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Hamiltonian lattice QCD at finite density: Equation of state in the strong coupling limit
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and Departamento de Fı´sica Teo`rica, Universitat de Vale`ncia, E–46100 Burjassot, Vale`ncia, Spain
~Received 18 January 2001; revised manuscript received 3 June 2002; published 1 October 2002!

The equation of state of Hamiltonian lattice QCD at finite density is examined in the strong coupling limit
by constructing a solution to the equation of motion corresponding to an effective Hamiltonian describing the
ground state of the many body system. This solution exactly diagonalizes the Hamiltonian to second order in
field operators for all densities and is used to evaluate the vacuum energy density from which we obtain the
equation of state. We find that up to and beyond the chiral symmetry restoration density the pressure of the
quark Fermi sea can be negative indicating its mechanical instability. Our result is in qualitative agreement
with continuum models and should be verifiable by future lattice simulations of strongly coupled QCD at finite
density.
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I. INTRODUCTION

Lattice gauge theory is currently the only known meth
of solving quantum chromodynamics~QCD! from first prin-
ciples. It has developed sufficiently to be able to calculat
broad range of low and intermediate energy hadronic obs
ables from ground state hadron masses to pion-nucleon
tering lengths. In addition, lattice studies of QCD at fin
temperature (T), especially its spectacular success in de
onstrating the deconfinement phase transition, have bee
valuable and continue to play an important role in the sea
for the quark-gluon plasma.

However, as is well known, one of the outstanding pro
lems in lattice gauge theory is the consistent implimentat
of chemical potential in numerical simulations@1#. Progress
in lattice QCD calculations at finite chemical potential (m)
with dynamical quarks has been hindered by the presenc
the complex fermion determinant which renders stand
Monte Carlo techniques useless. In fact, currently there
only one numerical method of simulating finite density QC
with three colors at zero temperature. This method is ba
on the monomer-dimer-polymer algorithm developed
Karsch and Mu¨tter @2#. However its applicability is limited to
the strong coupling limit, and furthermore a recent study@3#
indicates that this algorithm might not be reliable for stud
ing the chiral phase transition at finite density. Therefo
even a qualitative description of finite density lattice QCD
welcome.

One method of studying finite density QCD on the latti
is to invoke the strong coupling approximation where a
lytical methods are applicable. Although far from the real
tic continuum limit, the strong coupling approximation h
played an important role in the development of QCD latt
gauge theory from its very inception. In the renowned pa
by Wilson @4# this approximation was invoked to demo
strate quark confinement on the Euclidean space-time lat
Soon thereafter Kogut and Susskind@5# formulated the
Hamiltonian lattice gauge theory and concluded that in
strong coupling limit the quark dynamics is best described
a collection of non-Abelian electric flux tubes with quar
attached at their ends. This was followed by the work
0556-2821/2002/66~7!/074501~11!/$20.00 66 0745
a
v-
at-

-
in-
h

-
n

of
d
is

ed
y

-
e

-
-

r

e.

e
y

f

Baluni and Willemsen who used a variant of the Kogu
Susskind formalism to demonstrate quantitatively that
namical chiral symmetry breaking indeed takes places in
tice QCD at strong coupling@6#. Finally, calculations by
Kogut, Pearson, and Shigemitsu@7# and by Creutz@8# sug-
gesting the absence of a phase transition between the s
and weak coupling regimes of QCD motivated numero
studies using the strong coupling approximation.

Strong coupling QCD at finiteT and/orm has previously
been studied analytically both in the Euclidean@9–11# and in
the Hamiltonian@12–15# formulations. One of the main ob
jectives of these studies was to investigate the nature of
ral phase transition at finite temperature and density. In e
study this was accomplished by constructing some effec
action or Hamiltonian for strongly coupled lattice QCD u
ing Kogut-Susskind fermions. These effective descriptio
involve the introduction of composite meson and bary
fields which are treated in the mean field approximatio1

The consensus is that at zero or low temperatures str
coupling QCD undergoes a first order chiral phase transi
from the broken symmetry phase below a critical chemi
potentialmC to a chirally symmetric phase abovemC. The
only exception is the work by Le Yaouancet al. @14# which
does not involve effective composite fields but is equival
to the mean field approximation. In this case the chiral ph
transition was found to be of second order.

In this paper we present the equation of state of Ham
tonian lattice QCD at finite density in the strong couplin
limit using both Kogut-Susskind and Wilson fermions. As
previous studies we begin with an effective theory by usin
Hamiltonian describing the ground state of strongly coup
QCD. However, our approach differs from earlier works
that we do not introduce composite fields but explictly co
struct a solution to the field equations of motion correspo
ing to the effective Hamiltonian. This solution exactly diag
nalizes the Hamiltonian to second order in field operators
all densities and is used to calculate the vacuum energy

1The Monomer-Dimer-Polymer algorithm@2# also uses composite
meson and baryons fields.
©2002 The American Physical Society01-1
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sity from which we obtain the equation of state. We find th
up to and beyond the chiral symmetry restoration density
quark Fermi sea can have negative pressure indicating
mechanical instability. Our result is in qualitative agreem
with those obtained using continuum effective QCD mod
@16,17# and should be verifiable by future lattice simul
tionns of strongly coupled QCD at finite density.

Our approach admits to a systematic extension to fi
temperature and to the description of bound states. In f
we first introduce temperature and chemical potential sim
taneously into our formalism and then take the limit of va
ishing temperature to examine the consequences. Descri
of bound states is accomplished by interpreting our solu
within the context of theN-quantum approach~NQA! to
quantum field theory@18,19# which we shall discuss in the
concluding section. In the same section we propose how
NQA may be combined with the present approach to st
the nature of the deconfinement phase transition.

In Sec. II we introduce our effective Hamiltonian for th
ground state of strong coupling QCD using Wilson fermio
and discuss the condition under which it can be extende
finite T andm. Our ansatz for the lattice quark field at fini
T andm is presented in Sec. III. The equation of motion
finite m is then derived in Sec. IV and used to diagonalize
effective Hamiltonian to second order in field operators a
to evaluate the vacuum energy density. In the same sec
we determine the unknown quantities in our ansatz by de
ing coupled equations for the dynamical quark mass and
total chemical potential and solving them self-consisten
Having constructed a solution for the quark field we pres
in Sec. V the equation of state of Hamiltonian lattice QCD
finite density in the strong coupling approximation. We su
marize our results in Sec. VI and discuss how our appro
may be extended to incorporate temperature and to des
the deconfinement phase transition. A review of the prop
ties of free lattice Wilson fermions using the Hamiltonia
formulation is given in the Appendix.

II. THE EFFECTIVE HAMILTONIAN

We begin by introducing Smit’s effective Hamiltonia
@20# describing the ground state of strongly coupled QC
This state is the one in which no links are excited by
electric flux. It is also infinitely degenerate since vario
color singlet states may be created at each lattice site wit
increasing the ground state energy. This degeneracy is l
by the propagation of quarks on the lattice. The simplest t
of such a propagation involves a quark exciting a flux li
and an antiquark deexciting the same link and correspond
the propagation of a meson. Smit obtained an effec
Hamiltonian describing this propagation using second or
perturbation theory involving only the quark fieldC with a
nearest neighbor interaction. The Hamiltonian is effect
because it only acts on the space of states with no exc
links. Nevertheless, it serves our purpose since the m
quantity of interest in this work is the vacuum energy dens
which is obtained by diagonalizing Smit’s Hamiltonian.

In the Hamiltonian formulation of lattice field theory@5#
only the spatial coordinates are discreticized while the te
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poral coordinate remain continuous. We adopt the notatio
Smit @20# where the discrete sums over the spatial and m
mentum coordinates are given by

(
xW

5a3(
mW

~1!

and

(
pW

5
1

V (
nW

~2!

with xW5amW 5a(m1,m2,m3) andpW 5(p/La)nW 5(p/La)(n1,
n2,n3). Herea is the lattice spacing andL defines the num-
ber of unit lattice cells withml ,nl50,61,62, . . . ,6L.
With this notation the volumeV is given by V5(2La)3.
Henceforth we shall work in lattice units wherea51 so that
2p<pl<1p, and use Wilson fermions.

The effective Hamiltonian derived by Smit@20# using the
temporal gauge is

Heff5M0(
xW

~Caa
† !r~xW !~g0!rn~Caa!n~xW !

2
K

2NC
(

xW
(

l
^ @~Caa

† !r~xW !~S l !rn~Cba!n~xW1âl !

3~Cbb
† !g~xW1âl !~S l !gd

† ~Cab!d~xW !1~Cbb
† !g

3~xW1âl !~S l !gd
† ~Cab!d~xW !~Caa

† !r~xW !~S l !rn

3~Cba!n~xW1âl !#, ~3!

whereS l[2 i (g0g l2 ir g0) andâl is a unit vector along the
positive l axis. We denote color, flavor, and Dirac indices
(ab), (ab), and (rngd), respectively. Summation conven
tion for repeated indices is implied. The three parameter
this Hamiltonian are the Wilson parameterr which takes on
values between 0 and 1, the current quark massM0 and the
effective coupling constantK52NC/(NC

221) 1/g2 whereg
is the QCD coupling constant.NC is the number of colors.
When r 50 the quark fields become Kogut-Susskind ferm
ons.

Smit’s Hamiltonian is valid to orderO(1/g2) in the strong
coupling expansion. TheO(1/g2) corrections involve prod-
ucts of quark bilinears which describe meson propaga
mentioned above and are known as ‘‘meson terms.’’ F
NC53, contributions from the subsequent order in the 1g2

expansion would consist of products of terms which are
linear in the quark fields called ‘‘baryon terms.’’ These m
son and baryon terms appear in the strong coupling exp
sions of both Euclidean and Hamiltonian lattice QCD and
the motivations for introducing effective composite mes
and baryon fields. In this work we do not take the bary
terms into account but our formalism presented here is a
applicable if such terms were present in the effective Ham
tonian.

In the absence of the current quark mass and the Wil
parameter (M05r 50), Heff posseses aU(4Nf) symmetry
1-2
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with Nf being the number of flavors. This symmetry is spo
taneously broken toU(2Nf) ^ U(2Nf) accompanied by the
appearance of 8Nf

2 Goldstone bosons@20#. A finite current
quark mass also breaks the originalU(4Nf) symmetry, albeit
explicitly, to U(2Nf) ^ U(2Nf). Introduction of the Wilson
term explicitly breaks the latter symmetry further down
U(Nf) thereby solving the fermion doubling problem.

We shall work exclusively in momentum space. Our co
vention for the Fourier transform from configuration to m
mentum space isC(xW )5(pWC(pW )e1 ipW •xW, which implies that
the volumeV is given by V5(xW5dpW ,pW . Then the charge
conjugation symmetric form of Smit’s Hamiltonian in mo
mentum space is given by

Heff5
1

2 (
pW

M0~g0!rn@~Caa
† !r~pW !,~Caa!n~2pW !#2

2
K

8NC
(

pW 1 , . . . ,pW 4

(
l

dpW 11•••1pW 4 ,0W@ei [( pW 21pW 3)•n̂l ]

1ei [( pW 11pW 4)•n̂l ] # ^ @~Caa
† !r~pW 1!~S l !rn~Cba!n~pW 2!

2~Caa!n~pW 1!~S l !rn
† ~Cba

† !r~pW 2!# ^ @~Cbb
† !g~pW 3!

3~S l !gd
† ~Cab!d~pW 4!2~Cbb!d~pW 3!

3~S l !gd~Cab
† !g~pW 4!#. ~4!

This effective Hamiltonian is the starting point of the prese
investigation. Our method for obtaining the equation of st
consists of extendingHeff to finite m and constructing a
quark field operatorC which diagonalizes the Hamiltonia
to second order in field operators for all densities. Once
solution has been found it can be used to evaluate
vacuum energy density from which we obtain the pressur
the many body system.

However, before extendingHeff to finite T and/orm, it is
necessary to impose a condition on these external param
so that all links would remain in their ground states. In t
strong coupling limit the amount of energy required to exc
one color electric flux link is

E5
1

2NC
~NC

221!g25
1

K
. ~5!

Therefore an extension ofHeff to finite T and/orm will be
valid as long asT,m,1/K @14# since the Hamiltonian only
acts on the space of states with no excited links.2 We shall
see that this condition is satisfied in the present work.

The effective Hamiltonian is extended to finiteT andm in
two steps. The first one is to make the following trivial r
placement of the current quark mass term inHeff :

M0~g0!rn→M0~g0!rn2m0drn , ~6!

2Note that in Ref.@14# E has been approximated byE'NC g2.
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where m0 is the quark chemical potential. Note thatm0
shouldnot be identified with the total chemical potentialm tot
of the interacting many body system. As we shall see bel
theO (1/g2) interaction terms inHeff will induce a correction
to m0 which in general is momentum dependent. We sh
therefore refer tom0 as the ‘‘bare’’ quark chemical potentia
and treat it as an input parameter. The second step i
introduce an ansatz for the quark field at finiteT andm.

III. AN ANSATZ FOR FINITE T AND µ

We proceed by presenting our ansatz for theC field in
Heff at any temperature and chemical potential. The spe
case of this ansatz for free space was given in Ref.@21#. It
has the same structure as the free lattice Dirac field
obeys the free lattice Dirac equation with a mass which
interpreted as the dynamical quark mass. This mass is
only unknown quantity in the free space ansatz and is de
mined by solving a gap equation. It was shown in Ref.@21#
that this ansatz exactly diagonalizesHeff to second order in
field operators. Properties of free lattice Dirac fields us
Wilson fermions are given in the Appendix.

Temporarily dropping color and flavor indices the fre
space ansatz given in Ref.@21# is

Cn
free~ t,pW !5b~pW !jn~pW !e2 iv(pW )t1d†~2pW !hn~2pW !e1 iv(pW )t

~7!

with n denoting the Dirac index. The annihilation operato
for particlesb and antiparticlesd annihilate an interacting
vacuum stateuG0&, and obey the free fermion anticommut
tion relations. The properties of the lattice spinorsj and h
are given in the Appendix. The free lattice Dirac equati
fixes the excitation energyv(pW ) to be

v~pW !5S (
l

sin2~pW •n̂l !1M2~pW ! D 1/2

, ~8!

whereM (pW ) is the dynamical quark mass.
In order to extend Eq.~7! to finite T and m we observe

that the annihilation operatorsb and d in CFree no longer
annihilate the interacting vacuum state at finiteT andm de-
noted asuG(T,m)&. To construct operators that annihila
uG(T,m)& we apply a generalized thermal Bogoliubov tran
formation to theb andd operators following the formalism
of thermal field dynamics@22#

b~pW !5apB~pW !2bpB̃†~2pW !, ~9a!

d~pW !5gpD~pW !2dpD̃†~2pW !. ~9b!

The thermal field operatorsB and B̃† annihilate a quasipar
ticle and create a quasihole at finiteT and m, respectively,
while D andD̃† are the annihilation operator for a quasi-an
particle and creation opertor for a quasi-anti-hole, resp
tively.

These thermal annihilation operators annihilate the in
acting thermal vacuum state for eachT andm:
1-3
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B~pW !uG~T,m!&5B̃~pW !uG~T,m!&5D~pW !uG~T,m!&

5D̃~pW !uG~T,m!&50. ~10!

We note that the thermal doubling of the Hilbert space
companying the thermal Bogoliubov transformation is i
plicit in Eq. ~10! where a vacuum state which is annihilat
by operatorsB, B̃, D, andD̃ is defined. In addition, since w
shall be working only in the space of quantum field operat
it is not necessary to specify the structure of the therm
vacuumuG(T,m)&.

The thermal operators also satisfy the Fermion antico
mutation relations

@B†~pW !,B~qW !#15@D†~pW !,D~qW !#15@B̃†~pW !,B̃~qW !#1

5@D̃†~pW !,D̃~qW !#15dpW ,qW ~11!

with vanishing anticommutators for the remaining combin
tions. The coefficients of the transformation are

ap5A12np
2, ~12a!

bp5Anp
2, ~12b!

gp5A12np
1, ~12c!

dp5Anp
1, ~12d!

where

np
65

1

e[v(pW )6m]/T11
~13!

are the Fermi distribution functions for particles (np
2) and

antiparticles (np
1). We stress that the chemical potential a

pearing in the Fermi distribution functions is thetotal chemi-
cal potential of the interacting many body system. The co
ficients are chosen so thatnp

6 are given by

np
25^G~T,m!ub†~pW !b~pW !uG~T,m!&, ~14a!

np
15^G~T,m!ud†~pW !d~pW !uG~T,m!&. ~14b!

Hence in this approach temperature and chemical pote
are introduced simultaneously through the coefficients of
thermal Bogoliubov transformation and are treated on
equal footing.

After applying the Bogoliubov transformation to Eq.~7!
our ansatz at finiteT andm becomes

Cn~ t,pW !5@apB~pW !2bpB̃†~2pW !#jn~pW !e2 i [v(pW )2m tot] t

1@gpD†~2pW !2dpD̃~pW !#hn~2pW !e1 i [v(pW )1m tot] t

~15!

and satisfies the equation of motion corresponding to the
lattice Dirac Hamiltonian at finite chemical potential give
by
07450
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H05
1

2 (
pW

F2(
l

sin~pW •n̂l !~g0g l !hn1M ~pW !~g0!hn

2m totdhnG @Ch
†~ t,pW !,Cn~ t,pW !#2 . ~16!

The spinorsj andh in Eq. ~15! obey the same properties a
in free space and the excitation energyv(pW ) has the same
form as in Eq.~8!. The unknown quantities in our ansatz E
~15! are the dynamical quark massM (pW ) and the total
chemical potentialm tot which will be determined in the fol-
lowing section.

In this work we shall take theT→0 limit which amounts
to settinggp51 anddp50 in the Bogoliubov transformation
Eq. ~9! thereby suppressing the excitation of antiholes.
this limit bp

2 becomes the Heaviside functionbp
25u@m tot

2v(pW )# defining the Fermi momentumpW F through the rela-
tion

m tot5S (
l

sin2~pW F•n̂l !1M2~pW F! D 1/2

. ~17!

Note that we define chemical potential such thatm tot

>M (pW F) which differs from the conventional definition o
chemical potential used in lattice calculations wherem>0.

One of the simplest quantities to calculate using the
satz of Eq.~15! in the T→0 limit is the quark number den
sity n given by

n5
1

2VNf NC
^C̄g0C&

5
1

2VNf NC

1

2 (
pW

^:@~C̄a,a
† !r~pW !,~Ca,a!n~2pW !#2 :&~g0!rn

~18a!

5(
pW

bp
25(

pW
u@m tot2v~pW !#, ~18b!

where the symbol : : denotes normal ordering with respect
the vacuum at zero temperatureuG(T50,m)&. Therefore,
above a sufficiently large value ofm tot the quark number
density becomes a constant which with the present norm
ization will equal unity. This saturation effect is purely
lattice artifact originating from the sin2(pW•n̂l) term in v(pW ).

Another quantity that may be readily calculated using
T→0 ansatz is the chiral condensate. It is found to be p
protional to the dynamical quark mass

1

2VNfNC
^C̄C&52(

pW
ap

2 M ~pW !

v~pW !
. ~19!

Below we shall derive a gap equation forM (pW ) and show
that for a given physically reasonable set of parameters th
exists a critical chemical potential above whichM (pW )50.
1-4
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Thus the chiral condensate may be identified as being
order parameter for the chiral phase transition at finite d
sity.

IV. APPLICATIONS OF THE EQUATION OF MOTION

A. The equation of motion

We now calculate the equation of motion correspond
to Heff with our ansatz for finitem using two light flavors.
The result is used to show that our ansatz exactly diago
izes the Hamiltonian to second order in field operators for
densities and to calculate the vacuum energy density. In
dition, by analyzing the Dirac structure of the equation
motion we derive coupled equations for the dynamical qu
mass and the total chemical potential. They are solved
07450
e
-

g

l-
ll
d-
f
k
to

lowest order in the 1/NC expansion thereby completing ou
construction of a solution to the lattice field theory defin
by Heff .

The equation of motion forHeff is obtained by exploiting
the fact that our ansatz also satisfies the equation of mo
corresponding to the free lattice Dirac HamiltonianH0 given
in Eq. ~16!. We therefore have the relation

:@~Caa!n~ t,qW !,Heff#2 :5:@~Caa!n~ t,qW !,H0#2 : ~20!

which plays a crucial role in our construction of a solutio
for the quark fieldC. Evaluating both sides of Eq.~20! and
equating terms which are linear in the field operators
obtain the equation of motion forC
ators.
antity of

nsible for
F(
l

sin~qW •n̂l !~g0g l !rd1M ~qW !~g0!rd2m totdrdG~Caa!d~ t,qW !

5H M0~g0!rd2m0drd1
1

NC
K(

pW
(

l
ap

2Lng
1 ~pW ! ^ $cos~pW 2qW !•n̂l@~S l !gn~S l !rd

† 1~S l !rn
† ~S l !gd#

1cos~pW 1qW !•n̂l@~S l !gn
† ~S l !rd

† 1~S l !rn~S l !gd#%2
1

NC

K

4 (
pW

(
l

@2ap
2Lng

1 ~pW !2dng# ^ $NC@~S l !rn~S l !gd
†

1~S l !rn
† ~S l !gd#1cos~pW 1qW !•n̂l@~S l !rn

† ~S l !gd
† 1~S l !rn~S l !gd#%J ~Caa!d~ t,qW ! ~21!

with L1(pW )[j(pW ) ^ j†(pW ) being the positive energy projection operator defined in Eq.~A18a!.

B. Diagonalization of H eff and the vacuum energy density

We shall now show that ourT→0 ansatz exactly diagonalizes the effective Hamiltonian to second order in field oper
The diagonalization procedure involves only algebraic substitutions and does not require any approximations. The qu
interest here is the off-diagonal Hamiltonian which, to second order in field operators, is found to be

HoffuG~0,m!&52(
qW

H aqjr
†~qW !@M0~g0!rd2m0drd#1

1

NC
K(

pW
(

l
ap

2aqLnr
1 ~pW ! ^ jg

†~qW !$cos~pW 2qW !•n̂l@~S l !rn~S l !gd
†

1~S l !rn
† ~S l !gd#1cos~pW 1qW !•n̂l@~S l !rn

† ~S l !gd
† 1~S l !rn~S l !gd#%2

1

NC

K

4 (
pW

(
l

aq@2ap
2Lng

1 ~pW !2dng#

^ jr
†~qW !$NC@~S l !rn~S l !gd

† 1~S l !rn
† ~S l !gd#1cos~pW 1qW !•n̂l@~S l !rn

† ~S l !gd
† 1~S l !rn~S l !gd#%J hd~2qW !

^ Ba,a
† ~qW !Da,a

† ~2qW !uG~0,m!&. ~22!

We see from Eq.~22! that the elementary excitations of the effective Hamiltonian are color singlet~quasi! quark-antiquark
excitations coupled to zero total three momentum. They correspond to the meson propagation on the lattice respo
lifting the degeneracy of the ground state of strongly coupled QCD.

With the use of the equation of motion for theC field Eq. ~21!, the equation of motion for theh spinor Eq.~A16! and the
orthonormality condition for thej andh spinors Eq.~A8!, we can show that
1-5



Eq.
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HoffuG~0,m!&5(
qW

H aqjr
†~qW !F2(

l
sin~qW •n̂l !~g0g l !rd2M ~qW !~g0!rd1m totdrdGhd~2qW !J ^ Ba,a

† ~qW !Da,a
† ~2qW !uG~0,m!&

5(
qW

$aqjr
†~qW !@v~qW !1m tot#hr~2qW !%Ba,a

† ~qW !Da,a
† ~2qW !uG~0,m!&50. ~23!

Note that this result is valid for any dynamical quark mass and total chemical potential. Therefore in theT→0 limit our ansatz
shown in Eq.~15! exactly diagonalizes the effective Hamiltonian to second order in field operators for all densities.

Having diagonalized the second order Hamiltonian we can proceed to evaluate the vacuum energy density. Using~21!
once more we find

1

V
^G~0,m!uHeffuG~0,m!&52NcNf(

pW
$ap

2M0Tr@L1~pW !g0#12bp
2m0%2K(

pW ,qW
(

l
ap

2aq
2Lnr

1 ~pW !Ldg
1 ~qW !

^ $cos~pW 2qW !•n̂l@~S l !rn~S l !gd
† 1~S l !rn

† ~S l !gd#1cos~pW 1qW !•n̂l@~S l !rn
† ~S l !gd

† 1~S l !rn~S l !gd#%

1
K

2 (
pW ,qW

(
l

ap
2@aq

2Lng
1 ~qW !2dng#Ldr

1 ~pW ! ^ $NC@~S l !rn~S l !gd
† 1~S l !rn

† ~S l !gd#

1cos~pW 1qW !•n̂l@~S l !rn
† ~S l !gd

† 1~S l !rn~S l !gd#%

522Nc(
pW ,qW

H ap
2F3

2
K~11r 2!1v~pW !1

M ~pW !

v~pW !
M02

1

Nc

K

2
~12r 2!cos~pW 1qW !•n̂l2m totG

1~11bp
2!m0J . ~24!
iti

c
ira

r
d
-
ht
lt

a

ne

-

o-
For free space the difference of the vacuum energy dens
in the Wigner-Weyl @M (qW )50# and Nambu-Goldstone

@M (qW )Þ0# phases of the theory is positive

DE5
1

V
^GuHeffuG&uM (qW )502

1

V
^GuHeffuG&uM (qW )Þ0.0.

~25!

Numerically we find that Eq.~25! also holds for finite chemi-
cal potential. Therefore the true ground state of our intera
ing many body system is in the phase with broken ch
symmetry.

C. Dynamical quark mass andµ tot

We now derive the equations for the dynamical qua
mass and the total chemical potential and solve them to
termine our solution Eq.~15! for each density at zero tem
perature. To accomplish this we explicitly evaluate the rig
hand side of Eq.~21! to reveal its Dirac structure. The resu
may be cast in the following compact form:

F(
l

sin~qW •n̂l !~g0g l !nd1M ~qW !~g0!nd2m totdndG
3~Caa!d~ t,qW !

5@A~qW !~g0g l !nd1B~qW !~g0!nd1C~qW !dnd#

3~Caa!d~ t,qW !. ~26!
07450
es

t-
l

k
e-
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The equations forM (pW ) and m tot are obtained by equating
the coefficents of theg0 operator and the Kronecker delt
function, respectively.

The gap equation determiningM (pW ) is given by the co-

efficient B(qW )

M ~qW !5B~qW !

5M01
3

2
K~12r 2!(

pW
~12bp

2!
M ~pW !

v~pW !
1

K

NC

3(
pW ,l

~12bp
2!

M ~pW !

v~pW !
^ H 8r 2cos~pW •n̂l !cos~qW •n̂l !

2
1

2
~11r 2!cos~pW 1qW !•n̂l J . ~27!

The structure of this gap equation is very similar to the o
in free space (bp

250) found in Ref.@21#. The dynamical
quark mass is a constant to lowest order inNC but becomes
momentum dependent once 1/NC correction is taken into ac
count.

Similarly, the total chemical potential is given by the c
efficient C(qW )
1-6
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m tot52C~qW !

5m01
1

4

K

NC
(

l
(

pW
bp

2@2NC~11r 2!

22~12r 2!cos~pW 1qW !#. ~28!

Thusm tot is a sum of the bare chemical potentialm0 and an
interaction induced chemical potential which is proportion
to the effective coupling constantK. Furthermore, the latte
contribution tom tot is momentum dependent and this depe
dence is a 1/NC correction just as in the case of the g
equation. It should be noted that the above shifting of
bare chemical potential by the interaction is not a new effe
For example, in the well-known and well-studied Namb
Jona-Lasinio model@23# at finite T and m the interaction
induces a contribution to the total chemical potential wh
is proportional to the number density@24,25#.

The two equations~27! and~28! are coupled and therefor
solutions forM andm tot must be found self-consistently fo
each value of the input parameterm0 . We shall solve the
coupled equations toO(NC

0) which is equivalent to invoking
the mean field approximation. At this order inNC both the
dynamical mass and the total chemical potential are mom
tum independent. It is also the same order in the 1/NC ex-
pansion used to obtain results in all previous studies
strongly coupled lattice QCD. All results are presented us
M050 andNC53.

We first discuss the solutions to the gap equation in f
space. In Fig. 1 we show dynamical quark masses in
spaceM (free) as functions of the coupling constantK for
Wilson parametersr 50.00,0.50, and 0.75. The dynamic
quark masses were obtained in a straightfoward manne
solving the free space gap equation

M ~ free!5M01
3

2
K~12r 2!(

pW

M ~ free!

v~pW !
. ~29!

The figure shows that for each value ofr there exists a criti-
cal coupling constantKC.0 above which the theory is in th

FIG. 1. Dynamical quark masses in free spaceM (free) to
O(NC

0) as functions of the effective coupling constantK obtained
using Wilson parametersr 50.00,0.50, and 0.75. The critical cou
pling constants areKC50.732,0.976, and 1.673 forr 50.00,0.50,
and 0.75, respectively.
07450
l

-

e
t.
-

n-

f
g

e
e

by

broken symmetry phase. This is also true for ther 50 case
corresponding to the use of Kogut-Susskind fermions. In t
case the symmetry breaking takes place only forK>0.732.

The dependence of the dynamical mass, and consequ
of the chiral condensate through Eq.~19!, on the coupling
constant is qualitatively different from the results obtain
previously using thesameeffective Hamiltonian@20,26#. In
both@20# and@26# qq̄ pair condensation occurs foranyvalue
of K.0. We find that the attraction between a quark and
antiquark must be sufficiently large enough for aqq̄ pair to
condensate in the vacuum. Thus our approach provide
mechanism for chiral symmetry breaking which other a
proaches do not. In addition, our results are consistent w
the works by Finger and Mandula@27# and by Amer, Le
Yaouanc, Oliver, Pene, and Raynal@28# who have shown tha
in QCD in the Coulomb gaugeqq̄ condensation takes plac
only above a critical coupling constant.

Examples of finitem solutions to the coupled equation
Eqs.~27! and~28! to lowest order inNC are shown in Figs. 2
and 3. In Fig. 2 we show dynamical masses as function
thebarechemical potentialm0 to highlight the importance of
solving the coupled equations consistently. The figure sho
the dynamical quark mass obtained by solving only Eqs.~27!
with m tot5m0 as well the mass obtained by solving th
coupled equations consistently. Usingr 50 and K50.9 a
first order phase transition is observed in both cases, bu
values of the criticalm0 are 0.825 whenm tot5m0 and 0.785
when the two equations are solved self-consistently. The
fore the critical chemical potential will be overestimated
interaction induced corrections to the bare chemical poten
are ignored.

In Fig. 3 we present the dynamical mass as a function
the total chemical potentialm tot for two values ofK obtained
with r 50.25. From the figure we see that the phase tra
tion can be either first or second order depending on
value of the coupling constant. WhenK50.9 we find a sec-

FIG. 2. Dynamical quark massesM as functions of the bare
chemical potentialm0 to lowest order inNC . The dynamical mass
labeled ‘‘uncoupled’’ was obtained by simply solving Eq.~27! with
m tot5m0 and exhibits a first order phase transition with a critic
chemical potential of (m0)C50.825. The result labeled ‘‘coupled’
was obtained by solving the coupled equations~27! and ~28! self-
consistently. A first order phase transition also takes place, but
the value of (m0)C is 0.785. The Wilson parameter and the coupli
constant are set tor 50.0 andK50.9, respectively.
1-7
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ond order phase transition with a critical chemical poten
of (m tot)C'0.716, while if the coupling constant is increas
to K51.0 the phase transition becomes first order with
larger critical chemical potential of (m tot)C'0.871. This in-
crease in the critical chemical potential withK has also been
observed in Ref.@11#. Furthermore, we find that whenK
50.9 lattice saturation sets in above (m tot)C at aroundm tot
'0.898 while this effect takes place immediately abo
(m tot)C for K51.0. These values of chemical potentials a
smaller than the energyE51/K required to excite one colo
electric flux link as given in Eq.~5!. Therefore with a rea-
sonable set of parameters it is possible to extend Smit’s
fective Hamiltonian to finite density as was first pointed o
in Ref. @14#.

Having solved the self-consistency equations for the
namical quark mass and the total chemical potential to lo
est order inNC we have constructed a mean field solution
the quark field appearing in the effective Hamiltonian E
~4!. In Fig. 4 we show the quark number density obtain
with this solution as a function ofm tot for K50.9 and 1.0. In
both cases the number density is a monotonically increa
function of m tot in the broken symmetry phase. WhenK
50.9 there is a jump in the number density at the ph
transition point at (m tot)C'0.716 from n'0.037 to n
'0.070. Beyond this point the number density continues
increase monotonically until when the lattice saturation s
in at m tot'0.898. This behavior of the number density
qualitatively the same as the one obtained numerically us
the Monomer-Dimer-Polymer algorithm as can be seen fr
a comparison with Figure 5 of Ref.@2#. For K51.0 the lat-
tice saturation takes place at the phase transition poin
(m tot)C'0.871 and beyond this point the number density
mains a constant atn51. Noting that the number density a
the phase transition point isn'0.013, the number densit
for K51.0 may be approximated by a Heaviside function
the formn5u@m tot2(m tot)C#. This is exactly the result ob
tained in Eq.~2.47! of Ref. @15# where a different effective
Hamiltonian was used to study strongly coupled lattice Q

FIG. 3. Dynamical quark massM as a function of total chemica
potentialm tot for two values of the effective coupling constantK.
These results were obtained by solving Eqs.~27! and ~28! self-
consistently to lowest order inNC usingr 50.25. There is a secon
order chiral phase transition when the effective coupling constaK
is 0.9 with a critical chemical potential of (m tot)C'0.716. The order
of the phase transition becomes first order with (m tot)C'0.871
whenK is increased to 1.0.
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at finite density. Furthermore the functional form of the nu
ber density found in Ref.@15# is independent of the strengt
of the interaction. Therefore the results presented in Ref.@15#
for m>mC represent nothing but those obtained in the latt
saturation limit.

V. EQUATION OF STATE

We are now in a position to determine the equation
state by numerically evaluating the thermodynamic poten
density using the mean field solution determined above in
vacuum energy density Eq.~24!. In Fig. 5 we plot pressure a
a function ofm tot for K50.8 and 0.9. The value of the Wil
son parameter isr 50.0 so that the results have been o
tained using Kogut-Susskind fermions. For both values oK
we find that the pressure of the quark Fermi sea is nega
and monotonically decreasing in the broken symmetry pha
For K50.8 the pressure remains negative but increases in
symmetry restored phase, at least until the lattice satura
point, and has a cusp where the two phases meet. Unfo
nately, for K50.9 we cannot make a definite quantitativ
statement concerning the behavior of the pressure in

FIG. 4. Quark number densityn as a function of total chemica
potentialm tot for two values of effective coupling constantK with
r 50.25. WhenK50.9 there is a jump in the number density at t
phase transition point at (m tot)C'0.716 from n'0.037 to n
'0.070, while forK51.0 n becomes unity immediately above th
critical chemical potential of (m tot)C'0.871 due to lattice satura
tion.

FIG. 5. Pressure as a function of total chemical potentialm tot

obtained using Kogut-Susskind fermions (r 50.0) with K50.8 and
0.9.
1-8
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symmetry restored phase due to lattice saturation, exce
mention that there is a discontinuity when going from o
phase to another. We find qualitatively similar results wh
Wilson fermions are used to calculate the pressure as sh
in Fig. 6. The parameter used in this figure arer 50.25 and
K50.9 and 1.0. We may therefore conclude, at least at
mean field level, that up to and beyond the chiral symme
restoration point the quark Fermi sea can have negative p
sure and therefore can be mechanically unstable with
imaginary speed of sound.

Our conclusion regarding the~strongly coupled! quark
matter stability at finite density is consistent with simil
studies using effective continuum models of QCD. In t
Nambu-Jona-Lasinio model@16# and the instanton induced
Hooft interaction model@17#, mean field calculations show
that cold and dense quark matter may be unstable in
phase with spontaneously broken chiral symmetry, but
become stable in the symmetry restored phase at
enough density. In particular, the result for the pressure
tained in Ref.@17# is qualitatively the same as the one show
in Figs. 5 and 6 as can be seen by comparing the figures
Fig. 1 of Ref.@17#. The possibility of unstable quark mattte
lead the authors of Refs.@16# and @17# to speculate the for-
mation of nucleon droplets, reminiscent of the MIT b
model, in the broken symmetry phase. We shall not indu
in such a speculation here since we are working in an ar
cial strong coupling regime. Nevertheless, our results c
cerning the negative pressure is certainly verifiable in fut
lattice simulations of finite density QCD at strong couplin

VI. CONCLUSION AND OUTLOOK

In this work we studied the equation of state of two fl
vored Hamiltonian lattice QCD in the strong coupling lim
at finite density using both Kogut-Susskind and Wilson f
mions. Starting from an effective lattice Hamiltonian for th
ground state of the strongly coupled QCD, we constructe
mean field solution which exactly diagonalizes the Ham
tonian to second order in field operators for all densiti
This solution obeys the free lattice Dirac equation with
dynamical quark mass and total chemical potential which
determined by solving a coupled set of equations obtai
from the equation of motion. From the gap equation de
mining the dynamical quark mass we find that at the m

FIG. 6. Pressure as a function of total chemical potentialm tot

obtained using Wilson fermions (r 50.25) withK50.9 and 1.0.
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field level the order of the chiral phase transition can
either first or second order depending on the values of in
parameters.

The equation of state was obtained by evaluating the th
modynamic potential density from the vacuum energy d
sity using our solution. We find that the pressure of t
strongly interacting many body system may be negative
the broken symmetry phase indicating the mechanical in
bility of our quark Fermi sea. There are indications of th
instability beyond the phase transition point although
definite conclusions could be reached for very high densi
due to lattice saturation. Nevertheless this behavior of
pressure was found both for the case of Kogut-Susskind
Wilson fermions and seems, at least at the mean field le
to be robust. In addition, our result concerning negative pr
sure is in qualitative agreement with studies using continu
effective QCD models, and therefore should certainly
verified by future lattice simulations of strongly couple
QCD at finite density.

To include temperature into our formalism we simply r
peat our calculations using the ansatz given in Eq.~15! at
nonzeroT. Preliminary calculations indicated that, in add
tion to particle-antiparticle excitations, the elementary ex
tations would now involve particle-hole, antiparticle
antihole and hole-antihole excitations. Because of th
additional types of excitations our ansatz would no longer
able to exactly diagonalize the second order Hamiltonian
fact, a simple exercise would show that at finiteT even the
free lattice Dirac Hamiltonian Eq.~16! is not diagonal due to
particle-hole and antiparticle-antihole excitations.

We now turn our attention to the possibility of studyin
the nature of the confinement-deconfinement phase tra
tion. Our solution presented in this work is nonconfining a
therefore it would be hopeless to use it to study this imp
tant phase transition. What is lacking in our formalism is t
description of bound states. However, our solution presen
here is by no means unique or complete and it can be
tematically improved to include all the bound states allow
by the effective Hamiltonian. This is accomplished by inte
preting our solution within the context of theN-quantum
approach~NQA! to quantum field theory@18,19#.

NQA is a method to solve field equations of motion b
expanding the interacting Heisenberg fields in terms
asymptotic fields obeying the free field equations of motio
Here the on-shell masses can but need not equal the phy
masses of the fields. This expansion is known as the H
expansion@29# and our ansatz presented here is nothing
the first term in this expansion. Note that because we
working in the Hamiltonian~Kogut-Susskind! formulation of
lattice field theory the time variable is continuous and the
fore we can introduce and work with the concept
asymptotic fields. The second order terms in the Haag exp
sion would consist of a product of fermionic quark fields a
bosonic elementary color singletq̄q bound state fields. The
coefficient of each of the second order terms are interpre
as creation amplitudes for the bound states and are know
Haag amplitudes.

Supressing color and flavor indices for simplicity, our e
tended ansatz for the Heisenberg quark fieldC to second
1-9
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YASUO UMINO PHYSICAL REVIEW D 66, 074501 ~2002!
order in the Haag expansion in free space will have the
lowing structure:

Cn
free~qW !5Cn

0~qW !1(
i
E d3kd3bd3~qW 1kW2bW !

3 f nr
( i )~kW ,bW !:Cr

0~2kW !B( i )
0 ~bW !:, ~30!

where the colons denote normal ordering. In Eq.~30!, B is
the elementary bosonic field while the superscript 0 indica
that the fields obey their corresponding free field equati
of motion. The Haag amplitudes are denoted byf nr

( i ) with the
sum over the indexi running through all the possible boun
states allowed by the Hamiltonian. These states are the c
singletqq̄ elementary excitations identified in this work. Th
basic idea of NQA is to use the field equations of motion a
derive integral equations for the Haag amplitudes and so
them to obatin a solution to the equation of motion.

In order to solve for the Haag amplitudes it is necessar
calculate the mass and the coupling constant for each o
bound states. This has been accomplished successfully
nite T andm for the two flavored ‘t Hooft interaction mode
@30#. In addition to bound state masses and coupling c
stants it is also possible to determine the widths of th
states. This quantity is the key to studying the confineme
deconfinement phase transition within our formalism. In
confined phase the bound states will have vanishing wid
while in the deconfined phase we expect to see unbo
resonant states with finite widths. Hence we propose to
the widths of theqq̄ states as an order parameter to study
nature of the deconfinement phase transition within str
coupling QCD.
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APPENDIX: PROPERTIES OF FREE WILSON FERMIONS

In this appendix we present the properties of free Wils
fermions on the lattice in the Hamiltonian formulation@5#.
The free lattice Dirac Hamiltonian is given by

H05
1

2i (
xW ,l

@C†~xW !g0g lC~xW1n̂l !2C†~xW1n̂l !g0g lC~xW !#

1M(
xW

C†~xW !g0C~xW !2
r

2 (
xW ,l

@C†~xW !g0C~xW1n̂l !

1C†~xW1n̂l !g0C~xW !#, ~A1!

where the third term is the Wilson term. Forr 50 there is an
eightfold fermion multiplicity which is removed whenr
Þ0. At each lattice site the free Dirac field in configuratio
space is given by
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Cn~ t,xW !5(
pW

@b~pW !jn~pW !e2 i (v(pW )t2pW •xW )

1d†~pW !hn~pW !ei (v(pW )t2pW •xW )# ~A2!

with n denoting the Dirac index. The excitation energyv(pW )
will be determined shortly. The annihilation operatorsb and
d annihilate the noninteracting vacuum stateu 0 &. For our
purpose it is not necessary to know the structure of
spinorsj andh.

The only assumption that we shall make is that the c
ation and annihilation operators obey the free fermion a
commutation relations

@b†~pW !,b~qW !#15@d†~pW !,d~qW !#15dpW ,qW . ~A3!

Using this assumption we can recover the anticommuta
relations for the field operators

@Cr~ t,xW !,Cn
†~ t,yW !#15dxW ,yWdrn ~A4!

provided thatj andh satisfy the relation

jr~pW !jn
†~pW !1hr~2pW !hn

†~2pW !5drn . ~A5!

We normalize the spinors by demanding that the num
density is given by

N5(
xW

:C†~ t,xW !C~ t,xW !:52(
pW

@b†~pW !b~pW !2d†~pW !d~pW !#,

~A6!

where the colons denote normal ordering with respect tou 0 &
and the factor of 2 accounts for the spin degrees of freed
Equation~A6! fixes the normalizations ofj andh to be

jn~pW !jn
†~pW !5hn~pW !hn

†~pW !52, ~A7!

jn
†~pW !hn~2pW !5hn

†~pW !jn~2pW !50 ~A8!

which are consistent with Eq.~A5!.
In momentum space the charge conjugaton symme

form of H0 is

H05
1

2 (
pW

S 2(
l

sin~pW •n̂l !g0g l1M ~pW !g0D
rn

3@Cr
†~ t,pW !,Cn~ t,2pW !#2 , ~A9!

where the momentum dependent mass term is given by

M ~pW ![M2r(
l

cos~pW •n̂l !. ~A10!

The free Dirac field now becomes

Cn~ t,pW !5b~pW !jn~pW !e2 iv(pW )t1d†~2pW !hn~2pW !e1 iv(pW )t

~A11!
1-10
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which is used to derive the equation of motion correspond
to Eq. ~A9!

i Ċ~ t,pW !5:@C~ t,pW !,H0#2 : ~A12!

5S (
l

sin~pW •n̂l !g0g l1M ~pW !g0DC~ t,pW !. ~A13!

From Eq.~A13! one obtains the excitation energy

v~pW !5S (
l

sin2~pW •n̂l !1M2~pW ! D 1/2

~A14!

and the equations of motion for thej andh spinors

v~pW !j~pW !5S (
l

sin~pW •n̂l !g0g l1M ~pW !g0D j~pW !,

~A15!

v~pW !h~2pW !52S (
l

sin~pW •n̂l !g0g l1M ~pW !g0Dh~2pW !.

~A16!

Whenr 50 these equations of motion are relativistic ne
the eight corners of the Brillouin zone denoted bypW 0

5(0,0,0), pW x5(p,0,0), pW y5(0,p,0), pW z5(0,0,p), pW xy

5(p,p,0), pW xz5(p,0,p), pW yz5(0,p,p), and pW xyz
5(p,p,p). The excitation energies near these values of m
menta are equal which corresponds to the eightfold mu
,

.

et

.
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plicity mentioned above. This degeneracy is lifted whenr
Þ0 due to the momentum dependent mass term Eq.~A10!.
Using the equations of motion forj and h it is a simple
excercise to show that the off-diagonal Hamiltonian vanis
and that the vacuum energy is given by

^0uH0u0&522V(
pW

v~pW !. ~A17!

Finally, we construct positive and negative energy project
operatorsL1(pW ) andL2(pW ) as follows:

L1~pW ![j~pW ! ^ j†~pW !

5
1

2 F11
1

v~pW !
(

l
sin~pW •n̂l !g0g l1

M ~pW !

v~pW !
g0G ,

~A18a!

L2~pW ![h~2pW ! ^ h†~2pW !

5
1

2 F12
1

v~pW !
(

l
sin~pW •n̂l !g0g l2

M ~pW !

v~pW !
g0G .

~A18b!

Note that the projection operators obey the condition

@L1~pW !1L2~pW !#rn5drn ~A19!

as is required by Eq.~A5!.
.
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