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Positivity of high density effective theory
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We show that the effective field theory of low energy modes in dense QCD has a positive Euclidean path
integral measure. The complexity of the measure of QCD at the finite chemical potential can be ascribed to
modes which are irrelevant to the dynamics at sufficiently high density. Rigorous inequalities follow at
asymptotic density. Lattice simulations of dense QCD should be possible using the quark determinant calcu-
lated in the effective theory.
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Quantum chromodynamics~QCD! with a nonzero chemi-
cal potential has a complex measure, which has thus far
cluded lattice simulations@1#. Recent analytical work in
color superconductivity@2# has demonstrated a rich pha
structure at high density, and stimulated interest in QCD
nonzero baryon density. Several experiments have been
posed to probe matter at a density of a few times the nuc
matter density@3#. Even rudimentary information about th
behavior of dense matter would be useful to the experime
program, as well as to the study of compact astrophys
objects such as neutron stars. In this paper, we will show
QCD near a Fermi surface has a positive, semidefinite m
sure. The contribution of the remaining modes far from
Fermi surface can be systematically expanded, using a
density effective theory previously introduced by one of
@4#. This effective theory is sufficient to study phenome
such as color superconductivity, although quantities such
the equation of state are presumably largely determined
dynamics deep in the Fermi sea.

Let us recall why the measure of dense QCD is comp
in Euclidean space. We use the following analytic contin
tion of the Dirac Lagrangian to Euclidean space:

x0→2 ixE
4 , xi→xE

i ; g0→gE
4 , g i→ igE

i . ~1!

The Euclidean gamma matrices satisfy

gE
m†5gE

m , $gE
m ,gE

n %52dmn. ~2!

The Dirac-conjugated field,c̄5c†g0, is mapped into a field
still denoted asc̄, which is independent ofc and transforms
as c† under SO(4). Then, the grand canonical partitio
function for QCD is

Z~m!5E dAm det~M !e2S(Am), ~3!
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whereS(Am) is the positive semidefinite gauge action, a
the Dirac operator

M5gE
mDE

m1mgE
4 , ~4!

whereDE5]E1 iAE is the analytic continuation of the co
variant derivative. The Hermitian conjugate of the Dirac o
erator is

M†52gE
mDE

m1mgE
4 . ~5!

The first term in Eq.~4! is anti-Hermitian, while the second
is Hermitian, hence the generally complex eigenvalu
Whenm50, the eigenvalues are purely imaginary, but co
in conjugate pairs (l,l* ) @6#, so the resulting determinant i
real and positive semidefinite:

detM5) l* l>0. ~6!

In what follows we investigate the positivity properties
an effective theory describing only modes near the Fe
surface. A system of degenerate quarks with a net bar
number asymmetry is described by the QCD Lagrang
density with a chemical potentialm,

LQCD5c̄ iD” c2
1

4
Fmn

a Famn1mc̄g0c, ~7!

where the covariant derivativeDm5]m1 iAm and we neglect
the quark mass for simplicity.

The energy spectrum of~free! quarks is given by an ei-
genvalue equation,

~aW •pW 2m!c65E6c6 , ~8!

where aW 5g0gW and c6 denote the energy eigenfunction
with eigenvaluesE652m6upW u, respectively. At low energy
E,m, the statesc1 near the Fermi surface,upW u;m, are
easily excited butc2 , which correspond to the states in th
Dirac sea, are completely decoupled due to the presenc
©2002 The American Physical Society01-1
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the energy gapm provided by the Fermi sea. Therefore th
appropriate degrees of freedom at low energy consist of
ons andc1 only.

Now, we wish to construct an effective theory describi
the dynamics ofc1 by integrating out modes whose ener
is greater thanm. Consider a quark near the Fermi surfac
whose momentum is close tomvW F . Without loss of general-
ity, we may decompose the momentum of a quark into
Fermi momentum and a residual momentum as

pm5mvm1 l m , ~9!

wherevm5(0,vW F). Since the quark energy is given as

E52m1A~ l i1m!21 l'
2 , ~10!

the residual momentum should satisfy (l i1m)21 l'
2 <4m2

with lW i5vW F lW•vW F and lW'5 lW2 lW i .
To describe the small excitations of the quark with Fer

momentum,mvW F , we decompose the quark fields as

c~x!5eimvW F•xW@c1~vW F ,x!1c2~vW F ,x!#, ~11!

where

c6~vW F ,x!5P6~vW F!e2 imvW F•xWc~x!

with

P6~vW F![
16aW •vW F

2
. ~12!

The quark Lagrangian in Eq.~7! then becomes

c̄~ iD” 1mg0!c5@c̄1~vW F ,x!ig i
mDmc1~vW F ,x!

1c̄2~vW F ,x!g0~2m1 iD̄ i!c2~vW F ,x!#

1@c̄2~vW F ,x!iD”'c1~vW F ,x!1H.c.#,

~13!

where g i
m[(g0,vW FvW F•gW ), g'

m5gm2g i
m , D̄ i5V̄mDm with

Vm5(1,vW F), V̄m5(1,2vW F), andD”'5g'
mDm .

At low energy, we integrate out all the ‘‘fast’’ modesc2

and derive the low energy effective Lagrangian by match
all the one-light particle irreducible amplitudes containi
gluons andc1 in loop expansion. The effects of fast mod
will appear in the quantum corrections to the couplings
low energy interactions. At the tree level, the matching
equivalent to eliminatingc2 in terms of equations of mo
tion:

c2~vW F ,x!52
ig0

2m1 iD i
D”'c1~vW F ,x!

52
ig0

2m (
n50

` S 2
iD i

2m D n

D”'c1~vW F ,x!. ~14!

Therefore, the tree-level Lagrangian forc1 becomes
07150
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Leff
0 5c̄1ig i

mDmc12
1

2m
c̄1g0~D”'!2c1 1 •••,

~15!

where the ellipsis denotes terms with higher derivatives.
Consider the first term in our effective Lagrangian, whi

when continued to Euclidean space yields the operator

Meft5g i
E
•D~A!. ~16!

Meft is antiHermitian and it anti-commutes withg5, so it
leads to a positive semidefinite determinant. However, n
that the Dirac operator is not well defined in the space
c1(vW F ,x) ~for fixed vF), since it mapsc1(vW F ,x) into
c1(2vW F ,x):

iD” i P1c5P2iD” i c. ~17!

Since P2(vW F)5P1(2vW F), iD” c1(vW F ,x) are c1(2vW F ,x)
modes, or fluctuations of a quark with momentum2mvW F .

We can demonstrate the necessity of including b
c1(vW F ,x) andc1(2vW F ,x) modes in our effective theory by
considering charge conservation in a world with only1vW F
quarks. The divergence of the quark current at one loop

^]mJam~vW F ,x!&5gsE d4p

~2p!4
e2 ip•xpmPmn

ab~p!Ai
bn~2p!,

~18!

whereAi5(A0 ,vW FvW F•AW ) and Pmn
ab is the vacuum polariza-

tion tensor in the effective theory given as@4#

Pab
mn~p!5 im2dab

pW •vW FVmVn

p•V1 i epW •vW F

. ~19!

The polarization tensor has to be transverse to main
gauge invariance. We find that if we have both fiel
c1(vW F ,x) and c1(2vW F ,x) the current is conserved fo
scalar potentials and the gauge symmetry is not anomal

^]mJa
m~vW F ,x!1]mJa

m~2vW F ,x!&50. ~20!

Therefore, we need to introduce quark fields with oppos
momenta. The Dirac operator is well defined on this larg
space.

This anomaly can be understood in terms of spectral fl
since the Fermi surface is~in a certain sense! not gauge-
invariant. Under a gauge transformation,U(x)5eiqW •xW, the
Hamiltonian changes and the energy spectrum of free mo
of residual momentumlW shifts to E5 lW•vW F1qW •vW F . Quarks
near the Fermi surface withvW F•qW .0 flow out of the Fermi
sea, creating charge. This charge creation is compensate
quarks with oppositevW F ; their energy decreases and th
flow into the Fermi sea. However, unless modes with op
site velocities~i.e., both sides of the Fermi sphere! are in-
cluded, charge is not conserved.
1-2
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Thus far we have considered the quark velocity as a
rameter labelling different sectors of the quark field. This
similar to the approach of heavy quark effective theo
~HQET! @5#, in which the velocity of the heavy charm o
bottom quark is almost conserved due to the hierarchy
scales between the heavy quark mass and the QCD s
However, this approach contains an ambiguity often refer
to as ‘‘reparameterization invariance,’’ related to the non
niqueness of the decomposition~9! of quark momenta into a
large and residual component. In the dense QCD case,
c(vF ,x) modes whose values ofvF are not very different
may actually represent the same degrees of freedom o
original quark field. In what follows we give a different fo
mulation which describesall velocity modes of the quark
field, and is suitable for defining the quasiparticle determ
nant.

First, a more precise definition of the breakup of the qu
field into Fermi surface modes. Using the momentum ope
tor in a position eigenstate basis:pW 52 i ]W , we construct the
Fermi velocity operator:

vW 5
2 i

A2¹2

]

]xW
, ~21!

which is Hermitian, and a unit vector.
Using the velocity operator, we define the projection o

eratorsP6 as before and break up the quark field as,c(x)
5c1(x)1c2(x), with c65P6c. By leavingvW as an op-
erator we can work in coordinate space without introduc
the HQET-inspired velocity Fourier transform which intr
ducesvF as a parameter. If we expand the quark field in
eigenstates of the velocity operators, we recover the prev
formalism with all Fermi velocities summed up.

The leading low-energy part of the quark action is giv
by

L15c̄P2~v !~ i ]”2A” 1mg0!P1~v !c. ~22!

As before, we define the fieldsc1 to absorb the large Ferm
momentum:

c1~x!5e2 imxW•vW P1~v !c~x!. ~23!

Let us denote the eigenvaluev obtained by acting on the
field c ~which has momentum of orderm) as v l ~or v
‘‘large’’ !, whereas eigenvalues obtained by acting on the
fective field theory modesc1 are denotedv r ~or v ‘‘re-
sidual’’!. If the original quark mode had momentump with
upu.m ~i.e., was a particle!, then v l and v r are parallel,
whereas ifupu,m ~as for a hole! thenv r andv l are antipar-
allel. In the first case, we haveP1(v l)5P1(v r) whereas in
the second caseP1(v l)5P2(v r). Thus, the residual mode
c1 can satisfy either ofP6(v r)c15c1 , depending on
whether the originalc mode from which it was derived wa
a particle or a hole. In fact,c1 modes can also satisfy eithe
of P6(v l)c15c1 since they can originate fromc modes
with momentum;1mv as well as2mv ~both are presen
in the original measure:Dc̄Dc). So, the functional measur
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for c1 modes contains all possible spinor functions—t
only restriction is on the momenta:u l 0u,u lWu,L, whereL is
the cutoff.

In light of the ambiguity betweenv l andv r , the equation
c5e1 imx•vc1 must be modified to

c5exp~1 imx•v a•v !c1

5exp~1 imx•v r a•v r !c1 , ~24!

where the factor ofa•v r corrects the sign in the momentum
shift if v r andv l are anti-parallel. In general, any expressi
with two powers ofv is unaffected by this ambiguity. Fo
notational simplicity we define a non-local operator

X [ m x•v a•v 5 m
a ixj

¹2

]2

]xi]xj . ~25!

Taking this into account, we obtain the following action

L15c̄1e2 iX~ i ]”2A” 1mg0!e1 iXc1 . ~26!

We treat theA” term separately fromi ]”1mg0 since the
former does not commute with X, while the latter does. Co
tinuing to Euclidean space, and using the identityP2gmP1

5gm
i P1 , we obtain

L15c̄1g i
m~]m1 iA1

m !c1 , ~27!

where

A1
m 5e2 iX Am e1 iX, ~28!

and all g matrices are Euclidean. The term containingA
cannot be fully simplified because@v,A#Þ0. Physically, this
is because the gauge field carries momentum and can de
the quark velocity. The redefinedc1 modes are functions
only of the residual momenta l, and the exponential factor
theA term reflect the fact that the gluon originally couples
the quark fieldc, not the residual modec1 .

The kinetic term in Eq.~27! can be simplified to

g i
m]m5gm]m ~29!

since v•]v•g5]•g. The action~27! is the most genera
dimension 4 term with the rotational, gauge invariance1 and
projection properties appropriate to quark quasipartic
Therefore, it is a general consequence of any Fermi liq
description of quarklike excitations.

The operator in Eq.~27! is anti-Hermitian and leads to
positive, semidefinite determinant since it anticommutes w
g5. The corrections given in Eq.~15! are all Hermitian, so
higher orders in the 1/m expansion may reintroduce com
plexity. The structure of the leading term plus corrections

1If we simultaneously gauge transformA1 andc1 in Eq. ~27! the
result is invariant. There is a simple relation between the ga
transform of the1 fields and that of the original fields:U1(x)
5U(x)eiX. Of course, the momentum-space support of the1
gauge transform must be limited to modes below the cutoffL.
1-3
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anti-Hermitian plus Hermitian, just as in the original QC
Dirac Lagrangian with chemical potential. The leading ter
in the effective action for gluons~these terms are generate
when we match our effective theory, with energy cutoffL, to
QCD! also contribute only real, positive terms to the par
tion function:

Seff~A!5E d4xES 1

4
Fmn

a Fmn
a 1

M2

16p (
vW F

A'm
a A'm

a D>0,

~30!

where A'5A2Ai and the Debye screening mass isM
5ANf /(2p2)gsm.

Matching of hard gluon effects also leads to four-qua
operators in the effective theory. At asymptotic density,
can neglect these operators, since forward scattering d
nates Cooper pairing interactions~due to Landau damping
@2#!. However, at lower densities hard operators may be
portant. Matching effects due to hard gluon exchange
lead to a positive action for attractive channels, since t
arise from quasiparticle-gluon interactions which are ori
nally positive.2 Only interactions involving virtual antiquark
lead to nonpositive interactions, and these are always
pressed by powers ofm.

Positivity of the measure allows for rigorous QCD i
equalities at asymptotic density. For example, inequali
among masses of bound states can be obtained using bo
on bare quasiparticle propagators. One subtlety that aris
that a quark mass term does not lead to a quasiparticle
~the mass term just shifts the Fermi surface!. Hence, for tech-
nical reasons the proof of nonbreaking of vector symmet
@7# must be modified.@Naive application of the Vafa-Witten
theorem would preclude the breaking of baryon number
is observed in the color-flavor-locked~CFL! phase@8#.# A
quasiparticle gap can be inserted by hand to regulate the
propagator, but it will explicitly violate baryon numbe
However, following the logic of the Vafa-Witten proof, an
symmetries which are preserved by the regulator gap ca
be broken spontaneously. One can, for example, still c
clude that isospin symmetry is never spontaneously brok
In the case of three flavors, one can use the CFL gap
regulator to show rigorously that none of the symmetries
the CFL phase are broken at asymptotic density. On the o
hand, by applying anomaly matching conditions@9#, we can
prove that the axial symmetriesare broken. We therefore
conclude that the CFL phase is the true ground state for t
light flavors at asymptotic density.

It may be possible to simulate dense QCD using the
fective field theory determinant in place of the usual qu
determinant. We know that this is a good approximation
very high density, and it should remain a good approximat
as long asLQCD, the characteristic scale of the domina

2A simple way to study the positivity of four-quark operators is
replace them by a vector field with trivial quadratic termVm

2 which

couples to quarks like the original gluon:Vmc̄gmc. Completing the
square, we see that the resulting path integral is positive if
four-quark interactions are attractive.
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physics, is smaller thanm. At lower densities the weak cou
pling approximation no longer holds, so Eq.~14! is no longer
a good guide to the higher order corrections, which are o
constrained by symmetry and projection requirements. Ho
ever, we can use naive dimensional analysis@10# to estimate
the coefficients of the higher dimension operators.

An estimate of the size of corrections to the determin
from higher orders can be obtained by considering the
clidean relation

detM5eTr ln M5e2e0V, ~31!

wheree0 is the vacuum energy density and V the volume
the system. Corrections to the vacuum energy can be
mated using conventional diagrammatic methods and n
dimensional analysis. We find that corrections are roug
suppressed by powers of (as/2p)(L/m).

To realize the effective theory~27! directly on the lattice,
one can replace the plaquetteUn,n1m;11 iaAm(n) by U1

[e2 iXUe1 iX in the fermion action, but not in the gaug
action. In effect, one computes the fermion determinant
the usual way, but as a function ofU1 . The momenta of the
quasiparticlec1 modes is simply the residual momenta
which is unrestricted except that its magnitude must be sm
compared tom. One can impose this condition onc1 by
choosing a lattice spacingadet@m21 in the quark determi-
nant. However, a challenging aspect of this determinan
that it is computed on the geometry of a spherical shell rat
than a ball:

d3p5dp p2 dV5dl~m1 l !2 dVÞd3l 5dl l 2dV.
~32!

To obtain thee6 iX operators, one must first realize~and
presumably diagonalize! the velocity operator~21!. Since the
momentum operator has a simple representation in coo
nate space, the most challenging aspect ofvW is the normal-
ization factor@the square root of the Laplacian in Eq.~21!#,
which is nonlocal.~A similar problem arises in lattice model
of chiral fermions.! One should probably investigate a sim
pler method for directly enforcing the normalization cond
tion on vW . Note, however, thatvW and X are independent o
the gauge field, so they need be computed only once for e
lattice.

Probably the most direct way to utilize our results on t
lattice is as follows. Imagine coupling dense quark matte
a background gauge field A whose magnitude and derivat
are characterized by a scaleL!m. The leading part of the
low-energy effective theory~describing only Fermi surface
modes! has a real and positive determinant. The quark de
minant ~or equivalently, its logarithm which is the effectiv
action! can be expanded in powers of 1/m, with the leading
term real and positive. Since the determinant is a functio
of the gauge field and its derivatives, the expansion will
fectively be in powers ofL over m. This means that the
ordinary lattice determinant det@gmDm1mg4# computed in
such backgrounds should be real and positive to leading
der in 1/m. Physically, the low-momentum gauge fields ca
not excite modes deep within the Fermi sea~such as anti-
e

1-4



e

u

a

ng
a

.
.

as
try
5-
A
of

06-
op-
ac-
on

RAPID COMMUNICATIONS

POSITIVITY OF HIGH DENSITY EFFECTIVE THEORY PHYSICAL REVIEW D66, 071501~R! ~2002!
quarks! which lead to complex contributions to th
determinant. If we further takeL@LQCD , then the ne-
glected effects of higher momentum gluon modes are s
pressed by powers ofas(L)!1.

In order to restrict ourselves to gauge fields satisfyingL
!m we need to couple the quark determinant living on
lattice with spacinga;1/m to a set of gauge fields living on
a coarser lattice of spacinga8;1/L. Ordinary calculations
of the dense matter quark determinant on lattices witha
5a8 will not yield a real, positive result since the subleadi
terms in the 1/m expansion of the determinant are as large
the leading term.
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