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Positivity of high density effective theory
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We show that the effective field theory of low energy modes in dense QCD has a positive Euclidean path
integral measure. The complexity of the measure of QCD at the finite chemical potential can be ascribed to
modes which are irrelevant to the dynamics at sufficiently high density. Rigorous inequalities follow at
asymptotic density. Lattice simulations of dense QCD should be possible using the quark determinant calcu-
lated in the effective theory.
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Quantum chromodynami¢QCD) with a nonzero chemi- whereS(A ) is the positive semidefinite gauge action, and
cal potential has a complex measure, which has thus far prékhe Dirac operator
cluded lattice simulationg1]. Recent analytical work in
color superconductivitf2] has demonstrated a rich phase sz’E‘D*E‘Jr,uy‘é, (4)
structure at high density, and stimulated interest in QCD at a
nonzero baryon density. Several experiments have been prathere D= dg+iAg is the analytic continuation of the co-
posed to probe matter at a density of a few times the nuclearariant derivative. The Hermitian conjugate of the Dirac op-
matter densityf3]. Even rudimentary information about the erator is
behavior of dense matter would be useful to the experimental
program, as well as to the study of compact astrophysical MT=— y‘éD‘é+,uy‘é. 5)
objects such as neutron stars. In this paper, we will show that
QCD near a Fermi surface has a positive, semidefinite mearhe first term in Eq(4) is anti-Hermitian, while the second
sure. The contribution of the remaining modes far from theis Hermitian, hence the generally complex eigenvalues.
Fermi surface can be systematically expanded, using a higivhen =0, the eigenvalues are purely imaginary, but come
density effective theory previously introduced by one of usin conjugate pairsX,\*) [6], so the resulting determinant is
[4]. This effective theory is sufficient to study phenomenareal and positive semidefinite:
such as color superconductivity, although quantities such as
the equation of state are presumably largely determined by
dynamics deep in the Fermi sea. detM=]] A*r=o0. (6)
Let us recall why the measure of dense QCD is complex
in Euclidean space. We use the following analytic continua-  |n what follows we investigate the positivity properties of
tion of the Dirac Lagrangian to Euclidean space: an effective theory describing only modes near the Fermi
surface. A system of degenerate quarks with a net baryon
Xo—"ixé' xi—>x‘E; 'yo—wyé, 'yi—>i'yiE, (1) number asymmetry is described by the QCD Lagrangian
density with a chemical potential,

The Euclidean gamma matrices satisfy 1

Loco= il = 7 FLF¥"+ pihyoih, 0

v =9k, vk veh=28"" 2)

o where the covariant derivative,=d,+iA , and we neglect

The Dirac-conjugated fieldy= ¢"°, is mapped into a field, the quark mass for simplicity. o _

still denoted asy, which is independent ap and transforms The energy spectrum dfree) quarks is given by an ei-
as ¢ under SO(4). Then, the grand canonical partition 9envalue equation,

function for QCD is ..
(a-p—p)p+=E.ipe, 8

Z(M)Zf dA, de(M)e™ A, (3)  where a=y,y and ¢. denote the energy eigenfunctions
with eigenvalue€ . = — u*|p|, respectively. At low energy

E<u, the statesy, near the Fermi surfacep|~u, are
*Email address: dkhong@pnu.edu easily excited buty_, which correspond to the states in the
"Email address: hsu@duende.uoregon.edu Dirac sea, are completely decoupled due to the presence of
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the energy gap provided by the Fermi sea. Therefore the _ 1_
appropriate degrees of freedom at low energy consist of glu-  Log= ¥+ i ¥['D .ih. — >+ YD)y + -,
y73
ons andy, only. (15)
Now, we wish to construct an effective theory describing
the dynamics ofj, by integrating out modes whose energy where the ellipsis denotes terms with higher derivatives.
is greater thanx. Consider a quark near the Fermi surface, Consider the first term in our effective Lagrangian, which
whose momentum is close jou g . Without loss of general- when continued to Euclidean space yields the operator
ity, we may decompose the momentum of a quark into a

Fermi momentum and a residual momentum as Mer=7[-D(A). (16)
Pu=pv, ., (9) Mg is antiHermitian and it anti-commutes withs, so it
. leads to a positive semidefinite determinant. However, note
wherev*=(0pg). Since the quark energy is given as that the Dirac operator is not well defined in the space of
oe,x) (for fixed vg), since it mapsy. (vg,x) into
E=—p+(j+wp)?+Iz, (10 iﬁ”i )X)(. ve) Py (ve X)
+ _UF, .

the residual momentum should satisfly € u)?+12<4u?
with I]= lj,:r l;,: and Il =1- ﬂ .

To describe the small excitations of the quark with Fermi
momentum,,uJF, we decompose the quark fields as

iD P y=P_iD ¢ (17

Since P_(vg) =P (—vg), iD . (ve,X) are ¢ (—vg,X)
modes, or fluctuations of a quark with momentumLJF.

We can demonstrate the necessity of including both
z,m(JF ,X) andz,m(—JF ,X) modes in our effective theory by

where considering charge conservation in a world with ortly
quarks. The divergence of the quark current at one loop is

YOO = E Xy (g ) FP_(0p, X)), (11)

Y (Vp X) =P (Ug)e HOFXy(x)
4

. - P i v
with (%Ja“(UF,X)ngJ Ze PP (P)AY (—p),
. (27)
- l*a-vg (18
P.(vp)=—%5— (12) o
where Aj=(Aq,veve-A) and Hiby is the vacuum polariza-
The quark Lagrangian in Eq7) then becomes tion tensor in the effective theory given g4
YD+ uy) p=[+ (v XD b (VE %) .o PopVAV”
i FPut AY(P) =i 26— . (19
p-V+iep-vg

+ ¢ (0F %)Y (2u+ DY (vg X)]
[ (vp XD s (Ve ,X)+H.C], The polarization tensor has to be transverse to maintain
gauge invariance. We find that if we have both fields

z,m(JF,x) and ¢//+(—5F,x) the current is conserved for
scalar potentials and the gauge symmetry is not anomalous:

(13

where yf'=(y°,vpve-y), ¥i=y*—', D|=V¥D, with
V#=(1pg), V¥=(1,~vg), andD, =y{D,. 9,340 X)+ 3,34 —0g X)) =0 20

At low energy, we integrate out all the “fast” modes_ (038R X+ 9,35~ ve X)) =0. (20
and derive the low energy effective Lagrangian by matchingrierefore, we need to introduce quark fields with opposite
all the one-light particle irreducible amplitudes containing j,omenta. The Dirac operator is well defined on this larger
gluons andy . in loop expansion. The effects of fast modes gjy5ce.
will appear in the quantum corrections to the couplings of * Thjs anomaly can be understood in terms of spectral flow,
Iow_energy interactions. At _the tree level, thc_e matching iSgjnce the Fermi surface ién a certain sengenot gauge-
equivalent to eliminatingy_ in terms of equations of mo- invariant. Under a gauge transformatidd(x)=ei&'; the

tion: Hamiltonian changes and the energy spectrum of free modes
. 70 . of residual momentunt shifts to E=1-vg+q-ve. Quarks
Y-(vp,X)=— 2u+iD, D, ¢+ (ve.X) near the Fermi surface with:-q>0 flow out of the Fermi
. sea, creating charge. This charge creation is compensated by
_ _'70 _ nD > 14 quarks with opposite;F; their energy decreases and they
ﬂ =0 ﬂ 1 (Ve x). (14 flow into the Fermi sea. However, unless modes with oppo-
site velocities(i.e., both sides of the Fermi spherare in-
Therefore, the tree-level Lagrangian fgr, becomes cluded, charge is not conserved.
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Thus far we have considered the quark velocity as a pafor s, modes contains all possible spinor functions—the
rameter labelling different sectors of the quark field. This ispnly restriction is on the momentdy|,|I|<A, whereA is
similar to the approach of heavy quark effective theoryihe cutoff.

(HQET) [5], in which the velocity of the heavy charm or | jight of the ambiguity between, andv, , the equation
bottom quark is almost conserved due to the hierarchy of,—g*inxvy, must be modified to
scales between the heavy quark mass and the QCD scale.

However, this approach contains an ambiguity often referred y=exp(tiuxX-v a-v)i,
to as “reparameterization invariance,” related to the nonu- B )
niqueness of the decompositié® of quark momenta into a =exp+iux-vy a-v)iy, (24)

large and rejldualhcompor:ent. Irf' the dentse QCg)ﬁcase,t tV‘(ﬁhere the factor of- v, corrects the sign in the momentum
Y(ve,x) modes whose values of are not very different ;¢ ;¢ v, andv, are anti-parallel. In general, any expression

may actually represent the same degregs of fr.eedom of tr1/\e/ith two powers ofv is unaffected by this ambiguity. For
original quark field. In what follows we give a different for- notational simplicity we define a non-local operator
mulation which describesll velocity modes of the quark

field, and is suitable for defining the quasiparticle determi- a'xi 92

nant. X = wXvav = pgz o
First, a more precise definition of the breakup of the quark

field into Fermi surface modes. Using the momentum opera- Taking this into account, we obtain the following action:

tor in a position eigenstate basg= —id, we construct the

(25

Fermi velocity operator: L=t e X(ib—A+uyy)et ™y, . (26)
R i 9 We treat theA term separately fromid+ uyg since the
v= > = (21 former does not commute with X, while the latter does. Con-
— V7 ox tinuing to Euclidean space, and using the idenBityy P,

=+l P, , we obtain
which is Hermitian, and a unit vector. Yults

Using the velocity operator, we define the projection op- _ AL
eratorsP . as before and break up the quark field #gx) Le= (P FIAL) P @7
=i, (X)+_(x), with . =P, 4. By leavingv as an op- where
erator we can work in coordinate space without introducing . A
the HQET-inspired velocity Fourier transform which intro- Alt=e X Ax "X (28
ducesvr as a parameter. If we expand the quark field in the ) ) .
eigenstates of the velocity operators, we recover the previoudd all y matrices are Euclidean. The term containiAg

formalism with all Fermi velocities summed up. cannot be fully simplified becauge,A]# 0. Physically, this
The leading low-energy part of the quark action is givenis because the gauge field carries momentum and can deflect
by the quark velocity. The redefineg¢t, modes are functions
only of the residual momenta I, and the exponential factors in
Lo=yP_(v)(id—A+myo)P,(v). (22)  theAterm reflect the fact that the gluon originally couples to

the quark fieldy, not the residual modé , .
As before, we define the fields, to absorb the large Fermi ~ The kinetic term in Eq(27) can be simplified to

momentum:
,yr‘*a,u: ,),M(g,u (29)

ge(x) =P (0) Y(X). (23 sincev-dv-y=4-vy. The action(27) is the most general
dimension 4 term with the rotational, gauge invaridnaed
projection properties appropriate to quark quasiparticles.
Therefore, it is a general consequence of any Fermi liquid
description of quarklike excitations.

The operator in Eq(27) is anti-Hermitian and leads to a
positive, semidefinite determinant since it anticommutes with
vs. The corrections given in Eq15) are all Hermitian, so
higher orders in the I/ expansion may reintroduce com-
plexity. The structure of the leading term plus corrections is

Let us denote the eigenvalue obtained by acting on the
field ¢ (which has momentum of ordex) as v, (or v
“large” ), whereas eigenvalues obtained by acting on the e
fective field theory modess, are denotedv, (or v “re-
sidual”). If the original quark mode had momentymwith
|p|>u (i.e., was a particle thenv, and v, are parallel,
whereas iffp|< u (as for a holg thenv, andv, are antipar-
allel. In the first case, we have, (v|)=P_(v,) whereas in
the second cask, (v|)=P_(v,). Thus, the residual modes
¢, can satisfy either ofP.(v,)¢,. =, , depending on
whether the originaly mode from which it was derived was
a particle or a hole. .In facyy,. modes can also satisfy either result is invariant. There is a simple relation between the gauge
Of. P.(v)) ¢ =4, since they can originate fromy modes transform of the+ fields and that of the original fieldsJ . (x)

with momentum~+ uv as well as— v (both are present  —yx)eX. Of course, the momentum-space support of the

in the original measured /D ). So, the functional measure gauge transform must be limited to modes below the cutoff

1If we simultaneously gauge transforn and . in Eq. (27) the

071501-3



RAPID COMMUNICATIONS

D. K. HONG AND S. D. H. HSU PHYSICAL REVIEW D66, 071501R) (2002

anti-Hermitian plus Hermitian, just as in the original QCD physics, is smaller thap. At lower densities the weak cou-
Dirac Lagrangian with chemical potential. The leading termspling approximation no longer holds, so Ed4) is no longer
in the effective action for gluon@hese terms are generated a good guide to the higher order corrections, which are only
when we match our effective theory, with energy cutbffto  constrained by symmetry and projection requirements. How-
QCD) also contribute only real, positive terms to the parti- ever, we can use naive dimensional analy$® to estimate
tion function: the coefficients of the higher dimension operators.

L M2 An estimate of the size of corrections to the determinant

from higher orders can be obtained by considering the Eu-

Seﬁ(A):f d4XE<ZF2”FZV+ 167 UE ALLALL| =0, clideangrelation d ?
F

(30) detM = eTr InM_ e~ eOV, (31)

where A, =A—A; and the Debye screening mass M i )
= N /(270 gope whereg, is the vacuum energy density and V the volume of
N, %) gt

Matching of hard gluon effects also leads to four-quarkthe system. Corrections to the vacuum energy can be esti-

operators in the effective theory. At asymptotic density, weMated using conventional diagrammatic methods and naive
imensional analysis. We find that corrections are roughly

can neglect these operators, since forward scattering dorrff!
nates Cooper pairing interactiotidue to Landau damping SUPPressed by powers of{/2m)(A/u). _

[2]). However, at lower densities hard operators may be im- 10 realize the effective theor{27) directly on the lattice,
portant. Matching effects due to hard gluon exchange stilP"€ ¢an r+eigla}ce the plaquett, o, ,~1+iaA,(n) by U,
lead to a positive action for attractive channels, since they"€ ~U€ " in the fermion action, but not in the gauge
arise from quasiparticle-gluon interactions which are origi-action. In effect, one computes the fermion determinant in
nally positive? Only interactions involving virtual antiquarks the usual way, but as a function of, . The momenta of the

lead to nonpositive interactions, and these are always sufiuasiparticle,. modes is simply the residual momenta |,
pressed by powers of. which is unrestricted except that its magnitude must be small

Positivity of the measure allows for rigorous QCD in- compared tou. One can |mposglth|s condition op, by
equalities at asymptotic density. For example, inequalitie§h003m9 a lattice spacinggee> i = 1N the q}Jark dete'rm|- .
among masses of bound states can be obtained using bourfdt: However, a challenging aspect of this determinant is
on bare quasiparticle propagators. One subtlety that arises {82t itis computed on the geometry of a spherical shell rather
that a quark mass term does not lead to a quasiparticle gdpan a ball:

(the mass term just shifts the Fermi surfad¢éence, for tech- 3 ’ 3 )
nical reasons the proof of nonbreaking of vector symmetries d*p=dp p* dQ=dl(u+1)? dQ#d’l=dl 1?dQ.
[7] must be modified[Naive application of the Vafa-Witten (32
theorem would preclude the breaking of baryon number that To obtain thee*X operators, one must first realizand

is observed in the color-flavor-locke@CFL) phase[8].] A X : . .
quasiparticle gap can be inserted by hand to regulate the bapéesumably diagonalizehe velocity operatof21). Since the

propagator, but it will explicitly violate baryon number. momentum operator has a simple repre»sgntation in- coordi-
However, following the logic of the Vafa-Witten proof, any hate space, the most challenging aspeat @ the normal-
symmetries which are preserved by the regulator gap cannétation factor[the square root of the Laplacian in E@1)],
be broken spontaneously. One can, for example, still conwhichis nonlqcaI(A similar problem arises in lattice models
clude that isospin symmetry is never spontaneously broker@f chiral fermions) One should probably investigate a sim-
In the case of three flavors, one can use the CFL gap as Rler meEhod for directly enforglng the normalization condi-
regulator to show rigorously that none of the symmetries otion onv. Note, however, that and X are independent of
the CFL phase are broken at asymptotic density. On the oth¢he gauge field, so they need be computed only once for each
hand, by applying anomaly matching conditid®s, we can lattice.
prove that the axial symmetriemre broken. We therefore Probably the most direct way to utilize our results on the
conclude that the CFL phase is the true ground state for thrdattice is as follows. Imagine coupling dense quark matter to
light flavors at asymptotic density. a background gauge field A whose magnitude and derivatives
It may be possible to simulate dense QCD using the efare characterized by a scale<u. The leading part of the
fective field theory determinant in place of the usual quarkow-energy effective theorydescribing only Fermi surface
determinant. We know that this is a good approximation aimodes has a real and positive determinant. The quark deter-
very high density, and it should remain a good approximatiomminant (or equivalently, its logarithm which is the effective
as long asAqcp, the characteristic scale of the dominant action can be expanded in powers oful/with the leading
term real and positive. Since the determinant is a functional
of the gauge field and its derivatives, the expansion will ef-
2A simple way to study the positivity of four-quark operators is to fectively be in powers ofA over w. This means that the
replace them by a vector field with trivial quadratic tevf;g which  ordinary lattice determinant degt,D ,+ uy,] computed in
couples to quarks like the original g|u0‘v{}'LE»y/‘1/;_ Completing the ~ such backgrounds should be real and positive to leading or-
square, we see that the resulting path integral is positive if thaler in 1/u. Physically, the low-momentum gauge fields can-
four-quark interactions are attractive. not excite modes deep within the Fermi dsach as anti-

*iX
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