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Monopole clusters, center vortices, and confinement in aZ2 gauge-Higgs system

F. Gliozzi* and A. Rago†

Dipartimento di Fisica Teorica, Universita` di Torino and INFN, Sezione di Torino, Via P. Giuria, 1, I-10125 Torino, Italy
~Received 2 July 2002; published 30 October 2002!

We propose to use the different kinds of vacua of gauge theories coupled to matter as a laboratory to test
confinement ideas of pure Yang-Mills theories. In particular, the very poor overlap of the Wilson loop with the
broken string states supports the ’t Hooft and Mandelstam confinement criteria. However, in theZ2 gauge-
Higgs model we use as a guide we find that the condensation of monopoles and center vortices is a necessary
but not sufficient condition for confinement.
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I. INTRODUCTION

Center vortices@1# and magnetic monopoles@2# are
widely believed to be the collective degrees of freedom
sponsible for the nonperturbative features of SU(N) Yang-
Mills theories, in particular for confinement.

Condensation of magnetic monopoles implies a d
Meissner effect: the chromolelectric field is expelled fro
the vacuum and gives the well-known physical picture
confinement in terms of dual Abrikosov vortices which d
scribe the flux tubes joining static sources.

Center vortices are stringlike excitations formed out of
center of the gauge group. They produce a very effici
disordering mechanism of the gauge configurations wh
could lead to area law decay of large Wilson loops.

Although the above description for almost all know
models remains at a conjectural stage,1 in the last few years
many numerical lattice studies have given strong suppor
the relevant role played by center vortices and monop
condensation in confinement. For instance, in the SU
gauge model in 311 dimensions both magnetic monopo
condensation@4–7# and the phenomenon of center dom
nance@8#, namely, the fact that the string tension obtain
from center projected configurations in the maximal cen
gauge agrees with the same quantity calculated in the
theory, have been observed.

Center dominance is verified in a trivial way in Abelia
theories, where the whole dynamics is described by ce
vortices. Here the distinction between a confined and an
confined phase is related to the maximal size of the clus
of vortices: it can be shown that confinement requires
presence of an infinite cluster@10#. This agrees with an ear
lier observation of percolating center vortices in the co
phase of the SU(2) gauge model at finite temperature@11#.
For the sake of brevity we call the appearance of such
infinite cluster ‘‘vortex condensation.’’

There are many open, intertwined questions about the
tual validity of the ’t Hooft criteria of confinement, namel

*Email address: gliozzi@to.infn.it
†Email address: rago@to.infn.it
1The only explicit, analytic example of these mechanisms can

found in the Polyakov@3# proof of the confinement of compac
U(1) gauge model in 211 dimensions.
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that the monopole and/or vortex condensations imply the
cay with an area law of large Wilson loops. In particular, is
possible to derive monopole condensation from vortex c
densate or vice versa? If not, are both condensations ne
sary for confinement? Are they also sufficient?

In this work we propose to answer these questions
studying gauge systems coupled to matter. Indeed it is w
noting that, while center vortices and monopoles are ge
ally studied in pure Yang-Mills models, they are well defin
also in gauge theories coupled to matter. In these mo
there are different vacua, distinguished by different entit
which condense. If, for instance, the region where the vo
ces condense does not coincide with that with monopole c
densation, one can infer that these two properties are l
cally independent. This is precisely what happens in a
11 Z2 gauge-Higgs model@9#. A simple argument shows
@12# that the only vacua compatible with an area law dec
of the large Wilson loops are those in which both magne
monopolesand center vortices condense. In other terms,
’t Hooft criteria are both necessary for confinement.

Assuming that they are also sufficient can explain a s
prising phenomenon observed in almost all coupled ga
systems studied up to now: although the potential betw
static sources flattens at large distances because of
screening produced by pair creation, this flattening~called
string breaking! is invisible in the Wilson loop: it continues
to obey an area law in full QCD@13# even at distances wher
the static charges are completely screened. The point is
in gauge theories coupled to matter the basis of the opera
has to be enlarged@14# in order to get a reliable estimate o
the potential. In this way the breaking of the confining stri
in Higgs models@15# and in QCD@16# has been observed
So the fact that large Wilson loops obey an area law eve
coupled systems, as first suggested in@17#, may be consid-
ered as further support to the usual plausibility arguments
the confinement mechanisms. Of course numerical exp
ments cannot give a true proof of the sufficiency of the
criteria: it could well happen that Wilson loops of muc
larger size exhibit string breaking explicitly.

In this work we study the 211 Z2 gauge-Higgs model to
investigate a subtler issue: by probing the different vac
characterized by infinite vortex and monopole clusters
study the effect of other condensates on confinement. In
model there are two vacua having center vortex and m
netic monopole condensates; one of them has also an ele

e
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F. GLIOZZI AND A. RAGO PHYSICAL REVIEW D 66, 074511 ~2002!
condensate, i.e., the Higgs field has a vacuum expecta
value different from zero.

The former vacuum satisfies all the requirements of
confinement criteria, so an area law is expected; here we
that the Wilson loop obeys a perfect area law even at
tances larger than five times the string breaking scale.

The latter can be identified with the torn phase predic
in Ref. @17#: the Wilson loop decays with an area law belo
a given scale which varies very rapidly as a function of
couplings of the model and is unrelated to the string break
scale. Above this threshold we observe a perimeter law:
infrared properties of this vacuum are indistinguishable fr
those of the perturbative unconfined vacuum.2

II. THE MODEL

The action of a 3DZ2 gauge theory coupled to matter in
cubic latticeL can be written as

S~bG ,b I !52b I(̂
i j &

w iUi j w j2bG (
plaq.

Uh , ~1!

where both the link variableUi j [U, and the matter fieldw i
take values61 andUh5),PhU, .

This model is self-dual: the Kramers-Wannier transform
tion maps the model into itself. Its partition function

Z~bG ,b I !5 (
$w i561, U,561%

e2S(bG ,b I ) ~2!

satisfies the functional equation

Z~bG ,b I !5~sinh 2bGsinh 2b I !
3N/2Z~ b̃ I ,b̃G! ~3!

with b̃52 1
2 log(tanhb).

The phase diagram of this model~see Fig. 1! was studied

2A similar phase has been reported in the 4D SU(2)-Higgs model
@18#.

FIG. 1. Phase diagram for the 211 Z2 gauge-Higgs system. Th
dashed~solid! lines denote the first-order~second-order! transitions.
The dotted line is the self-dual line.
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long ago@22#. There is an unconfined region surrounded
lines of phase transitions toward the Higgs phase and
dual. These lines are second order until they are near e
other and the self-dual line, where a first-order transit
occurs.3

A. Z2 vortices and monopoles

In this model the construction of center vortex configu
tions is straightforward: to each frustrated plaquette~i.e.,
Uh521) assign a vortex in the dual link. Since the produ
of the plaquettes belonging to any elementary cube is 1, c
ter vortices form closed subgraphs of even coordinat
number. Thus a connected vortex subgraph contributes
given Wilson loopW(C) only if an odd number of lines are
linked to it: the Wilson loop is a vortex counter modulo 2

Magnetic monopoles can be defined exactly as in the p
gauge model. They live on the dual latticeL̃. To create a
monopole in a sitex̃PL̃, corresponding to the center of a
elementary cube ofL, it is sufficient to draw an arbitrary
continuous lineg( x̃,ỹ) joining x̃ to another monopole lo-
cated atỹ ~or to `) and flipping the sign of the coupling o
the plaquettes crossed byg. This flipping is generated by the
nonlocal operator

Cg~ x̃,ỹ!5expS 22bG (
hPg

UhD . ~4!

As a consequence, the flux across any closed surface wx̃

inside andỹ outside is equal to21: this monopole field
Cg( x̃,ỹ) creates one unity ofZ2 flux joining x̃ to ỹ. Mono-
pole condensation occurs when

lim
ux̃2 ỹu→`

^Cg~ x̃,ỹ!&5” 0. ~5!

Why should this condensation imply confinement? A use
piece of information comes from the Kramers-Wannier du
ity. One can easily show that under this duality map t
monopole correlator transforms as follows:

^Cg~ x̃,ỹ!&bG ,b I
5K w x̃)

,Pg
U,w ỹL

b̃ I ,b̃G

. ~6!

Thus the monopole condensation is associated with the
Higgs phase, where theZ2 symmetry is spontaneously bro
ken.

The same transformation maps the Wilson loopW(C)
associated with any closed curveCPL into the correspond-
ing ’t Hooft loop W̃(C) of the dual phase:

^W~C!&bG ,b I
5^W̃~C!&b̃ I ,b̃G

~7!

with

3For a more detailed description of the phase diagram see
poster presented by A. Rago at ‘‘Lattice 2002.’’
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MONOPOLE CLUSTERS, CENTER VORTICES, AND . . . PHYSICAL REVIEW D66, 074511 ~2002!
W̃~C!5expS 22b̃G (
^ i j &PS

w iUi j w j D , ]S5C, ~8!

whereS is an arbitrary surface bounded byC. W̃(C) creates
an elementaryZ2 flux along C which manifests itself as a
topological defect: the action ofW̃(C) on an arbitrary con-
figuration maps the producth C̃5),PC̃U, along any loop
C̃PL̃ having an odd linking number withC into 2h C̃ .

B. A microscopic picture of confinement

Confinement at bG ,b I requires area law decay o

^W̃(C)&b I
˜bG
˜ . To understand this property at a microscop

level it is convenient to resort to the Fortuin-Kasteleyn~FK!
random cluster representation@19# of the model. Starting
from the obvious identity

eb IwxUxywy5eb I~12p1pd1,wxUxywy
!, p512e22b I.

~9!

It is easy to perform explicitly the sum on the matter fiel
wx , which yields

Z~bG ,b I !5(
U,

e(hbGUh (
G#L

ÃU~G!vbG2cG,v5
p

12p
.

~10!

The summation is over all spanning subgraphsG#L. bG is
the number of links ofG, called active bonds~which are the
matter degrees of freedom replacing thew ’s in this represen-
tation!, and cG is the number of connected componen
called FK clusters.ÃU(G) is a projector on the subgraph
which are compatible with a given gauge configurationU
5$U,%: only those subgraphs are allowed for which
closed path within each FK cluster is linked to an element
Z2 flux @20,21#. Put differently, no frustration is permitted i
G. In a sense, this is a microscopic realization of a sort
dual Meissner effect: the FK clusters behave like pieces
dual superconducting matter of type I and noZ2 flux can go
through the circuits ofG. This is the only constraint gene
ated by the interaction between matter and gauge fields
the limit bG→` all the plaquettes haveUh51 ~trivial
gauge vacuum!; hence the sum over the subgraphs is unc
strained and one gets the standard Ising model. Introduci
further projector ÃC(G) on the space of configuration
$G#L%, which takes the value 0 whenever there is a
cluster ~at least! linked to C, and the value 1 in all othe
cases, yields the very useful identity

^W̃~C!&5^ÃC&5
number of compatible config.

total number of config.
. ~11!

Assume that there are only FK clusters of finite size~this is
the case of region V in Fig. 2!. If C is much larger than the
mean size of the clusters, the configurations contributing
W(C), i.e., those withÃC(G)51, are characterized by th
fact that there is no cluster linked toC. The weight of this
class of configurations, when compared with the total
07451
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sembleG#L, is clearly suppressed by a factore2a p(C),
wherep(C) is the length ofC. Thus in this phase the Wilson
loop obeys a perimeter law.

Conversely, a large Wilson loop decaying with an ar
law implies by necessity the presence of an infinite FK cl
ter. In order to see whether this condition is also sufficie
for confinement in the dual phase, note that according to
~11! an infinite FK clusterf k` gives a nonvanishing contri
bution toW̃(C) only if there is at least a simply connecte
surfaceS bounded byC which is not pierced by the loops o
the cluster. If the links off k` are weakly correlated, one i
led to argue that the weight of the configurations compati
with W̃(C) is suppressed by a factore2s a(S), wherea(S) is
the area of the minimal surface with]S5C. This leads to
the area law decay of̂W̃(C)&.

A crucial assumption in the above argument is the we
correlation of the links off k` which describe the monopol
condensation at the microscopic level. We shall see that th
is a phase in which, although such a condensation occ
this assumption is no longer true. Correspondingly we
serve a violation of the area law.

We can now apply the same line of reasoning to the ce
vortices~CVs!. Finite CV clusters can link with the ’t Hooft
loop only along its perimeter. Therefore they contribute on
to the perimeter term. An infinite CV cluster is necessary
the area law: confinement implies both an infinite center v
tex subgraphand magnetic monopole condensation. In pu
gauge theory these two requirements coincide, while in
coupled system the vacuum structure is more intriguing.

C. The vacua

In the coupled theory we have two kinds of dynamic
subgraphs: CVor FK clusters in thedual lattice describe the
gauge field degrees of freedom; FK clusters in thedirect
lattice describe the charged Higgs matter.

In order to recognize an infinite cluster in practical sim
lations one has to look at the cluster sizes as a function of
the lattice volumeV. We say that there is an infinite cluste

FIG. 2. The different vacua of theZ2 gauge-Higgs model, char
acterized by different kinds of infinite FK or center vortex cluste
~see Table I!.
1-3
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F. GLIOZZI AND A. RAGO PHYSICAL REVIEW D 66, 074511 ~2002!
whenevers}V for large enoughV. Straightforward numeri-
cal experiments show that they are distributed in the ph
diagram according to Fig. 2 and Table I. There are four kin
of infinite clusters:~i! FK cluster in the dual lattice~magnetic
condensate!, ~ii ! FK cluster in the direct lattice~electric con-
densate!, ~iii ! CV cluster in the dual lattice, and~iv! CV
cluster in the direct lattice~dual CV!.

In region V there is no infinite cluster of any type. This
the perturbative, weak coupling vacuum, where large Wils
loopsand ’t Hooft loops obey a perimeter law.

Region IV is characterized by an electric condensate:
the normal Higgs phase, where the Wilson loops decay w
a perimeter law, while the ’t Hooft loops obey an area la

Region III has a magnetic condensate but no large ce
vortices; thus there is no confinement, as confirmed by
merical tests. This region is dual to the region II, where
shall see that the Wilson loops follow a perimeter-law dec
Because of the duality relation~7! we can infer alsoW̃(C)
that decays in the same way.

Regions I and II have both CV and FK infinite clusters
the dual lattice.

The former is a normal confining phase: the potential
tracted from an enlarged basis shows the expected s

TABLE I. Distribution of the infinite clusters in the phase dia
gram.

Magnetic Electric Center Dual
Phase condensate condensate vortices center vort

I yes no yes no
II yes yes yes no
III yes yes no yes
IV no yes no yes
V no no no no
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breaking~see Fig. 3b!, while the Wilson loop obeys a perfec
area law even at a large scale~see Fig. 4!. This has been
checked up to distances of the order of five times the str
breaking scale~compare Fig. 3b and Fig. 4!.

The latter is a phase with the simultaneous presence
infinite clusters in direct and dual lattices. The infinite clus
of L is associated with the condensation of the Higgs fi
wx , while the infinite CV cluster ofL̃ is typical of a confin-
ing phase. However, there is no confinement in the IR lim
the no-frustration constraint induces strong correlatio
amongZ2 flux lines, because only an even number of the
can pass through the closet paths within the FK clusters

As a matter of fact, large Wilson loops obey a perime
law decay, even if at intermediate distances an area
seems recovered. A first example of this behavior is repo
in @9#. The cross over scale varies rapidly as a function of
coupling constant and is unrelated to the string break
scale.

s

FIG. 4. Improved square Wilson loops evaluated using the
ality relation ~7! and the projection on the largest FK cluster. T
simulation was performed on a 403 cubic lattice using 3.03105

Monte Carlo configurations.
e

FIG. 3. Results of Monte Carlo simulations of 6.03105 sweeps of update on cubic lattice of size 403. ~a! Plot of the rectangular Wilson

W(R,T) loop and the other two operators defined in Eqs.~12! and~13! at T517 as a function ofR. ~b! The static potential extracted by th
lowest eigenvalue of the correlation matrix obtained for six different values ofT (T515, . . .,20).
1-4



se
e
-

ch
e
to
ts
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FIG. 5. Square Wilson loops in the torn pha
~circles! and in the normal, confining phas
~crosses! resulting from two simulations in a cu
bic lattice of size 403 with 2.03105 Monte Carlo
configurations. The couplings are chosen in su
a way that the density of center vortices is th
same in the two cases. The straight line is a fit
a perimeter-law decay, while the dotted line fi
an area law decay withs50.1541(2).
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III. NUMERICAL RESULTS

As we anticipated, even in this model, as in the oth
gauge systems coupled to matter analyzed up to now,
Wilson loop fails to exhibit string breaking in the norma
confining phase, due to its poor~or vanishing! projection
onto the screened potential. One has to use additional op
tors with good projection on the ground state, as first
served in Ref.@14#. The static potentialV(R) and its excita-
tions can be extracted from measurements of the ma
correlator, represented pictorially as

whereC11(R,T) is the rectangular Wilson loop̂W(R,T)&,
the U-shaped operator is

C12~R,T!5^w~0!U~0,2 jWT!U~2 jWT,2 jWT1kWR!

3U~kWR2 jWT,kWR!w~kWR!&, ~12!

wherejW andkW are two orthogonal unit vectors, andU(x,y) is
a shorthand notation for a straight line ofU, connecting the
sites x and y. The correlator is symmetric,C12(R,T)
5C21(R,T), and

C22~R,T!5^w~0!U~0,jWT!w~ jWT!w~kWR!U~kWR, jWT1kWR!

3w~ jWT1kWR!&. ~13!

Denoting byl0<l1 the two eigenvalues, the ground sta
potential is defined as

V~R!52 lim
T→`

1

T
logl0 . ~14!
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In practical simulations, the limitT→` is not realized. In
our caseT was typically less than 20 lattice spacings wh
the the signal was lost in noise.

The first point chosen in the present investigation is giv
by the couplingsbG50.75245 andb I50.16683 . This point
in the phase diagram of Fig. 2 is in phase I, fairly close to
deconfinement transition, where the model has proper
very similar to the confining phase of pure gauge theory@23#.
The estimates of the above three operators in a lattice of
403 as functions ofR are reported in Fig. 3a and the stat
potential in Fig. 3b. We observe the typical string breaki
phenomenon with a Wilson loop which seems to follow t
area law decay even in the region where the string is brok
In order to see this property better, we used a powerful al
rithm based on Eq.~11! and already used in pure gaug
theory @24#. We also modified each configuration in th
Monte Carlo ensemble by eliminating all the FK clusters n
belonging to the largest cluster. It has been shown that
transformation does not change the value of the string
sion but greatly reduces the noise of the measurements.
results are reported in Fig. 4: the square Wilson loops obe
perfect area law even at distances five times the string br
ing scale at this point.

In order to investigate the effect of the electric condens
on the Wilson loop, we considered two different points in t
phase diagram, one in region I, atbG50.6867 andb I
50.20, which is a normal confining phase; and the othe
region II, atbG50.66 andb I50.27, where in addition to the
CV ~and the FK! infinite cluster in the dual lattice there i
also a percolating FK cluster in the direct lattice, associa
with the ‘‘electric’’ condensation. These two points are ch
sen in such a way that the total sizes of the CV vortices
the same~within statistical errors! in the two cases. It turned
out that the size of the maximal CV cluster is also appro
mately the same. We also verified that this quantity sca
with the volume for large enough lattices.

The dramatic effect produced by the electric condensat
demonstrated by the completely different behaviors of
square Wilson loop in the two cases, as is evident in Fig
In region I we see again the characteristic area law of
normal confining phase, while the data of region II are co
patible, for Wilson squares of larger size, with a decay w
the perimeter. This is the behavior expected for the t
phase@17#.
1-5
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IV. CONCLUSIONS

In this study we proposed to use gauge theories couple
charged matter to test the confinement ideas of ’t Hooft
Mandelstam. In particular, in the case of theZ2 gauge-Higgs
model, we gave a detailed microscopic description of
center vortex and monopole condensates. The analysis o
different vacua of this theory led us to conclude that confi
ment requires that both magnetic monopolesandcenter vor-
tices condense, the condensation of the former does not
ply necessarily the condensation of the latter: there are va
with a percolating FK cluster~i.e., the microscopic descrip
tion of the magnetic condensate! which is not associated with
-
In
mo

.

b-

s.

.

ys

rt
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an infinite CV cluster, plausibility arguments suggest th
these two kinds of infinite clusters are responsible for
area law decay of Wilson loop only if the links of thes
clusters are weakly correlated, and there are vacua where
condensation of the gauge degrees of freedom~monopoles or
center vortices! is associated with a condensate of the ma
field ~the Higgs field in our example!. This yields strong
correlations among vortices and monopoles so that the p
sibility arguments for confinement we mentioned above
no longer justified. In fact we observed a perimeter law d
cay of large Wilson loops. This could be identified with th
torn phase described in@17#.
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