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Topological content ofSU„2… gauge fields belowTc
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Finite temperature EuclideanSU(2) lattice gauge fields generated in the confinement phase close to the
deconfinement phase transition are subjected to cooling. The aim is to identify long-living, almost-classical
local excitations which carry~generically noninteger! topological charge. Two kinds of spatial boundary
conditions ~fixed holonomy and standard periodic boundary conditions! are applied. For the lowest-action
configurations we find that their relative probability semi-quantitatively agrees for both types of boundary
conditions. We find calorons with unit topological charge as well as~anti-!self-dual lumps of noninteger~equal
or opposite sign! topological charge~Bogomol’nyi-Prasad-Sommerfield monopoles or dyons! combined in
pairs. For calorons and separated pairs of equal-sign dyons we have found~i! the gluon field to be well-
described by Kraan–van Baal solutions of the field equations and~ii ! the real Wilson-fermion modes to be well
approximated by analytic solutions of the corresponding Dirac equation. For metastable configurations found
at higher action, the multicenter structure can also be interpreted in terms of dyons and antidyons, using the
gluonic and fermionic indicators as for the dyon-pair case. We argue that an improvement of the semiclassical
caloron approach to the nonzero temperature path integral should take into account superpositions of solutions
with nontrivial holonomy.

DOI: 10.1103/PhysRevD.66.074503 PACS number~s!: 11.15.Ha, 11.10.Wx, 12.38.Gc
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I. INTRODUCTION

It is widely accepted that quark confinement in QCD
related to some complex structure of the gauge field vacu
A popular scenario views the vacuum state as a dual su
conductor@1# in four dimensions which is unable to susta
strong gluon electric fields such that flux tubes are form
due to a dual Meissner effect. The analogon to the Coo
pairs of usual superconductors is Abelian monopoles,
other words, condensed magnetic currents belonging to
Abelian subgroup of the strong gauge group.

The lattice evidence in support of this mechanism re
either on the ability to localize the magnetic currents@2,3# as
the worldlines of magnetic defects with respect to so
gauge fixing prescription@4#, or on the construction of a
corresponding monopole creation operator@5# in order to
study its condensation. The question of how their conden
tion leads to confinement is relatively well understood@6,7#,
and while also the question of universality with respect to
gauge condition is partly answered affirmatively@8,9#, the
reasonwhy these monopoles are created in the QCD vacu
is far from being understood.

There is another working picture of the Yang-Mil
vacuum@10–13# which has been applied very successfully
hadron physics, including basic features such as chiral s
metry breaking and theUA(1) anomaly as well as details o
spectroscopy@14#. It is based on the instanton, a solutio
@15# of the Euclidean field equations. However, even in
form of the instanton liquid model@16#, when some local
interaction between instantons is taken into account, ins
0556-2821/2002/66~7!/074503~16!/$20.00 66 0745
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tons cannot be brought into relation with the third basic fe
ture of QCD, confinement. There have been attempts
stretch the instanton liquid model to its limits in order
provide a confining string tension of sufficient strength b
tween a static quark and antiquark@17#, at least at interme-
diate distances of a few instanton radii. A recent assessm
of the instanton-generated forces between static charges
been discussed in Ref.@18#.

While a satisfactory instanton-based mechanism of c
finement is lacking, many indications have been presen
that instantons~or, more generally, carriers of topologica
charge! are closely related to the Abelian monopoles whi
are usually detected by gauge fixing procedures. This
dence stems from the observation made for one-instan
and many-instanton configurations@19–21# in the maximally
Abelian gauge and from the observation of short range c
relations between topological charge and magnetic curr
in genuine confining lattice configurations@22,23#. On the
other hand, also in artificial instanton liquid model e
sembles @multi-~anti-!instanton configurations# monopole
network percolation has been observed@24# as a prerequisite
of monopole condensation. This has led to the conclus
that semiclassical, smooth gauge field configurations
give rise to networks of~light, condensed! magnetic mono-
poles even if these become discovered only as defects o
gauge fixing process. Thus, some reconciliation of the t
pictures seems possible.

However, as long as the instantons are uncorrelated,
Abelian monopoles and center vortices@25# revealed by the
respective gauge fixing are quantitatively insufficient to p
©2002 The American Physical Society03-1
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vide confinement@18#. Moreover, the approximate Casim
scaling at intermediate distance that the strong force ac
on charges of different representations obeys is also stro
broken in the instanton liquid ensemble@18#. This makes it
less likely that instantons are related to confinement eve
some important correlation would be included into t
model.

Nowadays, in a fresh attempt to relate instanton physic
the confinement property of the Yang-Mills vacuum, insta
tons dissociated into meron pairs have been investigated
respect to their monopole and center vortex content@26#. Our
present work, which also aims to extend the instanton p
ture, starts from a somewhat different corner, finite tempe
ture. All the criticism with respect to an instanton mechani
of confinement applies also to finite temperature Yang-M
theory below the deconfinement temperature, where peri
instantons~calorons! are the ingredients of the instanton liq
uid model@27#. More precisely, there are periodic instanto
with trivial holonomywhich are thought of as the buildin
blocks of topological structure. An isolated caloron wi
trivial holonomy is a periodic classical solution of the E
clidean equations of motion with trivial asymptotics of th
Polyakov loop at infinity,P(xW→`)5zPZ(N). These are
the ‘‘old’’ calorons first considered by Harrington and She
ard @28#.

During recent years new caloron solutions have b
found and studied by Kraan and van Baal~KvB! @29,30#
which correspond to a nontrivial asymptotic holonomyP(xW
→`)P” Z(N). From our point of view, a particularly inter
esting feature is that, in the generic case, these configura
are composites of Bogomol’nyi-Prasad-Sommerfield~BPS!
monopoles@31# ~or dyons! i.e. lumps carrying nonintege
topological charge. A semiclassical description of the~finite
temperature! vacuum in the confinement phase, based
these new calorons, still remains to be developed. Some
perspectives have been pointed out in Ref.@32#. In the
present paper we investigate metastable configurations w
appear in the process of cooling@33# in the region of a few
times the instanton action. These are excitations which m
become the building blocks of such a semiclassical desc
tion. The topological content, which appears at this de
almost classical level of cooling, is itself characteristic f
the phase~confining or deconfined! where the configurations
are taken from before they are cooled. Still, we do not cla
that the number and size of topological lumps obtained
this way immediately characterizes the finite-temperat
vacuum.

The outcome of cooling with normal periodic bounda
conditions has been compared with that of cooling with s
tial boundary conditions of prescribed holonomy, which
enforced by cold boundary links appropriately chosen. As
the confinement phase, the dependence on the boundary
ditions is weak. A closer check shows that, after cooling w
periodic boundary conditions, the average Polyakov lo
over regions of low action and topological density is n
restricted to trivial holonomy. In other words, in the confin
phase, nontrivial holonomy boundary conditions for top
logical charge lumps are provided by the dynamics its
They do not need to be enforced. In the confined phase t
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are the natural fluctuating asymptotic conditions for t
semiclassical excitations.

Similarly to the studies of the monopole and vortex co
tent of meron@26# pairs, we study here also the monopo
content and other signatures of the simplest of these confi
rations ~to be interpreted as dyon-dyon and dyon-antidy
pairs! as potential semiclassical building blocks of a confi
ing vacuum. Preliminary results have been presented in@34–
36#.

In contrast to the meron studies@26#, instead of tailoring
particular semiclassical configurations, in the present w
we are going to demonstrate the emergence under coolin
metastable lattice configurations with low action which~dis-
tinguished by action plateaus! resemble the new caloron
~dyon-dyon pairs!. In this case, where an analytical solutio
is available, we show that action density, topological dens
and the profile of the fermionic zero modes on the lattice c
be fit simultaneously with the corresponding expressions
the new caloron KvB solution@29,37#. It is worth noticing
that at actions around one instanton action also config
tions pop up under cooling which resemble dyon-antidy
pairs. This interpretation is suggested by action and topolo
cal density and is corroborated by the zero modes of
Wilson fermion matrix and the Polyakov loop profile. Lac
ing an analytical solution for these configurations of mix
~anti-!self-duality it is impossible to present a fit of the var
ous distributions.

Also for higher metastable plateaus with an action o
few times the instanton action a multi-center structure
few-lump dyon-antidyon mixed configurations can be reco
nized having a broad distribution of holonomy away fro
the lumps of action and topological charge. We do not cla
that this directly proves that the finite temperature vacuum
composed exactly as that gas of dyons and antidyons. N
ertheless, it is remarkable that cooling starting from genu
Monte Carlo configurations in thedeconfinedphase ends in
completely different low-action configurations as it has be
already claimed in an early related work by Laursen a
Schierholz@38#.

The paper is organized as follows.
In Sec. II we will collect some necessary formulas cov

ing the zero-temperature instanton, the well-known self-d
finite temperature instanton~the ‘‘old caloron’’!, the new
KvB calorons, monopoles as instanton chains, etc. This
be needed for the fit of dyon-dyon pairs becoming visible
the lattice.

Section III provides all necessary lattice definitions,
particular the boundary conditions and the observables c
sidered in order to identify KvB and other solutions.

In Sec. IV we describe the results of a first part of o
simulations where equilibrium configurations are cool
down to an action near to the one-instanton action. Althou
we cool to this low level of action, we find the topologic
content ~and the dependence on the boundary conditio!
very different, depending on whether the original Mon
Carlo ensemble was describing the confinement or dec
finement phase.

In Sec. V we report on a second part of our study, wh
higher lying action plateaus, appearing in the process
3-2
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cooling with periodic boundary conditions, are identifie
with respect to their dyon content.

Section VI presents the conclusions.

II. CALORONS WITH TRIVIAL AND NONTRIVIAL
HOLONOMY IN CONTINUUM SU„2…

YANG-MILLS THEORY

Throughout this paperSU(2) gauge theory in four-
dimensional Euclidean space is considered. We start the
scription of caloron solutions with generically nontrivial h
lonomy with the well-known one-instanton solution@15,39#.
In the singular gauge its gauge potentials are given by

Am~x!5
ta

2
h̄mn

a ]nlogf~x!,

f~x!511
r2

~x2x0!2
, m,n51, . . . ,4, ~1!

whereh̄mn
a is the ’t Hooft tensor,ta/2 denote the generator

of the SU(2) group,r,x0 are the size of the instanton an
the 4D position of its center. For further use we introduce
following notations:

f~x!5
c~x!

ĉ~x!
,

c~x!52p2@~x2x0!21r2#,

ĉ~x!52p2~x2x0!2, ~2!

x~x!512
1

f
5

2p2r2

c

and rewrite the instanton fields in the form

Am~x!5
1

2
h̄mn

3 t3]nlogf~x!1
1

2
f~x!Re@~ h̄mn

1 2 i h̄mn
2 !

3~t11 i t2!]nx~x!#. ~3!

The next step is to construct the time-periodic instanton
caloron@28#. For this purpose we generalize the functionf
in Eq. ~1!,

f~x!511 (
n52`

n5`
r2

@~xW2xW0!21~ t2nb!2#

511
pr2

br

sinhS 2pr

b D
coshS 2pr

b D2cosS 2pt

b D , ~4!

wherer 5uxW2xW (0)u and t5x42x4
(0) . b is the time period of

the periodic instanton solution. For simplicity,b51 is as-
sumed in the following. Physically, the periodicityb has to
07450
e-

e
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be identified with the inverse temperatureT21. Then the
caloron potentials are given by Eq.~3! with

f~x!5
c~x!

ĉ~x!
,

c~x!5cosh~2pr !2cos~2pt !1
pr2

r
sinh~2pr !,

ĉ~x!5cosh~2pr !2cos~2pt !, ~5!

x~x!512
1

f
5

pr2sinh~2pr !

cr
.

This solution can be viewed as a chain of instantons alig
along the temporal direction, separated by distanceb but
with the same orientation in color space. In the limitr→` it
can be transformed into a static solution by an appropr
gauge transformation. This static object can be identifi
with a BPS monopole@31# in Euclidean space, where th
fourth componentA4 plays the role of the Higgs field in the
adjoint representation. The solution has both electric a
magnetic charge. Therefore, we call it also adyon (D).

Constructing a caloron with nontrivial holonomy@29# is
the next step. It can be approximately viewed as an instan
chain with periodicityb, too, where each of the instantons
rotated with respect to the previous one by an angle 4pv in
color space,v being the parameter of holonomy as we w
see below. The rotation axis can be any; for definiteness
us take the third one. The wordsapproximately viewedmean
that when the instantons are well separated (r/b!1) the
fields near the instanton centers look approximately as
scribed above. The caloron field with nontrivial holonomy
described again by Eq.~3! but now with @29#

f~x!5
c~x!

ĉ~x!
,

c~x!52cos~2pt !1cosh~4pr v̄ !cosh~4psv!

1
~r 21s21p2r4!

2rs
sinh~4pr v̄ !sinh~4psv!

1pr2@s21sinh~4psv!cosh~4pr v̄ !

1r 21sinh~4pr v̄ !cosh~4psv!#, ~6!

ĉ~x!52cos~2pt !1cosh~4pr v̄ !cosh~4psv!

1
~r 21s22p2r4!

2rs
sinh~4pr v̄ !sinh~4psv!,

x~x!5e4p i tv
pr2

c
$e22p i ts21sinh~4psv!

1r 21sinh~4pr v̄ !%
3-3
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instead of Eq.~5!. The holonomy parametersv and v̄ are
related to each other asv̄51/22v, 0<v<1/2. r 5uxW

2xW1u ands5uxW2xW2u are the 3D distances to the locations
the two centers of the new caloron solution,pr2/b5d

[uxW12xW2u is expressed by the distance between the cen
From Eqs.~6! it can be easily seen that, whenv→0 or v̄
→0, the caloron with nontrivial holonomy turns into th
Harrington-Shepard caloron described by Eqs.~5!. When the
separation between the centers becomes large,d5pr2/b
@b, two well-separated constituents emerge which are st
in time. The ‘‘mass’’ ratio of these dissociated constituents
equal tov̄/v. Since the full solution is self-dual, the ratio
the same for the action as for the equal-sign topolog
charge carried by the constituents, the latter summing u
one unit of topological charge,Qt51. The separated con
stituents form a pair of BPS monopoles~or dyons! with op-
posite magnetic charges. In the following we will call it
DD pair, while nondissociated calorons will be denoted
CAL, although all these objects represent limiting cases
one and the same solution. The single dyon originally
tained from the Harrington-Shepard caloron in the infin
size limit r→` can be recovered from the new solution
sending the mass of the second constituent to zero an
multaneously its position to spatial infinity.

The action density in all three cases described above
be expressed by a simple formula

s~x!52
1

2
]m

2 ]n
2logc~x!. ~7!

So far, the new caloron solution is in the so-called alg
braic gauge@30#. It can be made periodic by a gauge tran
formation which is nonperiodic in timeg(x)5e22p i tv•t3,

Am
per5

1

2
h̄mn

3 t3]nlogf1
1

2
fRe@~ h̄mn

1 2 i h̄mn
2 !~t11 i t2!

3~]n14p ivdn,4!x̃#1dm,4 2pvt3 , ~8!

where

x̃[e24p i tvx5
pr2

c
$e22p i ts21sinh~4psv!

1r 21sinh~4pr v̄ !%. ~9!

Now the time component of the caloron potential has
come nonzero at spatial infinity. We can define theholonomy
which becomes nontrivial,

P~xW !5P expS i E
0

b

A4~xW ,t !dtD
→P`5e2p ivt3 for uxW u→`. ~10!

In terms of v, the normalized trace of the holonomy, th
Polyakov loop which we shall take as a directmeasure of the
holonomy, at spatial infinity becomes
07450
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L~xW ![
1

2
trP~xW !→L`[

1

2
trP`5cos~2pv!. ~11!

In the special casev5v̄51/4 the measure of holonomy i
equal to zero and the two constituent dyons acquire eq
mass, i.e. equal action and topological charge. For our l
purposes it is useful to remember that the Polyakov loop
peaksL(xW )561 very close to the center positionsxW5xW1,2 of
the constituents@29#.

For well-separated dyons, when the functionsf(x) and
c(x) are almost time independent, the strongest time dep
dence comes from the first part of the functionx̃(x). This
dependence is represented by the phasee22p i t and is nothing
else but the homogeneous rotation of the first dyon, wh
has L(xW1)521, in color space around the third axis wit
angle 2p over the period. The second dyon withL(xW2)5
11 is static. Such a relative rotation of two dyons~that form
a monopole-antimonopole pair! gives the so-calledTaubes
windingnecessary to produce unit topological charge from
monopole-antimonopole pair@40#. One can detect this rota
tion in a gauge invariant fashion by looking at the gau
invariant field strength correlator defined on each consta
time slice and watching its evolution over the periodic
interval b. The field strength is self-dual (Ek

a5Bk
a) or anti-

self-dual, (Ek
a52Bk

a) everywhere in the KvB caloron. The

electric fieldEk
a(xW i ,t) at the centers of both dyonsi 51,2 is

proportional to an orthogonal matrix@in both the SU(2)
color and space indices#. Thus the three (k51,2,3) compo-
nentsEk

a(xW1) of the electric field form vectors in color spac
which represent a local reference frame at the center of
first dyon. The comparison with the local frame at the cen
of the other dyon,xW2, can be made in a gauge invaria
manner by connecting the centers by the~fixed time!
Schwinger line parallel transporter

S~xW1 ,t;xW2 ,t !5P expS i E
xW2

xW1
Ak

a~x8W ,t !
ta

2
dxk8D . ~12!

Using this one can form the gauge invariant field stren
product

Rkl
12~ t !5tr„Ek~xW1 ,t !S~xW1 ,t;xW2 ,t !

3El~xW2 ,t !S1~xW1 ,t;xW2 ,t !… ~13!

which is again an orthogonal matrix. This matrix performs
full rotation with the Euclidean timet running from 0 tob.

Finally, let us comment on the zero-mode eigenfunctio
of the fermionic massless Dirac operator in the backgrou
of the KvB solutions. They have been studied analytically
@41# and @37#. One finds closed solutions depending on t
type of ~anti!periodic boundary conditions~BC! imposed on
the fermion fields in the imaginary time direction. In case
well-separated dyon pairs, i.e. ford5pr2/b@b, the zero
eigenmode densities become very simple expressions,
3-4
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uc2~x!u252
1

4p
]m

2 @ tanh~2pr v̄ !/r # for antiperiodic BC,

~14!

uc1~x!u252
1

4p
]m

2 @ tanh~2psv!/s# for periodic BC.

This means that the zero-mode eigenfunctions are local
always around one of the constituents of the KvB soluti
for antiperiodic BC at that constituent which hasL(xW )5

21 at its centerxW1. Switching to periodic BC for the fer-
mion fields the zero mode localization jumps to the oth
constituent monopole of the gauge field. Therefore, the
mionic zero modes provide a convenient way to identify
monopole-pair structure in the gauge fields.

III. DETECTING DYONS AND CALORONS
ON THE LATTICE

Our first aim was to detect the simplest dyon configu
tions in the context of finite temperature lattice simulatio
For this purpose we have consideredSU(2) lattice gauge
theory on an asymmetric lattice using the standard Wil
plaquette action with couplingb54/g0

2,

S5(
xW ,t

s~xW ,t !5(
xW ,t

(
m,n

s~xW ,t;m,n!, ~15!

s~xW ,t;m,n!5b~12 1
2 trUx,mn!,

Ux,mn5Ux,mUx1m̂,nUx1 n̂,m
†

Ux,n
†

and periodic boundary conditions in all four~toroidal! direc-
tions. For simplicity the lattice spacing is set toa51. The
lattice size will beNs

33Nt with the spatial extensionNs

516 or 24 and withT21[Nt54. For Nt54 the model is
known to undergo the deconfinement phase transition at
critical couplingbc.2.299 @42#. Throughout this paper we
concentrate on the confinement phase, i.e.b<bc .

We shall generate the quantum gauge field ensem
$Ux,m% by simulating the canonical partition function usin
the standard heat bath Monte Carlo method. The equilibr
field configurations will be cooled by iteratively minimizin
the actionS. Usually, cooling in one or another form is use
in order to smooth out short-range fluctuations, while~ini-
tially! leaving some long-range physics intact. The cool
method applied here is the standard relaxation method
scribed long ago in@33#.

This method, if applied without any further limitation
easily finds approximate solutions of the lattice field eq
tions as shoulders~plateaus! of action in the relaxation his
tory. Under certain circumstances, this defines and prese
the total topological charge of a configuration. However,
short-range structure of the vacuum fields is changed. S
the type of classical solutions, which are being selected,
pends on the phase which the quantum ensemble$Ux,m% is
meant to describe. We want to investigate smoothed field
different stages of cooling, by using a stopping criteri
07450
ed
,

r
r-

-
.

n

he

le

m

g
e-

-

es
e
ll,
e-

at

which selects the plateaus in a given interval of action. Fi
in Sec. IV, we focus at the lowest action plateaus, i.eS
5(0.5•••1.5)Sinst, whereSinst58p2/g0

2 denotes the action
of a continuum instanton. Later, in Sec. V, we shall descr
more complex approximate solutions found by stopping
higher plateaus.

The smoothed fields will be analyzed according to t
spatial distributions of the following observables.
~i! Action densitycomputed from the local plaquette value
and averaged with respect to the time variable:

§~xW !5
1

Nt
(

t
s~xW ,t !; ~16!

~ii ! Topological densitycomputed with the standard discret
zation and averaged over the time variable:

qt~xW !52
1

Nt

1

24332p2

3(
t

S (
m,n,r,s561

64

emnrstr@Ux,mnUx,rs# D ; ~17!

~iii ! Polyakov loopdefined as

L~xW !5
1

2
tr)

t51

Nt

UxW ,t,4 , ~18!

where theUxW ,t,4 represent the links in time direction;
~iv! Abelian magnetic fluxes and monopole chargesdefined
within the maximally Abelian gauge~MAG!. The latter is
found by maximizing the gauge functional

F@g#5(
x,m

tr~Ux,m
g t3Ux,m

g† t3!, ~19!

with respect to gauge transformationsUx,m→Ux,m
g

5g(x)Ux,mg†(x1m̂). Abelian link anglesux,m are then de-
fined by Abelian projection onto the diagonalU(1) part of
the link variablesUx,mPSU(2). According to the DeGrand-
Toussaint prescription@2# a gauge invariant magnetic flu
Q̄p through an oriented plaquettep[(x,mn) is defined by
splitting the plaquetteQp5ux,m1ux1m̂,n2ux1 n̂,m2ux,n into
Q̄p5Qp12pnp , np50,61,62 such that Q̄pP(2p,
1p#. The magnetic charge of an elementary 3-cubec is then
mc5(1/2p)(pP]cQ̄p ;
~v! Eigenvalues and eigenmode densitiesof the non-
Hermitian standard Wilson-Dirac operator

(
y,s,b

D@U#xra,ysb csb~y!5lc ra~x! ~20!

with
3-5
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D@U#xra,ysb5dxyd rsdab

2k(
m

$dx1m̂,y~1D2gm!rs~Ux,m!ab

1dy1m̂,x~1D1gm!rs~Uy,m
† !ab%

studied both with time-antiperiodic and time-periodic boun
ary conditions. For our purposes it will be sufficient to co
sider this operator which breaks explicitly chiral invarianc
To use a chirally improved lattice Dirac operator would be
next step. We find thel spectrum and the eigenfunction
with the help of the implicitly restarted Arnoldi metho
@43,44# and use the standardARPACK code package for this
aim.

For production and cooling of the equilibrium gauge fie
configurations we shall use two kinds of spatial bound
conditions as in@35# and with preliminary results presente
in @36#: ~i! standard periodic boundary conditions~PBC! on
the 4D torus; ~ii ! fixed holonomy boundary condition
~FHBC!: fixed holonomy is realized by cold timelike link
UxW ,t,4 on the spatial boundaryV.

For clarity we stress that the second case is periodic,
but for the spatial boundary

V5$xW uxW5~1,x2 ,x3!,~x1,1,x3! or ~x1 ,x2,1!%

all time-like links UxW ,t;4 are frozen to constant group ele
ments. For definiteness we have used embedded pure
lian link variablesUxW ,t;4[cosu1is3sinu. In the confinement
phase atb<bc we requireL(xW )505^L& ~corresponding to
holonomy parameterv51/4) which is satified by u
5p/2Nt . As in @35# we have studied also the deconfineme
case (b.bc). In this case we fixed the boundary time-lik
links such thatL(xW )5^L& for xWPV. In both caseŝL& de-
notes the ensemble average^u(xWL(xW )u/Ns

3& of the volume-
averaged Polyakov loop.

Each kind of boundary conditions will be employed bo
for the Monte Carlo production of configurations and f
their subsequent cooling.

IV. DYONIC LUMPS AND OTHER OBJECTS SEEN
ON THE LATTICE

In a first part of our investigation we have searched
topologically nontrivial objects with lowest possible actio
late in the cooling history, in order to find systematic depe
dences of the selected solutions on the spatial boundary
ditions and on the temperature of the original Monte Ca
ensemble. Cooling was stopped at some (nth! cooling itera-
tion step when the following criteria for the actionSn were
simultaneously fulfilled: Sn,1.5Sinst, uSn2Sn21u
,0.01Sinst, Sn22Sn211Sn22,0. The last condition mean
that cooling just passed a point of inflection.

For eachb<bc we have scanned the topological conte
of O(200) configurations. In this late stage of cooling w
find approximate classical solutions which are more or l
static in time besides nonstatic ones.

For both kinds of boundary conditions, among the so
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tions we have found there are such which can be easily id
tified asCAL andDD. In order to allow a simple distinction
between the nonstatic caloronsCAL and the dissociated bu
staticDD pairs we introduce a quantity which represents
a Euclidean configuration the mobility of the action densi
For brevity, we call itnonstationarity,

d t5(
t,xW

(
m,n

us~xW ,t;m,n!2s~xW ,t21;m,n!u/S. ~21!

The action density per planes(xW ,t;m,n) and the normaliza-
tion factor, the total actionS, are defined in Eq.~15!. We
have monitored how frequently objects with givend t are
found at the lowest action plateaus. The histograms ofd t
look similar for both types of boundary conditions. Forb
52.2 they have a peak atd t50.0220.04 and a long tail for
larged t .

We have convinced ourselves that a cutd t,0.17 well
separatesDD-objects which are static with two well
separated maxima of the densities of the topological cha
qt(xW ) and action§(xW ). Ford t.0.17 the objects can be easi
interpreted asCAL which are nonstatic, with an approx
matelyO(4) rotationally symmetric action distribution, with
a single maximum ofqt(xW ) and§(xW ) in 3D space. BothDD
and CAL are showing a pair of opposite-sign peaks of t
Polyakov loop.

A. DD pairs

For a specialDD solution found with PBC, we show in
Figs. 1~a! and 1~b! two-dimensional cuts of the topologica
charge densityqt(xW ) ~a! and of the Polyakov loop distribu
tion L(xW ) ~b!. TheDD solution was obtained from an equ
librium configuration representingb52.2, i.e. the confine-
ment phase. We clearly see the opposite-sign peaks of
Polyakov loop variable correlated with the equal-si
maxima of the topological charge density. The boundary v
ues of the Polyakov loop are slightly varying because th
are not fixed here to a well-defined value. This is the o
difference observed between the two types of boundary c
ditions. In principle, for PBC the holonomy could be arb
trary. What really happens to the asymptotic holonomy
will discuss in Sec. V. As a consequence the ratio of
action carried by the well-separated dyon constituents
take any value.

For the sameDD solution, Figs. 1~c! and 1~d! show the
scatter plot of the 70 lowest complex Wilson fermion eige
values~20! for k50.14, both for time-periodic~c! and time-
antiperiodic~d! boundary conditions for the fermion fields
In both cases we find one isolated low-lying real eigenva
which can be related to a zero-mode of the zero-mass c
tinuum Dirac operator. The corresponding~projected! eigen-
mode densitiesc†c(x) are drawn below, in Figs. 1~e! and
1~f!. They show a localization behavior as analytically pr
posed in Eqs.~14!. For the time-antiperiodic BC the eigen
mode is localized at the dyon exhibiting the negative peak
the Polyakov loop related to Taubes winding@37#.
3-6
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For the given solution created on the lattice we have c
ried out a fit with the analytic formula@29# to reproduce the
action density~7!. This has provided the parameter valu
xW15(8,5,11), xW25(5,8,5) andv50.202. Figure 2 shows
one-dimensional projections of the same gauge field confi
ration together with the analytical results produced with
given fit parameters for the topological density, the Polyak
loop and the fermionic mode density with time-antiperiod
and -periodic boundary conditions according to the expr
sions ~14!. The last two curves are predictions, rather th
fits. There is an impressive agreement with the numer
shape of the fermionic zero-mode density.

Gauge fixing to MAG we can search for the Abelia
monopole content of the field configurations under insp
tion. We are interested in the positions of the world lines
monopole-antimonopole pairs. For staticDD solutions we
always find a pair of static~anti!monopoles with world lines
coinciding with the centers of the dyons. All these featu
have been observed forDD-solutions irrespective of the spa
tial boundary conditions imposed in the process of coolin

B. CAL configurations

In Fig. 3 we show a typicalCAL solution, with an ap-
proximately 4D rotationally invariant action distribution, ob

FIG. 1. Various portraits of a self-dualDD pair obtained by
cooling under periodic gluonic boundary conditions. The sub-pan
show: appropriate 2D cuts of the topological charge density~a! and
of the Polyakov loop~b!, the plot of lowest fermionic eigenvalue
~c,d! and the 2D cut of the real-mode fermion densities~e,f!, for the
cases of time-periodic~c,e! and time-antiperiodic~d,f! fermionic
boundary conditions, respectively (b52.2 and lattice size 163

34).
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tained atb52.2 from cooling with periodic boundary con
ditions. The configuration possesses a large value of
nonstationarityd t . Again we plot 2D cuts for the topologica
charge density, for the Polyakov loop and the fermionic
genvalues together with the eigenmode density for the
tinct real eigenvalue. The full topological chargeQt is unity.
The expected pair of narrow opposite-sign peaks of
Polyakov loop is nicely visible.

The fermionic zero-modes for time-periodic and tim
antiperiodic BC for this configuration are only slightl
shifted relative to each other. A reasonable fit with the a
lytic solution can be obtained showing that this caloron
nothing but a limiting case of the genericDD solutions. At
that point we may conclude that cooling, even with nonfix
holonomy, yields almost-classical solutions which show
characteristics of the KvB calorons. The typicalCAL con-
figurations show, after putting them into MAG, a closed Ab
lian monopole loop circulating around the maximum of t
action density in the 4D-space.

C. DD̄ pairs

As previously observed for the case with FHBC@35#, we
have found also other field configurations with an action
the instanton level,S.Sinst, which are very stable agains
cooling which motivates us to interpret them also as appro
mate solutions of the lattice equations of motion. With ve
low non-stationarityd t50.00460.002, they consist of two
lumps of action with opposite-sign topological charge den
ties. We call them dyon-antidyon pairs,DD̄. Each of their
lumps turns out to be approximately~anti-!self-dual. The to-
tal topological charge of the entire configuration is alwa
zero. Therefore, each of the lumps carries half-integer to
logical charge. The Polyakov loop exhibits two peaks, in t
case of equal sign.

Also for DD̄ pairs MAG fixing offers an Abelian mono
pole interpretation. After Abelian projection a static Abelia
monopole-antimonopole pair can be found at the position
the topological charge centers.

Searching for the eigenvalues of the Wilson-Dirac ope
tor we did not find real eigenvalues but sometimes pairs
complex conjugated eigenvalues with very small imagin
parts. This feature is very similar to that of dilute superpo
tions of instantons with anti-instantons. This gives us go
reason to interpretDD̄ pairs as superpositions of single BP
solutions with half-integer topological charge. To the best
our knowledge, analytic solutions of this kind have not be
reported in the literature. An example for aDD̄ pair is re-
produced in Fig. 4. We did not find any real or near-to-re
modes for the time-antiperiodic boundary conditions.

D. The composition of the lowest action plateaus

Finally, by cooling with both kinds of spatial boundar
conditions we have found objects becoming very stable
even lower action, for lattice size 16334, S.Sinst/2 and
.Sinst/4. Their ~color-! electric contribution to the action is
very small compared with the magnetic contribution. Mor
over, they are perfectly static withd t50.00360.002. Em-

ls
3-7



,
atial
ic case
ates.

E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 66, 074503 ~2002!
FIG. 2. TheDD lattice configuration of Fig. 1~dashed lines!, fitted by the KvB solution~solid lines! according to the action density
shown in three spatial views~1D projections!. In ~a1!,~a2!,~a3! the topological charge density is summed over the two unspecified sp
coordinates. In~b1!,~b2!,~b3! the Polyakov loop is averaged over the two unspecified spatial coordinates. In the time-antiperiod
~c1,c2,c3! or the time-periodic case~d1,d2,d3!, respectively, the fermion density is summed over the two unspecified spatial coordin
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ploying MAG we have convinced ourselves that they a
purely Abelian. In the confinement phase they are occurr
quite rarely directly in the cooling process. They are mo
common to appear after monopole-antimonopole pairs
served atS'Sinst annihilate in the final stage of the relax
ation. Therefore, we shall not consider them in detail he
But they seem to play an important role in the deconfinem
phase@36,38#. Since they are purely magnetic solutions
pure magnetic fluxes or ’t Hooft–Polyakov–lik
monopoles—we shall abbreviate themM in the following
table.

In a forthcoming paper we will investigate the deconfin
phase with respect to the dominating nonperturbative~mag-
netic! excitations. In this context we will characterize mo
the form of these semiclassical solutions.

In Table I the relative frequencies to find different types
classical configurations (DD, CAL, DD̄ andM ) at and be-
low the one-instanton action plateaus are shown. We c
pare here PBC with FHBC For eachb<bc we have inves-
tigatedO(200) Monte Carlo equilibrium configurations. W
07450
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can conclude that cooling applied to configurations in
confinement phase produces all objects with relative pr
abilities which are approximately independent of the type
boundary conditions imposed.

For the deconfinement phase we have seen that the st
enhancement ofDD̄ configurations earlier found for cooling
with FHBC @35# ~which would be compatible with the sup
pression of the topological susceptibility! is not reproduced
under cooling with standard PBC In the standard case,
probability to obtain any topologically nontrivial objec
drops sharply withb.bc . Cooling down to the one-
instanton action plateaus provides only trivial vacuum
M-configurations. Because this latter observation was ba
on a physically small 3-volume (16334 for b52.4), finite-
size effects might have been too strong to preclude a fi
conclusion. The structure of cooled deconfined configu
tions will be addressed in a further investigation.

The independence of the boundary conditions, howe
in the confinement phase has to be taken seriously: the
forcement of anL50 boundary condition seems to be not f
3-8
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TOPOLOGICAL CONTENT OFSU(2) GAUGE FIELDS . . . PHYSICAL REVIEW D 66, 074503 ~2002!
from the situation with standard periodic boundary con
tions in the MC equilibrium. Some details will be discuss
in the next section.

V. DILUTE GAS CONFIGURATIONS OF DYONS
AND ANTIDYONS AT HIGHER ACTION PLATEAUS

Within the confinement phase, for 0,T<Tc and for both
kinds of spatial boundary conditions, we have also studie
detail semiclassical configurations at higher action platea
They represent snapshots of earlier stages of the cooling
tories because the stopping criteria were focused on m
tiples of the instanton action. This study should allow us
observe superpositions of classical solutions studied in S
IV promising to be relevant for a semiclassical approxim
tion of the nonzeroT partition function. So far in the litera
ture, the semiclassical approach to QCD at nonzero temp
ture is entirely based on Harrington-Shepard calo
solutions with trivial holonomy@28,27#. Our main concern
here is, whether superpositions of solutions with nontriv
holonomy naturally occur under cooling.

A. Landscapes of topological density and Polyakov loop,
fermion zero modes and Abelian monopoles as dyon finder

Therefore, we expose equilibrium Monte Carlo latti
gauge field configurations to cooling, this time stopping u

FIG. 3. Various portraits of a self-dualCAL configuration ob-
tained by cooling under periodic gluonic boundary conditions. T
sub-panels show: appropriate 2D cuts of the topological charge
sity ~a! and of the Polyakov loop~b!, the plot of lowest fermionic
eigenvalues~c,d! and the 2D cut of the real-mode fermion densiti
~e,f!, for the cases of time-periodic~c,e! and time-antiperiodic~d,f!
fermionic boundary conditions, respectively (b52.2 and lattice
size 16334).
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der criteria which apply to different, subsequent action w
dows. We have been monitoring the landscape of topolog
density, of the Polyakov line operator as well as the locali

TABLE I. Relative frequencies of the occurrence of differe
kinds of ~approximate! solutions, for different values ofb and for
both kinds of boundary conditions of the gauge field~FHBC and
standard PBC!. The lattice size is 16334.

Type of Boundary
solution condition b52.20 b52.25 b52.30.bc

DD FHBC 0.4660.05 0.5260.05 0.4560.05
PBC 0.4360.05 0.4460.05 0.2360.03

CAL FHBC 0.1960.03 0.1760.03 0.1560.03
PBC 0.2460.03 0.2660.03 0.2660.03

DD̄ FPBC 0.2860.04 0.2660.04 0.3160.04

PBC 0.1860.03 0.1660.03 0.1060.02
M FPBC 0.0160.01 0.0160.01 0.0360.01

PBC 0.0460.02 0.0360.01 0.1060.02
trivial vacuum FPBC 0.0660.02 0.0460.02 0.0660.02

PBC 0.1160.02 0.1160.02 0.3160.04

e
n-

FIG. 4. Various portraits of a mixed-dualityDD̄ pair obtained
by cooling under periodic gluonic boundary conditions. The su
panels show: appropriate 2D cuts of the topological charge den
~a! and of the Polyakov loop~b!, the plot of lowest fermionic ei-
genvalues ~c,d! for the cases of time-periodic~c! and time-
antiperiodic ~d! fermionic boundary conditions, respectively (b
52.2 and lattice size 16334). A 2D cut of the fermionic mode
density related to the two distinctalmostreal eigenvalues in~c! is
shown in~e!.
3-9
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tion of the fermionic zero-modes in the semiclassical can
date configurations.

Searching for more complex approximate classical so
tions we have modified our previous stopping criterion, tr

gering now on (m2 1
2 )Sinst,Sn, (m1 1

2 )Sinst, m
52,3, . . . , andSn22 Sn211Sn22,0. In particular we in-
spected the first~highest! visible plateaus which occurred a
various m-values, typically in the rangem.8 –20 for b
52.2 on a lattice of the size 16334. Then, we looked at the
series of subsequent action plateaus. In terms of the ob
classified in Sec. IV, we have scanned the resulting plat
configurations.

For more definiteness concerning the moment of tak
snapshots of the configurations undergoing cooling alon
plateau, we have additionally introduced a measureD for the
mean violation of the classical lattice field equations per l
~see@33#!,

D5
1

8Ns
3Nt

(
x,m

$tr@~Ux,m2Ūx,m!~Ux,m2Ūx,m!†#%1/2,

~22!

where

Ūx,m5c (
n.m

@Ux,nUx1 n̂,mUx1m̂,n
†

1Ux2 n̂,n
†

Ux2 n̂,mUx1m̂2 n̂,n#

is the local linkx,m being the solution of the lattice equatio
of motion, with all degrees of freedom coupled to it bei
fixed. The factorc is just a normalization of the staple su
such thatŪx,mPSU(2) @45#.

On the first visible plateau we find a gas of localize
lumps carrying topological charge, where an identification
terms of dyonsD and/or antidyonsD̄ is still difficult.

Independent of the kind of boundary conditions e
ployed, at somewhat lower action plateaus withm,10, we
are able to clearly recognize dyonsD and antidyonsD̄ car-
rying noninteger topological charges. During cooling mo
and more of these objects disappear. However, at all plat
we observe an even number of peaks of the spatial Polya
loop landscapeuL(xW )u. For illustration see Figs. 5–9, whic
show one and the same gauge field configuration at diffe
stages of the cooling process. In this case FHBC have b
used.

In Fig. 5 we show the action~in units of the instanton or
caloron action!, the non-stationarityd t , and the mean viola-
tion D of the lattice field equations per link. At three subs
quent, already lower action plateaus~labeled bym) we indi-
cate the iteration steps A~for m54), B ~for m53) and C
~for m52), respectively, whereD passes through loca
minima. The corresponding semiclassical field configurati
are then displayed in Fig. 6 by means of the 2D-projec
~by summing with respect to the third coordinate! spatial
topological charge density and the 2D projected Polya
loop distribution. More or less well one can recognize
these figures that at stage A we have a superposition
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dyons and 2 antidyons. The topological charge sector
been independently determined to beQt52. A DD̄ pair de-
cays or annihilates from A to B such that we have 5 dyo
and 1 antidyon at the next stage. The topological charge
not change. Finally, stage C exhibits a superposition o
dyons, again withQt52. The latter configuration is very
stable. While it stays at the same action over thousand
cooling sweeps, the nonstationarityd t gradually rises. A
closer look then shows that the scale size of one of the d
pairs shrinks, transforming this pair into a small undisso
ated and nonstatic caloron, which finally disappears a
having turned into a tiny dislocation strongly violating th
equations of motion~compare with Fig. 5!. The average vio-

FIG. 5. Part of the cooling history for a gauge field configur
tion taken from the Monte Carlo sample generated atb52.2 on a
24334 lattice, with FHBC ofLxWPV50. The sub-panels show:~a!
full action S/Sinst , ~b! nonstationarityd t and ~c! mean violationD
per link of the lattice field equations, vs the number of cooli
steps. The vertical dotted lines indicate the passages ofD through
local minima having occurred at 800~A!, 1650 ~B! and 7000~C!
cooling steps for which the configurations will be portrayed in Fig
6, 7, 8, and 9.
3-10
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lation of the equations of motion per link peaks immediat
before the configuration drops to the next plateau.

This example shows that we have superpositions of n
integerQt lumps, which can be interpreted as described
the previous section. To make sure that this is really the c
we provide also the eigenvalue scatter plots for the Wils
Dirac operator for stage A~Fig. 7!, for stage B~Fig. 8! and
for stage C~Fig. 9!. Figure 7 shows four real fermion mode
~under time-periodic boundary conditions! which could sug-
gest an interpretation of configuration A as a superposition

3 DD pairs and a singleD̄D̄ pair. However, the inspection o
the time-antiperiodic BC case provides only two real mod
which supports a dyonic content consisting of 2DD pairs
plus 2DD̄ pairs, an interpretation which naively is possib
as well. In the stage C, also for time-periodic boundary c
ditions, we see clearly two real modes sitting on top of t
dyon lumps. We have checked that the modes jump to
remaining dyon lumps when changing the fermionic bou
ary condition to time-antiperiodic.

We have studied also the Abelian~anti!monopole struc-
ture after fixing to the MAG and Abelian projection. We s
a strong correlation of the peaks of the Polyakov loop w
the positions of the~anti!monopoles. This can be seen in Fi
10. The pair structure in terms of Abelian monopoles, occ
ring on all action plateaus and the annihilation of sing
~monopole-antimonopole! pairs during further relaxation
provides an additional signal for the topological content
superpositions of nontrivial holonomyCAL, DD (D̄D̄) or
DD̄ pairs.

FIG. 6. Configurations on the 24334 lattice ~from equilibrium
at b52.2 with FHBC!, as indicated in Fig. 5 after 800~A,A’ !, 1650
~B,B’! and 7000~C,C’! cooling steps.~A,B,C! show 2D projections
of the topological charge densityqt(x) and~A’,B’,C’ ! of the Polya-

kov loop L(xW ), respectively. Cooling has been employed w
FHBC, LxWPV50.
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B. The role of the boundary conditions: Are nontrivial
boundary conditions ‘‘natural’’?

In order to understand this from the point of view
single caloron solutions with nontrivial holonomy we have
find out whether~approximately! those asymptotic holonomy
boundary conditions as typical for the dyonic~antidyonic!
semiclassical background excitations are actually pres
during the cooling process when periodic boundary con
tions ~no particular holonomy boundary conditions! are ap-
plied to the full volume. Then it would be easier to acce
that similar ~albeit fluctuating! boundary conditions migh
also be realized in the semiclassical vacuum.

To answer this question wedefine the asymptotic ho-

lonomy L̀ of a cooled configuration as the average ofL(xW )
over all pointsxW in 3D space for which the 3D projecte
action density satisfies§(xW )<.0001, i.e. it takes minimal val-
ues which are typically seen in deep valleys around the
pological lumps.

In Fig. 11 we show histograms ofL` obtained at different
plateaus during the cooling histories of an ensemble
5O(200) configurations produced atb52.2 on a 16334
lattice with standard PBC We see a clear peak atL`50 for
higher action plateaus. The distribution is more narrow th
the pure Haar measure would tell us. However, approach
lower-lying plateaus, the real distribution becomes flat.

Closing the discussion of the local boundary conditio
let us finally concentrate on those configurations which

FIG. 7. The lattice field configuration depicted in Fig. 6~A,A’ !
for 800 cooling steps~FHBC!. Here~A! plots the eigenvalues of the
Wilson-Dirac operator in the complex plane fork50.140 and the
case of time-periodic fermionic BC;~A1, . . . ,A4! show 2D projec-
tions of the fermionic mode densities related to the four distinct r
eigenvalues.
3-11
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E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 66, 074503 ~2002!
long to the bins of21/6,L`,11/6, i.e. those which real
ize L`'^L& in the confined phase. For these configuratio
we turn our attention to the local correlation between
Polyakov loopL(xW ) and the action density values§(xW ) mea-

FIG. 8. The lattice field configuration depicted in Fig. 6~B,B’!
for 1650 cooling steps~FHBC!. Here ~B! plots the eigenvalues o
the Wilson-Dirac operator in the complex plane fork50.140 and
the case of time-periodic fermionic BC;~B1,B2! show 2D projec-
tions of the fermionic mode densities related to the two disti
almostreal eigenvalues, whereas~B3,B4! present the densities re
lated to the two real eigenvalues.

FIG. 9. The lattice field configuration depicted in Fig. 6~C,C’!
for 7000 cooling steps~FHBC!. Here ~C! plots the eigenvalues o
the Wilson-Dirac operator in the complex plane fork50.140 and
the case of time-periodic fermionic BC;~C1, C2! show 2D projec-
tions of the fermionic mode densities related to the two real eig
values.
07450
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sured at the same positionsxW . We studiedconditional distri-

butions P@Lu§# of the Polyakov loop valuesL(xW ) at spatial
points where the spatial action density§(xW ) equals§. The
distributions are normalized for each bin of§. The distribu-
tions are shown as surface plots in Fig. 12 for different p
teaus. They show that with higher action density the cor
sponding local Polyakov loop values tend to be closer to
peak valuesL561. The distributions do not depend o
which action plateau they were collected. We have identifi
in Sec. IV KvB solutions andDD̄ configurations at the one
instanton action plateau, and we have strong indications
the same objects occur on the higher action plateaus, too
in superpositions of topologically nontrivial lumps of actio
This argument is also supported by a comparison with
same kind of conditional distribution obtained from the an
lytic KvB solution with random parameter distribution whic
we have discretized on the lattice. The resulting distribut
P@Lu§# is shown in Fig. 13~a! and compared with the dis
tribution for calorons with trivial holonomy~b!.

C. The Taubes rotation in many-dyon configurations

Finally, it is interesting to analyze the relative orientatio
of the dyons in color space. In Sec. II we have described h
the Taubes winding in aDD caloron could be detected in
gauge independent way. The analysis is also here, for
cooled configurations, simplified by the observation that
the center of a dyon both electricEi

a and magneticBi
a field

strengths@which satisfy~anti-! self-dualityEi
a56Bi

a] form
orthogonal matrices in color (a) and space~i! indices. Thus,
it suffices to consider three (i 51,2,3) vectors in color spac
Ei

a(xW ) forming a local reference frame at the center of a dy
with which any other local reference frame can be compar
The comparison can be made in a gauge invariant manne
connecting the centers at which the field strengths are m
sured by a parallel transporter, the Schwinger line.

The exploration of a few semiclassical lattice configu
tions containing superpositions of severalD and D̄ has
shown the following common features. All dyons with neg
tive peak value of the Polyakov loop have more or less r
dom color orientation relative to each other, but this relat

t

-

FIG. 10. HistogramP(L) of the values of the Polyakov loop

L(xW ) taken atxW where time-like Abelian~anti!monopoles are found
The data represent cooling plateaus atm54 obtained atb52.2
with lattice size 16334. O~2400! nonvanishing monopole charge
were collected.
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FIG. 11. HistogramP(L`) of the values of the Polyakov loop at ‘‘infinity’’~as explained in the text! seen on the first plateau~a! and at
plateaus withm.4 ~b!, m.3 ~c!, m.2 ~d!, m.1 ~e!. For comparison the distribution expected from the pure Haar measurePHaar(L)
;A12L2 is shown with the same normalization~dashed lines!. The equilibrium ensemble was generated atb52.2, the lattice size is
16334, cooling was performed using periodic BC, O~200! configurations were investigated.
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hat
orientation is static along the time axis. For dyons with
positive peak, the value of the Polyakov loop remains
same. Also their orientation relative to each other seem
be random but static. But the relative orientation between
L511 and theL521 dyons is changing along the Euclid
ean time and the change is nothing but a homogeneous
tion in color space with the angle period 2p. In the analytic
solution representing just two dyons~or two antidyons! this
rotation is also present. It has been discussed and relate
Taubes winding in Sec. II.

To illustrate this observation let us consider a configu
tion obtained on the lattice of size 16334 with FHBC after
400 cooling steps. The configuration contains threeD and
oneD̄ as shown in Table II. We have taken the firstD as the
reference point with respect to which the relative color o
entations of the other dyons and the antidyon were de
mined. We have calculated the matrices@cf. Eq.~13!# Rik

12(t),
Rik

13(t) andRik
14(t). They show the relative orientations of th

objects n52,3,4—represented by their electric field
07450
e
to
e

ta-

to

-

-
r-

Ek(xWn ,t)5Ek
a(xWn)(ta/2) which appear parallel transported

the position of the first object in the form
S(xW1 ,t;xWn ,t)Ek(xWn ,t)S 1(xW1 ,t;xWn ,t)—with respect to the
first object—represented by its electric fieldsEk(xW1). Then
the evolution in time of the relative orientation can b
investigated. While the matrices Rik

12(t)

5tr„Ei(xW1 ,t)SEk(xW2 ,t)S 1
…, and Rik

14(t) turned out to be
constant in time, the matrixRik

13(t) performed a color rotation
with a constant angle incrementp/2 from one time slice
to the next time slice about the color axisnW
5(20.919,0.278,0.275). The orientation of this axis see
to be random, but the rotation angle is well-defined. ForNt
54 it corresponds to a full color rotation over the full Eu
clidean time period. Our general observation illustrated
this example of a moderately complicated superposit
shows that also these more complicated objects exhib
strong correlation in the color orientation analogous to t
present in a singleDD KvB pair. A semiclassical approxi-
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FIG. 12. Conditional distributionsP@Lu§# relating local values ofL(xW ) with the spatial action density§(xW ) for cooled configurations a
plateaus with 7>m>5 ~a!, m.4 ~b!, m.3 ~c! andm.2 ~d!. The equilibrium ensemble was generated atb52.2, the lattice size is 163

34, cooling was performed using PBC.
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mation of the path integral would have to take into acco
this kind of color correlation.

VI. CONCLUSIONS

We have generatedSU(2) lattice gauge fields at nonzer
temperature in the confinement phase. We have cooled t
in order to analyze their topological content. Fixed holono
spatial boundary conditions have been used as well as s
dard periodic boundary conditions. The results for these
kinds of boundary conditions semiquantitatively agree w
each other. This is specific for ensembles describing the c
finement phase.

Independently of the boundary conditions we have fou
superpositions of calorons, dyons and antidyons, the la
07450
t

m
y
n-
o

n-

d
er

with positive and negative noninteger topological charg
The topological lumps appear also as peaks of the Polya

loop modulusuL(xW )u, with calorons being a limiting case

with a close pair ofL(xW )561. Investigating also the local
ization behavior of the real eigenvalue modes of the~non-
Hermitian! Wilson-Dirac operator we could present convin
ing evidence that for calorons and for dyon-dyon pairs
interpretation in terms of KvB solutions is natural. Chosi
time-periodic and time-antiperiodic boundary conditions
the fermions focuses onL(xW )521 or L(xW )51 dyons, re-
spectively.

On higher action plateaus we have found that the dyna
ics generically leads to nontrivial holonomy outside t
lumps of action and topological charge. The multidyo
FIG. 13. Conditional distributionsP@Lu§# as in Fig. 12, obtained for random KvB solutions (DD or CAL) ~a! and for calorons with
trivial holonomy ~b!, for comparison.
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antidyon structure can be finally resolved by a combinat
of two tools: localization of fermionic real modes and t
relative color-orientation of the color-electric field strengt

Our results are still restricted to small volume and qu
large bare coupling. Before drawing final conclusions ab
the semiclassical structure of Yang-Mills theories atT,Tc
we should go deeper into the continuum limit of the latti
approximation. Nevertheless, our observations indicate th
semiclassical treatment of the path integral at nonzero t
perature close to the deconfinement phase transition sh
be built on superpositions of calorons, dyons and antidyo
with the holonomy as a free parameter.

We have seen that such superpositions would impl
strong correlation in the relative color orientation~and its
Euclidean time dependence! between pairs of seemingly in

TABLE II. Configuration of 3D and 1 D̄, obtained after 400
cooling steps with FHBC from an equilibrium configuration pr
duced atb52.2 on a 16334 lattice.

Type 3D position Polyakov loop

D xW15(5,3,2) 21

D xW25(12,6,3) 21

D xW35(13,14,5) 11

D̄ xW45(5,7,13) 21
e
.

.

o

o

.

07450
n

t

t a
-
ld

s,

a

dependent topological lumps. To the best of our knowled
such superpositions have not yet been constructed ana
cally.

It is already clear that the development of a semiclass
approach based on solutions with nontrivial holonomy
much more complicated than the instanton~caloron! gas or
liquid, and it might turn out not to lead to a practicab
model.

Nevertheless, facing the nontrivial structures found in t
paper might contribute to a better understanding of
mechanism driving the deconfinement transition. Whethe
certain working picture of a dilute gas of these configuratio
can be developed and whether it will improve our und
standing of quark confinement itself remains an open qu
tion to which we hope to come back in the near future.
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