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QED radiative corrections in processes of exclusive pion electroproduction
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A formalism for radiative correctiofRC) calculation in exclusive pion electroproduction on the proton is
presented. AAORTRAN codeEXCLURAD is developed for the RC procedure. The numerical analysis is done in
the kinematics of current Jefferson Lab experiments.
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[. INTRODUCTION dependence associated with them. Note that the transition to
the case of two structure functions would not be possible
Understanding the electromagnetic transition amplitudegven within realistic approximations. The Mo-Tsai approach
from the nucleon ground state to excited states providepredicts neither RC to polarization asymmetries, nor depen-
valuable insight into the electromagnetic structure of thedencies on the outgoing hadron angles.
nucleon. Exclusive pion electroproduction is one of the ma- The third reason is a known shortcoming of the Mo-Tsai
jor sources to provide the most direct information about theapproach, namely, the dependence on an unphysical param-
spatial and spin structure of the excited states. With the deeter splitting soft and hard regions of the phase space of
velopment of a high intensity and high duty-factor electronradiated photon in order to cancel the infrared divergence.
beam with a high degree of polarization, this field reaches a In our approach, which is based on a covariant procedure
new level of quality. For the past several years, exclusiveof infrared divergence cancellation proposed by Bardin and
pion electroproduction has been the main subject of extenrShumeiko in Ref[3], such an unphysical parameter is not
sive studies at various accelerator laboratories, such as MITequired. Previously, this approach was applied for the cal-
Bates, ELSA, MAMI, and Jefferson Lab. culation of RC for inclusivd4—6], semi-inclusive 7,8] and
New measurements with the CLAS detector at Jeffersomxclusive diffractive 9] reactions. Recent reviews of the ap-
Lab/Hall B [1] are expected to greatly improve the system-proach, higher order effects and calculation for specific ex-
atic and statistical precision and cover a wide kinematigperiments can be found in papdis0—12. Based on these
range in four-momentum transf€? and invariant mas¥y, results, aFORTRAN codePOLRAD [13] for RC calculation in
as well as the full angular range of the resonance decay intpolarized inclusive and semi-inclusive processes was devel-

the nucleon-pion final state: oped. Besides, some specific tasks such as the Monte Carlo
(MC) generatoRADGEN [14], the MC approach to diffrac-
e(ky) +p(p)—e' (k) + 7" (pp)+n(py), tive vector meson electroproductiphb5], RC to spin-density
(1)  matrix elements in exclusive vector meson producfibl,
e(ky)+p(p)—e’(ky)+p(pn) + 7°(py), and the quasielastic tail for a polarized He-3 tafdéf were

solved. Recently the Bardin-Shumeiko approach was applied
wherep;, (p,) denotes the momentum of the detectad- to the measurements of elastic polarized electron-proton
detectedl hadron. The adequate calculation of radiative cor-Scattering at Jefferson Ldli8,19. A comprehensive analy-
rections (RC) becomes important in interpreting the mea- Sis of results obtained in Ref®] and[3] was made in Refs.
sured observables such as unpolarized coincidence crokb4,20.
sections and polarization asymmetries. Note that there are also other approaches for the calcula-

While solving the RC problem, one is commonly referredtion of RC in electroproduction processes. For example, the
to the classical approach developed by Mo and T8hand  results of Ref[21] are actively used for DES¥p collider
used for inclusive and elastic electron scattering for decade$lERA experiments, while the approach developed in papers
However, this approach cannot be directly applied to excluf22] is applied to specific measurements at Jefferson Lab
sive pion electroproduction for the following reasons. [23].

First, we now deal withexclusive electroproduction, The Feynman diagrams needed to calculate RC are pre-
where the hadron is detected in addition to the final electronsented in Fig. 1. They include QED processes of radiation of
It reduces the room for the phase space allowed for the finan unobserved real photon, vacuum polarization, and lepton-
radiated photon. The formulas of Mo and Tsai as well as anphoton vertex corrections. These processes give the largest
other inclusive formulas cannot be applied do this case witheontribution due to a large logarithmic term @¥mg). They
out additional strong assumptions. can be calculated exactly from QED, and uncertainties of

Second, there are only contributions of two structuresuch a calculation are only due to the fits and data used for
functions in the inclusive case. The exact formalism for thethe hadronic structure functions. These uncertainties are
exclusive process requires consideration of four structuréemonstrated in the present article. Additional mechanisms
functions for the unpolarized case with additional angularlbox-type diagrams, emission by hadrprage smaller by

0556-2821/2002/66)/07400413)/$20.00 66 074004-1 ©2002 The American Physical Society



AFANASEYV et al. PHYSICAL REVIEW D 66, 074004 (2002

e(kr (k) ST
p(p) Pu
a) b) c) d) e)

FIG. 1. Feynman diagrams contributing to the Born and the
next-order electroproduction cross sectio(@. Born process(b)
and (c) bremsstrahlung(d) vertex correction, ande) vacuum po-
larization. The momenturp,(p,) is assigned to the detectédn-
detected hadron.

about an order of magnitude and they contain considerable
theoretical uncertainties. Most recent studies of two-photon
exchange effects for elastep scattering were reported in
Refs. [24,25. Previous RC calculationg26] for inclusive
polarized deep-inelastic scattering included the above-
mentioned additional mechanisms. Generalization to the case
of meson electroproduction will be subject to a separate FIG. 2. Definition of momenta and angles in the center-of-mass
study. frame.
The paper is organized as follows. We introduce kinemat-
ics and definitiongSec. I), derive a cross section of the

u -2Q? +2Mm?
radiative procesgSec. lll), solve the problem of infrared Elyzzziz, Eq=SX2—Q, Ep=SX2—,
divergence(Sec. IV), obtain RC in the leading log arithmic W W W
approximation(Sec. Vj, verify the relation between exclu-
sive and inclusive R(CS_ec. V), perform_ numerical analysis VA 3 _E
(Sec. VI, and summarize the results in Sec. VIII. P12= W’ Pp=Pq= W’

(€)
1. KINEMATICS AND BORN PROCESS cosp. ulyz(Sx—ZQz)iZQZWZ
At the Born level[Fig. 1(a)], the cross section of the L2 /)\12\/)\—q ’
processesl) is described by four kinematic variables. Fol- ’
lowing tradition, we choose them as the squared virtual pho-
ton momentumQ?, invariant mass of initial proton and the SinG = 2WN
virtual photonW, and detected pioifor proton) angles 6, 12 ‘/)\12\/)\—(1'

and ¢y, in the center-of-mass of the final hadrons. The ob-

tained formulas are equally valid for both electron and MUOMNare subscripts 1,8,p denote the initial lepton, final lepton,
scz?/t&ermg. he following L . . defined f | virtual photon and initial proton, respectively.
; e4US8t e following Lorentz invariants defined from lep- || the introduced kinematic variables have the same defi-
tonic 4-momenta: nition for both Born and radiative kinematics. But the situa-
tion is different for the final hadrons. The reason is that the

S=2kip, X=2kp, Q%=—(k;—ky)?, energy of the observed hadron is not fixed by measurements
of the chosen kinematic variableQ?, W?, 6, ¢y. As a
U;=S—Q2, U,=X+Q? o= Uiz‘ Am2W2, result, it is different for these cases. In the Born case the

hadron energy can be defined via conservation laws, but for
the radiative process it depends on the unknown energy of

Spx=S*X, Ag=S—4m’M? (2 the radiated photon. In order to distinguish between the vari-
ables, we use the superscript “0” for the quantities calculated
W2=S,— Q2+ M?2 )\q=S§+4M 22 for Born kinematics:
2 2 2 N O
)\=Q2ulu2—Q4W2—m2)\q, Eozm pozﬂ/
h 2W ©oThe 2w
wherem (M) is the lepton(proton) mass. . ) (4)
We use the c.m. system of virtual photap={k; — k,) and A= (W2—mZ—m?)?— 4miW?2.,

initial nucleon. The axi€©Z is chosen along] (see Fig. 2
The energies and anglésig. 2) in the selected frame can be All invariants defined via the measured 4-momentum of had-
expressed in terms of invarian{®) as follows: ron py, are also different for Born and radiative cases:
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V2 = 2Ky 0n=2[ E1 JE— 1 A00(COSH), COH; WHY= —gH"H, + pEp Ho+ pEPLHs+ (P¥Pr+ PEDY) Ha
+sin 6, sin 6, ,Cosy) ], (5 +(PEP — P Pl Hs, (12)
SP=2pp,=W2+mi—m2+Vo—V9. where the tilde for an arbitrary 4-vectat* denotes the sub-

_ _ stitution a*=a*—ag/g?q” (to ensure electromagnetic
The last expression follows from 4-momentum conservationgauge invariange The first four structure functions have ten-
The Born cross section of exclusive pion electroproducsor coefficients symmetric over Lorentz indices, but the last

tion in terms of the introduced variables reads: one is antisymmetric, it contributes to the polarization-
L dependent part of the cross section. The quanti?Pehave
M3 dk, dp, dpy the following form:
doo=5c5 55 5= 5= O(A—Pu)
2S(2m)°® 2E, 2E, 2E;, o
01=Q ’
(4ma)? LYW, VAy , 1
S gr e GQ AW, 0= 5(SX-M?Q?),
(6)
1
whereA is the total 4-momentum of the undetected particles, 09= E(Vng— m2Q?), (13
A=p+ky—k,—py. For the Born procesgig. 1(a)], A is
equal to the momentum of the undetected hadpgn,while 1
for the radiative procedgs=igs. 1b) and Xc)], it is a sum of 92: —(S\/§+XV2—S?Q2),
the undetected hadron and bremsstrahlung photon momenta, 2
A=p,t+k. 0
The phase space is calculated as 05=—2€(ky,kz,p,Pn),
> where the operator in the last line is defined as
9o _ T doraw @
2E, 2S €(P1,P2,P3,P4) =PIP5PIP] €apyo- (14)
and In the chosen c.m. frame it is equal to
dp, dpy . o o S, o . €(k1,Kz,p,pn)=WPgpnpy Sin 6y sin 6, sin gy,
2, 2E, ( W= 24 gy - 8

VAWA
= Wsm 0, sindy, . (15
To calculate the matrix element squared, one needs to con-

tract the leptonic and hadronic tensors, As a result, we obtain for the Born cross sectian (

o pet =do/dWPdQ%dQ})
Mg:awava:?;l 0PH?. 9 N

> 6OH?. (16)

707 3om2PWR2Q4 IS4

We consider the longitudinally polarized lepton beam. In this

case the leptonic tensor reads The expression for the Born cross section in the f¢t6)

is convenient for our further calculation. It is equivalent to
the well known formula in terms of photoabsorption cross
sections(or response functions where each term corre-
sponds to certain polarization states of the virtual photon
Here the lepton polarization vector is kept in a general form[27],

If the lepton is longitudinally polarized and its helicity is
positive, then the vectaf can be expressed 88|

1 . N -
Lo=5Trko+m)y, (ki +m)(1+iysd)y,. (10

1
NL o0~ o1+ €eo +ecos 2o+ Ve(l+€)/2 cospno T
0

= %(%kl—zm p)- (12) +heve(l-e)2singorr, a7
s where

In the Born approximation, the second term can be dropped.
However, it gives a nonzero contribution to RC.
For the hadronic tensor, we use a general covariant form

W2—M?

P ELTER)

(18
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he is the longitudinal polarization degree of the incoming Let us first consider the phase space for the radiative pro-
leptons, and: [27] describes the virtual photon polarization. cess. Integrating over the 3-momentum of unobserved had-

The following expressions relate the structure functiongon and using the Diraé function to eliminate integration
(12) and Born photoabsorption cross secti¢h®): over the hadron energy, we have

2 A2 1) — _ T
Hy(W?,Q%t)=C(or—0or7), dk dp, dpy,

oc 2w 2€, 25, 2N KR
Hz(WQOzvt):)\_[ZQZ(UT_UTT+UL)1 1
q vmu do
. f dQ,dQ, f —\w (22)
—TQoyr+T?or1l, o4 o T
2CA\
Ha(W2,Q3t) = N Lo, (19 where
|

fw=W-—Ep+ py[ cosé,, cos,+ sin b, sin b, cos dn— &) .

C
Ha(W2,Q2t) = \/_)\—(ZTO'TT_QO'LT)v 23)

Here we introduce a quantity that describes the missing

C
Hs(W2,Q% 1) :\/_)\—Q‘TLT’ mass(or inelasticity due to the emission of a bremsstrahlung
! photon,vaz—mﬁ. Note thatv =0 for the Born process
where [Fig. 1(a)], as well as in the soft-photon limik&0). As can

be seen from Eq(22), both the photon and hadron energies

are now functions ob. It is related to another quantitfy,,
16’7T2(W2_ M 2)W2 f) q f/W

, as follows:
a \/)\3\,
, v=W2+mi—m2—2WE,=2wf. (24)
tg—2
T= —Sx a2Q S[, (20
\/7‘—! The largest value of inelasticity allowed by kinematios,)
corresponds to the threshold of electroproduction. It is there-
N= Q%S — §Sitq— M2tZ— M\, fore defined from the relatiok,=m,,, yielding

andQ=/Q?. Note that both structure functiorig , as well
as cross sections’s, are functions of three independent in-
variant variables, which usually are choserQgs W? andt.
Therefore their transformation coefficients depend only orNote thatv,, is always smaller for the heavier hadron,
these variables but not ow,. For the radiative case the namely, the nucleon, detected in the final state. It does not
variables will be defined in the next sectifgee Eq.(30)].  depend on photon angles, therefore the integration region is a
For the Born case, they are taken\w8, Q? andt=t,=V> rectangle.

Um=(W—my)?—m?. (25)

—V?—Q2+ mﬁ. The maximum inelasticity ., is an important quantity for
the RC calculation. All kinematic cuts made by experimen-
IIl. EXACT FORMULAS FOR RADIATIVE CORRECTION talists in data analysis influence RC. It is often possible to

reduce all these cuts to one effective cut on the inelasticity
The cross section of the radiative process is given by  (or missing mass v, in which casev.,; should replace
vy, as the upper limit of integration in EQR22), and thus RC

M2 dk, dk dp, dp; can be calculated within the cuts using the obtained formu-
do,= m 2_I52 2w 2_Eu2_Eh§ A—=k=py) las. If no cuts are applied, the maximum valuevoéquals

Um, as given by energy-momentum conservatiah).
Now we can fix the kinematics of the radiative process.
B (47Ta)3dQ2dW2thj q UMLR W We have to express all scalar products and kinematic vari-
- 2(4m)'SPW? kY 204 #*#""  ables in terms of seven variables: Four variables that define
the differential cross section and three integration variables.
(21 First, note that all definitions of leptonic variables given in
Eg. (2) hold in this case. Hadron and real photon energies are
whereQ, stands for the solid angle of the bremsstrahlungdefined by Eq(24). Hadron momentum and scalar products
photon(detected hadrgn are given as
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Nw be discussed in the next section. Here we can extract the
Pn= W A= (W2~ mﬁ—mﬁ—v)2—4mﬁwz, infrared convergent terms i6; in separate pieces:

V15= 2Ky Jon=2[ E1 JE— P1,2Pn(COSHO, COSH, 5

4
+sin 6, siN 0, ,COSPy) ], (26) b=x" Fir6P+6F . (32
W
S=2pp,=W2+m2—mZ+V,—V;—v
=S, +t+M2—mP—u The quantitiess® are defined by expressions féf with a
v reservation that the hadronic quantitisg,V,,S; and vector
t=V2—V1—Q2+mﬁ. py, itself have to be calculated for the radiative kinematics

(26). This term originates from the first terms bf,, and

As in Eq. (5), the last expression is obtained from conserval,, in definition of Eq.(28). The explicit form of finite parts
tion laws. All hadron kinematic variables depend on inelas-of these functiong are given in the Appendix.

ticity v but not on photon angleQ,. Scalar products con-  Finally, the cross section of the radiative process (
taining the photon 4-momentum read =dor/dQ%dWAd(),) is given as

2pk=Ry(1—7)=20w(E,—p,CcOSby),
2ky k=K1 ,=2w[E; ;— Py ACOSH COSH,
4 il

+sin @y sin 6, ,Cospy) ], (27 " Q

2ppk= pu=20w[ E;,— pp(cosé, cosb, wheref = f,, /W

+ sin 6y sin 6}, cos ¢y — dp) . As a cross-check, we consider the soft-photon limit
Onmin<RI2M <wq < all energies and masses. In this case
Here we use also invariant variabl®g,=2k(p+q) and =  only the first term in Eq(32) survives,
=2kg/Ry,; Ry=fuwv/W.
The leptonic tensor of the radiative process has a more

complicated form. It can be written as 20 Q2 W
or=—|log— -1 Ioglaxoo. (39
T m? Wmin

1 . . R
Lyt = 5Tkt m)T o (ke +m)(1+ivs8) T,

bo| (ke ki) vikya yekyw
ne= |\ Kk, Kkg) 7% T2kk,  2kkp

Integration over photonic angles is performed analytically,

. (29

Q2
J d0FiR=-2(1n—1), In=log—. (35
m

ES [ kla kla ’Yak’yy ’YVR'yal
r,= Yo~ -

@ kky; kky 2kk,  2kk,

After contraction of the radiative leptonic tensor, we obtain
IV. INFRARED DIVERGENCE

5
M2=_ = |R __ ~2e6 2 0H: . (29) As was already mentioned, this cross section contains an
o*R, =1 infrared divergence. Therefore, in order to compute RC, we
have to use some regularization method first. We use the
R\, was extracted explicitly in order to caneekcoming from  method of Bardin and Shumeiko for a covariant treatment of

Jacobian(22). Arguments ofH; can be expressed as an infrared divergence problem. Basically, we follow the
~ original papers devoted to this topic, namely, R8i.for ex
Q*=—-(q-k)*=Q*+R,, (30)  elastic scattering and RéB] where exclusive electroproduc-

tion was considered. One can find a good and detailed review
W2=(p+q—k)2=W?—R,,, in Ref.[10].
(32) Following the rules of dimensional regularization, we ap-
T=(q—k—pp)?=t—Ry(7—p). ply an identity transformation to the radiative cross section

assuming that we deal withrdimensional space:
It is well known that the cross section of the radiative pro-
cess is infrared divergent, which requires careful consider-
ation in order to cancel in the difference. The procedure will OR=0R— ORT O R=0t+0oR. (36)
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The purpose of the procedure is to separate the cross section Calculation of the hard-photon contribution is straightfor-
into two pieces. The first termof is complicated but infra- ward,
red free. Infrared divergence is contained in the separate term
dor, which has a quite simple structure and can be analyti-
cally calculated withinn-dimensional space. In principle,

there is some arbitrariness in choosing the form of the sub- o )
tracted term. Actually only the asymptotical form fy, (or For &5, we follow Ref.[3] ger_lerallzmg these calculations to
w) —0 is fixed. Another limitation comes from the theorem the exclusive electroproduction case.

about a possibility to switch the order of integration and the USing the sphericaln-dimensional frame, we have

Su=(1_—1)log=". (41)
v

limit n—4. It means that we have to provide uniform con- [3,28,29
vergence ofdo in the limit. Practically, it is ensured if the 1 (o 2 2-1
subtracted term has a structuféw, and the difference is 5U_—f dv - f dkokp 3
[F(w)—F(0)Iw. N T (3]
We define the subtracted part of the radiative cross section 2
as follows: Only the first term from the right-hand sigas) K K, \2
of Eq. (32) is kept. It gives the required R, behavior of the xf sif"36d 9( o2 ) 8(v —2kgm,).
radiative cross section. Everywhere else, except for dhe 2kik  2kok
function, we assume =0. This allows us to factorize the (42)
Born cross section when calculating the correction: 5
Ky ko
- F = —
o dk . (e, cox(6)) (2k1k 2k2k)
or=—09 | dv | —Fré(A-K)*=mp). (37)
™ @ 1 m?
In the cross sectior we can now remove the regular- - 4k§ EfR(l—,Bl cosf)?
ization. The result is
m2
J’_
=_a—3 do dv E3x(1— B, c0sh)?
OF 29452\ 2 k7
1 daQ?
A 4F g\ _f 2,1 _ 7| (43
XZ \/_WGiHi— Ig4 WaloHlol (38) 0 Ea(l B, €c0s6)

64

i . . .
Here Feynman parameters are introduced in order to join two

. . . . . __denominators. Thus we define the new vector
For calculation purposes, we split the integration region

into two parts separated by the infinitesimal value of inelas- k,=aki+(1—a)ks (44)
ticity v: and quantitieg, ,, as a ratio of energy to momentum in the
R frame. In terms of invariants, we have
UIR:% SR oo= %(5s+ On) oo (39 AmPm? Am?ng
B1=\/1+ ?: B=1\/1+ X2

with

(45)

- - Aamm?+ a(1- @)Q?]
_—1 Ud dn 1k A k2 2 Ba: 1+ ) 12
Os=—— fo vf —(ZW)H_AKOF.Ré(( —k)*=mp), [aS)+(1—a)Xg]

(40) It should be noted that the same polar angles are used in Eq.
—1 (om d3k (43) for all three terms. That is why we can rotate the coor-
o= 7J; dvf k—F,Rb‘((A— k)?— mﬁ). dinate system for all the terms and choose@#axis along
’ 0 121,2”, respectively. After straightforward integration over
the polar angle, we obtain E®3).
The next two steps involve integration ougrusing thes
function and ovew:

The term 6'SR corresponds to the soft photon contribution,
while the term6'HR is caused only by hard photons and there-
fore it does not contain the infrared singularity. Again, in the
second contribution the regularization can be removed. . 1 o\t
We keep integration over the 3-momentum of the radiated f dvf dkok§ > 8(v — 2kem,) = —( ) .
photon in a covariant form. It makes it possible to calculate 0 n—412m,
the integral in any frame. We choose the frame whére (46)
=0 (so-calledR frame. Integration over inelasticity is ex- Since the polerf—4) ! is extracted, we can use expansion
ternal, therefore is fixed for the integral. in series ofn—4,
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1 U_ n_A[W(l—XiZ)]n/Z_Z where
n—4\4mwuom, n
I3-1 al3 1% Q2M2] =2
6VR:; §|m—2—§|n —,+L|2 1—- ~ _F ,
Pr+lo v +logy1l—¢&° (47 K e
- =
100, 109 : 50
a v
with £=cosé and standardP,r defined as int= —(Im=1) SX¢

1

1
Pr=rz "+ §7E+Inm-

(48) Higher-order corrections can be partially taken into account

using a special procedure of exponentiation of multiple soft
ve being the Euler constant. After then we reduce the expregehoton radiation. There is an uncertainty about which part of
sion for &g to the form dygr has to be exponentiated. Within the appro§gé], we
have to change 1 §;,s t0 expdys.
Collecting all the terms, we obtain for the case of meson

v
55:j dadg P'R+|092/.Lomu electroproduction:
+logy1— & |F(a,§), (49) Tops= 008 M (1+ Syrt 8ya0) + 0 - (55

which includes only standard integration that can be dondlere the corrections;,; and 5,,. come from the radiation
using, for instance, tables from Appendix D of REf0]. of soft _photogs ano_l the effects of vacuum pqlarlzatlon, the
Integration is straightforward, but it contains an integral usu-COrrectiomyg is an infrared-free sum of factorized parts of
ally associated with a so-call&}, function in the Bardin and réa! and virtual photon radiation, an: is an infrared-free
Shumeiko approach. Here we skip the discussion about progontribution from the bremsstrahlung process.

erties of the function and give the result in the ultrarelativis-

tic approximation which we use for the entire calculation: V. LEADING LOGARITHM APPROXIMATION

s szl da : 1-8, In this section we extract the leading logarithm contribu-
=72 |, 2 1—a021 911 3, tion from formulas obtained in the previous section. After
Bl M+ a(1=a)Q7] then we show that the result coincides with what we obtain
from a generalized leading logarithm approximation.
The method of extraction of leading logarithfor peak-

X6 ing) contributions was first suggested in RE2] (see also
papers[30,31]). Formally, we have to calculate residues of
) szﬁ w? the terms 14, and 1#,. The corresponding poles appearrin
+Ligl 1- sx;| 3 (50 for r=7,=—Q¥S and 7= 1,= Q% X. As a result, we have
0

(apart from the factorizable correctiptwo contributions of

Finally, we have forsg hard radiation,

! !

v a
p|R+|ogM—M)(Im—l)+logW'f‘5¢- (51) ULL:Z(Im_l)

3+21 g—vﬁj
(0]
S'X’

65:2 (To+0's+0'x .

56
The infrared-divergent termB g, as well as the param- (56
etersu andv are completely canceled in the sufg+ 6y

with 8, which is a contribution of the vertex functidifrig. Technically, the contributions can be obtained as

1(d)]:
1, 3 2 J dQ,6,=—8ml W 4z 6?
m o i— —OTlmae  ~2 - -~ U,
Sy=—2| Pir+log—|(Im—1)— =12+ =1 =2+ —. < MS—Q% zy(1-2z)
(52)
_ W2 1+75
For this sum, we have f dQ,6,= _87T|mx+—Qz 12, 0;.
o
— + Su+ =5 .+ L .
7 (05T Out 0V)=dini + Svg, (53 For the two peaks the contributions are, respectively,
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f”mdv
Og— —
s o g

fvm szU
o,=
X 0 X,

1+zfC
Ao
1—z, 5%

20'0
1-z,)’

(58)
1475

1_22

xOx—

20’0
1_22 ’

wherez;=1—-v/S', z,=X'/(X"+v) and

W W
er

W2=2,5—X—-2,Q*~M?,

C

(59

and 7\wSx are calculated in accordance with Eg) using
W2=W2 .
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VI. EXCLUSIVE AND INCLUSIVE RADIATIVE
CORRECTION

An important consistency test is to show that inclusive
RC can be obtained by integration over hadronic angles. It
should be noted that this is not trivial because the hadronic
angles of radiative and Born cross sections are defined even
in different frames. For a definition of the Born angles, we
use the center-of-mass frame, while for angles of the radia-
tive process we have to use another frame defined by vectors
p andg—k. As a result, it leads to quite complicated kine-
matic relations between these angles.

We start with Eq.(56). After integration over hadronic
angles, we have to obtain the leading logarithm cross section
(o"°=do/dWPdQ?) for the inclusive case. The inclusive
formula can be found in Refd.31,13, for example. For
double differential cross sections @ andW?, it reads

These leading logarithm formulas were extracted from

our exact expressmns glven in the preV|ous section. The re-

sult can also be obtained using standard leading logarithm

techniqueg32] from our expressiori21). The leading term

comes from angular integration of denominators kg and

kk,. They can be extracted at the level of leptonic tensor

1+22 1

R —
L 1_21 kkl

wr— Euv

(60)

1+25 1
_|._ R
Z5(1—2,) kky

Only these scalar products in the denominators are subject to

2
v _
oin® —(I 1) 3+2Iog—u1&1 )a{)”°+ag‘c+o'>?c ,
(64)
with
inc
inc:i fl 1+ Z1 inc 20-0
Og 2W|m Zszlzll 7, Ops — T (65)
O-inC: i fl% 1+22 nc 20_ionc (66)
X 2g M D2, 1-7, Tox 1-z,’

angular integration. For our exclusive process, integration

yields

gy 7y

fdp“ S(A—Kk— ! 61
2. 20 ( pu)kk (62)

s X

Now, using Eqgs(21), (60), and(61), we obtain the following

leading-logarithm cross section for the radiative process:

do al g
dr 2T

i 1+25 d®o(z1ks ko)
s l-z dr®

(62

1 1+25 d®oq(ky .k, /2p)
X' 1=z, dre ’

d3k, d3py,

6_
dr 262 ZEh ’

While deriving the above results, Eq&7), (58), we take
into account relations between ,, v and S’ (X ) which
follow from the constralnt[A2 (1—29)k,]? —m =0 or
[A2—(1—1/z,)k,]?—m2=0. They are

1-2,

v=(1-2)S', v= Z

X', (63)

wherez]'=X/u, andz}'=u, /S.

Let us consider integration ové€l,, of radiative cross sec-
tions (i.e., the first term on the left-hand side in E§5)].
The simplest way to relate angles in different frames is to
express them in terms of kinematic invariants. We use the
following relation:

w2 dVvidv)
m V _D(Vl =V2) '

whereD (V3,V3) =[ e(Ky Kz, p,pr) ]? is the Gramm determi-
nant[see Eq(14) and Ref[33]]. For the cross sections!'®

dQ,= (67)

and a'”c the corresponding expressions are
w2 z,dV,dV.
1 1 2 (68)
VAws V=D(z1V1,V3)
and
w2 dv,dV.
10Vo 69)

\/)\0 2, —D(V1,V,/2,)
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The expression for radiative kinematics is

16D (V1,V,) =[usVo+ U,V — (W24 mi—m2—v)Q?]?

—4(SX—M2Q?)(V,V,—miQ?). (70

The Born case is reached in the limit~=0. Two comments
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VII. NUMERICAL ANALYSIS

Based on the derived analytical formulas;GRTRAN code
EXCLURAD was developed. This code computes RC to the
fourfold cross sectiond*o/dWdQd cosédey,) and to po-
larization beam asymmetry for process&ps Both exact and
leading logarithm formulas obtained in the previous sections
are included. Any value of the inelasticity cut can be option-
ally chosen. Once the computational algorithm for RC is

are in order before explicit integration. The integration aresestablished, there are two possible ways of incorporating RC

in variablesV; and V, is defined by equatiod(V,,V5)
=0 that produces an ellipse. For radiative cross sectiifs

and UL?C this area isz; (or z,) dependent.

A simple integration procedure follows:

Um Um Um W2
dQ f d —>f d fdQ f d
f h 0 v 0 v h 0 U\/)\W

w? g

\/Tvvzl\/_D
W2 S AwsV—Ds

J-D

— d Zld V?_d V2

i J’ ledQﬁ

VAw z;V-D W3
(71
The final formulas for the transformation
Um 1 SI
f thJ duzf dzlf dQp = (72
0 7 Cs

are obtained if we use the equality that can be checked dh

rectly,

D,
D (73

| =

Using Eq.(72), one can see that the exclusive radiative cros

section transforms to the inclusive one after integration.

Let us show how to obtain a factorized part of the inclu-
sive correction from the exclusive result. The subtracted pa

of Egs.(58) can be rewritten as
fum dv _J dz; fs'(vzo) ds
0 S'(1-2z) Jzgul=Z1 JS'@w=v, S

_J dz, I SpW )
- Ziml_zl_ °d ur(W—my) /)

(749

After similar calculation foray, we can see that inclusive

RC is reproduced exactly.

r

into analysis of experimental data on electroproductiai:
An iteration procedure similar to the one implemented in the
RC codePoLRAD for inclusive reactiong13] or (b) using
realistic models for the structure functioi$9) of coinci-
dence electroproduction.

Although the former choice seems attractive due to its
model independence, it requires, however, full and precise
experimental mapping of the structure functidd$) in the
entire range of the kinematic variables needed to compute
the radiative proces€33). Such a procedure is much more
challenging and less efficient than for inclusive processes.
Given that such mapping is not available at this time, the
only choice left is(b). In this way, RC are applied to the
model calculations, and then model parameters are fixed
from available experimental data. Thus, RC appear as a nec-
essary intermediate step in extracting model parameters from
measurements.

We use the following models for calculation of structure
functions(19):

MAID [34]. In this model, baryon resonances are described
using Breit-Wigner forms, while background contributions
are described wusing standard Born terms, mixed
pseudovector-pseudoscalarNN coupling and t-channel
vector meson exchange. The final amplitudes are constrained
by unitarity and gauge invariance. We use two versions of
MAID: the earlier one, denotedaip’es and the most recent,
uoted here asIAID2000.

AO (amplitude and observablgs35]. The amplitudes are
parametrized as followsS-channel resonances are param-
etrized with relativistic Breit-Wigner forms with momentum-
dependent widths. This part of the amplitude is complex. In
addition, thes-channel andu-channel pion Born terms are

é'ncluded. These are real numbers. Additional real back-

ground amplitudes are used with an energy dependence that
has correct threshold behavior.
¢ Another model that can be included into the cadeLu-
RAD in a simple and straightforward way is the dynamical
model of Sato and Leg86]. In this model, the off-shell non-
resonant contributions tg* p—A*(1232) were calculated
directly by applying reaction theory within the Hamiltonian
formulation underlying “bare” photocoupling form factors.
It should be noted that the Sato-Lee model does not include
the contributions from higher resonances. Since the compu-
tational algorithm for RC does not depend on a particular
choice of hadronic structure functions, the addition of any
other model does not constitute a problem.

With the models at hand, we can now evaluate numeri-
cally the magnitude of RC as a function of various kinemat-
ics variables. Let us define the RC factor as follows:
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) é
1.4 1
i 098 | 1) e+p - e+n+n’; 2) e+p — e+p+n’
13 [ e+p—>e+p+n0 A
; 096 [
1.2 i
I 0.94 |
o 092 |
1 09 |
0o [ 0.88 |-
L 0.86 :_ 02 =04 GeV2 1
0.8 L Qz=0.4GeV2 [
S 084 W = 1.232 GeV
o= 90° I
07 I 0= 90° 0.82 [ ¢ =90°
0.67""""“"“"""""""“‘ 0.8_...I...I...I...I...I...I...I‘..I...I...
1 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1 -08 -06 -04 02 O 02 04 06 08 1

W,GeV cos 0

) ) FIG. 5. RC to the cross section as a function of €os
FIG. 3. Wdependence of RC to the cross section of neutral pion
production. The models used aveip2000 (solid curve, MAID'98

[34] (dashed curveand AO[35] (dotted curvé W are strongA(12_32) anc_l $1(1535) resonance peaks. One _
can see that RC is negative at the resonance peaks and posi-

tive in the dip regions between the peaks. Thus it tends to

5= Oobs (75) weaken the strength of the peaks and fill the dip regions

o above the given resonances. Also shown in Fig. 3 is the

model dependence effect which appears to be noticeable at

For all the following plots, the electron beam energy ishigherwaway from the resonance peaks. At higher values of
Epean=1.645 GeV and no cuts on inelasticity were used,W. the magnitude of RC is larger in the charged pion pro-
except for Fig. 9. We choose representative kinematics fofluction case. This is mainly due to the wider range of inelas-
current experiments with the CLAS detector at Jefferson LaliiCity v (24) associated with detection of a lighter hadron
Hall B. The RC factors to the pion electroproduction cross(i-€., the pion.

sections are presented in Figs. 3 and 4 as a functiohl. ¢h Before discussing the angular dependence of RC, let us

this region, the characteristic features of the cross section Vi§st comment on the definitions of hadronic angles in order
to avoid possible ambiguities. The cms angfeand ¢ are

3
16 ()
a2 e e+ +n a
15 ¢ *tpoedm 1025 1 1) e+p > e+p+7’; 2) e+p — e+n+n’
14 | 1 F
13 | 0.975
12 | 095 |
14 F /'\ 0.925 |
1} 7 09 |
09 [ 2 2 a
- -0.4 GeV 0.875 |
05 i Q’=0.4 Ge - Q%= 0.4 GeV?
X N (+] -
5 ¢= 90 085 ¢ W = 1.232 GeV
07 £ 6= 90° 0.825 | 6 = 90°
o6 L o 0 08E"""""““""'""""""""
1 11 12 13 14 15 16 17 18 8 0 50 100 180 200 260 500 80

W,GeV

FIG. 4. W-dependence of RC to cross section of charged pion

production. Kinematics and notation are as in Fig. 3.

¢, deg

FIG. 6. Dependence of RC to the cross section on the azimuthal
angle ¢.
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10 ¢ A% ; 12 °
8 S+PO+p+n 115 | e+poe+ps+n’
e f ul i
4 I
9 1.05 — 8pol
0 ! g
2 095 [ 3
: \ / 09
. _ 04 Gev? 6= 90° 0.85 _ W=1.35GeV ¢ = 90°
sl 6= 90° 08 | Q?=0.4 GeV? 0= 90°
) S S T S T S 075 Ll
1 11 12 13 14 15 16 1.7 18 0 002 004 006 008 01 012 014 0.16
W,GeV v, ,GeV?

cut’

FIG. 7. W dependence of the beam polarization asymmetry in  F|G. 9. Dependence of RC to cross section and polarization
neutral pion production. The solidlashed curve denote the asym- peam asymmetry on the inelasticity autfor neutral pion produc-
metry with (without) RC. MaID2000 was used to compute the struc- tion, The quantityd,,, is RC to the unpolarized part of the cross
ture functions. section, 8, is RC to the polarized part of the cross section, and

Op= Ounp/ 6pol» €., it is RC to the beam polarization asymmetry.

between the direction of momentum lost by electrogs ( MAIP2000 was used for structure functions.

=Kk, —k,) and momentum of the final pign},, provided that
the pion is detected. For the neutral pion production case, th&om the final pion momentum for the radiative processes
convention is to also use the direction of pion momentun¥igs. 1b) and Xc).
reconstructed from kinematics. In order to follow the con- The angular dependence of RC is shown in Figs. 5 and 6,
vention for the neutral pion production, we defileand ¢  where it is plotted as a function of césand ¢, respectively.
with respect to the direction of p;, oppositeto the final ~ The kinematics corresponds to th¢1232) peak, where RC
proton momentum, while keeping in mind that it is different leads to suppression of the cross section. It can be seen from
Fig. 5 that approaching the forward direction at the given
A% value of ¢, the magnitude of RC as a function of ab$or
6 > the charged-pion channel smoothly increases from about 3%
to 12%, while for the neutral pions it decreases from 10% to
5%. A common feature for both the channels is that RC is
larger in magnitude for the parallel kinematics, when the
detected hadron moves along the transferred momentum. The
RC factor varies as a function of azimuthal angieas well
(Fig. 6). Dependence of RC on the angfe has important
f implications for the super-Rosenbluth separation of electro-
production structure functions, and thedependence would
affect the partial-wave analysis, resulting in corrections to
electroexcitation parameters of baryon resonances.
The beam polarization asymmetry is plotted in Figs. 7 and
8 for the neutral and charged channels, respectively. One can
6= 90° see that for the asymmetry, RC changes from enhancement to
"\ suppression when passing across thend S, resonance
Q?=0.4 GeVZ 0= 90° regions. The RC factor is most substantial in the dip regions
N T D between resonances. Figure 9 demonstrates the dependence
1 11 12 13 14 15 16 17 1.8 on inelasticity cutvg,; (24). It can be seen that for the
W,GeV smaller values of the cut, resulting in the selection of softer
bremsstrahlung photons, RC to both polarization-dependent
FIG. 8. The beam polarization asymmetry in charged pion proand polarization-independent parts of the cross section are
duction as a function ofV with (solid curvg and without(dashed — almost the same, resulting in a small correction to polariza-
curve RC. The notation is as in Fig. 7. tion asymmetry. Asv,; increases, the correction to the

e+p—oe+n+n’
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asymmetry also increases due to the hard-photon emission APPENDIX

coming into play. . . .
Any experimental spectrum for electroproduction con- Inth|§ appendix we give formulas faf” [Eq. (32)]. In the
. L ) - . _unpolarized case,

tains a radiative tail that, due to the finite energy resolution,

cannot be experimentally separated from Born contribution.

In practice, detected events are included into data analysis up

to a certain(cut) limit and are interpreted as radiative events. GiF =0+ Ry b3,

The contribution of radiative events should be calculated

theoretically using the same inelasticity cut.(;). The re-

sulting contribution of the radiative events is subtracted from 0,,=4F g7,

the integrated experimental spectrum in order to obtain the

value of Born cross section that, naturally, should be cut

independent. 013= —4F —2F 4, 7%,
The FORTRAN code EXCLURAD can be downloaded from

http://www.jlab.org/RC or obtained directly from the au-

thors. 20= —AM?F g 7—F 4S2r+F 1. S,5,+ 2F,_S,
+2FrSy,

VIII. DISCUSSION AND CONCLUSION

, . o 2025=AM?F + 2M?F 47°— F4S,7—F 1. S,,
In this paper we obtain explicit formulas for the lowest-
order QED radiative correction to cross section and polariza-

tion beam asymmetry in the exclusive pion electroproduc- 20ar= — Am2 2

= —4m2F r7—F V2 +F1,V_V, +2F, uV
tion. Analytic formulas are tested in several ways. Apart ~ 2 hTIRT™ TV T a4 V-V 2=V
from traditional cross-checks like soft-photon and leading- +2uFRV_, (A1)

logarithm limits, it is found that integration with respect to

the hadronic angles reproduces the inclusive radiative correc-

tion. 2035=4mZF + 2m2F 472 —FautV_—Fy uV,
A FORTRAN codeEXCLURAD is developed on the basis of

the analytic formulas. Numerical analysis carried out for Jef-

ferson Lab kinematic conditions shows the following. 204=—2F¢Sy™V, +F1, SV +F1, SV, +2F, uS,
Radiative correction to the cross section of electroproduc-
tion is very sensitive to the cut on inelasticity. The harder cut +2F; V. +2uF|rS—4F |rSyT+2F RV,

eliminates contributions from the higher-energy part of the
bremsstrahlung spectrum, thus leading to the smaller magni-

tude of RC to the polarization asymmetry. 2043=4F Sy~ FquS,7+ 2F ¢Sp7°
perFégn;[o cross sections can be as high as several tens of —Fg™V_—F1, uS,—F1, V.

RC may vary depending on the chosen model for electro-
production structure functions. The proposed RC procedurklereV.=V;*V,,
may be viewed as a necessary intermediate step in interpre-

tation of experimental results in terms of model parameters. 1
An iteration procedure may be required for the regions where Fg= , (A2)
model dependence is substantial. KiK2
RC have a nontrivial angular dependence in €asd ¢.
This is particularly significant, as these are often used as
: . - ; 1 1
input to extract structure functions and partial wave ampli- Fio=—+—, (A3)
tudes. K1 K2
m? m?
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2
Osp=4{ 2F 11Ep+ 2F 5E 1 + F [ E1pr— Q*(Ey + Ep) ]+ g(EsS—Epur+Ep—ES)y,

, (A6)
O53= 2( F1+(Ex—Ep)—Fy(E1+Ep) 7+ §F11E2( —1)],

1
E1o=€(ky,ka,P1,Pn) =7 [~ (ViX~ QS+ SVo)?+4(SX—M2Q%)(Q°mi—V1V,) M2,
1
E1=e(k,Ky,Pp1,Pn) :Z{_ [RyV1(7=1) = RyuS+ Syii 12 +4[ kM ?+ Ry (7= 1)S](— kimip+ ViR,u) 12, (A7)

1
E= e(k.kz,py,Pn) =7 { = [RuVa(7— 1) = RupX+ Spia]?+ 4L kM P+ Ry (7= 1)XI(— oM+ VR ) } 2
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