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SemileptonicB decays from a NRQCD and D234 action
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Semileptonic,B—mrI;, decays are studied on quenched anisotropic lattices using tree-level tadpole im-
proved Symanzik glue, nonrelativistic QCD heavy quark and D234 light quark actions. Constrained fitting
methods are applied to extract ground state contributions to two-point and three-point correlators. We agree
with previous lattice determinations of the form factors. The major source of systematic error here, as in
previous work, comes from the chiral extrapolation to the physical pion mass. Future calculations must work
at lighter quark masses to resolve this.
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. INTRODUCTION than the relatively coarse,dd=1.2 GeV, lattices used in the
present study.

Determinations of the Cabibbo-Kobayashi-Maskawa The other two new ingredients here are the use of an
(CKM) matrix element|V,,| from exclusive semileptonic anisotropic lattice and constrained fitting methods. As dem-
B decays rely on lattice input for ther|J,[B) or (p|J,|B)  onstrated in many contexts, anisotropic lattices lead to corr-
matrix elements. Reducing errors in these lattice calculationglators that have a larger number of data points inside the
and extending their kinematic range will be an importanttime region where the signal-to-noise ratio is still good. This
contribution to consistency tests of the CKM matrix, andallows for a more accurate extraction of energies and ampli-
thereby of the standard model. Several quenched studies aides[5—8]. Referencd8] showed the advantages of aniso-
B—mlv decays have been carried out in recent years entropic lattices for correlators involving finite momentum had-
ploying a wide range of different actions and methfiis4].  rons. In the present work we add one more major
Despite the differences in sources of systematic errors theigprovement to this scheme, namely constrained [8s
is general agreement in the final results, especially for thdhese new analysis tools, based on Bayesian statistics, allow
form factor f . (g%) which is directly relevant for the differ- us to increase the number of exponentials in fits to single
ential decay rate measured in experiments. correlators, without losing stability or having errors in low-

The difficulties with lattice simulations for these semilep- lying energies become large. One typically fits to (alt al-
tonic form factors are well known. Lattice calculations aremost al) data points, witht,;,=0 or =1, irrespective of
most reliable at largg®=(p,—pg)?, i.e. close to the zero Where or whether a plateau sets in. Hence one can take full
recoil point, whereas experiments are limited to smaifer advantage of all the data points with small statistical errors
In the B meson rest frame, smajf implies large pion mo- that the anisotropic lattice gives us. Previously if one just
menta which introduces botp.. discretization errors on the went to anisotropic lattices an(_j used convent|ona_1l fitting
lattice and large statistical errors. Furthermore, it is becomMethods one had to rely on having excellent smearings or a

ing increasingly more evident that a major source of systeml-arge matrix of smearings to ensure overlap between a pla-

atic error comes from the chiral extrapolation to a physicalteau region and the region W'.th a good signal-to-noise ratio.
final state pion. We find that constrained fits allow us to extract ground

i ' ) . o _ state contributions to two-point and three-point correlators in
This article describes further investigations B 1v 3 controlled way despite the fact that our smearings are far
degays in the'quenched a}pproximation, where we .have' rom optimal. Nevertheless, our final results Bl
perimented with ways to improve errors due to finite pion¢q i ¢actors still exhibit large systematic errors, comparable
momenta._ The_flrst d|fferenge from previous work is t_he US&g those quoted by other groups. The main reason for this is
of more highly improved actions. We employ Symanzik glueinat our systematic error is dominated by the chiral extrapo-
rather than the Wilson glue action, the D234 light quark ac4ation uncertainties. The D234 light quark action suffers, in
tion rather than clover and a nonrelativistic QUBRQCD)  common with the clover and Wilson actions, from excep-
action corrected througkd(a?). We find good dispersion tional configurations. This limits our ability to go to small
relations for pion energies up to at least 1.5 GeV. The abilitypion masses and necessitates a large chiral extrapolat@n
or inability to cover ag? range overlapping with experiment work in the range 0Msirange<Mg<1.3Mg(rangd - Even the
is determined more by the other challenges, namely statisteorrect ansatz for the extrapolation is unclear at the present
cal noise and chiral extrapolations, than by discretization ertime. In the future, rather than try to go to finer lattices with
rors. This will be even more true if one goes to lattices finerthe same action, we believe that, in order to improve on
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chiral extrapolation errors, one needs to go to light quarkn the presence of quantum corrections. We use torelon dis-
actions with good chiral properties. Work with improved persion relationd13] to fix y nonperturbatively. Starting
staggered light quarks, for instance, has already startedith yo,=3 at8=2.4 we find the renormalized anisotropy to
[10,11. be y=2.71(3).

Difficulties with chiral extrapolations also limit our ability The light quark action is the D234 action of Réfl4]
to go to pion energies larger than 1 Getor g2 modified for anisotropic lattices:
<16 GeV?). If one were to work harder and double the
statistics one might be able to consider pions with momenta s (aniso C0+ - = (3)
up to 1.5 GeV and go down tg?~12 Ge\? as long as the Sb2sa —a atZ W, a V—EC3V

+mg
light quark mass stays around the strange mass. Neverthe-
less, carrying out chiral extrapolations at large pion momenta ra.l 1 1 3 1
. a ey . S
would introduce prohibitively large errors. Recently the idea - —ng2)+—2 > (VJ(Z)— —C4VJ(4))
has been put forward of working in a reference frame where 2 a ag =1 12
the entireq? range can be covered with pions having mo- e
menta less than 1 Geléee Ref[12] for a discussion of the _ra & lo,,F* &)
“moving NRQCD” formalism). We believe the future of ac- *4 aa, ¢
curate semileptoniB decay studies lies in a combination of
using light quark actions with good chiral properties and a o C 1
formalism that can handlB mesons decaying at large ve- =D W ytVt+—0§~(ﬁ—€C3V( )| +a,mg
locities. The lessons derived from the present project should X
be very useful in such future work, especially in the analysis 13 1
of three-point correlators. I YA+ =D | v@ —C4V(4)”
In Sec. Il we introduce the actions used in this project. 2 Coxi= ) 12 !
Section lll provides simulation details and discusses results
from two-point correlators. Section 1V describes our direct —r&ia Euv asat]q, @
fits to three-point correlators. This step replaces the conven- 4 7 aa,]

tional approach of considering ratios of three- and two-point

correlators and looking for a plateau which is then fit to aThe quark fields¥. and the dimensionless lattice fields

constant. In Sec. V we discuss chiral extrapolations andre related through

present results for form factors. Comparisons are made with

previous lattice work. We then conclude with a summary ‘If:aglz\lfc. (5

section. We delegate details of constrained fitting methods to

Appendix A. Appendix B lists heavy-light current one-loop Definitions of lattice derivatives and the |mprov€q4 are

matching coefficients for the action used in this paper. given, for instance, in the appendix to RE15]. We work

with r, Cg, C53 andC, all set equal to one. The “speed of

light” coefficient, Cy, is tuned perturbatively or nonpertur-

batively using pion dispersion relations. Its actual value will
The gauge and quark actions of this article are the anisdee discussed in the next section.

tropic actions discussed in R¢8]. For the glue we use the For the heavy quark we use the standard NRQCD evolu-

tree-level tadpole-improved Symanzik action with rectanglegion equations which follow from the actidi6,17:

only in spatial directions:

II. GAUGE AND QUARK ACTIONS

— — a;oH aHg\"
SNRQCDZE [q)tq)t_q)t(l_ 2 ~ on
seon 3 LR 1R LR * t
¢ x,s>s' X0 3ul 12y 12 y T aHg\" a;oH
XU4 1_W _T q)tfl .
_,32 f Pst _i Rst ) 1 1
X,S Xo 3 uguf 12 U:Utz . (6)

Hy is the nonrelativistic kinetic energy operator,
P,, andR,, Qenote plaguettes and rectangles _in me @)
plane. The variablesands’ run only over spatial directions A
andu, andug are the tadpole-improvementiy” factors for aHo= 2)((51S o)’
temporal and spatial link variables, respectively. We use the
Landau link definition ofug in this article. y, is the bare and 6H includes 1M relativistic andO(a?) finite lattice
anisotropy which differs from the true or renormalized an-spacing corrections,
isotropy,

)

1 _ A&
adH=— o B+ .
y=aJ/a,, () ' 2x(asMy) 24x(asMo)

®
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TABLE |. Simulation details. 3 L S B
- B, Meson B
Lattice size 13x 48 L 3 experiment ]
No. of configs 199 L i
B 2.4 L i
Landau linku, us;=0.7868,u,=0.9771 ol - 1
Xo 3.0 I T T.T.4 | ]
X=as/a 2.713) g b L — i
Co 0.94 = = =L i
ajt 1.205) GeV s | |
a;m 0.023-0.043 s n
PIV 0.62-0.76 | |
aMo 4.0 | |
All derivatives are tadpole improved and . i T T

3 3 0 1 2
A= _21 v, AW= 21 v, 9) Ip| in GeV
= =

. . o . . FIG. 1. a;M;, derived from correlators with different momenta.
The leading discretization errors in the total action arerpe full horizontal line gives the one-loop perturbative estimate.

O(asas) errors coming from the light quark action. The The two dotted horizontal lines indicate perturbative errors.

leading relativistic corrections af@[ as(Aqcp/M)] coming

from one-loop corrections to tree-level coefficients in thequark masses. For our lightest mass we encountered one ex-
NRQCD action. We will work with heavy-light currents cor- ceptional configuration in an ensemble of initially 200 con-
rected to the same level as the action, i.e. we will includefigurations. This stopped us from attempting to further de-
O(as) and O(Agcp/M) terms but not O(asas) or  crease the quark mass and reduced the number of usable
O[ ag(Aqcp/M)] corrections. We estimate systematic errorsconfigurations to 199. For the heavy quark mass we em-
from the latter terms to be at the 8% and 3% levels, respegloyed one valua,M,=4, tuned to be close to thequark

tively. mass using th&; meson mass as experimental input. Figure
1 showsa;M,;, for the Bg meson extracted frorB correla-
1. SIMULATION DETAILS tors with different spatial momenta:
Table | summarizes lattice and action parameters. We p?— 6E(p)>?
work on 1ZXx48 quenched anisotropic lattices with Mkin="%35Em) 5E(p) (10

=a,/a;=2.71(3), asdetermined from torelon dispersion re-
I'ations' in the pure glue thepry. We use a tota! of 199 conwith SE(p)=Eg(p)—Eg(0). Eg denotes the falloff energy
figurations and run both time-forward and time-reversecof B correlators and differs from the total energy of e
NRQCD evolutions in order to increase statistics. The formekineson since the NRQCD action does not include a rest mass
uses timeslices 0-23, and the latter timeslicegerm. This distinction is irrelevant for the differen&g(p)
0,47,46 .. .,25. For theB meson correlators and the three- —E;(0). Data from different momenta all give results con-
point correlators we find little evidence for correlations be-sjstent with the experimental value fMz and also with

S

tween the two runs and close to/@ improvement in statis- hertyrhative expectations. The latter is based on
tics. Nevertheless, in our data analysis we always bin the

data from the two time evolutions before carrying out fits. Mﬁien”: ZoMo—Eo+Eg(0). (11)
Based on string tension calculations we estimate the spa-
tial lattice spacing to correspond toalF 1.205)GeV. The  The full horizontal line in Fig. 1 gives the one-loop result for
p mass gives a similar value of @),=1.18(6) GeV. aMPe™. The two dotted lines are estimates of errors due to
We have carried out simulations at five values of the baréigher order corrections. In Rdi2] it was found that semi-
light quark mass corresponding td®/V=0.624(13), leptonic form factors in thé quark region are not very sen-
0.6758), 0.71414), 0.7366) and 0.7606). In terms ofaym sitive to the heavy quark mass. Hence we believe errors com-
=a;(mg— M), we have the rangeym=0.023, 0.028, ing from inadequate tuning &M, are small compared to
0.033, 0.038 and 0.043. The middle valueagin=0.033 is  our other systematic errors.
very close to the strange quark mass as determined by.the  The “speed of light” coefficientC, in the light quark
We find M= 1.003(20)(40) Ge\(second error comes from action, Eq.(4), was fixed using pion dispersion relations. We
the uncertainty in scale which we take from the string ten-found it sufficient to consider the lowest pion momentum at
sion) compared to the experimentsll ,=1.019 GeV. Hence one value of the bare mass(n=0.033). This fixedC,
our light quark masses span roughly the range frormQ1o =0.94 which works well for all five light quark masses.
1.3m,. Clearly one would ideally like to go to much smaller Figure 2 shows the speed of ligBt{p) defined as
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T T T T I T T T T T T T T T T T T 0.35 T T T
L PION . | | -
15 I i aM, i
i i 0.30 —
1.0 i 1
@ . i 1 | _
S L 4
: : a;Ep 7
05— _| 0.25 —
| % P/V =206 j _
[ © =071 ]
| = 0.76 ] E 7
0.0 i 1 1 1 1 | 1 1 Il 1 | 1 1 1 1 | 1 1 1 1 i [ N
0.0 0.5 1.0 1.5 2.0 0.20 L | L L
p| in GeV 0.00 0.05 0.10
(a M, )*%2

FIG. 2. C(p) versus the pion momentum for three light quark

masses.
E2(p)—EZ(0)
C(p)= \/% (12

for three different light quark masses. One sees that the rel
tivistic dispersion relation holds well, within errors, for mo-
menta up to at least 1.5 GeV. In our analysis of three-poin
correlators and extraction of form factors we will use con- _ el .

tinuum relativistic formulas foE.,(p). In this work it was ~ (Ps=0). tg is fixed attg=23 for time-forward runs ant;
fairly painless to fixC, nonperturbatively. Had we used one- =25 in time-reversed runs.

loop perturbation theorjL5] we would not have been too far ~ We have found it convenient to rescalé® as follows:
off with C3°°P=0.91(3). Once two-loop results are known,
we will probably be able to dispense with nonperturbative
tunings of parameters such @g or the renormalized anisot-

1) -
ropy x and anisotropic actions will be just as easy to handléVhereEg” is the ground stat® meson falloff energy, ob
as isotropic onef18]. tained from fits to two-point correlatofs a bootstrap analy-

For completeness we show chiral extrapolations rfor sis Egl) is obtained separately for each bootstrap ensemble

andEg(0) in Fig. 3. This leads to the (44), quoted above Ef) is then fit to
and to aB;— By splitting of 8§13) MeV. The experimental

FIG. 3. Chiral extrapolation of the mass and oEg(0). For
a;m, both linear(full line) and quadratigqdotted ling extrapola-
tions are shown.

&(w) is the conversion factor between Minkowski and Eu-
clidean spacey matrices antivﬂ is the heavy-light current

#natching coefficient. Perturbative estimatesZQL are dis-

pussed in Appendix B.
We work exclusively withB mesons decaying at rest

Ef)(pﬂ )= g(ﬂ)cf)(ﬁB: 0p,,ts ,t)eE(Bl)(tB_t) (15

. . NB N7T
Bs— B4 mass difference is 90(2.2) MeV. =(3) _ M —eD(tg-0) | EO(tg—1)
C.(pa.t)= ;ZA“e =g~ =Bl eFe (ts
IV. ANALYSIS OF THREE-POINT CORRELATORS (16
The first step in semileptoniB decay simulations on the N’

N7T m
lattice is to calculate the three-point correlator —eMt —eWy
) = Aje Ert4 Aye Er
2 1l 2 2l

CE?)(‘SB 157TitB !t)zz z e_i‘;B';ei(ﬁB_ﬁﬁ)');
Xy

(0| Pp(ts XV, (t,y)P1(0)[0).

xe EP-ED -0y (17)

We use constraineBayesian fits of Ref.[9] to fit a single
correlator to the multi-exponential form on the right-hand
13 side(RHY) of Eq. (17). Details are given in Appendix A. Fits
+ + . . are carried out witht;, fixed att,,;,=1 and for various
®, and g are interpolating operators used to create thetmax<t3. The number of exponentials is increased until a

pion or B meson, respectively/,, is the dimensionless Eu- 444 fit 1o the data is obtained. For a “good fit” we generally
clidean space lattice heavy-light vector current. The CONtequire yYDOF<1, where “DOF” stands for degrees of

tinuum Minkowski spacé/,, is related toV';L via

V,=as°Zy EpIV,.

freedom. In a few cases we accg@t! DOF as high as-1.2
but even in those instances tlevalues are larger than 0.2.
Sample fit results fofVg) are shown in Figs. 4 and 5. For
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FIG. 4. Fits to three-point correlators. All fits have three exponentials coming in from the left and one or two exponentials from the right.
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<m|Vy|B>

|t+1I

- <7|V,y|B>

|t+1I

T
(001)

0

10

20

0.1

0

10

20

Both the fit and the data have been muItipIiedeﬁ;) ‘eEg)(tB’t) for presentation purposes. Results are shown for strange type light quarks,
i.e. for the third(middle) light quark mass out of a total of 5. In the upper right corner we show the momentum of the pion.

pion momenta(001), (011 and (111) and usingt =17

component of the vector currer@/,';). Again one can go out

~21 good fits were obtained with just the first line on theto t,,,,~21 with Ng=1 for most momenta and witiNg
RHS of Eq.(17) and N,=2. The figures show results for =2 for momentum(001).
N,=3 andt,,,=19. For the zero momentum case an addi-

tional excitedB exponential from the second line in E4.7)

was needed for good fits with,,, between 17 and 21.
Figure 4 plots the casd =3 andN_=1. The fact that we
can fit the data fot,,,, only slightly belowtg (the source
point for theB meson with just one or twaEY) exponentials

Our goal is to extract the amplitudt;;, the ground state

)
te

—Egl)(tB—t),

contribution to theC® . From A11 one can then determine
the B meson semileptonic decay form factdsee the next
section. One consistency check iy, is to verify that its

. . gt
associated exponential factoes, =
the correct ground state energies. gy this is put in by

involve

tells us that excited3 states are highly suppressed in the hand through our rescaling in E€L5) and the ansatz of Eq.
three-point correlators. We believe this is a physical effec{17). Since we are always dealing with zero momentBm

indicating that form factors for semileptonic decays of ex-mesons for whicrEgl) can be determined accurately from
cited B mesong proportional toA;; in Eq. (17) with j>1] two-point correlators, we believe this is a sensible way to
are suppressed relative to ground state form factors. Figurggoceed. FoE ,, for which we need results for various mo-
6 and 7 show sample fits to matrix elements of the spatiamenta, one possibility is to do simultaneous fits to two- and

Obz T T T T | T T T T | 0.2 T T T T | T T T T |

I | <nlVglB> (111)
01 — o1 uﬂ%%E%—
0.0 1 1 1 1 | 1 1 1 1 | O'O 1 1 1 1 | 1 1 1 1 |

0 10 20 0 10 20

t+1

FIG. 5. same as Fig. 4 for momen@11) and(112).
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0.10 T T T T T T T T | 0.10 T T T T | T T T T |

| <7VilB>/py (001) L <V, IB>/py (011)

0.05 — — 0.05

0.00 1 1 1 1 | 1 1 1 1 | O'OO 1 1 1 1 | 1 1 1 1 |

t+1 t+1
FIG. 6. Same as Fig. 4 for, .

three-point correlators ensuring that the same set of energi€ésee Ref[20] for a complete list of ¥ current corrections
appear in both correlatofd9]. We have opted not to force Figures 9 and 10 show sample fits, similar to Figs. 4 and 5,
the E{) in the two correlators to be equal in this way, but to for (V§'"). We find that the ground state contribution from
do separate fits and use consistency between the two indviol%L is only a small fraction (1.5-2.5%) of the leading

pendent extractions &(p) as a check on our fits, on our order contribution fromVg. Figure 11 shows the ratio be-
fit ansatz(17), and on our choices fofyax, Ng, N7, etc.  tween A (V§)'H) and Ay (V5). We superimpose the
Figure 8 shows ground state pion enerdiggp) extracted  O(n /a;M) power law correction that must be subtracted

from two-point and eithetVg) or (Vi) three-point correla-  from the (VALY matrix element to obtain the physical

tors. One sees good agreement between the different det%’(AQCD/M) relativistic correction[21]. This is given by
minations. One also notices that for higher momenta threet

int lat id A ies than t the full horizontal line, the dotted lines representing our es-
point correiators provide more accurate energies than Wogmate of uncertainties in theg/asM power law subtrac-

point correlators. Of course, whether this happens or N%ons. We see that the matrix element is consistent with being

g?aptg?ds on the smearings used in the pion interpolating o [00% power law. The M corrections to the spatial compo-

. . (1).Ly
In order to includeA gcp/M corrections to the heavy- Nent of the vector curreng Vi), is found to be even
light currents we have looked at the matrix element of ~ smaller(at the 1% levelrelative to the leading ordeVy).
Since(V\) must be proportional to the pion momentym .
V(l)’L:__lay 7.¥Q (1g  (for ps=0), whereas/(V is sensitive mainly to the-quark
oo 2Mg TH momentum inside the initiZ® meson at rest, one would ex-

0.10 T T T T | T T T T | 0-10 T T T T | T T T T |
- <m(Vy|B>/py (111) A+ - <[V |B>/py (002) ~

0.05 — — 0.05— —

O‘OO 1 1 1 1 | 1 1 1 1 | 0‘00 1 1 1 1 | 1 1 1 1 |
0 10 20 0 10 20
t+1 t+1

FIG. 7. Same as Fig. 4 for, .
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0.8 DL S extrapolations must be compensating in part for the differ-
[ PION ENERGY X Z2-pnt ences in the M current corrections.
B O VO 3—pnt 7]
r ¢ Vk 3-pnt ]
0.6 [ ] V. RESULTS FOR FORM FACTORS
i % i The ground state amplitude‘sll(vb) extracted from fits
i to three-point correlators in the previous section are related
& r ® q to the continuum matrix element of interest as
M, 0.4 o —
[} | )@D i
i < ] (m(p)|V*|B(Pg=0))= m—mNE MgZy . (19
02l *® _|
- 1 D and ¢ are fixed fromm— 7 andB— B correlators:
Oo L | 1 1 1 1 | 1 Il 1 Il | i Z e_lpx<0|q)7T(th)(I)-’!-T(O)|0>
0 1 2 X
lp| in GeV " "
_ (1) e_Ewt+e_Ew (T-1t) 20
FIG. 8. Consistency test for pion energies extracted from differ- E| &l ] (20)
ent correlators.
pect(V{Y') to be very small. We could not come up with a > (0| ®g(t,x)DE(0)|0)
similar plausibility argument as to why the temporal compo- X
nent, (V{P'), should be small as well. Because the tree- N
level 1M current matrix elements are so small and of the =2 g(g)e*EB t (21

same order of magnitude &(«s/asM) power law correc- !
tions, we have opted not to include them in our final analy5|s.|_he standard form factors, (q2) and fo(q?) are defined
UncalculatecD(aS/aSM) corrections could easily switch the through @“=pk— p*),

sign of their contributions. We are dropping terms that are 9 Ps—P

1-3 % of the leading order contributions, effects that are M2 — m?

much smaller than th®©(a?) systematic errors we will be (7(p,)|V¥[B(pg)) =1, (q?)| p&+ p“— B_qu
assigning to the present calculation. q?
Our results for(V{)'") disagree with those in Ref2] .
where a much Iarger 10-20%, contribution froff)" is +fo(q2)MB_mﬂq# 22
5 .

reported. The origin of this discrepancy is not understood at q

the present time. Nevertheless, in the next section we will see

that our final results for form factors agree very well with Following Fermilab[1] we have found it convenient to in-
those of Ref[2]. The global fits used there to carry out chiral troduce other form factorg andf, , defined as

0.010 T T T T | T T T T | 00010 T T T T | T T T T |
[ <nv, B> (000) ] [ -<nlVoVB> (001) ]
0.008 — — o0.008} —
0.006 — — 0.006 —
: I1 I : : :
0.004 — I, — 0.004 —
C 1] L IT1 ]
i ] i I
0.002 — — 0.002 —
O~000 B 1 1 1 1 | 1 1 1 1 | i 0.000 B 1 1 1 1 | 1 1 1 1 | i
0 10 20 0 10 20
t+1 t+1

FIG. 9. Same as Fig.
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0.010 T T T T T T T T | 0‘010 T T T T | T T T T |

[ <V MB> (o11) ] [ <V, M B> (111) ]
0.008 @ — o0.008 [ —
0.006 — — 0.006 - —
0.004 L ] 0.004 |
0.002 0.002 |
O‘OOO B 1 1 1 1 | 1 1 1 1 | i 0.000 | i

0 10 20 0 10 20

t+1 t+1

FIG. 10. Same as Fig. 4 for$",

(m(p,)|V¥|B(pg)) = V2Mg[v# f|+ptf, ] (23
with
_ PB
vh= M—B—>(1 O) (29
pl=pt—E v —(0,p,). (25)

the tree-level 1/M current correction.

As1(Vg)

H:W\/ZE”ZVO (26)
and
A
AulVi) e Z, [P (27)

LT DD

E., is the pion energy in thB meson rest frame and the last Oncef| andf, are determinedf, andf, can then be ob-

expressions in Eq$24) and (25) are similarly the four vec-

torsv* andpf* in this frame. The form factorg andf, are

useful since(again in theB rest frame they are simply re-

lated to the three-point correlato@(®) for x=0 and u
=Kk, respectively. One has

0.04 T | T T T T T T T T T T T T

L 1A (Ve™) / Ay(V) i
0.03 — —
0.02 | 1 —
0.01 — —
0'00 i 1 | Il 1 1 Il | 1 1 Il Il | 1 Il 1 Il ]

0.0 0.5 1.0 1.5
|p| in GeV

FIG. 11. Ratio of ground state contributions(d{"'") and(V5)

tained from
f,= m“ \/_(MB Ef, (28)
V2M
0= ﬁ[(ms E.)fj+(E2—m2)f, .
(29

From these formulas one sees thiatwill be dominated by
f,, i.e. by the matrix element 0¥, andf, by f; or the
matrix element oV,

In Fig. 12 we show the form factors, andf, with the
light quark mass fixed a;m=0.033, a value which is close
to the strange quark mass. The pion momenta <pan),
(001, (011, (111, (002 and (112 in units of 27/La.

One sees that statistical errors are reasonable down to about
q°=16 Ge\?. More work is required if one wants to go
further away from the zero recoil point.

Figures 13 and 14 show chiral extrapolations at fixed pion
momentum. We have tried linear and constant fits to either
all 5 data points or to just the last 3 points. The full and
dotted lines in Figs. 13 and 14 give some idea of the spread
in fit results. These differences are included in the chiral
extrapolation systematic errors that we quote. With the

for several pion momenta. The horizontal line shows the one-looPresent statistics it is not sensible to try more sophisticated

O(as/agM) power law subtraction term for thevi)H) matrix
element.

fits. Much smaller statistical errors and data at smaller light
quark masses are required to search for chiral logarithmic or
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3 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
[ | | ] s | | | I
B, ——> eta, of, | _
- 0 fO A | -
2 — 1 1.0 __ —
L i g R — N ]
[ ] AL T+ U
N
- @ g n I ~~~~~~~~~~~ T . T T
S _ & il # T ‘1 I # (011) |
1= o _ 05— M—MT‘““ 141 iy —
i §:§ ° 1 i ]
L ° 4
L $e o ) - ]
I~ | | N 0.0 [ I N | | I I | | (I | | [ I N | L
o — — 0.00 0.02 0.04 0.06 0.08
0 10 20 30 (a,M,)**2

q*%R2 (GeV%%2)
FIG. 14. Same as Fig. 13 for the form factior.
FIG. 12. The form factorg, and f, for the light quark mass

fixed at the strange quark mass. Only statistical errors are shownamong all collaborations. Fdro(q2) we agree best with the
JLQCD Collaboratiorf2] and are slightly below the results
square-root-type behavior. We also believe it is premature tgf remaining groups. The Fermildh] and JLQCD Collabo-
try fitting to heavy quark effective theorfHQET) and/or  ations[2] are the two other groups that simulate directly at
chiral perturbation theory inspired model Atma In their  the b quark mass, so it is worthwhile making further com-
plot of f; and f, versusam, the Fermilab Collaboration, parisons with their work. We do so for the two form factors

Working at smaller quark masses than in this paper, finds a(‘fl+ f2) andf2 used by JLQCD, which are C|Ose|y related to
upward curvature as one decreases the light quark pidss fandf,

We cannot rule out or verify such behavior with our present
data. Figure 15 gives form factors for the physical cBse 1 E,
—arlv. One sees that errors have increased significantly over (fat+fy)= EfH ' fzzﬁfl : (30
those in Fig. 12. Furthermore, we now include pion momenta
only up to(111). Larger momenta lead to chiral extrapolation Figures 17 and 18 show comparisons between the three col-
errors that are too large to make such data points meaningfuhporations. The form factors are plotted as a functiok of

In Fig. 16 we compare our results to those by other latticgne relation between the two variablgé and E., being g2
groups[1-4]. One sees that agreement for(g®) is good M2+ m2 — 2M4E . The Fermilab results forfg+ f,) are

considerably higher than those from the other two collabora-

2.0 [ T T T T | T T T T | T T T T | T T T T | T I_

- - 3 T T T T | T T T T | T T T T
i | 'B——> = of, |
1.5 — — i S 7
.......................... =+ (o) | - 1
= . 31 (o01) A R 7
g o ——1 1 1 1 (1 ] i 1
< f;//"f 11 . I 1
0.5 — - 1 % ]
L i L $
0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 I~ =
0.00 0.02 0.04 0.06 0.08 - q

(atM")**z 0 1 1 1 1 | 1 1 I 1 | 1 1 1 I
) _ _ _ 0 10 20 30

FIG. 13. Chiral extrapolations of the form factfyrat fixed pion q**2 (GeVxx2)

momentum. Constant and linear fits were carried out to all five or to
the last three data points. The full and dotted lines give some idea of FIG. 15. The form factor§, andf after chiral extrapolation to
spread in fit results. the physical pion. Statistical and chiral extrapolation errors shown.
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8 T T T T | T T T T T T T 2.0 T T T T | T T T T | T T T
F ¢ Fermilab B i b
F ¢ Fermilab b
P oD 1 L x JLQCD 1
L i F O this work 1
0 UKQCD o 1.5 —
F © this work o fy b L i
2 — —] L 4
i } . & ]
B 7 > 1.0— —
[ - 8‘ - -
- S o f, o L |
11— <>°<> — L d
L Q 4 0.5 — —
i pi 0%%@ , : B % |
0 | | b 0.0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 i

0 1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0

q¥*2 (GeV%x2)

. ) L i FIG. 18. Comparison with the Fermilab and JLQCD Collabora-
FIG. 16. Comparison with other groups. Statistical, chiral €X-tions for the form factof .

trapolation and other systematic errors included. To avoid too much
clutter we do not include errors for the Fermilab and UKQCD data VI. SUMMARY

oints. They are comparable to those of other groups. . . . .
P y P grotip We have studied semileptoniB meson decays using

ighly improved gauge and quark actions on anisotropic lat-
ces. We developed constrained fitting methods for analyz-
ing three-point correlators and extracting ground state ampli-

X . : Yudes in a controlled way. Our final results for form factors
versus the light quartor the pion mass. Neither JLQCD nor Egree with previous lattice results.

the present work_has sufficient accuracy at_low enough quark™5yr data points in Figs. 16, 17 and 18 include the main
masses to see this trend and more calculations are required {pstematic errors. Allowing for 8% discretization, 4% rela-
resolve this issue. One shonﬂld note that soft pion theoremg,\,istic, 8% higher order perturbative and 2% mass tuning
valid in the limitm_,—0 andp,—0, would dictate corrections, we estimate-12% systematic errors from all
sources other than quenching and chiral extrapolation. This
B is to be compared with the 10-15% chiral extrapolation
[f1+f2]|Eﬁ—>0= E\/M_B (32) errors aIreadypshown in Fig. 15. One realizes that F;alccurate
semileptonic form factor results will only be attainable if
The higher Fermilab results in Fig. 17 are consistent withuncertainties coming from chiral extrapolations are brought
this relation while JLQCD’s and our results are too low.  under control. To overcome this obstacle, we have initiated a
program to study heavy-light physics with improved stag-
R gered light quark$11]. Simulations can be carried out with
| Fermilab 4 much smaller quark masses using this light quark action. The
ermila . . . .
x JLQCD - experience acquired in the present work and the analysis
O this work-| techniques that have been developed for three-point correla-
tors will play an important role there. For instance, with
staggered light quarks two-point and three-point correlators
have time-oscillating contributions which must be taken into
account in fits. The only way to obtain ground state contri-
butions to three-point correlators will be through fitting them
directly, as was done in the present paper. Taking ratios of
three- and two-point correlators will be of no use in simula-
tions with staggered light quarks. Other theoretical develop-
ments, such as a better understanding of chiral perturbation
theory for staggered fermio&2] and the use of “moving
NRQCD” [12] should further aid accurate semileptonic form
ool v L L factor determinations in the future.

tions. The main reason for this difference seems to comsI
from the upward curvature, mentioned above, that Fermila

2.0

1.5

1.0

(£,+1,) [Gev/?]

0.5

T T T T | T T T T | T T T T | T T T T
—
—
—
1 1 1 1 | 1 1 1 1 | 1 1 1 1 |

E, [GeV] ACKNOWLEDGMENTS

FIG. 17. Comparison with the Fermilab and JLQCD Collabora-  This work was supported by the U.S. DOE under Grant
tions for the form factor {;+ f,). No. DE-FG02-91ER40690 and by PPARC and NSF. Simu-
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APPENDIX A: CONSTRAINED FITTING mom=(000) 0-20 0.07
' (00 0.28 0.04
In this appendix we give some details of our constrained (011 0.34 0.03
fits to two- and three-point correlators. The general approach, (111 0.40 0.02
within the context of lattice simulations, is described in Ref. (002 0.50 0.02
[9]. In lattice simulations one typically starts with numerical (112 0.54 0.02
data for some correlatds(t), averaged over configurations, -
® d d n>1 E;+(n—1)Xx0.3 0.05

which one wants to fit to a theoretical expectat®p(t) to -
extract energies, amplitudes or matrix elements. Examples of
Gip(t) would be the RHS's of Eqg17), (20) or (21), which
we can generically write as

one includes too many terms in E@\1), the unconstrained
E,’s andA,’s for highern can wander all over the place and
start to destabilize the fits.
Gu(t)=>, Ae Ent, (A1) “Constrained fits” were proposed in Ref9] to get

n around this problem. One augments the conventigfatith
a term,X,Z)rior, which prevents fit parameters that are not

Denoting the fit parameter&, and E, collectively asa;, constrained by the data from taking on “unreasonable” un-

one has .
physical values:
Gin(t)=Gn(t,{ej}). (A2)
" " : XzﬁXiugEXZ"'X;Z)rior , (A5)
Conventional fits are carried out by minimizing ti@, it
Wi
(e =2 [G(H) =Gt {a})] (aj— &)
tt’ — (AB)

XSriorzg 72
X (G =G(t' {aD] (A3 :

In this scheme each parameter has its set of “priors,”?y]-
ando;, andy3,, is designed to favow; values in the range

a;* 0. The replacement of EGA5) can be justified within
o v =G(H)G(t')—G(1)G(t'). (A4) the framework of Bayesian statistics and Bayes’ theorem. It
implies using a Gaussiaapriori distribution for the param-
Depending on the quality of the data, only a few low-lying eters{qa;}. For parametersy; that are determined by the
energies and amplitudes will be constrained by the data. Iflata, addingy(f)rior has minimal effect on the final fit value,

with respect to the parametefis;}. o * is the inverse of the
correlation matrix,

Pion fits (1-23) (000) : ; _
| X bootstrap 1 | Pion fits (1-23) y bo(()(i(s)tlr)ap

0.21 — — 0.30 — —

g L |

11.0
e 12.0
' pEe e 1T '
0.20 |— — 0.28 — g % % -
68 .66 .58

atEﬂ

1.15 .97 .89 .89

| I

1.14

0.19 ] 1 ] 1 | 1 1 1 ] | ] 1 1 1 | 1 1 1 ] 0.26 Il 1 ‘ 1 1 Il ‘ Il 1 ‘ 1 Il
0 2 4 6 8 0 2 4 6 8
Ncosh Ncosh

FIG. 19. Fit results for ground state pion energies veidus,. Pion momentum is shown on the upper right corners and the fit range
on the upper left corners. The fancy star shows the bootstrap fit results. The numbers below the data pojAtD@iFe
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T T T T T T T T T T T T T T
C ] - ‘ | ‘ ] 0.8 LI | LI B | T | L
| Pion fits (1-23) (111) | | Pion fits (1-15) (11%)
X bootstrap i X bootstrap |
0.5 — - r ]
i ] 0.7 — T —
L o 4 L i
| 3.4 i L i
l'-ﬂ: i i 3 r 1
“.; 0.4 _— E % _— Lg_. 0.6 _— o o) __
| i - 2.5 1
| .94 .92 .96 i r ]
L i 0.5 — —
0.3 — 1.28 — L {14 52 51 57 ]
C Il 1 1 ‘ Il 1 1 1 | Il 1 1 ‘ Il 1 1 ] 0‘4 i 1 1 L | 1 1 1 i | i 1 L | Il 1 L ]
0 2 4 6 8 0 2 4 6 8
Ncosh Ncosh

FIG. 20. Same as Fig. 19 for pion momei(1d1) and(112).

as long asr; is not made too small. In the present work we Show bootstrap fit result¢bootstrap methods within con-

always seir;= ;. One is dealing with very wide Gaussians Strained fits are discussed bejowhe priorsE, andA; and

and hence very unrestrictive priors. We have checked th&t, were chosen from preliminary fits or by looking at effec-
changingo to 75% or 50% or even 25% cfij does not tive mass plots. We have checked that changing them by
change results for data-determined fit parameters. Choicdactors of 2 moves fit results for ground state energies and

for the central values; are made based on preliminary fits @mplitudes by much less than their fit errdi.precise defi-
and physics input about typical level splittings in the systemhition of fit errors will be given below when we discuss
under study. Again, if ther;’'s are wide enough final results bootstrap methods and bootstrap erols.Fig. 21 we show
for data-determined parameters are not sensitive to precid¥éhat happens |f~one~changes the priors for Ehe higher states
values of thea;’s. (n>2) from [E,=E;+(n—1)X0.3] to [E;+(n—1)

The method is best illustrated by an explicit example.x0.2], or from A,=0.05 toA,=0.08.
Table 1l lists priors used in fits to pion two-point correlators  One sees from Figs. 19 and 20 that once a sufficient num-
for our next to lightest quark mass. Figures 19 and 20 showper of exponentialécosh’9 are included, fit results stabilize.
fit results for the ground state energy as a function of théMe then fixN,s, and carry out bootstrap fits for our final
number of cosh’s for several pion momenta. The numberanalysis. For instance, for pion two-point correlators we
below the data points show thg/DOF for the fits. The fit chooseNysy=4.
range is shown on the top left corner of the plots. One sees In a bootstrap analysis involving constrained fits one first
that good fits are obtained fd¥.,=4. The fancy stars creates a certain numb@ve choosen,,,=200) of bootstrap

Pion fite (1-23) (000) | Pion fits (1-23) (111) |

oz O Table II 05— 2 g;bl: I 0.2

21 o 6E L, = 0.2 i 0A, =008 -
i O A, =008 e

7 I :

WL TEEE fed -

F g 03— —

atEﬂ
atEﬂ

O. 19 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 2 4 6 8 0 2 4 6 8
Ncosh Ncosh

FIG. 21. Comparisons of fits using priors of Table Il with fits after changingnthe€ priors as indicated.
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0.35 T T T T T T T ‘ ‘ T T T 0.25 T T T T ‘ T T T | T T T T T
Fo<m|VoB> Np=R (000) A Fo<m|VoB> Ng=1 (oo1) 4
- X bootstrap 4 r X bootstrap A
0.30 — % — 0.20 — —
| 12.0 ] i é )
: ) 1L e :
r 1.17 1.14 1.30 7 r % T
0.25 — 1.23 — 0.15 — 90 .55 b1 b8 .66 —
- Nﬂ - . Nﬂ 4
0‘20 | | | | | ‘ | | ‘ 1 1 O‘].O | | ‘ | | | | 1 ‘ 1 1 1
0 2 4 6 8 0 2 4 6 8

FIG. 22. Fit results for the ground state amplitulg from the (V) three-point correlator. The numbers below the data points give
2
x°/DOF.

ensembles in the usual way. For each bootstrap ensembletlze diagonal elements of the covariance mag€ixdefined
different prior valueij is picked at random for eachac-  through
cording to a Gaussian distribution about a central vaiug

with width o; . In bootstrap fits, Table Il should be viewed as

giving values for{a; o} rather than fofa;} and we sets;

=sz,0. Fits are carried out for each of theg,,, bootstrap
ensembles using/gug with the {aj} for that ensemble. In Given the very different definition of errors and the fact that

order to get a bootstrap average and bootstrap errors orié the bootstrap fits very different priors are being used com-
sorts theny, fit values according to size and discards the toppared to in the single fitevhere{a;}={«; o}), we find the

and bottom 16%. We take the average of the remaining 68%onsistency between the two types of fits very reassuring. In
as our bootstrap average and one-half of the difference bd=igs. 22 and 23 we show fit results for the ground state
tween the largest and smallest values within the 68% as owamplitudes,A;;, contributing to the(V,) three-point cor-
bootstrap error. The fancy squares in Figs. 19 and 20 giveelator[see Eqs(17) and(19) for a definition ofA;4]. The
bootstrap results calculated this way. One sees very good =3 fits are those that went into the plots of Figs. 4 and 5.
agreement between bootstrap and non-bootstrap single fit®ne again sees good agreement between single and bootstrap
For the latter, errors are calculated from the square root dfits.

(01, L P
e 2 3ai§aj )

(A7)

0.20 T T T T | T T T T | T T T T | T T T T 0.2 T T T T | T T T T | T T T T | T T T T

<nVgB> Np=1 (o11) | L <mVB> Ng=1 (111)

X bootstrap X bootstrap
_ T ]
0.15 3 A

| 219 ]

- 4 1% b % % % |
0.10 i 36 .36 .44 52 | i % 41 42 50 .58 |
1o 58 ] | 71 |
0.05 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 O‘O Il 1 1 1 | 1 Il 1 1 | 1 1 1 1 | Il 1 1 1

0 2 4 6 8 0 2 4 6 8

N N

FIG. 23. Same as Fig. 22 for momen@ill) and(111).
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TABLE lll. One-loop perturbative coefficients fa;M =4.0, massless light quarks and=2.71. The
coefficientsCq, Cq, Loop $104 andBO’M are defined in Appendix Bx, is the gauge parameter.

Vo Vi
ag=1 ay=0 ag=1 ay=0

Co 0.02Q3) 0.52Q3)

Cq —0.066(3) 0.436L)

Loop 0.6291) 0.1285 0.506L) 0.0070
L10u —0.096 —0.096 0.054 0.054
[%(CQ+ Cq) + oo, 0.6063) 0.6062) 0.4833) 0.4852)
?’0# —0.244(3) —0.244(2) —0.334(3) —0.332(2)

APPENDIX B: ONE-LOOP PERTURBATIVE MATCHING 1

In this appendix we summarize the perturbative calcula- Zc(qo): ' (B4)
, , V(am)2+2(a,m)y+1
tions necessary to match the NRQCD/D234 heavy-light vec- t t
tor current to its continuum QCD counterpart at Déa) o
andO(a./aM) level. The formalism is described in detail @B, is given by
in Ref. [20]. We have generalized those calculations to in- i 1
plude anisotropic Iattlces, improved glue and a more highly Bo:_[_ —+In(asM)}, Bk:—[— —+In(aSM)}.
improved light quark action. The D234 one-loop self-energy T 4 m| 12
corrections have already been calculated in R&8] for (B5)
these more complicated lattices and glue actions. In the
present work we do not includeO(asas) or In Table Ill we list one-loop results foE,, Cq, {oo, and
Olas(Aqcp/M)] terms in the action or in the currents. {,,, for a;M=4.0 and massless light quarks. We work in
Hence, in the notation of Reff20,21], only thelgoand{;y  general gaugedg=1 and ay=0 correspond to Feynman
elements of the mixing matrix are required, in addition to theand Landau gauges, respectivend use gauge invariance
heavy quark self-energy. The relation between current matrixf {;,, and the combination1/2(C4+Cq)+ {go,] as
elements(V,) in continuum QCD and the matrix elements checks on our calculations. In Table Il we present only the
(Vb) evaluated on the lattice is given to this order by IR finite parts ofC,, Cq and{q, . The IR divergent pieces
cancel between the lattice and continuum parts of the match-
1 _ . L ing paICL_IIation. _The Landau_ gauge results _have smaller nu-
(Vo= W{[Pr aspo (V) (V" Dsunts  (BL) merical integration errors since both the light quark wave
q function renormalization and the heavy-light vertex correc-
tion are IR finite in this gauge.

with For reasons described in the text, we do not include
1 (V)sup in our final results. The matching factoBs, , of
Pou=B,— E(Cq+ Co)—Loop (B2) Egs.(19), (26) and(27) are then given by
and 1 -
1+ agpo,]. (B6)
\ 0 [ sPou
(VDY) = (VDY) — i, (VE). (B3 LNz

The second term proportional o, is the O(as/asM) We have usedwy ~0.25(5) in our perturbative matching.
power law subtraction term plotted in Fig. 1€, andCy  These values are close te,(2/as) estimated on isotropic
are the one-loop light and heavy quark wave function renoriattices with unimproved glue. Systematic errors assigned to
malizations,ZgO) is the tree-level light quark wave function higher order perturbative corrections should cover this uncer-
renormalization, tainty in ag.
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