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QCD thermal phase transition in the presence of a small chemical potential
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We propose a new method to investigate the thermal properties of QCD with a small quark chemical
potential . Derivatives of quark and gluonic observables with respeqi tare computed at.=0 for two
flavors of p4 improved staggered fermions witha=0.1,0.2 on a 15x4 lattice, and used to calculate the
leading order Taylor expansion ja of the location of the pseudocritical point abqut 0. This expansion
should be well behaved for the small valuesof/T.~0.1 relevant for BNL RHIC phenomenology, and
predicts a critical curv@.(«) in reasonable agreement with estimates obtained using exact reweighting. In
addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the giféd@ oh the
equation of state, and comment on the complex phase of the fermion determinant in QCD#nth
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I. INTRODUCTION RHIC [5]. In this region the reweighting method, in which
observables ap#0 are computed by performing simula-
The study of the phase structure of QCD at nonzero temtions at Reft) =0, is applicablg6]. Using this method, the
perature and baryon density is one of the most interestinfjrst results on the phase structure in the T) plane were
topics in contemporary physics. Heavy-ion collision experi-recently obtained by Fodor and KdfZ]. Unfortunately, al-
ments are running at BNL and CERN with the goal of thethough in principle with infinite statistics this method is ex-
experimental production of a new state of matter, the quarkact, rather general arguments suggest that in practice the re-
gluon plasmd1]. On the theoretical side, novel color super- gion of applicability of the reweighting method becomes
conducting and superfluid phases have been conjectured marrower as the lattice volume is increased. Another efficient
high baryon densitie$2]. For these reasons the need for method at low density is via a Taylor expansion obtained by
numerical studies of the QCD phase transition using lattice€omputing the derivatives of physical quantities with respect
gauge theory simulations, currently the most powerful quanto u at x=0. This approach is not restricted to small lat-
titative approach to QCD, with both temperatifeés0 and  tices, because it requires only the expectation values of local
quark chemical potentiglq#0, is more urgent than ever. fermion bilinears; these are measured effectively on large
Precise theoretical inputs from simulations in the vicinity of systems using stochastic methods, and might even be ex-
the QCD phase transition are indispensable to the undepected to self-average as the volume increases. Since analy-
standing of heavy-ion collision experiments. ticity is required, however, the values q@f that can be
Over the last several years, the numerical study of latticeéeached must be bounded by, e.g., the critical point expected
QCD has been successful at a zero chemical potential arid the («,T) plane for QCD with two light flavors. Pioneer-
high temperaturg3]. In contrast, because the quark determi-ing work in such a framework has been done by developing
nant is complex ap#0 and Monte Carlo simulation is not expansions for free energy, yielding quark number suscepti-
directly applicable, studies at nonzeuoare still largely ex-  bility [8,9], for hadronic screening massgt0], and in the
ploratory. Recent developments with# 0 can be classified context of the three-dimensional effective thepiy].
in two categorie$4]. At the low temperatures and high den-  In this study, we investigate the transition temperailiye
sities where the new phases are expected, studies of modas a function ofu#0. In Sec. Il, we propose a new method
field theories such as two-coldiSU(2)] QCD and the to compute derivatives of physical quantities with respect to
Nambu—Jona-LasinidNJL) model have been made. The u. Details of our simulations performed on a¥&4 lattice
simulation is possible because in both cases the quark detewith quark massesn=0.1,0.2 are presented in Sec. Ill. In
minant is positive definite so that conventional Monte CarloSec. IV we check the feasibility of the method by calculating
methods can be used. The other case is high temperature athet derivative of the transition point with respectrto Our
low density, which is phenomenologically more importantmain result, the calculation of the second derivativeBef
for the BNL Relativistic Heavy lon CollidetRHIC), since  with respect tou for two-flavor QCD, is given in Sec. V.
the QCD phase transition both in the early universe and irJsing data on the lattice beta function, we are then able to
the interesting regime for heavy-ion collisions is expected atranslate this result into physical units, yielding an estimate
rather low density, €.g4q~15 MeV (uy/T.~0.1) for the  for the phase transition ling;(«). We also discuss the re-
sponse of the pressupT) and energy density(T) to non-
zero u, and estimate their variation along the critical line.
*Present address: DESY Theory Division, Notkestrasse 85Finally, in this section we discuss the problem of the com-
D-22603 Hamburg, Germany. plex phase of the quark determinant, and show that the sign
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problem is mild in the region of the phase diagram relevant for RHIC physics. Section VI presents our conclusions.

Il. REWEIGHTING METHOD FOR THE p DIRECTION

Ferrenberg and Swendsen’s reweighting method is a very useful technique to investigate critical phéh@men@CD
the expectation value of an observald¥B,m,) can in principle be computed by simulation g8(mg,xg) using the
following identity:

1
(O)pmw= mJ DUO[detM (m, u)]*Nie™Se(A) 1)

<OeaNf[In detM(m,u) —In detM(mg, uq)] e Sy(B)+ Sg(BO)>(BO Mo wtio)

= <ea/Nf[|n detM(m,u)—In detM (mo ,,uo)] e~ Sg(ﬁ) + Sg(ﬁ0)> 8
0’

)

Mg, 1)

Here M is the quark matrix,Sy the gauge actionN; the  convergence is the fugacity,/T=Nyu. The Taylor expan-
number of flavors, and=1 or 1/4 for Wilson or staggered sijon for the fermionic part of the reweighting factor around
lattice fermions, respectively. The chemical potential param,=0 is
eter u=uqa, where a is the lattice spacing. Because
detM(w) is complex for Reft) #0, the expectation values

in Eqg. (2) can only be estimated by conventional Monte

*° n an
Carlo importance sampling if the simulation is performed for aN; n(detM(’“)> = aN; K M

o zero or purely imaginary. Most of the attempts to calcu- detM(0) =1 N! au"

late atu#0 have used variants of this methf#]. The re- -

weighting factor for the gauge part is easy to compute by EE Rouh (4
measuring the plaquette,, , since ] nfe-

_ —(p_ We similarly expand fermionic observables such as the chiral
+S = P 3
Sy(B)+SyBo=(B=Bo) 2 Pu(x) @ o e

for the standard Wilson action, and extensions for improved

actions are easy to derive. Howgver, to compute .the ferrmon (W)= (N3XNp) ~LaNg(tr M1y, (5)
part, the calculation of the fermion determinant is required

for each point (n, ) we want to study. Such a calculation is

quite expensive and difficult to perform in practice. Fodorwhere the lattice size i$\1§>< N;, once again obtaining a
and Katz have performed such calculations, and by reweightontinuous function for smajk. Using the formula

ing in bothu andB have succeeded in tracing out the critical

line B.(ux) and locating the critical end point on small lat-

tices[7]. Their method exploits the fact that the overlap be- oM 1 IM

tween ensembles at different points along the coexistence 7 _—Mfla—Mfl, (6)
X X

line separating hadronic and quark-gluon plasma phases re-
mains reasonably large on finite systems.

Another problem of the reweighting method is the sign
problem, which will be discussed in detail later. Asin-
creases from zero, the calculation of EB) becomes more
difficult due to fluctuations in the phase of the denominator.
To avoid these problems, we restrict ourselves to calculating
derivatives of physical quantities with respect o which
can be done att=0. This yields estimates of the physical dIndetM =tr( Mlﬂ)
guantity as a continuous function gf in a narrow range of u '
m, but the region of applicability is not restricted to the (7)
immediate neighborhood of the phase transition. This per-

expressions ford"(IndetM)/du"™ and a"(tr M~ 1) /au" in
terms of traces over products of local operators and inverse
matrices can be developed:

mits the development of a Taylor expansion of observablesin _, 5
powers ofu=uga; strictly speaking, in fact, the physically Mztr —1ﬂ —tr( M‘lﬂM —1ﬂ ,
relevant expansion parameter which ultimately must govern  gu? au? I I
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52 IndetM M IM 92M which can be easily checked by performing a Taylor expan-
—— =M *1—3 —3t{ M —M— sion of the expectation value, E@), directly for each physi-
I I I I cal observable. Of course, for a pure gluonic observable such
M IM IM as the Polyakov loop only the expansion of Indé is
+21r |\/|1_|v|1_|v|1_>, needed. Furthermore, we should note thaiatO the odd
I In 8 order derivatives of both IndM and trM~! are purely
imaginary and the even order derivatives are real. This prop-
atrmMm~1 M erty is proved using the identities for the fermion matrix:
I =—tr{ M mM ,
MT(u)=TsM(—u)T's
2 -1 2
Fumt [ oM _1) and
Ip 07,LL2
M oM "M T L™
2t M I—M1—M"1], T (w)=(—1)"Ts——(—p)l's, (10
J au
B M-t M whereT'5 is ys for Wilson fermions and £ 1)*1"*2"*s"*4
=t M1 Ml) for staggered. Then, at=0,
I aud
2 MM a"2M *
+31r M—l_M —1ﬂ|\/| 1 trl M2 -1 ML,
Iu? I ' Iu™ Iu"
2 MM "M
+3 tr M‘lﬂM‘le‘l =(—1)ntn2t gl ML -1 M-L... ]
m I M au"?
M M oM 1D
-6ttM t—Mt—M1—M"1| _ o .
I I I Because the terms in thath derivative satisfyn;+n,
(8  *+---=n, we obtain
We apply the random noise method to calculate the deriva- N * N
tives of IndetV and trM ~%, which enables us to compute d" IndetM :(_l)na In detM (12)
on rather large volumes in comparison with the usual studies au" au" '
of QCD with u#0. UsingN, sets of random noise vectors
7 Which satisfy the condition |im%(1/Nn)zg‘2177;i Maj L\ L
n n — n -
= §jj, we rewrite the trace of products 6M/Jdu andM -1 J M :(_1)n(9 trM (13)
as aMn &Mﬂ !

n n
ter 71&2M“- 1
[})Mnl 1“7Mn2
N
I "M "M
— T -
_“mN_E Na — 174
Ny Yna=1l “Jdu't 2

©)

M~ 1p,=x and M~ Y(dM/du)--- n,=x are obtained by
solvingMx= 7, or Mx=(dM/du)- - - 55, and we compute
the right-hand sidRHS) of Eq. (9) with finite N,. The
error for estimates of physical observables made Ny
configurations is expected to decrease MsN,o,) ~ 2 Fur-

Using this property and the fact thatis a real function of
B, m, andu, we can explicitly confirm that, if the operator
has the property that even order derivatives are real and odd

order derivatives are purely imaginary @& 0, e.g.,{ )

or its susceptibility, then all odd order derivatives of the ex-
pectation value of a physical quantity are zerquat 0, as

we expect from the symmetry under changppgo — «. The
derivative of the expectation value can be written as a sum of
products of expectation values composed of the operator, the
reweighting factor, and their derivatives, and the total num-
ber of differentiations in each term has to be odd for an odd
order derivative. Hence all terms for odd derivatives contain
at least one expectation value of a purely imaginary operator

ther notes on the application of the noise method are given ignd hence vanish, since the expectation value of a purely

the Appendix.

imaginary operator is zero. Therefore the first nontrivial or-

By using the derivatives of both the reweighting factor der of corrections to, e.g(%,b) or its susceptibility, that we

and fermionic observable up tdgh order inw, we can obtain
the correct answer for the expectation value uptto order,

compute in this study i©(u?); the truncation errors, so far
unquantified, ar®©(u*).
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In order to be more specific, let us define the Taylor ex-We define the transition poir8.(u) by the peak position of
pansion of an operator by;_,0,u". Then toO(u?) the  these susceptibilities for eagh
expression(2) for (O) 4,y can be rewritten
aX(BcuU*):O 17)
() :<(Oo+01M+OzMZ)GXF(R1M+R2M2_ASg)> B '
(Br) (expRyp+ R ou?—ASy))

(14) If we cqmputeaX/&,B qorrgctly up ton_th order inu, we can
determine thenth derivative of 8. with respect tou. For
where expectation values on the RHS are measured with r@xample, if we determing.(u) using an operator such as
spect to an ensemble generated /4,0). Extension of this (), which is real and whose first derivative at=0 is
formula to combined data from several ensembles using muburely imaginary, then the first derivative.(u) vanishes

tihistogramming is straightforwarffl2]. Further details on pecause as argued above the first derivative of the suscepti-
the evaluation of Eq(14) using the noise method for fermi- pility is zero in this case.

onic operators are given in the Appendix. Finally, note that we can also estimate the magnitude of
In order to determine the pseudocritical point, we calcufluctuations of the phase of dét, because on each configu-
late the Polyakov loop susceptibility ration this phase can be expressed in terms of the odd terms
of the Taylor expansion of Ind#& ; this will be discussed in
xL=N3((L?)—(L)?), (15)  more detail in Sec. V C.
where the Polyakov loot = (N3) “1S;N: % tr T,U,(%t), !l SIMULATIONS FOR N;=2 IMPROVED STAGGERED
and the susceptibility of the chiral condengate FERMIONS
We employ a combination of the Symanzik improved
Xgy=(NSXN) "H(aNpZ[((tr M~ H2)—(tr M~1)2]. gauge and two flavors of th®4 improved staggered fermion

(16) actions[13,14]. The partition function is defined by

Z(,B,m,,u)=f DU (detM )Ni4e=Sg, (18
Sg=—ﬂl > W)+ 2 cWEA(x) (19)
X, u=>v X, u,v
xy 2 77|(X){ 1[Ufat(x)5x+|y_ufaﬁ( _| x |y]+032 [U(lz) x+|+21y Ui(,lj’z)T(X_i_Zj)5x—f—2],y

+ Ui(,lj’_z)(x) é\x+i—2]?,y_ Ui(,lj’_z)T(X_’i\"’ 2]) 5x—f+2},y] + Cg[ez”U(l 2)(X) 5x+| +24 y

—e 2UAN (X —T1-28) 8, _gay+e U 2(X) 8,7 gay— U DT (x—T+24) 6x-i+za,y]]
+n4<x>{ci[e#uza%x)@m,y—e#UE?“(x—Zt)éx 4y]+c32 [e*U2(X) 8,134 27y

—e“USﬁ'”*(x—Zt—z?)axazf,y+e“uaﬁ*2’<x>6x+aza,y—e“uaﬁ'”*(x—mz?)axm;,y]} +mé,., (20)

whereW, s *(x) andW,;(x) are 1x 1 and 1x 2 Wilson loops,7,(x) = (—1)" " **x-1is the Kawamoto-SmitkS) phase,
and

(1.2) o _ 1 - A A
U/_L,V (X)_ E[UM(X)UV(X+#)UV(X+ILL+ V)

+U, (00U, (x+ 1)U ,(x+2)],

INote that we calculate only the disconnected part of the complete chiral susceptibility.
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TABLE |. Simulation point (n,8) and number of configurations 0.7 T T T T T T
Ncont fOr mass reweighting angd reweighting.

m B Ncond Mass) Neond( 1) > 0.6
= il e I||||||

0.1 3.640 38000 20000 = |" ; i
3.645 15000 =} i i |||||||“| |’ I,,,
3.650 58000 38000 S 0s |] M N
3.655 16800 2 W M{N MHH NN
3.660 55000 40000 s HWN NMN MN
3.665 7800 3 NN« NNN NM
3.670 30000 30000 z " Nw M

0.2 3.740 5000 = NM MN
3.750 30000 20000 = NNN N —— m=0.090
3.755 15000 A 034 —_—: mig(l)g(s)
3.760 52000 34000 Nw e o105
3.770 48000 32000 ”‘ --=- m=0.110
3.780 5000 ot

3.64 3.65 3.66 3.67
. o o p
(1,-2) _ T _ t _
Uy “(x)= E[UM(X)UV(X+M VU (X+u—2v) FIG. 1. Quark mass dependence yaf as a function of8 at

m=0.1.

Tutix=utix—23 _97
U (x= U, (x=20)U,(x=2w)], hybrid R algorithm. We adopted a step sizer=0.25<m

and a molecular dynamics trajectory length 0.5. For each
trajectory ten sets of Znoise vectors were used to calculate
the reweighting factor and the derivatives f/ up to sec-
ond order ing.

Ufat(x) —

W)= T { #(x)+w2 [U,(x)U . (x+7)

X UI(er [L)"‘UI(X_ ;)Uﬂ(x— ;/) For the calculation of mass reweighting surveyed in Sec.
IV, we took a total of 220600 trajectories ai=0.1 and

% UV(XJFI;L_ e (21) 155000 _trajectories an=0.2. For the s_tudy _vvithHéO de-
scribed in Sec. V, we used 128000 trajectoriemat0.1 and

86000 trajectories an=0.2. The details are summarized in
The coefficients argg=6/g?, c;=—1/12, coc=1—8¢;, ¢{  Table I. The multihistogram method p£2] was used to re-
=3/8, c5=1/96, andw=0.2. The action is derived such that weight in the direction using data from several values of
rotational invariance of the free fermion propagator is re-

stored up toO(p%). It is known that this action makes the — ois
discretization error of the equation of state presspf€) 12 o~ m=0.19 N“
small asT—o0, andT. obtained by this action is consistent | == m=0.20 N”“ M ‘
with that obtained using improved Wilson fermiofis},15. 2 =m m=0.21 m"mm“m N«M.m
To incorporate the chemical potential, we generalize theg 10~~~ m=0.22 WM] WM» m
standard prescription of treating as an imaginary gauge & I\l""“ il m’m mﬂ M W MW
potential A, [16] by multiplying the terms generatingstep s i \ il IW | MM MM i
hops in the positive and negative temporal directiongty § 0.8 |- il WM NM ||||‘§.\|\ W WM mw li
ande™ "“, respectively & W W MNW i w|‘ MWI WKW

We investigated the transition points for quark masses & W WW MMW M | | WIMW M ’m
=0.1 and 0.2. The corresponding pseudoscalar and vectcz ¢ WM WWN NWMN MWM mm li

meson mass ratios ampg/my~0.70 and 0.8514]. We

computed the Polyakov loop, chiral condensate, and then_ / w

susceptibilities. The simulations were performed on ak 04l NM

16°x 4 lattice for seven values oBe[3.64,3.67 for m N
\

ak

=0.1 and six values g8 €[ 3.74,3.8Q for m=0.2, using the
- ”HH""I\
78

3.74 375 3.76 3.77 3.
°Note that for any improved action involving terms in whigh B
andJare separated by more than a single link, there is no longer a
local conserved baryon number current bilingg(x) such that FIG. 2. Quark mass dependence yaf as a function of3 at
2 ,(J u(X) =] ,(x—u))=0 for nonzero lattice spacing. m=0.2.
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18 3.780
Il “ sl ‘
‘ i

g o MWM MNWM |||| it m ||” 3770
= NWN M MHIH ||| Il |Ii"iii|"’ s |||| ”| H
NMW ,WM” / AR
Ny, iii |
2/ A I

! NWNNW A el

o8 le . | . | ::.: $28|:%(1)(5) T Y T T R Y T T

B FIG. 5. B.(m) determined b:;L aroundm=0.2.

FIG. 3. Quark mass dependence )gf, as a function ofg at

m=0.1. simulation atu#0, this test is a necessary check of the

reliability of our method. The reweighting formula for quark
B. Errors were estimated using the jackknife method withMass is easily obtained from Ee) and Eqgs (7) by replac-
In the case of the rewe|ght|ng fon, we compute the ferm|-
IV. REWEIGHTING FOR QUARK MASS onic reweighting fgctor up to_ second order, and the chiral
condensate up to first order, i.e.,
Before calculating derivatives with respect to it is
worthwhile to calculate the derivatives with respect to quark |y getM (m) — In detM (my)
massm, which is not only potentially important for the chiral
extrapolation, but also a good demonstration of the reweight- =tr M~ (m—mg) —tr(M~*M~*)(m—mg)%/2
ing technique for a parameter appearing in the fermion ac- _ 3
tion. Because we cannot compare the result obtained by re- +OL(m=mo)7], (22)
weighting in the x direction with the result of an actual

Pp= (N3N “LaNtr M~ =tr(M "M~ 1) (m—mp)]

09 T | | T T T T I T I

‘H since the Polyakov loop is an exact order parameter only in
‘ H““Hh“ H”H ”{ ” “"M the limit m— o, while the chiral condensate is an order pa-
|

wﬂ
WNWW
w

— m=0.18 | +0O[(m—mg)?]. (23)
M --- m=0.19 o
’ I I\”l‘ HM e Efgg(l)— Hence, the error of the Polyakov loop susceptibility is
wmmw e m=0.22 ] O[(m—my)?®] and that of the chiral susceptibilitP[ (m
> IMI u\” wlwm —mg)?]. Figures 1 and 2 shoy, and Figs. 3 and 4 show
= Ww ||”| w HMM m Xy for differentm as functions of8 for simulation masses
= NM “‘1‘ u‘w W‘ mMy=0.1 and 0.2. These figures show that the peak position
@ W Nmm ‘ \m moves to smalle asm decreases, as expected. Moreover,
z N WIH ‘ | ||M we find that asn decreases the peak height becomes lower
Tt N " \‘ for x, and higher foryy,. These behaviors are consistent
=
@)

“‘H rameter only foom— 0. The phase transition is known to be
a crossover for two-flavor QCD wititn>0. We calculate the

"m slope of the transition point3,/dm assuming thaB.(m) is

W defined by the peak position of the susceptibility whenever a
clear peak is obtainetiFigures 5, 6, and 7 shoy.(m) for

375 3.76 3. 77 3. 78

3Because the peak width of is too wide for the smaller mass
FIG. 4. Quark mass dependence )gf, as a function ofg at m=0.1, we do not determine the pseudocritical pointlidn this
m=0.2. case.
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T l T I T l T T l T I T l T
3.660 3.780 -
3.655
3770
3.650 i
O O
=) o ¥
3.760
3.645 K
) 3750 )
3.640 — Chiral — Chiral
-~ fitted line -~ fitted line |
- 4
3.63 1 I 1 I 1 I 1 3‘74 1 I 1 I 1 I 1
2010 -0.005 0.000 0.005 0.010 Boo -0.010 0.000 0.010 0.020
m-m,, m-m,,
FIG. 6. B.(m) determined byy, aroundm=0.1. FIG. 7. B.(m) determined byyy,, aroundm=0.2.

eachm,. We fitted the data by a power series expansion V. REWEIGHTING FOR CHEMICAL POTENTIAL

aboutmy, i.e., B.(M)= B.(mMy) +2E§1cn(m— mp)", with fit A, Chemical potential dependence of the transition temperature
range|(m—mg)/my|<0.05 or 0.1. The results are presented

in Table 1. We find a linear fit to be adequate with the de- Next we turn our attention to reweighting with respect to
pendence on choice dfi; less than 3%; the discrepancy #, With the Taylor expansion made about the simulation
from the choice of fit range is less than 10%. Both uncerpoint x=0. First we calculate the derivatives of the transi-
tainties lie well within the statistical error. We denote the tion point with respect ta in the region of smalj relevant
fitted line for Ngz=1 and|(m—mg)/m,y|<0.1 by a dashed to the RHIC. In Figs. 9, 10, 11, and 12, we pjgt and x
line. In Fig. 8 we compare the predicted variationg{m) atm=0.1 and 0.2 for varioug.. As outlined in Sec. Il, we
with previously existing datd14]. Filled symbols are the Compute consistently up t@(x*) and expect the results to
results of the current study. The short lines denote the uppdiontain errors aO(u*). Strictly speaking, th@(x°) term
and lower bounds on the slog . From this figure, we find d0€s not vanish fok since it is complexsee Sec. )l How-

that reweighting yields results which are quite consistenfVe’» We expect tha{(‘L and xy, yield the sameg; (see
with those of direct simulation, and hence infer that re-P€low with errorO(u). The figures show that the position

weighting the fermion action using the technigque we haveOf the susceptlblllty_peak moves lower asincreases, W.h'Ch
outlined works well. means that the critical temperature becomes loweg &s-

creases. As we obtained well-localized peaks fqr at

TABLE II. Quark mass dependence of transition point determinet byd(ﬁb). The fitting function is
Be= Bco(mMg) + =, 1Nic,(m—mg)". The truncation error is contained @3 from .

mg Bc(Mg) Cq Cy Fit range Niit

E,/, 0.1 3.649222) 1.0514) — —0.01<m—-my<0.01 1
3.649222) 1.0313) [—9.(14)] —0.01<m—-my<0.01 2

3.649222) 1.0719) — —0.005<m—my<0.005 1

3.649222) 1.0719) [—17.(26)] —0.005<m—my<<0.005 2

0.2 3.761736) 0.89690) — —0.02<m—my<<0.02 1

3.761736) 0.89489) [5.(13)] —0.02<m—my<0.02 2

3.761736) 0.9701698 — —0.01I<m—my<<0.01 1

3.761736) 0.999180 [18(39)] —0.01<m—my<<0.01 2

Polyakov 0.2 3.76349) 0.83864) — —0.02<m—-my<0.02 1
3.763919) 0.83563) —2.7(4.5) —0.02<m-my<0.02 2

3.763919) 0.883106) — —0.01<m-my<0.01 1

3.763919) 0.885106) —4.7(10.0) —0.01<m-my<0.01 2
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—— p1=0.00
i 1 M- ——- p=0.05 1
375 - L= M—Ool(())5 |
>\ . — — l"l'_-
i | £ _----p_nlo ‘1 |
g
37 . g 101 l .‘
[0}
i ] 2
@’ 3.65 /)(/ i 2
) o
=
i i <
3.6 O x4 (previous)  _| 2
| @ A 16'x4 (previous) é 08
3551 B (6'x4 (chiral) | S
o ® 16°x4 (Polyakov) 0.7f
3 5 1 I 1 I 1 I 1 I 1 I 1
20 005 01 015 02 025 03 06
m

FIG. 8. B.(m) determined byy,, in comparison with previous
results. FIG. 10. x.(B8) atm=0.2 for variousu.

m=0.2 andy,, atm=0.1 and 0.2, we use these peak pOSI'SGI’IOUS (see Sec. VC below We obtain d?8./du?=

tions to determine the transition poift as a function ofu® 1 20(44) and-1.02(56) am=0.1 and 0.2 from the chiral

in Figs. 13, 14, and 15. Note that because the Polyakov loogysceptibility andd?s,/du?=—1.01(23) atm=0.2 from

is interpreted as an external quark current running in thehe Polyakov loop susceptibility. Dot-dashed lines in Figs.

positive time direction, positive and negatiyegive differ- 13, 14, and 15 are the fitted lines. To investigate the fit range

ent contributions to bottL and x_, and we display both dependence and the fitting function dependence, we also

cases. Figures 13, 14, and 15 also display the valug of tried the rangeu?<0.005(0.01) fom=0.1(0.2), and using

=0.1T, relevant for the RHIC. The shifB.(u)— B:(0) is  a quadratic fit function. Table 1ll summarizes the results. We

found to be small at this point. may conclude thatd?g./du?~1.1 with 30-50% error,
Because the first derivative is expected to be zero as disand any quark mass dependencal®B./du? is not visible

cussed above, we fitted thg data by a straight line ip?, within the accuracy of our calculation.

fixing B. at =0, in rangesu?<0.008(0.014) form Of course, it is desirable to translate these observations

=0.1(0.2), respectively, in which the phase problem is nointo physical units. The second derivative ©f can be

0.70 | . | . | . 1.8 | . | . | .
z ’ Ik
= 0.60 - i | e -
2 il i oz e i
e I = Iy
g ” |" |||“||| L ||||||||I||||i| ||' |E||| 2 ‘ || i il
2 | e & 0 ‘ ) ||
£.0.50 g 2 I|| IR
3 2 | T il
k= Z 14+ |||l
- <l
2 = |‘ I
S Q L | i .
f
204 “ i
VI 1 m"l‘ p=0.00
.. 12 |Ii||"’ ———-u=0.04 |
I]I,.i ----- u=0.08
030 L | hi|||| | : | : | .
' 3.64 3.65 3.66 3.67 3.64 3.65 3.66 3.67
FIG. 9. x.(B) atm=0.1 for variousu. FIG. 11. xy,(B) atm=0.1 for variousu.
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[ T | T [ 3.652 T T T T T T T
— p=0.00 |
=== u=0.05 | i .
0.8 _ ik N

o w010 Hi “l ll"llilm | 3.650 .
= III “I " “ | iy N
= i Ik 1
2 i ( !
g ||| ||| 3.648 o -
ng)) 0.7 III ||| @? \\\~
- ‘ |||| ||| [ It I
£ ” i || |||| 3.646 |- \h‘\* H
o !II | il

iy |||| ’ L ~’.ti?l

|| — Chiral
0.6 3641~ .-~ fitted line 1
I 1 I 1
[ . ! . | 0.000 0002 0.004 0.006 0.008
3.75 3.76 3.77 uZ
B
FIG. 14. Phase transition poi.(u) determined byy,, at
FIG. 12. x,»(B8) atm=0.2 for variousu. m=0.1.

estimated by

d*T, 1 dBc /

d,ug NtzTC du?
where a is the lattice spacing. The beta function may be
obtained from the string tension data in Rgif4]. We com-

pute it by differentiating the interpolation function of the
string tension with an ansaf7]

where R(B) is the usual two-loop scaling functiora
=R(B)/R(B) andB=3.70.cy,C,, andc, are fit parameters
with co=0.0570(35), c,=0.669(208), and ¢4
=-0.0822(1088) at m=0.1. We get a (da/dp)
=-2.08(43) at B,m)=(3.65,0.1). We then find
To(d?To/dug)~—0.14 atm=0.1. We sketch the phase
transition line with 50% error in Fig. 16 assuming,
=170 MeV. In the figure we also indicate the ling,/T
=0.4, corresponding roughly to the range over which the fits
to the leading order behavior @f.(x) shown in Figs. 13 —
15 are made. Of course, one has to expect that higher-order

\/R(Ig):R(lg)[1+czg\2(ﬁ)+0454(/3)]/00, (250  terms in the expansion become relevant it =O(1). To

dp
aﬁy ,

(29)

3.768 T I . . 3.768 T I . .
3.766 — 3.766 H —
3.764 RN . 3.764 N .
N NG
N N
- N : ] L \\:,\ ]
N o NN
3762 \ gy . =3.762H NS .
Ay "N

L N ) i L i

3760 In THL H 3760 3 -
! ;tq Nl 4l ] )

| —— p>0 Polyakov TTHA i 1

3758 === u<0 Polyakov H 3758~ —— Chiral
— - fitted line i -—-~ fitted line
3.756 1 l 1 l 1 3 756 1 l 1 l 1
o.ooof 0.005 0.010 0. ood[-[ 0.005 0.010
RHIC 2 IC 2
0 0
FIG. 13. Phase transition poim®.(x«) determined byy, at FIG. 15. Phase transition poifd.(x) determined byy,, at
m=0.2. m=0.2.
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TABLE Ill. B and its second derivative with respectgo We T J T J T J
fitted the data with the function8.(w) :,BC(O)+ESL“lch2”,
whered?8./du?=2c;. 0.10 .
P
m Be d?B./du? Fit range  Ng
i 0.1 3.649716) —1.20(44) 0<u?<0.008 1 =y
3.6497116) —1.19(54) 0<u?<0.005 1 2 008
3.649716) —1.21(79) O=u?<0.008 2 2
0.2 3.764137) —1.02(56) 0<u?<0.014 1 § |
3.764137) —1.10(68) Os,uzg 0.010 1 o
3.764137) —1.34(103) G<u’<0.014 2 A
Polyakov 0.2 3.76516) —1.01(23) 0<u2<0.014 1 0.061= —— 1=0.00
3.765116) —1.07(24) O<u?<0.010 1 ---- uzg-gg
3.765116) —1.21(31) O<wu?<0.014 2 ——— ﬁ=-().04 1
-.== pu=-0.08
) ) ) ) ) l 1 I 1 I 1
guantify this we will have to analyze higher-order contribu- 3.64 3.65 3.66 3.67

tions in the expansion in the future. To indicate the present B
systematic uncertainty in the transition line for largefT

we show this region as a dotted line in Fig. 16. We stress that
the errors shown are statistical only and reflect the uncer-

tainty of the coefficient of th@ () term in the expansion nonanalytic behavior, at larger valuesof Despite the large

of Te(). On the assumption that the transition line IS para-grrors we can see that our result gives us useful information
bolic all the way down toT =0, then this curvature is t00 4,4t the phase diagram, at least for smallbecause the
small to be consistent with the phenomenological expectag «i derivative is zero.

tion that atT=0 a transition from hadronic to quark matter — apother point worth noting is the screening effect of dy-
occurs foru. some 50-200 MeV greater than the onset ofyamical antiquarks ak<0. A negative chemical potential
nuclear matter afu,=my/3=307 MeV [18]. This tendency hquces the dynamical generation of antiquarks, which in
is also supported by the result of Fodor and Kgty, and  contrast to quarks can completely screen an external color
hints at contributions from higher-order derivatives, or eVeNyiplet current. Thus the free energy of a single quark is re-
duced, especially in the confinement phase, and the singular-
ity at the phase transition point is weakened due to the re-
duction in the range of current-current interactions. This
effect can be seen in Figs. 9, 10, 17, and 18, where we denote
the Polyakov loop and its susceptibility at<0 by dot-dot-

FIG. 17.L(B) atm=0.1 for variousu.

200—— . : , :

- : Fodor & Katz -

150 mHJr’.WH -

—_ -
> 0.10
P)
E 100 \ -
N’ \\
N
B~ | 1 o
1 g
M — 0.08
50 Wil 2
: M ~
: <
K myf3 N =
: | o
: | nuclear matter -
0 2 | ) 1 1 0.06 f
0 200 400 600
i (Mev)
FIG. 16. Sketch of the phase diagram, as estimated using ou

value of the curvature g8.(x«=0). The errors shown are statistical 0.04
only and reflect the uncertainty of the coefficient of dgu?) term

in the expansion of¢(w). Dotted line isu/T=0.4. The diamond

symbol is the end point of the first order phase transition obtained

by Fodor and KatZ7].

FIG. 18. L(B) atm=0.2 for variousu.
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3.768 y T T T T 3.768 y T T T T
3.766 — 3.766 H —
3.764 . — 3764 P LI —
[ NN
- 3 - - \\i 4
Npai ] BNCES
3762 K I ; — 3.762 H PR —
= Ml il = TR, _
1 NIHR
3.760 |- L KR4 s 3.760 |- PHN. —
- ! - .. qr L l. [ -
! as T N
3758}~~~ W>0 Iso-scalar = 3758
""" u<0 Iso-scalar ~=~ Iso-scalar
— Iso-vector — Iso-vector
3756 =+ fitted line - 3.756F -—-- fitted line H
1 l 1 I 1 'l I 1 I 1
0.006“ 0.005 0.010 o.oodL 0.005 0.010
RHIC 2 RHIC 2
0 0
FIG. 19. Difference between andu, for 8. determined by, FIG. 20. Difference betweep and u, for B, determined by
atm=0.2. Xypy @tm=0.2.

dashed and dot-dash-dashed lines. We seeltlafu <0 is  oyer this result is also smaller than that obtainedmat
larger than that gk >0, which means that the free energy at _g » which is physically unacceptable since the second de-

n<0 is smaller. Moreover, as seen in Fig. 10, the peak;ative should approach zero as—x. Hence the differ-
height ofy, becomes smaller fqu <0, while the position of .o between, and u at m=0.1 is most likely due to
the pseudocritical line in Fig. 13 is almost the same betweeQaiistical error.
positive and negativgx. The screening effect only seems 10 The terms we have dropped are associated with fluctua-
make the phase transition singularity weaker without shifting;;ns in the phase of d&, which are small in the region of
the pseudocritical Iine.. Because the only source of aSyMMe&mall u, as will be demonstrated in Sec. V C below. This is
try betweerw and—x is due to the correlation between the o hans not unexpected on physical grounds—increasing
imaginary parts of the fermion determinant ahd these g hreqicted to induce the onset of matter in the form of a
imaginary contributions help to decrease the susceptibility a|5ion condensate at a critical,,=mp4/2 [19], and indeed

. .. . 0 ’
n<0. In this way, we can see that the explicit breaking ofg,jqence for this scenario in the form of a negative curvature

time reversal symmetry by exchangesofwith — helps to ¢, in the low-T phase is reported {i10]. However
highlight an interesting feature of dynamical quarks in full ps() P P i10]. ’

QCD. 3.652 T
Finally, if instead we were to impose @ovectorchemi-
cal potentialu, having opposite sign fou and d quarks - .
[9,19], then the quark determinant would become real and
positive, enabling simulations using standard Monte Carlo  3:650 .
methodq20]. This motivates a comparison between systems T
with the usual isoscalar chemical potentiabnd the isovec-
tor chemical potentiak,. In the framework of the Taylor k!
expansion, terms even in are identical for bothu and d ° NN ina!
quarks, but odd terms cancel for the casgr0, meaning i N [T
that terms proportional t®,,R, should be set to zero in Eq.
(14). We analyzed the transition poimi.(«,) for m=0.2; 3.646 - N4 H
the results are shown in Fig. 19 f@8¢ determined by, and nt
Fig. 20 for that byy,, . The solid line showg, as a func- ~ == Iso-scalar
tion of u,, the dashed ling. (). The second derivative of seml  — Iso-vector
B with respect tow, is found to be—0.96(19) fory, and ’ -=-- fitted line
—0.93(52) for xy,,. Dot-dashed lines in Figs. 19 and 20 . 1 . L
show the fits. Within errors there appears to be no significant O'OOOHI 0.002 0.004 0.006 0.008
difference between isovector and isoscalar chemical poten RHIC !JZ
tials for small u. A similar analysis fory;,, at m=0.1 is
shown in Fig. 21; here the second derivative @f is FIG. 21. Difference betweep and u, for 8. determined by
—0.71(16), which is smaller than the isoscalar case. Howx,, atm=0.1.

Il

yia
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even form=0.1 on this lattice this scale is roughly 0.82 n_gza f3 t <tr( M 1_) > (28)
=390 MeV [14], which is a little larger than the isoscalar T N I

onset thresholgh,=<my\/3. The curvature with repect ta,
should dominate as the chiral limit is approached and pion

and nucleon mass scales become separate. If this turns out to Xs_ aNiN; trl M 71’92_'\/'
be the case, then it is interesting to note that phase correla- T2 N§ 19M2
tions between observable and measure actukdbreasehe
physical effect of raisingu; this has also been observed in M M
simulations of two-color QCD with a single flavor of stag- -\ M WM W
gered adjoint quark21], in which including the sign of the
fermion determinant has the effect of postponing the onset (a@Nf)2N, IM aM
transition. —3[ < r( M 1—) tr( M 1—) >
B. Quark number susceptibility and equation of state atu#0 ,
The energy densitg and pressur@ at the critical point —<tr( Mlﬂ)> } (29)
are interesting quantities for heavy-ion collision experiments. I ’
In this section, we discuss the dependence of the equation
of state which describes them. If we employ the integral xns  @N¢gN; _182M
method based on the homogeneity of the sysfg@, we ?: NE tr| M I
obtainp=(T/V)In Z; derivatives ofp with respect tou are s -
then related to the quark number density(via a Maxwell M M
relation and the singlet quark number susceptibilifyg —<tr( M ‘1—M‘1—)> . (30)
= ngldpq [8]: In I

The quark number density is zero@t0 so once again the
ﬁ(p”“)_i dlnZ ng leading correction i©O(?). The susceptibilities¢sa® and

ire VTR omg T4 (26) | a? are plotted in Figs. 22 and 23 fan=0.1 and 0.2.
Becauseysa®=0.0433(3) and 0.0306(2) fan=0.1 and 0.2
at B in Table Wl (y), we obtain T25%(p/T*)/dud

AT 1 #INZ  ys —0.693(5) (n=0.1) and 0.490(4)r6=0.2) atB,. The dis-
 E— = 1 (27)  crepancy ofp/T* at the interesting point for the RHIC,
dpug VT dug T prq/ Te~0.1, from its value af.=0 is about 0.0035(0.0024)
for m=0.1(0.2); since p/T*~0.27 at B, for (m,u)
Hereny, xs, and also the nonsinglet susceptibilipys are  =(0.1,0)[14] this is a 1% effect, and hence quite small. We

given in physical units by

can also obtain estimates of the quark number density via
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nan”:Mansaz, with results nq/T3:O.693(5)uq/T and together with a similar relation fok e, and compare it with
0.490(4)1/T for m=0.1 and 0.2 which assuming the phase transition line. The slope of the constant pressure
=170 MeV translates into roughly 9% and 6% of nuclearline is then given by

matter density at the RHIC point. Clearly these values will

need careful extrapolation to the chiral limit before a mean- daT a(plT?) aplTY 4p
ingful comparison with experiment can be made. o= > 0T +t=] (35
Moreover, the energy densitycan also be estimated via d(ug) I pg) T

the equation for the conformal anomaly: The derivatived(p/T#)/dT can be calculated by

E_3p: _ i dln Z ﬁ(p/T4) B 1 ga _lﬁ(p/T4)
T4 VTS da aT  ladB B
1 [ aBanZ  omdnz loa\™* ,[] 1 aS
=——|a— +a— (31 =l=—=] N; —
VT3 oda B da dm adp N§Nt ap
Here we estimate in the chiral limit, whereadm/da can be 1 98,
lected. We find - 0 , (36)
neglecte e fin NEN, 9B i
€—3p 1 dlnZ(1sa\? where (- - -}q means the expectation value evaluatedrat
T4 v 9B l\aaB) (32) =0 for normalization. Using the data of Refl4], p/T*

=0.275), d(p/TH/9B=4.5(9) atT. for m=0.1, together
with the beta function in Sec. VA, we obtain
T(a(p/T*)/dT)|7-1,=2.2(6) form=0.1. Noting also that
APl T 9(pd) = (L2) #*(pIT*)19ui]1=0.3473) /T2, we
find that the slope of the constant pressure line emerging
from the critical point on theT axis is T(dT/d(,ué))
=—0.107(22). A similar argument using the data[@#]
Because the quark mass dependence of the equation of st@i¥es the slope of the constant energy density line
seems to be small in Ref23], we estimate the derivative T(dT/d(u))=—0.087(23). Because the slope of the tran-
using the value of¢s atm=0.1 and 0.2. Using the formula sition line in terms of ui is To(dT/d(ud)
KOV aB={O(—aSIaB))y—(O){—aSIdB), we obtain =(1/2)Tc(d2TC/d,u§)~—0.07(3), we deduce that the
d(xsa®)/9B=1.11(5) and 0.82(4) g, for m=0.1and 0.2.  variations ofp ande along the phase transition line are given
Then the second derivative af—3p is estimated to be by

T29%[(€—3p)/T*)/du;=8.5(1.8) atm=0.1, where we use

the same value of the beta-function as in Sec. V A. Finally, _ = 12T2(0) X 0.

we obtainT2%(e/T*)/du;=10.6(1.8). The discrepancy of P(Teliq): a) = P(Te(0).0= 4qTe(0) X 012 1D),

e/T* at the RHIC point fromu=0 is about 0.05. Once -

again, because/T*~6 at S for (m,u)=(0.1,0)[24], this €(Te(pq), mg) — €(Te(0),00=ugTe(0) X 1.02.2), (37)

is a 1% effect, suggesting that the, dependence of the

[ (e—3p)IT4] 1 dxs -1

&,ué T4 B

1 oa

278 (33)

equation of state is small in the regime of relevance for th the dominant source of uncertainty in each case being the
q 9 §ocation of the phase transition line itself. Within our errors,

RHIC. therefore, both pressure and energy density appear constant
Next we discuss the relation between the equation of state ' T
o : . . along the phase transition line.
and the phase transition line. It is of great interest to inves-
tigate whether the values of the pressp@.(u),uq) and _
energy densitye(T.(ug),1q) along the transition line are C. The phase of the determinant afu#0
constant or not. To this end, consider the line of constant Finally we discuss the region of applicability of generic
pressure in theT,uy) plane, ie., reweighting approaches. If the reweighting factor in Eq.
changes sign frequently due to the complex phase of the
quark determinant, then both numerator and denominator of
Ap:a_pATJr p A(u?) Eqg. (1) become vanishingly small in the thermodynamic
al a( ,ué) d limit, typically behaving~ e~ Nsie with the lattice SizeNge
=N3N,. This makes control of statistical errors in the calcu-

[, apiT 4p LI 2 lation of the expectation value very difficult. Of course,
=T oT +T ATHT a(u?) Alng) arg(detM) starts at zero gt =0 but grows as increases. It

a is important to establish at which value afthe sign prob-
=0, (34)  lem becomes severe.
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TABLE IV. Average of {(Imtr[(dM/au)M ~1]), average of its 1.0 T I T I T I T
error for each configuration(¢)), standard deviatioltSTD), and —— B=3.64, m=0.1
improved standard deviatidisTD(Imp.)]. i - ——- B=3.65,m=0.1 |
sl A p=3.66, m=0.1 _|
m B (Imt[(dMIdu)M™]) (&) STD STOImp.) \K \rg‘ == PB=3.67, m=0.1
- A % v (J— = -
0.1 364  —1.15¢10* 0.00199 0.00233  0.00110 %\ - E=§Zg 2:83
3.65 1.02¢10°° 0.00194 0.00223  0.00099 0.6 AN e B3TT me02"
366  —3.06<10°  0.00189 0.00212 0.00085 4 RN S
3.67 —1.40x10°° 0.00185 0.00206 0.00077 & [ NV 1
0.2 3.75 1.0%10°° 0.00141 0.00168 0.00085 ¥ ,| W NN _
3.76 0.93%10°° 0.00140 0.00161 0.00072 NN
3.77 —4.17x10°° 0.00138 0.00155  0.00061 - \‘\»\.\ Y- 1
" W
3 N
021 \\\3., NN —
. . . I\.\\q“ ‘\'«
As discussed in Sec. Il, the phase can be expressed usir L ., N - -
the odd terms of the Taylor expansion of In et If we N s
1 — i0 Il ] L | 1 -
write detM = |detM]e'", then "800+ oos 0.10 0.15 020
RHIC M

dlndetM 3 4% IndetM

i + ar - FIG. 24. The expectation value of the complex phesesé).

0=aN; Im| u
Ip
(38)
fluctuation becomes smaller a4, increases. To confirm

For small u, the first termaN; INtr[M~*(IMdu)]p i this, we reanalyze the standard  deviation
dominant. Now, becauseNEN,) ~* tr{ M ~*(dM/du)] is the JOMIM - X(aMIa) 12— (Imt[ M~ X(aM7am) )2 by
quark numlber density, its expectation value must be real a”ﬁ’eating the calculation of{ImtM~(dM/du)]+2) more

in fact vanishes a.=0. Although the average of the phase .4refylly. Since the noise sets must be independent, we sub-
is zero, its fluctuations remain important. We investigated the,, -t the contributions from using the same noise vector for

it 3\ )1 -1
standard deviation of NgN,) = Imt[M ““(dM/du)] and  gach factor. Details are given in the Appendix. The results
present the results in Table IV. We find values of about, quoted in the ST@MP.) column of Table IV and are
—3 — —3 — k
2.2x10°7 at ﬁc(”.‘—.o-l) and 1'6<. 107" at B(m=0.2). found to be significantly smaller. Because they might be
The standard deviation of the leading term of E2) there- closer to theN, = limit, they suggest that the standard

for_e has. a magmtwje of about/lao_r_m=0.1 and 13 for deviation for largeN,, is much smaller, which means that the
m=0.2 in the vicinity of the transition. Consequently the region of anolicability becomes wider \Creases
phase problem appears from~0.09(0.12), i.e.,uq/T, 9 PP y bk, '

~0.4(0.5) form=0.1(0.2), since the phase problem arises if
the phase fluctuation becomes @f1). We notice that the
value of u for which the phase fluctuations become signifi- VI. CONCLUSIONS
cant decreases as eithmior 8 decreases. Roughly speaking,
the numerator and denominator of EQ) decrease in pro-
portion to the average of the phase fact®e(e'?)). We
show this factor for varioug andm in Fig. 24, where it is

In this paper we have proposed a new method based on a
Taylor expansion in chemical potential to investigate the
thermodynamic properties of QCD witha+ 0. By comput-
clear that the average becomes small around the valugs ofm.g the chiral suscept|b|llt_y and the Polyakov Ioop_susceptl-

. . bility for two flavors of p4 improved staggered fermions, we
quoted above. The phase fluctuations at the RHIC pajnt have been able t timate the dependen &nd hen
=0.1T., however, are small enough for the analysis of Secs.ha € _?‘el avle fo es é_ae € depe ; @C? | N CT
V Aand VB to be applicable. the critical temperatur&,, on w on moderately large vol-

We should also note that the fluctuation of the phase deUMes. thus reinforcing the recent advance of lattice QCD

pends on the lattice sizB, and on the number of the Mo the interior of the fq,T) plane[4]. We have also been
noise vectors\,,. From general arguments, the phase of thedble to qu.antlfy the effect of a nonzero chemical potenUgI.on
reweighting factor is expected to decreasd el§)oceNsit, the equation of state. Although we have focused on critical
implying that the applicable region of reweighting becomesobservables in order to fix physical scales, the method can be
narrower as the lattice size grows. By contrast, the valu@pplied in a small range ok at arbitrary3, although the

of Imt[M~%(dM/du)] calculated on each configuration radius of convergence is expected to decrease-a® since
also contains an error due to the finite number of noisen this limit all » dependence should vanish fpr=<u,,
vectors [see Eq.(A2) of the Appendi¥; for N,=10 this making the behavior about the origin nonanalytic. The
error is not small compared to the standard deviation, as seenethod is also applicable to a range of physical observables
in Table 1V. The phase fluctuation discussed above includeg8—10. We find thatT. decreases ag increases, but this
this error due to finiteN,, and we suspect that the true appears to depend only weakly on quark mass, an effect also
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observed in studies of the equation of stptd) [23]. Our 12 T . T - T
results are in broad agreement with estimates based on exa
reweighting[ 7] and suggest that the discrepancy@ffrom

_
=
I

[l

i
N

l

its value atu =0 is small in the interesting region for heavy-
ion collisions. Moreover, we have observed evidence that= L
when a negative chemical potential is imposed, the genera:3 | ‘
tion of dynamical antiquarks and the consequent screeningo & ~[ ‘
an external color triplet current is enhanced.

An unresolved issue is the method’s limitations. We have 09
been able to estimate the complex phase of the fermion de& ““"“I"“l““l""

N
“ N
| —
N l..
N i

=
<

Susc
T

00

terminant for a 16x 4 lattice and found that the sign prob- = H“ |m|||||

lem is not serious in the rangg,/T.<0.4-0.5 form S os il umml

=0.1-0.2, covered by this study. It is not yet clear to us to g ||||

what extent the radius of convergence of the Taylor expan-g I — u=0.00 | ||
sion is linked to the fluctuations of arg(ddj). An optimist ™ - il —=- u=0.05 X
might hope that the method can yield accurate thermody- r=-= u=0.10

namic information all the way out to the critical end point — not subtracted

where the quark/hadron phase transition changes from sec 0.6 ' . ' ' '

ond to first order; moreover, since individual terms in the 37 376 377
expansion are expectation values of local operators, the B

method should be applicable on arbitrarily large volumes,

particularly if larger numberd\,, of stochastic noise vectors  FIG. 25. Effect from the term 0D(&?) on x, atm=0.2. Solid
than we have used here are employed. A pessimist mighines are the same as in Fig. 10 obtained includingQlie?) term,
worry that phase fluctuations should make calculation oftnd dashed lines are calculated without it.

higher-order terms impracticable long before the radius of

convergence is reached, particularly as the chiral limit is ap-

proached since in this case the correlations betweelhis equation can rewritten as

arg(detM) and Im(O) should discriminate between the dif-

ferent physics associated with isoscalar and isovector chemi-

cal potentials. More work is needed before we can say which

is more realistic. Ny 2
After this work was submitted we learned of a paper that (tr A)?= lim N > n;Ana —&2(A)|, (A2)
studies the phase transition line by analytical continuation of Np—e na

results obtained by simulation with imaginagy [25]. The

results are in reasonable agreement with ours. . .
wheree(A) is the error due to finité,:
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The error decreases as{— 1) ! asN, increases, but can be
significant for smallN,. Moreover,£(A) is negligible for
APPENDIX: REMARK ON THE NOISE METHOD an operator that always has the same sign suchMs t in

The calculation of an operator such asA)?, whereA is th_is case its contribution is about 0.001% fdtr M~ 1)?2) _
a matrix, using the noise method has to be treated carefully/ith Nn=10. However, for an operator that changes sign

71 -
Because the random noise vectors should be independent fFAUently, such asftM ~“(dM/du) ], the effect of the addi-
each calculation of tA, tional term is important. We calculate the quark number sus-

ceptibility and the value of “STOmp.)” in Table IV taking
this additional term into account. The difference between

Nn Nn “STD” and “STD (Imp.)” in Table IV is the contribution
(tr A)?= lim N- > n;AnaN— > mAnD from the additional term.
Np—oe N0 @=L nb=1 Next, we construct the reweighting method based on Tay-
1 lor expansion, Eq(2), explicitly up to second order using the
= lim = >, 7 An.miAn,. (A1)  noise method. Assuming is a bosonic operator, we can
Ny—Nn(Nn=1) 47b rewrite the numerator of Eq2):
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2 a2 w2
) {oefutty 1)
[of 2
)

+oe (A5)

M
<OeaNf[In detM(m,u)—In detM(mo'O)]>=<(9>+,u,aNf< O tl’( M —1@
<Otr
T —16'\/I
=(0)+paNi O 7'M o

for{u 52

2

M
+7(1Nf

M_laZM
c?/.Lz

+oe (A4)

2
>+%(aNf)2

2
o
+ 7aNf

J au
oM w? M
- tag -1 _ 2.2 p—1
<Oexp{,uaNf( n'M o 7]) > (aNp)“e (I\/I 67/1«)
2 2
M ta_19M ( fa 1M M
+ [ — _ —_— + ...
5 aN{ | »'M o 7 7'M P M P 7 , (AB)

where(- - -) denotes the average over the noise vectors. The denominator ¢2)Eg.given by the same expression with
O=1. In each case a term proportionalsbappears. In Fig. 25, we estimate the effect of this term by subtracting it from the
original one. The difference iy, caused by the subtraction is found to be quite small, e.g., less than 18 @2 andu
<0.1. The result suggests the contribution from the term?di small fory, although the value o§[M ~*(dM/dau)]? itself

is not small.

For the case of a fermionic operator suchyag many such additional terms appear in the reweighting formula. In this
study, we neglect the effect from further additional terms, since Fig. 25 suggests that the effect is small for the determination

of B;.
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