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Saturation and Wilson line distribution
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We introduce a Wilson line distribution functionW̄t(v) to study gluon saturation at small FeynmanxF , or
large t5 ln(1/xF). This new distribution can be obtained from the distributionWt(a) of the color glass
condensate model and the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner~JIMWLK ! renor-

malization group equation.W̄t(v) is physically more relevant, and mathematically simpler to deal with be-

cause of unitarity of the Wilson linev. A JIMWLK equation is derived forW̄t(v); its properties are studied.

These properties are used to complete Mueller’s derivation of the JIMWLK equation, though forW̄t(v) and
not Wt(a). They are used to derive a generalized Balitsky-Kovchegov equation for higher multipole ampli-
tudes. They are also used to compute the unintegrated gluon distribution atxF50, yielding a completely flat
spectrum in transverse momentum squaredk2, with a known height. This is similar but not identical to the
mean field result at smallk2.

DOI: 10.1103/PhysRevD.66.074005 PACS number~s!: 12.38.Bx, 24.85.1p
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I. INTRODUCTION

Soft gluons are produced by radiation from more en
getic partons. Since the number of sources increases at s
FeynmanxF , the soft gluon densityxFG per unit rapidity
interval increases witht5 ln(1/xF). In fact, both the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! equa-
tion @1# and the Balitskiı˘-Fadin-Kuraev-Lipatov~BFKL!
equation@2# predict a growth so fast that the unitarity boun
t2 is violated. To restore unitarity, a new mechanism is
quired to slow down the growth towardxF50 @3#. The mo-
mentumQs at which this mechanism sets in is known as t
saturation momentum.

The phenomenological implications for the presence o
saturation momentum have been discussed in many pa
@4#, but it is not yet clear whether saturation has been
served experimentally. On the theoretical side, the impor
thing to note for our present discussion is that soft gluons
be treated as a classical color potentiala(xW ), because of its
large density at smallxF . In this background, energetic pa
tons interact with soft gluons through their Wilson lines. It
this interaction that is responsible for the saturation proc

With the replacement of soft gluons by a classical Yan
Mills potential, the growth of soft gluon density is dete
mined by thet dependence of the distribution functio
Wt(a). This dependence is given by a renormalizati
group equation known as the Jalilian-Marian–Ianc
McLerran–Weigert–Leonidov–Kovner~JIMWLK ! equation
@5#.
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In this paper we introduce and study a distributionW̄t(v)
for the Wilson linev. We will show that this distribution can
be obtained fromWt(a), and that it still satisfies the
JIMWLK equation. Compared toWt(a), it has the advan-
tage of being more directly physically relevant, becau
many physical processes can be described in terms of Wi
lines or dipole amplitudes. Moreover, the Wilson linesv are
unitary matrices, living on the color group manifold, whic
is compact. This compactness brings with it a number
mathematical advantages not shared byWt(a), whose argu-
menta lives in a noncompact linear space.

W̄t(v) can be used to derive a number of properties
easily obtainable directly fromWt(a). We will use these
properties to complete Mueller’s proof of the JIMWLK

equation@6#, although the proof is valid forW̄t(v) and not
for Wt(a). They will be used to derive a generalize
Balitsky-Kovchegov ~BK! equation for multipole ampli-
tudes. We find that once the nonlinear BK equation for
dipole amplitude is solved, all subsequent multipole amp
tudes can be obtained by solving only linear equations. T
means that saturation of the dipole amplitude automatic
leads to saturation of higher multipole amplitudes.

W̄t(v) will also be used to compute the asymptotic b
havior of unintegrated gluon distribution atxF50. We get a
flat distribution in the gluon transverse momentumk2, with a
height given by Eq.~6.7!. This is to be contrasted with th
mean field result~2.16! which yields a logarithmic depen
dence onk2 with an undetermined normalization. Preasym
totic corrections will also be briefly discussed.

In the next section we start with a short review of satu
tion, the JIMWLK equation, the related BK equation, and t
BFKL equation, as well as some of their solutions. In S
©2002 The American Physical Society05-1
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III, the Wilson line distributionW̄t(v) is introduced, togethe
with some mathematical preliminaries. The JIMWLK equ
tion for W̄t(v) is derived, and its properties studied. In Se
IV, the missing steps of Mueller’s derivation of the JIMWL
equation are supplied. In Sec. V, the infrared divergence
countered in the JIMWLK equation is discussed. It is sho
that certain multipole functions which we call multipo
traces are free of these divergences. A generalized BK e
tion is derived to describe the evolution of the multipo
amplitudes. In Sec. VI, we discuss the property and impli
tions of the asymptotic solution ofW̄t(v) at xF50. In par-
ticular, the unintegrated momentum spectrum of the glu
density is derived. Correction to the asymptotic limit wh
xFÞ0 is briefly discussed. Certain mathematical details
be found in Appendixes A and B at the end.

After this paper was submitted for publication, we we
informed of an interesting recent paper@7# in which W̄t(v)
was also introduced and its JIMWLK equation derived.
went on to give a random-walk interpretation of th
JIMWLK equations, witht playing the role of time,v the
position in the group manifold, anda the velocity.

II. A BRIEF REVIEW

The number of gluons emitted by a valence quark,
unit rapidity t5 ln(1/xF) and per unit transverse momentu
squaredk2, is given in perturbation theory byasCF /pk2,
whereas5g2/4p is the QCD fine structure constant.CF is
the Casimir number in the fundamental representation, be
(Nc

221)/2Nc for the gauge groupSU(Nc), and 1
2 Nc for

U(Nc). A nucleus with atomic numberA hasANc valence
quarks, so its unintegrated gluon distribution isdN/dtdk2

[d(xFG)/dk25asCF(ANc)/pk2.
When integrated, this formula encounters an infrared

vergence at smallk2, brought about by the long range gluo
field of the unshielded valence quarks. However, quarks
confined inside color-singlet nucleons, so such a long ra
force is absent beyond the nucleon radiusa. Thus
xFG(xF ,Q2)5@asCF(ANc)/p# ln(Q2a2).

In the central rapidity region where the FeynmanxF is
small, the gluon density is much larger than the amo
given by the perturbation formula. This is so because s
gluons can be radiated also from energetic gluons and
quarks, not just from the valence quarks considered so
According to the DGLAP@1# equation, the soft gluon densit
grows as exp(kAt) for some positive constantk, and, ac-
cording to the BFKL equation @2#, it grows as
exp@4asln(2)Nct/p#. Both exceed the unitarity limitt2, so a
new mechanism must kick in to dampen the growth a
restore unitarity at smallxF @3#. This effect is known as
saturation.

Saturation is thought to arise from a nonlinear mechan
which occurs when gluons are sufficiently dense to inter
among themselves@8,9#. The number of gluons per unit ra
pidity interval isxFG. In a nucleus of radiusRA , the trans-
verse area per gluon is thereforepRA

2/xFG(xF ,Q2). The av-
erage color-charge squared of a gluon isNc /(Nc

221), their
interaction strength is;as /p, and their natural size is
07400
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;1/Q. Hence the cross section for two gluons to interact c
be estimated to be (as /p)@Nc /(Nc

221)#(p/Q2). If the
cross section is larger than the transverse area per gluon,
interaction will take place to set off the nonlinear mech
nism. The onset therefore occurs at a momentum scaleQs
such that

pRA
2/xFG~xF ,Qs

2!5c~as /p!@Nc /~Nc
221!#~p/Qs

2!,
~2.1!

or, equivalently,

Qs
25c

asNc

Nc
221

xFG~xF ,Qs
2!

pRA
2

. ~2.2!

A constantc has been inserted to account for the qualitat
nature of this argument. Even whenQs

2 is obtained from a
detailed calculation, the constantc is still somewhat ambigu-
ous because transition into saturation does not occur sha
Thus one finds a number ofc’s used in the literature. Fo
example,c51 in @10#, c5p2 in @9# when estimated from the
mean field approximation on the largek2 side, and c
516p2c1 when estimated on the smallk2 side, wherec1 is
some unknown constant. Andc5p in @11#.

Qs can also be defined through the unintegrated glu
densityd(xGG)/dk2. When we reducek2 from infinity, this
density increases until a pointk25Qs

2 when gluons become
sufficiently dense to set off the nonlinear mechanism. Fr
there on we enter a saturation region with much slow
growth. However, this definition is also ambiguous unle
the slowdown occurs fairly sharply, which turns out to be t
case atxF50. As we shall see in Sec. VI A, atxF50, the
saturation region is large and the unintegrated spect
d(xFG)/dk2 in this region is absolutely flat ink2. This then
allows c to be determined unambiguously to bec58p3.

Using the BFKL solution forxFG as a qualitative esti-
mate, and assuming thatxFG is proportional toA, we see
from Eq.~2.2! thatQs

2 grows with a power of 1/xF andA1/3,
making it large for large nucleus or smallxF . Equation~2.2!
also implies that the gluon number per unit transverse are
saturation is;Qs

2(x)/as .
The large number of gluons present at saturation allo

them to be treated as a classical Yang-Mills~YM ! potential
aa(xW ). The superscripta is the color index, andxW5(x2,x)
are the light cone~LC! coordinates, defined for a hadro
moving along the1z direction to bex65(t6z)/A2 andx
5(x1,x2). It is also convenient to introduce the spacetim
rapidity variabley5 ln(x2P1), whereP1 is the 1 compo-
nent of the hadron momentum, and the gluon poten
ay

a(x)5x2a(x2,x).
For a fast moving hadron~or nucleus!, Lorentz contrac-

tion forcesa(xW ) to be concentrated aroundx250, and time
dilation makes it effectively~LC! time (x1) independent.
The soft gluons are produced by partons within the hadr
so one can assumeay

a(x)50 for y.t @9#.
5-2
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Energetic partons, whether in the same hadron or
interact with the soft gluons through the Wilson line facto1

v†~x!5P expS 1 igE
2`

`

dx2aa~xW !taD
5P expS 1 igE

2`

t

dy ay
a~x!taD ,

v~x!5 P̃ expS 2 igE
2`

`

dx2aa~xW !taD
5 P̃ expS 2 igE

2`

t

dy ay
a~x!taD ,

~2.3!

V†~x!5P expS 1 igE
2`

`

dx2aa~xW !TaD
5P expS 1 igE

2`

t

dy ay
a~x!TaD ,

V~x!5 P̃ expS 2 igE
2`

`

dx2aa~xW !TaD
5 P̃ expS 2 igE

2`

t

dy ay
a~x!TaD ,

whereP andP̃ indicate, respectively, path ordering and an
path ordering. The first two expressions describe the pro
gation of quarks and antiquarks, respectively, through
dense background of the soft gluons, and the last two exp
sions describe the propagation of gluons. These Wilson l
play a central role in the rest of the paper.

In this representation of soft gluons by a classical ba
ground field, the gluon distribution is determined by the d
tribution Wt(a) of the YM potential.Wt depends ont be-
cause the number of sources available to emit soft glu
increases at smallxF .

The resulting change of the distribution functionalWt(a)
can be shown to satisfy the JIMWLK renormalization gro
equation@5#

1We shall use upper-case letters to denote the adjoint repres
tion and lower-case letters to denote the defining representatio
this notation, the generators in the defining representation wil
denoted by ta , and they will be normalized to be tr(tatb)
5(1/2)dab . The generators in the adjoint representation are
noted byTa . They are related to the totally antisymmetric structu
constants by (Ta)bc5 i f bac . Hence (Ta)bc is imaginary and totally
antisymmetric in the three indices. Similarly, the quark and a
quark Wilson lines will be denoted by the lower-case lettersv† and
v, and the gluon Wilson line will be denoted by the upper-ca
lettersV† andV. A slight drawback of this convention is that we a
forced to denote the dipole amplitude~2.8! by a lower-case letter
st , whereas the usual notation for it isSt .
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]Wt~a!

]t
52HWt~a!, ~2.4!

where

H5
1

pE d2zd2xd2yK~xyuz!O~xyuz!,

~2.5!

O~xyuz!5
d

dat
a~x!

@V†~x!2V†~z!#ac

3@V~y!2V~z!#cb

d

dat
b~y!

,

and

K~xyuz!5
1

4p3

~x2z!•~y2z!

~x2z!2~y2z!2
. ~2.6!

A consequence of Eqs.~2.4! and ~2.5! is that the normaliza-
tion *D@a#Wt(a) is independent oft. We will normalize it
to be 1, so that the average of any functional ofa is given
simply by ^F&t5*D@a#F(a)Wt(a).

The functional derivativesd/dat
a of V† andV in Eq. ~2.5!,

and similarly those ofv† andv that we will encounter later,
are

dV†~z!

dat
a~x!

5 igTaV†~z!d~x2z!,

dv†~z!

dat
a~x!

5 igtav†~z!d~x2z!,

~2.7!
dV~z!

dat
a~x!

52 igV~z!Tad~x2z!,

dv~z!

dat
a~x!

52 igV~z!tad~x2z!.

For calculational simplicity it is useful to note tha
V†(x)2V†(z) in Eq. ~2.5! may be put in front of the opera
tor d/dat

a(x). This follows from Eq.~2.7! and the observa-
tion that (Ta)ac5 i f aac50.

A particularly important physical quantity to study is th
dipole amplitude@12#

st~x,y!5
1

Nc
^tr@v†~x!v~y!#&t . ~2.8!

At coincident points

st~x,x!51 ~2.9!

because of unitarity ofv. It can be shown from Eq.~2.4! that
the dipole amplitude satisfies the Balitsky equation@13#
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]st~x,y!

]t
52

asNc

2p2 E d2z
~x2y!2

~x2z!2~y2z!2
•H st~x,y!

2
1

Nc
2^tr@v†~x!v~z!#tr@v†~z!v~y!#&tJ .

~2.10!

Note that the infrared divergence occuring at largez in Eq.
~2.5! is absent in the Balitsky equation.

For largeNc , the last term factorizes and we arrive at t
Kovchegov equation@14#

]st~x,y!

]t
52

asNc

2p2 E d2z
~x2y!2

~x2z!2~y2z!2
•$st~x,y!

2st~x,z!st~z,y!%. ~2.11!

Sincest(x,x)51, the quantitytt(x,y)[12st(x,y) is ex-
pected to be small whenx;y. If we deal with soft gluons
outside the saturation region, whena(xW ) is small, the Wilson
linesv andv† are close to 1 anyway, so we expect to be a
to drop the quadratic termtt(x,z)tt(z,y). In this way we get
the dipole form of the BFKL equation@2#

]tt~x,y!

]t
52

asNc

2p2 E d2z
~x2y!2

~x2z!2~y2z!2
•$tt~x,y!2tt~x,z!

2tt~z,y!%. ~2.12!

For ux2yu2@1/Qs
2 and inside the saturation region, th

strong classical YM potentiala causes large and independe
oscillations to both Wilson linesv† andv. Consequently the
dipole amplitudest(x2y) is expected to be small, thus en
abling the nonlinear term in Eq.~2.11! to be dropped. The
solution of the resulting linear equation can be shown to
@8#

st~x2y!5expF2
asNc

p E
t0

t

dy ln@Qs
2~y!x2#Gst0

~x2y!.

~2.13!

If Qs
2(y)5exp@casNc(y2t0)/p#Qs

2(t0) @15#, then

st~x2y!5expF2
c

2 S asNc

p D 2

~t2t0!2Gst0
~x2y!,

~2.14!

providedt0 is chosen so thatQs
2(t0)(x2y)251. This con-

dition implies (x2y)25Qs
22(t0)@Qs

22(t), if t@t0. The
solution~2.14! then confirms the expectation thatst is small
in that region.

To solve any of these evolution equations we need
initial condition at somet5t0. For a large nucleus, and at0
where the source is dominated by the valence quarks,
initial condition is provided by the McLerran-Venugopala
model @16#, in which a Gaussian distribution is assumed
Wt0

(a). For largeA and smallas(Qs
2), the Gaussian distri-

bution can be shown to be a good approximation@17#. Satu-
07400
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ration is now provided by the valence quarks alone, soA has
to be very large and the resultingQs

2 is relatively small. The
detail of the confinement which affects the smallk2 region
then becomes relatively important@18#.

With a Gaussian distribution, the perturbative gluon d
tribution is modified by a gluon dipole factor@9#

Sx2~r !5
1

Nc
221

^Tr U†~x2,r !U~x2,0!&, ~2.15!

whereU† is equal toV† in Eq. ~2.3! with t replaced byx2,
and r is the conjugate variable to the transverse momen
k. This factor gives rise to the nonlinear effect that is resp
sible for saturation, with a saturation momentumQs given by
Eq. ~2.2!.

For t.t0, theWt(a) determined by Eq.~2.4! no longer
has a Gaussian distribution. Nevertheless, in a mean
approximation, the approximate solution is still Gaussi
The gluon distribution for smallk2 is then given by@9#

d~xFG!

d2k
.c2

Nc
221

Nc

pRA
2

as
ln

Qs
2~t!

k2

@k2!Qs
2~t!# ~2.16!

for some constantc2.

III. WILSON LINE DISTRIBUTION

We shall show later in this section that the distributi
Wt(a) of the YM potentiala leads to a distributionW̄t(v)
of the Wilson lines.

The notation might suggest thatW̄t(v) describes only the
distribution of the anti-quark Wilson linev, but actually it
provides a distribution for the Wilson lines of other parto
as well. Sincev is unitary, v†5v21, the variablev† is a
rational function ofv i j , soW̄t(v) does provide the distribu
tion for quark Wilson linesv†.

From the group-theoretical relation

taVac
† 5v†tcv5Vcbtb , ~3.1!

or, equivalently, the relation

Vac
† 52 tr~v†tcvta!5Vca , ~3.2!

gluon Wilson lines can be expressed as a quark-antiqu
pair of Wilson lines, so we can also compute the distribut
of gluon Wilson lines fromW̄t(v).

Physical observables are often expressible in terms
Wilson lines, so it is clearly desirable to know their distrib
tions directly. Moreover, the Wilson linev is unitary, which
allows the theory of representation of the unitary group to
used for computations. For example, an orthonormal co
plete set of polynomials, given by the irreducible repres
tations of the unitary group, exists on the group manifo
Therefore a harmonic analysis ofW̄t(v) and other physical
quantities can be carried out to allow their integrals to
5-4
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computed. In contrast,Wt(a) is a function on a noncompac
linear space of the Lie algebra, and the only functional t
can be integrated in practice is the Gaussian.

We shall show thatW̄t(v) satisfies the same JIMWLK
equation~2.4!, but with H replaced byH̄. The latter is ob-
tained fromH simply by replacing thea derivative by a
differential operator inv. Therefore,H̄ is still Hermitian and
positive semidefinite.

Since the group manifold is compact, the spectrum a
eigenfunctions ofH̄ are more manageable. For examp
W̄t(v)51 is a normalized eigenfunction ofH̄ with zero ei-
genvalue, whereasWt(a)51 has a divergent integral in th
a space.

Before showing howW̄t(v) is obtained fromWt(a), let
us first review some basic facts about integrations and or
normal relations on a compact Lie group.

A. Inner products on the color group

For the sake of definiteness we shall assume the c
group to beU(n), although a similar analysis can be carri
out for SU(n). Then2-dimensional groupU(n) will be pa-
rametrized by then2 matrix elementsv i j (1< i , j <n) in the
defining representation. Unitarity equatesv† to v21, sov i j* is
to be regarded as a dependent variable, given as a rat
function of vkl via this relation.

The invariant volume element onU(n) will be denoted by
dH@v#. This Haar measure is a left and right invaria
n2-form, satisfying

dH@v#5dH@v0v#5dH@vv0# ~3.3!

for any constantv0PU(n). It is positive, and it shall be
normalized to*dH@v#51.

The Haar measuredH@v# is proportional but not equal to
the product measured@v#, obtained by taking the exterio
product of then2 1-forms dv i j . They differ by a Jacobian
J(v), so

dH@v#5J~v !d@v#. ~3.4!

To get an idea how this comes about, consider a cha
dv in the vicinity of a group elementvPU(n). Thenv21dv
constitutes a change around the identity, so it can be par
etrized in the form2 i t a(dha). The volume element at th
identity is proportional to the exterior product of th
n2dha’s, or, equivalently, the exterior product o
2i tr(v21dv). If we want the volume element to be left an
right invariant, as in Eq.~3.3!, this expression should b
taken as the volume element at any pointvPU(n). The
presence ofv21 in this expression is the origin of the Jac
bian J(v) in Eq. ~3.4!. When n is odd, dH@v# has a very
simple analytical form, given by Eq.~A1! in Appendix A.

Let f (v) and g(v) be two functions on the group man
fold. Their inner product is defined to be

^ f ~v !ug~v !&5E dH@v# f * ~v !g~v !. ~3.5!
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It will be shown later that the operatorD̄5v i j (]/]v i j ) is
Hermitian with respect to this inner product. SinceD̄vkl

5vkl , the eigenfunctions ofD̄ are monomials ofv, whose
eigenvalues are the degrees of the monomials. The in
product of two eigenfunctions of a Hermitian operator is ze
if their eigenvalues are different. Hence ifMk(v) denotes a
monomial of degreek and Ml8(v) a monomial of degreel
Þk, then

^Mk~v !uMl8~v !&50 ~kÞ l !. ~3.6!

This result can be stated in another way. An integ
*dH@v#B(v,v†) is nonzero only when the number ofv ’s in
B is equal to its number ofv†’s. We shall refer to this later as
the matching rule. It is one of the main tools for our late
calculations.

To compute inner products whenk5 l , we resort to the
theory of representation of theU(n) group, which asserts
that if DCD

l (v) is the matrix element of an irreducible repr
sentationl, then

E dH@v#DAB* l8~v !DCD
l ~v !5

1

N~l!
dll8dACdBD , ~3.7!

whereN@l# is the dimension of the irreducible represen
tion l.

For example, the defining representationv is irreducible
and has dimensionNc ; hence

^v i j uvkl&5
1

Nc
d ikd j l . ~3.8!

The orthonormal relation~3.7! can be used to comput
inner products of any two monomials in the following wa
First, apply Young’s idempotent operators ofk boxes to de-
composeMk(v) into a linear combination of irreducible rep
resentationsDl(v). Similarly Ml8(v) is decomposed into a

linear combination ofDl8(v). Then Eq.~3.7! can be used to
calculatê Mk(v)uMl8(v)&. Clearly it can also be used to ca
culate integrals*dH@v#B(v,v†).

B. Measures and functionals onA and U
To apply these properties to the physical problem

hand, we need to generalize them to the case whenv de-
pends on the transverse positionx. We shall denote the colo
group containingv(x) asU(n)x , andU[)xU(n)x .

The product overx is to be interpreted in the following
way. Cover the transversex plane by a square lattice with
lattice constanta. The productx is to be taken over all lattice
points within the Lorentz-contracted nucleus of transve
radius RA . The same convention will be applied to sum
over x.

The measure onU is defined to be

DH@v#5)
x

dH@v~x!#, ~3.9!
5-5



f

-

C. S. LAM, GREGORY MAHLON, AND WEI ZHU PHYSICAL REVIEW D66, 074005 ~2002!
wheredH@v(x)# is the Haar measure onU(n)x . Using Eq.
~3.4! and denoting)xJ„v(x)… by J(v), we get

DH@v#5J~v !D@v#,
~3.10!

D@v#[)
x

d@v~x!#.

The measureD@a# on the Lie algebraA of YM potentials
can be defined in the following way. Divide they axis into
intervals of sizee. Since we are interested inay

a(x) only for
y<t, the appropriate measure is

D@a#5Dt@a#D,@a#, ~3.11!

where

Dt@a#[)
a,x

dat
a~x!,

~3.12!

D,@a#[c3 )
y<t2e

)
a,x

day
a~x!,

with a normalization constantc3 to be chosen later. In the
same vein, the Wilson linev(x) of Eq. ~2.3! can be factor-
ized into

v~x!5v,~x!vt~x!, ~3.13!

with

v,~x!5 P̃ expS 2 igE
2`

t2e

dyay
a~x!taD ,

~3.14!
vt~x!5exp@2 igat

a~x!tae#.

A change ofat
a(x) of amountdat

a(x) causes a change o
vt(x) of amountdvt(x)52 igevt(x)tadat

a(x), and hence a
change inv(x) by the amountdv(x)52 igev(x)tadat

a(x).
Or v21dv(x)52 igetadat

a . In light of the remark below
Eq. ~3.4!, we can now choose the constantc3 in Eq. ~3.12! so
that

DH@v#5Dt@a#. ~3.15!

We are now ready to discuss howW̄t(v) can be obtained
from Wt(a).

A functional ofay(x) for y<t can be folded into a func
tional of v(x) using the formula

F̄~v !5E F~a!d~v2u!
1

J~u!
D@a#

5E F~a!d~v2u!D@u#D,@a#, ~3.16!

where

u~x!5 P̃ expS 2 igE
2`

t

dyay
a~x!taD , ~3.17!
07400
and

d~v2u![)
x

)
i , j 51

n

d@v~x! i j 2u~x! i j #, ~3.18!

so that* f (u)d(v2u)D@u#5 f (v) for any functionalf (u).
The second equality of~3.16! comes from Eqs.~3.10!,
~3.12!, and~3.15!.

It follows from Eq. ~3.16! that

E F̄~v !DH@v#5E DH@v#D@a#d~v2u!F@a#/J~u!

5E F~a!D@a#, ~3.19!

so W̄t(v) is normalized ifWt(a) is.
It also follows from Eq.~3.16! by an integration by parts

that the transform ofdF(a)/dat
a(x) is D̂a(x)F̄(v), where

D̂a~x![ igv i j ~x!~ ta! jk

d

dv ik~x!

5 ig trFv~x!ta

d

dvT~x!
G , ~3.20!

and the functional derivative inv is defined so that

dvpq~y!

dv i j ~x!
5dpidq jd~x2y!. ~3.21!

The inner product between two functionals ofv is defined
to be

^ f̄ ~v !uḡ~v !&5E f̄ * ~v !ḡ~v !DH@v#. ~3.22!

It can be shown~see Appendix A! that D̂a(x) is anti-
Hermitian with respect to this inner product. In particular,

D̂0~x!5 igv i j ~x!@d/dv i j ~x!#/A2Nc

is anti-Hermitian, so the operatorD̄ defined below Eq.~3.5!
is Hermitian, as previously claimed.

Instead ofD̂a(x) in Eq. ~3.20!, it is more convenient to
deal with the matrix operatorsD(x) andD8(x), whose (mn)
matrix elements are defined to be

Dmn~x![
2

ig
~ ta!mnD̂a~x!5v in~x!

d

dv im~x!
,

Dmn8 ~x![vmi~x!
d

dvni~x!
. ~3.23!

It can be checked that these two are related by

v~x!D~x!vx
†~x!5D8~x!, ~3.24!
5-6
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where the subscriptx in vx
†(x) indicates that thisv†(x)

should not be differentiated by thed/dv(x) in D(x). In other
words, in component forms, Eq.~3.24! reads v imvn j

† Dmn

5Di j8 .
When operated onvpq andvpq

† 5vpq
21 , they yield

Dmn~x!vpq~y!51d~x2y!dmqvpn~y!,

Dmn~x!vpq
† ~y!52d~x2y!dnpvmq

† ~y!,
~3.25!

Dmn8 ~x!vpq~y!51d~x2y!dnpvmq~y!,

Dmn8 ~x!vpq
† ~y!52d~x2y!dmqvpn

† ~y!.

These formulas give rise to the following formulas which a
very useful in practical calculations. WhenD or D8 operates
on av or v† in a trace, we have

D~x!tr@Av~y!#51d~x2y!@Av~y!#,

D~x!tr@v†~y!A#52d~x2y!@v†~y!A#,
~3.26!

D8~x!tr@v~y!A#51d~x2y!@v~y!A#,

D8~x!tr@Av†~y!#52d~x2y!@Av†~y!#.

In other words, when the trace is written in a certain ord
the operatorsD(x) andD8(x) simply remove the trace, an
append to it the factor6d(x2y). WhenD or D8 operates on
a v or v† in the same trace, we get

tr@AD~x!Bv~y!#51d~x2y!tr@A#tr@Bv~y!#,

tr@AD~x!Bv†~y!#52d~x2y!tr@B#tr@v†~y!A#,
~3.27!

tr@AD8~x!Bv~y!#51d~x2y!tr@B#tr@v~y!A#,

tr@AD8~x!Bv†~y!#52d~x2y!tr@A#tr@Bv†~y!#.

In other words, the single trace is broken up into a produc
two traces. The matricesA,B in these equations are consta
matrices.

C. W̄t„v… and its JIMWLK equation

Using Eq.~3.16!, the distribution functionWt(a) can be
folded into the distribution functionW̄t(v) of Wilson lines.
Sinced/dat

a(x) is transformed intoD̂a(x) of Eq. ~3.20!, the
JIMWLK equation ~2.4! for Wt(a) is now changed into a
JIMWLK equation forW̄t(v):

]W̄t~v !

]t
52H̄W̄t~v !, ~3.28!

where
07400
r,

f

H̄5
1

pE d2zd2xd2yK~xyuz!Ō~xyuz!,

~3.29!
Ō~xyuz!5D̂a~x!@V†~x!2V†~z!#ac@V~y!

2V~z!#cbD̂b~y!.

Like H, H̄ is also Hermitian and positive semidefinite.
Using Eqs.~3.23! and ~3.2!, the operatorŌ(xyuz) can be

written in a form more convenient for practical calculation
Remember for this purpose the remark after Eq.~2.7! that the
factor @V†(x)2V†(z)#ac in Eq. ~2.5! can be written to the
left of the differential operatord/dat

a(x). In terms of Eq.

~3.29!, this means to the left ofD̂a(x). In what follows we
shall useŌ(xyuz) of Eq. ~3.29! in this form.

Using Eqs. ~3.23!, ~3.24!, and ~3.2!, and this remark
above, we have

Vcb~z!D̂b~y!5 ig tr@v†~z!tcv~z!D~y!#,

D̂a~x!V†~z!5 ig tr@v†~z!tcv~z!D~x!#,

Vcb~y!D̂b~y!5 ig tr@v†~y!tcv~y!D~y!#

5 ig tr@ tcD8~y!#,

D̂a~x!V†~x!5 ig tr@v†~x!tcv~x!D~x!#

5 ig tr@ tcD8~x!#. ~3.30!

From these relations, and the identity tr(tcA)tr(tcB)
5 1

2 tr(AB), we get

Ō~xyuz!5Ōxy1Ōxz1Ōzy1Ōzz,

Ōxy52
1

2
g2tr@D8~x!D8~y!#,

Ōxz51
1

2
g2tr@D8~x!v~z!D~y!vy

†~z!#,

~3.31!

Ōyz51
1

2
g2tr@v~z!D~x!vx

†~z!D8~y!#,

Ōzz52
1

2
g2tr@v~z!D~x!vx

†~z!v~z!D~y!vy
†~z!#

52
1

2
g2tr@D~x!D~y!#.

Assuming W̄t(v) to be normalized,*DH@v#W̄t(v)51,
the average of any functionalB(v,v†) is equal to

^B&
t
5E DH@v#B~v,v†!W̄t~v !. ~3.32!

If B andW̄t are both monomial functionals ofv andv†, this
functional integral factorizes into a product of integrals
the groupU(n), each of which can be computed using Eq
~3.6! and ~3.7!. In particular, the functional integral is non
5-7
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zero only when the number ofv ’s and v†’s in BW̄t is the
same for every transverse positionx. This is the functional
form of thematching rulepreviously considered.

IV. MUELLER’S DERIVATION OF THE JIMWLK
EQUATION

In a recent paper@6#, Mueller proposed a simple deriva
tion of the JIMWLK equation in the following way
He showed that if Wt(a) is equal to the dipole
functional v†(s) i j v(t)kl , then the Feynman diagrams fo
]Wt(a)/]t can be written in the form2HWt(a), with H
given by Eq. ~2.5!. He then stated that the same is tr
if Wt(a) is equal to any multipole functiona
v†(s1) i i j 1

v†(s2) i 2 j 2
•••v(t1)k1l 1

v(t2)k2l 2
•••, and hence it is

likely that the JIMWLK equation forWt(a) is also valid.
In this section we shall supply the missing steps of t

proof. This consists of filling in the detailed arguments f
the multiple functionals, and then showing that they lead
the JIMWLK equation forW̄t(v). We do not know whether
the JIMWLK equation forWt(a) follows or not. However,
for all our applications, a JIMWLK equation forW̄t(v) is
sufficient, so it really does not matter whether the equat
for Wt(a) can be proven this way or not.

Instead of starting from the Feynman diagrams to der
the evolution equation, as is done in Ref.@6#, we find it
easier to do everything in reverse. That is, we start from
JIMWLK equation and show that they lead to the correct
of Feynman graphs. This inverse approach makes it m
manageable to deal with the complicated multipole functi
als. Actually, simplification already occurs at the dipo
level: a necessary cancellation in the original derivation
avoided altogether in this way.

The Wilson linev†(s) for a quark is drawn in Fig. 1 as
left-pointing arrow, and the Wilson linev(t) for an antiquark
is drawn as a right-pointing arrow. Timex2 is drawn to
increase from right to left; multiplication of color matrice
from left to right should be carried out against the arrow
the fermion lines.

The short vertical bars in the middle of the lines@labeled
the interaction point~IP!# indicate the light cone longitudina
positionx250 where interaction between the multipole a
the pancake nucleus takes place. Sincea(xW ) is concentrated
aroundx250, we may regardv andv† to be located at the
IP.

The operation ofD̂a(x) or d/dat
a(x) on the Wilson lines

is given in Eq. ~2.7!. This operation can be represent
graphically by putting a vertex to the left~the largerx2 side!
of the IP, both for the quark Wilson linev† and the antiquark
Wilson linev. The vertex for a quark isigta , and the vertex
for an antiquark is2 igta .

Using the remark following Eq.~2.7!, the operator
O(xyuz) in Eq. ~2.5! can be written in the form

O5@V†~x!2V†~z!#ac

d

dat
a~x!

•@V~y!

2V~z!#cb

d

dat
b~y!
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[Oxy1Oxz1Ozy1Ozz. ~4.1!

Using Eq.~3.1! and the unitarity relationvv†5v†v51,
we see that the effect of@V(y)#cb@d/dat

b(y)#, operating on a
Wilson line, is to place a vertex to the right~the smallx2

side! of the IP on the Wilson line. Similarly, the effect o
@V†(x)#ac@d/dat

a(x)#, operating on a Wilson line, is also t
place a vertex to the right~the smallx2 side! of the IP on the
Wilson line.

We are now ready to see what happens when

H5E d2zd2xd2yK~xyuz!

3~Oxy1Oxz1Ozy1Ozz!

[Hxy1Hxz1Hzy1Hzz ~4.2!

operates on a multiple functional, i.e., a collection ofp quark
andq antiquark Wilson lines.

Hxy puts a vertexy to the right of the IP on a Wilson line
and a vertexx also to the right of the IP of the same or
different Wilson line. These two vertices are then connec
by the ‘‘gluon propagator’’*d2zK(xyuz)dab , wherea,b are
the color indices at the two vertices. The gluon propagato
shown in Fig. 1~a! with a dashed line. This operation is to b

FIG. 1. Diagrams representing the result ofH5Hxy1Hzz

1Hxz1Hzy , or H̄5H̄xy1H̄zz1H̄xz1H̄zy , operating on a multi-
pole functional with two antiquark Wilson linesv† ~left-pointing
arrows! and three quark Wilson linesv ~right-pointing arrows!. The
dashed lines are the gluon propagators. See the text in Sec. IV
further explanation.
5-8
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applied to every pair of Wilson lines, including the possib
ity of applying to the same line twice.

Similarly, sinceV†(z)V(z)51, the effect ofHzz is to put
a vertexy to the left of the IP of a Wilson line, and anothe
vertexx to the left of the IP of the same or another Wilso
line. The two vertices are then linked by the same glu
propagator. This is shown in Fig. 1~b!.

In both of these cases, the two vertices are both to
same side of the IP. This is not the case with the other
terms.

Hxz puts a vertexy with color b to the left of the IP, and
a vertexx with color a to the right of the IP. These two
vertices are linked by a gluon propagat
*d2z@V(z)#abK(xyuz). This is shown in Fig. 1~c!.

There is potentially another contribution toHxz when
Vac

† (x)d/daa(x) operates onVcb(z). However, this term is
proportional tod(x2z)Vac

† (x)Vcd(z)(Ta)db , which is pro-
portional to (Ta)ab50, so that the term is actually absent

Similarly, Hzy puts a vertexy of color b to the right of the
IP, and a vertexx with color a to the left of the IP. These two
vertices are linked by the gluon propagat
*d2z@V†(z)#abK(xyuz). This is shown in Fig. 1~d!.

Appropriate signs and Diracd functions on the transvers
coordinates must also be inserted.

One might be bothered that the gluon propagators in
four diagrams appear to be different. Fortunately this is o
superficial. To see why they are actually the same, first n
thatTa is imaginary soV is real. Hence the gluon Wilson lin
@V†(z)#ab in the propagator in Fig. 1~d! can be written as
@V(z)#ba . If we compare this with that of Fig. 1~c!, we see
that these two are the same, both equal to@V(z)#a1a2

, where

a1 is the color index before the interaction point, anda2 is
the color index after. Sinceaa(x2,z) is concentrated nea
x250, we may write, in both cases, the gluon Wilson line

@V~z!#a1a2
5 P̃ expF2 igE

x1
2

x2
2

dx2aa~x2,z!TaG , ~4.3!

where (a1 ,x1
2) is the interaction vertex to the right of the IP

and (a2 ,x2
2) is the one to the left of the IP. For the first tw

diagrams, we may replacedab by the same expression~4.3!,
because in that case bothx1

2 andx2
2 are to the same side o

the IP; henceaa(x2,z)50 throughout the integration inter
val, so@V(z)#ab5dab .

These four types of Feynman graphs are precisely th
needed for the development]Wt(a)/]t @6#. Therefore the
JIMWLK equation is satisfied wheneverWt(a) is given by a
multipole function, namely, a monomial functional ofv and
v†. Since polynomial functionals on the group manifo
form an orthonormal complete set, the JIMWLK equati
~3.28! must be true in general. This completes Muelle
proof for W̄t(v). However, sinceWt(a) depends on many
more variablesaa(x2,x) than doesv(x), it does not neces
sarily follow from this argument that Eq.~2.4! for Wt(a) is
true.
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V. INFRARED DIVERGENCE AND THE GENERALIZED
BK EQUATION

The kernelK(xyuz) of the JIMWLK equation, given in
Eq. ~2.6!, goes as 1/z2 for large uzu. This causes a log diver
gence inHWt(a) of Eq. ~2.5!, and H̄W̄t(v) of Eq. ~3.29!.
On the other hand, the dipole amplitude~6.1! satisfies the
Balitsky equation~2.10!, whose kernel goes as 1/(z2)2 for
largeuzu, so infrared divergence is absent in that case. In
section, we shall use the Feynman diagrams derived in
last section to show that the multipole traces defined be
are equally free of infrared divergence.

Multipole tracesare defined by

m~s1t1•••sktk![
1

Nc
tr@v†~s1!v~ t1!•••v†~sk!v~ tk!#.

~5.1!

We will call the functional average of a multiple trac
^mk(s1t1•••sktk)&, a multiple amplitude. When k51, this
reduces to the dipole amplitude~2.8!.

The diagram for a multiple trace is shown in Fig. 2. As f
as color-matrix multiplication is concerned, these 2k lines
should be considered to be joined together at their end
form a single big loop with the arrows all pointing the sam
way. The joins are indicated by dotted lines in the figu
Note that if the amplitude does not have the form display
in Eq. ~5.1!, with v† and v occurring alternately inside a
trace, such a big loop cannot be formed and the argum
below will not be valid.

Consider the two gluon propagators shown in Fig. 2. T
color structures are identical, but the two terms differ by
sign because the vertexB is on a quark line in one diagram
and on an antiquark line in the other diagram. Their glu
propagators may therefore be combined intoK(xxuz)
2K(xyuz). For large uzu, this is proportional toz•(x
2y)/(z2)25O(1/uzu3); hence the infrared divergence is a
sent. As a matter of fact, we can also combine diagrams w
vertexA similarly shifted. The fourK thus combined actually
die down like 1/(z2)2 for large uzu.

It is clear that all the diagrams for the multipole functio
can be paired up in a way similar to Fig. 2, thus eliminati
all infrared divergences. Moreover, since the combination

FIG. 2. A multiple trace withk53. The two diagrams have
identical color structure, so their two gluon propagators can
combined into an infrared finite expression.
5-9
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obtained by combining two diagrams with vertexB in differ-
ent positions, but the same vertexA, finiteness persists fo
products of multipole traces.

In the rest of this section, we shall derive a generalizat
of the Balitsky-Kovchegov equation to multipole amplitude
We will see that the kernel of the equation actually beha
as 1/(z2)2 for large uzu, just like the kernel for the Balitsky
equation.

SinceH̄ is Hermitian, the JIMWLK equation satisfied b
W̄t(v) is also satisfied by the multipole trace~5.1!. We may
now use Eqs.~3.26!, ~3.27!, ~3.29!, and ~3.31! to simplify
H̄m(s1t1•••sktk). The resulting equation is

]m~s1t1•••sktk!

]t
52@Hxy1Hzz1Hxz1Hyz#m~s1t1•••sktk!,

~5.2!

where

Hxym~s1•••tk!51
1

2
g2Nc (

i , j 51

k E d2zI i j ~z!mi j
aa~s1•••tk!,

Hzzm~s1•••tk!51
1

2
g2Nc (

i , j 51

k E d2zI i j ~z!mi j
bb~s1•••tk!,

~5.3!

Hxzm~s1•••tk!52
1

2
g2Nc (

i , j 51

k E d2zI i j ~z!mi j
ba~s1•••tk!,

Hzym~s1•••tk!52
1

2
g2Nc (

i , j 51

k E d2zI i j ~z!mi j
ab~s1•••tk!.

The kernel in these equations is

I i j ~z!5K~sisj uz!2K~si t j uz!2K~sj t i uz!

1K~ t i t j uz!, ~5.4!

which is O@1/(z2)2# for large uzu. It is also symmetric ini
and j: I i j (z)5I j i (z). The meaning of the multipole traces
Eq. ~5.2! will now be explained.

The argument (s1•••tk) of the multiple trace in Eq.~5.1!
is circular, because the trace is. We can consider the a
ments1 to be behind the argumenttk , forming a circle. For
example,

m~s1t1•••sktk!5m~ t1s2•••tks1!

[
1

Nc
tr@v~ t1!v†~s2!•••v~ tk!v

†~s1!#.

~5.5!

In these formulas,v is always associated with at i andv† is
always associated with ansi .

The quantitymi j
aa(s1•••tk) appearing in theHxy term in

Eq. ~5.3! is defined as follows. Put a vertical barafter si ,
and another vertical barafter sj in the circular argumen
(s1•••tk). This pair of vertical bars separates the circu
argument into two circular arguments.mi j

ab(s1•••tk) is de-
07400
n
.
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fined to be the product of two multiple traces with these t
circular argument. For example,

m13
aa~s1t1s2t2s3t3![m~s1ut1s2t2s3ut3!

[m~ t3s1!m~ t1s2t2s3!. ~5.6!

The superscripta stands for ‘‘after.’’ The superscriptb to
be found in the other three terms of Eq.~5.3! stands for
‘‘before.’’ Each superscript together with its correspondi
subscript tells us where the vertical bar is put. The pair (ai)
means to put a vertical bar aftersi . The pair (b j) tells us to
put a vertical bar beforesj . With this understanding the
quantitymi j

bb(s1•••tk) can be defined similarly. For example

m13
bb~s1t1s2t2s3t3![m~ us1t1s2t2us3t3!

[m~s1t1s2t2!m~s3t3!. ~5.7!

If we apply these recipes literally to the last two equatio
in ~5.3! we will end up with something nonsensical, in th
the numbers ofv ’s andv†’s within each trace are not iden
tical, and thus neither is a multipole trace. What we sho
do in these two cases is to insert av(z) into one trace and a
v†(z) into the other so that both become multiple functio
als. For example,

m13
ab~s1t1s2t2s3t3![m~s1ut1s2t2us3t3!

[m~ t1s2t2z!m~zs3t3s1!. ~5.8!

The z in the first factor is av†(z), and that in the second
factor is av(z).

This completes the explanation of the symbols in E
~5.3!, except for one last remark. If the two vertical bars a
side by side, then the corresponding multiple tracem should
be interpreted as tr(1)/Nc51.

When we take expectation values on both sides of
~5.2!, we get an equation for the multiple amplitudes. F
largeNc , the expectation of products of traces factorizes in
products of expectations of a trace. In this form Eqs.~5.2!
and ~5.3! generalize the Balitsky-Kovchegov equation
higher multiple amplitudes. We should interpretm in these
equations as the average^m&, and products of twom’s as the
product of the averages.

In the special case of a dipole,k51, and hencei 5 j 51
in Eq. ~5.3!. In that case,

m11
aa5m~s1uut1!5m~s1t1!,

m11
bb5m~ uus1t1!5m~s1t1!,

~5.9!
m11

ba5m11
ab5m~ us1ut1!5m~s1z!m~zt1!,

I 11~z!5
1

4p3

~s12t1!2

~s12z!2~ t12z!2
.

Equation~5.2! coincides with the BK equation~2.11!, as it
should.

A very interesting fact emerges from these generaliz
BK equations for multipole amplitudes. If the multipole am
5-10
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plitudes fork51,2, . . . ,,21 are known, then the evolutio
equation determining thel th multipole is alinear inhomoge-
neous equation. Thus the only nonlinear equation one ha
solve is the original BK equation for the dipole amplitude.
is well known that the nonlinearity of this equation leads
saturation. The linearity of the higher multipole amplitud
therefore means that saturation of the dipole amplitude a
matically drives saturation of all higher multipole amp
tudes.

If we require the solution of the JIMWLK equation~3.28!
to be free of infrared singularitities, then presumably it w
be made out of the multiple traces~5.1! and their products. In
that case the difficult functional differential JIMWLK equa
tion can be replaced by the more manageable set of gen
ized BK equations~5.2! and ~5.3!.

VI. SOLUTION OF THE JIMWLK EQUATION

Suppose we decomposeW̄t(v) into a linear combination
of eigenfunctionsf̄l(v) of H̄. The operatorH̄ is Hermitian
and positive semidefinite; hence the eigenvaluesl are real
and non-negative. From Eq.~3.28!, the t dependence o
W̄t(v) is thus given by a linear combination of exp(2lt). In
the asymptotic limitt→`, the lowest eigenvalue ofH̄
dominates.

The lowest eigenvalue isl50, and its normalized eigen
function is f̄0(v)51. This eigenfunction is normalized be
cause*DH@v#5)x*dH@v(x)#51.

In contrast,f0(a)51 is also an eigenfunction ofH with
l50, but the integral of this eigenfunction is divergent b
cause the linear spaceA is noncompact.

In the next subsection, we will discuss what happens
the asymtotic limitt→` whenl50 dominates. In the sub
sequent subsection, we will look atW̄t(v) and its applica-
tions for a smallert.

A. Asymptotic limit

When t5`, only f̄0(v) contributes, so we can se
W̄`(v)5f̄0(v)51. Averages are then given by the integr
^B(v,v†)&5*DH@v#B(v,v†). From the matching rule, this
integral is nonzero only when the number ofv ’s in B exactly
matches the number ofv†’s at every transverse positionx.

For example, the dipole amplitude~2.8! is

st~x,y!5
1

Nc
^tr@v†~x!v~y!#&5dx,y ~6.1!

becausevx
†vx51 and tr(1)5Nc . This is consistent with Eq

~2.9!, and also Eq.~2.14! at t5`. In other words, wheneve
the dipole has a finite size, the dense gluon will have suc
strong absorption that the dipole amplitude always beco
zero.

A similar statement can be made about multipole am
tudes.

Let us now compute the gluon spectrum att5` by using
the formula@9#
07400
to

o-

al-

-

n

l

a
es

i-

d~xFG!

d2k
5

1

4p3^Fa
1 i~kW !Fa

1 i~2kW !&

5
1

4p3Nc
^Tr@F1 i~kW !F1 i~2kW !#&, ~6.2!

wherekW5(k1,k), and

Fa
1 i~kW !5E d3x exp~ ik•x!F1 i~xW ! ~6.3!

is the color electric field in the light cone gauge. In the a
proximation F1 i(xW ).( i /g)d(x2)V(x)] iV†(x), which is
supposed to be valid for a Lorentz-contracted panc
nucleon, the formula becomes

d~xFG!

d2k
52

1

4p3g2Nc
E d2xd2y exp@ ik•~x2y!#

3^C~x,y!&,
~6.4!

C~x,y!5Tr@V~x!Vi
†~x!V~y!Vi

†~y!#,

where the subscripti represents a differentiation, namel
Vi

†[] iV
†.

To compute the averagêC(x,y)&5*DH@v#B(x,y), we
need to use Eq.~3.2! to convert the gluon Wilson linesV and
V† to the quark and antiquark Wilson linesv† and v. The
result is

C~x,y!52CF tr@v~y!v i
†~y!v~x!v i

†~x!

1v i~y!v†~y!v i~x!v†~x!#

1tr@v i~y!v†~y!#tr@v~x!v i
†~x!#

1tr@v~y!v i
†~y!#tr@v i~x!v†~x!#. ~6.5!

The functional integral̂ C&5*DH@v#C is computed in Ap-
pendix B. The result is

^C~x,y!&522
Nc

221

a2 dx,y . ~6.6!

Changing the integral in Eq.~6.4! into a finite sum, and
letting r5x2y, we get

d~xFG!

d2k
5

pRA
2

4p3g2Nc
(

r
a2 exp~ ik•r !

2~Nc
221!

a2 d r ,0

5
2pRA

2~Nc
221!

16p4asNc
. ~6.7!

The unintegrated spectrumd(xFG)/dk2 is therefore abso-
lutely flat, up to the saturation momentumQs

2 which is in this
case infinite. That is not unexpected att5`.

The integrated cross section is then
5-11
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xFG5Qs
2
pRA

2~Nc
221!

8p3asNc
. ~6.8!

The spectrum in Eq.~6.7! differs from the mean field
prediction~2.16!, in that Eq.~6.7! is flat and Eq.~2.16! has a
logarithmic dependence onk2. The integrated densityxFG
is, however, quite similar to the estimate given in Eq.~2.2!;
the only difference is a factorc58p3.

B. Below the asymptotic limit

It is much more difficult to solve the JIMWLK equatio
for finite t, because we know nothing about the other eig
functions and eigenvalues ofH̄. In this section, we will dis-
cuss an approximate correction toW̄t(v) below the
asymptotic limit, in a region where the Wilson lines are f
apart.

To avoid the infrared divergence, the distribution fun
tional W̄t(v) will be assumed to depend onv and v† only
through the multipole traces~5.1!, or products of them. From
the results of the last subsection and the discussion in Se
we know that for larget the average of multipole traces~i.e.,
multipole amplitudes! are small if the Wilson lines in the
multipoles are far apart. In fact, the higher the order of
multipole is, the smaller the amplitude is expected to
Therefore it is reasonable to include only quadratic dep
dences ofv and v† in a first correction to the asymptoti
limit, at least in the region when the Wilson lines are f
apart. We will therefore assume

W̄t~v !511(
s,t

tr@v†~s!v~ t!#bt~ t,s!. ~6.9!

The contribution tr@v†(s)v(s)#bt(s,s)5Ncbt(s,s) may be
absorbed into thev-independent term. We may therefore a
sumebt(s,s)50 without any loss of generality. In that cas
using the matching rule and unitarity ofv to do the func-
tional integral, we see thatW̄t(v) is still normalized:

E D̄H@v#Wt~v !51. ~6.10!

To compute the dipole amplitude~2.8!, we need the follow-
ing integration formula, which can be obtained from t
matching rule, Eq.~3.8!, and the unitarity ofv:

E DH@v#tr@v†~s!v~ t!#tr@v†~x!v~y!#

5Nc
2ds,tdx,y1ds,yd t,x2ds,y,t,x . ~6.11!

The last Kroneckerd is by definition nonzero only when th
four arguments in its subscript are all equal.

We may now compute the dipole amplitude from Eq.~2.8!
to be

st~x,y!5
1

Nc
E DH@v#W̄t~v !tr@v†~x!v~y!#
07400
-

r

-

II,

e
.
-

r

-

5Fdx,y1
1

Nc
bt~x,y!G . ~6.12!

Sincebt(x,x)50, we getst(x,x)51, as it should be. If we
stay away fromx5y, thenbt(x,y)/Nc is just the dipole am-
plitude st(x,y). As such it should satisfy the BK equation
On the other hand, we should be able to get the equatio
bt(x,y) directly from the JIMWLK equation~3.28! by using
Eqs. ~6.9!, ~3.31!, and ~3.25!. The left hand side is propor
tional to tr@v†(s)v(t)#, but the right hand side has two term
one is proportional to tr@v†(s)v(t)#, and the other it propor-
tional to tr@v†(z)v(t)#tr@v†(s)v(z)#. If we drop this quartic
term because it involves a higher order multipole functi
which is expected to be small, thenbt(x,y)/Nc5st(x,y)
simply satisfies the BK equation~2.11! with the quadratic
term of st dropped. This is justified when the dipole amp
tude is small, which is the case when the two Wilson lin
are far apart, as expected. The solution is given by
~2.13!.

We may use Eq.~6.9! to calculate the higher order ampl
tude. The result is a sum ofbt /Nc5st , one for each dipole
pair inside the multipole.

VII. CONCLUSION

The density of the soft gluons is determined by the dis
bution Wt(a) of the classical Yang-Mills potentiala(xW ).
The interaction of fast partons with such a background
given by their Wilson lines. In this paper, we introduced t
distributionW̄t(v) of Wilson lines. It can be obtained from
Wt(a), and it also satisfies the JIMWLK equation. We com
pleted Mueller’s derivation of the JIMWLK equation, a
though forW̄t(v) and not forWt(a). We derived a gener-
alized BK equation for multipole amplitudes. We also us
the normalizable property ofW̄t(v) to compute the proper
ties of physical observables atxF50. We obtained in this
way an unintegrated gluon spectrumd(xFG)/dk2

5pRA
2(Nc

221)/8p3asNc , independent of the transvers
momentumk2 of the gluon. A correction to this asymptoti
behavior was briefly discussed.
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APPENDIX A: MATHEMATICAL DETAILS

The Haar measure ofU(n) for odd n is given by

dH@v#5c4tr@v21dv`v21dv`•••`v21dv#, ~A1!
5-12
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where c4 is a normalization constant determined
*dH@v#51, and the argument of tr consists of the exter
product ofn2 factors ofv21dv. From the cyclic nature of
the trace, and the antisymmetry character of the exte
product, it can be seen thatdH@v# defined in this way is 0
whenn is even. Hence we must confine ourselves to oddn if
we want to use the expression~A1!.

It is easy to check that Eq.~3.3! is satisfied for Eq.~A1!.
We will show in two ways thatD̂a(x) defined in Eq.

~3.20! is anti-Hermitian. First, define the inner product
two functionalsa by

^ f ug&a5E D@a#D@a8# f * ~a!g~a8!d~u2u8!/J~u!,

~A2!

whereu is given by Eq.~3.17! andu8 is given similarly in
terms ofa8. From Eqs.~3.10! and ~3.15!, we see that
07400
r

or

d~u2u8!/J~u!5)
a,x

d„at~x!2at8~x!…. ~A3!

Using integration by parts and assuming the resulting surf
term to be zero, it is easy to see thatd/dat

a(t,y) is anti-
Hermitian with respect to this inner product.

If f̄ (v) and ḡ(v) are obtained, respectively, fromf (a)
andg(a) by Eq.~3.16!, then the inner product betweenf̄ (v)
and ḡ(v) defined by

^ f̄ uḡ&v[E DH@v# f̄ * ~v !g~v ! ~A4!

is equal to the inner product^ f ug&a defined in Eq.~A2!. This
is so because
^ f̄ uḡ&v5E DH@v#D@a#D@a8# f * ~a!d~v2u!g~a!d~v2u8!/J~u!J~u8!

5E D@a#D@a8#d~u2u8! f * ~a!g~a8!/J~u!

5^ f ug&a . ~A5!
-

We know that the transform ofd f (a)/dat
a(y) is D̂a(y).

Since ^ f̄ ḡ&v5^ f ug&a and sinced/dat
a(y) is anti-Hermitian

with respect tô f ug&a , it follows that D̂a(y) must also be
anti-Hermitian with respect tôf̄ uḡ&.

The second proof of the anti-Hermiticity ofD̂a(y) makes
use of the explicit formula~A1!. It proceeds as follows.

Using the explicit formula~3.20! for D̂a(y), we must
show thatD̄a(y)[v i j (y)(ta) jkd/dv ik(y) is Hermitian with
respect to the inner product~A4!.

Let us first show thatD̄a(y) is imaginary. Sincev†

5v21, it follows that

d

dv ik*
52v isv rk

d

dv rs
. ~A6!

Using also the fact thatta is Hermitian, then

D̄a* 5v i j* ~ ta* ! jk

d

dv ik*
52~vta!rs

d

dv rs
52D̄a . ~A7!

Now we use integration by parts to show thatD̄a is antisym-
metric with respect to the inner product^ f ug&v . Remember-
ing Eq. ~3.10!, integration by parts changesD̄a into
2
1

J~v !

d

dv ik
~vta! ikJ~v !. ~A8!

This would indeed be equal to2D̄a if

d

dv ik
@~vta! ikJ~v !#50. ~A9!

Sinced(d@v#)/dv ik5d@dv/dv ik#50, Eq. ~A9! is true if

d†~vta! ikDH@v#‡

dv ik
50, ~A10!

which in turn is true if

n tr~ ta!dH@v#1~vta! ik

]dH@v#

]v ik
50. ~A11!

Using Eq.~A1!, we get

~vta! ik

]dH@v#

]v ik
52n2 tr@ tav21dv`•••`v21dv#,

~A12!

namely, it is equal to2n2 times ata inserted into the mea
sure in Eq.~A1!. If a50, then t0 is proportional to the
identity matrix, so indeed Eq.~A11! is true. For a.0,
5-13
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tr(ta)50. Sincev21dv is a linear combination of theU(n)
generatorstb , we conclude that Eq.~A11! is valid if

eb1b2•••bn2 tr@ tatb1
•••tbn2#50. ~A13!

This is indeed the case because tr(ta)50 and s
[eb1b2•••bn2tatb1

•••tbn2 is proportional to the identity ma
trix. This last statement can be proven as follows.

Let v0PU(n). Thenv0
21tav05(V0)abtb , whereV0 is the

adjoint representation ofv0. Hence v0
21sv05det(V0)s.

Since the adjoint generatorTa has no diagonal matrix ele
ments, it is traceless, so det(V0)51. Therefores commutes
with every elementv0 of U(n), so by Schur’s lemma it mus
be proportional to the identity matrix.

We have thus shown thatD̄a(y) is antisymmetric and
imaginary. Hence it is Hermitian.

APPENDIX B: SATURATION CALCULATION

We want to computê C(xy)&5*DH@v#C(x,y) for the
function C(xy) given in Eq. ~6.5!. This function contains
four terms. We will label them consecutively asC1 , C2 , C3,
andC4.

We interpret the derivative] iv(x)5v i(x) on the lattice to
be

v i~x!5
1

2a
@v~x1ai !2v~x2ai !#, ~B1!

whereai is a lattice vector along thei th direction.v i
†(x) is

defined similarly. The following computations make use
Eq. ~3.6!, CF5Nc/2 for U(n), the matching rule discussed
the end of Sec. III, and unitarity ofv. There are also extra
factors of 2 obtained by summing the twoai directions. In
this way we get

^C1&5
2CF

4a2 ^tr$v~y!@v†~y1ai !2v†~y2ai !#

3v~x!@v†~x1ai !2v†~x2ai !#%&
s.

o,
ya

48

.

07400
f

52
2CFNc

4a2 @dx,y2ai
1dx,y1ai

#

.2
2CFNc

a2 dx,y

52
Nc

2

a2 dx,y ,

^C2&5
2CF

4a2 ^tr&$@v~y1ai !2v~y2ai !#v
†~y!

3@v~x1ai !2v~x2ai !#v
†~x!%

5^C1&,
~B2!

^C3&5
1

4a2tr$@v~y1ai !2v~y2ai !#v
†~y!%

3tr$v~x!@v†~x1ai !2v†~x2ai !#%

5
1

a2 dx,y ,

^C4&5
1

4a2tr$v~y!@v†~y1ai !2v†~y2ai !#%

3tr$@v~x1ai !2v~x2ai !v
†~x!#%

5
1

a2 dx,y .

Thus

^C~x,y!&5^C11C21C31C4&

522
Nc

221

a2 dx,y . ~B3!
,
ev.
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