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We introduce a Wilson line distribution functidﬁT(v) to study gluon saturation at small Feynman, or
large 7=In(1/xg). This new distribution can be obtained from the distributf(«) of the color glass
condensate model and the Jalilian-Marian—lancu—McLerran—Weigert—Leonidov—K@INBNVLK) renor-
malization group equatiorv_VT(v) is physically more relevant, and mathematically simpler to deal with be-
cause of unitarity of the Wilson line. A JIMWLK equation is derived folv_VT(v); its properties are studied.
These properties are used to complete Mueller’s derivation of the JIMWLK equation, thou@}(f@) and
not W_(«). They are used to derive a generalized Balitsky-Kovchegov equation for higher multipole ampli-
tudes. They are also used to compute the unintegrated gluon distributier=&t, yielding a completely flat
spectrum in transverse momentum squakédwith a known height. This is similar but not identical to the
mean field result at smak.
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. INTRODUCTION In this paper we introduce and study a distributitn(v)
o for the Wilson linev. We will show that this distribution can
Soft gluons are produced by radiation from more enerpe ghtained fromwW,(a), and that it still satisfies the
getic partons. Since the number of sources increases at sm§| WLK equation. Compared t&V.(a), it has the advan-

Feynmanxg, the soft gluon densitxeG per unit rapidity : . :
interval increases withr=In(1/xz). In fact, both the tage of being more directly physically relevant, because

Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) equa- ~Many physical processes can be described in terms of Wilson
tion [1] and the BalitskiFadin-Kuraev-Lipatov(BFKL) lines or dipole amplitudes. Moreover, the Wilson linesire
equation[2] predict a growth so fast that the unitarity bound unitary matrices, living on the color group manifold, which
72 is violated. To restore unitarity, a new mechanism is reS compact. This compactness brings with it a number of
quired to slow down the growth towasg-=0 [3]. The mo- ~ Mathematical advantages not sharediy «), whose argu-
mentumQ at which this mechanism sets in is known as thementa lives in a noncompact linear space.
saturation momentum W,(v) can be used to derive a number of properties not
The phenomenological implications for the presence of asily obtainable directly fronW,(a). We will use these

saturation momentum have been discussed in many pape&s,narties to complete Mueller's proof of the JIMWLK
[4], but it is not yet clear whether saturation has been ob-

served experimentally. On the theoretical side, the importarffduation[6], although the proof is valid fow(v) and not
thing to note for our present discussion is that soft gluons cafPr W-(a). They will be used to derive a generalized
be treated as a classical color potentiék), because of its Balitsky-Kovehegov (BK) equation for multipole ampli-
large density at smaks . In this background, energetic par- tgdes. We f|_nd th(_';\t once the nonlinear BK equa_mon for th_e
tons interact with soft gluons through their Wilson lines. It is diPole amplitude is solved, all subsequent multipole ampli-
this interaction that is responsible for the saturation procesdudes can be obtained by solving only linear equations. This
Wwith the replacement of soft gluons by a classical Yang-means that saturation of the dipole amplitude automatically
Mills potential, the growth of soft gluon density is deter- leads to saturation of higher multipole amplitudes.
mined by the r dependence of the distribution function  W_(v) will also be used to compute the asymptotic be-
W, («). This dependence is given by a renormalizationhavior of unintegrated gluon distribution &t =0. We get a
group equation known as the Jalilian-Marian—lancu—flat distribution in the gluon transverse momentkifn with a
McLerran—Weigert—Leonidov—KovndédIMWLK) equation  height given by Eq(6.7). This is to be contrasted with the
[5]. mean field resul{2.16) which yields a logarithmic depen-
dence ork? with an undetermined normalization. Preasymp-
totic corrections will also be briefly discussed.

*Email address: Lam@physics.mcgill.ca In the next section we start with a short review of satura-
"Email address: gdm10@psu.edu tion, the JIMWLK equation, the related BK equation, and the
*Email address: Zhuweia@public8.sta.net.cn BFKL equation, as well as some of their solutions. In Sec.
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I11, the Wilson line distributioW_(v) is introduced, together ~1/Q. Hence the cross section for two gluons to interact can
with some mathematical preliminaries. The JIMWLK equa-be estimated to be af/7)[N./(NZ—1)](7/Q?). If the

tion for V_\/T(v) is derived, and its properties studied. In Sec.Cr0SS sm_action.is larger than the transverse area per gluon, then
IV, the missing steps of Mueller’s derivation of the JIMWLK mterachon will take place to set off the nonlinear mecha-
equation are supplied. In Sec. V, the infrared divergence erliSM. The onset therefore occurs at a momentum sQale
countered in the JIMWLK equation is discussed. It is showrSuch that

that certain multipole functions which we call multipole

traces are _free of these c_zlivergences. A_generalized BK equa- TREIXEG (X ,Q2) = c(as/m)[Ne/(N2—1)1(m/QP),

tion is derived to describe the evolution of the multipole (2.1)
amplitudes. In Sec. VI, we discuss the property and implica-

tions of the asymptotic solution & (v) atxg=0. In par-

ticular, the unintegrated momentum spectrum of the gluo

density is derived. Correction to the asymptotic limit when

xg# 0 is briefly discussed. Certain mathematical details can aN, X:G(xg,Q2)

be found in Appendixes A and B at the end. Q2=c—p— . S
After this paper was submitted for publication, we were Ne—1 TRy

informed of an interesting recent pagdé& in which W,(v)

was also introduced and its JIMWLK equation derived. It o constantc has been inserted to account for the qualitative
went on to give a random-walk interpretation of the napyre of this argument. Even whe? is obtained from a
JIMWLK equations, withr playing the role of timep the  yegajled calculation, the constanis still somewhat ambigu-

o equivalently,

2.2

position in the group manifold, and the velocity. ous because transition into saturation does not occur sharply.
Thus one finds a number afs used in the literature. For
Il. A BRIEF REVIEW examplec=1 in[10], c= 72 in [9] when estimated from the

Th b f al itted b | K mean field approximation on the large’ side, andc
€ number of gluons emitted Dby a valence quark, Per_ 5.2, \yhen estimated on the sméf side, wherec; is

LIS ) s per it ansvetse MOMEDU some unnown consant. At n (11
q 159 P Y DYt el K Qs can also be defined through the unintegrated gluon

where as=g?/4 is the QCD fine structure constanle is densityd(xgG)/dk?. When we reducé&? from infinity, this

the Casimir number in the fundamental representation, belngensity increases until a poikf= Q2 when gluons bécome
2_ 1 — Ns

EJN?\I ”fNC flor the.tﬁautge _grou;ﬁé)e();\\l?]), aAnl\(lj 2Nf for sufficiently dense to set off the nonlinear mechanism. From
(No). nucleus with atomic nNUMBER NasANe vaencze there on we enter a saturation region with much slower

quarks, so its unintegrated gluon distributiondil/drdk growth. However, this definition is also ambiguous unless

— 2_ 2
=d(xgG)/dk?= asCe(AN)/ k", ) .the slowdown occurs fairly sharply, which turns out to be the
When integrated, this formula encounters an infrared di o atx-=0. As we shall see in Sec. VIA, at=0, the

2
vergence at smak®, brought about by the long range gluon <.y ration region is large and the unintegrated spectrum
field of the unshielded valence quarks. However, quarks ara(xFG)/dkz in this region is absolutely flat ik2. This then
confined inside color-singlet nucleons, so such a long rangg|ows ¢ to be determined unambiguously to be 873

forcc;e is zab_sentcbe'g\/ﬁnd/ tf|1e guzcleon radias Thus Using the BFKL solution forxgG as a qualitative esti-
XeG(xe, Q%) =[as F(. : ) 77]. n(Qa). . mate, and assuming thatG is proportional toA, we see
In the central rapidity region where the Feynmegn is {rom Eq.(2.2) thatQ§ grows with a power of ¥ andAY3

small, the gluon density is much larger than the amoun aking it large for large nucleus or smajt . Equation(2.2)
given by the perturbation formula. This is so because soffiaxing tiarg 9 - £ '
so implies that the gluon number per unit transverse area at

gluons can be radiated also from energetic gluons and se N 5
quarks, not just from the valence quarks considered so fapaturation is= Qs(x)/ as. )
According to the DGLAR1] equation, the soft gluon density The large number of gluons present at saturation _aIIows
grows as expé/7) for some positive constant, and, ac- thenj to be treated gs a_ classical ang—M(Wlpotentlal
cording to the BFKL equation[2], it grows as @°(X). The superscripais the color index, and=(x",x)
ex4adn(2)N.77]. Both exceed the unitarity limit?, soa are the light congLC) coordinates, defined for a hadron
new mechanism must kick in to dampen the growth andmoving along the+ z direction to bex™ = (t+2)/y2 andx
restore unitarity at smalke [3]. This effect is known as =(xx?). It is also convenient to introduce the spacetime
saturation rapidity variabley=In(x"P*), whereP™ is the + compo-
Saturation is thought to arise from a nonlinear mechanisnt€nt of the hadron momentum, and the gluon potential
which occurs when gluons are sufficiently dense to interactey(X) =X~ a(x™,X).
among themselvel8,9]. The number of gluons per unit ra- For a fast moving hadrofor nucleu$, Lorentz contrac-
pidity interval isxgG. In a nucleus of radiuR,, the trans-  tion forcesa(x) to be concentrated around =0, and time
verse area per gluon is therefar®a/x-G(x¢,Q?). The av-  dilation makes it effectivelyLC) time (x*) independent.
erage color-charge squared of a gluomig/(N2—1), their ~ The soft gluons are produced by partons within the hadron,
interaction strength is~ag/, and their natural size is so one can assume(x)=0 for y>r [9].
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Energetic partons, whether in the same hadron or not, IW,(a)

interact with the soft gluons through the Wilson line factors o~ HWia), (2.9

where

vT(x)=P ex;{ +igfw ana(i)ta)
. H= if d2zd?xd?yK (xy|z) O(xy|2),
:pexp(+igf dya;‘(x)ta), ” 25
O(XY|Z): [VT(X)_VT(Z)]ac

Sa?(X)

T

v(x)=P ex;( —ig ch dx~ aa(i)ta)

. X[VY)=V(D]eb 5>
=P ex;( —igﬁ dy a?(x)ta), sal(y)

(23) and

vT(x)=Pexp( +ig i dx—aa(i)Ta) _ 1 x=29)-(y-2 )
J‘—oo K(Xy|z) 477_3 (x—z)z(y—z)z ( 6)

A consequence of Eq$2.4) and(2.5) is that the normaliza-
tion [D[ «]W («) is independent of. We will normalize it
to be 1, so that the average of any functionakofs given
simply by (F),= [ D[a]F(a)W(a).

The functional derivatives/ 5a2 of V' andVin Eq.(2.5),
and similarly those of T andv that we will encounter later,
are

:Pex;{ +ing dyaf}(x)Ta),

V(x)=P exp( —ig f dxaa(f)Ta)

=p exp( —ig fj dy a';‘(x)Ta) ,

N@
= =19TaV(2)8(x~2),
whereP andP indicate, respectively, path ordering and anti- darz(X)
path ordering. The first two expressions describe the propa- .
gation of quarks and antiquarks, respectively, through the dv'(2)

=igtw'(2)6(x—2),

dense background of the soft gluons, and the last two expres- 8a2(X)

sions describe the propagation of gluons. These Wilson lines 2.7

play a central role in the rest of the paper. NV(2) '
In this representation of soft gluons by a classical back- =—igV(2)T.8(x—2),

ground field, the gluon distribution is determined by the dis- Sa?(x)

tribution W_(«) of the YM potential.W,_. depends orr be-

cause the number of sources available to emit soft gluons Sv(2) .

increases at smaX . 5a?(x) =—igV(2)t,8(x—12).

The resulting change of the distribution functioid]( «)
can be shown to satisfy the JIMWLK renormalization group

equation[5] For calculational simplicity it is useful to note that

VI(x)—V'(2) in Eq. (2.5 may be put in front of the opera-
tor 8/ 8a2(x). This follows from Eq.(2.7) and the observa-

e shall use upper-case letters to denote the adjoint representrz’;\(-)n that _(Ta)ac= I_faac=0. . . .
tion and lower-case letters to denote the defining representation. In. A partlcu!arly important physical quantity to study is the
this notation, the generators in the defining representation will b&iPole amplitude[12]
denoted byt,, and they will be normalized to be tgf,)
=(1/2)6,,. The generators in the adjoint representation are de-
noted byT, . They are related to the totally antisymmetric structure
constants by Ta)pc=ifpac- Hence T,)pc is imaginary and totally
antisymmetric in the three indices. Similarly, the quark and anti-At coincident points
quark Wilson lines will be denoted by the lower-case lettérand
v, and the gluon Wilson line will be denoted by the upper-case s (x,x)=1 (2.9
lettersV' andV. A slight drawback of this convention is that we are
forced to denote the dipole amplitud2.8) by a lower-case letter because of unitarity af. It can be shown from Ed2.4) that
s,, Whereas the usual notation for it %. the dipole amplitude satisfies the Balitsky equatit]

1
ST(X,Y): N_<tr[UT(X)U(Y)]>T- (28)
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ration is now provided by the valence quarks aloneAdms
'[ST(X,Y) to be very large and the resulti@f is relatively small. The
detail of the confinement which affects the smidlregion
1 then becomes relatively importafi8].
- N7<tr[vT(x)v(z)]tr[vT(z)v(y)]>,}. With a Gaussian distribution, the perturbative gluon dis-
¢ tribution is modified by a gluon dipole fact)®]
(2.10

1 - —
Note that the infrared divergence occuring at large Eq. Sx-(r)= Wz_—lﬂ'fUT(X NUXT,0), (219
(2.5 is absent in the Balitsky equation. ¢
For largeN,, the last term factorizes and we arrive at theyyhereU" is equal tov' in Eq. (2.3 with 7 replaced by,

aST(le) —_ aSch dz_' (X_Y)2
o 27 ) 7 (x—2)2y-2)?

Kovchegov equatiof14] andr is the conjugate variable to the transverse momentum
2 k. This factor gives rise to the nonlinear effect that is respon-
IS(X,y) — Ofchf 2, (x=y) {s,(X,y) sible for saturation, with a saturation moment@ugiven by
Jar 27 (x—2)2(y—2)2 Eq. (2.2.
For 7> 74, the W, («) determined by Eq(2.4) no longer
—S:(X,2)8(z.Y)} (21D has a Gaussian distribution. Nevertheless, in a mean field

approximation, the approximate solution is still Gaussian.

Sinces,(x,x) =1, the quantitt (x,y)=1-s,(x,y) isex- gluon distribution for smak? is then given by[9]

pected to be small whex~y. If we deal with soft gluons

outside the saturation region, wheiix) is small, the Wilson d(x:G) N2—1 7R2 Q3(r)
linesv andv " are close to 1 anyway, so we expect to be able =G, ;\I —
to drop the quadratic term(x,2)t,(z,y). In this way we get dk c & Kk

the dipole form of the BFKL equatiof2]

at‘r(xvy) _ aSNCJ' dz_, (X_y)z
(

ar 272 “ X—Z)Z(y—

—t.(zy)}. (2.12) IIl. WILSON LINE DISTRIBUTION

[k?<Qi(7)] (2.16

)2 {tAxy)—t(x,2)  for some constant,.

For |x— y|2> 1/Qs and inside the saturation region, the We shall show later in this section that the distribution

strong classical YM potentiat causes large and independent W(a) of the YM potentiala leads to a distributioV,(v)
oscillations to both Wilson lines™ andv. Consequently the ©Of the Wilson lines.

dipole amplitudes (x—Yy) is expected to be small, thus en-  The notation might suggest th‘vAtT(u) describes only the
abling the nonlinear term in Ed2.11) to be dropped. The distribution of the anti-quark Wilson line, but actually it
solution of the resulting linear equation can be shown to berovides a distribution for the Wilson lines of other partons

[8] as well. Sincev is unltary,v =p !, the variablev" is a
rational function ofv;; soWT(u) does provide the distribu-
_ asNe (7 212 jon k Wilson lines '
s (Xx—y)=exg — —— dy|n[QS(y)x] STO(X—y)_ tion for quar lison lines .
T Jn From the group-theoretical relation
(2.13
.V =0Tt =Vetp, (3.1
It Q¥(y) = extfcaN(y— m)/mIQi() [15], then e T T
or, equivalently, the relation
_ c[aNg\? )
ST(X_Y)—eX _E T (T_ TO) STO(X_Y)' V;CZZtr(Uthvta):Vca! (32)
(2.19

gluon Wilson lines can be expressed as a quark-antiquark
provided 7y is chosen so thaDﬁ(To)(x—y)zz 1. This con-  pair of Wilson lines, so we can also compute the distribution
dition implies (><—y)2=Qg2(ro)>Qg2(r), if 7>75. The  of gluon Wilson lines frorrWT(v)_
solution(2.14) then confirms the expectation thatis small Physical observables are often expressible in terms of
in that region. Wilson lines, so it is clearly desirable to know their distribu-

To solve any of these evolution equations we need amions directly. Moreover, the Wilson line is unitary, which

initial condition at somer= 7,. For a large nucleus, andrg  allows the theory of representation of the unitary group to be
where the source is dominated by the valence quarks, thgsed for computations. For example, an orthonormal com-
initial condition is provided by the McLerran-Venugopalan plete set of polynomials, given by the irreducible represen-
model[16], in which a Gaussian distribution is assumed fortations of the unitary group, exists on the group manifold.

W, (a). For largeA and smallag(QZ), the Gaussian distri- Therefore a harmonic analysis 9f,(v) and other physical
butlon can be shown to be a good approximafibri. Satu- quantities can be carried out to allow their integrals to be
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computed. In contrast.(a) is a function on a noncompact |t will be shown later that the operatdp=uv;;(/dv;;) is
linear space of the Lie algebra, and the only functional thahermitian with respect to this inner product. Sin@k,
can be integrated in practice is the Gaussian. . . — .

— L =vy, the eigenfunctions oD are monomials o, whose

We shall show thatV,(v) satisfies the same JIMWLK  gioenyalues are the degrees of the monomials. The inner

equation(2.4), but with H replaced byH. The latter is ob-  product of two eigenfunctions of a Hermitian operator is zero
tained fromH simply by replacing then derivative by a if their eigenvalues are different. HenceNf,(v) denotes a
differential operator inv. ThereforeH is still Hermitian and  monomial of degre& and M{(v) a monomial of degreé

positive semidefinite. #k, then
Since the group manifold is compact, the spectrum and
eigenfunctions ofH are more manageable. For example, (M ()M (v))=0 (k#I). (3.6

W.(v)=1 is a normalized eigenfunction f with zero ei- . _ .
genvalue, wheread/ (a)=1 has a divergent integral in the This result can be stated in another way. An integral
« space. fdy[v]1B(v,v") is nonzero only when the number of in
Before Showing hOV\V\/— (U) is obtained fromw (a) let Bis equal to its number QfT’S. We shall refer to this later as
T T ) . . :
us first review some basic facts about integrations and orthdN® matching rule It is one of the main tools for our later

normal relations on a compact Lie group. calculations.
To compute inner products whdo=1, we resort to the

theory of representation of thg(n) group, which asserts

that if D2 p(v) is the matrix element of an irreducible repre-
For the sake of definiteness we shall assume the colaentation\, then

group to beU(n), although a similar analysis can be carried

out for SU(n). The n?-dimensional grouf (n) will be pa- , 1

rametrized by ther? matrix elements;;(1<i,j=<n) in the f duy[v]DAg (U)D)éD(U):Wén’éAcéBD: 3.7

defining representation. Unitarity equatésto v 2, so:;i*j is

to be regarded as a dependent variable, given as a rationghere N[\ ] is the dimension of the irreducible representa-
function of v, via this relation. tion \.

. The ir_wr\aariaﬂt volume element dm(lnztwmcti)e dehQOFed by . For example, the defining representationis irreducible
. Thi r measure i nd right invarian : O

g[v] S Haar measure IS a leit and rg anant and has dimensioN,; hence

n<-form, satisfying

A. Inner products on the color group

dufv]=dr[vov]=du[voo] (33 (wilow)= - i (38

for any constanvye U(n). It is positive, and it shall be

normalized tofdy[v]=1. The orthonormal relatiori3.7) can be used to compute
The Haar measuréy[v] is proportional but not equal to inner products of any two monomials in the following way.

the product measurd[v], obtained by taking the exterior First, apply Young's idempotent operatorsloboxes to de-

product of then? 1-forms dvj; . They differ by a Jacobian composeM(v) into a linear combination of irreducible rep-

J(v), so resentationdd*(v). Similarly M/ (v) is decomposed into a

linear combination oD“(v). Then Eq.(3.7) can be used to
du[v]=J(v)d[v]. (3.4 calculate(M(v)|M/ (v)). Clearly it can also be used to cal-

_ _ , culate integralg’'d,[v]B(v,v7).
To get an idea how this comes about, consider a change

dv in the vicinity of a group elemente U(n). Thenv ~‘dv
constitutes a change around the identity, so it can be param-
etrized in the form—it,(d#»,). The volume element at the To apply these properties to the physical problem on
identity is proportional to the exterior product of the hand, we need to generalize them to the case whele-
ndzn,’s, or, equivalently, the exterior product of pends on the transverse positianWe shall denote the color
2itr(v ~dv). If we want the volume element to be left and group containing)(x) asU(n),, andi//=I1,U(n),.

right invariant, as in Eq(3.3), this expression should be The product ovek is to be interpreted in the following
taken as the volume element at any paint U(n). The  way. Cover the transverseplane by a square lattice with a
presence ob ! in this expression is the origin of the Jaco- lattice constana. The produck is to be taken over all lattice
bian J(v) in Eqg. (3.4. Whenn is odd,dy[v] has a very points within the Lorentz-contracted nucleus of transverse

B. Measures and functionals onA and U

simple analytical form, given by EqA1) in Appendix A. radius Ry. The same convention will be applied to sums
Let f(v) andg(v) be two functions on the group mani- overx.
fold. Their inner product is defined to be The measure oty is defined to be
<f(v)|g(v)>=J dulv]f*(v)g(v). (3.5 DH[v]=1:[ dulv(¥)], (3.9
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wheredy[v(x)] is the Haar measure dd(n),. Using Eq.
(3.4) and denotindl,J(v(x)) by J(v), we get

Dylv]=Jv)Dlv],
(3.10
D[v]zll[ d[v(x)].

The measur®[ «] on the Lie algebrad of YM potentials
can be defined in the following way. Divide tlyeaxis into
intervals of sizee. Since we are interested irﬁ(x) only for
y=<r, the appropriate measure is

Dla]=D[a]D[a], (3.1
where
Df[a]sg da?(x),
(3.12

D-lal=cs [T I daj(x),
ys7—€ aXx
with a normalization constart; to be chosen later. In the
same vein, the Wilson line(x) of Eq. (2.3 can be factor-
ized into

(3.13

v(X)=v(X)v(X),

with

v-(X)=P ex;{ —igffedyaj‘(x)ta),
(3.19

v (X)=exd —igad(X)tae].

A change ofa?(x) of amountde?(x) causes a change of
v (x) of amountdv .(x) = —igev (x)t,da?(x), and hence a
change inv(x) by the amountlv (x) = —igev (X)t,da?(x).
Or v Ydv(x)=—iget,da?. In light of the remark below
Eq. (3.4), we can now choose the constagtin Eq.(3.12 so
that

Dylv]=D,[a]. (3.1
We are now ready to discuss hoﬂT(U) can be obtained
from W (a).
A functional of ay(x) for y< 7 can be folded into a func-
tional of v(x) using the formula

_ 1
F(v)=f F(a)d(v—u) mi)[a]

:f F(a)8(v—u)DlulD-[a], (3.18

where

u(x)="P exp( —igffwdyaf;(x)ta), (3.17

PHYSICAL REVIEW D66, 074005 (2002

and

sw—w=[I II slvx);—uxyl,  (3.18

X i,j=1
so that[f(u)8(v—u)D[u]=f(v) for any functionalf (u).
The second equality of3.16 comes from Eqgs.(3.10),
(3.12, and(3.15.
It follows from Eg.(3.16) that

J E(U)DH[U]=JDH[U]D[a]é(v—u)F[a]/J(u)

=f F(a)D[a], 319

soW,(v) is normalized ifW, () is.
It also follows from Eq.(3.16) by an integlation by parts
that the transform obF(a)/5a8(x) is f)a(x)F(v), where

~ )
Da(X)Eigvij(X)(ta)jkW

X)
=igtrlv(X)t,—|, 3.2
gtriv(X)t, 50700 (3.20
and the functional derivative in is defined so that
5qu(y)
5Uij(X) = §pi§qj5(x_y). (32],)

The inner product between two functionalswois defined
to be

<f_<v>|5<v>>=fF*<v>5<v>DH[v]. (3.22

It can be shown(see Appendix A that f)a(x) is anti-
Hermitian with respect to this inner product. In particular,

Do(x) =igui;(X)[ 8/ 6v;; () 112N,

is anti-Hermitian, so the operat@ defined below Eq(3.5
is Hermitian, as previously claimed.

Instead ofD,(x) in Eq. (3.20, it is more convenient to
deal with the matrix operato®(x) andD’(x), whose (n)
matrix elements are defined to be

2 “
Dpn(X)= E(ta)mnDa(X) =0vin(X)

OUim(X)
Dmn(X)EUmi(X)m- (3.23

It can be checked that these two are related by
v(X)D(X)v(X)=D'(X), (3.29
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where the subscripk in vl(x) indicates that thisvT(x)
should not be differentiated by th# sv (x) in D(x). In other
words, in component forms, Ed3.24) readSUimijDmn

t_ -1
When operated on,q andv =

Upq » they yield

Dmn(x)qu(y) =+(X—y) 5mqv pn(y)a

Dinr( X0 4(¥) = = 8(X—Y) Snp he(¥),
(3.25

Dr’nn(x)qu(y) =+6(x—y) 5npvmq(Y),

DXV oY) = = 8(X=Y) St prlY)-

These formulas give rise to the following formulas which are
very useful in practical calculations. Whé&nor D’ operates
on av orv' in a trace, we have

D)t Av(y) 1=+ o(x—y)[Av(y)],

D)o (y)A]=—s(x=y)[vT(y)A],
(3.26
D'()tlv(y)A]=+6(x=y)[v(y)A],

D' ()t AT (y)]=— s(x—y)[AvT(y)].

In other words, when the trace is written in a certain order
the operator® (x) andD’(x) simply remove the trace, and
append to it the factat §(x—y). WhenD or D’ operates on
av orv' in the same trace, we get

tfAD(X)Bu(y)]= + s(x—y)tr[AJtr[Bu (y)],

tTAD(X)Bv(y)]= = s(x—y)t[ BItv (y)A],
(3.2
t{AD' (x)Bu(y)]=+ o(x=y)t Bl v (y)Al,

t{AD' (x)Bu'(y)]= — s(x—y)tr AJt{ Bv"(y)].

PHYSICAL REVIEW D 66, 074005 (2002

1 _
H= ;j d?zd?xd?yK (xy|z) O(xy|2),

_ R (3.29
O(xy|2) =D () V' (x) =V (2)Jad V(y)

—V(2)]esDp(y)-

Like H, H is also Hermitian and positive semidefinite.

Using Egs.(3.23 and(3.2), the operatoO(xy|z) can be
written in a form more convenient for practical calculations.
Remember for this purpose the remark after @q7) that the
factor [VT(x) —V'(2)].c in Eq. (2.5 can be written to the
left of the differential operato®/ sa?(x). In terms of Eq.

(3.29, this means to the left aD,(x). In what follows we

shall useO(xy|z) of Eq. (3.29 in this form.
Using Egs. (3.23, (3.24), and (3.2, and this remark
above, we have

Ven(2Do(y) =ig v (2)tew (2) D),

D,(0)V'(2)=ig v (2)tew (2)D(X)],

Veo(Y) Do(y) =ig tfu (y)tew (Y) D(y)]
=ig trft:D' ()],

D)V (x)=ig tro T (Xt () D(X)]

=ig trt.D'(x)]. (3.30

identity tg#&)tr(t.B)

’

From these relations, and the

= 1tr(AB), we get

5(Xy| 2)= 5xy+ 5xz+ 5zy+ 5221

Ory=

1
— 59D (XD’ (y)],

1 2 ’ T
Oxz=+ 597U D' (X)v(2)Dly)vy(2)],

1 (3.31)
Oyz=+ 592t (D D(X)vi(2)D' (V)]

In other words, the single trace is broken up into a product of

two traces. The matrices,B in these equations are constant
matrices.

C. W (v) and its JIMWLK equation

Using Eq.(3.16), the distribution functionV_(«) can be
folded into the distribution functioW (v) of Wilson lines.

Since 8/ 8a?(x) is transformed intd ,(x) of Eq. (3.20, the
JIMWLK equation(2.4) for W.(«) is now changed into a

JIMWLK equation forW (v):

IW,(v)

= HW(v),

(3.28

where

N — 1 2 T T
Oz~ = 59 Uv(2)P(X)v,(2)v(2)D(Y)vy(2)]

1
== 592t DX)D(Y)].

AssumingW,(v) to be normalizedDy[v]W,(v)=1,
the average of any function8l(v,v") is equal to

(B) = f D[v1B(v,0 YW (v). (3.32

If B andW, are both monomial functionals ofandv, this
functional integral factorizes into a product of integrals on
the groupU(n), each of which can be computed using Egs.
(3.6) and (3.7). In particular, the functional integral is non-
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zero only when the number afs andv''s in BW, is the P a,x a,x IP
same for every transverse positign This is the functional . |
form of thematching rulepreviously considered. f f

IV. MUELLER'S DERIVATION OF THE JIMWLK
EQUATION b,y b,y

—-—
-
-
—-—

In a recent papef6], Mueller proposed a simple deriva-
tion of the JIMWLK equation in the following way.
He showed that if W («) is equal to the dipole

functional v'(s);jv(t),, then the Feynman diagrams for - -
IW (a)/d7 can be written in the form-HW («), with H
given by Eq.(2.5. He then stated that the same is true (a) Hoy (b) H,
if W/(a) is equal to any multipole functional
UT(Sl)iijlvT(Sz)izjz' ~v(ty)k,v(t2)k,, -+, and hence it is P P
likely that the JIMWLK equation foW_(«) is also valid. P a,x a,x .

In this section we shall supply the missing steps of this N el
proof. This consists of filling in the detailed arguments for Al hENE
the multiple functionals, and then showing that they lead to e N
the JIMWLK equation folW_(v). We do not know whether vy 1 t g
the JIMWLK equation forW_(«) follows or not. However, " }
for all our applications, a JIMWLK equation foV (v) is
sufficient, so it really does not matter whether the equation i i
for W,(a) can be proven this way or not.

Instead of starting from the Feynman diagrams to derive - -
the evolution equation, as is done in RE8], we find it
easier to do everything in reverse. That is, we start from the () He (d) Hyy

JIMWLK equation and show that they lead to the correct set

of Feynman graphs. This inverse approach makes it more . ) i

manageable to deal with the complicated multipole function-T Hxz+ Hzy, o H=H,,+H,,+H,,+H,,, operating on a multi-

als. Actually, simplification already occurs at the dipole POle functional with two antiquark Wilson lines' (left-pointing

level: a necessary cancellation in the original derivation irows and three quark Wilson lines (right-pointing arrows The

avoided altogether in this way. dashed lines are the gluon propagators. See the text in Sec. IV. for
The Wilson linev(s) for a quark is drawn in Fig. 1 as a further explanation.

left-pointing arrow, and the Wilson line(t) for an antiquark

is drawn as a right-pointing arrow. Time™ is drawn to =0yt Oyt Oyt Op;. (4.7)

increase from right to left; multiplication of color matrices . o . it

from left to right should be carried out against the arrow of ~Using Eq.(3.1) and the unitarity rglatlorwv =vwv=1,

the fermion lines. we see that the effect oV (y) Il 6/ da(y)], operating on a
The short vertical bars in the middle of the lifgabeled ~ Wilson line, is to place a vertex to the rigfthe smallx™

the interaction pointIP)] indicate the light cone longitudinal side of the IP on the Wilson line. Similarly, the effect of

positionx =0 where interaction between the multipole and[V'(X)1ad 8/ 8a3(x)], operating on a Wilson line, is also to

the pancake nucleus takes place. Sin¢g) is concentrated Place a vertex to the riglithe smalix " side of the IP on the
aroundx =0, we may regarad andv' to be located at the Wilson line.

FIG. 1. Diagrams representing the result Bf=H,,+H,,

IP. We are now ready to see what happens when
The operation 0D 4(x) or 81 5a2(x) on the Wilson lines

is given in Eq.(2.7). This operation can be represented H= f d?zd?xd®yK (xy|z)

graphically by putting a vertex to the Idthe largerx™ side

of the IP, both for the quark Wilson line" and the antiquark X (Oxyt Oyt Oy + 0y)

Wilson linev. The vertex for a quark igyt,, and the vertex

for an antiquark is—igt,. =Hyy+Hy,+Hy+Hy, (4.2
Using the remark following EQ.(2.7), the operator . ) . )

O(xy|2) in Eq. (2.5) can be written in the form operates on a multiple functional, i.e., a collectiorpafuark

andg antiquark Wilson lines.
Hyy puts a vertey to the right of the IP on a Wilson line,
)'[V(Y) and a vertexx also to the right of the IP of the same or a
different Wilson line. These two vertices are then connected
5 by the “gluon propagator’f d?zK(xy|z) 8., Wherea,b are
V@)l — the color indices at the two vertices. The gluon propagator is
da(y) shown in Fig. 1a) with a dashed line. This operation is to be

O=[V'(\)=V(2)]ac

a?(x

T
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applied to every pair of Wilson lines, including the possibil- A P A P

ity of applying to the same line twice. S, : U
Similarly, sinceV'(2)V(z)=1, the effect oH,,is to put . AN : P AN

a vertexy to the left of the IP of a Wilson line, and another : : AN P Y

vertexx to the left of the IP of the same or another Wilson : : B : : =

line. The two vertices are then linked by the same gluon: . i : .
Do T B

propagator. This is shown in Fig(H). :
In both of these cases, the two vertices are both to the ' : : '
same side of the IP. This is not the case with the other twg... I : }
terms.
H,, puts a vertexy with color b to the left of the IP, and FIG. 2. A multiple trace withk=3. The two diagrams have

identical color structure, so their two gluon propagators can be

a vertexx with color a to the right of the IP. These two ; _ . . X
combined into an infrared finite expression.

vertices are linked by a gluon propagator
[d%Z[V(2)].5K (xy|2). This is shown in Fig. ().

There is potentially another contribution td,, when V. INFRARED DIVERGENCE AND THE GENERALIZED
V! (X) 8l Say(x) operates onV,(z). However, this term is BK EQUATION

proportional t08(x—2)V1(X)Vey(2)(Ta)ap, Which is pro- The kernelK(xy|z) of the JIMWLK equation, given in
portional to (T,)a,=0, so that the term is actually absent. gq (2.6), goes as ¥* for large|z|. This causes a log diver-

Similarly, H,, puts a vertey of colorb to the right of the : YY)
. gence inHW («) of Eq. (2.5, andHW _(v) of Eq. (3.29.
IP, ?nd avertex vvll'thkczlorabto th?hleft of tlhe IP. These tW? On the other hand, the dipole amplitud@l) satisfies the
}/(ejrz'csﬁ( )are;(( I|n)eTh's Z sho en _nngonm) propagator Balitsky equation(2.10, whose kernel goes as #j? for
AVi(z .]ab Xy|z). 1hIS | wn in F1g. ). large|z|, so infrared divergence is absent in that case. In this
Appropriate signs and Dirad functions on the transverse section, we shall use the Feynman diagrams derived in the

coordinates must also be inserted. . - .
One might be bothered that the gluon propagators in th(lac‘?r‘?’_)t jgﬁgﬁ; ftroees f:)?\livn;?;i};hzi\rgl:glepnoclz traces defined below

four diagrams appear to be different. Fortunately this is only Multipole tracesare defined by
superficial. To see why they are actually the same, first note
thatT, is imaginary sd/ is real. Hence the gluon Wilson line
[V'(2)].p in the propagator in Fig. (#l) can be written as 1
[V(2)]pa- If we compare this with that of Fig.(&), we see mM(Syty- - - St ) = N—tr[vf(sl)v(tl). —vT(s)v(t)].
that these two are the same, both equdM(z) |, o, Where ¢

a, is the color index before the interaction point, aagdis

the color index after. Since®(x ,z) is concentrated near

X~ =0, we may write, in both cases, the gluon Wilson line aswe will call the functional average of a multiple trace,
(m(sita- - -sety) ), a multiple amplitude When k=1, this
reduces to the dipole amplitud2.8).

The diagram for a multiple trace is shown in Fig. 2. As far
as color-matrix multiplication is concerned, thesk Ihes
should be considered to be joined together at their ends to
form a single big loop with the arrows all pointing the same
way. The joins are indicated by dotted lines in the figure.
Note that if the amplitude does not have the form displayed

(5.9

[V(2)]a,2,=P ex;{—ingdeaa(x,z)Ta , (4.3

where @;,X;) is the interaction vertex to the right of the IP,

apd @,,x,) is the one to the left of the IP. For thg first two in Eq. (5.1), with ' and v occurring alternately inside a
diagrams, we may replack,, by the same expressidh.3), 406 such a big loop cannot be formed and the argument
because in that case bath andx, are to the same side of paiow will not be valid.
the IP; hencex®(x”,2)=0 throughout the integration inter-  consider the two gluon propagators shown in Fig. 2. The
val, s0[V(2)]ap= Sap- _ color structures are identical, but the two terms differ by a
These four types of Feynman graphs are precisely thosggn because the vertéis on a quark line in one diagram
needed for the developmeatV («a)/d7 [6]. Therefore the and on an antiquark line in the other diagram. Their gluon
JIMWLK equation is satisfied wheneve( («) is given by a propagators may therefore be combined inkq(xx|z)
multipole function, namely, a monomial functional wfand —K(xy|z). For large |z|, this is proportional toz-(x
v'. Since polynomial functionals on the group manif(_)ld -y)/(z2%)?=0(1/|2|%); hence the infrared divergence is ab-
form an orthonormal complete set, the JIMWLK equationsent. As a matter of fact, we can also combine diagrams with
(3.28 must be true in general. This completes Mueller'syertexA similarly shifted. The fouK thus combined actually
proof for W, (v). However, sinceN («a) depends on many die down like 1/¢?)? for large|z].

more variablesy,(x~,x) than does (x), it does not neces- It is clear that all the diagrams for the multipole function
sarily follow from this argument that E@2.4) for W («) is  can be paired up in a way similar to Fig. 2, thus eliminating
true. all infrared divergences. Moreover, since the combination is
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obtained by combining two diagrams with vert®xn differ-
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fined to be the product of two multiple traces with these two

ent positions, but the same vertéx finiteness persists for circular argument. For example,

products of multipole traces.

In the rest of this section, we shall derive a generalization
of the Balitsky-Kovchegov equation to multipole amplitudes.
We will see that the kernel of the equation actually behaves

as 1/¢%)? for large|z|, just like the kernel for the Balitsky
equation.

SinceH is Hermitian, the JIMWLK equation satisfied by

V_V,(v) is also satisfied by the multipole tra¢g.1). We may
now use Eqs(3.26), (3.27), (3.29, and (3.3) to simplify

Hm(st;- - - sty). The resulting equation is

Im(syty - - - Sty
— :_[ny+sz+sz+Hyz]m(31tl'"%tk)1

aT
(5.2
where
1 k
Hagm(sy- -t =+ 50°Ng 20 f d?zl;;(2)mfj(sy - ),
1 k
Ham(s - t0=+30°Ne 2 | d*2ly(@mif(s, - t),
. (5.3
1
Hiam(sy- -t =~ 50"Ne 2 | ¢zl (2mif(s,- - 1),
1 k
Hom(sy -t = 50"Ne 2 | ¢l (2miP(s, - to).

The kernel in these equations is

lij(2)=K(s5]|2) —K(stj|2) - K(sti|2)
+K(tit]2), (5.9

which is O[1/(z?)?] for large|z|. It is also symmetric iri

andj: 1;;(2)=1;i(2). The meaning of the multipole traces in

Eq. (5.2) will now be explained.
The argumentg; - - - t,) of the multiple trace in Eq(5.1)

MiZ(s1t1StoSsts) =mM(s; |ty St,S5 ts)
=m(t3S) M(t1S,t583).

The superscripa stands for “after.” The superscrigi to
be found in the other three terms of E.3) stands for
“before.” Each superscript together with its corresponding
subscript tells us where the vertical bar is put. The pai) (
means to put a vertical bar aftgr. The pair pj) tells us to
put a vertical bar befores. With this understanding the
quantitymibjb(sl~ - -t ) can be defined similarly. For example,

(5.6

MIS(S1tS,toSsts) = M(|S1tr oty Sat)
=m(s;t;S,t,)M(ssts). (5.7

If we apply these recipes literally to the last two equations
in (5.3) we will end up with something nonsensical, in that
the numbers ob’s andv ’s within each trace are not iden-
tical, and thus neither is a multipole trace. What we should
do in these two cases is to inserv éz) into one trace and a
v'(2) into the other so that both become multiple function-
als. For example,

ME5(S1ty SotoSsts) = M(Sy |ty Spto|Ssts)

=m(t;t2)M(zstss;). (5.8

The z in the first factor is a'(z), and that in the second
factor is av(2).

This completes the explanation of the symbols in Eq.
(5.3, except for one last remark. If the two vertical bars are
side by side, then the corresponding multiple tracshould
be interpreted as ttj/N.=1.

When we take expectation values on both sides of Eq.
(5.2, we get an equation for the multiple amplitudes. For
largeN., the expectation of products of traces factorizes into
products of expectations of a trace. In this form E@s2)
and (5.3 generalize the Balitsky-Kovchegov equation to
higher multiple amplitudes. We should interpratin these
equations as the averag®m), and products of twan's as the

is circular, because the trace is. We can consider the argyroduct of the averages.

ments; to be behind the argumety, forming a circle. For
example,

M(sity- - - St =m(tyS- - - 4Sy)

1
= N—Ctr[v(tl)vT(Sz)' —o(tgul(sy)].

(5.9

In these formulasy is always associated withtaandv ™ is
always associated with .

The quantitym?®(s,- - -t,) appearing in theH,, term in
Eq. (5.3 is defined as follows. Put a vertical bafter s,
and another vertical baafter s; in the circular argument

(s1---ty). This pair of vertical bars separates the circular

argument into two circular argumenim;”}b(sr --t) is de-

In the special case of a dipolk=1, and henceé=j=1
in Eqg. (5.3. In that case,

mif=m(sy|ty) =m(sity),

mip=m(||s,ty) = m(sity),
ba ab (5'9)
mis=mir=m(|sy|t;)=m(s;2)m(zty),

| _ 1 (81— t)?
1 I e 22

Equation(5.2) coincides with the BK equatiof2.11), as it
should.

A very interesting fact emerges from these generalized
BK equations for multipole amplitudes. If the multipole am-
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plitudes fork=1,2, ... £ —1 are known, then the evolution d(xG)
equation determining thigh multipole is alinear inhomoge- =
neous equation. Thus the only nonlinear equation one has to
solve is the original BK equation for the dipole amplitude. It
is well known that the nonlinearity of this equation leads to P
saturation. The linearity of the higher multipole amplitudes 47N
therefore means that saturation of the dipole amplitude auto- .
matically drives saturation of all higher multipole ampli- wherek= (k™ k), and
tudes.

If we require the solution of the JIMWLK equatidB.28 iy 3 : +ig
to be free of infrared singularitities, then presumably it will Fa (k)_J dx explik-x)F(x) ©.3
be made out of the multiple tracés.1) and their products. In
that case the difficult functional differential JIMWLK equa- is the color electric field in the light cone gauge. In the ap-
tion can be replaced by the more manageable set of generadroximation F*(x)=(i/g) 8(x )V(x)d'VI(x), which is
ized BK equationg5.2) and(5.3). supposed to be valid for a Lorentz-contracted pancake

nucleon, the formula becomes

1 R .
= g (OF(-K)

(TMFH(RFY (-K]), (6.2

VI. SOLUTION OF THE JIMWLK EQUATION

B d(xFG)__ 1 42xd? e (x—
Suppose we d_ecompoi%(:;) into a Iine&r combination d2k  4m°g°N, xd%y exik- (x=y)]
of eigenfunctionsp, (v) of H. The operatoH is Hermitian
and positive semidefinite; hence the eigenvalheare real X(C(x,y)),
@d non-negative. From Ed3.28), the r dependence of (6.9
W,(v) is thus given by a linear combination of exp(7). In C(xy) =TI V)V () V(Y) Vi (y)],
the asymptotic limitr—oo, the lowest eigenvalue oH - . .
dominates. where the subscript represents a differentiation, namely,

(VAEFAVAS

To compute the averagfC(x,y))=[Dulv]B(X,y), we
need to use E(3.2) to convert the gluon Wilson lineg and
V' to the quark and antiquark Wilson line andv. The
result is

The lowest eigenvalue =0, and its normalized eigen-

function is ¢o(v)=1. This eigenfunction is normalized be-
cause[/Dy[v]=11,Jdy[v(X)]=1.

In contrast,¢o(@)=1 is also an eigenfunction ¢ with
A=0, but the integral of this eigenfunction is divergent be-
cause the linear spacé is noncompact.

_ t t
In the next subsection, we will discuss what happens in CO6y)=2Ce v (y)vi(y)v (v (x)

the asymtotic limitr— o when\ =0 dominates. In the sub- +oui(y)v T (y)vi(x)vT(x)]
sequent subsection, we will look 8¢ (v) and its applica-
tions for a smallerr. +trloi(y)o (M Itfv (v (0]

+trlo(y)o](tvi0v'(0]. (6.5
A. Asymptotic limit
— ) The functional integra{C) = [Dy[v]C is computed in Ap-
When 7=, only ¢o(v) contributes, so we can set pendix B. The result is

V_Vm(v)= ¢o(v)=1. Averages are then given by the integral

(B(v,v"))=[Dy[v]B(v,v"). From the matching rule, this NZ-1
integral is nonzero only when the numberwo$ in B exactly (CXY))==2—7dyy- (6.9
matches the number of'’s at every transverse position
For example, the dipole amplitud@.8) is Changing the integral in Eq6.4) into a finite sum, and
1 letting r=x—y, we get
s,(xy)= (o (v (y)]) = 5y, (6.) , ,
¢ d(xgG) 7R ) 2(N:—1)
F A 2 C
2~ 47N 2 a”exp(ik-1) — 540
because);rvx= 1 and tr(1)=N.. This is consistent with Eq. ¢
(2.9, and also Eq(2.14) at r=cc. In other words, whenever 2 rR2(N?— 1
the dipole has a finite size, the dense gluon will have such a _cm A(Nc—1) 6.7)
strong absorption that the dipole amplitude always becomes 16m*asN,
Zero.
A similar statement can be made about multipole ampli-The unintegrated spectrum(xG)/dk? is therefore abso-
tudes. lutely flat, up to the saturation momentt@i which is in this
Let us now compute the gluon spectrumratee by using  case infinite. That is not unexpectedrat «.
the formula[9] The integrated cross section is then
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» TRANG—1)

1
= = + _—
XgG QS—3—8TF alN. (6.8 [5“ NCb,(x,y)

. (6.12

The spectrum in Eq(6.7) differs from the mean field Sinceb,(x,x)=0, we gets(x,x)=1, as it should be. If we
prediction(2.16), in that Eq.(6.7) is flat and Eq(2.16 has a  stay away fromx=y, thenb(x,y)/N, is just the dipole am-
logarithmic dependence di?. The integrated density=G  plitude s,(x,y). As such it should satisfy the BK equation.
is, however, quite similar to the estimate given in E2;  On the other hand, we should be able to get the equation of

the only difference is a factar=_8°. b.(x,y) directly from the JIMWLK equatior{3.28 by using
Egs.(6.9), (3.31, and(3.295. The left hand side is propor-
B. Below the asymptotic limit tional to tf v T(s)v(t)], but the right hand side has two terms,

one is proportional to fo T(s)v(t)], and the other it propor-
for finite 7, because we know nothing about the other eigen:[ional to tv (v () Jtfv (v (2)]. If we drop this quartic
. . = . . o term because it involves a higher order multipole function

functions and eigenvalues &f. In this section, we will dis- which is expected to be small, them.(x,y)/N.=S.(x,y)
cuss an approximate correction t#/.(v) below the simply satisfies the BK equatiof®.11) with the quadratic
asymptotic limit, in a region where the Wilson lines are farterm of s_ dropped. This is justified when the dipole ampli-
apart. tude is small, which is the case when the two Wilson lines

To i/0|d the infrared divergence, the distribution fUnC-are far apart, as expected_ The solution is given by Eq
tional W_(v) will be assumed to depend anandv® only  (2.13.
through the multipole tracg$.1), or products of them. From We may use Eq(6.9) to calculate the higher order ampli-
the results of the last subsection and the discussion in Sec. tiyde. The result is a sum &f /N.=s,, one for each dipole
we know that for larger the average of multipole tracéise.,  pair inside the multipole.
multipole amplitudes are small if the Wilson lines in the
multipoles are far apart. In fact, the higher the order of the
multipole is, the smaller the amplitude is expected to be.
Therefore it is reasonable to include only quadratic depen- The density of the soft gluons is determined by the distri-

dences ofv and vhina first correction to the asymptotic ption W () of the classical Yang-Mills potentiad(X).
limit, at least in the region when the Wilson lines are farthe interaction of fast partons with such a background is

It is much more difficult to solve the JIMWLK equation

VII. CONCLUSION

apart. We will therefore assume given by their Wilson lines. In this paper, we introduced the
_ distributionW_(v) of Wilson lines. It can be obtained from
W (v)=1+ Et o T(s)v(t)]b.(t,9). (6.9 W_(a), and it also satisfies the JIMWLK equation. We com-
S,

pleted Mueller’s derivation of the JIMWLK equation, al-

The contribution fivT(9)v(9)]b.(s,9=N.b(s,9 may be thpugh forWT(v). and not fo_rWT(a). We derived a gener-
absorbed into the-independent term. We may therefore as-2/z€d BK equation for multipole amplitudes. We also used
sumeb,(s,9) =0 without any loss of generality. In that case, the normalizable property d,(v) to compute the proper-
using the matching rule and unitarity of to do the func- ties of physical observables ag=0. We obtained in this

— H 2
tional integral, we see thaW_(v) is still normalized: way _an unmtegqrated ~gluon  spectrund(x¢G)/dk
=7RA(NE—1)/87°aN., independent of the transverse

_ momentumk? of the gluon. A correction to this asymptotic
f Dylv]WA(v)=1. (6.10  behavior was briefly discussed.
To compute the dipole amplitud@.8), we need the follow- ACKNOWLEDGMENTS
ing integration formula, which can be obtained from the _ )
matching rule, Eq(3.8), and the unitarity ob: This work of C.S.L. is supported partly by the Natural
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Natural Science Foundation of China, Grant Nos. 10075020
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pitality of McGill University where this work was carried
The last Kronecke#b is by definition nonzero only when the out.
four arguments in its subscript are all equal.
We may now compute the dipole amplitude from E|8)

to be APPENDIX A: MATHEMATICAL DETAILS

The Haar measure & (n) for odd n is given by

1 _
_ T
S:%Y) NJ DulvIW-v)tlo (v (y)] du[v]=Cato2dv v tdoA- - A~ ldv], (A1)
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where ¢, is a normalization constant determined by
Jdy[v]=1, and the argument of tr consists of the exterior

product ofn? factors ofv ~dv. From the cyclic nature of

PHYSICAL REVIEW D 66, 074005 (2002

5(U—U’)/J(U)=1a_[x Sa(X)—al(x). (A3

the trace, and the antisymmetry character of the exterior

product, it can be seen thdf[v] defined in this way is O
whenn is even. Hence we must confine ourselves to wdfd
we want to use the expressi¢al).

It is easy to check that E@3.3) is satisfied for Eq(Al).

We will show in two ways tha@a(x) defined in Eq.

(3.20 is anti-Hermitian. First, define the inner product of

two functionalsa by

(1lgy,= | PlaIDla’) (@gta’)su—u)iaw),
82

whereu is given by Eq.(3.17) andu’ is given similarly in
terms ofa’. From Eqs.(3.10 and(3.15, we see that

Using integration by parts and assuming the resulting surface

term to be zero, it is easy to see th@ltsa?(7,y) is anti-
Hermitian with respect to this inner product.

If f(v) andg(v) are obtained, respectively, frofi{a)
andg(a) by Eq.(3.16), then the inner product betweé(v)
andg(v) defined by

(flg),= f Dylv]f* (v)g(v) (A4)

is equal to the inner produ¢f|g),, defined in Eq(A2). This
is so because

<Tg>v=f Dulv]Dla]Dl e’ 1F* (@) S(v —u)g(a) (v —u’ ) J(u) Ju’)

=f Dla]Dla’]o(u—u")f*(a)g(a’)/I(u)

=(flg)q-

We know that the transform aoff(a)/5a(y) is f)a(y).
Since (fg),=(f|g), and sinces/Sa?(y) is anti-Hermitian
with respect to(f|g),, it follows that D,(y) must also be
anti-Hermitian with respect tQTg).

The second proof of the anti-Hermiticity @f,(y) makes
use of the explicit formuldAl). It proceeds as follows.

Using the explicit formula(3.20 for D4(y), we must
show thatﬁa(y)Evij(y)(ta)jkﬁlﬁvik(y) is Hermitian with
respect to the inner produ¢d4).

Let us first show thatﬁa(y) is imaginary. Sincev
=v 1, it follows that

+

S 8 (A6)
= " UVisUrk = -
5Ui*k Tk Ovys
Using also the fact that, is Hermitian, then
— é ) _
* — X (t%), =_ _
Da vlj(ta)]k 5Uikk (Uta)rs 50, D,. (A7)

Now we use integration by parts to show tﬁ_bg is antisym-
metric with respect to the inner produdtg), . Remember-

ing Eq. (3.10), integration by parts changds, into

(AS)
|
é
_%R(Uta)ikﬂv)- (A8)
This would indeed be equal te 5a if
é
M[(Uta)ikﬂv)]zo- (A9)

Since §(d[v])/ vy =d[ vl v ]=0, Eq.(A9) is true if

Al (vta)iDulv]] _

S0t 0, (A10)
which in turn is true if
ddy[v]
ntr(ta)dH[U]+(Uta)ikT_l(:O- (A11)
I

Using Eq.(Al), we get

od
ikﬁz —nztl’[tavfldv/\- . '/\Uﬁldv],
aum

(A12)

(vty)

namely, it is equal to-n? times at, inserted into the mea-
sure in Eq.(Al). If a=0, thenty is proportional to the
identity matrix, so indeed Eq(All) is true. Fora>0,
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tr(ty)=0. Sincev ~1dv is a linear combination of th&J(n)
generatorg,,, we conclude that EqA11) is valid if

eblbz"'bnz tr[tatbl' . ~tbn2]=0. (A13)

This is indeed the case becausetff0 and s
=e€b,b, b lalb,  tp , IS proportional to the identity ma-
trix. This last statement can be proven as follows.

Letvge U(n). Thenvg o= (Vo)asts, WhereVy is the
adjoint representation ob,. Hence vglsvozdet(\/o)s.
Since the adjoint generatdr, has no diagonal matrix ele-
ments, it is traceless, so det)=1. Therefores commutes
with every element of U(n), so by Schur’s lemma it must
be proportional to the identity matrix.

We have thus shown thab,(y) is antisymmetric and
imaginary. Hence it is Hermitian.

APPENDIX B: SATURATION CALCULATION

We want to computg C(xy))=[Dy[v]C(x,y) for the
function C(xy) given in Eq.(6.5). This function contains
four terms. We will label them consecutively @g, C,, Cs,
andC,.

We interpret the derivativé;v (X) =v;(X) on the lattice to
be

1
0i(0= 5o (x+a) ~v(x—a)], (B1)

whereg; is a lattice vector along thigh direction.viT(x) is
defined similarly. The following computations make use of
Eq.(3.6), Ce=N_./2 for U(n), the matching rule discussed at
the end of Sec. lll, and unitarity af. There are also extra
factors of 2 obtained by summing the tveo directions. In
this way we get

2Cr t T
(C1)=Ja(trfov(y+a) —v'(y-a)]

Xv(X)[v(x+a)—vT(x—a)]})

PHYSICAL REVIEW D66, 074005 (2002

2CeNG
== Taz_[éx,yfai'l' 5x,y+a1-]

2CeN,
T

Nﬁé
- a2 X,y

2Ck )
(Co)= gz (flv(yta)—v(y-a)lo'(y)

X[v(x+a)—v(x—a)JoT(x)}

Thus

=(Cy),
(B2
1
(Co)= gtllv(y+a)—v(y=a)lu'(y)}
xtr{v(x)[v(x+a&)—vT(x—a)]}
1
= yﬁx'y,
1
(Ca)= gtrlvlv (y+a)—v'(y-a)]}
xtr{[v(x+a)—v(x—a)v (x)]}
1
= gzéxvy.
(C(x,y))=(C1+C,+C3+Cy)
NZ—1
= ZT 5X,y' (B3)
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