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SemileptonicB decays from a NRQCD and D234 action
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Semileptonic,B→p l n̄, decays are studied on quenched anisotropic lattices using tree-level tadpole im-
proved Symanzik glue, nonrelativistic QCD heavy quark and D234 light quark actions. Constrained fitting
methods are applied to extract ground state contributions to two-point and three-point correlators. We agree
with previous lattice determinations of the form factors. The major source of systematic error here, as in
previous work, comes from the chiral extrapolation to the physical pion mass. Future calculations must work
at lighter quark masses to resolve this.
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I. INTRODUCTION

Determinations of the Cabibbo-Kobayashi-Maska
~CKM! matrix elementuVubu from exclusive semileptonic
B decays rely on lattice input for thêpuJmuB& or ^ruJmuB&
matrix elements. Reducing errors in these lattice calculati
and extending their kinematic range will be an importa
contribution to consistency tests of the CKM matrix, a
thereby of the standard model. Several quenched studie

B→p l n̄ decays have been carried out in recent years
ploying a wide range of different actions and methods@1–4#.
Despite the differences in sources of systematic errors t
is general agreement in the final results, especially for
form factor f 1(q2) which is directly relevant for the differ-
ential decay rate measured in experiments.

The difficulties with lattice simulations for these semile
tonic form factors are well known. Lattice calculations a
most reliable at largeq2[(pp2pB)2, i.e. close to the zero
recoil point, whereas experiments are limited to smallerq2.
In the B meson rest frame, smallq2 implies large pion mo-
menta which introduces bothapp discretization errors on the
lattice and large statistical errors. Furthermore, it is beco
ing increasingly more evident that a major source of syste
atic error comes from the chiral extrapolation to a physi
final state pion.

This article describes further investigations ofB→p l n̄
decays in the quenched approximation, where we have
perimented with ways to improve errors due to finite pi
momenta. The first difference from previous work is the u
of more highly improved actions. We employ Symanzik gl
rather than the Wilson glue action, the D234 light quark
tion rather than clover and a nonrelativistic QCD~NRQCD!
action corrected throughO(a2). We find good dispersion
relations for pion energies up to at least 1.5 GeV. The ab
or inability to cover aq2 range overlapping with experimen
is determined more by the other challenges, namely stat
cal noise and chiral extrapolations, than by discretization
rors. This will be even more true if one goes to lattices fin
0556-2821/2002/66~7!/074506~15!/$20.00 66 0745
s
t

of

-

re
e

-
-
l

x-

e

-

y

ti-
r-
r

than the relatively coarse, 1/as51.2 GeV, lattices used in the
present study.

The other two new ingredients here are the use of
anisotropic lattice and constrained fitting methods. As de
onstrated in many contexts, anisotropic lattices lead to c
elators that have a larger number of data points inside
time region where the signal-to-noise ratio is still good. Th
allows for a more accurate extraction of energies and am
tudes@5–8#. Reference@8# showed the advantages of anis
tropic lattices for correlators involving finite momentum ha
rons. In the present work we add one more ma
improvement to this scheme, namely constrained fits@9#.
These new analysis tools, based on Bayesian statistics, a
us to increase the number of exponentials in fits to sin
correlators, without losing stability or having errors in low
lying energies become large. One typically fits to all~or al-
most all! data points, withtmin50 or 51, irrespective of
where or whether a plateau sets in. Hence one can take
advantage of all the data points with small statistical err
that the anisotropic lattice gives us. Previously if one ju
went to anisotropic lattices and used conventional fitt
methods one had to rely on having excellent smearings
large matrix of smearings to ensure overlap between a
teau region and the region with a good signal-to-noise ra

We find that constrained fits allow us to extract grou
state contributions to two-point and three-point correlators
a controlled way despite the fact that our smearings are
from optimal. Nevertheless, our final results forB→p l n̄
form factors still exhibit large systematic errors, compara
to those quoted by other groups. The main reason for thi
that our systematic error is dominated by the chiral extra
lation uncertainties. The D234 light quark action suffers,
common with the clover and Wilson actions, from exce
tional configurations. This limits our ability to go to sma
pion masses and necessitates a large chiral extrapolation~we
work in the range 0.7mstrange,mq,1.3mstrange). Even the
correct ansatz for the extrapolation is unclear at the pre
time. In the future, rather than try to go to finer lattices w
the same action, we believe that, in order to improve
©2002 The American Physical Society06-1
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chiral extrapolation errors, one needs to go to light qu
actions with good chiral properties. Work with improve
staggered light quarks, for instance, has already sta
@10,11#.

Difficulties with chiral extrapolations also limit our ability
to go to pion energies larger than 1 GeV~or q2

,16 GeV2). If one were to work harder and double th
statistics one might be able to consider pions with mome
up to 1.5 GeV and go down toq2;12 GeV2 as long as the
light quark mass stays around the strange mass. Neve
less, carrying out chiral extrapolations at large pion mome
would introduce prohibitively large errors. Recently the id
has been put forward of working in a reference frame wh
the entireq2 range can be covered with pions having m
menta less than 1 GeV~see Ref.@12# for a discussion of the
‘‘moving NRQCD’’ formalism!. We believe the future of ac
curate semileptonicB decay studies lies in a combination
using light quark actions with good chiral properties and
formalism that can handleB mesons decaying at large ve
locities. The lessons derived from the present project sho
be very useful in such future work, especially in the analy
of three-point correlators.

In Sec. II we introduce the actions used in this proje
Section III provides simulation details and discusses res
from two-point correlators. Section IV describes our dire
fits to three-point correlators. This step replaces the conv
tional approach of considering ratios of three- and two-po
correlators and looking for a plateau which is then fit to
constant. In Sec. V we discuss chiral extrapolations
present results for form factors. Comparisons are made
previous lattice work. We then conclude with a summa
section. We delegate details of constrained fitting method
Appendix A. Appendix B lists heavy-light current one-loo
matching coefficients for the action used in this paper.

II. GAUGE AND QUARK ACTIONS

The gauge and quark actions of this article are the an
tropic actions discussed in Ref.@8#. For the glue we use the
tree-level tadpole-improved Symanzik action with rectang
only in spatial directions:

SG52b (
x,s.s8

1

x0
H 5

3

Pss8

us
4

2
1

12

Rss8

us
6

2
1

12

Rs8s

us
6 J

2b(
x,s

x0H 4

3

Pst

us
2ut

2
2

1

12

Rst

us
4ut

2J . ~1!

Pmn and Rmn denote plaquettes and rectangles in themn
plane. The variabless ands8 run only over spatial directions
andut andus are the tadpole-improvement ‘‘u0’’ factors for
temporal and spatial link variables, respectively. We use
Landau link definition ofu0 in this article.x0 is the bare
anisotropy which differs from the true or renormalized a
isotropy,

x[as /at , ~2!
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in the presence of quantum corrections. We use torelon
persion relations@13# to fix x nonperturbatively. Starting
with x053 atb52.4 we find the renormalized anisotropy
be x52.71(3).

The light quark action is the D234 action of Ref.@14#
modified for anisotropic lattices:

S D234
(aniso)5as

3at(
x

C̄cH g t

1

at
¹t1

C0

as
gW •S ¹W 2

1

6
C3¹W (3)D1m0

2
ras

2 F 1

at
2
¹ t

(2)1
1

as
2 (

j 51

3 S ¹ j
(2)2

1

12
C4¹ j

(4)D G
2ras

CF

4

ismnF̃mn

aman
J Cc ~3!

5(
x

C̄H g t¹t1
C0

x
gW •S ¹W 2

1

6
C3¹W (3)D1atm0

2
r

2 Fx¹ t
(2)1

1

x (
j 51

3 S ¹ j
(2)2

1

12
C4¹ j

(4)D G
2r

CF

4
ismnF̃mn

asat

aman
J C. ~4!

The quark fieldsCc and the dimensionless lattice fieldsC
are related through

C5as
3/2Cc . ~5!

Definitions of lattice derivatives and the improvedF̃mn are
given, for instance, in the appendix to Ref.@15#. We work
with r, CF , C3 and C4 all set equal to one. The ‘‘speed o
light’’ coefficient, C0, is tuned perturbatively or nonpertu
batively using pion dispersion relations. Its actual value w
be discussed in the next section.

For the heavy quark we use the standard NRQCD evo
tion equations which follow from the action@16,17#:

SNRQCD5(
x

H F̄ tF t2F̄ tS 12
atdH

2 D
t
S 12

atH0

2n D
t

n

3U4
†S 12

atH0

2n D
t21

n S 12
atdH

2 D
t21

F t21J .

~6!

H0 is the nonrelativistic kinetic energy operator,

atH052
D (2)

2x~asM0!
, ~7!

and dH includes 1/M relativistic andO(a2) finite lattice
spacing corrections,

atdH52
1

2x~asM0!
s•B̃1

D (4)

24x~asM0!
. ~8!
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SEMILEPTONICB DECAYS FROM A NRQCD AND . . . PHYSICAL REVIEW D66, 074506 ~2002!
All derivatives are tadpole improved and

D (2)5(
j 51

3

¹ j
(2) , D (4)5(

j 51

3

¹ j
(4) . ~9!

The leading discretization errors in the total action a
O(asas) errors coming from the light quark action. Th
leading relativistic corrections areO@as(LQCD /M )# coming
from one-loop corrections to tree-level coefficients in t
NRQCD action. We will work with heavy-light currents co
rected to the same level as the action, i.e. we will inclu
O(as) and O(LQCD /M ) terms but not O(asas) or
O@as(LQCD /M )# corrections. We estimate systematic erro
from the latter terms to be at the 8% and 3% levels, resp
tively.

III. SIMULATION DETAILS

Table I summarizes lattice and action parameters.
work on 123348 quenched anisotropic lattices withx
[as /at52.71(3), asdetermined from torelon dispersion re
lations in the pure glue theory. We use a total of 199 c
figurations and run both time-forward and time-revers
NRQCD evolutions in order to increase statistics. The form
uses timeslices 0–23, and the latter timeslic
0,47,46, . . . ,25. For theB meson correlators and the thre
point correlators we find little evidence for correlations b
tween the two runs and close to aA2 improvement in statis-
tics. Nevertheless, in our data analysis we always bin
data from the two time evolutions before carrying out fits

Based on string tension calculations we estimate the
tial lattice spacing to correspond to 1/as51.20(5)GeV. The
r mass gives a similar value of (1/as)r51.18(6) GeV.

We have carried out simulations at five values of the b
light quark mass corresponding toP/V50.624(13),
0.675~8!, 0.714~14!, 0.736~6! and 0.760~6!. In terms ofatm
[at(m02mcrit .), we have the rangeatm50.023, 0.028,
0.033, 0.038 and 0.043. The middle value ofatm50.033 is
very close to the strange quark mass as determined by thf.
We findMV51.003(20)(40) GeV~second error comes from
the uncertainty in scale which we take from the string te
sion! compared to the experimentalMf51.019 GeV. Hence
our light quark masses span roughly the range from 0.7ms to
1.3ms . Clearly one would ideally like to go to much smalle

TABLE I. Simulation details.

Lattice size 123348
No. of configs 199
b 2.4
Landau linku0 us50.7868,ut50.9771
x0 3.0
x5as /at 2.71~3!

C0 0.94
as

21 1.20~5! GeV
atm 0.023–0.043
P/V 0.62–0.76
asM0 4.0
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quark masses. For our lightest mass we encountered on
ceptional configuration in an ensemble of initially 200 co
figurations. This stopped us from attempting to further d
crease the quark mass and reduced the number of us
configurations to 199. For the heavy quark mass we e
ployed one valueasM054, tuned to be close to theb quark
mass using theBs meson mass as experimental input. Figu
1 showsatMkin for the Bs meson extracted fromB correla-
tors with different spatial momenta:

Mkin5
p22dE~p!2

2 dE~p!
~10!

with dE(p)5EB(p)2EB(0). EB denotes the falloff energy
of B correlators and differs from the total energy of theB
meson since the NRQCD action does not include a rest m
term. This distinction is irrelevant for the differenceEB(p)
2EB(0). Data from different momenta all give results co
sistent with the experimental value forMBs

and also with
perturbative expectations. The latter is based on

Mkin
pert5ZmM02E01EB~0!. ~11!

The full horizontal line in Fig. 1 gives the one-loop result f
atMkin

pert . The two dotted lines are estimates of errors due
higher order corrections. In Ref.@2# it was found that semi-
leptonic form factors in theb quark region are not very sen
sitive to the heavy quark mass. Hence we believe errors c
ing from inadequate tuning ofasM0 are small compared to
our other systematic errors.

The ‘‘speed of light’’ coefficientC0 in the light quark
action, Eq.~4!, was fixed using pion dispersion relations. W
found it sufficient to consider the lowest pion momentum
one value of the bare mass (atm50.033). This fixedC0
50.94 which works well for all five light quark masse
Figure 2 shows the speed of lightC(p) defined as

FIG. 1. atMkin derived from correlators with different momenta
The full horizontal line gives the one-loop perturbative estima
The two dotted horizontal lines indicate perturbative errors.
6-3
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J. SHIGEMITSUet al. PHYSICAL REVIEW D 66, 074506 ~2002!
C~p!5AEp
2 ~p!2Ep

2 ~0!

p2
~12!

for three different light quark masses. One sees that the r
tivistic dispersion relation holds well, within errors, for mo
menta up to at least 1.5 GeV. In our analysis of three-po
correlators and extraction of form factors we will use co
tinuum relativistic formulas forEp(p). In this work it was
fairly painless to fixC0 nonperturbatively. Had we used on
loop perturbation theory@15# we would not have been too fa
off with C0

1-loop50.91(3). Once two-loop results are known
we will probably be able to dispense with nonperturbat
tunings of parameters such asC0 or the renormalized anisot
ropy x and anisotropic actions will be just as easy to han
as isotropic ones@18#.

For completeness we show chiral extrapolations formr

andEB(0) in Fig. 3. This leads to the (1/as)r quoted above
and to aBs2Bd splitting of 86~13! MeV. The experimental
Bs2Bd mass difference is 90.2~2.2! MeV.

IV. ANALYSIS OF THREE-POINT CORRELATORS

The first step in semileptonicB decay simulations on the
lattice is to calculate the three-point correlator,

Cm
(3)~pW B ,pW p ,tB ,t !5(

xW
(

yW
e2 ipW B•xWei (pW B2pW p)•yW

3^0uFB~ tB ,xW !Vm
L ~ t,yW !Fp

† ~0!u0&.

~13!

Fp
† and FB

† are interpolating operators used to create
pion or B meson, respectively.Vm

L is the dimensionless Eu
clidean space lattice heavy-light vector current. The c
tinuum Minkowski spaceVm is related toVm

L via

Vm5as
23ZVm

j~m!Vm
L . ~14!

FIG. 2. C(p) versus the pion momentum for three light qua
masses.
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j(m) is the conversion factor between Minkowski and E
clidean spaceg matrices andZVm

is the heavy-light current

matching coefficient. Perturbative estimates ofZVm
are dis-

cussed in Appendix B.
We work exclusively withB mesons decaying at res

(pW B50). tB is fixed attB523 for time-forward runs andtB
525 in time-reversed runs.

We have found it convenient to rescaleCm
(3) as follows:

C̃m
(3)~pp ,t !5j~m!Cm

(3)~pW B50,pp ,tB ,t !eEB
(1)(tB2t) ~15!

whereEB
(1) is the ground stateB meson falloff energy, ob-

tained from fits to two-point correlators~in a bootstrap analy-
sis EB

(1) is obtained separately for each bootstrap ensemb!.

C̃m
(3) is then fit to

C̃m
(3)~pp ,t !5H(

j

NB

(
l

Np

Ajl e
2Ep

( l )te2EB
( j )(tB2t)J eEB

(1)(tB2t)

~16!

5(
l

Np

A1le
2Ep

( l )t1(
l

Np8

A2le
2Ep

( l )t

3e2(EB
(2)

2EB
(1))(tB2t)1 . . . . ~17!

We use constrained~Bayesian! fits of Ref. @9# to fit a single
correlator to the multi-exponential form on the right-ha
side~RHS! of Eq. ~17!. Details are given in Appendix A. Fits
are carried out withtmin fixed at tmin51 and for various
tmax,tB . The number of exponentials is increased unti
good fit to the data is obtained. For a ‘‘good fit’’ we genera
require x2/DOF<1, where ‘‘DOF’’ stands for degrees o
freedom. In a few cases we acceptx2/DOF as high as;1.2
but even in those instances theQ values are larger than 0.2
Sample fit results for̂V0

L& are shown in Figs. 4 and 5. Fo

FIG. 3. Chiral extrapolation of ther mass and ofEB(0). For
atmr both linear~full line! and quadratic~dotted line! extrapola-
tions are shown.
6-4
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FIG. 4. Fits to three-point correlators. All fits have three exponentials coming in from the left and one or two exponentials from th

Both the fit and the data have been multiplied byeEp
(1) teEB

(1)(tB2t) for presentation purposes. Results are shown for strange type light qu
i.e. for the third~middle! light quark mass out of a total of 5. In the upper right corner we show the momentum of the pion.
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pion momenta~001!, ~011! and ~111! and usingtmax517
;21 good fits were obtained with just the first line on t
RHS of Eq. ~17! and Np>2. The figures show results fo
Np53 andtmax519. For the zero momentum case an ad
tional excitedB exponential from the second line in Eq.~17!
was needed for good fits withtmax between 17 and 21
Figure 4 plots the caseNp53 andNp8 51. The fact that we
can fit the data fortmax only slightly below tB ~the source
point for theB meson! with just one or twoEB

( j ) exponentials
tells us that excitedB states are highly suppressed in t
three-point correlators. We believe this is a physical eff
indicating that form factors for semileptonic decays of e
cited B mesons@proportional toAjl in Eq. ~17! with j .1]
are suppressed relative to ground state form factors. Fig
6 and 7 show sample fits to matrix elements of the spa
07450
-

t
-

es
al

component of the vector current,^Vk
L&. Again one can go out

to tmax;21 with NB51 for most momenta and withNB
52 for momentum~001!.

Our goal is to extract the amplitudeA11, the ground state
contribution to theCm

(3) . From A11 one can then determin
the B meson semileptonic decay form factors~see the next
section!. One consistency check onA11 is to verify that its

associated exponential factors,e2Ep
(1)t e2EB

(1)(tB2t), involve
the correct ground state energies. ForEB this is put in by
hand through our rescaling in Eq.~15! and the ansatz of Eq
~17!. Since we are always dealing with zero momentumB
mesons for whichEB

(1) can be determined accurately fro
two-point correlators, we believe this is a sensible way
proceed. ForEp , for which we need results for various mo
menta, one possibility is to do simultaneous fits to two- a
FIG. 5. same as Fig. 4 for momenta~011! and ~111!.
6-5
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FIG. 6. Same as Fig. 4 forVk .
rg

to
nd
r

et
e
w
n
o

-

5,
m
g
-

ed
l

es-

ing
-

-

three-point correlators ensuring that the same set of ene
appear in both correlators@19#. We have opted not to force
the Ep

( l ) in the two correlators to be equal in this way, but
do separate fits and use consistency between the two i
pendent extractions ofEp

(1)(p) as a check on our fits, on ou
fit ansatz~17!, and on our choices fortmax, NB , Np8 , etc.
Figure 8 shows ground state pion energiesEp(p) extracted
from two-point and either̂V0

L& or ^Vk
L& three-point correla-

tors. One sees good agreement between the different d
minations. One also notices that for higher momenta thr
point correlators provide more accurate energies than t
point correlators. Of course, whether this happens or
depends on the smearings used in the pion interpolating
erator.

In order to includeLQCD /M corrections to the heavy
light currents we have looked at the matrix element of

Vm
(1),L5

21

2M0
q̄gmgW •¹W Q ~18!
07450
ies

e-
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e-
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~see Ref.@20# for a complete list of 1/M current corrections!.
Figures 9 and 10 show sample fits, similar to Figs. 4 and
for ^V0

(1),L&. We find that the ground state contribution fro
V0

(1),L is only a small fraction (1.5–2.5 %) of the leadin
order contribution fromV0

L . Figure 11 shows the ratio be
tween A11(V0

(1),L) and A11(V0
L). We superimpose the

O(as /asM ) power law correction that must be subtract
from the ^V0

(1),L& matrix element to obtain the physica
O(LQCD /M ) relativistic correction@21#. This is given by
the full horizontal line, the dotted lines representing our
timate of uncertainties in theas /asM power law subtrac-
tions. We see that the matrix element is consistent with be
100% power law. The 1/M corrections to the spatial compo
nent of the vector current,̂Vk

(1),L&, is found to be even
smaller~at the 1% level! relative to the leading order^Vk

L&.
Since^Vk& must be proportional to the pion momentumpp,k

~for pW B50), whereasVk
(1) is sensitive mainly to theb-quark

momentum inside the initialB meson at rest, one would ex
FIG. 7. Same as Fig. 4 forVk .
6-6
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SEMILEPTONICB DECAYS FROM A NRQCD AND . . . PHYSICAL REVIEW D66, 074506 ~2002!
pect^Vk
(1),L& to be very small. We could not come up with

similar plausibility argument as to why the temporal comp
nent, ^V0

(1),L&, should be small as well. Because the tre
level 1/M current matrix elements are so small and of t
same order of magnitude asO(as /asM ) power law correc-
tions, we have opted not to include them in our final analy
UncalculatedO(as

2/asM ) corrections could easily switch th
sign of their contributions. We are dropping terms that
1 –3 % of the leading order contributions, effects that
much smaller than theO(as

2) systematic errors we will be
assigning to the present calculation.

Our results for^Vm
(1),L& disagree with those in Ref.@2#

where a much larger, 10–20 %, contribution fromVm
(1),L is

reported. The origin of this discrepancy is not understood
the present time. Nevertheless, in the next section we will
that our final results for form factors agree very well wi
those of Ref.@2#. The global fits used there to carry out chir

FIG. 8. Consistency test for pion energies extracted from dif
ent correlators.
07450
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extrapolations must be compensating in part for the diff
ences in the 1/M current corrections.

V. RESULTS FOR FORM FACTORS

The ground state amplitudesA11(Vm
L ) extracted from fits

to three-point correlators in the previous section are rela
to the continuum matrix element of interest as

^p~pp!uVmuB~pW B50!&5
A11~Vm

L !

Ajp
(1)jB

(1)
2AEpMBZVm

. ~19!

jp
(1) andjB

(1) are fixed fromp2p andB2B correlators:

(
xW

e2 ipW •xW^0uFp~ t,xW !Fp
† ~0!u0&

5(
l

jp
( l )@e2Ep

( l )t1e2Ep
( l )(T2t)# ~20!

(
xW

^0uFB~ t,xW !FB
†~0!u0&

5(
j

jB
( j )e2EB

( j )t. ~21!

The standard form factorsf 1(q2) and f 0(q2) are defined
through (qm[pB

m2pp
m),

^p~pp!uVmuB~pB!&5 f 1~q2!F pB
m1pp

m2
MB

22mp
2

q2
qmG

1 f 0~q2!
MB

22mp
2

q2
qm. ~22!

Following Fermilab@1# we have found it convenient to in
troduce other form factorsf i and f' , defined as

-

FIG. 9. Same as Fig. 4 forV0
(1) , the tree-level 1/M current correction.
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FIG. 10. Same as Fig. 4 forV0
(1) , the tree-level 1/M current correction.
st

bout
o

ion
her
nd
ead
iral
the
ted

ght
c or

oo
^p~pp!uVmuB~pB!&5A2MB@vm f i1p'
m f'# ~23!

with

vm5
pB

m

MB
→~1,0W ! ~24!

p'
m5pp

m2Epvm→~0,pW p!. ~25!

Ep is the pion energy in theB meson rest frame and the la
expressions in Eqs.~24! and ~25! are similarly the four vec-
tors vm andp'

m in this frame. The form factorsf i and f' are
useful since~again in theB rest frame! they are simply re-
lated to the three-point correlatorsCm

(3) for m50 and m
5k, respectively. One has

FIG. 11. Ratio of ground state contributions to^V0
(1),L& and^V0

L&
for several pion momenta. The horizontal line shows the one-l
O(as /asM ) power law subtraction term for thêV0

(1),L& matrix
element.
07450
f i5
A11~V0

L!

Ajp
(1)jB

(1)
A2EpZV0

~26!

and

f'5
A11~Vk

L!

Ajp
(1)jB

(1)
A2EpZVk

/pp,k . ~27!

Once f i and f' are determined,f 1 and f 0 can then be ob-
tained from

f 15
1

A2MB

f i1
1

A2MB

~MB2Ep! f' ~28!

f 05
A2MB

~MB
22mp

2 !
@~MB2Ep! f i1~Ep

2 2mp
2 ! f'#.

~29!

From these formulas one sees thatf 1 will be dominated by
f' , i.e. by the matrix element ofVk , and f 0 by f i or the
matrix element ofV0.

In Fig. 12 we show the form factorsf 1 and f 0 with the
light quark mass fixed atatm50.033, a value which is close
to the strange quark mass. The pion momenta span~000!,
~001!, ~011!, ~111!, ~002! and ~112! in units of 2p/Lsas .
One sees that statistical errors are reasonable down to a
q2516 GeV2. More work is required if one wants to g
further away from the zero recoil point.

Figures 13 and 14 show chiral extrapolations at fixed p
momentum. We have tried linear and constant fits to eit
all 5 data points or to just the last 3 points. The full a
dotted lines in Figs. 13 and 14 give some idea of the spr
in fit results. These differences are included in the ch
extrapolation systematic errors that we quote. With
present statistics it is not sensible to try more sophistica
fits. Much smaller statistical errors and data at smaller li
quark masses are required to search for chiral logarithmi

p
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square-root-type behavior. We also believe it is prematur
try fitting to heavy quark effective theory~HQET! and/or
chiral perturbation theory inspired model Ansa¨tze. In their
plot of f i and f' versusamq the Fermilab Collaboration
working at smaller quark masses than in this paper, finds
upward curvature as one decreases the light quark mass@1#.
We cannot rule out or verify such behavior with our pres
data. Figure 15 gives form factors for the physical caseB

→p ln̄. One sees that errors have increased significantly o
those in Fig. 12. Furthermore, we now include pion mome
only up to~111!. Larger momenta lead to chiral extrapolatio
errors that are too large to make such data points meanin

In Fig. 16 we compare our results to those by other latt
groups@1–4#. One sees that agreement forf 1(q2) is good

FIG. 12. The form factorsf 1 and f 0 for the light quark mass
fixed at the strange quark mass. Only statistical errors are sho

FIG. 13. Chiral extrapolations of the form factorf i at fixed pion
momentum. Constant and linear fits were carried out to all five o
the last three data points. The full and dotted lines give some ide
spread in fit results.
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among all collaborations. Forf 0(q2) we agree best with the
JLQCD Collaboration@2# and are slightly below the result
of remaining groups. The Fermilab@1# and JLQCD Collabo-
rations@2# are the two other groups that simulate directly
the b quark mass, so it is worthwhile making further com
parisons with their work. We do so for the two form facto
( f 11 f 2) and f 2 used by JLQCD, which are closely related
f i and f' ,

~ f 11 f 2!5
1

A2
f i , f 25

Ep

A2
f' . ~30!

Figures 17 and 18 show comparisons between the three
laborations. The form factors are plotted as a function ofEp ,
the relation between the two variablesq2 and Ep being q2

5MB
21mp

2 22MBEp . The Fermilab results for (f 11 f 2) are
considerably higher than those from the other two collabo

.

o
of

FIG. 14. Same as Fig. 13 for the form factorf' .

FIG. 15. The form factorsf 1 and f 0 after chiral extrapolation to
the physical pion. Statistical and chiral extrapolation errors sho
6-9
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tions. The main reason for this difference seems to co
from the upward curvature, mentioned above, that Ferm
sees in their plots such as Figs. 13 and 14 of form fac
versus the light quark~or the pion! mass. Neither JLQCD no
the present work has sufficient accuracy at low enough qu
masses to see this trend and more calculations are requir
resolve this issue. One should note that soft pion theore
valid in the limit mp→0 andpW p→0, would dictate

@ f 11 f 2#uEp→05
f B

2 f p
AMB. ~31!

The higher Fermilab results in Fig. 17 are consistent w
this relation while JLQCD’s and our results are too low.

FIG. 16. Comparison with other groups. Statistical, chiral e
trapolation and other systematic errors included. To avoid too m
clutter we do not include errors for the Fermilab and UKQCD d
points. They are comparable to those of other groups.

FIG. 17. Comparison with the Fermilab and JLQCD Collabo
tions for the form factor (f 11 f 2).
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VI. SUMMARY

We have studied semileptonicB meson decays using
highly improved gauge and quark actions on anisotropic
tices. We developed constrained fitting methods for ana
ing three-point correlators and extracting ground state am
tudes in a controlled way. Our final results for form facto
agree with previous lattice results.

Our data points in Figs. 16, 17 and 18 include the m
systematic errors. Allowing for 8% discretization, 4% rel
tivistic, 8% higher order perturbative and 2% mass tun
corrections, we estimate;12% systematic errors from a
sources other than quenching and chiral extrapolation. T
is to be compared with the 10–15 % chiral extrapolati
errors already shown in Fig. 15. One realizes that accu
semileptonic form factor results will only be attainable
uncertainties coming from chiral extrapolations are brou
under control. To overcome this obstacle, we have initiate
program to study heavy-light physics with improved sta
gered light quarks@11#. Simulations can be carried out wit
much smaller quark masses using this light quark action.
experience acquired in the present work and the anal
techniques that have been developed for three-point corr
tors will play an important role there. For instance, wi
staggered light quarks two-point and three-point correlat
have time-oscillating contributions which must be taken in
account in fits. The only way to obtain ground state con
butions to three-point correlators will be through fitting the
directly, as was done in the present paper. Taking ratios
three- and two-point correlators will be of no use in simu
tions with staggered light quarks. Other theoretical devel
ments, such as a better understanding of chiral perturba
theory for staggered fermions@22# and the use of ‘‘moving
NRQCD’’ @12# should further aid accurate semileptonic for
factor determinations in the future.
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FIG. 18. Comparison with the Fermilab and JLQCD Collabo
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APPENDIX A: CONSTRAINED FITTING

In this appendix we give some details of our constrain
fits to two- and three-point correlators. The general approa
within the context of lattice simulations, is described in R
@9#. In lattice simulations one typically starts with numeric
data for some correlatorG(t), averaged over configuration
which one wants to fit to a theoretical expectationGth(t) to
extract energies, amplitudes or matrix elements. Example
Gth(t) would be the RHS’s of Eqs.~17!, ~20! or ~21!, which
we can generically write as

Gth~ t !5(
n

Ane2Ent. ~A1!

Denoting the fit parametersAn and En collectively asa j ,
one has

Gth~ t !5Gth~ t,$a j%!. ~A2!

Conventional fits are carried out by minimizing thex2,

x2~$a j%!5(
t,t8

@G~ t !2Gth~ t,$a j%!#

3s t,t8
21

@G~ t8!2Gth~ t8,$a j%!# ~A3!

with respect to the parameters$a j%. s21 is the inverse of the
correlation matrix,

s t,t85G~ t !G~ t8!2G~ t !G~ t8!. ~A4!

Depending on the quality of the data, only a few low-lyin
energies and amplitudes will be constrained by the data
07450
er
al
i-

d
h,
.
l

of

If

one includes too many terms in Eq.~A1!, the unconstrained
En’s andAn’s for highern can wander all over the place an
start to destabilize the fits.

‘‘Constrained fits’’ were proposed in Ref.@9# to get
around this problem. One augments the conventionalx2 with
a term, xprior

2 , which prevents fit parameters that are n
constrained by the data from taking on ‘‘unreasonable’’ u
physical values:

x2→xaug
2 [x21xprior

2 , ~A5!

with

xprior
2 [(

j

~a j2ã j !
2

s̃ j
2

. ~A6!

In this scheme each parametera j has its set of ‘‘priors,’’ã j

ands̃ j , andxaug
2 is designed to favora j values in the range

ã j6s̃ j . The replacement of Eq.~A5! can be justified within
the framework of Bayesian statistics and Bayes’ theorem
implies using a Gaussiana priori distribution for the param-
eters $a j%. For parametersa j that are determined by th
data, addingxprior

2 has minimal effect on the final fit value

TABLE II. Priors used in pion correlators foratm50.028

Ẽn5s̃En
Ãn5s̃An

n51
mom5(000) 0.20 0.07

~001! 0.28 0.04
~011! 0.34 0.03
~111! 0.40 0.02
~002! 0.50 0.02
~112! 0.54 0.02

n.1 Ẽ11(n21)30.3 0.05
nge
FIG. 19. Fit results for ground state pion energies versusNcosh. Pion momentum is shown on the upper right corners and the fit ra
on the upper left corners. The fancy star shows the bootstrap fit results. The numbers below the data points givex2/DOF.
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FIG. 20. Same as Fig. 19 for pion momenta~111! and ~112!.
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rst
as long ass̃ j is not made too small. In the present work w
always sets̃ j5ã j . One is dealing with very wide Gaussian
and hence very unrestrictive priors. We have checked
changings̃ to 75% or 50% or even 25% ofã j does not
change results for data-determined fit parameters. Cho
for the central valuesã j are made based on preliminary fi
and physics input about typical level splittings in the syst
under study. Again, if thes̃ j ’s are wide enough final result
for data-determined parameters are not sensitive to pre
values of theã j ’s.

The method is best illustrated by an explicit examp
Table II lists priors used in fits to pion two-point correlato
for our next to lightest quark mass. Figures 19 and 20 sh
fit results for the ground state energy as a function of
number of cosh’s for several pion momenta. The numb
below the data points show thex2/DOF for the fits. The fit
range is shown on the top left corner of the plots. One s
that good fits are obtained forNcosh>4. The fancy stars
07450
at

es
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w
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show bootstrap fit results~bootstrap methods within con

strained fits are discussed below!. The priorsẼ1 andÃ1 and

Ẽ2 were chosen from preliminary fits or by looking at effe
tive mass plots. We have checked that changing them
factors of 2 moves fit results for ground state energies
amplitudes by much less than their fit errors.~A precise defi-
nition of fit errors will be given below when we discus
bootstrap methods and bootstrap errors.! In Fig. 21 we show
what happens if one changes the priors for the higher st

(n.2) from @Ẽn5Ẽ11(n21)30.3# to @Ẽ11(n21)
30.2#, or from Ãn50.05 toÃn50.08.

One sees from Figs. 19 and 20 that once a sufficient n
ber of exponentials~cosh’s! are included, fit results stabilize
We then fixNcosh and carry out bootstrap fits for our fina
analysis. For instance, for pion two-point correlators
chooseNcosh54.

In a bootstrap analysis involving constrained fits one fi
creates a certain number~we choosenboot5200) of bootstrap
FIG. 21. Comparisons of fits using priors of Table II with fits after changing then.2 priors as indicated.
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FIG. 22. Fit results for the ground state amplitudeA11 from the ^V0& three-point correlator. The numbers below the data points g
x2/DOF.
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5.
tstrap
ensembles in the usual way. For each bootstrap ensem
different prior valueã j is picked at random for eachj ac-
cording to a Gaussian distribution about a central valueã j ,0

with width s̃ j . In bootstrap fits, Table II should be viewed
giving values for$ã j ,0% rather than for$ã j% and we sets̃ j

5ã j ,0 . Fits are carried out for each of thenboot bootstrap
ensembles usingxaug

2 with the $ã j% for that ensemble. In
order to get a bootstrap average and bootstrap errors
sorts thenboot fit values according to size and discards the
and bottom 16%. We take the average of the remaining 6
as our bootstrap average and one-half of the difference
tween the largest and smallest values within the 68% as
bootstrap error. The fancy squares in Figs. 19 and 20 g
bootstrap results calculated this way. One sees very g
agreement between bootstrap and non-bootstrap single
For the latter, errors are calculated from the square roo
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the diagonal elements of the covariance matrixC, defined
through

~C21! i j [
1

2

]2xaug
2

]a i]a j
. ~A7!

Given the very different definition of errors and the fact th
in the bootstrap fits very different priors are being used co
pared to in the single fits~where$ã j%[$ã j ,0%), we find the
consistency between the two types of fits very reassuring
Figs. 22 and 23 we show fit results for the ground st
amplitudes,A11, contributing to the^V0& three-point cor-
relator @see Eqs.~17! and ~19! for a definition ofA11]. The
Np53 fits are those that went into the plots of Figs. 4 and
One again sees good agreement between single and boo
fits.
FIG. 23. Same as Fig. 22 for momenta~011! and ~111!.
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TABLE III. One-loop perturbative coefficients forasM54.0, massless light quarks andx52.71. The

coefficientsCQ , Cq , z00,m , z10,m and r̃0,m are defined in Appendix B.ag is the gauge parameter.

V0 Vk

ag51 ag50 ag51 ag50

CQ 0.020~3! 0.520~3!

Cq 20.066(3) 0.435~1!

z00,m 0.629~1! 0.1285 0.506~1! 0.0070

z10,m 20.096 20.096 0.054 0.054

@
1
2 (CQ1Cq)1z00,m# 0.606~3! 0.606~2! 0.483~3! 0.485~2!

r̃0,m
20.244(3) 20.244(2) 20.334(3) 20.332(2)
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APPENDIX B: ONE-LOOP PERTURBATIVE MATCHING

In this appendix we summarize the perturbative calcu
tions necessary to match the NRQCD/D234 heavy-light v
tor current to its continuum QCD counterpart at theO(as)
andO(as /asM ) level. The formalism is described in deta
in Ref. @20#. We have generalized those calculations to
clude anisotropic lattices, improved glue and a more hig
improved light quark action. The D234 one-loop self-ene
corrections have already been calculated in Ref.@15# for
these more complicated lattices and glue actions. In
present work we do not include O(asas) or
O@as(LQCD /M )# terms in the action or in the current
Hence, in the notation of Refs.@20,21#, only thez00 andz10
elements of the mixing matrix are required, in addition to t
heavy quark self-energy. The relation between current ma
elementŝ Vm& in continuum QCD and the matrix elemen
^Vm

L & evaluated on the lattice is given to this order by

^Vm&5
1

AZq
(0) $@11asr̃0,m#^Vm

L &1^Vm
(1),L&sub%, ~B1!

with

r̃0,m5Bm2
1

2
~Cq1CQ!2z00,m ~B2!

and

^Vm
(1),L&sub5^Vm

(1),L&2asz10,m^Vm
L &. ~B3!

The second term proportional toz10,m is the O(as /asM )
power law subtraction term plotted in Fig. 11.Cq and CQ
are the one-loop light and heavy quark wave function ren
malizations,Zq

(0) is the tree-level light quark wave functio
renormalization,
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Zq
(0)5

1

A~atm!212~atm!x11
, ~B4!

andBm is given by

B05
1

p F2
1

4
1 ln~asM !G , Bk5

1

p F2
11

12
1 ln~asM !G .

~B5!

In Table III we list one-loop results forCq , CQ , z00,m and
z10,m for asM54.0 and massless light quarks. We work
general gauge (ag51 and ag50 correspond to Feynma
and Landau gauges, respectively! and use gauge invarianc
of z10,m and the combination@1/2(Cq1CQ)1z00,m# as
checks on our calculations. In Table III we present only t
IR finite parts ofCq , CQ andz00,m . The IR divergent pieces
cancel between the lattice and continuum parts of the ma
ing calculation. The Landau gauge results have smaller
merical integration errors since both the light quark wa
function renormalization and the heavy-light vertex corre
tion are IR finite in this gauge.

For reasons described in the text, we do not inclu
^Vm

(1)&sub in our final results. The matching factorsZVm
of

Eqs.~19!, ~26! and ~27! are then given by

ZVm
5

1

AZq
(0)

@11asr̃0,m#. ~B6!

We have usedas'0.25(5) in our perturbative matching
These values are close toaV(2/as) estimated on isotropic
lattices with unimproved glue. Systematic errors assigned
higher order perturbative corrections should cover this unc
tainty in as .
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