
PHYSICAL REVIEW D 66, 074510 ~2002!
NÄ2 Wess-Zumino model on thedÄ2 Euclidean lattice

Kazuo Fujikawa
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 9 August 2002; published 29 October 2002!

We examine theN52 Wess-Zumino model defined on thed52 Euclidean lattice in connection with a
restoration of the Leibniz rule in the limita→0 in perturbatively finite theory. We are interested in the
difference between the Wilson and Ginsparg-Wilson fermions and in the effects of extra interactions introduced
by an analysis of Nicolai mapping. As for the Wilson fermion, it induces a linear divergence to individual
tadpole diagrams in the limita→0, which is absent in the Ginsparg-Wilson fermion. This divergence suggests
that a careful choice of lattice regularization is required in a reliable numerical simulation. As for the effects of
the extra couplings introduced by an analysis of Nicolai mapping, the extra couplings do not completely
remedy the supersymmetry breaking in correlation functions induced by the failure of the Leibniz rule in
perturbation theory, though those couplings ensure the vanishing of vacuum energy arising from disconnected
diagrams. Supersymmetry in correlation functions is recovered in the limita→0 with or without those extra
couplings. In the context of lattice theory, it may be properly said that supersymmetry does not improve
ultraviolet properties but rather it is well accommodated in theories with good ultraviolet properties.

DOI: 10.1103/PhysRevD.66.074510 PACS number~s!: 11.15.Ha, 11.10.Gh
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I. INTRODUCTION

It is important to define the supersymmetric Wess-Zum
model@1# on the lattice in such a way that the nonrenorm
ization theorem@2,3# and consequently the absence of qu
dratic divergence is preserved. Since the absence of
dratic divergence arises from a subtle cancellation of boso
and fermionic contributions, we have to ensure the prec
~not approximate! Bose-Fermi cancellation. This task is n
easy if one recalls that the Leibniz rule is generally brok
on the lattice@4#. See Refs.@5–14# for the analyses of relate
issues.

Recently, it was suggested@15# that a perturbatively finite
theory, if latticized, could preserve supersymmetry to all
ders in perturbation theory in the sense that the supersym
try breaking terms induced by the failure of the Leibniz ru
become irrelevant in the limita→0. It was demonstrated in
Ref. @15# that this is in fact realized if one first renders th
4-dimensional Wess-Zumino model finite by applying t
higher derivative regularization. A non-perturbative con
mation of this proposal has not been given yet, but we
lieve that a perturbative confirmation of the absence of q
dratic divergence is a prerequisite for the nonperturba
analysis.1 In Ref. @15#, the Ginsparg-Wilson fermion@17–19#
was utilized, which has a nice chiral property but at the sa
time introduces certain subtle aspects to the analysis@14#.

A 2-dimensional reduction of the Wess-Zumino mod
which exhibitsN52 supersymmetry, is finite perturbative
with qualifications to be specified later, and thus it provide
good testing ground of the suggestion made in Ref.@15#,
though the crucial issue of quadratic divergence canno
studied in this model. In the present paper, we examine
N52 Wess-Zumino model on thed52 Euclidean lattice

1It should be noted that the lattice in this context is introduced
to control the divergences but to make numerical and other non
turbative analyses possible.
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perturbatively and clarify several basic issues involv
which may become relevant in an actual numerical simu
tion. First, we examine the use of the Wilson fermion inste
of the Ginsparg-Wilson fermion since the Wilson fermion
much easier to handle numerically. However, the Wilson f
mion induces a strong chiral symmetry breaking and thu
is important to see if this introduces any new aspect into
problem. The suggestion in Ref.@15# is based on makingall
the Feynman diagrams finite, namely, the cancellation of
vergences among Feynman diagrams is not sufficient in g
eral. If one applies this criterion to the present problem,
encounter one-loop level divergences in some of the in
vidual Feynman diagrams for correlation functions thou
those divergences cancel among bosonic and fermionic
tributions.~In disconnected vacuum diagrams, two-loop d
grams contain divergences.! In particular, the Wilson fermion
introduces a linear divergence to individual tadpole diagra
in d52, which is absent in the Ginsparg-Wilson fermio
The presence of linear divergences suggests that the la
regularization is not arbitrary but needs to be a ‘‘we
behaved’’ one, which ensures the precise cancellation
these linear divergences among diagrams foraÞ0, such as
in a formulation with precise lattice supersymmetry in t
free part of the Lagrangian.2 If all the Feynman diagrams
should be absolutely convergent, the latticization would
joy more freedom to recover supersymmetry in the limita
→0.

The second issue analyzed is the role played by e
couplings introduced by an analysis of Nicolai mapping@5#.
The Nicolai mapping in the present context suggests an
pearance of exta interactions@7,11,12# which vanish if the
Leibniz rule is satisfied on the lattice. Also these extra ter
spoil the naive hypercubic symmetry on the lattice. Beca

t
r-

2The actual numerical analysis, for example, is simplest in
simplest form of the Lagrangian, but due care is required to ens
supersymmetry in the limita→0.
©2002 The American Physical Society10-1
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of these novel features of the extra interactions, one m
hope that these extra terms might remedy the failure of
Leibniz rule appearing in the remaining conventional int
action terms. We analyze this issue in the framework of p
turbation theory. Our result shows that these extra terms
not completely remedy supersymmetry in correlation fu
tions, which is broken by the failure of the Leibniz rule,
least in weak coupling perturbation theory, though tho
terms ensure the vanishing of vacuum energy arising fr
disconnected diagrams. As far as the correlation functi
are concerned, supersymmetry is recovered in the lima
→0 with or without those extra couplings.

II. NÄ2 WESS-ZUMINO MODEL AND NICOLAI
MAPPING

We start with a Lagrangian defined in terms of the Wils
fermion on thed52 Euclidean lattice

L5c̄~D (1)1D (2)!c2mc̄c22gc̄~P1fP11P2f!P2!c

2f!D (1)
† D (1)f1F!F2m@Ff1~Ff!!#

2g@Ff21~Ff2!!#1FD (2)f1~FD (2)f!!

1gf2~¹1
S1 i¹2

S!f1g„f2~¹1
S1 i¹2

S!f…

! ~2.1!

where c is a two-dimensional Dirac spinor. Since we a
interested in the d52 model as a toy model fo
4-dimensional theory, we choose the superpotential to b
specific form

W8~f!5mf1gf2. ~2.2!

Here we defined

D (1)c~x![gm¹m
Sc~x!5gm

1

2a
„c~x1am̂ !2c~x2am̂ !…,

~2.3!

D (2)c~x![(
m

¹m
Ac~x!

5(
m

1

2a
„c~x1am̂ !1c~x2am̂ !22c~x!….

We note the important property (xf (x)(¹m
Sg)(x)

52(x(¹m
S f )(x)g(x). Our Euclideang matrix convention is

~gm!†5gm, g5
†5g5 , P65

1

2
~16g5!. ~2.4!

When we have the operatorD (1)
† D (1) in the bosonic sector

we adopt the convention to discard the 232 unit matrix. The
terms

Lkin5c̄D (1)c2f!D (1)
† D (1)f1F!F ~2.5!

stand for the kinetic~Kahler! terms. The last two terms in
Eq. ~2.1! are the extra terms introduced by an argument
Nicolai mapping@7#, while other terms are the naive lattic
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translation of the continuum theory except for the Wils
term and its superpartners. Namely, the terms

LW5c̄D (2)c1FD (2)f1~FD (2)f!! ~2.6!

stand for a naive supersymmetrization of the Wilson ter
which induce a hard breaking of continuum chiral sym
metry.

The last two terms in Eq. ~2.1! vanish if the
Leibniz rule for ¹m

S should hold on the lattice, namely

if f2(x)(¹m
Sf)(x)5 1

3 (¹m
Sf3)(x). This fact suggests tha

the extra terms might remedy the supersymmetry break
induced by the failure of the Leibniz rule in the remainin
interaction terms. These extra terms also break the~hyper!
cubic symmetry on the lattice.

The elimination of the auxiliary fieldsF and F! in the
starting Lagrangian gives

L5c̄~D (1)1D (2)!c2c̄„P1W91P2~W9!!
…c

2f!D (1)
† D (1)f2~D (2)f!!D (2)f1~W8!!D (2)f

1W8~D (2)f!!2~W8!!W81W8~¹1
S1 i¹2

S!f

1„W8~¹1
S1 i¹2

S!f…

! ~2.7!

with W85mf1gf2 by noting

(
x

f~x!¹m
Sf~x!52(

x
¹m

Sf~x!f~x!50. ~2.8!

This Lagrangian agrees with the one introduced in Re
@7,11,12# by an analysis of Nicolai mapping.3

The Nicolai mapping here is defined by

j15~¹1
S1D (2)!A2U2¹2

SB,
~2.9!

j25~2¹1
S1D (2)!B2V2¹2

SA

with

f~x!5
1

A2
~A1 iB !, U5

1

A2
„W81~W8!!

…,

~2.10!

V5
1

A2i
„W82~W8!!

….

3Recently, the Nicolai mapping was extended to thed52 Wess-
Zumino model defined in terms of Ginsparg-Wilson operato
which makes chiral symmetry manifest@16#.
0-2
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If one uses the specific representation ofg matrices

g15S 1 0

0 21D , g25S 0 21

21 0 D ,

~2.11!

g55S 0 i

2 i 0D
the Jacobian for the transformation from (j1 ,j2) to ~A,B!
precisely agrees with the determinant of the fermion oper
in Eq. ~2.7!. The bosonic part of the Lagrangian is then wr
ten as

(
x

Lboson~x!52(
x

1

2
@j1

2~x!1j2
2~x!# ~2.12!

and the partition function is given by

Z5E Dc̄DcDADB expF(
x

L~x!G
5E Dj1Dj2 expH 2(

x

1

2
@j1

2~x!1j2
2~x!#J ~2.13!

if one imposes universal~periodic! boundary conditions both
on fermionic and bosonic variables. The vanishing of
vacuum energy is thus ensured by the Nicolai mapping e
for aÞ0. The partition function is reduced to

Tr~21!F̂ exp@2bĤ# ~2.14!

if the continuum limita→0 is well-defined. The presence o
the Nicolai mapping would then ensure the degeneracy
bosonic and fermionic spectra ofĤ in the continuum limit.

III. SUPERSYMMETRY TRANSFORMATION

One may define a lattice supersymmetry transforma
parametrized by a constant Dirac-type Grassmann param
ē by

dc̄52 ē@P2f1P1f!#D (1)2 ē@P2F!1P1F#

dc50 df5 ēP1c, df!5 ēP2c
~3.1!

dF5 ēP2D (1)c, dF!5 ēP1D (1)c.

The supersymmetry transformation parametrized by a c
stant Dirac-type Grassmann parametere, which is treated to
be independent ofē, is given by

dc52D (1)@P2f1P1f!#e2@P2F!1P1F#e

dc̄50 df5c̄P1e, df!5c̄P2e dF5c̄D (1)P2e,
~3.2!

dF!5c̄D (1)P1e.

Here we note that
07451
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D (1)
† 52D (1) , D (1)g51g5D (1)50,

~3.3!
D (2)

† 5D (2) , D (2)g52g5D (2)50.

Under the transformation~3.1!, it can be confirmed that the
kinetic term

E dLkin5E $2 ē@P2f1P1f!#D (1)2 ē@P2F!

1P1F#%D (1)c1E f!]m]mēP1c

1E f]m]mēP2c1E F!ēP2D (1)c

1E F ēP1D (1)c50 ~3.4!

is in fact invariant. The mass term

Lmass52mc̄c2mFf2mF!f! ~3.5!

and the Wilson term

LW5c̄D (2)c1FD (2)f1~FD (2)f!! ~3.6!

are also confirmed to be invariant under the above supers
metry transformation by using the relationD (1)D (2)
5D (2)D (1) .

The variation of the~conventional! interaction terms

Lint522gc̄~P1fP11P2f!P2!c2g@Ff21~Ff2!!#

~3.7!

is given by

E dLint5gE ē@22P2~D (1)f!fc22P1~D (1)f
!!f!c

1P2~D (1)f
2!c1P1„D (1)~f!!2

…c# ~3.8!

where we used the relation (xf (x)(D (1)g)(x)5
2(x(D (1)f )(x)g(x). This variation of the interaction term
would vanish if the difference operatorD (1) should satisfy
the Leibniz rule 2(D (1)f)(x)f(x)5(D (1)f

2)(x). ~The
terms quadratic inc vanish by themselves.!

As for the U(1)3UR(1) charges~and holomorphicity!
analogous to those in the 4-dimensional theory@9#, we may
assign

f5~1,1!, F5~1,21!, P1c5~1,0!,
~3.9!

P2c5~21,0!, m5~22,0!, g5~23,21!

for the terms appearing in the conventional formulatio
Even for m5g50, the Wilson termLW in the Lagrangian
violates theU(1) symmetry.

As for the extra terms introduced by an argument of Nic
lai mapping
0-3



un
la
r
b

rm
tra
e

he

m

n
tr
ith
tio
e

kin
t
a

on
th

,

re

ced
ia-
ther
rnal
xtra

re-

one
ects

rly
aly-
ia-

o
th

del

KAZUO FUJIKAWA PHYSICAL REVIEW D 66, 074510 ~2002!
Lextra5gf2~¹1
S1 i¹2

S!f1„gf2~¹1
S1 i¹2

S!f…

!

~3.10!

which break hypercubic symmetry, they are not invariant
der the above supersymmetry transformation. Since the
tice supersymmetry transformation we defined above p
serves transformation properties under the hypercu
symmetry, the supersymmetry variation of these extra te
do not mix with the variation of other terms. Those ex
terms also breakUR(1) symmetry. We reiterate that thes
extra terms vanish if the Leibniz rule should hold on t
lattice.

IV. FEYNMAN RULES FOR PERTURBATIVE
CALCULATIONS

It is interesting to examine to what extent the extra ter
introduced by an argument of Nicolai mapping@7,11,12#,
namely the last two terms inL ~2.1!, are essential to maintai
supersymmetry in perturbation theory. Although the ex
terms, which break hypercubic symmetry, do not mix w
other terms under the lattice supsersymmetry transforma
in Eq. ~3.1! as we already explained, the lattice supersymm
try transformation is not unique and thus we cannota priori
exclude the possible cancellation of supersymmetry brea
effects among the interaction terms.4 Our assumption is tha
perturbative calculations are universal at least for a sm
coupling constant and independent of the specific definiti
of lattice supersymmetry transformation. One starts with
free part of the Lagrangian

L05c̄~D (1)1D (2)!c2f!D (1)
† D (1)f1F!F2mc̄c

2m@Ff1~Ff!!#1FD (2)f1~FD (2)f!!. ~4.1!

When we have the operatorD (1)
† D (1) in the bosonic sector

we adopt the convention to discard the 232 unit matrix.
The propagators are given by

^ff!&5
1

D (1)
† D (1)1~2m1D (2)!

2
,

^FF!&5~2 !
D (1)

† D (1)

D (1)
† D (1)1~2m1D (2)!

2
,

^Ff&5^F†f†&5~2 !
~2m1D (2)!

D (1)
† D (1)1~2m1D (2)!

2
,

^cc̄&5
21

D (1)1D (2)2m
5~2 !

2D (1)1D (2)2m

D (1)
† D (1)1~2m1D (2)!

2
,

~4.2!

4In fact, an exact Ward identity which is regarded as a part
supersymmetry is known to exist in the Lagrangian defined by
Nicolai mapping@11,12#. We shall analyze this identity later.
07451
-
t-

e-
ic
s

s

a

n
-

g

ll
s
e

and other propagators vanish. Here we haveD (1)
† 52D (1) .

In the momentum representation, we have

^ff!&5
a2

~sinakm!21~aM!2
,

^FF!&5~2 !
~sinakm!2

~sinakm!21~aM!2
,

^Ff&5^F!f!&5
a~aM!

~sinakm!21~aM!2
,

~4.3!

^cc̄&5
aigm sinakm1a~aM!

~sinakm!21~aM!2
,

where

M~akm![(
m

1

a
~12cosakm!1m. ~4.4!

The interaction terms for perturbative calculations a
given by

Lint522gc̄~P1fP11P2f!P2!c2g@Ff21~Ff2!!#

1gf2~¹1
S1 i¹2

S!f1g„f2~¹1
S1 i¹2

S!f…

!. ~4.5!

If one sets one off in the extra interaction terms~i.e., in the
last two terms inLint) to be a constant

f~x!5f05const ~4.6!

then the extra terms go away by noting(xf(x)¹m
Sf(x)

50. This means that the effects of the extra terms introdu
by the Nicolai mapping do not appear in the one-loop d
grams if one sets the momenta of external lines at 0. In o
words, only those diagrams where the momenta of exte
lines cannot be set to be zero are affected by those e
terms.

V. LOWER ORDER DIAGRAMS

We now examine several lower order diagrams for cor
lation functions in perturbation theory.5 The theory ind52
becomes more convergent in higher order diagrams, and
can confirm that the possible supersymmetry breaking eff
in higher order diagrams become irrelevant in the limita
→0, provided that one-loop subdiagrams are prope
treated. The one-loop diagrams are thus crucial in the an
sis of supersymmetry. As for the disconnected vacuum d
grams, they shall be later analyzed separately.

f
e

5A perturbative analysis of the 4-dimensional Wess-Zumino mo
with the Wilson fermion was performed in@8#. In the presentd
52 model, the perturbation is based ong/m!1.
0-4
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A. Tadpole diagrams

The one-loop tadpole diagrams for the scalarf consist of
two diagrams; the first one is a scalar loop and the secon
a fermion loop. The scalar loop contribution is given by

22gf^Ff&522gfE
2p/a

p/a d2k

~2p!2

a~aM!

~sinakm!21~aM!2

522gfE
2p

p d2k

~2p!2 S 1

aD „aM~km!…

~sinkm!21„aM~km!…2

~5.1!

where we rescaled the integration variable in the last exp
sion as
07451
is

s-

akm→km ~5.2!

and defined

aM~km!5(
m

~12coskm!1am. ~5.3!

In the limit a→0 this diagram diverges as;1/a, namely,
linearly divergent. This divergence is worse than the div
gence in continuum theory~and also in the lattice theory
with the Ginsparg-Wilson fermion6!, which is logarithmic.

The fermion loop contribution is given by
to
part of

gence is
e each

at all
metry

. I thank
2gfTr P1^cc̄&52gfE
2p/a

p/a d2k

~2p!2
Tr P1

aigm sinakm1a~aM!

~sinakm!21~aM!2

52gfE
2p

p d2k

~2p!2 S 1

aD „aM~km!…

~sinkm!21„aM~km!…2
~5.4!

which is precisely canceled by the scalar contribution~5.1! for a finite a. However, each diagram is linearly divergent due
the strong chiral symmetry breaking by the Wilson term. In a numerical simulation, one would need to choose the free
the Lagrangian to be lattice supersymmetric, as in the present formulation, so that the cancellation of linear diver
exact.7 Alternatively, one may introduce an auxiliary regularization such as higher derivative regularization to mak
diagram convergent and thus less sensitive to the parametera in the limit a→0, as we discussed in 4-dimensional theory@15#.

B. Induced f2 coupling

We have contributions from a scalar loop and a fermion loop. The scalar loop contribution is given by

1

2!
~2g!2f^Ff&^Ff&f52g2f2E

2p/a

p/a d2k

~2p!2

a~aM!

sin2~akm1apm!1~aM!2

a~aM!

~sinakm!21~aM!2

52g2f~2pm!f~pm!E
2p

p d2k

~2p!2

„aM~km1apm!…

sin2~akm1apm!1„aM~km1apm!…2
„aM~km!…

~sinkm!21„aM~km!…2

~5.5!

which approaches a constant fora→0. This behavior is consistent with the continuum behavior, but the difference is th
the momentum regions, not only the infrared region, contribute to the integral. This is an effect of the chiral sym
breaking by the Wilson term.

The fermion loop contribution gives

21

2!
~2g!2Tr f^P1cc̄P1&^P1cc̄P1&f522g2f~2pm!f~pm!E

2p

p d2k

~2p!2

„aM~km1apm!…

sin2~km1apm!1„aM~km1apm!…2

3
„aM~km!…

~sinkm!21„aM~km!…2
~5.6!

6The power counting with the Ginsparg-Wilson fermion is identical to that of continuum theory@14#.
7If all the Feynman diagrams should be absolutely convergent, one would enjoy more freedom in choosing lattice regularization

H. Kawai and T. Onogi for a helpful comment on this point.
0-5
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which is precisely canceled by the scalar contribution~5.5! even for a finite lattice spacinga.
Each Feynman diagram which gives induced couplings higher powers inf such asf3 is reduced to the continuum resu

in the limit a→0. Those couplings in any case cancel among the scalar and fermion contributions even for finitea. The
nonrenormalization of the superpotential in this sense is thus maintained in the one-loop level, and in higher-loop leve
limit a→0.

C. Self-energy corrections

The simplest self-energy correction is that to the auxiliary fieldsF andF!. The one-loop correction is given by

1

2!
2g2F^f2~f!!2&F!52g2FF!^ff!&^ff!&

52g2FF!E
2p/a

p/a d2k

~2p!2

a2

sin2~akm1apm!1~aM!2

a2

~sinakm!21~aM!2

52g2F~pm!F!~pm!E
2p

p d2k

~2p!2

1

sin2km1„aM~km!…2
a2

sin2~km1apm!1„aM~km1apm!…2
. ~5.7!

This integral vanishes fora→0 if one keeps the integration domainoutside

ukmu,d for all m ~5.8!

for arbitrarily small but finited and for fixedpm . The integration inside the above domain gives a finite continuum resu
one notes

~sinkm!21„aM~km!…2.km
2 1S 1

2
km

2 1amD 2

.km
2 1amkm

2 1~am!2 ~5.9!

inside the above domain. A rescaling ofkm back to the original momentum variableskm→akm gives the continuum result in
the limit a→0.

The fermion self-energy correction is given by

1

2!
~2g!2c̄~P1fP11P2f!P2!cc̄~P1fP11P2f!P2!c

→~2g!2@c̄~P1fP1^cc̄&P2f!P2!c1c̄~P2f!P2!^cc̄&~P1fP1!c#

→~2g!2@c̄P1^cc̄&P2c^ff!&1c̄P2^cc̄&P1c^ff!&#

5~2g!2c̄~pm!E
2p/a

p/a d2k

~2p!2 F aigm sin~apm1akm!

sin2~apm1akm!1~aM!2

a2

~sinakm!21~aM!2Gc~pm!

5~2g!2c̄~pm!E
2p

p d2k

~2p!2 F aigm sin~apm1km!

sin2~apm1km!1~aM!2

1

~sinkm!21~aM!2Gc~pm!. ~5.10!

This integral vanishes if one setspm50, which means that the fermion mass receives no quantum correction when reno
ized at vanishing momentum, despite the chiral symmetry breaking by the Wilson term.8 This integral also vanishes for th
domain outside Eq.~5.8! in the limit a→0, and the integral is reduced to the continuum result for the domain inside Eq.~5.8!
in the limit a→0 for fixed pm .

To analyze the wave function renormalization, we consider the case with an infinitesimalpm but the lattice spacinga kept
fixed.9 Namely,

8This vanishing mass correction arises from the differences of the Feynman rules in the present model and QCD. Also, all the hi
corrections are reduced to the~supersymmetric! continuum results in the limita→0 in the present model. The Wilson term does not alwa
imply the mass shift.

9It should be noted that we assume a small couplingg/m!1 and infinitesimally small external momentumpm but otherwise make no
assumption about the lattice spacinga.
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upmu!m, 1/a. ~5.11!

We thus expand

sin~apm1km!.sinkm1apm coskm , aM~km1apm!.aM~km!1apm sinkm ,
~5.12!

sin2~apm1km!1~aM!2.sin2~km!1„aM~km!…21apm sin 2km12aM~km!apm sinkm .

The integral in this expression is given by

a2E
2p

p d2k

~2p!2
H (

m
igmpm coskm

@sin2~km!1„aM~k!…2#2
2

(
m

igm sinkm@pn sin 2kn12„aM~k!…pn sinkn#

@sin2~km!1„aM~k!…2#3
J

5a2E
2p

p d2k

~2p!2
H (

m
igmpm coskm

@sin2~km!1„aM~k!…2#2
1

1

2 (
m

igm sinkm(
n

pn

]

]kn

1

@sin2~km!1„aM~k!…2#2
J

5
1

2
a2E

2p

p d2k

~2p!2
H (

m
igmpm coskm

@sin2~km!1„aM~k!…2#2
J . ~5.13!

By noting the symmetry underk1↔k2, we thus have the wave function renormalization for the fermion

2g2E
2p

p d2k

~2p!2
F a2

1

2 (
n

coskn

@sin2~km!1„aM~k!…2#2
G c̄~pm!igmpmc~pm! ~5.14!

which disagrees with the finite renormalization factor for the fieldsF andF! at pm50 in Eq. ~5.7! for a finite a,

E
2p

p d2k

~2p!2

a2

@~sinkm!21„aM~km!…2#2
2E

2p

p d2k

~2p!2

a2
1

2 (
n

coskn

@sin2~km!1„aM~k!…2#2
5E

2p

p d2k

~2p!2

a2
1

2 (
n

~12coskn!

@~sinkm!21„aM~km!…2#2
.0

~5.15!

for aÞ0, though this difference vanishes in the limita→0. This shows that the finite wave function renormalization fac
breakssupersymmetry foraÞ0.

We next examine the self-energy corrections to the scalar fieldf. The contribution from a scalar loop diagram in th
conventionalinteraction terms gives

1

2!
g2@Ff21~Ff2!!#@Ff21~Ff2!!#→g2^~Ff2!!Ff2&

54g2f!^F!F&^f!f&f

524g2f!~pm!f~pm!E
2p

p d2k

~2p!2

3
~sinkm!2

~sinkm!21~aM!2

1

sin2~km1apm!1„aM~km1apm!…2
. ~5.16!

The one-loop fermion contribution is given by
074510-7
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1

2!
~2g!2c̄~P1fP11P2f!P2!cc̄~P1fP11P2f!P2!c

→~2g!2c̄P2f!P2cc̄P1fP1c

→2~2g!2f! Tr@^P1cc̄P2&^P2cc̄P1&#f

52~2g!2f!
1

2E2p

p d2k

~2p!2
TrF igm sin~km1apm!

sin2~km1apm!1„aM~km1apm!…2
igm sinkm

~sinkm!21~aM!2Gf

54g2f!~pm!f~pm!E
2p

p d2k

~2p!2 F sin~km1apm!sinkm

sin2~km1apm!1„aM~km1apm!…2
1

~sinkm!21~aM!2G . ~5.17!

The sum of these two contributions gives rise to

4g2f!~pm!f~pm!E
2p

p d2k

~2p!2 F „sin~km1apm!2sinkm…sinkm

sin2~km1apm!1„aM~km1apm!…2
1

~sinkm!21~aM!2G ~5.18!

which vanishes forpm50. This means that the mass correction to the scalar particles exactly vanishes in the one-loo
However, each term logarithmically diverges in the limita→0, which suggests that the choice of the free part of
Lagrangian should be at least invariant under the lattice supersymmetry transformation to ensure the divergence can
such as in the present formulation. This integral vanishes fora→0 for the domain outside Eq.~5.8! and for fixedpm . For the
domain inside Eq.~5.8! and for fixedpm , the integral is reduced to the continuum result in the limita→0.

For an infinitesimalpm , we have

4g2f!~pm!f~pm!E
2p

p d2k

~2p!2
H (

m
apm coskm sinkm

~sinkm!21~aM!2 (
n

apn

]

]kn
F 1

sin2~km!1„aM~km!…2
G2

1

2 (
m

@~apm!2 sin2km#

@~sinkm!21~aM!2#2
J

54g2f!~pm!f~pm!E
2p

p d2k

~2p!2
H (

m
apm coskm sinkm

1

2 (
n

apn

]

]kn

1

@sin2~km!1„aM~km!…2#2

2

1

2 (
m

@~apm!2 sin2 km#

@~sinkm!21~aM!2#2
J

522g2f!~pm!f~pm!E
2p

p d2k

~2p!2
a2(

m
@pm

2 cos 2km1pm
2 sin2 km#

1

@sin2~km!1„aM~km!…2#2

522g2f!~pm!pm
2 f~pm!E

2p

p d2k

~2p!2
a2

1

2 (
m

Fcos 2km1
1

2
~12cos 2km!G 1

@sin2~km!1„aM~km!…2#2
. ~5.19!

This deviates from the renormalization ofF andF! for finite a,

E
2p

p d2k

~2p!2

a2

@sin2 km1„aM~km!…2#2
2E

2p

p d2k

~2p!2

a2
1

2 (
n

Fcos 2kn1
1

2
~12cos 2km!G

@sin2 km1„aM~k!…2#2

5E
2p

p d2k

~2p!2

a2
1

4 (
n

~12cos 2kn!

@sin2 km1„aM~km!…2#2
.0 ~5.20!

though this difference vanishes in the limita→0.
074510-8
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D. Self-energy corrections induced by extra couplings

Finally, we examine the effects of the extra couplings in Eq.~4.5! introduced by an argument of Nicolai mapping on t
self-energy of scalar particles. This is given by

1

2!
@gf2~¹1

S1 i¹2
S!f1g„f2~¹1

S1 i¹2
S!f…

!#@gf2~¹1
S1 i¹2

S!f1g„f2~¹1
S1 i¹2

S!f…

!#

→g2@„f2~¹1
S1 i¹2

S!f…

!#@f2~¹1
S1 i¹2

S!f#

→2g2
„~¹1

S1 i¹2
S!f…

!^f!f&^f!f&~¹1
S1 i¹2

S!f14g2
„~¹1

S1 i¹2
S!f…

!^f!f&^f!~¹1
S1 i¹2

S!f&f

14g2f!^„~¹1
S1 i¹2

S!f…

!f&^f!f&~¹1
S1 i¹2

S!f14g2f!^„~¹1
S1 i¹2

S!f…

!f&^f!~¹1
S1 i¹2

S!f&f

14g2f!^„~¹1
S1 i¹2

S!f…

!~¹1
S1 i¹2

S!f&^f!f&f. ~5.21!

The first term in Eq.~5.21! gives

2g2
„~¹1

S1 i¹2
S!f~pm!…!~¹1

S1 i¹2
S!f~pm!E

2p

p d2k

~2p!2

1

sin2~km1apm!1„aM~km1apm!…2
a2

sin2~km!1„aM~km!…2

52g2f~pm!!S sinapm

a D 2

f~pm!E
2p

p d2k

~2p!2

1

sin2~km1apm!1„aM~km1apm!…2
a2

sin2~km!1„aM~km!…2
. ~5.22!

This gives for an infinitesimalpm

2g2f~pm!!pm
2 f~pm!E

2p

p d2k

~2p!2

a2

@sin2~km!1„aM~km!…2#2
. ~5.23!

The second term gives

4g2XS i
sinap1

a
2

sinap2

a Df~pm! C!

f~pm!E
2p

p d2k

~2p!2

a

sin2~km!1„aM~km!…2
2 i sin~k11ap1!1sin~k21ap2!

sin2~km1apm!1„aM~km1apm!…2

~5.24!

which gives for an infinitesimalpm

4g2~2 ip12p2!f~pm!!f~pm!E
2p

p d2k

~2p!2

a

sin2~km!1„aM~km!…2
F2 iap1 cosk11ap2 cosk2

sin2~km!1„aM~km!…2
1~2 i sink11sink2!

3(
n

apn

]

]kn

1

sin2~km!1„aM~km!…2
G

54g2~2 ip12p2!f~pm!!f~pm!E
2p

p d2k

~2p!2

a

sin2~km!1„aM~km!…2
1

2 F2 iap1 cosk11ap2 cosk2

sin2~km!1„aM~km!…2
G

5g2~2 ip12p2!f~pm!!f~pm!E
2p

p d2k

~2p!2

a

sin2~km!1„aM~km!…2
F ~2 iap11ap2!(

n
coskn

sin2~km!1„aM~km!…2
G

5g2~2pm
2 !f~pm!!f~pm!E

2p

p d2k

~2p!2

a2(
n

coskn

@sin2~km!1„aM~km!…2#2
. ~5.25!

The third term gives the complex conjugate of the second term, which agrees with the second term itself. Thus
altogether
074510-9
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22g2f~pm!!pm
2 f~pm!E

2p

p d2k

~2p!2

a2(
n

coskn

@sin2~km!1„aM~km!…2#2
. ~5.26!

The fourth and the fifth terms give precisely the negative of the contributions of the conventional interactions to the sel
of scalar particles, Eqs.~5.16! and ~5.17!, which we have already evaluated.

If we collect all the terms arising from the extra couplings together, we obtain

2g2f~pm!!pm
2 f~pm!E

2p

p d2k

~2p!2

a2F12(
n

coskn1
1

2 (
n

cos 2kn1
1

4 (
n

~12cos 2kn!G
@sin2~km!1„aM~km!…2#2

~5.27!

which vanishes in the limita→0, as it should be since the conventional interaction already ensures supersymmetry in th
a→0. These terms do not help the wave function renormalization factor off agree with that of eitherF or c. The breaking
of supersymmetry in the wave function renormalization factors persist foraÞ0 even if one includes the effects of the ext
couplings induced by an analysis of Nicolai mapping.

VI. LOW-ENERGY EFFECTIVE ACTION WITH ONE-LOOP CORRECTIONS

The low-energy effective action which includes the one-loop quantum corrections is written in a momentum repres
as

Le f f5~11zc!c̄ ip”c2mc̄c2~11zf!f!pm
2 f2

m2

11zF
f!f1•••

5~11zc!F c̄ ip”c2
m

11zc
c̄cG2~11zf!Ff!pm

2 f1
m2

~11zF!~11zf!
f!fG1••• ~6.1!

after the elimination of the auxiliary fieldsF andF!. Here we defined the finite wave function renormalization factors@see
Eqs.~5.7!, ~5.14! and ~5.19!#

zF52g2E
2p

p d2k

~2p!2

a2

@~sinkm!21„aM~km!…2#2
, zc52g2E

2p

p d2k

~2p!2
F a2

1

2 (
n

coskn

@sin2~km!1„aM~k!…2#2
G ,

~6.2!

zf52g2E
2p

p d2k

~2p!2
F a2

1

2 (
n

cos 2kn1
1

4 (
n

~12cos 2kn!

@sin2~km!1„aM~k!…2#2
G .

Supersymmetry suggests the uniform wave function renormalization

11zc511zf ~6.3!

and the degeneracy of the mass parameter

m2

~11zc!2
5

m2

~11zF!~11zf!
~6.4!

or in the accuracy of one-loop correction

2zc5~zF1zf!. ~6.5!

If one includes the contributions from the extra couplings, these conditions are replaced by

zc5zf1zextra , 2zc5~zF1zf1zextra! ~6.6!

with @see Eq.~5.27!#
074510-10
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zextra52g2E
2p

p d2k

~2p!2

a2F211(
n

coskn2
1

2 (
n

cos 2kn2
1

4 (
n

~12cos 2kn!G
@sin2~km!1„aM~km!…2#2

52zc2zF2zf . ~6.7!
et
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It is interesting that the degeneracy of the mass param
namely, the second condition in Eq.~6.6!, is satisfied even
for finite a in the presence of the extra couplings. Howev
the uniform wave function renormalization condition

zc5zF ~6.8!

is still broken sincezc,zF for finite a. The supersymmetry
is thus broken foraÞ0 even with the extra couplings in
duced by the Nicolai mapping.

In the continuum limita→0, we have

zc5zF5zf , zextra50 ~6.9!

and the supersymmetry is recovered,with or without the ex-
tra couplings. This conclusion is valid up to any finite ord
in perturbation theory.

VII. CHECK OF WARD IDENTITY

The Nicolai mapping suggests that the Lagrangian is w
ten as

L5c̄a~x!
]ja~x!

]Ab~y!
cb~y!2

1

2 (
a

„ja~x!…2 ~7.1!

where10

$Aa%5~A,B!, ~7.2!

and thus we have the relation

2^ca~x!c̄b~y!&5E Dj
]Aa~x!

]jb~y!

3expF2(
x

1

2 (
a

„ja~x!…2G ~7.3!

which is equal to

^Aa~x!jb~y!&5E Dj
]Aa~x!

]jb~y!

3expF2(
x

1

2 (
a

„ja~x!…2G ~7.4!

10We identify the spinor index of the Dirac fermion with the flav
index of the scalar particle, an apparently Lorentz noninvariant
eration.
07451
er,

,

r

t-

as can be confirmed by expandingAa(x) formally in powers
of jk(z). These relations give rise to the identity@11,12#

^ca~x!c̄b~y!&1^Aa~x!jb~y!&50. ~7.5!

We check this identity for a small momentum region. T
fermion propagator with one-loop quantum corrections
given by

^cc̄&5
1

2 i ~11zc!p”1m

5
1

m
1

i ~11zc!p”

m2
1O~pm

2 ! ~7.6!

in the low-energy limitup” /mu!1 but with fixeda.
We next note

U5mA1
g

A2
~A22B2!, V5mB1

2g

A2
AB. ~7.7!

We evaluate

^j1~x!A~y!&5~¹1
S1D (2)!^A~x!A~y!&2m^A~x!A~y!&

2
g

A2
^~A22B2!~x!A~y!&2¹2

S^B~x!A~y!&

~7.8!

with the interaction terms

Lint52
g

A2
„~m2D (2)!A…~A22B2!2

2g

A2
~m2D (2)!B…

3~AB!2
g

4
@~A22B2!214~AB!2#

1
g

A2
~¹1

SA2¹2
SB!~A22B2!1

2g

A2
~2¹1

SB2¹2
SA!

3~AB!2
2g

A2
c̄~A1 iBg5!c. ~7.9!

We first have
-

0-11
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~¹1
S1D (2)!^A~x!A~y!&2m^A~x!A~y!&

5
2 ip12m

~11zf!pm
2 1

m2

~11zF!

52
~11zF!

m
2

ip1~11zF!

m2
1O~pm

2 !. ~7.10!
07451
We next evaluate

2
g

A2
^~A22B2!~x!A~y!&. ~7.11!

The contributions from the conventional interaction term
give in momentum representation
ions
2g2H E
2p

p d2k

~2p!2

a2

~sinkm!21„aM~km!…2
1

~sinkm1apm!21„aM~km1apm!…2
J a2M~apm!

~sinapm!21„aM~apm!…2
~7.12!

which gives for smallpm

zF

m
. ~7.13!

The contributions from the extra couplings give in momentum representation

2g2H E
2p

p d2k

~2p!2

a2

~sinkm!21„aM~km!…2
1

~sinkm1apm!21„aM~km1apm!…2
J ai sinap1

~sinapm!21„aM~apm!…2

24g2H E
2p

p d2k

~2p!2

a

~sinkm!21„aM~km!…2
i ~sink11ap1!

~sinkm1apm!21„aM~km1apm!…2
J a2

~sinapm!21„aM~apm!…2

~7.14!

which gives for smallpm

~zF2zc!
ip1

m2
. ~7.15!

This term vanishes fora→0.
These calculations show that the Ward identity@11,12#

^cc̄&111^j1~x!A~y!&50 ~7.16!

is precisely satisfied up to the orderO(pm
2 ),

^cc̄&5
1

2 i ~11zc!p”1m
5

1

m
1

i ~11zc!p”

m2
1O~pm

2 !,

^j1~x!A~y!&5~¹1
S1D (2)!^A~x!A~y!&2m^A~x!A~y!&2

g

A2
^~A22B2!~x!A~y!&2¹2

S^B~x!A~y!&¥

52
~11zF!

m
2

ip1~11zF!

m2
1

zF

m
1~zF2zc!

ip1

m2
1O~pm

2 !,

~7.17!

52
1

m
2

i ~11zc!p1

m2
1O~pm

2 !

even forzFÞzc at aÞ0, if one recalls (p” )115p1. But in any case the correction terms induced by the extra interact
vanish, zF2zc→0, in the limit a→0. Consequently, the Ward identity in the limita→0 is not modified by the extra
0-12
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interactions introduced by the Nicolai mapping. This is consistent with the numerical findings of the behavior of variou
and not-exact Ward identities, which appear to be equally valid numerically in the limita→0 @12#.

VIII. DISCONNECTED VACUUM DIAGRAMS

Contributions to the vacuum energy cancel exactly for the free part of the Lagrangian due to the precise lattice su
metry. The lowest nontrivial contributions from interaction terms arise in the two-loop level. The~conventional! two-loop
scalar contribution is given by

1

2!
g2@Ff21~Ff2!!#@Ff21~Ff2!!#→g2^~Ff2!!Ff2&

52g2^F!F&^f!f&^f!f&

522g2E
2p

p d2p

~2p!2E2p

p d2k

~2p!2

1

~sinpm!21„aM~pm!…2

3
~sinkm!2

~sinkm!21„aM~km!…2
1

sin2~km1pm!1„aM~km1pm!…2
. ~8.1!

The two-loop contribution which contains a fermion loop is given by

1

2!
~2g!2c̄~P1fP11P2f!P2!cc̄~P1fP11P2f!P2!c

→~2g!2c̄P2f!P2cc̄P1fP1c

→2~2g!2^f!f&Tr@^P1cc̄P2&^P2cc̄P1&#

52~2g!2
1

2E2p

p d2p

~2p!2E2p

p d2k

~2p!2

1

~sinpm!21„aM~pm!…2

3TrF igm sin~km1pm!

sin2~km1pm!1„aM~km1pm!…2
igm sinkm

~sinkm!21„aM~pm!…2
Gf

54g2E
2p

p d2p

~2p!2E2p

p d2k

~2p!2

1

~sinpm!21„aM~pm!…2
F sin~km1pm!sinkm

sin2~km1pm!1„aM~km1pm!…2
1

~sinkm!21„aM~km!…2
G .

~8.2!

In the limit a→0, these two integrals contain logarithmically divergent infrared sigularities in the rescaled variablespm and
km . These divergences, which agree with the divergences in continuum theory, precisely cancel each other. How
remaining finite parts of these two integrals do not quite cancel each other even in the limita→0 and thus lead to the
nonvanishing vacuum energy. This is a result of supersymmetry breaking by the failure of the Leibniz rule. This comp
arises since the vacuum diagrams are not finite even ind52 ~in fact contain logarithmic overlap-divergence! and all the
momentum regions contribute to these vacuum diagrams.

A way to remove these finite contributions in the limita→0 ~without relying on the extra couplings! is to apply a higher
derivative regularization@15# which amounts to the replacement of all the terms in the free part of the Lagrangian~4.1! as

L05c̄~D (1)1D (2)!Rc2f!D (1)
† D (1)Rf1F!RF2mc̄Rc2m@FRf1~FRf!!#1FD (2)Rf1~FD (2)Rf!! ~8.3!

whereR is the higher derivative regulator

R5
D (1)

† D (1)1D (2)
2 1M2

M2
~8.4!

with a new fixed mass scaleM. This regularization preserves the lattice supersymmetry~3.1! and~3.2! in the free part of the
Lagrangian. By this way, all the nonvanishing contributions are limited to the momentum regionspm

2 <M2, and the vacuum
diagrams completely cancel in the limita→0.
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It is interesting to see how the extra couplings help to remove the vacuum energy even foraÞ0. This is given by

1

2!
@gf2~¹1

S1 i¹2
S!f1g„f2~¹1

S1 i¹2
S!f…

!#@gf2~¹1
S1 i¹2

S!f1g„f2~¹1
S1 i¹2

S!f…

!#

→g2^@„f2~¹1
S1 i¹2

S!f…

!#@f2~¹1
S1 i¹2

S!f#&

54g2^„~¹1
S1 i¹2

S!f…

!f&^f!~¹1
S1 i¹2

S!f&^f!f&12g2^„~¹1
S1 i¹2

S!f…

!~¹1
S1 i¹2

S!f&^f!f&^f!f&

524g2E
2p

p d2p

~2p!2E2p

p d2k

~2p!2

1

~sinpm!21„aM~pm!…2
F sin~km1pm!sinkm

sin2~km1pm!1„aM~km1pm!…2
1

~sinkm!21„aM~km!…2
G

12g2E
2p

p d2p

~2p!2E2p

p d2k

~2p!2

1

~sinpm!21„aM~pm!…2
~sinkm!2

~sinkm!21„aM~km!…2
1

sin2~km1pm!1„aM~km1pm!…2
.

~8.5!
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We thus confirm that the vacuum energies~8.1!, ~8.2! and
~8.5! put together completely cancel for finitea, and this is a
nice aspect of the analysis based on the Nicolai mappin

IX. DISCUSSION AND CONCLUSION

We have examined theN52 Wess-Zumino model ond
52 Euclidean lattice in connection with a restoration of t
Leibniz rule in the limita→0. In particular, we examined
the Wilson fermion instead of the Ginsparg-Wilson fermio
We also examined the effects of extra couplings introdu
by an analysis of Nicolai mapping.

As for the Wilson fermion, it introduces linear and log
rithmic divergences in some of the individual Feynman d
grams, though those divergences precisely cancel am
Feynman diagrams for correlation functions in the formu
tion which ensures supersymmetry for the free part of
Lagrangian. In the general analysis of the Leibniz rule
Ref. @15#, each Feynman diagram was made finite to ens
the Leibniz rule in the limita→0. In such a case, the lattic
regularization would enjoy more freedom since it is intr
duced just to allow the numerical and other nonperturba
analyses, and the lattice artifact is safely removed in the li
a→0. Each Feynman diagram in theN52 Wess-Zumino
model in d52 which was analyzed here, however, is n
finite in general in particular with the Wilson fermion, an
the precise cancellation of these divergences forfinite a is
important.

As for the effects of the extra couplings introduced by
analysis of Nicolai mapping, which breaks hypercubic sy
metry, these couplings do not completely remedy the bre
ing of supersymmetry induced by the failure of the Leibn
rule, though those extra couplings ensure the vanish
vacuum energy. We also illustrated how the Ward iden
@11,12# is satisfied even if the uniform wave function reno
malization, which is required by supersymmetry, is not s
isfied for finitea.

For a minimal latticization of the Wess-Zumino model
d52 which ensures lattice supersymmetry for the free p
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of the Lagrangian but without the extra couplings

L5c̄~D (1)1D (2)!c2mc̄c22gc̄~P1fP11P2f!P2!c

2f!D (1)
† D (1)f1F!F2m@Ff1~Ff!!#

2g@Ff21~Ff2!!#1FD (2)f1~FD (2)f!!, ~9.1!

we have illustrated that all the supersymmetry break
terms in correlation functions induced by the failure of t
Leibniz rule are irrelevant in the sense that those terms
vanish in the limita→0. This is consistent with the genera
analysis of perturbatively finite theory on the lattice@15#.

The lattice operation implies

„¹~ f g!…~x!5~¹ f !~x!g~x!1 f ~x!~¹g!~x!

1a~¹ f !~x!~¹g!~x! ~9.2!

if one defines (¹ f )(x)5„f (x1a)2 f (x)…/a, and thus the
breaking of the Leibniz rule is of orderO(1) if the momen-
tum carried by field variables is of orderO(1/a). To the
extent that the derivative of field variables is required
supersymmetry to balance the dimensionality of bosonic
fermionic variables, the Leibniz rule is indispensable for t
validity of supersymmetry. It is well known that supersym
metry improves ultraviolet properties of field theory. In th
context of lattice theory, one may rather reverse the argum
and one may even argue that the finite theory isrequired to
accommodate supersymmetry in a consistent manner s
the conventional definition of derivative

d f~x!

dx
5 lim

a→0

f ~x1a!2 f ~x!

a
~9.3!

which satisfies the Leibniz rule presumes that the momen
carried by the field variablef (x) is negligibly small com-
pared to 1/a. This is realized in lattice theory only if the
theory is finite at least in the perturbative sense.
0-14
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In conclusion, our analysis is consistent with the p
analyses of thed52 Wess-Zumino model and we believ
that our analysis gives an explanation why these past n
perturbative numerical analyses worked@11,12#, in particu-
lar, both of the Ward identity which is expected to be ex
on the lattice and those Ward identities which are expecte
be broken by the lattice artifacts11 @12#. A numerical calcu-
lation of the mass correction also appears to be consis
with the ~continuum! perturbative estimate, as was noted
@12#. All the supersymmetry breaking effects in correlati
functions induced by the failure of the Leibniz rule becom
irrelevant in the limita→0 for a finite theory. The existenc

11I thank S. Catterall for a helpful communication related to th
issue.
.
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of the Nicolai mapping in thed52 Wess-Zumino model is a
nice property of a specific formulation of the specific mod
such as ensuring the vanishing vacuum energy, but it is n
necessary condition for a consistent definition of supersy
metric models on the lattice in the limita→0. The finiteness
is a more universal condition which ensures supersymm
in the limit a→0.

Finally, the analyses of other aspects of supersymmetry
the lattice, which were not discussed in the present paper
found in Refs.@20–23#.

Note added. Golterman and Petcher@24# analyzed related
issues in the context of theN51 Wess-Zumino model ind
52. I thank M. Golterman for calling the above work to m
attention. S. Elitzur and A. Schwimmer@25# discussed a re-
lated problem in a Hamiltonian formalism. I thank A
Schwimmer for calling their work to my attention.
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