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Finite temperature Euclidea®U(2) lattice gauge fields generated in the confinement phase close to the
deconfinement phase transition are subjected to cooling. The aim is to identify long-living, almost-classical
local excitations which carnfgenerically nonintegertopological charge. Two kinds of spatial boundary
conditions (fixed holonomy and standard periodic boundary condiliare applied. For the lowest-action
configurations we find that their relative probability semi-quantitatively agrees for both types of boundary
conditions. We find calorons with unit topological charge as welbasi-)self-dual lumps of nonintegéequal
or opposite sightopological charggBogomol'nyi-Prasad-Sommerfield monopoles or dyoosmbined in
pairs. For calorons and separated pairs of equal-sign dyons we have (fouthd gluon field to be well-
described by Kraan—van Baal solutions of the field equationgigrtie real Wilson-fermion modes to be well
approximated by analytic solutions of the corresponding Dirac equation. For metastable configurations found
at higher action, the multicenter structure can also be interpreted in terms of dyons and antidyons, using the
gluonic and fermionic indicators as for the dyon-pair case. We argue that an improvement of the semiclassical
caloron approach to the nonzero temperature path integral should take into account superpositions of solutions
with nontrivial holonomy.
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[. INTRODUCTION tons cannot be brought into relation with the third basic fea-
ture of QCD, confinement. There have been attempts to
It is widely accepted that quark confinement in QCD isstretch the instanton liquid model to its limits in order to
related to some complex structure of the gauge field vacuunprovide a confining string tension of sufficient strength be-
A popular scenario views the vacuum state as a dual supetween a static quark and antiqudrk7], at least at interme-
conductor[1] in four dimensions which is unable to sustain diate distances of a few instanton radii. A recent assessment
strong gluon electric fields such that flux tubes are formedf the instanton-generated forces between static charges has
due to a dual Meissner effect. The analogon to the Coopédreen discussed in R€fL8].
pairs of usual superconductors is Abelian monopoles, in While a satisfactory instanton-based mechanism of con-
other words, condensed magnetic currents belonging to afinement is lacking, many indications have been presented
Abelian subgroup of the strong gauge group. that instantongor, more generally, carriers of topological
The lattice evidence in support of this mechanism resteharge are closely related to the Abelian monopoles which
either on the ability to localize the magnetic curref@s8] as  are usually detected by gauge fixing procedures. This evi-
the worldlines of magnetic defects with respect to somelence stems from the observation made for one-instanton
gauge fixing prescriptiod4], or on the construction of a and many-instanton configuratioft9—21] in the maximally
corresponding monopole creation operafbf in order to  Abelian gauge and from the observation of short range cor-
study its condensation. The question of how their condensaelations between topological charge and magnetic currents
tion leads to confinement is relatively well understd6¢], in genuine confining lattice configuratiof22,23. On the
and while also the question of universality with respect to theother hand, also in artificial instanton liquid model en-
gauge condition is partly answered affirmativgB;9], the  sembles [multi-(anti-instanton configuratiorjs monopole
reasonwhythese monopoles are created in the QCD vacuunmetwork percolation has been obsery2d]| as a prerequisite
is far from being understood. of monopole condensation. This has led to the conclusion
There is another working picture of the Yang-Mills that semiclassical, smooth gauge field configurations can
vacuum[10-13 which has been applied very successfully togive rise to networks oflight, condensedmagnetic mono-
hadron physics, including basic features such as chiral synpoles even if these become discovered only as defects of the
metry breaking and th&l,(1) anomaly as well as details of gauge fixing process. Thus, some reconciliation of the two
spectroscopy 14]. It is based on the instanton, a solution pictures seems possible.
[15] of the Euclidean field equations. However, even in the However, as long as the instantons are uncorrelated, the
form of the instanton liquid moddl16], when some local Abelian monopoles and center vortide5] revealed by the
interaction between instantons is taken into account, instarrespective gauge fixing are quantitatively insufficient to pro-
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vide confinemen{18]. Moreover, the approximate Casimir are the natural fluctuating asymptotic conditions for the
scaling at intermediate distance that the strong force actingemiclassical excitations.

on charges of different representations obeys is also strongly Similarly to the studies of the monopole and vortex con-
broken in the instanton liquid enseml8]. This makes it tent of meron[26] pairs, we study here also the monopole
less likely that instantons are related to confinement even iontent and other signatures of the simplest of these configu-
some important correlation would be included into theyations (to be interpreted as dyon-dyon and dyon-antidyon

model. pairs as potential semiclassical building blocks of a confin-

Nowa_days, in a fresh attempt to relate instanton physics t%g vacuum. Preliminary results have been presenté@4n-
the confinement property of the Yang-Mills vacuum, instan-%e,]

tons dlﬁoct:;]at_ed Into melron %alrs P:ave b?en mv;;élggted WIth "1 contrast to the meron studig6], instead of tailoring
respect to their monopole and center vortex corfi2ék Our . _particular semiclassical configurations, in the present work

present work, which also aims to extend the Instanton picq 5re going to demonstrate the emergence under cooling of
ture, starts from a somewhat different corner, finite temperaz, i~ <table lattice configurations with low action whidis-

ture. All the criticism with respect to an instanton meChanismtinguished by action plateausesemble the new calorons
of confinement applies also to finite temperature Yang-Mills dyon-dyon pairs In this case, where an analytical solution

theory below the deconfinement temperature, where periodig 7, 5jjaple, we show that action density, topological density
mstantons(calorons) are th_e ingredients of th? mst_anton lig- and the profile of the fermionic zero modes on the lattice can
u'.d qu_el[27]. More pre_clsely, there are periodic Instantonsy,, fi¢ simultaneously with the corresponding expressions for
with trivial holonomywhlch are thoug_ht of as the bundmg the new caloron KvB solutiofi29,37]. It is worth noticing

blocks of topological structure. An isolated caloron with that at actions around one instanton action also configura-

tn_wal h°'°”°my IS a peri_odic glass_ic_al solution O_f the Eu- tions pop up under cooling which resemble dyon-antidyon
clidean equations of mot|oneW|th trivial asymptotics of the pairs. This interpretation is suggested by action and topologi-
Polyakov loop at infinity,P(x—~)=ze Z(N). These are cal density and is corroborated by the zero modes of the
the “old” calorons first considered by Harrington and Shep-wilson fermion matrix and the Polyakov loop profile. Lack-
ard [28]. ing an analytical solution for these configurations of mixed
During recent years new caloron solutions have beenanti)self-duality it is impossible to present a fit of the vari-
found and studied by Kraan and van Ba&vB) [29,30  ous distributions.
which correspond to a nontrivial asymptotic holonom& Also for higher metastable plateaus with an action of a
—o) ¢ Z(N). From our point of view, a particularly inter- few times the instanton action a multi-center structure of
esting feature is that, in the generic case, these configuratiofiew-lump dyon-antidyon mixed configurations can be recog-
are composites of Bogomol'nyi-Prasad-SommerfigdiPS nized having a broad distribution of holonomy away from
monopoles[31] (or dyons i.e. lumps carrying noninteger the lumps of action and topological charge. We do not claim
topological charge. A semiclassical description of ¢fieite  that this directly proves that the finite temperature vacuum is
temperature vacuum in the confinement phase, based orcomposed exactly as that gas of dyons and antidyons. Nev-
these new calorons, still remains to be developed. Some neertheless, it is remarkable that cooling starting from genuine
perspectives have been pointed out in R&2]. In the Monte Carlo configurations in théeconfinedohase ends in
present paper we investigate metastable configurations whictompletely different low-action configurations as it has been
appear in the process of coolifg3] in the region of a few already claimed in an early related work by Laursen and
times the instanton action. These are excitations which migh&chierholz38].
become the building blocks of such a semiclassical descrip- The paper is organized as follows.
tion. The topological content, which appears at this deep, In Sec. Il we will collect some necessary formulas cover-
almost classical level of cooling, is itself characteristic foring the zero-temperature instanton, the well-known self-dual
the phaseconfining or deconfinedwhere the configurations finite temperature instantotthe “old caloron”), the new
are taken from before they are cooled. Still, we do not claimKvB calorons, monopoles as instanton chains, etc. This will
that the number and size of topological lumps obtained irbe needed for the fit of dyon-dyon pairs becoming visible on
this way immediately characterizes the finite-temperaturghe lattice.
vacuum. Section Il provides all necessary lattice definitions, in
The outcome of cooling with normal periodic boundary particular the boundary conditions and the observables con-
conditions has been compared with that of cooling with spasidered in order to identify KvB and other solutions.
tial boundary conditions of prescribed holonomy, which is In Sec. IV we describe the results of a first part of our
enforced by cold boundary links appropriately chosen. As foisimulations where equilibrium configurations are cooled
the confinement phase, the dependence on the boundary catewn to an action near to the one-instanton action. Although
ditions is weak. A closer check shows that, after cooling withwe cool to this low level of action, we find the topological
periodic boundary conditions, the average Polyakov loogontent(and the dependence on the boundary conditions
over regions of low action and topological density is notvery different, depending on whether the original Monte
restricted to trivial holonomy. In other words, in the confined Carlo ensemble was describing the confinement or decon-
phase, nontrivial holonomy boundary conditions for topo-finement phase.
logical charge lumps are provided by the dynamics itself. In Sec. V we report on a second part of our study, where
They do not need to be enforced. In the confined phase theségher lying action plateaus, appearing in the process of
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cooling with periodic boundary conditions, are identified be identified with the inverse temperatufe 1. Then the
with respect to their dyon content. caloron potentials are given by E) with
Section VI presents the conclusions.

P(x)
Il. CALORONS WITH TRIVIAL AND NONTRIVIAL (x)= ey
HOLONOMY IN CONTINUUM SU(2) i
YANG-MILLS THEORY 2
ar
Throughout this papelSU(2) gauge theory in four- (X)=cosh2mr) —coq2mt) + Tpsink(zwr),

dimensional Euclidean space is considered. We start the de-
scription of caloron solutions with generically nontrivial ho- -
lonomy with the well-known one-instanton solutiphs,39. ¢(x)=cosh2zr) —cod2m7t), ®)

In the singular gauge its gauge potentials are given by
1 1 mp?sinh(27r)
— X(X)=1— b or

A0 = Z72,3,08 B(x),

This solution can be viewed as a chain of instantons aligned

p? along the temporal direction, separated by distahdeut

d(X)=1+ m, mov=1....,4, (D with the same orientation in color space. In the lipiit: it

Ta ’
where 7, is the 't Hooft tensor,r,/2 denote the generators with a BPS monopold31] in Euclidean space, where the

of the SU(2) group,p,Xq are the size of the instanton and : o
the 4D position of its center. For further use we introduce thefourth component, plays the role of the Higgs field in the

following notations: magnetic charge. Therefore, we call it alsdyon (D).

Constructing a caloron with nontrivial holononig9] is

p(X)

can be transformed into a static solution by an appropriate
gauge transformation. This static object can be identified

adjoint representation. The solution has both electric and

H(X)= —— the next step. It can be approximately viewed as an instanton

fp(x) ’ chain with periodicityb, too, where each of the instantons is
rotated with respect to the previous one by an angte4n
P(x) =27 (X—Xo) >+ p?], color spacew being the parameter of holonomy as we will

see below. The rotation axis can be any; for definiteness let

P (X)=272(X—Xg)?, (2)  us take the third one. The wordpproximately viewechean
that when the instantons are well separatpdb&l) the

272p? fields near the instanton centers look approximately as de-

x(X)=1~— gz v scribed above. The caloron field with nontrivial holonomy is
described again by Eq3) but now with[29]

and rewrite the instanton fields in the form

P(X)
1, 1 e d(X)==—,
Au(X)= 577,739,109 (X) + 5 GOORE (77, ~17,,,) $(x)
X(T+i72)d,x(X)]. ©) ¥(X) = — cog 2rt) + cosi 4 mr w) cost{4msw)
The next step is to construct the time-periodic instanton or N (rP+s*+mp?) Aot a)sinh 4
caloron[28]. For this purpose we generalize the functi¢n 2rs sin(4mr w)sinh(47sw)
in Eq. (1), _
+ap?[s~ sinh(47sw)cosi4nr w)
n=w° 2
p —
X)=1+ — +r~sinn(47r w)cosi4msw)], 6
d(X) n;w [(X—o)2+ (—nb)?] h4nrw)cosi4msw) ] (6)
2t zAﬁ(X)= —cos{Zwt)+cosh4wr;)cosr(47r5w)
2 Sin"(_) 2.2 2 4
L. TP b (r*+s°—mp") —
=1+ k(zwr) S(Zwt) , (4) + Tsmr’(4wrw)smr(4w5w),
Ccos T —COo T

o TP N
O — pdmitw —2mite—1
wherer =|x— x| andt=x,—x{. b is the time period of x(x)=e v {e”""'s “sinh(4msw)

the periodic instanton solution. For simplicitg=1 is as- o
sumed in the following. Physically, the periodicibyhas to +r Isinf(47rw)}
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instead of Eq.5). The holonomy parameteis and » are
related to each other a®=1/2—w, 0<w<1/2. r=|x
—¥,| ands=|x—x,| are the 3D distances to the locations of

the two centers of the new caloron solutiomp®/b=d |, the special case=w=1/4 the measure of holonomy is
=|x;—X,| is expressed by the distance between the centergqual to zero and the two constituent dyons acquire equal
From Egs.(6) it can be easily seen that, when—0 orw Mass, i.e. equal action and topological charge. For our later
—0, the caloron with nontrivial holonomy turns into the purposes it is useful to remember that the Polyakov loop has
Harrington-Shepard caloron described by E&s. When the  peaksL (x) = = 1 very close to the center positiors: )21,2 of
separation between the centers becomes ladgerp?/b  the constituent§29].

>b, two well-separated constituents emerge which are static For well-separated dyons, when the functiapgx) and

in time. The “mass” ratio of these dissociated constituents isy(x) are almost time independent, the strongest time depen-

equal tow/w. Since the full solution is self-dual, the ratio is dence comes from the first part of the functigfx). This

the same for the action as for the equal-sign topologicatlependence is represented by the pteasé&' and is nothing
charge carried by the constituents, the latter summing up telse but the homogeneous rotation of the first dyon, which
one unit of topological charge;=1. The separated con- has| (x,)=—1, in color space around the third axis with
stituents form a pair of BPS monopolés dyons with op- angle 2r over the period. The second dyon Wiﬂ(iz)=

posite magnetic cha_rges._ln the following we will call it a +1 is static. Such a relative rotation of two dydfisat form
DD pair, while nondissociated calorons will be denoted as

. L monopole-antimonopole paigives the so-calledaubes
CAL, although all these objects represent limiting cases O\i’ilvinding necessary to produce unit topological charge from a

one and the same solution. The single dyon originally ob- ot . N
tained from the Harrington-Shepard caloron in the infinitemonopole antimonopole paj#0]. One can detect this rota

A X tion in a gauge invariant fashion by looking at the gauge
size [|m|tp —¢ can be recovered from t.he hew solution by invariant field strength correlator defined on each constant-
ser}:jlng thel ”?f‘ss oft_the tsecontc_i IC.O?.St.':uent to zero and Yime slice and watching its evolution over the periodicity
mutaneously 1is postion o spatial Infinry- interval b. The field strength is self-duaE¢=Bg) or anti-

The action density in all three cases described above can }
be expres.l,ed by als);nlwple formula ! v self-dual, E§=—Bg) everywhere in the KvB caloron. The

electric fieIdEE()Zi ,t) at the centers of both dyons-1,2 is
1., proportional to an orthogonal matrijn both the SU(2)
S(X) =~ 57,9,109¢(x). (7)  color and space indicgsThus the threek=1,2,3) compo-
nentsEﬁ(il) of the electric field form vectors in color space
So far, the new caloron solution is in the so-called alge-which represent a local reference frame at the center of the
braic gaugd30]. It can be made periodic by a gauge trans-first dyon. The comparison with the local frame at the center

I 1
L(x)= E'EY'P(X)—>LQOE EterZCOiZﬂ'w). (11

formation which is nonperiodic in timg(x) =e~>™"*"7s, of the other dyonx,, can be made in a gauge invariant
1 1 manner by connecting the centers by tliiexed time
Aﬂer=§;fw73f9y|09 b+ §¢R€[(7Iiy—i;,%y)(71+i72) Schwinger line parallel transporter
~ " a
X(9,+4m 08, ) X1+ 8,4 2Tw T3, €S) S(il,t;iz,t)zpex;<if_xlAﬁ(?,t)% dx;). (12)
X2
where
2 Using this one can form the gauge invariant field strength
Y=g 4mitoy = TP{e—zwitS—1Sinr(4WSw) product
+r - 1sinh47r w)}. (9) REE(D) =tr(Eg(X1,1) S(X1,t; X5, 1)
Now the time component of the caloron potential has be- XE|(X2,1) S (X1, 15Xz, 1)) (13
come nonzero at spatial infinity. We can define tiodonomy
which becomes nontrivial, which is again an orthogonal matrix. This matrix performs a

full rotation with the Euclidean timé running from O tob.
Finally, let us comment on the zero-mode eigenfunctions
of the fermionic massless Dirac operator in the background
of the KvB solutions. They have been studied analytically in
—P,=e?"e% for |x|—o. (100  [41] and[37]. One finds closed solutions depending on the
type of (antjperiodic boundary conditiond8C) imposed on
In terms of w, the normalized trace of the holonomy, the the fermion fields in the imaginary time direction. In case of
Polyakov loop which we shall take as a direntasure of the well-separated dyon pairs, i.e. fai=mp?/b>b, the zero
holonomy at spatial infinity becomes eigenmode densities become very simple expressions,

- b -
P(x)=P ex;< i f A4(x,t)dt>
0
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1 _ which selects the plateaus in a given interval of action. First,
|¢_(X)|2=—Eﬂi[taHWZWFw)/f] for antiperiodic BC,  in Sec. IV, we focus at the lowest action plateaus, Be.
(14) =(0.5--1.5)Sq, whereSmst=87T2/g§ denotes the action
of a continuum instanton. Later, in Sec. V, we shall describe
1 more complex approximate solutions found by stopping at
[t (x)|?=— Eﬁi[tanl’(ZWSw)/S] for periodic BC. higher plateaus.
The smoothed fields will be analyzed according to the
This means that the zero-mode eigenfunctions are localizegPatial distributions of the following observables.
always around one of the constituents of the KvB solution i) Action densitycomputed from the local plaquette values

for antiperiodic BC at that constituent which hagx)= and averaged with respect to the time variable:

—1 atits centeril. Switching to periodic BC for the fer-

mion fields the zero mode localization jumps to the other g(;):i z S(X,1); (16)
constituent monopole of the gauge field. Therefore, the fer- Ny

mionic zero modes provide a convenient way to identify a

monopole-pair structure in the gauge fields. (i) Topological densitgomputed with the standard discreti-

zation and averaged over the time variable:
I1l. DETECTING DYONS AND CALORONS

ON THE LATTICE

- 1
Our first aim was to detect the simplest dyon configura- Qu(X)=— N, 245 39,2
tions in the context of finite temperature lattice simulations.
For this purpose we have consider8d)(2) lattice gauge =4
theory on an asymmetric lattice using the standard Wilson X 24 €uvpotTUx uUx pol |3 (A7)
plaquette action with coupling=4/g3, to\mrpo=xl
R - (iii) Polyakov loopdefined as
S=2 s(X)=2 2 s(Xtu,v), (15) oy X
Xt Xt W<V N
t
S(X,t ) = B(1= 11Uy ,,), Loo=3tl] Usia, 18
U,,,=U, U.,: U - ut
Ky XX v by, T XY where theUy ; 4 represent the links in time direction;

(iv) Abelian magnetic fluxes and monopole chardefined
within the maximally Abelian gaugéMAG). The latter is
found by maximizing the gauge functional

and periodic boundary conditions in all fo(ioroidal) direc-
tions. For simplicity the lattice spacing is setdae=1. The
lattice size will beN3x N, with the spatial extensiomN
=16 or 24 and withT “'=N,=4. ForN,=4 the model is
known to undergo the deconfinement phase transition at the Flgl=>, tr(UY U8t ), (19)
critical coupling 8.=2.299[42]. Throughout this paper we X # a

concentrate on the confinement phase, €. .

We shall generate the quantum gauge field ensemblgith respect to gauge transformationsJ, ,—UZ ,

{Uy .} by simulating the canonical partition function g_sing =g(X)UX,MgT(X+,&). Abelian link anglesd, , are then de-

field configurations will be cooled by iteratively minimizing ined by Abelian projection onto the diagonial1) part of

the actionS. Usually, cooling in one or another form is used the link variablesU,,, € SU(2). According to the DeGrand-
in order to smooth out short-range fluctuations, wiiitg- Toussaint prescriptioi2] a gauge invariant magnetic flux

tially) leaving some long-range physics intact. The cooling®p through an oriented plaquetfe=(x,u») is defined by

method applied here is the standard relaxation method d&Plitting the plaquett® = 6, ,,+ 0, , = Oy, .~ by, INtO

scribed long ago in33]. 0,=0,+2mn,, n,=0,+1,+2 such that O,e(—,
This method, if applied without any further limitation, + 7]. The magnetic charge of an elementary 3-caisthen

easily finds approximate solutions of the lattice field equamcz(llzw)zpeac(ﬁp;

tions as shoulderéplateaus of action in the relaxation his- (v) Eigenvalues and eigenmode densitieé the non-

tory. Under certain circumstances, this defines and preservegermitian standard Wilson-Dirac operator

the total topological charge of a configuration. However, the

short-range structure of the vacuum fields is changed. Still,

the type of classical solutions, which are being selected, de- > D[Ulxrayss ¥sp(Y)=Niho(X) (20

pends on the phase which the quantum enserible,} is y.s.B

meant to describe. We want to investigate smoothed fields at

different stages of cooling, by using a stopping criterionwith
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D[Ulrayss= SxySrsOup tions we have found there are such which can be easily iden-
’ tified asCAL andDD. In order to allow a simple distinction
_ Kz (802 W(1o—7")e(U, L) between the nonstatic caloro@AL and the dissociated but
R Vs xp)ap staticDD pairs we introduce a quantity which represents for
. a Euclidean configuration the mobility of the action density.
+ 6y px(Io+ ¥*)rs(Uy ) apth For brevity, we call itnonstationarity
studied both with time-antiperiodic and time-periodic bound-
ary conditions. For our purposes it will be sufficient to con- S= st ) —s(xt—1 . /S 21
sider this operator which breaks explicitly chiral invariance. ! % ,;V ISOut .2 =, 20 D

To use a chirally improved lattice Dirac operator would be a
next step. We find the. spectrum and the eigenfunctions
with the help of the implicitly restarted Arnoldi method

[43,44 and use the standamkPAcK code package for this tion factor, the total actiorg, are defined in Eq(15). We
aim’. have monitored how frequently objects with givéh are

For production and cooling of the equilibrium gauge ﬁeldfound _at' the lowest action plateaus. The h|s_t(')grams$tof
configurations we shall use two kinds of spatial boundar))oOk similar for both types of boundary conditions. _F,Br
conditions as if35] and with preliminary results presented — 2-2 they have a peak @=0.02-0.04 and a long tail for
in [36]: (i) standard periodic boundary conditio8C) on  largeé:. _
the 4D torus; (i) fixed holonomy boundary conditions e have convinced ourselves that a @<0.17 well
(FHBO): fixed holonomy is realized by cold timelike links SeparatesDD-objects which are static with two well-

The action density per plarﬁ(i,t;,u,v) and the normaliza-

Us.4 0N the spatial boundarg). seQarated mgxim% of the densities of the topological ch.arge
For clarity we stress that the second case is periodic, tod}:(x) and actions(x). For §;>0.17 the objects can be easily
but for the spatial boundary interpreted asCAL which are nonstatic, with an approxi-
matelyO(4) rotationally symmetric action distribution, with
Q={X|x=(1X5,X3),(X1,1X3) 0Or (Xq,X5,1)} a single maximum of},(x) ands(x) in 3D space. BotiDD

] ] ] and CAL are showing a pair of opposite-sign peaks of the
all time-like links U 1.4 are frozen to constant group ele- polyakov loop.

ments. For definiteness we have used embedded pure Abe-
lian link variablesUy . 4=cosé+iossin 6. In the confinement
phase apB= B, we requireL (x)=0=(L) (corresponding to
holonomy parametero=1/4) which is satified by @ For a speciaDD solution found with PBC, we show in
= /2N, . As in[35] we have studied also the deconfinementFigs. 1a@ and Xb) two-dimensional cuts of the topological
case > f3). In this case we fixed the boundary time-like charge densityy(x) (a) and of the Polyakov loop distribu-

links such thatL (x)=(L) for xe Q. In both casegL) de-  tion L(x) (b). TheDD solution was obtained from an equi-
notes the ensemble averag& ;L (x)|/N3) of the volume- librium configuration representing=2.2, i.e. the confine-
averaged Polyakov loop. ment phase. We clearly see the opposite-sign peaks of the
Each kind of boundary conditions will be employed both Polyakov loop variable correlated with the equal-sign
for the Monte Carlo production of configurations and for maxima of the topological charge density. The boundary val-

A. DD pairs

their subsequent cooling. ues of the Polyakov loop are slightly varying because they
are not fixed here to a well-defined value. This is the only
IV. DYONIC LUMPS AND OTHER OBJECTS SEEN d!f_ference ob_ser_ved between the two types of boundary con-

ON THE LATTICE ditions. In principle, for PBC the holonomy could be arbi-

trary. What really happens to the asymptotic holonomy we

In a first part of our investigation we have searched forwill discuss in Sec. V. As a consequence the ratio of the
topologically nontrivial objects with lowest possible action, action carried by the well-separated dyon constituents can
late in the cooling history, in order to find systematic depentake any value.
dences of the selected solutions on the spatial boundary con- For the saméDD solution, Figs. Ic) and 1d) show the
ditions and on the temperature of the original Monte Carloscatter plot of the 70 lowest complex Wilson fermion eigen-
ensemble. Cooling was stopped at somgh) cooling itera-  values(20) for k=0.14, both for time-periodi¢c) and time-
tion step when the following criteria for the acti@®, were  antiperiodic(d) boundary conditions for the fermion fields.

simultaneously  fulfilled: S,<1.5S, |Sh—Sh_4] In both cases we find one isolated low-lying real eigenvalue
<0.01S,, S,—2S,.1+S,_2<0. The last condition means which can be related to a zero-mode of the zero-mass con-
that cooling just passed a point of inflection. tinuum Dirac operator. The correspondifmyojected eigen-

For eachB8< 3. we have scanned the topological contentmode densities)"(x) are drawn below, in Figs.(# and
of O(200) configurations. In this late stage of cooling we 1(f). They show a localization behavior as analytically pro-
find approximate classical solutions which are more or lesposed in Eqs(14). For the time-antiperiodic BC the eigen-
static in time besides nonstatic ones. mode is localized at the dyon exhibiting the negative peak of
For both kinds of boundary conditions, among the solu-the Polyakov loop related to Taubes windir&¥].
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tained atB=2.2 from cooling with periodic boundary con-
ditions. The configuration possesses a large value of the
nonstationaritys; . Again we plot 2D cuts for the topological
charge density, for the Polyakov loop and the fermionic ei-
genvalues together with the eigenmode density for the dis-
tinct real eigenvalue. The full topological char@g is unity.

The expected pair of narrow opposite-sign peaks of the
Polyakov loop is nicely visible.

The fermionic zero-modes for time-periodic and time-
antiperiodic BC for this configuration are only slightly
shifted relative to each other. A reasonable fit with the ana-
0 . 0 . Iytic solution can be obtained showing that this caloron is
nothing but a limiting case of the genefixD solutions. At
voatn s e ey that point we may conclude that cooling, even with nonfixed
-0.2 0.2 holonomy, yields almost-classical solutions which show all

01 009 008 -0.07 -0.06 « 008 007 006 -0.05 characteristics of the KvB calorons. The typic@AL con-
figurations show, after putting them into MAG, a closed Abe-
lian monopole loop circulating around the maximum of the
action density in the 4D-space.

.
POttt 0y

C. DD pairs

As previously observed for the case with FHB&5], we
have found also other field configurations with an action on
the instanton levelS=S;,i;, which are very stable against
cooling which motivates us to interpret them also as approxi-

FIG. 1. Various portraits of a self-du@D pair obtained by  mate solutions of the lattice equations of motion. With very
cooling under periodic gluonic boundary conditions. The sub-panel%w non-stationarityd, = 0.004+ 0.002, they consist of two
show: appropriate 2D cuts of the topological charge deriaitand |, 15 of action with opposite-sign topological charge densi-

of the Polyakov loofgb), the plot of lowest fermionic eigenvalues . . . .
(c,d) and the 2D cut of the real-mode fermion densitied), for the ties. We call them dyon—antu;iyon pan‘_@,D. Each of their
cases of time-periodi¢c,® and time-antiperiodidd,f) fermionic ~ [UMPS turns out to be approximatefgnti-)self-dual. The to-
boundary conditions, respectively3€2.2 and latiice size #6 (@l topological charge of the entire configuration is always
X 4). zero. Therefore, each of the lumps carries half-integer topo-
logical charge. The Polyakov loop exhibits two peaks, in this

For the given solution created on the lattice we have cartase of equal sign.

ried out a fit with the analytic formulf29] to reproduce the Also for DD pairs MAG fixing offers an Abelian mono-
action density(7). This has provided the parameter valuespole interpretation. After Abelian projection a static Abelian
>21=(8 5,11) )22:(5 8,5) andw=0.202. Figure 2 shows monopole-antimonopole pair can be found at the positions of

one-dimensional projections of the same gauge field configut—heStOpofg'Cil crtlsrge. cente:s. f the Wil Di

ration together with the analytical results produced with the ear(;:. dlng tofr de e'?ef“’a uels 0 bet |sont—_ Irac opera—f
given fit parameters for the topological density, the PonakoJOr We did not find real €igenvalues but Sometimes pairs o
loop and the fermionic mode density with time—antiperiodiccomplex conjugated eigenvalues with very small imaginary

and -periodic boundary conditions according to the expresparts' Th.is feature is very Si_”?"ar to that of Qilut_e superposi-
sions (14). The last two curves are predictions, rather thant'ons of instantons iwth anti-instantons. This gives us good
fits. There is an impressive agreement with the numerical€ason to interprédD pairs as superpositions of single BPS
shape of the fermionic zero-mode density. solutions with half-integer topological charge. To the best of
Gauge fixing to MAG we can search for the Abelian Our knowledge, analytic solutions of this kind_have not been
monopole content of the field configurations under inspecfeported in the literature. An example forxD pair is re-
tion. We are interested in the positions of the world lines ofproduced in Fig. 4. We did not find any real or near-to-real
monopole-antimonopole pairs. For stafdD solutions we modes for the time-antiperiodic boundary conditions.
always find a pair of staticantimonopoles with world lines
coinciding with the centers of the dyons. All these features D. The composition of the lowest action plateaus
have been observed forD-solutions irrespective of the spa-
tial boundary conditions imposed in the process of cooling.

Finally, by cooling with both kinds of spatial boundary
conditions we have found objects becoming very stable at
even lower action, for lattice size 184, S=S, /2 and
=S, s/4. Their (color-) electric contribution to the action is

In Fig. 3 we show a typicaCAL solution, with an ap- very small compared with the magnetic contribution. More-
proximately 4D rotationally invariant action distribution, ob- over, they are perfectly static with,;=0.003+0.002. Em-

B. CAL configurations
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FIG. 2. TheDD lattice configuration of Fig. 1dashed lines fitted by the KvB solution(solid lineg according to the action density,
shown in three spatial viewd D projections. In (al),(a2),(a3 the topological charge density is summed over the two unspecified spatial
coordinates. In(b1),(b2),(b3) the Polyakov loop is averaged over the two unspecified spatial coordinates. In the time-antiperiodic case
(c1,c2,c3 or the time-periodic cas@l1,d2,d3, respectively, the fermion density is summed over the two unspecified spatial coordinates.

ploying MAG we have convinced ourselves that they arecan conclude that cooling applied to configurations in the
purely Abelian. In the confinement phase they are occurringonfinement phase produces all objects with relative prob-
quite rarely directly in the cooling process. They are moreabilities which are approximately independent of the type of
common to appear after monopole-antimonopole pairs obboundary conditions imposed.

served atS~ S, annihilate in the final stage of the relax-  For the deconfinement phase we have seen that the strong

ation. Therefore, we shall not consider them in detail heregnhancement ddD configurations earlier found for cooling
But they seem to play an important role in the deconfinemenjyith FHBC [35] (which would be compatible with the sup-
phase[36,38. Since they are purely magnetic solutions— pression of the topological susceptibilitis not reproduced
pure magnetic fluxes or 't Hooft—Polyakov-like ynder cooling with standard PBC In the standard case, the
monopoles—we shall abbreviate thevh in the following  probability to obtain any topologically nontrivial object
table. drops sharply with3>pB.. Cooling down to the one-

In a forthcoming paper we will investigate the deconfinedinstanton action plateaus provides only trivial vacuum or
phase with respect to the dominating nonperturbatimeg-  M-configurations. Because this latter observation was based
netig excitations. In this context we will characterize more g g physically small 3-volume (364 for B=2.4), finite-
the form of these semiclassical solutions. size effects might have been too strong to preclude a final

In Table | the relative frequencies to find different types of conclusion. The structure of cooled deconfined configura-
classical configurationddD, CAL, DD andM) at and be- tions will be addressed in a further investigation.
low the one-instanton action plateaus are shown. We com- The independence of the boundary conditions, however,
pare here PBC with FHBC For eagh< B, we have inves- in the confinement phase has to be taken seriously: the en-
tigatedO(200) Monte Carlo equilibrium configurations. We forcement of ar. =0 boundary condition seems to be not far
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FIG. 3. Various portraits of a self-du@AL configuration ob-

tained by cooling under pgriodic gluonic boundary gonditions. The FIG. 4. Various portraits of a mixed-dualilyﬁ pair obtained
s_ub-panels show: appropriate 2D cuts of the topological Chgrgg derﬂ)’y cooling under periodic gluonic boundary conditions. The sub-
S'_ty (a) and of the Polyakov loogh), the plot of IOWGSt_ fermlonl_c_ panels show: appropriate 2D cuts of the topological charge density
eigenvaluegc,d) and the 2D cut of the real-mode fermion densities (a) and of the Polyakov loogh), the plot of lowest fermionic ei-
(e,f),.for. the cases of timejperiod(c,e) anq time-antiperioditﬁd,.f) genvalues(c,d for the cases of time-periodi¢c) and time-
fermionic boundary conditions, respectively8€2.2 and lattice antiperiodic (d) fermionic boundary conditions, respectivelys (

size 16x4). =2.2 and lattice size £&4). A 2D cut of the fermionic mode
from the situation with standard periodic boundary condi-density related to the two distineimostreal eigenvalues ifc) is

tions in the MC equilibrium. Some details will be discussedShown in(e).

in the next section. o ) ) ) )
der criteria which apply to different, subsequent action win-

V. DILUTE GAS CONFIGURATIONS OF DYONS dows. We have been monitoring the landscape of topological
AND ANTIDYONS AT HIGHER ACTION PLATEAUS density, of the Polyakov line operator as well as the localiza-
Within the confinement phase, foxOT<T_ and for both TABLE I. Relative frequencies of the occurrence of different

kinds of spatial boundary conditions, we have also studied iinds of (approximatg solutions, for different values g8 and for
detail semiclassical configurations at higher action plateausoth kinds of boundary conditions of the gauge fiéfHBC and
They represent snapshots of earlier stages of the cooling histandard PBE The lattice size is 16< 4.

tories because the stopping criteria were focused on mul

tiples of the instanton action. This study should allow us toType of Boundary

observe superpositions of classical solutions studied in Segolution conditon B=2.20 B=2.25 pB=2.30=4
IV promising to be relevant for a semiclassical approxima-

tion of the nonzerdr partition function. So far in the litera- DD FHBC 0.46:0.05 0.52£0.05 0.45-0.05
ture, the semiclassical approach to QCD at nonzero tempera- PBC  0.43:0.05 0.44-0.05 0.23-0.03
ture is entirely based on Harrington-Shepard calororCAL FHBC 0.19-0.03 0.1720.03 0.15-0.03
solutions with trivial holonomy{28,27. Our main concern PBC  0.24-0.03 0.26:0.03 0.26-0.03
here is, whether superpositions of solutions with nontrivialpp FPBC 0.28-0.04 0.26-0.04 0.3%0.04
holonomy naturally occur under cooling. PBC  0.18-0.03 0.16-0.03 0.10-0.02

FPBC 0.0*0.01 0.0x0.01 0.03:0.01

PBC 0.04:0.02 0.03:0.01 0.16:0.02

trivial vacuum  FPBC  0.060.02 0.04-0.02 0.06-0.02
Therefore, we expose equilibrium Monte Carlo lattice PBC  0.1¥-0.02 0.10.02 0.31-0.04
gauge field configurations to cooling, this time stopping un

A. Landscapes of topological density and Polyakov loop,
fermion zero modes and Abelian monopoles as dyon finder
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tion of the fermionic zero-modes in the semiclassical candi- 5
date configurations. {
Searching for more complex approximate classical solu- 4
tions we have modified our previous stopping criterion, trig- L
gering now on m_%)3n3t<sn< (m+ %)Sinsta m 37 L
=23,...,and5,—2 S, 1+S,_,<0. In particular we in- ol
spected the firsthighesj visible plateaus which occurred at j
various m-values, typically in the rangen=8-20 for g8 1l
=2.2 on a lattice of the size §&4. Then, we looked at the
series of subsequent action plateaus. In terms of the objects 0 X .
classified in Sec. IV, we have scanned the resulting platecau (@) 0 5000 10000 15000
configurations.
For more definiteness concerning the moment of taking 0.3
shapshots of the configurations undergoing cooling along a 0.25
plateau, we have additionally introduced a meagufer the
mean violation of the classical lattice field equations per link 0.2
(see[33)), 0.15 |
1 — — |
A= ——— 3 {1 (Uy,,= Uy ) (U= Uy ) T2 o1
8NZN; xu 0.05 |
(22) ) .
0 L= :
where (b) 0 5000 10000 15000
_ 0.0756
Ux,M:CE [Ux,va+;,,u,UI+;w
v 0.0755
+U] 5 UesUsinoin] 00754
is the local linkx, u being the solution of the lattice equation
of motion, with all degrees of freedom coupled to it being 0.0753 |
fixed. The factorc is just a normalization of the staple sum 0.0752 |
such thatU, , e SU(2) [45]. ’ k L
On the first visible plateau we find a gas of localized 0.0751 | . : !
lumps carrying topological charge, where an identification in © 0 5000 10000 15000

terms of dyonsD and/or antidyon55 is still difficult.
Independent of the kind of boundary conditions em- FIG. 5. Part of the cooling history for a gauge field configura-
ployed, at somewhat lower action plateaus witk< 10, we  tion taken from the Monte Carlo sample generate@at2.2 on a

. . - 3 : i - —
are able to clearly recognize dyoBsand antidyond car- 24 X4 lattice, with FHBC ofL;.o=0. The sub-panels showa)
rying noninteger topological charges. During cooling morefull action S/Si,s, (b) nonstationaritys; and(c) mean violationA
and more of these objects disappear. However, at all plateal9§r link of the lattice field equations, vs the number of cooling

. eps. The vertical dotted lines indicate the passagés thirough
we observe an even number of peaks of the spatial Polyakqﬁgcal minima having occurred at 80@), 1650 (B) and 7000(C)

loop landscapéL (x)|. For illustration see Figs. 5-9, which cqojing steps for which the configurations will be portrayed in Figs.
show one and the same gauge field configuration at differer§ 7 g and 9.

stages of the cooling process. In this case FHBC have been
used. dyons and 2 antidyons. The topological charge sector has
In Fig. 5 we show the actiofin units of the instanton or been independently determined to@g=2. A DD pair de-
caloron actiop, the non-stationarityy;, and the mean viola- cays or annihilates from A to B such that we have 5 dyons
tion A of the lattice field equations per link. At three subse-and 1 antidyon at the next stage. The topological charge did
quent, already lower action platea@i@beled bym) we indi-  not change. Finally, stage C exhibits a superposition of 4
cate the iteration steps flor m=4), B (for m=3) and C dyons, again withQ;=2. The latter configuration is very
(for m=2), respectively, whered passes through local stable. While it stays at the same action over thousands of
minima. The corresponding semiclassical field configurationgooling sweeps, the nonstationariy gradually rises. A
are then displayed in Fig. 6 by means of the 2D-projectectloser look then shows that the scale size of one of the dyon
(by summing with respect to the third coordinatpatial pairs shrinks, transforming this pair into a small undissoci-
topological charge density and the 2D projected Polyakowated and nonstatic caloron, which finally disappears after
loop distribution. More or less well one can recognize inhaving turned into a tiny dislocation strongly violating the
these figures that at stage A we have a superposition of équations of motioficompare with Fig. b The average vio-
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FIG. 6. Configurations on the 344 lattice (from equilibrium
at 8=2.2 with FHBQ, as indicated in Fig. 5 after 80@,A ), 1650 (A3) (Ad)
(B,B’) and 7000(C,C’) cooling steps(A,B,C) show 2D projections
of the topological charge density(x) and(A’,B’,C" ) of the Polya- FIG. 7. The lattice field configuration depicted in Fig(8A’)
kov loop L(x), respectively. Cooling has been employed with for 800 cooling steps=HBC). Here(A) plots the eigenvalues of the
FHBC, L;_o=0. Wilson-Dirac operator in the complex plane fee=0.140 and the
case of time-periodic fermionic BGAL, . . . ,A4) show 2D projec-

. ] ] . ) ) tions of the fermionic mode densities related to the four distinct real
lation of the equations of motion per link peaks immediatelyeigenvalues.

before the configuration drops to the next plateau.

This example shows that we have superpositions of non- B. The role of the boundary conditions: Are nontrivial
integer Q; lumps, which can be interpreted as described in boundary conditions “natural”?
the previous section. To make sure that this is really the case
we provide also the elgenvglue scatter plots fqr the W'lsonéingle caloron solutions with nontrivial holonomy we have to
Dirac operator for stage AFig. 7), for stage B(Fig. 8) and i, ot whethexapproximately those asymptotic holonomy
for stage Q(Fig. 9). Figure 7 shows four real fermion modes 1), ndary conditions as typical for the dyor(@ntidyonio
(under time-periodic boundary conditionshich could sug-  semiclassical background excitations are actually present
gest an interpretation of configuration A as a superposition ofjuring the cooling process when periodic boundary condi-
3 DD pairs and a singl®D pair. However, the inspection of tions (no particular holonomy boundary conditiorere ap-
the time-antiperiodic BC case provides only two real modeglied to the full volume. Then it would be easier to accept
which supports a dyonic content consisting oD pairs  that similar (albeit fluctuating boundary conditions might

plus 2DD pairs, an interpretation which naively is possible &lS0 be realized in the semiclassical vacuum.
as well. In the stage C, also for time-periodic boundary con- T0 answer this question weefine the asymptotic ho-
ditions, we see clearly two real modes sitting on top of twolonomy L, of a cooled configuration as the average_¢k)

dyon lumps. We have checked that the modes jump to thgver all pointsx in 3D space for which the 3D projected
remaining dyon lumps when changing the fermionic bound=qion gensity satisfies(x)<.0001, i.e. it takes minimal val-

ary condition to time-antiperiodic. ues which are typically seen in deep valleys around the to-
We have studied also the Abelidantimonopole struc- pological Iumpsyp y P y

ture after fixing to the MAG and Abelian projection. We see’” |, Fig. 11 we show histograms &f, obtained at different

a strong correlation of the peaks of the Polyakov loop W'thplateaus during the cooling histories of an ensemble of
the positions of théantimonopoles. This can be seen in Fig. =0(200) configurations produced @=2.2 on a 18x4

10. The pair structure in terms of Abelian monopoles, OCCUNM4ttice with standard PBC We see a clear. peak at 0 for

ring on all action plateaus and the annihilation of S‘mglehigher action plateaus. The distribution is more narrow than

(mor)gpole-angrg_?noplo]gpalrlsf dutrrl]ngt fu”lhef r:alaxattlor:, the pure Haar measure would tell us. However, approaching
provides an additional signai for the topological conten as|ower-lying plateaus, the real distribution becomes flat.

superpositions of nontrivial holonom@AL, DD (DD) or Closing the discussion of the local boundary conditions,
DD pairs. let us finally concentrate on those configurations which be-

In order to understand this from the point of view of
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FIG. 10. HistogramP(L) of the values of the Polyakov loop
L(x) taken atx where time-like Abeliarfantimonopoles are found.
The data represent cooling plateausnat 4 obtained at3=2.2
with lattice size 18x 4. O(2400 nonvanishing monopole charges
were collected.

sured at the same positiors We studiedconditional distri-
butions A L|s] of the Polyakov loop valuek(x) at spatial

points where the spatial action densif{x) equalss. The
distributions are normalized for each bin @f The distribu-
tions are shown as surface plots in Fig. 12 for different pla-
teaus. They show that with higher action density the corre-
sponding local Polyakov loop values tend to be closer to the
the Wilson-Dirac operator in the complex plane fo+0.140 and pe{?\k vaIgesL: +1. The distributions do not depgnd on
the case of time-periodic fermionic BCB1,B2) show 2D projec- which action plateau they were collected. We have identified
tions of the fermionic mode densities related to the two distinctin Sec. IV KvB solutions anddD configurations at the one-
almostreal eigenvalues, where&B3,B4) present the densities re- instanton action plateau, and we have strong indications that
lated to the two real eigenvalues. the same objects occur on the higher action plateaus, too, i.e.
in superpositions of topologically nontrivial lumps of action.
long to the bins of- 1/6<L..< +1/6, i.e. those which real- This argument is also supported by a comparison with the
ize L.,~(L) in the confined phase. For these configurationssame kind of conditional distribution obtained from the ana-
we turn our attention to the local correlation between thdytic KvB solution with random parameter distribution which

Polyakov IoopL(i) and the action density value@?) mea- We have discretized on the lattice. The resulting distribution
P[L|s] is shown in Fig. 13a and compared with the dis-

tribution for calorons with trivial holonomyb).

FIG. 8. The lattice field configuration depicted in Fig(B,B’)
for 1650 cooling step$FHBC). Here (B) plots the eigenvalues of

0.15

0.1
005 C. The Taubes rotation in many-dyon configurations

Finally, it is interesting to analyze the relative orientation
of the dyons in color space. In Sec. Il we have described how
the Taubes winding in ®D caloron could be detected in a
gauge independent way. The analysis is also here, for real
cooled configurations, simplified by the observation that at
the center of a dyon both electrie® and magneti®? field
strengthdwhich satisfy(anti-) self-duality E?= =B form
orthogonal matrices in coloa) and spacéi) indices. Thus,
it suffices to consider three € 1,2,3) vectors in color space

E?()Z) forming a local reference frame at the center of a dyon
with which any other local reference frame can be compared.
The comparison can be made in a gauge invariant manner by
connecting the centers at which the field strengths are mea-
FIG. 9. The lattice field configuration depicted in Fig(®,C’) sured by a parallel transporter, the SChWInger. line. .

for 7000 cooling step$FHBC). Here (C) plots the eigenvalues of The exploration of a few semiclassical lattice C_onflgura-
the Wilson-Dirac operator in the complex plane fo=0.140 and  tions containing superpositions of sevef@l and D has

the case of time-periodic fermionic BOZ1, C2 show 2D projec-  shown the following common features. All dyons with nega-
tions of the fermionic mode densities related to the two real eigentive peak value of the Polyakov loop have more or less ran-
values. dom color orientation relative to each other, but this relative

-0.05
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FIG. 11. HistogranP(L..) of the values of the Polyakov loop at “infinity(as explained in the texseen on the first plateda) and at
plateaus withm=4 (b), m=3 (c), m=2 (d), m=1 (e). For comparison the distribution expected from the pure Haar me&&ygL)
~y1-L* is shown with the same normalizatidgdashed linegs The equilibrium ensemble was generatedBat2.2, the lattice size is
16°x 4, cooling was performed using periodic BC(200) configurations were investigated.

orientation is static along the time axis. For dyons with ag (x t)=Eg(x,)(7%2) which appear parallel transported to
positive peak, the value of the Polyakov loop remains thgpe positon of the first object in the form
same. Also their orientation relative to each other seems tQ,,> .- - I

be random but static. But the relative orientation between th(%(xl’t’?(” DEOG, DS (Xl’t’?(” 0 W_'th _resptict to the
L=+1 and theL=—1 dyons is changing along the Euclid- first object—represented by its electric fiellg(x,). Then
ean time and the change is nothing but a homogeneous rotH‘-e evolution in time of the relative orientation can be

tion in color space with the angle periodr2 In the analytic ~ investigated. While the matrices Ry ()

solution representing just two dyoiier two antidyons this =tr(Ei(>?1,t)SEk(iz,t)S*), and Rilk“(t) turned out to be
rotation is also present. It has been discussed and related ¢onstant in time, the matriR;(t) performed a color rotation
Taubes winding in Sec. Il. with a constant angle increment/2 from one time slice

To illustrate this observation let us consider a configuray; the next time slice about the color axis

tion obtained on the lattice of size 264 with FHBC after  _(_0.919,0.278,0.275). The orientation of this axis seems
400 cooling steps. The configuration contains thie@nd 15 pe random, but the rotation angle is well-defined. Ror
oneD as shown in Table Il. We have taken the fidsas the =4 it corresponds to a full color rotation over the full Eu-
reference point with respect to which the relative color ori-clidean time period. Our general observation illustrated by
entations of the other dyons and the antidyon were detetthis example of a moderately complicated superposition
mined. We have calculated the matriges Eq.(13)] RiX(t),  shows that also these more complicated objects exhibit a
R'¥t) andR(t). They show the relative orientations of the strong correlation in the color orientation analogous to that
objects n=2,3,4—represented by their electric fields present in a singl®D KvB pair. A semiclassical approxi-
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FIG. 12. Conditional distributionB[L|s] relating local values 0[()2) with the spatial action densit‘y(i) for cooled configurations at
plateaus with Zm=5 (a), m=4 (b), m=3 (c) andm=2 (d). The equilibrium ensemble was generategBat2.2, the lattice size is £6
X4, cooling was performed using PBC.

mation of the path integral would have to take into accounwith positive and negative noninteger topological charges.
this kind of color correlation. The topological lumps appear also as peaks of the Polyakov

loop modulus|L(x)|, with calorons being a limiting case
with a close pair oL(x)==* 1. Investigating also the local-

We have generateﬂU(Z) lattice gauge fields at nonzero ization behavior of the real eigenvalue modes of ¢hen'
temperature in the confinement phase. We have cooled thefermitian Wilson-Dirac operator we could present convinc-
in order to analyze their topological content. Fixed holonomying evidence that for calorons and for dyon-dyon pairs an
spatial boundary conditions have been used as well as staifiterpretation in terms of KvB solutions is natural. Chosing
dard periodic boundary conditions. The results for these twdéime-periodic and time-antiperiodic boundary conditions for
kinds of boundary conditions semiquantitatively agree withthe fermions focuses oh(x)=—1 or L(x)=1 dyons, re-
each other. This is specific for ensembles describing the corspectively.
finement phase. On higher action plateaus we have found that the dynam-

Independently of the boundary conditions we have foundcs generically leads to nontrivial holonomy outside the
superpositions of calorons, dyons and antidyons, the lattdumps of action and topological charge. The multidyon-

VI. CONCLUSIONS

@ 0.002 (b)

FIG. 13. Conditional distribution®[L|s] as in Fig. 12, obtained for random KvB solutior®) or CAL) (a) and for calorons with
trivial holonomy (b), for comparison.
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TABLE II. Configuration of 3D and 1D, obtained after 400 dependent topological lumps. To the best of our knowledge,
cooling steps with FHBC from an equilibrium configuration pro- such superpositions have not yet been constructed analyti-

duced at3=2.2 on a 18x 4 lattice. cally.

It is already clear that the development of a semiclassical
Type 3D position Polyakov loop approach based on solutions with nontrivial holonomy is
b - 1 much more complicated than the instani{@aloror) gas or

j‘l_(5'3’2) liquid, and it might turn out not to lead to a practicable

D X,=(12,6,3) -1 model.
D X3=(13,14,5) +1 Nevertheless, facing the nontrivial structures found in this
D ,=(5,7,13) -1 paper might contribute to a better understanding of the

mechanism driving the deconfinement transition. Whether a
certain working picture of a dilute gas of these configurations

can be developed and whether it will improve our under-

antidyon structure can be finally .res'olved by a Combin"’ltionstanding of quark confinement itself remains an open ques-
of two tools: localization of fermionic real modes and thetion to which we hope to come back in the near future.

relative color-orientation of the color-electric field strength.
Our results are still restricted to small volume and quite
large bare coupling. Before drawing final conclusions about
the semiclassical structure of Yang-Mills theoriesTat T
we should go deeper into the continuum limit of the lattice We are grateful to P. van Baal and T. Kovacs for discus-
approximation. Nevertheless, our observations indicate that sions and useful comments. One of (8S) acknowledges
semiclassical treatment of the path integral at nonzero tensomputational assistance by F. Hofheinz. E.-M.I. gratefully
perature close to the deconfinement phase transition shouppreciates the support by the Ministry of Education, Culture
be built on superpositions of calorons, dyons and antidyonsgnd Science of JapatMonbu-Kagaku-shpand thanks H.
with the holonomy as a free parameter. Toki for the hospitality at RCNP. This work was partly sup-
We have seen that such superpositions would imply gorted by RFBR grants 02-02-17308 and 01-02-17456, by
strong correlation in the relative color orientatiéand its  the INTAS grant 00-00111 and the CRDF award RP1-2364-
Euclidean time dependencketween pairs of seemingly in- MO-02.
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