 ,h1 ,h2 ,h3), hm[(h0 ,
2h1 ,2h2 ,2h3), and
1-2
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x̂m5 iaS h4

]

]hm
1hm

]

]h4
D ,

M̂mn5 i S hm
]

]hn
2hn

]

]hm
D . ~2.3!

Transformations that leave bothh4 and the quadratic form
h0

22h1
22h2

22h3
22h4

2 invariant are Lorentz transformation
of the hm ; such transformations induce ordinary Loren
transformations on the coordinatesx̂m. From Eq.~2.3!, it is
not hard to show that the spatial coordinate operatorsx̂i do
not have a continuous spectrum, but rather have eigenva
that are integers times the length scalea. The time coordinate
x0, on the other hand, can be shown to have a continu
spectrum.

The contraction of an algebra is a simpler one obtained
taking the limit of some parameter. We consider the resca

M̂mn5 ûmn/b ~2.4!

and the limit

b→0, a→0, ~2.5!

with the ratio ofa2 andb held fixed,

a2

b
→1. ~2.6!

The result of this contraction is the set of commutation re
tions given in Eq.~2.1!. Lorentz transformations in the op
erator algebra are generated byM̂mn, which has the follow-
ing commutation relation withûab:

@M̂mn,ûab#5 i ~ ûmbgna1 ûnagmb2 ûmagnb2 ûnbgma!.
~2.7!

This is sufficient to establish thatûmn transforms as a Lor-
entz tensor and that Eq.~2.1! is Lorentz covariant. One ma
also define a momentum operator whose commutation r
tions withM̂ andû are identical to that ofx̂, but this will not
be relevant to the subsequent discussion. Noting thata→0 is
part of the limit, we see that the contracted algebra co
sponds to a continuum limit of Snyder’s quantized spa
time.

With ûmn as an additional fundamental operator, eleme
of the group defined locally by Eq.~2.1! depend on bothx̂m

and ûmn. Ordinaryc-number functions can again be relat
to these elements through a Fourier transform, though in
case over an extended set of variables. Iff̂ 5 f̂ ( x̂,û) is a
member of the operator algebra, we define a relation to
dinary functionsf (x,u) by

f̂ 5E ~da!~dB!e2 i (a x̂1Bû) f̃ ~a,B!, ~2.8!

where f̃ is the Fourier transform
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f̃ ~a,B!5E ~dx!~du!ei (ax1Bu) f ~x,u!. ~2.9!

In these equations, the measures of integrations are de
by (da)[(2p)24d4a, (dB)[(2p)26d6B, (dx)[d4x and
(du)[d6u; the Bmn andumn are antisymmetric parameter
and index contraction is implicit in the productsax5amxm

andBu[Bmnumn/2. The measure

d6B5dB12dB23dB31dB01dB02dB03 ~2.10!

can be shown to be Lorentz invariant ifBmn transforms like
a second-rank Lorentz tensor. Thexm are a set of ordinary
commuting coordinates, and theumn ~no hat! are a set of new
commuting parameters in ordinary function space that co
spond to theûmn. While the operatorsx̂ and û are related
through commutation relations, the commuting parametex
and u are completely independent of each other.@This re-
flects the degrees of freedom associated with the 10 line
independent generators of SO~4,1!.#

The mapping from the operator algebra to the space
ordinary functions allows one to define a star-produ
through the requirement Eq.~1.3!. The derivation, as usual
begins with the product

f̂ ĝ5E ~da!~dB!~dg!~dD!e2 i (a x̂1Bû)e2 i (g x̂1Dû)

3 f̃ ~a,B!g̃~g,D!, ~2.11!

which is then simplified using the Baker-Campbe
Hausdorff formula,

eAeB5eA1B11/2†A,B] 11/12[A,[A,B] ‡11/12†B,[B,A] ‡1•••.
~2.12!

As a consequence of Eq.~2.1!, the expansion in Eq.~2.12!
terminates after the first commutator and, after some man
lation, one obtains the same!-product as in the canonica
case except for the presence of the extra argumentu:

~ f !g!~x,u!5 f ~x,u!expS i

2
]m

←
umn]n

→ D g~x,u!. ~2.13!

This star product is manifestly Lorentz covariant; the Lo
entz transformation properties ofu are identical to those o
û, as one can show via the mapping defined in Eqs.~2.8! and
~2.9!.

We also require a generalization of the operator trace.
a trace is a mapping from an operator algebra to numb
that is linear, positive (Trf̂ f̂ †>0), and cyclic (Trf̂ ĝ

5Trĝ f̂ ), we propose

Tr f̂ 5E d4xd6uW~u! f ~x,u!. ~2.14!

The weighting functionW(u) will allow us to work with
truncated power series expansions of functions inu. There-
fore, we assume that the weighting function is positive a
1-3
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for any largeuumnu falls to zero quickly enough so that a
integrals are well defined. Moreover, we assumeW is even in
u, so that

E d6uW~u!umn50. ~2.15!

Field theory actions follow from Eq.~1.6!,

S5E d4xd6uW~u!L~f,]f!! . ~2.16!

As L(f,]f)! depends in general on bothx andu, the object
that takes the role of the ordinary Lagrangian will be t
u-integrated quantity,

L~x!5E d6uW~u!L~f,]f!! . ~2.17!

III. GAUGE THEORY

The star product that we have formulated allows us
reproduce the noncommutativity of the operatorsx̂m andûmn

while working instead with functions of the classical va
ablesxm and umn. Ordinary quantum field theories involv
fields that are functions ofx alone, suggesting two possib
ways to proceed. For a theory without gauge invariance,
may simply choose our fieldsf(x,u) to be functions ofx
only

f~x,u![f~x!, ~3.1!

and construct an action using the trace described in the
vious section. For example, the Lagrangian forf4 theory is

L5
1

2
]mf]mf2

1

2
m2f22

l

4E d6uW~u!~f!f!2.

~3.2!

Here we have used

E d4x f!g5E d4x f g, ~3.3!

and the normalization condition

E d6uW~u!51, ~3.4!

to simplify the result.
On the other hand, if the fieldf transforms as some rep

resentation of a gauge groupG, then it is no longer possible
to choosef to be a function ofx only, asu dependence is
introduced via the noncommutative generalization of
gauge transformation. Consider a U~1! gauge theory with a
matter fieldc and gauge fieldA. Under a gauge transforma
tion parametrized byL(x,u), the fields transform as

c~x,u!→c8~x,u!5U!c~x,u!, ~3.5!
07500
o
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Am~x,u!→Am8 ~x,u!5U!Am~x,u!!U211
i

e
U!]mU21,

~3.6!

where

U5~eiL!! . ~3.7!

It is straightforward to confirm that the Lagrangian

L5E d6uW~u!F2
1

4
Fmn!Fmn1c̄!~ iD” 2m!!c G

~3.8!

is gauge invariant, provided that

Dm5]m2 ieAm , ~3.9!

and

Fmn5]mAn2]nAm2 ie@Am ,
!An#. ~3.10!

Superficially, Eqs.~3.8!–~3.10! are the same as in the case
canonical noncommutative QED@16#, aside from the fact
that our construction of the trace averages over the param
u. One must keep in mind, however, that the fields in E
~3.8!–~3.10! are functions of bothx and u, and cannot be
identified with the ordinary quantum fieldsc(x) andAm(x).

To proceed, we will expand the fields as a power serie
the variableu, and demonstrate that the coefficients, whi
are functions ofx alone, can be expressed solely in terms
ordinary quantum fields. The nonlinear field redefinition
fixed by the constraints of noncommutativity and gauge
variance. This approach is largely the same as the one
ployed in the construction of SU~N! noncommutative gauge
theories in Refs.@21,22#. The expansion inu in our case is
valid given the presence of the weighting functionW(u) that
renders the integral of higher order terms small. Let us de
onstrate this approach by constructing the Lagrangian
thepure gauge sector of our U~1! theory.

We begin by expanding both the gauge parameterL and
the gauge field sAm

La~x,u!5a~x!1umnLmn
(1)~x;a!

1umnuhsLmnhs
(2) ~x;a!1•••, ~3.11!

Ar~x,u!5Ar~x!1umnAmnr
(1) ~x!

1umnuhsAmnhsr
(2) ~x!1•••. ~3.12!

We identify the first term in each expansion as the ordina
x-dependent gauge parameter and gauge field, respecti
In an Abelian gauge theory, two gauge transformations
rametrized bya(x) andb(x) satisfy the property that

~dadb2dbda!c~x!50, ~3.13!

wherec is a matter field transforming infinitesimally as

dac~x!5 ia~x!c~x!. ~3.14!
1-4
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In the noncommutative theory, we require that the fie
c(x,u) satisfy

~dadb2dbda!c~x,u!50, ~3.15!

where the infinitesimal transformation

dac~x,u!5 iLa~x,u!!c~x,u! ~3.16!

follows from Eq.~3.5!. Equation~3.15! requires that the pa
rameterL satisfy

idaLb2 idbLa1@La ,
!Lb#50, ~3.17!

from which the transformation properties ofL (1) andL (2) in
Eq. ~3.11! may be deduced. It may then be shown@21# that
the following functions of the ordinary gauge parameter a
gauge field satisfy this consistency condition:

Lmn
(1)~x;a!5

e

2
]ma~x!An~x!, ~3.18!

Lmnhs
(2) ~x;a!52

e2

2
]ma~x!Ah~x!]sAn~x!. ~3.19!

Similarly, the requirement that the noncommutative gau
field A(x,u) transforms infinitesimally as

daAs5]sLa1 i @La ,
!As#, ~3.20!

which follows from Eq.~3.6!, is sufficient to determine the
correct transformation properties ofA(1) andA(2). These are
reproduced by

Amnr
(1) ~x!52

e

2
Am~]nAr1Fnr

0 !, ~3.21!

Amnhsr
(2) ~x!5

e2

2
~AmAh]sFnr

0 2]nAr]hAmAs1AmFnh
0 Fsr

0 !,

~3.22!

whereFmn
0 represents the ordinary Abelian field strength te

sor

Fmn
0 5]mAn2]nAm . ~3.23!

We may now express the noncommutative field strength
sor in terms of the ordinary gauge fieldAm(x). We find

Fmn5Fmn
0 1eukl~Fmk

0 Fnl
0 2Ak]lFmn

0 !

1
e2

2
uklurh@Fkn

0 Flr
0 Fhm

0 2Fkm
0 Flr

0 Fhn
0

1Ak~2Fmr
0 ]lFhn

0 22Fnr
0 ]lFhm

0 1Flr
0 ]hFmn

0

2]rFmn
0 ]lAh!1AkAr]h]lFmn

0 #. ~3.24!

Photon self-interactions may be isolated by substituting
result into Eq.~3.8! and integrating overu. For any Lorentz-
invariant weighting functionW(u)[W(umnumn),
07500
d

e

-

n-

is

E d6uW~u!umnuhr5
1

12
^u2&~gmhgnr2gmrghn!,

~3.25!

where we have defined the expectation value

^u2&[E d6uW~u!umnumn. ~3.26!

Photon self-interaction terms that are odd inu vanish under
this integration, so that the lowest-order nonstandard ve
is given by

L5
pa

12
^u2&@Fmn

0 F0nhFhr
0 F0rm2~Fmn

0 F0mn!2#. ~3.27!

Notice that thê u2&21/4 is an energy scale that characteriz
the onset of new physics; since one generally likes to k
this scale a free parameter in phenomenological studies,
need not specify anything more about the form of t
weighting functionW(u), at least at the order to which w
are working. It is interesting to note that Eq.~3.27! reduces
to

L5
pa

6
^u2&@2~E22B2!212~E•B!2# ~3.28!

when expressed in terms of classical electric and magn
fields, which differs in form from the famous Eule
Heisenberg low-energy effective Lagrangian following at t
one-loop level in QED@27#

LE2L5
2a2

45me
4 @~E22B2!217~E•B!2#. ~3.29!

Equation~3.29! is valid at energies small compared to th
electron mass, while our expectation is that^u2&21/4 will be
of order a TeV, based on the type of bounds that are typ
in extensions of the standard model that modify the ga
sector. We therefore turn briefly to the high-energy collid
physics of our scenario, where the effects of noncommu
tivity are more likely to be manifest.

IV. PHENOMENOLOGY

The vertices that follow from our Lorentz-invariant con
struction of noncommutative QED provide a rich huntin
ground for the origins of new phenomena at colliders. D
viations in observable scattering cross sections follow fr
modifications to vertices that occur at tree level in the st
dard model, as well as from the existence of new vertic
Examples of the latter include direct two-photon-tw
fermion couplings, as well as the four-photon interaction d
cussed in detail in the previous section. Here will focus
the scattering processgg→gg, which has been discussed
the recent literature as a potential window on physics bey
the standard model@28,29#.

Given the labeling of momenta and Lorentz indic
shown in Fig. 1, the interaction in Eq.~3.27! leads to the
Feynman rule
1-5
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V4g5
1

6
ie2^u2&„24p1

m2p2
m1p3

m4p4
m31p1

m2p2
m3p3

m4p4
m11p1

m2p2
m4p3

m1p4
m324p1

m3p2
m4p3

m1p4
m21p1

m3p2
m1p3

m4p4
m21p1

m3p2
m4p3

m2p4
m1

24p1
m4p2

m3p3
m2p4

m11p1
m4p2

m1p3
m2p4

m31p1
m4p2

m3p3
m1p4

m21$gm1m2@~p1
m3p2

m41p2
m3p1

m4!p3•p414p4
m3p3

m4p1•p2

2p4
m3p1

m4p2•p32p4
m3p2

m4p1•p32p1
m3p3

m4p2•p42p2
m3p3

m4p1•p4#1@~12!~34!→~34!~12!#1@~12!~34!→~13!~42!#

1@~12!~34!→~42!~13!#1@~12!~34!→~14!~23!#1@~12!~34!→~23!~14!#%1$gm1m2gm3m4@24p1•p2p3•p4

1p1•p4p2•p31p1•p3p2•p4#1@~12!~34!→~13!~42!#1@~12!~34!→~14!~23!#%…. ~4.1!
fe
a
s
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te
u

a
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on-
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e is
Placing the photons on shell, we may compute the dif
ential scattering cross section in the photon center-of-m
frame. The noncommutative amplitude is 90° out of pha
with the leading logarithmic contributions to the standa
model background~see below!, so we may write

s'sNC1sSM. ~4.2!

For unpolarized beams, we find

dsNC

d cosQ*
5

19p

128 S ^u2&
12 D 2

a2s3~31cos2 Q* !2, ~4.3!

whereAs andQ* are the center-of-mass energy and scat
ing angle, respectively. It then follows that the noncomm
tative contribution to the total cross section (0°,Q*
,180°) is given by

sNC5
133p

80
a2s3S ^u2&

12 D 2

. ~4.4!

To compare our result to the expectation in the stand
model, we use the amplitudes given in Ref.@28# for light-by-
light scattering in the high-energy limits, utu, uuu @mW

2 . So
that our discussion is self-contained, we reproduce the
evant results. The differential cross section is given by

S ds

d cosQ*
D

SM

5
1

128ps
@~ ImF1111!2

1~ ImF1212!21~ ImF1221!2#,

~4.5!

FIG. 1. Four-photon vertex.
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where the dominant helicity amplitudes are mostly imagin
and

ImF11115216pa2F s

u
lnU u

mW
2 U1

s

t
lnU t

mW
2 UG , ~4.6!

ImF12125212pa2
s2t

u

216pa2Fu

s
lnU u

mW
2 U1

u2

st
lnU t

mW
2 UG , ~4.7!

with

Im F1221~s,t,u!5Im F1212~s,u,t !. ~4.8!

Figures 2 and 3 show the comparison between our n
commutative result and the expectation in the stand
model. Since the scale of new physicsLNC is characterized
by a root-mean-square average of the components ofumn, we
define

LNC5S 12

^u2&
D 1/4

, ~4.9!

which also is a natural choice given Eq.~3.25!. Note that the
effective expansion parameter in the scattering amplitud

FIG. 2. Total crosssectionssNC and sSM for 30°,Q* ,150°.
Noncommutative results are labeled by the value ofLNC , defined
in the text.
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NONCOMMUTATIVE GAUGE THEORY WITHOUT LORENTZ . . . PHYSICAL REVIEW D 66, 075001 ~2002!
s2^u2&/12[s2/LNC
4 , and each curve in Fig. 2 falls within

range where this ratio is less than 1. The reader may ea
estimate the size of higher-order corrections at any poin
Fig. 2 by computings2/LNC

4 . While the total cross section
rises ass3, which one would expect generically given th
presence of new, effective contact interactions, the ang
distribution is less forward and backward peaked in comp
son to the standard model result. From the effective fi
theory point of view, any new physics can be parametriz
by gauge-invariant interactions of the for
c1FmnFnhFhrFrm1c2(FmnFmn)2, for some coefficientsc1
andc2 . ~Other possible interactions involving derivatives a
irrelevant for a process in which all the photons are on she!
While the scaling of the cross section with energy follo
simply from dimensional analysis, the precise form of t
dependence on scattering angle depends on the relative
ues of these coefficients. Note that our plots are evaluated
30°,Q* ,150°, the same angular range adopted in R
@28#, which eliminates events close to the beam directi
For this choice, there are points in Fig. 2 where the nonco
mutative cross section substantially exceeds the stan
model result, higher-order corrections inu are under control,
and our initial kinematical assumptions are satisfied. In
more complete phenomenological study, one would take
account the energy distribution of the initial photons, whi
are not monochromatic when produced via laser backsca
ing at an e1e2 linear collider such as the CERN Linea
Collider CLIC or the Next Linear Collider~NLC!. Moreover,
one can extract additional information from the polariz
cross section since the polarization of the incident pho
beams can be controlled to a large extentby the polariza
of the lepton beams. We hope it is clear from the pres
example that our scenario may lead to potentially distinct
collider signals, and defer a complete investigation of th
phenomenological issues to future work.

FIG. 3. Differential cross sections for As
50.75 TeV andLNC51.0 TeV, normalized to s(30°,Q*
,150°). The dashed line indicates the standard model backgro
and the solid line indicates the result when both the standard m
and Lorentz-invariant NCQED interactions are present.
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V. CONCLUSIONS

We have formulated a new class of noncommutative fi
theories in which the coordinate commutation relations
Lorentz covariant:

@ x̂m,x̂n#5 i ûmn. ~5.1!

Here the parameterumn of canonical noncommutative theo
ries has been promoted to an operatorûmn that transforms
like a Lorentz tensor and all other relevant commutators
vanishing. We showed how Eq.~5.1! may be realized
through the contraction of a larger Lorentz-invariant alge
for which explicit representations are already known.

Functions in the algebra of Eq.~5.1! depend on bothx̂ and
û. We may map these to functions of commuting variab
provided the rule for multiplication is modified. We pre
sented the star product of functionsf (x,u) that mimics the
multiplication of operator functionsf̂ ( x̂,û). By necessity, the
commuting functions may depend not only on the famil
commuting variablesxm, but also on a new setumn, that we
treat as unphysical parameters; the operator trace ma
expressed as an integral over bothx andu. With a star prod-
uct and trace at hand, we showed how to formulate fi
theories in terms of functions ofxm alone, and how to main-
tain gauge invariance through nonlinear field redefinition

We applied our formalism in constructing a Lorent
invariant version of noncommutative QED. New vertices a
present in this theory that are not found in ordinary QE
including two-fermion-two-photon and four-photon intera
tions, to name a few. However, unlike canonical noncomm
tative QED, no three-photon vertex is present. As an exam
of what might be observed experimentally if Lorent
invariant noncommutative QED describes nature, we con
ered photon-photon elastic scattering at high energies,
obtained contributions that are significant with respect to
standard model background. The new noncommutative
plitude is present at tree level and at lower order ine2 than
the one-loop standard model result. The scattering cross
tion was shown to differ in both its energy dependence a
angular distribution. At a photon-photon collider withAs
5500 GeV and an annual integrated luminosity
100 fb21, one expects thousands of standard model eve
while for LNC50.75 TeV the noncommutative effects ca
yield O(100%) corrections. Our results suggest that ther
a clear opportunity at colliders to see the effects of Loren
conserving noncommutative QED if the noncommutativ
scale is on the order of a TeV.
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