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QCD thermal phase transition in the presence of a small chemical potential
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We propose a new method to investigate the thermal properties of QCD with a small quark chemical
potentialm. Derivatives of quark and gluonic observables with respect tom are computed atm50 for two
flavors of p4 improved staggered fermions withma50.1,0.2 on a 16334 lattice, and used to calculate the
leading order Taylor expansion inm of the location of the pseudocritical point aboutm50. This expansion
should be well behaved for the small values ofmq /Tc;0.1 relevant for BNL RHIC phenomenology, and
predicts a critical curveTc(m) in reasonable agreement with estimates obtained using exact reweighting. In
addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect ofmÞ0 on the
equation of state, and comment on the complex phase of the fermion determinant in QCD withmÞ0.
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I. INTRODUCTION

The study of the phase structure of QCD at nonzero te
perature and baryon density is one of the most interes
topics in contemporary physics. Heavy-ion collision expe
ments are running at BNL and CERN with the goal of t
experimental production of a new state of matter, the qua
gluon plasma@1#. On the theoretical side, novel color supe
conducting and superfluid phases have been conjecture
high baryon densities@2#. For these reasons the need f
numerical studies of the QCD phase transition using lat
gauge theory simulations, currently the most powerful qu
titative approach to QCD, with both temperatureTÞ0 and
quark chemical potentialmqÞ0, is more urgent than eve
Precise theoretical inputs from simulations in the vicinity
the QCD phase transition are indispensable to the un
standing of heavy-ion collision experiments.

Over the last several years, the numerical study of lat
QCD has been successful at a zero chemical potential
high temperature@3#. In contrast, because the quark determ
nant is complex atmÞ0 and Monte Carlo simulation is no
directly applicable, studies at nonzerom are still largely ex-
ploratory. Recent developments withmÞ0 can be classified
in two categories@4#. At the low temperatures and high de
sities where the new phases are expected, studies of m
field theories such as two-color@SU~2!# QCD and the
Nambu–Jona-Lasinio~NJL! model have been made. Th
simulation is possible because in both cases the quark d
minant is positive definite so that conventional Monte Ca
methods can be used. The other case is high temperature
low density, which is phenomenologically more importa
for the BNL Relativistic Heavy Ion Collider~RHIC!, since
the QCD phase transition both in the early universe and
the interesting regime for heavy-ion collisions is expected
rather low density, e.g.,mq;15 MeV (mq /Tc;0.1) for the

*Present address: DESY Theory Division, Notkestrasse
D-22603 Hamburg, Germany.
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RHIC @5#. In this region the reweighting method, in whic
observables atmÞ0 are computed by performing simula
tions at Re(m)50, is applicable@6#. Using this method, the
first results on the phase structure in the (m,T) plane were
recently obtained by Fodor and Katz@7#. Unfortunately, al-
though in principle with infinite statistics this method is e
act, rather general arguments suggest that in practice th
gion of applicability of the reweighting method becom
narrower as the lattice volume is increased. Another effici
method at low density is via a Taylor expansion obtained
computing the derivatives of physical quantities with resp
to m at m50. This approach is not restricted to small la
tices, because it requires only the expectation values of lo
fermion bilinears; these are measured effectively on la
systems using stochastic methods, and might even be
pected to self-average as the volume increases. Since a
ticity is required, however, the values ofm that can be
reached must be bounded by, e.g., the critical point expe
in the (m,T) plane for QCD with two light flavors. Pioneer
ing work in such a framework has been done by develop
expansions for free energy, yielding quark number susce
bility @8,9#, for hadronic screening masses@10#, and in the
context of the three-dimensional effective theory@11#.

In this study, we investigate the transition temperatureTc
as a function ofmÞ0. In Sec. II, we propose a new metho
to compute derivatives of physical quantities with respec
m. Details of our simulations performed on a 16334 lattice
with quark massesm50.1,0.2 are presented in Sec. III. I
Sec. IV we check the feasibility of the method by calculati
the derivative of the transition point with respect tom. Our
main result, the calculation of the second derivative ofbc
with respect tom for two-flavor QCD, is given in Sec. V.
Using data on the lattice beta function, we are then able
translate this result into physical units, yielding an estim
for the phase transition lineTc(m). We also discuss the re
sponse of the pressurep(T) and energy densitye(T) to non-
zero m, and estimate their variation along the critical lin
Finally, in this section we discuss the problem of the co
plex phase of the quark determinant, and show that the

5,
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problem is mild in the region of the phase diagram relevant for RHIC physics. Section VI presents our conclusions.

II. REWEIGHTING METHOD FOR THE µ DIRECTION

Ferrenberg and Swendsen’s reweighting method is a very useful technique to investigate critical phenomena@12#. In QCD
the expectation value of an observableO(b,m,m) can in principle be computed by simulation at (b0 ,m0 ,m0) using the
following identity:

^O& (b,m,m)5
1

Z~b,m,m!
E DUO@detM ~m,m!#aNfe2Sg(b) ~1!

5
^OeaNf[ ln det M (m,m)2 ln detM (m0 ,m0)]e2Sg(b)1Sg(b0)& (b0 ,m0 ,m0)

^eaNf[ ln det M (m,m)2 ln detM (m0 ,m0)]e2Sg(b)1Sg(b0)& (b0 ,m0 ,m0)

. ~2!
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Here M is the quark matrix,Sg the gauge action,Nf the
number of flavors, anda51 or 1/4 for Wilson or staggered
lattice fermions, respectively. The chemical potential para
eter m5mqa, where a is the lattice spacing. Becaus
detM (m) is complex for Re(m)Þ0, the expectation value
in Eq. ~2! can only be estimated by conventional Mon
Carlo importance sampling if the simulation is performed
m0 zero or purely imaginary. Most of the attempts to calc
late atmÞ0 have used variants of this method@6#. The re-
weighting factor for the gauge part is easy to compute
measuring the plaquettePmn , since

2Sg~b!1Sg~b0!5~b2b0! (
x,m.n

Pmn~x! ~3!

for the standard Wilson action, and extensions for improv
actions are easy to derive. However, to compute the ferm
part, the calculation of the fermion determinant is requir
for each point (m,m) we want to study. Such a calculation
quite expensive and difficult to perform in practice. Fod
and Katz have performed such calculations, and by rewei
ing in bothm andb have succeeded in tracing out the critic
line bc(m) and locating the critical end point on small la
tices @7#. Their method exploits the fact that the overlap b
tween ensembles at different points along the coexiste
line separating hadronic and quark-gluon plasma phase
mains reasonably large on finite systems.

Another problem of the reweighting method is the si
problem, which will be discussed in detail later. Asm in-
creases from zero, the calculation of Eq.~2! becomes more
difficult due to fluctuations in the phase of the denomina
To avoid these problems, we restrict ourselves to calcula
derivatives of physical quantities with respect tom, which
can be done atm50. This yields estimates of the physic
quantity as a continuous function ofm in a narrow range of
m, but the region of applicability is not restricted to th
immediate neighborhood of the phase transition. This p
mits the development of a Taylor expansion of observable
powers ofm5mqa; strictly speaking, in fact, the physicall
relevant expansion parameter which ultimately must gov
07450
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convergence is the fugacitymq /T5Ntm. The Taylor expan-
sion for the fermionic part of the reweighting factor arou
m50 is

aNf lnS detM ~m!

detM ~0! D5aNf(
n51

`
mn

n!

]n ln detM ~0!

]mn

[ (
n51

`

R nmn. ~4!

We similarly expand fermionic observables such as the ch
condensate,

^c̄c&5~Ns
33Nt!

21aNf^tr M 21& , ~5!

where the lattice size isNs
33Nt , once again obtaining a

continuous function for smallm. Using the formula

]M 21

]x
52M 21

]M

]x
M 21, ~6!

expressions for]n(ln detM )/]mn and ]n(tr M 21)/]mn in
terms of traces over products of local operators and inve
matrices can be developed:

] ln detM

]m
5trS M 21

]M

]m D ,

~7!

]2 ln detM

]m2
5trS M 21

]2M

]m2 D 2trS M 21
]M

]m
M 21

]M

]m D ,
7-2
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]3 ln detM

]m3
5trS M 21

]3M

]m3 D 23 trS M 21
]M

]m
M 21

]2M

]m2 D
12 trS M 21

]M

]m
M 21

]M

]m
M 21

]M

]m D ,

] tr M 21

]m
52trS M 21

]M

]m
M 21D ,

]2 tr M 21

]m2 52trS M 21
]2M

]m2
M 21D

12 trS M 21
]M

]m
M 21

]M

]m
M 21D ,

]3 tr M 21

]m3 52trS M 21
]3M

]m3
M 21D

13 trS M 21
]2M

]m2
M 21

]M

]m
M 21D ,

13 trS M 21
]M

]m
M 21

]2M

]m2
M 21D

26 trS M 21
]M

]m
M 21

]M

]m
M 21

]M

]m
M 21D .

~8!

We apply the random noise method to calculate the der
tives of ln detM and trM 21, which enables us to comput
on rather large volumes in comparison with the usual stud
of QCD with mÞ0. UsingNn sets of random noise vector
hai which satisfy the condition limNn→`(1/Nn)(a51

Nn hai* ha j

5d i j , we rewrite the trace of products of]M /]m andM 21

as

trS ]n1M

]mn1
M 21

]n2M

]mn2
•••M 21D

5 lim
Nn→`

1

Nn
(
a51

Nn

ha
†]n1M

]mn1
M 21

]n2M

]mn2
•••M 21ha .

~9!

M 21ha[x and M 21(]M /]m)•••ha[x are obtained by
solving Mx5ha or Mx5(]M /]m)•••ha , and we compute
the right-hand side~RHS! of Eq. ~9! with finite Nn . The
error for estimates of physical observables made fromNconf
configurations is expected to decrease as (NnNconf)

21/2. Fur-
ther notes on the application of the noise method are give
the Appendix.

By using the derivatives of both the reweighting fact
and fermionic observable up tonth order inm, we can obtain
the correct answer for the expectation value up tonth order,
07450
a-

s

in

which can be easily checked by performing a Taylor exp
sion of the expectation value, Eq.~1!, directly for each physi-
cal observable. Of course, for a pure gluonic observable s
as the Polyakov loopL only the expansion of ln detM is
needed. Furthermore, we should note that atm50 the odd
order derivatives of both ln detM and trM 21 are purely
imaginary and the even order derivatives are real. This pr
erty is proved using the identities for the fermion matrix:

M†~m!5G5M ~2m!G5

and

]nM†

]mn
~m!5~21!nG5

]nM

]mn
~2m!G5 , ~10!

whereG5 is g5 for Wilson fermions and (21)x11x21x31x4

for staggered. Then, atm50,

trS M 21
]n1M

]mn1
M 21

]n2M

]mn2
M 21

••• D *

5~21!n11n21••• trS M 21
]n1M

]mn1
M 21

]n2M

]mn2
M 21

••• D .

~11!

Because the terms in thenth derivative satisfyn11n2
1•••5n, we obtain

S ]n ln detM

]mn D *
5~21!n

]n ln detM

]mn
, ~12!

S ]n trM 21

]mn D *
5~21!n

]n trM 21

]mn
. ~13!

Using this property and the fact thatZ is a real function of
b, m, andm, we can explicitly confirm that, if the operato
has the property that even order derivatives are real and
order derivatives are purely imaginary atm50, e.g.,^c̄c&
or its susceptibility, then all odd order derivatives of the e
pectation value of a physical quantity are zero atm50, as
we expect from the symmetry under changingm to 2m. The
derivative of the expectation value can be written as a sum
products of expectation values composed of the operator
reweighting factor, and their derivatives, and the total nu
ber of differentiations in each term has to be odd for an o
order derivative. Hence all terms for odd derivatives cont
at least one expectation value of a purely imaginary oper
and hence vanish, since the expectation value of a pu
imaginary operator is zero. Therefore the first nontrivial
der of corrections to, e.g.,^c̄c& or its susceptibility, that we
compute in this study isO(m2); the truncation errors, so fa
unquantified, areO(m4).
7-3
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In order to be more specific, let us define the Taylor e
pansion of an operator by(n50

` O nmn. Then toO(m2) the
expression~2! for ^O& (b,m) can be rewritten

^O& (b,m)5
^~O01O1m1O 2m2!exp~R1m1R 2m22DSg!&

^exp~R1m1R 2m22DSg!&
,

~14!

where expectation values on the RHS are measured with
spect to an ensemble generated at (b0,0). Extension of this
formula to combined data from several ensembles using m
tihistogramming is straightforward@12#. Further details on
the evaluation of Eq.~14! using the noise method for ferm
onic operators are given in the Appendix.

In order to determine the pseudocritical point, we calc
late the Polyakov loop susceptibility

xL5Ns
3~^L2&2^L&2!, ~15!

where the Polyakov loopL5(Ns
3)21(xWNc

21 tr ) tU4(xW ,t),
and the susceptibility of the chiral condensate1

xc̄c5~Ns
33Nt!

21~aNf!
2@^~ tr M 21!2&2^tr M 21&2#.

~16!
07450
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We define the transition pointbc(m) by the peak position of
these susceptibilities for eachm:

]x~bc ,m!

]b
50. ~17!

If we compute]x/]b correctly up tonth order inm, we can
determine thenth derivative ofbc with respect tom. For
example, if we determinebc(m) using an operator such a

^c̄c&, which is real and whose first derivative atm50 is
purely imaginary, then the first derivativebc8(m) vanishes
because as argued above the first derivative of the susc
bility is zero in this case.

Finally, note that we can also estimate the magnitude
fluctuations of the phase of detM , because on each configu
ration this phase can be expressed in terms of the odd te
of the Taylor expansion of ln detM ; this will be discussed in
more detail in Sec. V C.

III. SIMULATIONS FOR N fÄ2 IMPROVED STAGGERED
FERMIONS

We employ a combination of the Symanzik improve
gauge and two flavors of thep4 improved staggered fermio
actions@13,14#. The partition function is defined by
Z~b,m,m!5E DU~detM !Nf/4e2Sg, ~18!

Sg52bH (
x, m.n

c0Wmn
131~x!1 (

x, m,n
c1Wmn

132~x!J , ~19!

Mx,y5(
i

h i~x!H c1
F@Ui

fat~x!dx1 î ,y2Ui
fat†~x2 î !dx2 î ,y#1c3

F(
iÞ j

@Ui , j
(1,2)~x!dx1 î 12 ĵ ,y2Ui , j

(1,2)†~x2 î 22 ĵ !dx2 î 22 ĵ ,y

1Ui , j
(1,22)~x!dx1 î 22 ĵ ,y2Ui , j

(1,22)†~x2 î 12 ĵ !dx2 î 12 ĵ ,y#1c3
F@e2mUi ,4

(1,2)~x!dx1 î 124̂,y

2e22mUi ,4
(1,2)†~x2 î 224̂!dx2 î 224̂,y1e22mUi ,4

(1,22)~x!dx1 î 224̂,y2e2mUi ,4
(1,22)†~x2 î 124̂!dx2 î 124̂,y#J

1h4~x!H c1
F@emU4

fat~x!dx14̂,y2e2mU4
fat†~x24̂!dx24̂,y#1c3

F(
i

@emU4,i
(1,2)~x!dx14̂12 î ,y

2e2mU4,i
(1,2)†~x24̂22 î !dx24̂22 î ,y1emU4,i

(1,22)~x!dx14̂22 î ,y2e2mU4,i
(1,22)†~x24̂12 î !dx24̂12 î ,y#J 1mdx,y , ~20!

whereWmn
131(x) andWmn

132(x) are 131 and 132 Wilson loops,hm(x)5(21)x11•••1xm21 is the Kawamoto-Smit~KS! phase,
and

Um,n
(1,2)~x!5

1

2
@Um~x!Un~x1m̂ !Un~x1m̂1 n̂ !

1Un~x!Un~x1 n̂ !Um~x12n̂ !#,

1Note that we calculate only the disconnected part of the complete chiral susceptibility.
7-4
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Um,n
(1,22)~x!5

1

2
@Um~x!Un

†~x1m̂2 n̂ !Un
†~x1m̂22n̂ !

1Un
†~x2 n̂ !Un

†~x22n̂ !Um~x22n̂ !#,

Um
fat~x!5

1

116v H Um~x!1v (
nÞm

@Un~x!Um~x1 n̂ !

3Un
†~x1m̂ !1Un

†~x2 n̂ !Um~x2 n̂ !

3Un~x1m̂2 n̂ !#J . ~21!

The coefficients areb56/g2, c1521/12, c05128c1 , c1
F

53/8, c3
F51/96, andv50.2. The action is derived such th

rotational invariance of the free fermion propagator is
stored up toO(p4). It is known that this action makes th
discretization error of the equation of state pressurep(T)
small asT→`, andTc obtained by this action is consiste
with that obtained using improved Wilson fermions@14,15#.
To incorporate the chemical potential, we generalize
standard prescription of treatingm as an imaginary gaug
potentialA0 @16# by multiplying the terms generatingn-step
hops in the positive and negative temporal directions byenm

ande2nm, respectively.2

We investigated the transition points for quark massesm
50.1 and 0.2. The corresponding pseudoscalar and ve
meson mass ratios aremPS/mV'0.70 and 0.85@14#. We
computed the Polyakov loop, chiral condensate, and t
susceptibilities. The simulations were performed on
16334 lattice for seven values ofbP@3.64,3.67# for m
50.1 and six values ofbP@3.74,3.80# for m50.2, using the

2Note that for any improved action involving terms in whichc

andc̄ are separated by more than a single link, there is no long
local conserved baryon number current bilinearj m(x) such that

(m^ j m(x)2 j m(x2m̂)&50 for nonzero lattice spacing.

TABLE I. Simulation point (m,b) and number of configuration
Nconf for mass reweighting andm reweighting.

m b Nconf(mass) Nconf(m)

0.1 3.640 38000 20000
3.645 15000
3.650 58000 38000
3.655 16800
3.660 55000 40000
3.665 7800
3.670 30000 30000

0.2 3.740 5000
3.750 30000 20000
3.755 15000
3.760 52000 34000
3.770 48000 32000
3.780 5000
07450
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hybrid R algorithm. We adopted a step sizeDt50.253m
and a molecular dynamics trajectory lengtht50.5. For each
trajectory ten sets of Z2 noise vectors were used to calcula
the reweighting factor and the derivatives ofc̄c up to sec-
ond order inm.

For the calculation of mass reweighting surveyed in S
IV, we took a total of 220600 trajectories atm50.1 and
155000 trajectories atm50.2. For the study withmÞ0 de-
scribed in Sec. V, we used 128000 trajectories atm50.1 and
86000 trajectories atm50.2. The details are summarized
Table I. The multihistogram method of@12# was used to re-
weight in theb direction using data from several values

a

FIG. 1. Quark mass dependence ofxL as a function ofb at
m50.1.

FIG. 2. Quark mass dependence ofxL as a function ofb at
m50.2.
7-5
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b. Errors were estimated using the jackknife method w
bin size 100 trajectories.

IV. REWEIGHTING FOR QUARK MASS

Before calculating derivatives with respect tom, it is
worthwhile to calculate the derivatives with respect to qu
massm, which is not only potentially important for the chira
extrapolation, but also a good demonstration of the reweig
ing technique for a parameter appearing in the fermion
tion. Because we cannot compare the result obtained by
weighting in them direction with the result of an actua

FIG. 3. Quark mass dependence ofxc̄c as a function ofb at
m50.1.

FIG. 4. Quark mass dependence ofxc̄c as a function ofb at
m50.2.
07450
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simulation atmÞ0, this test is a necessary check of t
reliability of our method. The reweighting formula for quar
mass is easily obtained from Eq.~4! and Eqs.~7! by replac-
ing ]nM /]mn with ]M /]m51 and]nM /]mn50 for n>2.
In the case of the reweighting form, we compute the fermi-
onic reweighting factor up to second order, and the ch
condensate up to first order, i.e.,

ln detM ~m!2 ln detM ~m0!

5tr M 21~m2m0!2tr~M 21M 21!~m2m0!2/2

1O@~m2m0!3#, ~22!

c̄c5~Ns
3Nt!

21aNf@ tr M 212tr~M 21M 21!~m2m0!#

1O@~m2m0!2#. ~23!

Hence, the error of the Polyakov loop susceptibility
O@(m2m0)3# and that of the chiral susceptibilityO@(m
2m0)2#. Figures 1 and 2 showxL and Figs. 3 and 4 show
xc̄c for different m as functions ofb for simulation masses
m050.1 and 0.2. These figures show that the peak posi
moves to smallerb asm decreases, as expected. Moreov
we find that asm decreases the peak height becomes low
for xL and higher forxc̄c . These behaviors are consiste
since the Polyakov loop is an exact order parameter onl
the limit m→`, while the chiral condensate is an order p
rameter only form→0. The phase transition is known to b
a crossover for two-flavor QCD withm.0. We calculate the
slope of the transition point]bc /]m assuming thatbc(m) is
defined by the peak position of the susceptibility wheneve
clear peak is obtained.3 Figures 5, 6, and 7 showbc(m) for

3Because the peak width ofxL is too wide for the smaller mas
m50.1, we do not determine the pseudocritical point forL in this
case.

FIG. 5. bc(m) determined byxL aroundm50.2.
7-6
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eachm0. We fitted the data by a power series expans

aboutm0, i.e., bc(m)5bc(m0)1(n51
Nfit cn(m2m0)n, with fit

rangeu(m2m0)/m0u<0.05 or 0.1. The results are present
in Table II. We find a linear fit to be adequate with the d
pendence on choice ofNfit less than 3%; the discrepanc
from the choice of fit range is less than 10%. Both unc
tainties lie well within the statistical error. We denote t
fitted line for Nfit51 and u(m2m0)/m0u<0.1 by a dashed
line. In Fig. 8 we compare the predicted variation ofbc(m)
with previously existing data@14#. Filled symbols are the
results of the current study. The short lines denote the up
and lower bounds on the slopebc8 . From this figure, we find
that reweighting yields results which are quite consist
with those of direct simulation, and hence infer that
weighting the fermion action using the technique we ha
outlined works well.

FIG. 6. bc(m) determined byxc̄c aroundm50.1.
07450
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V. REWEIGHTING FOR CHEMICAL POTENTIAL

A. Chemical potential dependence of the transition temperature

Next we turn our attention to reweighting with respect
m, with the Taylor expansion made about the simulati
point m50. First we calculate the derivatives of the tran
tion point with respect tom in the region of smallm relevant
to the RHIC. In Figs. 9, 10, 11, and 12, we plotxL andxc̄c

at m50.1 and 0.2 for variousm. As outlined in Sec. II, we
compute consistently up toO(m2) and expect the results t
contain errors atO(m4). Strictly speaking, theO(m3) term
does not vanish forL since it is complex~see Sec. II!. How-
ever, we expect thatxL and xc̄c yield the samebc ~see
below! with errorO(m4). The figures show that the positio
of the susceptibility peak moves lower asm increases, which
means that the critical temperature becomes lower asm in-
creases. As we obtained well-localized peaks forxL at

FIG. 7. bc(m) determined byxc̄c aroundm50.2.
TABLE II. Quark mass dependence of transition point determined byL and^c̄c&. The fitting function is

bc5bc(m0)1(n51
Nfitcn(m2m0)n. The truncation error is contained inc2 from c̄c.

m0 bc(m0) c1 c2 Fit range Nfit

c̄c 0.1 3.6492~22! 1.05~14! — 20.01,m2m0,0.01 1

3.6492~22! 1.03~13! @29.(14)# 20.01,m2m0,0.01 2
3.6492~22! 1.07~19! — 20.005,m2m0,0.005 1
3.6492~22! 1.07~19! @217.(26)# 20.005,m2m0,0.005 2

0.2 3.7617~36! 0.896~90! — 20.02,m2m0,0.02 1
3.7617~36! 0.894~89! @5.~13!# 20.02,m2m0,0.02 2
3.7617~36! 0.970~168! — 20.01,m2m0,0.01 1
3.7617~36! 0.999~180! @18.~39!# 20.01,m2m0,0.01 2

Polyakov 0.2 3.7639~19! 0.838~64! — 20.02,m2m0,0.02 1
3.7639~19! 0.835~63! 22.7(4.5) 20.02,m2m0,0.02 2
3.7639~19! 0.883~106! — 20.01,m2m0,0.01 1
3.7639~19! 0.885~106! 24.7(10.0) 20.01,m2m0,0.01 2
7-7
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ALLTON et al. PHYSICAL REVIEW D 66, 074507 ~2002!
m50.2 andxc̄c at m50.1 and 0.2, we use these peak po
tions to determine the transition pointbc as a function ofm2

in Figs. 13, 14, and 15. Note that because the Polyakov l
is interpreted as an external quark current running in
positive time direction, positive and negativem give differ-
ent contributions to bothL and xL , and we display both
cases. Figures 13, 14, and 15 also display the value om
50.1Tc relevant for the RHIC. The shiftbc(m)2bc(0) is
found to be small at this point.

Because the first derivative is expected to be zero as
cussed above, we fitted thebc data by a straight line inm2,
fixing bc at m50, in rangesm2<0.008(0.014) for m
50.1(0.2), respectively, in which the phase problem is

FIG. 8. bc(m) determined byxc̄c in comparison with previous
results.

FIG. 9. xL(b) at m50.1 for variousm.
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serious ~see Sec. V C below!. We obtain d2bc /dm25
21.20(44) and21.02(56) atm50.1 and 0.2 from the chira
susceptibility andd2bc /dm2521.01(23) atm50.2 from
the Polyakov loop susceptibility. Dot-dashed lines in Fig
13, 14, and 15 are the fitted lines. To investigate the fit ra
dependence and the fitting function dependence, we
tried the rangem2<0.005(0.01) form50.1(0.2), and using
a quadratic fit function. Table III summarizes the results. W
may conclude thatud2bc /dm2u'1.1 with 30–50 % error,
and any quark mass dependence ofd2bc /dm2 is not visible
within the accuracy of our calculation.

Of course, it is desirable to translate these observati
into physical units. The second derivative ofTc can be

FIG. 10. xL(b) at m50.2 for variousm.

FIG. 11. xc̄c(b) at m50.1 for variousm.
7-8
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estimated by

d2Tc

dmq
2

52
1

Nt
2Tc

d2bc

dm2 Y S a
db

daD , ~24!

where a is the lattice spacing. The beta function may
obtained from the string tension data in Ref.@14#. We com-
pute it by differentiating the interpolation function of th
string tension with an ansatz@17#

Asa2~b!5R~b!@11c2â2~b!1c4â4~b!#/c0 , ~25!

FIG. 12. xc̄c(b) at m50.2 for variousm.

FIG. 13. Phase transition pointbc(m) determined byxL at
m50.2.
07450
where R(b) is the usual two-loop scaling function,â
[R(b)/R(b̄) andb̄53.70. c0 ,c2, andc4 are fit parameters
with c050.0570(35), c250.669(208), and c4
520.0822(1088) at m50.1. We get a21(da/db)
522.08(43) at (b,m)5(3.65,0.1). We then find
Tc(d

2Tc /dmq
2)'20.14 at m50.1. We sketch the phas

transition line with 50% error in Fig. 16 assumingTc
.170 MeV. In the figure we also indicate the linemq /T
50.4, corresponding roughly to the range over which the
to the leading order behavior ofTc(m) shown in Figs. 13 –
15 are made. Of course, one has to expect that higher-o
terms in the expansion become relevant form/T5O(1). To

FIG. 14. Phase transition pointbc(m) determined byxc̄c at
m50.1.

FIG. 15. Phase transition pointbc(m) determined byxc̄c at
m50.2.
7-9
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ALLTON et al. PHYSICAL REVIEW D 66, 074507 ~2002!
quantify this we will have to analyze higher-order contrib
tions in the expansion in the future. To indicate the pres
systematic uncertainty in the transition line for largerm/T
we show this region as a dotted line in Fig. 16. We stress
the errors shown are statistical only and reflect the un
tainty of the coefficient of theO(m2) term in the expansion
of Tc(m). On the assumption that the transition line is pa
bolic all the way down toT50, then this curvature is too
small to be consistent with the phenomenological expe
tion that atT50 a transition from hadronic to quark matt
occurs formc some 50–200 MeV greater than the onset
nuclear matter atmo.mN/3.307 MeV @18#. This tendency
is also supported by the result of Fodor and Katz@7#, and
hints at contributions from higher-order derivatives, or ev

TABLE III. bc and its second derivative with respect tom. We
fitted the data with the functionbc(m)5bc(0)1(n51

Nfit cnm2n,
whered2bc /dm252c1.

m bc d2bc /dm2 Fit range Nfit

c̄c 0.1 3.6497~16! 21.20(44) 0<m2<0.008 1

3.6497~16! 21.19(54) 0<m2<0.005 1
3.6497~16! 21.21(79) 0<m2<0.008 2

0.2 3.7641~37! 21.02(56) 0<m2<0.014 1
3.7641~37! 21.10(68) 0<m2<0.010 1
3.7641~37! 21.34(103) 0<m2<0.014 2

Polyakov 0.2 3.7651~16! 21.01(23) 0<m2<0.014 1
3.7651~16! 21.07(24) 0<m2<0.010 1
3.7651~16! 21.21(31) 0<m2<0.014 2

FIG. 16. Sketch of the phase diagram, as estimated using
value of the curvature ofbc(m50). The errors shown are statistic
only and reflect the uncertainty of the coefficient of theO(m2) term
in the expansion ofTc(m). Dotted line ism/T50.4. The diamond
symbol is the end point of the first order phase transition obtai
by Fodor and Katz@7#.
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nonanalytic behavior, at larger values ofm. Despite the large
errors we can see that our result gives us useful informa
about the phase diagram, at least for smallm, because the
first derivative is zero.

Another point worth noting is the screening effect of d
namical antiquarks atm,0. A negative chemical potentia
induces the dynamical generation of antiquarks, which
contrast to quarks can completely screen an external c
triplet current. Thus the free energy of a single quark is
duced, especially in the confinement phase, and the sing
ity at the phase transition point is weakened due to the
duction in the range of current-current interactions. T
effect can be seen in Figs. 9, 10, 17, and 18, where we de
the Polyakov loop and its susceptibility atm,0 by dot-dot-

ur

d

FIG. 17. L(b) at m50.1 for variousm.

FIG. 18. L(b) at m50.2 for variousm.
7-10
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QCD THERMAL PHASE TRANSITION IN THE . . . PHYSICAL REVIEW D 66, 074507 ~2002!
dashed and dot-dash-dashed lines. We see thatL at m,0 is
larger than that atm.0, which means that the free energy
m,0 is smaller. Moreover, as seen in Fig. 10, the pe
height ofxL becomes smaller form,0, while the position of
the pseudocritical line in Fig. 13 is almost the same betw
positive and negativem. The screening effect only seems
make the phase transition singularity weaker without shift
the pseudocritical line. Because the only source of asym
try betweenm and2m is due to the correlation between th
imaginary parts of the fermion determinant andL, these
imaginary contributions help to decrease the susceptibilit
m,0. In this way, we can see that the explicit breaking
time reversal symmetry by exchange ofm with 2m helps to
highlight an interesting feature of dynamical quarks in f
QCD.

Finally, if instead we were to impose anisovectorchemi-
cal potentialm I having opposite sign foru and d quarks
@9,19#, then the quark determinant would become real a
positive, enabling simulations using standard Monte Ca
methods@20#. This motivates a comparison between syste
with the usual isoscalar chemical potentialm and the isovec-
tor chemical potentialm I . In the framework of the Taylor
expansion, terms even inm are identical for bothu and d
quarks, but odd terms cancel for the casem IÞ0, meaning
that terms proportional toO1 ,R1 should be set to zero in Eq
~14!. We analyzed the transition pointbc(m I) for m50.2;
the results are shown in Fig. 19 forbc determined byxL and
Fig. 20 for that byxc̄c . The solid line showsbc as a func-
tion of m I , the dashed linebc(m). The second derivative o
bc with respect tom I is found to be20.96(19) forxL and
20.93(52) for xc̄c . Dot-dashed lines in Figs. 19 and 2
show the fits. Within errors there appears to be no signific
difference between isovector and isoscalar chemical po
tials for small m. A similar analysis forxc̄c at m50.1 is
shown in Fig. 21; here the second derivative ofbc is
20.71(16), which is smaller than the isoscalar case. Ho

FIG. 19. Difference betweenm andm I for bc determined byxL

at m50.2.
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ever, this result is also smaller than that obtained atm
50.2, which is physically unacceptable since the second
rivative should approach zero asm→`. Hence the differ-
ence betweenm I and m at m50.1 is most likely due to
statistical error.

The terms we have dropped are associated with fluc
tions in the phase of detM , which are small in the region o
small m, as will be demonstrated in Sec. V C below. This
perhaps not unexpected on physical grounds—increasingm I
is predicted to induce the onset of matter in the form o
pion condensate at a criticalm Io.mPS/2 @19#, and indeed
evidence for this scenario in the form of a negative curvat
for mPS(m I) in the low-T phase is reported in@10#. However,

FIG. 20. Difference betweenm and m I for bc determined by
xc̄c at m50.2.

FIG. 21. Difference betweenm and m I for bc determined by
xc̄c at m50.1.
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ALLTON et al. PHYSICAL REVIEW D 66, 074507 ~2002!
even form50.1 on this lattice this scale is roughly 0.92As
.390 MeV @14#, which is a little larger than the isoscala
onset thresholdmo&mN/3. The curvature with repect tom I
should dominate as the chiral limit is approached and p
and nucleon mass scales become separate. If this turns o
be the case, then it is interesting to note that phase cor
tions between observable and measure actuallydecreasethe
physical effect of raisingm; this has also been observed
simulations of two-color QCD with a single flavor of sta
gered adjoint quark@21#, in which including the sign of the
fermion determinant has the effect of postponing the on
transition.

B. Quark number susceptibility and equation of state atµÅ0

The energy densitye and pressurep at the critical point
are interesting quantities for heavy-ion collision experimen
In this section, we discuss them dependence of the equatio
of state which describes them. If we employ the integ
method based on the homogeneity of the system@22#, we
obtainp5(T/V)ln Z; derivatives ofp with respect tom are
then related to the quark number densitynq ~via a Maxwell
relation! and the singlet quark number susceptibilityxS
5]nq /]mq @8#:

]~p/T4!

]mq
5

1

VT3

] ln Z
]mq

5
nq

T4
, ~26!

]2~p/T4!

]mq
2

5
1

VT3

]2 ln Z
]mq

2
5

xS

T4
. ~27!

Herenq , xS, and also the nonsinglet susceptibilityxNS are
given in physical units by

FIG. 22. Quark number susceptibilitiesxS and xNS at m50.1.
Dx5xS2xNS.
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nq

T3
5

aNfNt
2

Ns
3 K trS M 21

]M

]m D L , ~28!

xS

T2
5

aNfNt

Ns
3 F K trS M 21

]2M

]m2 D L
2 K trS M 21

]M

]m
M 21

]M

]m D L G
1

~aNf!
2Nt

Ns
3 F K trS M 21

]M

]m D trS M 21
]M

]m D L
2 K trS M 21

]M

]m D L 2G , ~29!

xNS

T2
5

aNfNt

Ns
3 F K trS M 21

]2M

]m2 D L
2 K trS M 21

]M

]m
M 21

]M

]m D L G . ~30!

The quark number density is zero atm50 so once again the
leading correction isO(m2). The susceptibilitiesxSa

2 and
xNSa

2 are plotted in Figs. 22 and 23 form50.1 and 0.2.
BecausexSa

250.0433(3) and 0.0306(2) form50.1 and 0.2
at bc in Table III (c̄c), we obtain T2]2(p/T4)/]mq

2

50.693(5) (m50.1) and 0.490(4) (m50.2) atbc . The dis-
crepancy ofp/T4 at the interesting point for the RHIC
mq /Tc;0.1, from its value atm50 is about 0.0035(0.0024
for m50.1(0.2); since p/T4'0.27 at bc for (m,m)
5(0.1,0) @14# this is a 1% effect, and hence quite small. W
can also obtain estimates of the quark number density

FIG. 23. Quark number susceptibilitiesxS and xNS at
m50.2.
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QCD THERMAL PHASE TRANSITION IN THE . . . PHYSICAL REVIEW D 66, 074507 ~2002!
nqa3.mqaxSa2, with results nq /T350.693(5)mq /T and
0.490(4)mq /T for m50.1 and 0.2 which assumingT
.170 MeV translates into roughly 9% and 6% of nucle
matter density at the RHIC point. Clearly these values w
need careful extrapolation to the chiral limit before a me
ingful comparison with experiment can be made.

Moreover, the energy densitye can also be estimated vi
the equation for the conformal anomaly:

e23p

T4
52

1

VT3
a

] ln Z
]a

52
1

VT3 Fa
]b

]a

] ln Z
]b

1a
]m

]a

] ln Z
]m G . ~31!

Here we estimatee in the chiral limit, wherea]m/]a can be
neglected. We find

e23p

T4
'2

1

VT3

] ln Z
]b S 1

a

]a

]b D 21

, ~32!

with second derivative

]2@~e23p!/T4#

]mq
2

'2
1

T4

]xS

]b S 1

a

]a

]b D 21

. ~33!

Because the quark mass dependence of the equation of
seems to be small in Ref.@23#, we estimate the derivative
using the value ofxS at m50.1 and 0.2. Using the formula
]^O&/]b5^O(2]S/]b)&2^O&^2]S/]b&, we obtain
](xSa

2)/]b51.11(5) and 0.82(4) atbc for m50.1 and 0.2.
Then the second derivative ofe23p is estimated to be
T2]2@(e23p)/T4#/]mq

258.5(1.8) atm50.1, where we use
the same value of the beta-function as in Sec. V A. Fina
we obtainT2]2(e/T4)/]mq

2510.6(1.8). The discrepancy o
e/T4 at the RHIC point fromm50 is about 0.05. Once
again, becausee/T4'6 at bc for (m,m)5(0.1,0) @24#, this
is a 1% effect, suggesting that themq dependence of the
equation of state is small in the regime of relevance for
RHIC.

Next we discuss the relation between the equation of s
and the phase transition line. It is of great interest to inv
tigate whether the values of the pressurep„Tc(mq),mq… and
energy densitye„Tc(mq),mq… along the transition line are
constant or not. To this end, consider the line of const
pressure in the (T,mq) plane, i.e.,

Dp5
]p

]T
DT1

]p

]~mq
2!

D~mq
2!

5FT4
]~p/T4!

]T
1

4p

T GDT1FT4
]~p/T4!

]~mq
2!

GD~mq
2!

50, ~34!
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together with a similar relation forDe, and compare it with
the phase transition line. The slope of the constant pres
line is then given by

dT

d~mq
2!

52
]~p/T4!

]~mq
2!
Y S ]~p/T4!

]T
1

4p

T5 D . ~35!

The derivative](p/T4)/]T can be calculated by

T
]~p/T4!

]T
52S 1

a

]a

]b D 21 ]~p/T4!

]b

5S 1

a

]a

]b D 21

Nt
4S K 1

Ns
3Nt

]Sg

]b L
2K 1

Ns
3Nt

]Sg

]b L
0
D , ~36!

where ^•••&0 means the expectation value evaluated aT
50 for normalization. Using the data of Ref.@14#, p/T4

50.27(5), ](p/T4)/]b54.5(9) atTc for m50.1, together
with the beta function in Sec. V A, we obtai
T„](p/T4)/]T…uT5Tc

52.2(6) for m50.1. Noting also that

](p/T4)/](mq
2)5(1/2)@]2(p/T4)/]mq

2#50.347(3)/T2, we
find that the slope of the constant pressure line emerg
from the critical point on theT axis is T„dT/d(mq

2)…
520.107(22). A similar argument using the data of@24#
gives the slope of the constant energy density l
T„dT/d(mq

2)…520.087(23). Because the slope of the tra
sition line in terms of mq

2 is Tc„dTc /d(mq
2)…

5(1/2)Tc(d
2Tc /dmq

2)'20.07(3), we deduce that the
variations ofp ande along the phase transition line are give
by

p„Tc~mq!,mq…2p„Tc~0!,0…5mq
2Tc

2~0!30.12~11!,

e„Tc~mq!,mq…2e„Tc~0!,0…5mq
2Tc

2~0!31.0~2.2!, ~37!

the dominant source of uncertainty in each case being
location of the phase transition line itself. Within our erro
therefore, both pressure and energy density appear con
along the phase transition line.

C. The phase of the determinant atµÅ0

Finally we discuss the region of applicability of gener
reweighting approaches. If the reweighting factor in Eq.~1!
changes sign frequently due to the complex phase of
quark determinant, then both numerator and denominato
Eq. ~1! become vanishingly small in the thermodynam
limit, typically behaving;e2Nsite with the lattice sizeNsite

[Ns
3Nt . This makes control of statistical errors in the calc

lation of the expectation value very difficult. Of cours
arg(detM ) starts at zero atm50 but grows asm increases. It
is important to establish at which value ofm the sign prob-
lem becomes severe.
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As discussed in Sec. II, the phase can be expressed u
the odd terms of the Taylor expansion of ln detM . If we
write detM5udetM ueiu, then

u5aNf ImFm
] ln detM

]m
1

m3

3!

]3 ln detM

]m3
1•••G .

~38!

For small m, the first termaNf Im tr@M 21(]M]m)#m is
dominant. Now, because (Ns

3Nt)
21 tr@M 21(]M /]m)# is the

quark number density, its expectation value must be real
in fact vanishes atm50. Although the average of the phas
is zero, its fluctuations remain important. We investigated
standard deviation of (Ns

3Nt)
21 Im tr@M 21(]M /]m)# and

present the results in Table IV. We find values of abo
2.231023 at bc(m50.1) and 1.631023 at bc(m50.2).
The standard deviation of the leading term of Eq.~38! there-
fore has a magnitude of about 18m for m50.1 and 13m for
m50.2 in the vicinity of the transition. Consequently th
phase problem appears fromm;0.09(0.12), i.e.,mq /Tc
;0.4(0.5) form50.1(0.2), since the phase problem arise
the phase fluctuation becomes ofO(1). We notice that the
value ofm for which the phase fluctuations become sign
cant decreases as eitherm or b decreases. Roughly speakin
the numerator and denominator of Eq.~2! decrease in pro-
portion to the average of the phase factor^Re(eiu)&. We
show this factor for variousb andm in Fig. 24, where it is
clear that the average becomes small around the valuesm
quoted above. The phase fluctuations at the RHIC pointmq
50.1Tc , however, are small enough for the analysis of Se
V A and V B to be applicable.

We should also note that the fluctuation of the phase
pends on the lattice sizeNsite, and on the number of the
noise vectorsNn . From general arguments, the phase of
reweighting factor is expected to decrease as^eiu&}e2Nsite,
implying that the applicable region of reweighting becom
narrower as the lattice size grows. By contrast, the va
of Im tr@M 21(]M /]m)# calculated on each configuratio
also contains an error due to the finite number of no
vectors @see Eq.~A2! of the Appendix#; for Nn510 this
error is not small compared to the standard deviation, as s
in Table IV. The phase fluctuation discussed above inclu
this error due to finiteNn , and we suspect that the tru

TABLE IV. Average of ^Im tr@(]M /]m)M 21#&, average of its
error for each configuration (^«&), standard deviation~STD!, and
improved standard deviation@STD~Imp.!#.

m b ^Im tr@(]M /]m)M 21#& ^«& STD STD~Imp.!

0.1 3.64 21.1531024 0.00199 0.00233 0.00110
3.65 1.0231025 0.00194 0.00223 0.00099
3.66 23.0631025 0.00189 0.00212 0.00085
3.67 21.4031025 0.00185 0.00206 0.00077

0.2 3.75 1.0331025 0.00141 0.00168 0.00085
3.76 0.9331025 0.00140 0.00161 0.00072
3.77 24.1731025 0.00138 0.00155 0.00061
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fluctuation becomes smaller asNn increases. To confirm
this, we reanalyze the standard deviati
A^$Im tr@M 21(]M /]m)#%2&2^Im tr@M 21(]M /]m)#&2 by
treating the calculation of̂$Im tr@M 21(]M /]m)#%2& more
carefully. Since the noise sets must be independent, we
tract the contributions from using the same noise vector
each factor. Details are given in the Appendix. The resu
are quoted in the STD~Imp.! column of Table IV and are
found to be significantly smaller. Because they might
closer to theNn5` limit, they suggest that the standar
deviation for largerNn is much smaller, which means that th
region of applicability becomes wider asNn increases.

VI. CONCLUSIONS

In this paper we have proposed a new method based
Taylor expansion in chemical potentialm to investigate the
thermodynamic properties of QCD withmÞ0. By comput-
ing the chiral susceptibility and the Polyakov loop suscep
bility for two flavors ofp4 improved staggered fermions, w
have been able to estimate the dependence ofbc , and hence
the critical temperatureTc , on m on moderately large vol-
umes, thus reinforcing the recent advance of lattice Q
into the interior of the (mq ,T) plane@4#. We have also been
able to quantify the effect of a nonzero chemical potential
the equation of state. Although we have focused on criti
observables in order to fix physical scales, the method ca
applied in a small range ofm at arbitraryb, although the
radius of convergence is expected to decrease asT→0 since
in this limit all m dependence should vanish formq<mo ,
making the behavior about the origin nonanalytic. T
method is also applicable to a range of physical observa
@8–10#. We find thatTc decreases asm increases, but this
appears to depend only weakly on quark mass, an effect

FIG. 24. The expectation value of the complex phase^cosu&.
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observed in studies of the equation of statep(T) @23#. Our
results are in broad agreement with estimates based on e
reweighting@7# and suggest that the discrepancy ofbc from
its value atm50 is small in the interesting region for heav
ion collisions. Moreover, we have observed evidence t
when a negative chemical potential is imposed, the gen
tion of dynamical antiquarks and the consequent screenin
an external color triplet current is enhanced.

An unresolved issue is the method’s limitations. We ha
been able to estimate the complex phase of the fermion
terminant for a 16334 lattice and found that the sign prob
lem is not serious in the rangemq /Tc,0.4–0.5 for m
50.1–0.2, covered by this study. It is not yet clear to us
what extent the radius of convergence of the Taylor exp
sion is linked to the fluctuations of arg(detM ). An optimist
might hope that the method can yield accurate thermo
namic information all the way out to the critical end poi
where the quark/hadron phase transition changes from
ond to first order; moreover, since individual terms in t
expansion are expectation values of local operators,
method should be applicable on arbitrarily large volum
particularly if larger numbersNn of stochastic noise vector
than we have used here are employed. A pessimist m
worry that phase fluctuations should make calculation
higher-order terms impracticable long before the radius
convergence is reached, particularly as the chiral limit is
proached since in this case the correlations betw
arg(detM ) and Im(O) should discriminate between the di
ferent physics associated with isoscalar and isovector ch
cal potentials. More work is needed before we can say wh
is more realistic.

After this work was submitted we learned of a paper t
studies the phase transition line by analytical continuation
results obtained by simulation with imaginarym @25#. The
results are in reasonable agreement with ours.
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APPENDIX: REMARK ON THE NOISE METHOD

The calculation of an operator such as (trA)2, whereA is
a matrix, using the noise method has to be treated caref
Because the random noise vectors should be independen
each calculation of trA,

~ tr A!25 lim
Nn→`

1

Nn
(
a51

Nn

ha
†Aha

1

Nn
(
b51

Nn

hb
†Ahb

5 lim
Nn→`

1

Nn~Nn21! (
aÞb

ha
†Ahahb

†Ahb . ~A1!
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This equation can rewritten as

~ tr A!25 lim
Nn→`

F S 1

Nn
(

a

Nn

ha
†AhaD 2

2«2~A!G , ~A2!

where«(A) is the error due to finiteNn :

«2~A!5
1

Nn21 H 1

Nn
(

a

Nn

~ha
†Aha!22S 1

Nn
(

a

Nn

ha
†AhaD 2J .

~A3!

The error decreases as (Nn21)21 asNn increases, but can b
significant for smallNn . Moreover,«2(A) is negligible for
an operator that always has the same sign such as trM 21; in
this case its contribution is about 0.001% for^(tr M 21)2&
with Nn510. However, for an operator that changes s
frequently, such as tr@M 21(]M /]m)#, the effect of the addi-
tional term is important. We calculate the quark number s
ceptibility and the value of ‘‘STD~Imp.!’’ in Table IV taking
this additional term into account. The difference betwe
‘‘STD’’ and ‘‘STD ~Imp.!’’ in Table IV is the contribution
from the additional term.

Next, we construct the reweighting method based on T
lor expansion, Eq.~2!, explicitly up to second order using th
noise method. AssumingO is a bosonic operator, we ca
rewrite the numerator of Eq.~2!:

FIG. 25. Effect from the term ofO(«2) on xL at m50.2. Solid
lines are the same as in Fig. 10 obtained including theO(«2) term,
and dashed lines are calculated without it.
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^OeaNf[ ln det M (m,m)2 ln detM (m0 ,0)]&5^O&1maNfKO trS M 21
]M

]m D L 1
m2

2
~aNf!

2KO trS M 21
]M

]m D trS M 21
]M

]m D L
1

m2

2
aNfF K O trS M 21

]2M

]m2 D L 2 KO trS M 21
]M

]m
M 21

]M

]m D L G1••• ~A4!

5^O&1maNfKOS h†M 21
]M

]m
h D L 1

m2

2
~aNf!

2F K OS h†M 21
]M

]m
h D 2L

2 KO«2S M 21
]M

]m D L G1
m2

2
aNfF K OS h†M 21

]2M

]m2
h D L

2KOS h†M 21
]M

]m
M 21

]M

]m
h D L G1••• ~A5!

5K O expH maNfS h†M 21
]M

]m
h D2

m2

2
~aNf!

2«2S M 21
]M

]m D
1

m2

2
aNfF S h†M 21

]2M

]m2
h D 2S h†M 21

]M

]m
M 21

]M

]m
h D G1•••J L , ~A6!

where(•••) denotes the average over the noise vectors. The denominator of Eq.~2! is given by the same expression wi
O51. In each case a term proportional to«2 appears. In Fig. 25, we estimate the effect of this term by subtracting it from
original one. The difference inxL caused by the subtraction is found to be quite small, e.g., less than 1% atm50.2 andm
<0.1. The result suggests the contribution from the term of«2 is small forxL although the value of«@M 21(]M /]m)#2 itself
is not small.

For the case of a fermionic operator such asc̄c many such additional terms appear in the reweighting formula. In
study, we neglect the effect from further additional terms, since Fig. 25 suggests that the effect is small for the deter
of bc .
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