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We examine theN=2 Wess-Zumino model defined on tlde=2 Euclidean lattice in connection with a
restoration of the Leibniz rule in the limi—0 in perturbatively finite theory. We are interested in the
difference between the Wilson and Ginsparg-Wilson fermions and in the effects of extra interactions introduced
by an analysis of Nicolai mapping. As for the Wilson fermion, it induces a linear divergence to individual
tadpole diagrams in the lim&— 0, which is absent in the Ginsparg-Wilson fermion. This divergence suggests
that a careful choice of lattice regularization is required in a reliable numerical simulation. As for the effects of
the extra couplings introduced by an analysis of Nicolai mapping, the extra couplings do not completely
remedy the supersymmetry breaking in correlation functions induced by the failure of the Leibniz rule in
perturbation theory, though those couplings ensure the vanishing of vacuum energy arising from disconnected
diagrams. Supersymmetry in correlation functions is recovered in thedimid with or withoutthose extra
couplings. In the context of lattice theory, it may be properly said that supersymmetry does not improve
ultraviolet properties but rather it is well accommodated in theories with good ultraviolet properties.
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[. INTRODUCTION perturbatively and clarify several basic issues involved
which may become relevant in an actual numerical simula-
It is important to define the supersymmetric Wess-Zumindtion. First, we examine the use of the Wilson fermion instead
model[1] on the lattice in such a way that the nonrenormal-of the Ginsparg-Wilson fermion since the Wilson fermion is
ization theoren{2,3] and consequently the absence of qua-much easier to handle numerically. However, the Wilson fer-
dratic divergence is preserved. Since the absence of quanion induces a strong chiral symmetry breaking and thus it
dratic divergence arises from a subtle cancellation of bosonits important to see if this introduces any new aspect into the
and fermionic contributions, we have to ensure the precisproblem. The suggestion in R¢fl5] is based on makingll
(not approximate Bose-Fermi cancellation. This task is not the Feynman diagrams finite, namely, the cancellation of di-
easy if one recalls that the Leibniz rule is generally brokervergences among Feynman diagrams is not sufficient in gen-
on the latticd 4]. See Refg5—14] for the analyses of related eral. If one applies this criterion to the present problem, we
issues. encounter one-loop level divergences in some of the indi-
Recently, it was suggesté¢dls] that a perturbatively finite vidual Feynman diagrams for correlation functions though
theory, if latticized, could preserve supersymmetry to all or-those divergences cancel among bosonic and fermionic con-
ders in perturbation theory in the sense that the supersymméributions.(In disconnected vacuum diagrams, two-loop dia-
try breaking terms induced by the failure of the Leibniz rule grams contain divergencesn particular, the Wilson fermion
become irrelevant in the lima—0. It was demonstrated in introduces a linear divergence to individual tadpole diagrams
Ref. [15] that this is in fact realized if one first renders the in d=2, which is absent in the Ginsparg-Wilson fermion.
4-dimensional Wess-Zumino model finite by applying theThe presence of linear divergences suggests that the lattice
higher derivative regularization. A non-perturbative confir-regularization is not arbitrary but needs to be a “well-
mation of this proposal has not been given yet, but we bebehaved” one, which ensures the precise cancellation of
lieve that a perturbative confirmation of the absence of quathese linear divergences among diagramsafétO, such as
dratic divergence is a prerequisite for the nonperturbativén a formulation with precise lattice supersymmetry in the
analysis® In Ref.[15], the Ginsparg-Wilson fermiofl7—-19  free part of the Lagrangianlf all the Feynman diagrams
was utilized, which has a nice chiral property but at the samshould be absolutely convergent, the latticization would en-
time introduces certain subtle aspects to the analy<ib joy more freedom to recover supersymmetry in the lienit
A 2-dimensional reduction of the Wess-Zumino model,—0.
which exhibitsN=2 supersymmetry, is finite perturbatively = The second issue analyzed is the role played by extra
with qualifications to be specified later, and thus it provides acouplings introduced by an analysis of Nicolai mappi6g
good testing ground of the suggestion made in R&6],  The Nicolai mapping in the present context suggests an ap-
though the crucial issue of quadratic divergence cannot bpearance of exta interactiofig,11,13 which vanish if the
studied in this model. In the present paper, we examine theeibniz rule is satisfied on the lattice. Also these extra terms
N=2 Wess-Zumino model on thd=2 Euclidean lattice spoil the naive hypercubic symmetry on the lattice. Because

1t should be noted that the lattice in this context is introduced not 2The actual numerical analysis, for example, is simplest in the
to control the divergences but to make numerical and other nonpesimplest form of the Lagrangian, but due care is required to ensure
turbative analyses possible. supersymmetry in the limia—0.
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of these novel features of the extra interactions, one magranslation of the continuum theory except for the Wilson
hope that these extra terms might remedy the failure of théerm and its superpartners. Namely, the terms

Leibniz rule appearing in the remaining conventional inter-

action terms. We analyze this issue in the framework of per- —

turbation theory. Our result shows that these extra terms do Lw=¢D2)p+FD )¢+ (FD2)¢)" (2.6)
not completely remedy supersymmetry in correlation func-

tions, which is broken by the failure of the Leibniz rule, at gtand for a naive supersymmetrization of the Wilson term,

least in weak coupling perturbation theory, though thoseyhich induce a hard breaking of continuum chiral sym-
terms ensure the vanishing of vacuum energy arising fromyeqry,

disconnected diagrams. As far as the correlation functions The |ast two terms in Eq.(2.1) vanish if the

are concerned, supersymmetry is recovered in the lamit | gipniz rule for VS should hold on the lattice, namely,

—0 with or withoutthose extra couplings. it ¢2(x)(Vi¢)(x)=%(Viqﬁ)(x). This fact suggests that

the extra terms might remedy the supersymmetry breaking
induced by the failure of the Leibniz rule in the remaining
interaction terms. These extra terms also break(kypen
We start with a Lagrangian defined in terms of the Wilsoncubic symmetry on the lattice.
fermion on thed=2 Euclidean lattice The elimination of the auxiliary field§ and F* in the
starting Lagrangian gives

II. N=2 WESS-ZUMINO MODEL AND NICOLAI
MAPPING

L=y(D 1)+ D 2) y—Mpth—2g(P . $P  +P_¢*P_) ¢

—¢*D{;)D1yp+F*F—m[Fp+(F)*] L= (D 1)+ D) = (P W'+ P_(W")*)y
—g[F¢*+(F¢?)*]+FD(2yp+(FD)¢h)* = ¢"D(1D(1)¢~ (D)) "D(2yb+(W')"D 5
+QPAVEHIVS) G+ g(PHTSHIVE)B) 2. W (D(g)¢)" = (W)"W' + W' (V+iV5) ¢

’ S, ;vS *
where ¢ is a two-dimensional Dirac spinor. Since we are +(WI(Vi+iV3)¢) 2.7
interested in thed=2 model as a toy model for
4-dimensional theory, we choose the superpotential to be gjth W’ =me¢+g¢? by noting

specific form
W' (¢)=mep+ge*. (2.2

Here we defined

g ¢(x>vi¢(x>=—§ V3o(x)(x)=0. (2.9

1 ~ ~ This La i ith th introduced in Ref
TS ) — o grangian agrees with the one introduced in Refs.
D))= vV () =y 55 (xtap) = y(x=ap)), [7,11,19 by an analysis of Nicolai mappint.

2.3 The Nicolai mapping here is defined by

Dy b(X)=2 Vay(x)
@ . £1=(V$+D o) A—U—VSB,

1 R R (2.9
=D, —(p(x+aw)+ y(x—au)—2¢4(X)).
We note the important property Exf(x)(Vig)(x) )
=—3(V5)(X)g(x). Our Euclideany matrix convention is with
- X == I il == y
V2 V2
When we have the operat@{;,Dy) in the bosonic sector, (2.10
we adopt the convention to discard th& 2 unit matrix. The
terms V= i(w’ —(W")™).
_ V2i
Liin= 9D ¢— ¢*D(Tl)D(1)¢+ F*F (2.9

stand for the kinetigKahler terms. The last two terms in  SRecently, the Nicolai mapping was extended to ¢he2 Wess-
Eq. (2.1 are the extra terms introduced by an argument ozumino model defined in terms of Ginsparg-Wilson operators,
Nicolai mapping[7], while other terms are the naive lattice which makes chiral symmetry manifgg6].
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If one uses the specific representatiomoiatrices szl): —D(1y, Dq)¥ys+ ¥sD1y=0,
3.3
1 0 0 -1 : (
1_ 2= Dy=D), D(2)ys—vsD(2)=0.
4 (0 _1), 4 (—1 0), @~ @ (2) )
(2.1)  Under the transformatio(8.1), it can be confirmed that the
0 i kinetic term
V5= ~i 0

f Mkm:f [—e[P_¢+P,$*ID)—€[P_F*

the Jacobian for the transformation frorg;(&,) to (A,B)
precisely agrees with the determinant of the fermion operator

in Eq. (2.7). The bosonic part of the Lagrangian is then writ- + p+|:]}D(l),/,+J ¢*(9Ma#:p+w
ten as
1 +f d,0,€P_ +fF*?P_D
S Loosod )=~ 2 5[0+ £00] (212 PouIneP -y WY
and the partition function is given by +f FeP D()y=0 (3.9

is in fact invariant. The mass term

zZ= J Dy DyDADB exp[g L(X)
Lnass — mJ‘ﬂ_ mF¢$—mF* ¢* (3.5

and the Wilson term

1
- [ peim, exp[—§ §[f§<x>+f§<x>]} (213

if one imposes universdperiodig boundary conditions both Lw= 4D o)+ FD g+ (FD5y$)* (3.9
on fermionic and bosonic variables. The vanishing of the
vacuum energy is thus ensured by the Nicolai mapping eveare also confirmed to be invariant under the above supersym-

for a# 0. The partition function is reduced to metry transformation by using the relatiol ;D)
=D»\D1y.
. R (2)~(1)
Tr(—1)F exd — BH] (2.149 The variation of thgconventional interaction terms

if the continuum limita— 0 is well-defined. The presence of . — _2qu(P, ¢P, +P_¢*P_)y—g[F d2+ (F $?)*]
the Nicolai mapping would then ensure the degeneracy of 3.7
bosonic and fermionic spectra bf in the continuum limit. '
is given by
Ill. SUPERSYMMETRY TRANSFORMATION

One may define a lattice supersymmetry transformation f 5['int:9f e[—2P_(D(1)$) p—2P(D1y¢") ¢" ¢

parametrized by a constant Dirac-type Grassmann parameter ) X
€ by +P_(D(1y¢p°) ¢+ P (D1y(¢")) ] (3.9

where we used the relationX,f(x)(D9)(X)=
—2,(D1yf)(X)g(x). This variation of the interaction terms
— would vanish if the difference operat@,, should satisfy

S=—e[P_¢+P. ¢"ID(1)= [ P_F"+P.F]

SY=0 b¢=e€P.y, 54 =eP_y the Leibniz rule 2D 1¢)(x)$(x)=(D1)$?)(x). (The

_ _ 3D terms guadratic iny vanish by themselves.
SF=eP Dy, OF"=eP Dy As for the U(1)XUg(1) charges(and holomorphicity
analogous to those in the 4-dimensional the@ly we may

The supersymmetry transformation parametrized by a co
stant Dirac-type Grassmann parametewhich is treated to

be independent o, is given by $=(1,), F=(1,-1), P,¢=(1,0),

Nissign
. N (3.9
51//=—D(1)[P_¢+P+(f) ]6_[P_F +P+F]€ P_lﬁ:(—l,O), m=(—2,0), gz(_S,—l)

Sy=0 Sp=yP.e, 5*=yP e 5F=ED(1)P_6, for the terms appearing in the conventional formulation.
(3.2 Even form=g=0, the Wilson termZ,, in the Lagrangian

6F*=ED(1)P+E. violates theU (1) symmetry.
As for the extra terms introduced by an argument of Nico-
Here we note that lai mapping
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Lextrazg¢2(vf+ivg)¢+(g¢2(vf+ivg) o)’ and other propagators vanish. Here we hm{%: —Dyy).
(3.10 In the momentum representation, we have
which break hypercubic symmetry, they are not invariant un- a?
der the above supersymmetry transformation. Since the lat-  (#¢*)=— 5 5
tice supersymmetry transformation we defined above pre- (sinak,)"+(aM)
serves transformation properties under the hypercubic . )
symmetry, the supersymmetry variation of these extra terms (FF*)y=(—) (sinak,)

do not mix with the variation of other terms. Those extra (sinakﬂ)2+(a/\/l)2'
terms also breakJg(1) symmetry. We reiterate that these
extra terms vanish if the Leibniz rule should hold on the a(aM)
lattice. (Fp)y=(F*p*)= . >,
(sinak,)“+(aM)
IV. FEYNMAN RULES FOR PERTURBATIVE 4.9
CALCULATIONS <lr/jg)_ai'y" sinakﬂ+a(a/\/l)
. . . a ; 2 2
It is interesting to examine to what extent the extra terms (sinak,)"+(aM)

introduced by an argument of Nicolai mappihg,11,17,

namely the last two terms i (2.1), are essential to maintain Where

supersymmetry in perturbation theory. Although the extra 1

terms, which break hypercubic symmetry, do not mix with =N T

other terms under the lattice supsersymmetry transformation M(ak“)_g a(1 cosak,)+m. .4
in Eq. (3.1 as we already explained, the lattice supersymme-

try transformation is not unique and thus we canagiriori The interaction terms for perturbative calculations are

exclude the possible cancellation of supersymmetry breakingiven by

effects among the interaction terth@ur assumption is that

perturbative calculations are universal at least for a small o — _24u(P, 6P, +P_¢*P_)y—g[Fd2+ (F ¢2)*]
coupling constant and independent of the specific definitions

of lattice supersymmetry transformation. One starts with the +gPA(Vi+iV3) d+g(p3(Vi+iV3) )™ (4.5

free part of the Lagrangian

£o=$(D(1)+ Dy ¢— ¢*D21)D(1)¢+ F*F—myy

—mFé+(Fp)* ]+FD¢p+(FDyp)*. (4.

If one sets one of in the extra interaction termse., in the
last two terms inZ;,;) to be a constant

1) d(X) = ¢po=const (4.6)

When we have the operatﬁT(Tl)D(l) in the bosonic sector, then the extra terms go away by notilig(¢(x)Vi¢(x)

we adopt the convention to discard th& 2 unit matrix.
The propagators are given by

(pd*)= ,
D{1;)D(a)+ (—mM+D(z))?

+
(FE*)= () Db
D-(rl)D(l)‘f'(_m"‘ D(Z))Z

(_m+ D(z))
(D@ (—m+D)*

<F¢>=<F*¢*>=<—>D

(1) 2) D(l)D(1)+(_ m-+ D(z))

(@.

4In fact, an exact Ward identity which is regarded as a

=0. This means that the effects of the extra terms introduced
by the Nicolai mapping do not appear in the one-loop dia-
grams if one sets the momenta of external lines at 0. In other
words, only those diagrams where the momenta of external
lines cannot be set to be zero are affected by those extra
terms.

V. LOWER ORDER DIAGRAMS

We now examine several lower order diagrams for corre-
lation functions in perturbation theofyThe theory ind=2
becomes more convergent in higher order diagrams, and one
can confirm that the possible supersymmetry breaking effects
in higher order diagrams become irrelevant in the linit
—0, provided that one-loop subdiagrams are properly
treated. The one-loop diagrams are thus crucial in the analy-
sis of supersymmetry. As for the disconnected vacuum dia-

2) grams, they shall be later analyzed separately.

part of °A perturbative analysis of the 4-dimensional Wess-Zumino model

supersymmetry is known to exist in the Lagrangian defined by thevith the Wilson fermion was performed if8]. In the presend

Nicolai mapping[11,12. We shall analyze this identity later.

=2 model, the perturbation is based ghm<1.
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A. Tadpole diagrams ak,—k, (5.2

The one-loop tadpole diagrams for the scapaconsist of
two diagrams; the first one is a scalar loop and the second is
a fermion loop. The scalar loop contribution is given by ~ and defined

~2gi(F -2 LK @M
~ala (2m)2 (sinak,)2+ (aM)? aM(k,)=2 (1-cosk,)+am (53
g d%k (1 (@M(k,))
~m(2m)?\8/(sink,)?+(@M(k,))*>  In the limit a—0 this diagram diverges as 1/a, namely,

(5.1) linearly divergent. This divergence is worse than the diver-
gence in continuum theoryand also in the lattice theory
where we rescaled the integration variable in the last expreswith the Ginsparg-Wilson fermid, which is logarithmic.

sion as The fermion loop contribution is given by

aiy* sinak,+a(am)
2Tr P, - 5 >
la (27) (sinak,)“+(aM)

2 ¢fﬁ ok
—o92) (2m)?\a

2g¢Tr P (yh)= 29¢f

1 (amk,))

(sink,)?+(@M(k,))?

(5.9

which is precisely canceled by the scalar contribuiidri) for a finite a. However, each diagram is linearly divergent due to

the strong chiral symmetry breaking by the Wilson term. In a numerical simulation, one would need to choose the free part of
the Lagrangian to be lattice supersymmetric, as in the present formulation, so that the cancellation of linear divergence is
exact’ Alternatively, one may introduce an auxiliary regularization such as higher derivative regularization to make each
diagram convergent and thus less sensitive to the paraméetehe limita— 0, as we discussed in 4-dimensional theldry].

B. Induced ¢? coupling
We have contributions from a scalar loop and a fermion loop. The scalar loop contribution is given by

20)20(F S ) ZJ’ mla  d%k a(aM) a(aM)
( 9°HFH)FH)$=29% la(2m)? sirf(ak,+ap,)+(aM)? (sinak,)*+(aM)?
= d%k (aM(k,+ap,)) (amM(k,))
— 2 _ M M ya
2979 p“)d)(p”)ﬁw (2m)? sinf(ak,+ap,)+(@M(k,+ap,))? (sink,)?+ @M(k,))?

(5.5

which approaches a constant for+0. This behavior is consistent with the continuum behavior, but the difference is that all

the momentum regions, not only the infrared region, contribute to the integral. This is an effect of the chiral symmetry
breaking by the Wilson term.
The fermion loop contribution gives

(@aM(k,+ap,))
277)2 sirf(k,+ap,)+(@M(k,+ap,))?

(29)2Tr S(PLYYP )P YyP.)p=—2gh(— P,J(b(p#)J

(@mM(k,))
(sink,) 2+ (@M(k,))?

(5.6

5The power counting with the Ginsparg-Wilson fermion is identical to that of continuum ttiédty

’If all the Feynman diagrams should be absolutely convergent, one would enjoy more freedom in choosing lattice regularization. | thank
H. Kawai and T. Onogi for a helpful comment on this point.
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which is precisely canceled by the scalar contribui{drb) even for a finite lattice spacing

Each Feynman diagram which gives induced couplings higher powesssirch as¢® is reduced to the continuum result
in the limit a—0. Those couplings in any case cancel among the scalar and fermion contributions even far flitiee
nonrenormalization of the superpotential in this sense is thus maintained in the one-loop level, and in higher-loop levels in the
limit a—0.

C. Self-energy corrections

The simplest self-energy correction is that to the auxiliary fi€ldesnd F*. The one-loop correction is given by
1 2 2 *\ 2\ [ * 2 * * *
2129 F($%(d"))F"=29°FF (9" ) (¢ ")

mla  d2k a2 a2
— 2 *
=29°FF 2 2 (i 2 2
—mla(2m)? sirf(ak,+ap,)+(aM)? (sinak,)?+(aM)

=2 2F( )F*( )fﬂ d2k 1 a2 (57)
SRR Py sirPk, + (@aM(k,))? siré(k,+ap,)+@M(k,+ap,))?
This integral vanishes foa— 0 if one keeps the integration domadutside
lk,|<& forall pu (5.8

for arbitrarily small but finites and for fixedp,, . The integration inside the above domain gives a finite continuum result if
one notes

2

(sink,,) 2+ @M(k,))?=Kk: + =kZ+amk, +(am)? (5.9

1 2
Eklﬁam

inside the above domain. A rescalinglgf back to the original momentum variables— ak,, gives the continuum result in
the limit a—0.
The fermion self-energy correction is given by

1 — —_
5(29)21,//(& PP +P_¢"P)pih(P,pP +P_¢"P_)

—(29)2[Y(P+ P (Yh)P_*P )yt Y(P_¢*P ) {(ypih) (P pP 1) 4]
—(20)YP (Yh)P_ i pd*)+ YP_(Yyh)P Y pb*)]

_ wa d?k | aiy” sin(ap,+ak,) 2 ]
(20)°0(Pu) —mla(2m)? | sirf(ap,+ak,)+(aM)? (sinak,)?+(aM)? ¥p.)
— = d’k | aiy*sin(ap,+k,) 1 ]
=(2g)? £t . 5.1
(20) 'ﬂ(p“)fw(zwﬁ Sir(ap, + k) + (aM)? (sink) 2+ (ann?| VP 510

This integral vanishes if one sgtg =0, which means that the fermion mass receives no quantum correction when renormal-
ized at vanishing momentum, despite the chiral symmetry breaking by the Wilsoff ®his.integral also vanishes for the
domain outside Eq5.8) in the limita—0, and the integral is reduced to the continuum result for the domain insidé&.Bg.
in the limita—0 for fixedp,, .

To analyze the wave function renormalization, we consider the case with an infinitgsjrbat the lattice spacing kept
fixed® Namely,

8This vanishing mass correction arises from the differences of the Feynman rules in the present model and QCD. Also, all the higher loop
corrections are reduced to tigupersymmetriccontinuum results in the limaé— 0 in the present model. The Wilson term does not always
imply the mass shift.

91t should be noted that we assume a small coupting<1 and infinitesimally small external momentym but otherwise make no
assumption about the lattice spaciag
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|pu/<m, 1/a. (5.11
We thus expand
sin(ap,+k,)=sink,+ap, cosk,, aM(k,+ap,)=aM(k,)+ap, sink,,
(5.12
sinf(ap, +k,)+(aM)?=sirt(k,) +(@M(k,))*+ap, sin 2k, +2aM(k,)ap, sink,.

The integral in this expression is given by

> iy*p, cosk, > iyH sink,[p, sin 2k, +2(aM(k))p, sink,]
o

= d%k “
2 _
a J'7r(27-r)2 [Sinz(kM)-l—(a./\/l(k))z]2 [sinz(kﬂ)+(a/\/l(k))2]3

> iy*p, cosk,
o 1

@M(k)*1?

=a2J7T d% +32i“sink2 .
—m(2m)?  [sirf(k,)+@M(k)?? 2% 7 S p”ﬂky [sirf(k,)+

> iv"p, cosk,

-5 [ A (5.3
27 Jom2m)? | [sirf(k,) +(@M(k)?]?) '

By noting the symmetry undé¢; < k,, we thus have the wave function renormalization for the fermion

1
azz > cosk,

= d%k _
2 .
29 f—w(Zﬂ')Z [sir (k) + @iz | VP 7 PP 519

which disagrees with the finite renormalization factor for the fi¢tdsndF* atp,=0 in Eq.(5.7) for a finite a,

1 1
azi > cosk, azi > (1—cosk,)

fw d?k a? _fw d2k _f d2k 0
—m(2m)? [(sink,)?+@M(k,))?1*  J-=(2m)? [sirP(k,)+ (@M(k))?]? ) a(2m)? [(sink,)?+ (@M(k,))?]?
(5.15

for a# 0, though this difference vanishes in the lirait>0. This shows that the finite wave function renormalization factor
breakssupersymmetry foa+0.

We next examine the self-energy corrections to the scalar &#eld’he contribution from a scalar loop diagram in the
conventionalinteraction terms gives

1
S GF 82+ (F IR 62+ (F2) 1~ GX((F )" F 67)
= 402" (F*F)(6" )
= d%k
= — 2 g% _
URAURTOR] e

L (sink,)” 1
(sink,)%+(aM)? sirP(k,,+ap,) + @Mk, +ap,))?

(5.1

The one-loop fermion contribution is given by
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1 — —
5(29)2¢(P+¢P++ P_¢™"P_)y(P, pP . +P_¢"P_)y

—(29)2yP_¢*P_yyP, Py
——(29)%¢* TP, yyP_WP_yyP.)]¢
d2k
77(277)2

(294" f iy* sin(k,+ap,) iy* sink,, 1

S|n2(k LTap,)+@M(k,+ap,))?* (sink,)?+(aM)?

d’k in(k,,+ap,)sink 1
— 497" (p,.) pM)J sin(k, +ap,)sink, 1

(27T) [Sif\z(kﬂ+apﬂ)+(a/\/l(k“+ apﬂ))Z (SinkM)2+(aM)2 (5.1

The sum of these two contributions gives rise to

(5.18

= d%k
492¢*(pu)¢(pﬂ)f

(sin(k,+ap,)—sink,)sink,, 1
—m (2m)?

sir’(k,+ap,) +(@M(k,+ap,))? (sink,)?+(aMm)?

which vanishes fop,=0. This means that the mass correction to the scalar particles exactly vanishes in the one-loop level.
However, each term logarithmically diverges in the limit-0, which suggests that the choice of the free part of the
Lagrangian should be at least invariant under the lattice supersymmetry transformation to ensure the divergence cancellation,
such as in the present formulation. This integral vanisheafe0 for the domain outside E¢5.8) and for fixedp,, . For the
domain inside Eq(5.8) and for fixedp,,, the integral is reduced to the continuum result in the liait 0.

For an infinitesimabp,, , we have

1
> ap, cosk,, sink, 5 ; [(ap,)? sirfk,]

49%4*(p,) $(p,,) f LI > a !
9°4"(Pu) #(Ps (2m)? ([ (sink,)?+(@M)? = p”&ky Sir(k,,) + @M(k,)2|  [(sink,)?+(aM)?]?
= d%k 1 9 1
=4g2¢* k, sink,— —
560600 |, 2yt | 2 2P ok Sk 5 2 AP o @MU
1
5 2 [(ap,)? sirf k,]
M

[(sink,)?+ (aM)?]?
=—29%¢*(p,) )fﬂ ZkaZE 2 cos X, +p? sir? k !
=—-20¢"(pL) P (p, —7r(27T)2 - [P p Py si “][sinz(kM)Jr(aM(kM))z]z
=—292¢*(p,)p>d(p )f aZEE cos X +3(1—cosz< ) ! . (5.19

SR (2m? 2% ho2 " [sirt(k,) + @M(k,))?]?
This deviates from the renormalization Bfand F* for finite a,
1 1
s 2 s aZEEV cos X, + = (1-cos X,)
f—w(zw)z [sir? k,+ (@M(k,))?]? - J—w(zw)Z [sir? k,+ (@M(k))?]?
1
" aZZEV(l—cosZ(,,)
= 0 5.2
f_w(zw)Z [sir? kM+(aM(k#))2]2> (629

though this difference vanishes in the linait-0.
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D. Self-energy corrections induced by extra couplings

Finally, we examine the effects of the extra couplings in &g5) introduced by an argument of Nicolai mapping on the
self-energy of scalar particles. This is given by

§[9¢ (VIHiV2)o+9(¢*(Vi+iV3) ) Jgd (Vi+iV3) b+ 9(4*(Vi+iV3)4)']
—g°(2(Vi+iVI) ) I H*(Vi+iV3) ¢]
=202 (V3+iVI) ) (¢* d)( " $)(VE+iV3) p+ 402 (VI+iV) ) (¢* d)(d*(VI+iVD) $) b
+4G2 B ((VIHIVI) ) )(b" ) (VI HiIVE) p+4g?d* ((VI+IVI) ) ) (" (VI+iV3) )b
+AQ2 P ((VI+iVH ) (VI+iV3) h)( " ) b (5.21)
The first term in Eq(5.2]) gives

1 a2

(27r)23|n2(k Ltap,)+@M(k,+ap,))? sirf(k,) +@M(k,))?

2G2(VS+iIVS) b(p,))* <V1+|VS>¢<p#>f

nap,
a

2 = d%k 1 a2
) f (5.2

-w(2m)?sirf(k,+ap,)+ @Mk, +ap,))? sir(k,)+ @M(k,))?

=20%¢(p,)"

This gives for an infinitesimap,,

2 2¢( )* 2¢( )J“fT d2k a2 (5 23
SOOI | 2 [si (k) + (@M ()PTE |

The second term gives

sina sina
492( i apl pz

which gives for an infinitesimap,,

a —isin(ky+ap;)+sin(k,+ap,)

(277)2 sinf(k,,) + (@M(k,))? sirf(k,,+ap,) +(@M(k,+ap,))?
(5.29

$(p,) ) $(p,) f

a
(277)25|n2( k,)+(@M(k,))?

—iap, cosk;+ap, cosk,
sinz(kﬂ) + (a/\/l(kﬂ))2

+(—i sinky+sink,)

49%(~ip1—P2)h(PL) b(P,) f

XE d 1
p”&ky sirf(k,) + @M(k,, ))2

a 1
(277)2 sirf(k,) + @M(k,, ))22

—iap, cosk;+ap, cosk,
sinz(kﬂ) + (a/\/l(kﬂ))2

=49%(—ip1—P2)d(P)* (p,) J

(—iap1+ap2)2 coskV]

a
— g~ ipy—py) b(p,)* ¢<pﬂ>f (277)23|n2(k | SO TR
aZE cosk,
=g%(—p2)b(p,) d)(p#)f oy [sz(k YV (5.25

The third term gives the complex conjugate of the second term, which agrees with the second term itself. Thus we have
altogether
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K aZ>, cosk,

—29%¢(p,)"p <f>(|0,i)f_w(277)2 (k) + @Mk )P (5.26

The fourth and the fifth terms give precisely the negative of the contributions of the conventional interactions to the self-energy
of scalar particles, Eq$5.16 and(5.17), which we have already evaluated.
If we collect all the terms arising from the extra couplings together, we obtain

21— Ecosk+ Ecos?k+ E(l cos X,)

2
29°¢(p,L)"p ¢(pM)J (2m )2 sk + @MUK, )2 (5.27

which vanishes in the limia— 0, as it should be since the conventional interaction already ensures supersymmetry in the limit
a—0. These terms do not help the wave function renormalization factgr ajree with that of eithef or . The breaking

of supersymmetry in the wave function renormalization factors persisa$d even if one includes the effects of the extra
couplings induced by an analysis of Nicolai mapping.

VI. LOW-ENERGY EFFECTIVE ACTION WITH ONE-LOOP CORRECTIONS

The low-energy effective action which includes the one-loop quantum corrections is written in a momentum representation
as

2

Lerr=(L+2,) BB My (L+2,) 8P b= Ty "

2

lﬂllﬁlﬁ— lﬂlﬂ

_(1+Zlﬂ) (1+Z¢) (ﬁ*pi(ﬁ'f' md}*d) + ... (61)

after the elimination of the auxiliary fields andF*. Here we defined the finite wave function renormalization factse®
Eqgs.(5.7), (5.14 and(5.19]

1
azz > cosk,

S d%k a? S d%k
Zr=29 21 (ai 2 272’ Zv= <Y f 2| rai 272
—m(2m)° [(sink,)"+ (@M(k,))] —m(27) [S|r12(kﬂ)+(a/\/l(k))]
(6.2
|2 —E cos X, + — Z (1—cos X,)
z4=20°
~m(2)? [sinz(kM)+(a/\/l(k))2]2
Supersymmetry suggests the uniform wave function renormalization
and the degeneracy of the mass parameter
m? m?
= 6.4
(1+z,)% (1+zp)(1+zy) €4
or in the accuracy of one-loop correction
22,= (2 +2,). (6.5
If one includes the contributions from the extra couplings, these conditions are replaced by
Z,=24% Zexirar 22y =(Zp+Zy+ Zexira) (6.6

with [see Eq(5.27)]
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1 1
£k a2 -1+, coskV—EZ cosEkV—ZE (1—cos X,)
Z :2 2 v v v
a9 ) (2m? [si(k,)+ (aM(k,))?]2
=22, 72— 2,. (6.7

It is interesting that the degeneracy of the mass parametesis can be confirmed by expandiAg(x) formally in powers
namely, the second condition in E(6.6), is satisfied even of £,.(z). These relations give rise to the identjtil,12

for finite a in the presence of the extra couplings. However,
the uniform wave function renormalization condition

(W () PP(Y)) +(AL(X) E4(Y))=0. (7.9

We check this identity for a small momentum region. The

is still broken sincez,, <z for finite a. The supersymmetry fermion propagator with one-loop quantum corrections is
is thus broken fora#0 even with the extra couplings in- given by

duced by the Nicolai mapping.
In the continuum limita—0, we have

0 (6.9

Zy=Zr=Zy, Zextra—

and the supersymmetry is recoveradgth or withoutthe ex-
tra couplings. This conclusion is valid up to any finite order
in perturbation theory.

VIl. CHECK OF WARD IDENTITY

The Nicolai mapping suggests that the Lagrangian is writ-

ten as
RN T O PP 5
L= 002y, Y2 2 (&0 (T
wherg?
{A}=(AB), (7.2
and thus we have the relation
(x)
—(0PP(Y)) = f D¢ ﬁg 5
xex;{—g > > (E(x)?] (7.3
which is equal to
o(X)
e e
xexp{—g > > (€] (7.9

Oe identify the spinor index of the Dirac fermion with the flavor

YO Sz pem
1 i(1+z)p
_E+—2+0(pi) (7.6)
in the low-energy limit|p/m|<1 but with fixeda.
We next note
U=mA+ %(AZ—BZ), V=mB+ Z—EAB. (7.7
We evaluate
(E100AY))=(V3+D2)(A)A(Y)) ~ M(A(X)A(Y))

(«AZ BA)(X)A(Y)) — VX(B(X)A(Y))
(7.8

with the interaction terms

2
Line=— %«m—D(sz)(AZ—BZ)— %(m—o(zps)
X (AB) — %[(A2—52)2+ 4(AB)?]
+ %(Vi’A—V?B)(AZ—BZ)Jr %(—st—ng)
X (AB)— EZ(A-HB)/SN/. (7.9

index of the scalar particle, an apparently Lorentz noninvariant op-

eration.

We first have
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(Vi+ D 2)(AX)A(Y)) —m(A(X)A(Y)) We next evaluate
—ipy—m
) m’ ~ 9 (A (0AY)). (7.1
(1+z¢)pi+m ﬁ< (X)A(Y))

1+z ip(1+z - , , .
:_( F) _1Pa F) +O(pi)_ (7.10  The contributions from the conventional interaction terms

m m? give in momentum representation
= d%k a? 1 a’M(a
2 | . . . (8P (7.12
-(2m)? (sink,)?+ (@M(k,))? (sink,+ap,)?+ (@M(k,+ap,))?] (sinap,)?+(@M(ap,))?
which gives for smalp,,
Zr
o (7.13
The contributions from the extra couplings give in momentum representation
202 f" d*k a’ 1 ai sinap,
g -(2m)? (sink,)?+ (@M(k,))? (sink,+ap,)?+ (@M(k,+ap,))?] (sinap,)?+ (@M(ap,))?
a2 jw d%k a i(sink,+ap;) a?
g -n(2m)? (sink,) 3+ (@M(k,))? (sink,+ap,)?+ (@M(k,+ap,))?) (sinap,)?+ (@M(ap,))?
(7.149
which gives for smalp,,
ipy
(zF—zw)F. (7.15
This term vanishes foa—0.
These calculations show that the Ward idenfitg,12]
(W) 11+ (E1(0A(Y)) =0 (7.16
is precisely satisfied up to the ord@(pi),
_ 1 i(1+zy)p )
= =—+ ——"—+0(p2),
iy —i(1+z)p+m M m? (P
g
(E10AY)=(VE+D ) (A)A(Y) ~ M(AX)A(Y)) — E«Az— B?)(x)A(y)) ~ VXB(X)A(Y))¥
(1+ze) ipy(1+ze)  z¢ ipy
SRR — +m+(zF—z¢)F+O(pi),
(7.17
1 i(l+zyp, )
= m T"'O(pﬂ)

even forzg#z, ata#0, if one recalls p),;=p;. But in any case the correction terms induced by the extra interactions
vanish, zc—z,—0, in the limit a—0. Consequently, the Ward identity in the limit—0 is not modified by the extra
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interactions introduced by the Nicolai mapping. This is consistent with the numerical findings of the behavior of various exact
and not-exact Ward identities, which appear to be equally valid numerically in thedimi [12].
VIIl. DISCONNECTED VACUUM DIAGRAMS

Contributions to the vacuum energy cancel exactly for the free part of the Lagrangian due to the precise lattice supersym-
metry. The lowest nontrivial contributions from interaction terms arise in the two-loop level(cmventional two-loop
scalar contribution is given by

1
STOF¢7+ (F ™) I[F 62+ (F¢2)"]— g% (F ) F 6?)

=2g%F*F){(¢* ¢)(¢"¢)
= d’p (= d%k 1

=-29° :
—w(2m)?) ==(2m)? (sinp,)*+ (@M(p,))?

y (sink,,)? 1
(sink,,) 2+ (@M(K,))? SirP(k,+p,) + @Mk, +p,))?

8.1
The two-loop contribution which contains a fermion loop is given by

1 2 * v *

5(29) WP pP +P_¢*P_)yh(P,pP . +P_¢*P_ )¢

—(29)%YP_¢*P_yyP . $P ¢
——(29)X ¢* ) TI(P . ypP WP _ypP ;)]
= d?p (= d%k 1
=—(2 27
(29) ZL(zw)z —n(2m)? (sinp,)°+ @M(p,))?

iy sin(k,+p,) i y* sink,,

XTr
Sinf(k, +p,) + @M(k,+p,))? (sinkM)2+(aM(pM))2}¢

= d’p (7 d% 1
~m(2m)?) = (2m)? (sinp,)?+ (@M(p,))?

sin(k,,+p,)sink,, 1
sir(k,+p,)+ @M(k,+p,))? (sink,)?+ (@M(k,))?]
(8.2

In the limit a— 0, these two integrals contain logarithmically divergent infrared sigularities in the rescaled vapaldes
k,. These divergences, which agree with the divergences in continuum theory, precisely cancel each other. However, the
remaining finite parts of these two integrals do not quite cancel each other even in theimitand thus lead to the
nonvanishing vacuum energy. This is a result of supersymmetry breaking by the failure of the Leibniz rule. This complication
arises since the vacuum diagrams are not finite evet=ir2 (in fact contain logarithmic overlap-divergencend all the
momentum regions contribute to these vacuum diagrams.

A way to remove these finite contributions in the lirait->0 (without relying on the extra couplin$s to apply a higher
derivative regularizatiofl5] which amounts to the replacement of all the terms in the free part of the Lagradgiams

Lo=¥(D(1)+D(2))Ryy— ¢*D 1D (1)Rep+ F*RF—myRy— m[FRep+ (FRp)*]+FD(2)Rp+ (FD(RH)* (8.9
whereR is the higher derivative regulator

T 2 2

NE (8.9

with a new fixed mass scaM. This regularization preserves the lattice supersymm@&tly and(3.2) in the free part of the
Lagrangian. By this way, all the nonvanishing contributions are limited to the momentum repjjémlz, and the vacuum
diagrams completely cancel in the linat-0.

074510-13



KAZUO FUJIKAWA PHYSICAL REVIEW D 66, 074510 (2002
It is interesting to see how the extra couplings help to remove the vacuum energy ewefdorThis is given by
1
STL9G*(VI+iV3) 6+ (6% (Vi+iV3)$) 1[gd*(Vit+iV3) o+ g(*(Vi+iV3) )]
—gX[(P*(Vi+iVD) ) N $*(Vi+iV3) &)
=4g%((VI+iV3)8) d) (8" (VI+iV3) 9)( " d)+ 20X (Vi+iVD) h) (Vi+iVE) d) (b d)( 4" &)

L 2Jw d’p (= d%k 1 sin(k,,+p,)sink,, 1
V) r2m) = (2 (sinp,) 2+ @M(p,))2 | SiP(k, + p,)+ @Mk, + )2 (sink,)2+ @M(K,))?

= d’p (7 d%k 1 (sink,,)? 1
~m(2m)?) = =(2m)? (sinp,)?+ @M(p,))? (sink,)?+ (@M(k,))? sirP(k,+p,)+ @M(K,+p,))*

+2g°

(8.5

We thus confirm that the vacuum energi@sl), (8.2 and of the Lagrangian but without the extra couplings
(8.5 put together completely cancel for finiége and this is a

nice aspect of the analysis based on the Nicolai mapping. E=E(D(1)+D(z))¢— m%p— ZgJ(P P, +P_$*P )i
+ + - -

—¢*D{;)Dyp+F F—mFp+(Fp)*]

IX. DISCUSSION AND CONCLUSION 2 P N
—g[F¢“+(Fo°)* ]+ FD )¢+ (FD )", 9.

We have examined thid=2 Wess-Zumino model od _ _
=2 Euclidean lattice in connection with a restoration of thewe have illustrated that all the supersymmetry breaking
Leibniz rule in the limita—0. In particular, we examined terms in correlation functions induced by the failure of the
the Wilson fermion instead of the Ginsparg-Wilson fermion.Leibniz rule are irrelevant in the sense that those terms all
We also examined the effects of extra couplings introduced@nish in the limita—0. This is consistent with the general
by an analysis of Nicolai mapping. analysis of perturbatively finite theory on the lattide].

As for the Wilson fermion, it introduces linear and loga- ~ The lattice operation implies
rithmic divergences in some of the individual Feynman dia-

grams, though those divergences precisely cancel among V(fg)(x)=(VH(x)g(x)+f(x)(Vg)(x)
Feynman diagrams for correlation functions in the formula-
tion which ensures supersymmetry for the free part of the +a(VH(x)(Vg)(x) 9.2

Lagrangian. In the general analysis of the Leibniz rule in
Ref.[15], each Feynman diagram was made finite to ensur@ one defines ¥ f)(x)=(f(x+a)—f(x))/a, and thus the
the Leibniz rule in the limia— 0. In such a case, the lattice breaking of the Leibniz rule is of ord€(1) if the momen-
regularization would enjoy more freedom since it is intro-tum carried by field variables is of ordé(1/a). To the
duced just to allow the numerical and other nonperturbativeextent that the derivative of field variables is required in
analyses, and the lattice artifact is safely removed in the limisupersymmetry to balance the dimensionality of bosonic and
a—0. Each Feynman diagram in tié=2 Wess-Zumino fermionic variables, the Leibniz rule is indispensable for the
model in d=2 which was analyzed here, however, is notvalidity of supersymmetry. It is well known that supersym-
finite in general in particular with the Wilson fermion, and metry improves ultraviolet properties of field theory. In the
the precise cancellation of these divergencesfifute ais  context of lattice theory, one may rather reverse the argument
important. and one may even argue that the finite theorgetguiredto

As for the effects of the extra couplings introduced by anaccommodate supersymmetry in a consistent manner since
analysis of Nicolai mapping, which breaks hypercubic sym-the conventional definition of derivative
metry, these couplings do not completely remedy the break-

ing of supersymmetry induced by the failure of the Leibniz df(x) f(x+a)—f(x)
rule, though those extra couplings ensure the vanishing dx =IimT 9.3
vacuum energy. We also illustrated how the Ward identity a—0

[11,17 is satisfied even if the uniform wave function renor-

malization, which is required by supersymmetry, is not satwhich satisfies the Leibniz rule presumes that the momentum

isfied for finitea. carried by the field variablé(x) is negligibly small com-
For a minimal latticization of the Wess-Zumino model in pared to 14. This is realized in lattice theory only if the

d=2 which ensures lattice supersymmetry for the free partheory is finite at least in the perturbative sense.
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In conclusion, our analysis is consistent with the pastof the Nicolai mapping in thel=2 Wess-Zumino model is a
analyses of thel=2 Wess-Zumino model and we believe nice property of a specific formulation of the specific model,
that our analysis gives an explanation why these past norsuch as ensuring the vanishing vacuum energy, but it is not a
perturbative numerical analyses workigld, 12, in particu- necessary condition for a consistent definition of supersym-
lar, both of the Ward identity which is expected to be exactmetric models on the lattice in the limat—0. The finiteness
on the lattice and those Ward identities which are expected tis a more universal condition which ensures supersymmetry
be broken by the lattice artifa¢ts|12]. A numerical calcu- in the limit a—0.
lation of the mass correction also appears to be consistent Finally, the analyses of other aspects of supersymmetry on
with the (continuum) perturbative estimate, as was noted inthe lattice, which were not discussed in the present paper, are
[12]. All the supersymmetry breaking effects in correlationfound in Refs[20-23.
functions induced by the failure of the Leibniz rule become Note addedGolterman and Petchg24] analyzed related
irrelevant in the limita— O for a finite theory. The existence issues in the context of thd=1 Wess-Zumino model inl

=2. | thank M. Golterman for calling the above work to my
attention. S. Elitzur and A. Schwimmg25] discussed a re-
) thank S. Catterall for a helpful communication related to thislated problem in a Hamiltonian formalism. | thank A.

issue. Schwimmer for calling their work to my attention.
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