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Hamiltonian lattice QCD at finite density: Equation of state in the strong coupling limit
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The equation of state of Hamiltonian lattice QCD at finite density is examined in the strong coupling limit
by constructing a solution to the equation of motion corresponding to an effective Hamiltonian describing the
ground state of the many body system. This solution exactly diagonalizes the Hamiltonian to second order in
field operators for all densities and is used to evaluate the vacuum energy density from which we obtain the
equation of state. We find that up to and beyond the chiral symmetry restoration density the pressure of the
quark Fermi sea can be negative indicating its mechanical instability. Our result is in qualitative agreement
with continuum models and should be verifiable by future lattice simulations of strongly coupled QCD at finite
density.
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[. INTRODUCTION Baluni and Willemsen who used a variant of the Kogut-
Susskind formalism to demonstrate quantitatively that dy-
Lattice gauge theory is currently the only known methodnamical chiral symmetry breaking indeed takes places in lat-
of solving quantum chromodynami¢®CD) from first prin-  tice QCD at strong coupling6]. Finally, calculations by
ciples. It has developed sufficiently to be able to calculate &ogut, Pearson, and Shigemitgti] and by Creut4 8] sug-
broad range of low and intermediate energy hadronic obsengesting the absence of a phase transition between the strong
ables from ground state hadron masses to pion-nucleon scand weak coupling regimes of QCD motivated numerous
tering lengths. In addition, lattice studies of QCD at finite studies using the strong coupling approximation.
temperature T), especially its spectacular success in dem- Strong coupling QCD at finitd and/oru has previously
onstrating the deconfinement phase transition, have been ibeen studied analytically both in the Euclidd@r11] and in
valuable and continue to play an important role in the searclthe Hamiltonian12—15 formulations. One of the main ob-
for the quark-gluon plasma. jectives of these studies was to investigate the nature of chi-
However, as is well known, one of the outstanding prob-ral phase transition at finite temperature and density. In each
lems in lattice gauge theory is the consistent implimentatiorstudy this was accomplished by constructing some effective
of chemical potential in numerical simulatiofil]. Progress action or Hamiltonian for strongly coupled lattice QCD us-
in lattice QCD calculations at finite chemical potentiagd)(  ing Kogut-Susskind fermions. These effective descriptions
with dynamical quarks has been hindered by the presence @fvolve the introduction of composite meson and baryon
the complex fermion determinant which renders standardields which are treated in the mean field approximation.
Monte Carlo techniques useless. In fact, currently there ighe consensus is that at zero or low temperatures strong
only one numerical method of simulating finite density QCD coupling QCD undergoes a first order chiral phase transition
with three colors at zero temperature. This method is basefilom the broken symmetry phase below a critical chemical
on the monomer-dimer-polymer algorithm developed bypotential uc to a chirally symmetric phase aboye-. The
Karsch and Mtter[2]. However its applicability is limited to  only exception is the work by Le Yaouamt al. [14] which
the strong coupling limit, and furthermore a recent stfi@ly = does not involve effective composite fields but is equivalent
indicates that this algorithm might not be reliable for study-to the mean field approximation. In this case the chiral phase
ing the chiral phase transition at finite density. Thereforetransition was found to be of second order.
even a qualitative description of finite density lattice QCD is  In this paper we present the equation of state of Hamil-
welcome. tonian lattice QCD at finite density in the strong coupling
One method of studying finite density QCD on the latticelimit using both Kogut-Susskind and Wilson fermions. As in
is to invoke the strong coupling approximation where anaprevious studies we begin with an effective theory by using a
lytical methods are applicable. Although far from the realis-Hamiltonian describing the ground state of strongly coupled
tic continuum limit, the strong coupling approximation has QCD. However, our approach differs from earlier works in
played an important role in the development of QCD latticethat we do not introduce composite fields but explictly con-
gauge theory from its very inception. In the renowned papestruct a solution to the field equations of motion correspond-
by Wilson [4] this approximation was invoked to demon- ing to the effective Hamiltonian. This solution exactly diago-
strate quark confinement on the Euclidean space-time latticealizes the Hamiltonian to second order in field operators for
Soon thereafter Kogut and Susskiff] formulated the all densities and is used to calculate the vacuum energy den-
Hamiltonian lattice gauge theory and concluded that in the
strong coupling limit the quark dynamics is best described by
a collection of non-Abelian electric flux tubes with quarks The Monomer-Dimer-Polymer algorithfi2] also uses composite
attached at their ends. This was followed by the work ofmeson and baryons fields.
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sity from which we obtain the equation of state. We find thatporal coordinate remain continuous. We adopt the notation of
up to and beyond the chiral symmetry restoration density th&mit [20] where the discrete sums over the spatial and mo-
quark Fermi sea can have negative pressure indicating itsentum coordinates are given by
mechanical instability. Our result is in qualitative agreement
with those obtained using continuum effective QCD models E =a32 (1)
[16,17] and should be verifiable by future lattice simula- = -
tionns of strongly coupled QCD at finite density.

Our approach admits to a systematic extension to finitend
temperature and to the description of bound states. In fact,
we first introduce temperature and chemical potential simul- D
taneously into our formalism and then take the limit of van-
ishing temperature to examine the consequences. Description
of bound states is accomplished by interpreting our solutiofvith x=am=a(m,,m,,ms) andp = (#/La)n = (=/La)(n;,
within the context of theN-quantum approaciNQA) to  n, n;). Herea is the lattice spacing and defines the num-
quantum field theory18,19 which we shall discuss in the ber of unit lattice cells withm,,n=0,+1,+2, ... *L.
concluding section. In the same section we propose how thgyith this notation the volume/ is given by V=(2La)?.
NQA may be combined with the present approach to studyjenceforth we shall work in lattice units whease= 1 so that
the nature of the deconfinement phase transition. —7<p,<+m, and use Wilson fermions.

In Sec. Il we introduce our effective Hamiltonian for the  The effective Hamiltonian derived by Snii20] using the
ground state of strong coupling QCD using Wilson fermions,temporal gauge is
and discuss the condition under which it can be extended to
finite T and . Our ansatz for the lattice quark field at finite + - -
T and u is presented in Sec. Ill. The equation of motion at Hetr=Mo2 (W1,),(X)(70) pul V) ()
finite u is then derived in Sec. IV and used to diagonalize the X

X

== 2

n

<k

p

effective Hamiltonian to second order in field operators and K t - A

to evaluate the vacuum energy density. In the same section T 2Ne > EI: RL(V20) s (X)(Z1) pu( Vo) (X +2y)
we determine the unknown quantities in our ansatz by deriv- X

ing coupled equations for the dynamical quark mass and the X (W) (X+a) (E)] (Wap) s(X)+ (] )

total chemical potential and solving them self-consistently. py 7 pry

Having constructed a solution for the quark field we present X (X+a)(Z)T (W ap) sX) (L), () ()0

in Sec. V the equation of state of Hamiltonian lattice QCD at L

finite density in the strong coupling approximation. We sum- X (Vhe)(X+a)], 3)
marize our results in Sec. VI and discuss how our approach

may be extended to incorporate temperature and to descrilvghereS,=—i(yyy,—ir vo) anda, is a unit vector along the

the deconfinement phase transition. A review of the properpositivel axis. We denote color, flavor, and Dirac indices by
ties of free lattice Wilson fermions using the Hamiltonian (ab), («B8), and (pvyd), respectively. Summation conven-
formulation is given in the Appendix. tion for repeated indices is implied. The three parameters in
this Hamiltonian are the Wilson parametewhich takes on
values between 0 and 1, the current quark mdgsand the
effective coupling constarK=2NC/(Né—1) 1/g?> whereg

We begin by introducing Smit's effective Hamiltonian is the QCD coupling constanh is the number of colors.
[20] describing the ground state of strongly coupled QCD.Whenr =0 the quark fields become Kogut-Susskind fermi-
This state is the one in which no links are excited by theons.
electric flux. It is also infinitely degenerate since various Smit's Hamiltonian is valid to orde®(1/g?) in the strong
color singlet states may be created at each lattice site withowoupling expansion. Thé(1/g?) corrections involve prod-
increasing the ground state energy. This degeneracy is liftedcts of quark bilinears which describe meson propagation
by the propagation of quarks on the lattice. The simplest typenentioned above and are known as “meson terms.” For
of such a propagation involves a quark exciting a flux linkNc= 3, contributions from the subsequent order in thg?1/
and an antiquark deexciting the same link and corresponds &xpansion would consist of products of terms which are tri-
the propagation of a meson. Smit obtained an effectivdinear in the quark fields called “baryon terms.” These me-
Hamiltonian describing this propagation using second ordeson and baryon terms appear in the strong coupling expan-
perturbation theory involving only the quark field with a  sions of both Euclidean and Hamiltonian lattice QCD and are
nearest neighbor interaction. The Hamiltonian is effectivethe motivations for introducing effective composite meson
because it only acts on the space of states with no exciteand baryon fields. In this work we do not take the baryon
links. Nevertheless, it serves our purpose since the maiterms into account but our formalism presented here is also
guantity of interest in this work is the vacuum energy densityapplicable if such terms were present in the effective Hamil-
which is obtained by diagonalizing Smit’s Hamiltonian. tonian.

In the Hamiltonian formulation of lattice field theof$] In the absence of the current quark mass and the Wilson
only the spatial coordinates are discreticized while the temparameter ,=r=0), Hyt posseses & (4N;) symmetry

Il. THE EFFECTIVE HAMILTONIAN
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with Ny being the number of flavors. This symmetry is spon-where u is the quark chemical potential. Note tha

taneously broken tdJ(2Ns) ® U(2N;) accompanied by the shouldnot be identified with the total chemical potentja,,

appearance of 182 Goldstone bosonf20]. A finite current  of the interacting many body system. As we shall see below,

quark mass also breaks the origiti4N;) symmetry, albeit the © (1/g?) interaction terms i o will induce a correction

explicitly, to U(2N;)®U(2N;y). Introduction of the Wilson to wy which in general is momentum dependent. We shall

term explicitly breaks the latter symmetry further down to therefore refer tquy as the “bare” quark chemical potential

U(Ny) thereby solving the fermion doubling problem. and treat it as an input parameter. The second step is to
We shall work exclusively in momentum space. Our con-introduce an ansatz for the quark field at finftend .

vention for the Fourier transform from configuration to mo-

mentum space i¥ (x) == ;¥ (p)e*PX, which implies that Ill. AN ANSATZ FOR FINITE T AND p

the volumeV is given byV=X;=4; ;. Then the charge

conjugation symmetric form of Smit's Hamiltonian in mo-

mentum space is given by

We proceed by presenting our ansatz for thefield in
Hq¢ at any temperature and chemical potential. The special

case of this ansatz for free space was given in Rf]. It
1 has the same structure as the free lattice Dirac field and
Hoo=— M sl 5). (W —51 _obeys the free lattice Dlra_\c equation with a mass whlc_:h is
o2 Ep o(70)psl (Waep(P),(Vaa)uo(—P)] interpreted as the dynamical quark mass. This mass is the
K only unknown quantity in the free space ansatz and is deter-

i[(Py-+pa)-n mined by solving a gap equation. It was shown in R2i.

- 2 2 561+ +64,6[el[(p2+p3) nl] y g g p q F{ ]

8Nc ;. 6 that this ansatz exactly diagonalizdgg to second order in

o field operators. Properties of free lattice Dirac fields using

+ei[(p1+p4)~ml]®[(\p;a)p(51)(2|)py(pra)v(52) Wilson fermions are given in the Appendix.
R R R Temporarily dropping color and flavor indices the free
= (Waa) (P (20}, (Wha) (P2 1O[(V5),(P3) space ansatz given in R¢R1] is
X2 (W ap) s(Pa) = (W) 5(P3) T, p)=b(p)&,(p)e  “Pttdi(—p) 5, (—p)etio®t
R (7)

X(20) 55V 1g)y(Pa)]- &)

with v denoting the Dirac index. The annihilation operators

This effective Hamiltonian is the starting point of the presentfor particlesb and antiparticlesd annihilate an interacting

investigation. Our method for obtaining the equation of staté/acuum statéGo), and obey the free fermion anticommuta-

consists of extendinH; to finite « and constructing a tion relations. The properties of the lattice spingrand -

quark field operato which diagonalizes the Hamiltonian are given in the Appendix. The free lattice Dirac equation

to second order in field operators for all densities. Once thidixes the excitation energy(p) to be

solution has been found it can be used to evaluate the "

vacuum energy density from which we obtain the pressure of - Lo o a >

the many boggsysten}n/. P w(p)= 2,: sirf(p-n) +M*(p) | ®)
However, before extending o« to finite T and/oru, it is

necessary to impose a conditio_n on t_hese external parametg($,are M (5) is the dynamical quark mass.

so that all links would remain in their ground states. In the

strong coupling limit the amount of energy required to excitet

one color electric flux link is

In order to extend Eq(7) to finite T and u we observe
hat the annihilation operatos and d in W no longer
annihilate the interacting vacuum state at finitand u de-
noted as|G(T,u)). To construct operators that annihilate
- (N2-1)g?=—. ®) |Q(T,,u,')> we apply a generalized thermql Bogoliubov tlrans-

2Ng € K formation to theb and d operators following the formalism

of thermal field dynamic$22]

E

Therefore an extension df.; to finite T and/or u will be

valid as long asT,u<1/K [14] since the Hamiltonian only b(p)=a,B(p)=B,B'(—p), (93
acts on the space of states with no excited lihkge shall . R 5 R
see that this condition is satisfied in the present work. d(p)=1vy,D(p)— 5pDT(— p). (9b)

The effective Hamiltonian is extended to finifeand . in
two steps. The first one is to make the following trivial re- The thermal field operator8 andB" annihilate a quasipar-

placement of the current quark mass terntig: ticle and create a quasihole at finifeand u, respectively,
while D andD " are the annihilation operator for a quasi-anti-
Mo(70) p»—Mo(¥0) p»— 05y » (6) particle and creation opertor for a quasi-anti-hole, respec-
tively.
These thermal annihilation operators annihilate the inter-
Note that in Ref[14] E has been approximated I#~Nc g>. acting thermal vacuum state for eatrand u:
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B(p)|G(T, )Y =B(p)|G(T,u))=D(p)|G(T, 1 R
(P)|G( u>>_~<r1>| ( u>>_ (P)IG(T, ) Ho:_% [‘E' SIOCB- ) (Yo 71) ot M(B)(70)
=D(p)[G(T,u))=0. (10
We note that the thermal doubling of the Hilbert space ac- —Mtoﬁm}[‘I’;(tyﬁ),‘l’v(t,ﬁ)]— : (16)

companying the thermal Bogoliubov transformation is im-

plicit in Eq. (10) where a vacuum state which is annihilated . . .
~ ~ The spinorst and » in Eq. (15) obey the same properties as
by operators3, B, D, andD is defined. In addition, since we . pinorss 7 a- (19 y prop

shall be working only in the space of quantum field opera’torﬁn free s_paI(E:e (Z)ndT:]he e>|<(C|tat|on e”etf‘?i’p). has the S?mé
it is not necessary to specify the structure of the therma orm as In £qc). The unknown quantiies ih our ansaiz £q.

vacuum|G(T, u)). (15 are the dynamical quark magdd(p) and the total

The thermal operators also satisfy the Fermion anticomchemical potentiaj which will be determined in the fol-
mutation relations lowing section.

In this work we shall take th& —0 limit which amounts

[BT(p),B(q)].=[DT(p),D(9) 1. =[BT (p),B(9)]- to settingy,= 1 andé,=0 in the Bogoliubov transformation

o Eqg. (9) thereby suppressing the excitation of antiholes. In
=[D"(p).D(@)]+=6;4 (1) this limit 85 becomes the Heaviside functioBy= o[ w
— w(p)] defining the Fermi momentum, through the rela-

with vanishing anticommutators for the remaining combina—tion
tions. The coefficients of the transformation are

172

ap=\1-n,, (129 o= | 2 SIP(Pe-A)EM2(PR) | . (4D
Bo=1In, (12b) , _ ,
Note that we define chemical potential such thag,
Yo 1—n;, (120 >M(|5,:) which differs from the conventional definition of
chemical potential used in lattice calculations wheiz 0.
Op= \/n;, (120 One of the simplest quantities to calculate using the an-
satz of Eq.(15) in the T—0 limit is the quark number den-
where sity n given by
. 1 1
n=———— 13 n=_-————(Vy¥
p e[w(p)iﬂ]/T+1 ( ) 2VNf NC< Yo >
o . C 1 1 — - -
are the_Ferm|+d|str|but|on functions for pa_rtlcleﬂp() a_nd  SUNNL3 2 <:[(\P;,a)p(p)'(q,a,a)v(_p)]* D(¥0) p
antiparticles ;). We stress that the chemical potential ap fINC < p
pearing in the Fermi distribution functions is ttatal chemi- (183

cal potential of the interacting many body system. The coef-
ficients are chosen so tha;,t are given by _

o =2 Bi=2 Olpo ()], (180)
Ny, =(G(T,w)[bT(P)b(P)|G(T,w)), (149 P P

_ TR where the symHa : denotes normal ordering with respect to
nP_<g(T”“)|d (P)A(P)|G(T. ). (14D the vacuum at zero temperatuf6(T=0,u)). Therefore,

Hence in this approach temperature and chemical potenti@Pove a sufficiently large value giy, the quark number
are introduced simultaneously through the coefficients of th&€nsity becomes a constant which with the present normal-
thermal Bogoliubov transformation and are treated on arZation will equal unity. This saturation effect is purely a

equal footing. lattice artifact originating from the sip-n) term in w(p).
After applying the Bogoliubov transformation to E(Y) Another quantity that may be readily calculated using the
our ansatz at finitd and u becomes T—0 ansatz is the chiral condensate. It is found to be pro-

R ) ~ ) o protional to the dynamical quark mass
W,(t,p)=[apB(p)— BB"(—p)]&,(p)e 1P kol )
- - - e 1 — M
+[ypDT(—p) = 8,D(p)17,(—p)e* '[P ot o (V) =-2 a} (?)- (19
15 2VNMNe 5 (p)

and satisfies the equation of motion corresponding to the freBelow we shall derive a gap equation fdt(p) and show
lattice Dirac Hamiltonian at finite chemical potential given that for a given physically reasonable set of parameters there
by exists a critical chemical potential above whith(p)=0.
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Thus the chiral condensate may be identified as being thewest order in the N expansion thereby completing our
order parameter for the chiral phase transition at finite deneonstruction of a solution to the lattice field theory defined

sity. by Hef-
The equation of motion foH o is obtained by exploiting
IV. APPLICATIONS OF THE EQUATION OF MOTION the fact that our ansatz also satisfies the equation of motion

corresponding to the free lattice Dirac Hamiltonidf given
in Eq. (16). We therefore have the relation

We now calculate the equation of motion corresponding R
to He With our ansatz for finitew using two light flavors. (W ae)(1,0), Herl - 1= :[(Wa,),(1,9),H]_: (20)
The result is used to show that our ansatz exactly diagonal-
izes the Hamiltonian to second order in field operators for all
densities and to calculate the vacuum energy density. In advhich plays a crucial role in our construction of a solution
dition, by analyzing the Dirac structure of the equation offor the quark field¥. Evaluating both sides of E420) and
motion we derive coupled equations for the dynamical quarlequating terms which are linear in the field operators we
mass and the total chemical potential. They are solved tobtain the equation of motion fo¥

A. The equation of motion

[ZI Sin(A-N) (Yo pst M(A)(¥0) po— iot0ps| (W aa) 5s(1,0)

Mo(Y0) ps— oS5+ KEE @2A S (P)@{cod p—a) - M[(Z),(E) s+ (SN TS0,

08P A) AL(E ) u(Z0) ot (S0)p(Z0) vl -~ - 422[2a2A+<p> 8,0 {NL(Z),(21)]5

(2121 6]+ o p+a) ML PEN L5+ (E0)pu(E1) o]} | (Pad) o1,0) (21)

with A (p)=£&(p)@ £7(p) being the positive energy projection operator defined in(B48a).

B. Diagonalization of H . and the vacuum energy density
We shall now show that ouF— 0 ansatz exactly diagonalizes the effective Hamiltonian to second order in field operators.

The diagonalization procedure involves only algebraic substitutions and does not require any approximations. The quantity of
interest here is the off-diagonal Hamiltonian which, to second order in field operators, is found to be

HoG(0,1)) == 2, 1 ag&l ()Mol 0) ps— odpsl + 1 KE E ajagh; (p)® &N (a){cogtp—a) - N(Z),.(E))s

q

+H(E) 2,51+ cogp+a) - ML (S) (SN L5+ (S0, (S0 sl — 2 2 ag[2a5A ()= 8,,]

D ENDINL(ZN),(ED) s+ (D] (Z1),s]+cogp+a) ML (S (ENTs+ (), (21,51} 75— Q)

®B! .(q)D] .(—9)|G(0u)). (22)

We see from Eq(22) that the elementary excitations of the effective Hamiltonian are color sifglets) quark-antiquark
excitations coupled to zero total three momentum. They correspond to the meson propagation on the lattice responsible for
lifting the degeneracy of the ground state of strongly coupled QCD.

With the use of the equation of motion for tHe field Eq. (21), the equation of motion for the spinor Eq.(A16) and the
orthonormality condition for thé and » spinors Eq(A8), we can show that

074501-5



YASUO UMINO PHYSICAL REVIEW D 66, 074501 (2002

Ho| G(Ou)) =2, {aqgj;(ci)[—El Sin(a'ﬁﬂ(?’o%)pa_M(d)()’o)w"‘#mﬁpﬁ}775(_&) ®B! (a)D], J(—0)|G(0n))
q

—2 {ag€h (D[ @(Q)+ o] 7,(— DIBL (@)D}, 2(—A)|G(0,)) =0. (23)

Note that this result is valid for any dynamical quark mass and total chemical potential. Thereford in €hEmit our ansatz
shown in Eq.(15) exactly diagonalizes the effective Hamiltonian to second order in field operators for all densities.

Having diagonalized the second order Hamiltonian we can proceed to evaluate the vacuum energy density. (&ling Eq.
once more we find

—<g<om|Heﬁlg (0u))=—Ng Nfz {a2MTITA Y (P) Yol + 28510}t — KZ E ajalA ) (P)AL(Q)
®{cogp—q)-n( 2)p(Z0)y 5+(2|)T (21) 5]+ cogp+Q)- nl[(zﬂJr () 5+(2 pr(Z1) ysl}
K
+552a 2 aglagh (@)= 8, A 5 (P BN (X020 5t (X0)5(20) 0]

+005{5+a)‘ﬁl[(zl)zv(2|);5+(2|)py(2|)75]}

=—2N.2, {aﬁ EK(1+r )+ w(p)+ (p)M —i—(l—rz)cos{mq) ~ Mot
ba 2 o(p)
+(1+B§)Mo] : (24)

For free space the difference of the vacuum energy densitiephe equations foM (p) and u are obtained by equating
in the Wigner-Weyl [M(q) 0] and Nambu-Goldstone the coefficents of they, operator and the Kronecker delta

[M(q)#0] phases of the theory is positive function, respectively.
The gap equation determinirg(p) is given by the co-
1 1 . .
= \—/<Q|Heﬁ|g>|M(d’)=0— v<g|Heﬁ|g>|M(a)#o>0 efficient B(q)
(25

Numerically we find that Eq:25) also holds for finite chemi-  M(q)=B(q)
cal potential. Therefore the true ground state of our interact-

ing many body system is in the phase with broken chiral

3 (5)
_r2 _
symmetry. =Mo+ 5 K(1-r )E‘, (1-B%)

o(p) NG

C. Dynamical quark mass andyly

M N N
5 (?)®{8r2005(p~n|)cos{q-n|)

We now derive the equations for the dynamical quark
mass and the total chemical potential and solve them to de- 1
termine our solution Eq(15) for each density at zero tem- ——(1+ r2)005(5+a).ﬁ|}_ (27)
perature. To accomplish this we explicitly evaluate the right- 2
hand side of Eq(21) to reveal its Dirac structure. The result
may be cast in the following compact form:

> sin(g- ) Yoy vst M(D)(¥0) vs— KiotOns The structure of this gap equation is very similar to the one
! in free space g5=0) found in Ref.[21]. The dynamical
guark mass is a constant to lowest ordeNig but becomes

X (Waa)o(1,0) momentum dependent onceNY correction is taken into ac-

=[A(q +B(g +C() s count.
LAY For)sat BIA) (Yo)ust C(2) 2, Similarly, the total chemical potential is given by the co-
X (Waq) 5(1,0). (26)  efficientC(q)
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M(Free)
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O L
0 05

FIG. 1. Dynamical quark masses in free spddéfree) to
O(N?:) as functions of the effective coupling constaftobtained
using Wilson parametens=0.00,0.50, and 0.75. The critical cou-
pling constants ar&-=0.732,0.976, and 1.673 far=0.00,0.50,
and 0.75, respectively.

> BA2N(1+712?)

p
—2(1-r?codp+q)].

Thus i Is @ sum of the bare chemical potentigl and an
interaction induced chemical potential which is proportional
to the effective coupling constait. Furthermore, the latter
contribution tou.; is momentum dependent and this depen-
dence is a M correction just as in the case of the gap

(28)
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Coupled | Uncoupled

r=0.00,K=0.9
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FIG. 2. Dynamical quark masséd as functions of the bare
chemical potential to lowest order ilN¢. The dynamical mass
labeled “uncoupled” was obtained by simply solving Eg7) with
Miot= Mo and exhibits a first order phase transition with a critical
chemical potential of £o)c=0.825. The result labeled “coupled”
was obtained by solving the coupled equati¢®® and (28) self-
consistently. A first order phase transition also takes place, but now
the value of ()¢ is 0.785. The Wilson parameter and the coupling
constant are set to=0.0 andK=0.9, respectively.

broken symmetry phase. This is also true for theO case
corresponding to the use of Kogut-Susskind fermions. In this
case the symmetry breaking takes place onlyKer0.732.

The dependence of the dynamical mass, and consequently
jof the chiral condensate through Ed9), on the coupling
constant is qualitatively different from the results obtained
_previously using thesameeffective Hamiltoniar{20,26]. In

both[20] and[26] qq pair condensation occurs fanyvalue

equation. It should be noted that the above shifting of thedf K>0. We find that the attraction between a quark and an
bare chemical potential by the interaction is not a new effectantiquark must be sufficiently large enough fogaq pair to

For example, in the well-known and well-studied Nambu-

Jona-Lasinio mode[23] at finite T and x the interaction

condensate in the vacuum. Thus our approach provides a
mechanism for chiral symmetry breaking which other ap-

induces a contribution to the total chemical potential whichproaches do not. In addition, our results are consistent with

is proportional to the number densitg4,25.

The two equation§27) and(28) are coupled and therefore
solutions forM and u,; must be found self-consistently for
each value of the |nput parametgr. We shall solve the
coupled equations t@(NC) which is equivalent to invoking
the mean field approximation. At this order Ny both the
dynamical mass and the total chemical potential are mome
tum independent. It is also the same order in tHd:1éx-

the works by Finger and Mandul27] and by Amer, Le
Yaouanc, Oliver, Pene, and RaytﬁZB] who have shown that

in QCD in the Coulomb gauggq condensation takes place
only above a critical coupling constant.

Examples of finitex solutions to the coupled equations
Eqgs.(27) and(28) to lowest order ifN¢ are shown in Figs. 2
fand 3. In Fig. 2 we show dynamical masses as functions of
the bare chemical potentiak to highlight the importance of

pansion used to obtain results in all previous studies o0&olving the coupled equations consistently. The figure shows

strongly coupled lattice QCD. All results are presented usin
MOZO anch=3.
We first discuss the solutions to the gap equation in fre

@he dynamical quark mass obtained by solving only E2j#).
with uio= o as well the mass obtained by solving the
&oupled equations consistently. Usings0 and K=0.9 a

space. In Fig. 1 we show dynamical quark masses in fregrst order phase transition is observed in both cases, but the

spaceM (free) as functions of the coupling constdftfor
Wilson parameters =0.00,0.50, and 0.75. The dynamical

values of the criticajuy are 0.825 whemu,= o and 0.785
when the two equations are solved self-consistently. There-

quark masses were obtained in a straightfoward manner bire the critical chemical potential will be overestimated if

solving the free space gap equation

M (free)

3
M(free)=Mo+ 5 K(1-1%)2 (29
p

o(p)

The figure shows that for each valuerathere exists a criti-
cal coupling constari ->0 above which the theory is in the

interaction induced corrections to the bare chemical potential
are ignored.

In Fig. 3 we present the dynamical mass as a function of
thetotal chemical potential, for two values oK obtained
with r=0.25. From the figure we see that the phase transi-
tion can be either first or second order depending on the
value of the coupling constant. Whé& 0.9 we find a sec-
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Total Chemical Potential

FIG. 3. Dynamical quark masd as a function of total chemical FIG. 4. Quark number densityas a function of total chemical

potential o for two values of the effective coupling constefit  yential . for two values of effective coupling constalitwith
These results were obtained by solving EG&7) and (28) self- | _ 55 \wherk =0.9 there is a jump in the number density at the

consiste_ntly to lowest or_d_er iNc usingr:0.2§. There ?s a second phase transition point at u(,)c~0.716 from n~0.037 to n
order chiral phase transition when the effective coupling congtant ~0.070, while fork =1.0 n becomes unity immediately above the

is 0.9 with a critical chemical potential Oft) c~0.716. The order  qjica| chemical potential of 4,)c~0.871 due to lattice satura-
of the phase transition becomes first order wifla{c~0.871

whenK is increased to 1.0.

ond order phase transition with a critical chemical potentialsgir(‘ji;engﬁ;?gz'n ';uirr;[hl‘\?erz?lcg]ei;hi(r?\;zgzt;%réﬂtfg;r?hgfst?ri:;c?-
f ~0.716, while if th li tantis i d : ) : .
Of (110)c , WIS [T e COUPTING cONSIantIS INCreased o, o interaction. Therefore the results presented in [R&f.

to K=1.0 the phase transition becomes first order with af _ t nothing but th btained in the lati
larger critical chemical potential ofif,)c~0.871. This in- s(;rtLﬁLr;tiIL(L)ﬁ Tﬁﬁirtesen nothing but those obtained in the fatice

crease in the critical chemical potential wkhhas also been
observed in Ref[11]. Furthermore, we find that wheld

=0.9 lattice saturation sets in above)c at aroundgy V. EQUATION OF STATE
~0.898 while this effect takes place immediately above

for K=1.0. These values of chemical potentials are . . . )
grtltoatl)lgr than the energg=1/K required to excitF()a one color state_by ngmerlcally eva_luatmg the thermod_ynamlc potgnnal
density using the mean field solution determined above in the

electric flux link as given in Eq(5). Therefore with a rea- ; :
sonable set of parameters it is possible to extend Smit's e]g{acuum energy density ER4). In Fig. 5 we plot pressure as

fective Hamiltonian to finite density as was first pointed out® [UNCtON Of i for K=0.8 and 0.9. The value of the Wl-
in Ref. [14] y P son parameter i$=0.0 so that the results have been ob-

Having solved the self-consistency equations for the dy_talned using Kogut-Susskind fermions. For both valueK of

namical quark mass and the total chemical potential to low~'S find that the pressure of the quark Fermi sea is negative

est order inN¢ we have constructed a mean field solution forand monotonically decreasing in the broken symmetry phase.
~C U ) S For K= 0.8 the pressure remains negative but increases in the
the quark field appearing in the effective Hamiltonian Eq.

. . . ymmetry restored phase, at least until the lattice saturation
(4). In Fig. 4 we show the quark number density obtained>)" )
with this solution as a function gd, for K=0.9 and 1.0. In point, and has a cusp where the two phases meet. Unfortu

both cases the number density is a monotonicall increasinnately’ fork=0.9 we cannot make a definite quantitative
: . Y y Satement concerning the behavior of the pressure in the
function of u, in the broken symmetry phase. Whén

=0.9 there is a jump in the number density at the phase

We are now in a position to determine the equation of

" ; 0.01 ——
transition point at fio)c~0.716 from n~0.037 to n
~0.070. Beyond this point the number density continues to or ]
increase monotonically until when the lattice saturation sets 001} 1
in at u,=0.898. This behavior of the number density is o

. ) X ) 5 -002f 1
gualitatively the same as the one obtained numerically using 2
the Monomer-Dimer-Polymer algorithm as can be seen from & 003} 1
a comparison with Figure 5 of Rdf2]. For K=1.0 the lat- .0.04 | _
tice saturation takes place at the phase transition point at 005 | |
(00 c~0.871 and beyond this point the number density re- ' r=0.00
mains a constant at=1. Noting that the number density at -0.06 —

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

the phase transition point i3~0.013, the number density
for K=1.0 may be approximated by a Heaviside function of
the formn= 6] uoi— (o) c]- This is exactly the result ob- FIG. 5. Pressure as a function of total chemical potentig)
tained in Eq.(2.47) of Ref.[15] where a different effective obtained using Kogut-Susskind fermiorrs<(0.0) with K=0.8 and
Hamiltonian was used to study strongly coupled lattice QCD0.9.

Total Chemical Potential
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field level the order of the chiral phase transition can be
Of \K=1 0_ either first or second order depending on the values of input
002 ' 7] parameters.

© The equation of state was obtained by evaluating the ther-

2 004 i modynamic potential density from the vacuum energy den-

L sity using our solution. We find that the pressure of the
0.06 | i strongly interacting many body system may be negative in
the broken symmetry phase indicating the mechanical insta-

008} r=025 _ bility of our quark Fermi sea. There are indications of this

TR S S — instability beyond the phase transition point although no

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 definite conclusions could be reached for very high densities

Total Chemical Potential due to lattice saturation. Nevertheless this behavior of the
FIG. 6. Pressure as a function of total chemical poteniig| pressure was found both for the case of Kogut-Sus;kind and
obtained using Wilson fermions €0.25) with K =0.9 and 1.0. Wilson fermions and seems, at least at the mean field level,

to be robust. In addition, our result concerning negative pres-

symmetry restored phase due to lattice saturation, except f/r€ is in qualitative agreement with studies using continuum
mention that there is a discontinuity when going from one€ffective QCD models, and therefore should certainly be
phase to another. We find qualitatively similar results whenVerified by future lattice simulations of strongly coupled
Wilson fermions are used to calculate the pressure as showgCD at finite density. . .

in Fig. 6. The parameter used in this figure are0.25 and To include temperature into our formalism we simply re-
K=0.9 and 1.0. We may therefore conclude, at least at th@8al our calculations using the ansatz given in 84 at
mean field level, that up to and beyond the chiral symmetry’OnZeroT. Preliminary calculations indicated that, in addi-
restoration point the quark Fermi sea can have negative preton © particle-antiparticle excitations, the elementary exci-

sure and therefore can be mechanically unstable with aftions would now involve particle-hole, antiparticle—
imaginary speed of sound. antihole and hole-antihole excitations. Because of these

Our conclusion regarding théstrongly coupley quark additional types of excitations our ansatz would no longer be
matter stability at finite density is consistent with similar 2PI€ t0 exactly diagonalize the second order Hamiltonian. In
studies using effective continuum models of QCD. In thef@Cl; @ simple exercise would show that at finlteven the
Nambu-Jona-Lasinio modgL6] and the instanton induced 't free.latt|ce Dirac Hanj|ltor)|an Eq;B) is not.d|a}gonal due to
Hooft interaction mode[17], mean field calculations show Particle-hole and antiparticle-antihole excitations. _
that cold and dense quark matter may be unstable in the W& NOW turn our attention to the possibility of studying
phase with spontaneously broken chiral symmetry, but Cane nature of _the conflnemt_ent-d_econfln_ement phgs_e transi-
become stable in the symmetry restored phase at higﬁon' Our s_olutlon presented in this WOI’!( is nonconflmn_g and
enough density. In particular, the result for the pressure obt€refore it would be hopeless to use it to study this impor-
tained in Ref[17] is qualitatively the same as the one showntant p.ha.se transition. What is lacking in our forr_nallsm is the
in Figs. 5 and 6 as can be seen by comparing the figures witfiescription of bound states. However, our solution presented
Fig. 1 of Ref.[17]. The possibility of unstable quark mattter N€re is by no means unique or complete and it can be sys-
lead the authors of Ref§16] and[17] to speculate the for- tematically w_nproved _to mclude gll_the bound_states aII_owed
mation of nucleon droplets, reminiscent of the MIT bag by the effective I-!amﬂtqm_an. This is accomplished by inter-
model, in the broken symmetry phase. We shall not indulg€ting our solution within the context of thi-quantum
in such a speculation here since we are working in an artifi@PProachiNQA) to quantum field theory18,19. _
cial strong coupling regime. Nevertheless, our results con- NQA is @ method to solve field equations of motion by
cerning the negative pressure is certainly verifiable in futuréPanding the interacting Heisenberg fields in terms of

lattice simulations of finite density QCD at strong coupling. 2Symptotic fields obeying the free field equations of motion.
Here the on-shell masses can but need not equal the physical

masses of the fields. This expansion is known as the Haag
expansior 29] and our ansatz presented here is nothing but
In this work we studied the equation of state of two fla-the first term in this expansion. Note that because we are
vored Hamiltonian lattice QCD in the strong coupling limit Working in the HamiltoniartKogut-Susskingiformulation of
at finite density using both Kogut-Susskind and Wilson fer-lattice field theory the time variable is continuous and there-
mions. Starting from an effective lattice Hamiltonian for the fore we can introduce and work with the concept of
ground state of the strongly coupled QCD, we constructed &Symptotic fields. The second order terms in the Haag expan-
mean field solution which exactly diagonalizes the Hamil-Sion would consist of a product of fermionic quark fields and
tonian to second order in field operators for all densitiesbosonic elementary color singlgty bound state fields. The
This solution obeys the free lattice Dirac equation with acoefficient of each of the second order terms are interpreted
dynamical quark mass and total chemical potential which aras creation amplitudes for the bound states and are known as
determined by solving a coupled set of equations obtainetflaag amplitudes.
from the equation of motion. From the gap equation deter- Supressing color and flavor indices for simplicity, our ex-
mining the dynamical quark mass we find that at the meartended ansatz for the Heisenberg quark figtdto second

VI. CONCLUSION AND OUTLOOK
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order in the Haag expansion in free space will have the fol- - - o (D5
lowing structure: W ,(t,x)=2, [b(p)&,(p)e i ((Pt=Px)
P

free 3\ _ 0/ G S P 53t b B +d"(p) 7,(p)e' (P ~P] (A2)
P (q)—\PV(q)JrEi fd kd*b&%(q+k—b) ]
N R . with v denoting the Dirac index. The excitation energfp)
x f0)(k,b): ¥ o(—K)BG,(b):, (30 will be determined shortly. The annihilation operatbrand
d annihilate the noninteracting vacuum sta). For our
where the colons denote normal ordering. In E&f), B is  Purpose it is not necessary to know the structure of the
the elementary bosonic field while the superscript 0 indicate§Pinors¢ and 7. ) )
that the fields obey their corresponding free field equations The only assumption that we shall make is that the cre-
of motion. The Haag amplitudes are denotedfb}with the ation and lanmhlla.tlon operators obey the free fermion anti-
sum over the index running through all the possible bound commutation relations
states allowed by the Hamiltonian. These states are the color t = . fo - o
singletqq elementary excitations identified in this work. The [b'(p),b(a)]+=[d"(p),d(a)]+=Jp4- (A3)
basic idea of NQA is to use the field equations of motion an
derive integral equations for the Haag amplitudes and sol
them to obatin a solution to the equation of motion.

In order to solve for the Haag amplitudes it is necessary to
calculate the mass and the coupling constant for each of the
bound states. This has been accomplished successfully at fi- . , .
nite T and w for the two flavored ‘t Hooft interaction model Browded thatg and # satisfy the relation
[30]. In addition to bound state masses and coupling con- St R T
stants it is also possible to determine the widths of these Eo(P)EP) T 7,(=P) 7= P)= 5, (A5)
states. This quantity is the key to studying the c:om‘inementwe normalize the spinors by demanding that the number
deconfinement phase transition within our formalism. In thedensity is given by
confined phase the bound states will have vanishing widths
while in the deconfined phase we expect to see unbound
resonant states with finite widths. Hence we propose to usa/= >, :W(t,x)W(t,x):=22, [b'(p)b(p)—d'(p)d(p)],
the widths of thegq states as an order parameter to study the x p (A6)
nature of the deconfinement phase transition within strong

coupling QCD. where the colons denote normal ordering with respef0tp
and the factor of 2 accounts for the spin degrees of freedom.
ACKNOWLEDGMENTS Equation(A6) fixes the normalizations of and » to be

\fbsing this assumption we can recover the anticommutation
Felations for the field operators

[W,(t,), W (t,Y)], = 85,30

pv

(A4)
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priafity and 9 PP E1(P) n(—P)= nl(P)EL—P)=0 (A8)

APPENDIX: PROPERTIES OF FREE WILSON FERMIONS which are consistent with EGA5).

. . . ) In momentum space the charge conjugaton symmetric
In this appendix we present the properties of free Wllsonform of HO is

fermions on the lattice in the Hamiltonian formulatips).

The free lattice Dirac Hamiltonian is given by 1
0 - -
H 252 —EI: sin(p-ny) yoy1+M(p) vo

1 - .. A R P pv
HO= 2 20 [T 00 yonW (x+m) =T (x+1) %01 ¥ (X)] - -

2i 7 X[¥l(t,p), ¥, (t,—p)]-, (A9)

- - - - A ey
+ M% T(X) yo W (X) — 5 % [V (X) yo¥ (X+ 1)) where the momentum dependent mass term is given by
FUGR) Y0¥ (D), (A1) M(p)=M—r 2 cogp-n). (A10)

where the third term is the Wilson term. For= 0 there is an  The free Dirac field now becomes

eightfold fermion multiplicity which is removed when ) 3
#0. At each lattice site the free Dirac field in configuration W (t,p)=b(p)&,(p)e ' “Pt+dT(—p)n,(—p)et Pt
space is given by (A11)
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which is used to derive the equation of motion correspondingplicity mentioned above. This degeneracy is lifted when

to Eq. (A9)
iW(t,p)=:[W(t,p),H]_: (A12)
=(ZI sin(ﬁ-ﬁ|>yoy|+M<6>70)qf<t,5>. (A13)
From Eq.(A13) one obtains the excitation energy
w<5)=(2| sinz(ﬁ'ﬁ.>+M2<|5))l/2 (A14)

and the equations of motion for tifeand » spinors

w<5>§<5>=(2| sin(ﬁ-ﬁ.my.+M(ﬁ)yO)aﬁ),
(A15)

w<5>n<—6>=—(2 sin(ﬁ-ﬁ.woy.w(ﬁ)yo) n(—p).
(A16)

Whenr =0 these equations of motion are relativistic near

the eight corners of the Brillouin zone denoted by
=(0,0,0), m=(,0,0), m,=(0,m,0), 7,=(0,07), my,
=(m,,0), and  yy,

7;x2= (m,0,m), 7;y2= (0,7,11),

=(r,m, ). The excitation energies near these values of mo-

#0 due to the momentum dependent mass term(&g0).
Using the equations of motion faf and # it is a simple
excercise to show that the off-diagonal Hamiltonian vanishes
and that the vacuum energy is given by

(0|HY|0)y=—2V>, w(p).
p

(A17)

Finally, we construct positive and negative energy projection
operatorsA *(p) andA ~(p) as follows:

AT (p)=&(p)@ £ (p)

1 1 o M(p)
=—|1+ — Si ‘N + — ,
> o(p) 2| n(p-N) v o(p) Yo
(A183)
A~ (P=n(-p)@5'(—p)
1 1 o M(p)
=-1-—= sin(p-n ——= 70|
> () El n(p-Ny) Yov o(P) Yo
(A18b)

Note that the projection operators obey the condition

[AT(P)+A™(P)]p=08,, (A19)

menta are equal which corresponds to the eightfold multias is required by EqA5).
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