Improved measurement of mixing-induced *CP* violation in the neutral *B* meson system

K. Abe,⁸ K. Abe,⁴¹ T. Abe,⁴² I. Adachi,⁸ H. Aihara,⁴³ M. Akatsu,²¹ Y. Asano,⁴⁵ T. Aso,⁴⁷ V. Aulchenko,² T. Aushev,¹²
A. M. Bakich,³⁸ E. Banas,²⁶ A. Bay,¹⁷ P. K. Behera,⁴⁹ I. Bizjak,¹³ A. Bondar,² A. Bozek,²⁶ M. Bračko,^{19,13} J. Brodzicka,²⁶ T. E. Browder,⁷ B. C. K. Casey,⁷ P. Chang,²⁵ Y. Chao,²⁵ K.-F. Chen,²⁵ B. G. Cheon,³⁷ R. Chistov,¹² Y. Choi,³⁷
Y. K. Choi,³⁷ M. Danilov,¹² L. Y. Dong,¹⁰ A. Drutskoy,¹² S. Eidelman,² V. Eiges,¹² Y. Enari,²¹ C. W. Everton,²⁰ F. Fang,⁷
H. Fujii,⁸ C. Fukunaga,⁴⁵ N. Gabyshev,⁸ A. Garmash,^{2,8} T. Gershon,⁸ B. Golob,^{18,13} K. Gotow,⁵⁰ R. Guo,²³ J. Haba,⁸
K. Hanagaki,³² F. Handa,⁴² K. Hara,³⁰ T. Hara,³⁰ Y. Harada,²⁸ N. C. Hastings,²⁰ H. Hayashii,²² M. Hazumi,⁸ E. M. Heenan,²⁰
I. Higuchi,⁴² T. Higuchi,⁸ L. Hinz,¹⁷ T. Hojo,³⁰ T. Hokuue,²¹ Y. Hoshi,⁴¹ W.-S. Hou,²⁵ H.-C. Huang,²⁵ T. Igaki,²¹
Y. Igarashi,⁸ T. Jijima,²¹ K. Inami,²¹ A. Ishikawa,²¹ H. Ishino,⁴⁴ R. Itoh,⁸ H. Iwesaki,⁸ Y. Iwasaki,⁷ H. K. Jang,³⁶ H. Kakuno,⁴⁴ J. Kaneko,⁴⁴ J. K. Kang,¹⁴ N. Katayama,⁸ H. Kawai,³ H. Kawai,³ Y. Kawakami,²¹ N. Kawamura,¹ T. Kawasaki,⁸ B. Kichimi,⁸ D. W. Kim,³⁷ Heejong Kim,⁵² H. O. Kim,³⁷ Hyunwoo Kim,¹⁴ K. Kinoshita,⁵
S. Kobayashi,³⁴ K. Korotushenko,³² S. Korpar,^{19,13} P. Križan,^{18,13} P. Krokovny,² S. Kumar,³¹ A. Kuzmin,² Y.-J. Kwoo,⁵² J. S. Lange,^{6,33} G. Leder,¹¹ S. H. Lee,⁵⁶ J. Li,³⁵ A. Limosani,²⁰ J. MacNaughton,¹¹ G. Majumder,³⁹ F. Mandl,¹¹ D. Marlow,³² S. Matsumoto,⁴ T. Matsumoto,⁴⁵ W. Mitaroff,¹¹ K. Miyabayashi,²² Y. Miyabayashi,²¹ H. Miyake,³⁰
G. R. Moloney,²⁰ T. Mori,⁴ A. Murakami,³⁴ T. Nagamine,⁴² Y. Nagasaka,⁹ T. Nakadaira,⁴³ E. Nakano,⁹ M. Nakao,⁸ H. Nakazawa,⁴ J. W. Nam,³⁷ Z. Natkaniec,²⁶ K. Ncichi,⁴¹ S. Nishida,¹⁵ O. Nitoh,⁴⁶ S. Noguchi,²² T. Nozaki,⁸
S. O

(Belle Collaboration) ¹Aomori University, Aomori ²Budker Institute of Nuclear Physics, Novosibirsk ³Chiba University. Chiba ⁴Chuo University, Tokyo ⁵University of Cincinnati, Cincinnati, Ohio ⁶University of Frankfurt, Frankfurt ⁷University of Hawaii, Honolulu, Hawaii ⁸High Energy Accelerator Research Organization (KEK), Tsukuba ⁹Hiroshima Institute of Technology, Hiroshima ¹⁰Institute of High Energy Physics, Chinese Academy of Sciences, Beijing ¹¹Institute of High Energy Physics, Vienna ¹²Institute for Theoretical and Experimental Physics, Moscow ¹³J. Stefan Institute, Ljubljana ¹⁴Korea University, Seoul ¹⁵Kyoto University, Kyoto ¹⁶Kyungpook National University, Taegu ¹⁷Institut de Physique des Hautes Énergies, Université de Lausanne, Lausanne ¹⁸University of Ljubljana, Ljubljana ¹⁹University of Maribor, Maribor ²⁰University of Melbourne, Victoria ²¹Nagoya University, Nagoya ²²Nara Women's University, Nara ²³National Kaohsiung Normal University, Kaohsiung ²⁴National Lien-Ho Institute of Technology, Miao Li

²⁵National Taiwan University, Taipei

*On leave from Nova Gorica Polytechnic, Nova Gorica.

[†]On leave from University of Toronto, Toronto, Ontario.

²⁶H. Niewodniczanski Institute of Nuclear Physics, Krakow ²⁷Nihon Dental College, Niigata ²⁸Niigata University, Niigata ²⁹Osaka City University, Osaka ³⁰Osaka University, Osaka ³¹Panjab University, Chandigarh ³²Princeton University, Princeton, New Jersey ³³RIKEN BNL Research Center, Brookhaven, New York ³⁴Saga University, Saga ³⁵University of Science and Technology of China, Hefei ³⁶Seoul National University, Seoul ³⁷Sungkyunkwan University, Suwon ³⁸University of Sydney, Sydney NSW ³⁹Tata Institute of Fundamental Research, Bombay ⁴⁰Toho University, Funabashi ⁴¹Tohoku Gakuin University, Tagajo ⁴²Tohoku University, Sendai ⁴³University of Tokyo, Tokyo ⁴⁴Tokyo Institute of Technology, Tokyo ⁴⁵Tokyo Metropolitan University, Tokyo ⁴⁶Tokyo University of Agriculture and Technology, Tokyo ⁴⁷Toyama National College of Maritime Technology, Toyama ⁴⁸University of Tsukuba, Tsukuba ⁴⁹Utkal University, Bhubaneswer ⁵⁰Virginia Polytechnic Institute and State University, Blacksburg, Virginia ⁵¹Yokkaichi University, Yokkaichi ⁵²Yonsei University, Seoul (Received 16 August 2002; published 25 October 2002)

We present an improved measurement of the standard model *CP* violation parameter $\sin 2\phi_1$ (also known as $\sin 2\beta$) based on a sample of $85 \times 10^6 B\bar{B}$ pairs collected at the Y(4*S*) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. One neutral *B* meson is reconstructed in a $J/\psi K_S^0$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, $\eta_c K_S^0$, $J/\psi K^{*0}$, or $J/\psi K_L^0$ *CP*-eigenstate decay channel and the flavor of the accompanying *B* meson is identified from its decay products. From the asymmetry in the distribution of the time interval between the two *B* meson decay points, we obtain $\sin 2\phi_1 = 0.719 \pm 0.074$ (stat) ± 0.035 (syst).

DOI: 10.1103/PhysRevD.66.071102

In the standard model (SM), *CP* violation arises from an irreducible complex phase in the weak interaction quarkmixing matrix [Cabibbo-Kobayashi-Maskawa (CKM) matrix] [1]. In particular, the SM predicts a *CP*-violating asymmetry in the time-dependent rates for B^0 and \overline{B}^0 decays to a common *CP* eigenstate f_{CP} , where the transition is dominated by the $b \rightarrow c \overline{c} s$ process, with negligible corrections from strong interactions [2]:

$$A(t) \equiv \frac{\Gamma(\bar{B}^0 \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\bar{B}^0 \to f_{CP}) + \Gamma(B^0 \to f_{CP})}$$
$$= -\xi_f \sin 2\phi_1 \sin(\Delta m_d t), \qquad (1)$$

where $\Gamma(B^0, \overline{B}^0 \to f_{CP})$ is the rate for B^0 or \overline{B}^0 to f_{CP} at a proper time *t* after production, ξ_f is the *CP* eigenvalue of f_{CP} , Δm_d is the mass difference between the two B^0 mass eigenstates, and ϕ_1 is one of the three interior angles of the CKM unitarity triangle, defined as $\phi_1 \equiv \pi$ $- \arg(V_{tb}^* V_{td}/V_{cb}^* V_{cd})$. Nonzero values for $\sin 2\phi_1$ have been reported by the Belle and BaBar groups [3,4]. PACS number(s): 11.30.Er, 12.15.Hh, 13.25.Hw

Belle's published measurement of $\sin 2\phi_1$ is based on a 29.1 fb⁻¹ data sample containing $31.3 \times 10^6 B\bar{B}$ pairs produced at the $\Upsilon(4S)$ resonance. In this paper, we report an improved measurement that uses $85 \times 10^6 B\overline{B}$ pairs (78) fb^{-1}). Two important changes exist in the analysis with respect to the published result [3]; we apply a new track reconstruction algorithm that provides better performance and a new proper-time interval resolution function [5] that reduces systematic uncertainties in $\sin 2\phi_1$. The data were collected with the Belle detector [6] at the KEKB asymmetric collider [7], which collides 8.0 GeV e^- on 3.5 GeV e^+ at a small (± 11 mrad) crossing angle. We use events where one of the B mesons decays to f_{CP} at time t_{CP} , and the other decays to a self-tagging state f_{tag} , which distinguishes B^0 from \overline{B}^0 , at time t_{tag} . The *CP* violation manifests itself as an asymmetry $A(\Delta t)$, where Δt is the proper time interval between the two decays: $\Delta t \equiv t_{CP} - t_{tag}$. At KEKB, the Y(4S) resonance is produced with a boost of $\beta \gamma = 0.425$ nearly along the z axis defined as antiparallel to the positron beam direction, and Δt can be determined as $\Delta t \simeq \Delta z/(\beta \gamma)c$, where Δz is the z distance between the f_{CP} and f_{tag} decay

PHYSICAL REVIEW D 66, 071102(R) (2002)

FIG. 1. The beam-energy constrained mass distribution for all decay modes other than $J/\psi K_L^0$ (left). The p_B^{cms} distribution for $B^0 \rightarrow J/\psi K_L^0$ candidates with the results of the fit (right).

vertices, $\Delta z \equiv z_{CP} - z_{tag}$. The average value of Δz is approximately 200 μ m.

The Belle detector [6] is a large-solid-angle spectrometer that includes a silicon vertex detector (SVD), a central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), time-of-flight (TOF) scintillation counters, and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM).

We reconstruct B^0 decays to the following *CP* eigenstates [8]: $J/\psi K_S^0$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, $\eta_c K_S^0$ for $\xi_f = -1$ and $J/\psi K_L^0$ for $\xi_f = +1$. We also use $B^0 \rightarrow J/\psi K^{*0}$ decays where K^{*0} $\rightarrow K_{S}^{0}\pi^{0}$. Here the final state is a mixture of even and odd CP, depending on the relative orbital angular momentum of the J/ψ and K^{*0} . We find that the final state is primarily $\xi_f = +1$; the $\xi_f = -1$ fraction is 0.19 ± 0.02 (stat) ± 0.03 (syst) [9]. J/ψ and $\psi(2S)$ mesons are reconstructed via their decays to $\ell^+\ell^-$ ($\ell=\mu,e$). The $\psi(2S)$ is also reconstructed via $J/\psi\pi^+\pi^-$, and the χ_{c1} via $J/\psi\gamma$. The η_c is detected in the $K_S^0 K^- \pi^+$, $K^+ K^- \pi^0$, and $p\bar{p}$ modes. For the $J/\psi K_S^0$ mode, we use $K_S^0 \to \pi^+ \pi^-$ and $\pi^0 \pi^0$ decays; for other modes we only use $K_s^0 \rightarrow \pi^+ \pi^-$. For reconstructed B $\rightarrow f_{CP}$ candidates other than $J/\psi K_L^0$, we identify *B* decays using the energy difference $\Delta E \equiv E_B^{\rm cms} - E_{\rm beam}^{\rm cms}$ and the beam-energy constrained mass $M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^{\rm cms})^2 - (p_B^{\rm cms})^2}$, where $E_{\text{beam}}^{\text{cms}}$ is the beam energy in the center-of-mass system (cms) of the $\Upsilon(4S)$ resonance, and E_B^{cms} and p_B^{cms} are the cms energy and momentum of the reconstructed B candidate, respectively. Figure 1 (left) shows the M_{bc} distributions for all B^0 candidates except for $B^0 \rightarrow J/\psi K_L^0$ that have ΔE values in the signal region. Table I lists the numbers of observed candidates, $N_{\rm rec}$.

Candidate $B^0 \rightarrow J/\psi K_L^0$ decays are selected by requiring ECL and/or KLM hit patterns that are consistent with the presence of a shower induced by a K_L^0 meson. The centroid of the shower is required to be within a 45° cone centered on the K_L^0 direction inferred from two-body decay kinematics and the measured four-momentum of the J/ψ . Figure 1 (right) shows the p_B^{cms} distribution, calculated with the B^0 $\rightarrow J/\psi K_L^0$ two-body decay hypothesis. The histograms are the results of a fit to the signal and background distributions. There are 1330 entries in total in the $0.20 \le p_B^{\text{cms}} \le 0.45 \text{ GeV}/c$ signal region; the fit indicates a signal purity of 63%. The reconstruction and selection criteria for all f_{CP} channels used in the measurement are described in more detail elsewhere [3].

Charged leptons, pions, kaons, and Λ baryons that are not associated with a reconstructed CP eigenstate decay are used to identify the *b*-flavor of the accompanying *B* meson. Based on the measured properties of these tracks, two parameters, qand r, are assigned to an event. The first, q, has the discrete value +1 (-1) when the tag-side B meson is likely to be a B^0 (\overline{B}^0), and the parameter r is an event-by-event Monte-Carlo-determined flavor-tagging dilution factor that ranges from r=0 for no flavor discrimination to r=1 for an unambiguous flavor assignment. It is used only to sort data into six intervals of r, according to estimated flavor purity. The wrong-tag probabilities, w_l (l=1,6), that are used in the final fit are determined directly from data. Samples of B^0 decays to exclusively reconstructed self-tagging channels are utilized to obtain w_1 using time-dependent $B^0 - \overline{B}^0$ mixing oscillation: $(N_{\text{OF}} - N_{\text{SF}})/(N_{\text{OF}} + N_{\text{SF}}) = (1 - 2w_l)\cos(\Delta m_d \Delta t),$ where $N_{\rm OF}$ and $N_{\rm SF}$ are the numbers of opposite and same flavor events. The event fractions and wrong tag fractions are summarized in Table II. The total effective tagging efficiency is determined to be $\epsilon_{\text{eff}} \equiv \sum_{l=1}^{6} \epsilon_l (1-2w_l)^2 = 0.288 \pm 0.006$,

Mode	ξ_f	$N_{\rm rec}$	N _{ev}	Purity			
$\overline{J/\psi(\ell^+\ell^-)K^0_S(\pi^+\pi^-)}$	-1	1285	1116	0.976 ± 0.001			
$J/\psi(\ell^+\ell^-)K^0_S(\pi^0\pi^0)$	-1	188	162	0.82 ± 0.02			
$\psi(2S)(\ell^+\ell^-)K^0_S(\pi^+\pi^-)$	-1	91	76	0.96 ± 0.01			
$\psi(2S)(J/\psi\pi^+\pi^-)K_S^0(\pi^+\pi^-)$	-1	112	96	0.91 ± 0.01			
$\chi_{c1}(J/\psi\gamma)K^0_S(\pi^+\pi^-)$	-1	77	67	0.96 ± 0.01			
$\eta_c (K_S^0 K^- \pi^+) K_S^0 (\pi^+ \pi^-)$	-1	72	63	0.65 ± 0.04			
$\eta_c(K^+K^-\pi^0)K^0_S(\pi^+\pi^-)$	-1	49	44	0.72 ± 0.04			
$\eta_c(p\bar{p})K^0_S(\pi^+\pi^-)$	-1	21	15	0.94 ± 0.02			
All with $\xi_f = -1$	-1	1895	1639	0.936 ± 0.003			
$J/\psi(\ell^+\ell^-)K^{*0}(K^0_S\pi^0)$	-1(19%)/+1(81%)	101	89	0.92 ± 0.01			
$J/\psi(\ell^+\ell^-)K^0_L$	+1	1330	1230	0.63 ± 0.04			
All		3326	2958	0.81 ± 0.01			

TABLE I. The numbers of reconstructed $B \rightarrow f_{CP}$ candidates before flavor tagging and vertex reconstruction, $N_{\rm rec}$, the numbers of events used for the sin $2\phi_1$ determination, $N_{\rm ev}$, and the estimated signal purity in the signal region for each f_{CP} mode.

where ϵ_l is the event fraction for each *r* interval. The error includes both statistical and systematic uncertainties. Improvements in the Monte Carlo simulation [10] and in the track reconstruction yield ϵ_{eff} that is higher by 6.7% (relative) than the value in Ref. [3].

The vertex position for the f_{CP} decay is reconstructed using leptons from J/ψ decays or charged hadrons from η_c decays, and that for f_{tag} is obtained with well reconstructed tracks that are not assigned to f_{CP} . Tracks that are consistent with coming from a $K_S^0 \rightarrow \pi^+ \pi^-$ decay are not used. Each vertex position is required to be consistent with the interaction region profile, determined run-by-run, smeared in the $r \cdot \phi$ plane to account for the *B* meson decay length. With these requirements, we are able to determine a vertex even with a single track; the fraction of single-track vertices is about 10% for $z_{\it CP}$ and 22% for $z_{\rm tag}.$ The proper-time interval resolution function $R_{sig}(\Delta t)$ is formed by convolving four components: the detector resolutions for z_{CP} and z_{tag} , the shift in the z_{tag} vertex position due to secondary tracks originating from charmed particle decays, and the kinematic approximation that the B mesons are at rest in the cms [5]. A small component of broad outliers in the Δz distribution, caused by mis-reconstruction, is represented by a Gaussian

TABLE II. The event fractions ϵ_l , wrong tag fractions w_l , and effective tagging efficiencies $\epsilon_{\text{eff}}^l = \epsilon_l (1-2w_l)^2$ for each *r* interval. The errors include both statistical and systematic uncertainties. The event fractions are obtained from the $J/\psi K_S^0$ simulation.

l	r interval	$oldsymbol{\epsilon}_l$	w _l	$oldsymbol{\epsilon}^l_{ ext{eff}}$
1	0.000-0.250	0.398	0.458 ± 0.006	0.003 ± 0.001
2	0.250 - 0.500	0.146	0.336 ± 0.009	0.016 ± 0.002
3	0.500 - 0.625	0.104	0.228 ± 0.010	0.031 ± 0.002
4	0.625 - 0.750	0.122	$0.160^{+0.009}_{-0.008}$	0.056 ± 0.003
5	0.750 - 0.875	0.094	0.112 ± 0.009	0.056 ± 0.003
6	0.875 - 1.000	0.136	0.020 ± 0.006	$0.126^{+0.003}_{-0.004}$

function. We determine twelve resolution parameters from fits of data to the neutral and charged *B* meson lifetimes [5] and obtain an average Δt resolution of ~1.43 ps (rms). The width of the outlier component is determined to be 42^{+5}_{-4} ps; the fractions of the outlier components are $(2\pm1)\times10^{-4}$ for events with both vertices reconstructed with more than one track, and $(2.7\pm0.2)\times10^{-2}$ for events with at least one single-track vertex.

After flavor tagging and vertexing, we find 1465 events with q = +1 flavor tags and 1493 events with q = -1. Table I lists the numbers of candidates used for the $\sin 2\phi_1$ determination, N_{ev} , and the estimated signal purity in the signal region for each f_{CP} mode. Figure 2 shows the observed Δt distributions for the $q\xi_f = +1$ (solid points) and $q\xi_f = -1$ (open points) event samples. The asymmetry between the two distributions demonstrates the violation of *CP* symmetry. We determine $\sin 2\phi_1$ from an unbinned maximumlikelihood fit to the observed Δt distributions. The probabil-

FIG. 2. The Δt distributions for the events with $q\xi_f = +1$ (solid points) and $q\xi_f = -1$ (open points). The results of the global fit with $\sin 2\phi_1 = 0.719$ are shown as solid and dashed curves, respectively.

TABLE III. The numbers of candidate events, N_{ev} , and values of sin $2\phi_1$ for various subsamples (statistical errors only).

Sample	$N_{\rm ev}$	$\sin 2\phi_1$
$\overline{J/\psi K^0_S(\pi^+\pi^-)}$	1116	0.73 ± 0.10
$(c\bar{c})K_S^0$ except $J/\psi K_S^0(\pi^+\pi^-)$	523	0.67 ± 0.17
$J/\psi K_L^0$	1230	0.78 ± 0.17
$J/\psi K^{st 0}(K^0_S\pi^0)$	89	0.04 ± 0.63
$f_{\text{tag}} = B^0 (q = +1)$	1465	0.65 ± 0.12
$f_{\text{tag}} = \overline{B}^0 \ (q = -1)$	1493	0.77 ± 0.09
$0 < r \le 0.5$	1600	1.27 ± 0.36
$0.5 < r \le 0.75$	658	0.62 ± 0.15
$0.75 < r \le 1$	700	0.72 ± 0.09
data before 2002	1587	0.78 ± 0.10
data in 2002	1371	0.65 ± 0.11
All	2958	0.72 ± 0.07

ity density function (PDF) expected for the signal distribution is given by

$$\mathcal{P}_{\text{sig}}(\Delta t, q, w_l, \xi_f) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} [1 - q\xi_f (1 - 2w_l) \\ \times \sin 2\phi_1 \sin(\Delta m_d \Delta t)], \qquad (2)$$

where we fix the B^0 lifetime τ_{B^0} and mass difference at their world average values [11]. Each PDF is convolved with the appropriate $R_{sig}(\Delta t)$ to determine the likelihood value for each event as a function of sin $2\phi_1$:

$$P_{i} = (1 - f_{ol}) \int [f_{sig} \mathcal{P}_{sig}(\Delta t', q, w_{l}, \xi_{f}) R_{sig}(\Delta t - \Delta t')$$

+ $(1 - f_{sig}) \mathcal{P}_{bkg}(\Delta t') R_{bkg}(\Delta t - \Delta t')] d\Delta t' + f_{ol} P_{ol}(\Delta t),$
(3)

where f_{sig} is the signal fraction calculated as a function of p_B^{cms} for $J/\psi K_L^0$ and of ΔE and M_{bc} for other modes. $\mathcal{P}_{bkg}(\Delta t)$ is the PDF for combinatorial background events, which is modeled as a sum of exponential and prompt components. It is convolved with a sum of two Gaussians, R_{bkg} , which is regarded as a resolution function for the background. To account for a small number of events that give large Δt in both the signal and background, we introduce the PDF of the outlier component, P_{ol} , and its fraction f_{ol} . The only free parameter in the final fit is $\sin 2\phi_1$, which is determined by maximizing the likelihood function $L = \prod_i P_i$, where the product is over all events. The result of the fit is

$$\sin 2\phi_1 = 0.719 \pm 0.074(\text{stat}) \pm 0.035(\text{syst}).$$

The systematic error is dominated by uncertainties in the vertex reconstruction (0.022). Other significant contributions come from uncertainties in w_l (0.015), the resolution function parameters (0.014), a possible bias in the $\sin 2\phi_1$ fit (0.011), and the $J/\psi K_L^0$ background fraction (0.010). The errors introduced by uncertainties in Δm_d and τ_{B^0} are less than 0.010.

FIG. 3. (a) The raw asymmetry for all modes combined. The asymmetry for $J/\psi K_L^0$ and $J/\psi K^{*0}$ is inverted to account for the opposite *CP* eigenvalue. The corresponding plots for (b) $(c\bar{c})K_S^0$, (c) $J/\psi K_L^0$, and (d) non-*CP* control samples are also shown. The curves are the results of the unbinned maximum likelihood fit applied separately to the individual data samples.

Several checks on the measurement are performed. Table III lists the results obtained by applying the same analysis to various subsamples. All values are statistically consistent with each other. Figures 3(a)-3(c) show the raw asymmetries and the fit results for all modes combined, $(c\bar{c})K_S^0$, and $J/\psi K_L^0$, respectively. A fit to the non-*CP* eigenstate modes $B^0 \rightarrow D^{(*)-}\pi^+$, $D^{*-}\rho^+$, $J/\psi K^{*0}(K^+\pi^-)$, and $D^{*-}\ell^+\nu$, where no asymmetry is expected, yields 0.005 ± 0.015 (stat). Figure 3(d) shows the raw asymmetry for these non-*CP* control samples.

The signal PDF for a neutral B meson decaying into a CP eigenstate [Eq. (2)] can be expressed in a more general form as

$$\mathcal{P}_{\text{sig}}(\Delta t, q, w_l) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 + q(1 - 2w_l) \bigg[\frac{2 \operatorname{Im} \lambda}{|\lambda|^2 + 1} \\ \times \sin(\Delta m_d \Delta t) + \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \cos(\Delta m_d \Delta t) \bigg] \bigg\},$$
(4)

where λ is a complex parameter that depends on both $B^0 - \overline{B}^0$ mixing and on the amplitudes for B^0 and \overline{B}^0 decay to a *CP* eigenstate. The presence of the cosine term $(|\lambda| \neq 1)$ would indicate direct *CP* violation; the value for sin $2\phi_1$ reported above is determined with the assumption $|\lambda|=1$, as $|\lambda|$ is expected to be very close to 1 in the SM. In order to test this assumption, we also performed a fit using the above expression with $a_{CP} = -\xi_f \operatorname{Im} \lambda/|\lambda|$ and $|\lambda|$ as free parameters, keeping everything else the same. We obtain

$$|\lambda| = 0.950 \pm 0.049 (\text{stat}) \pm 0.025 (\text{syst})$$

and $a_{CP}=0.720\pm0.074$ (stat) for all *CP* modes combined, where the sources of the systematic error for $|\lambda|$ are the same as those for $\sin 2\phi_1$. This result is consistent with the assumption used in our analysis.

We wish to thank the KEKB accelerator group for the

excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 17017; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

PHYSICAL REVIEW D 66, 071102(R) (2002)

ods Phys. Res. A 479, 117 (2002).

- [7] KEK Report No. 2001-157, edited by E. Kikutani, 2001 [Nucl. Instrum. Methods Phys. Res. A (to be published)].
- [8] Throughout this paper, when a decay mode is quoted, the inclusion of the charge conjugate mode is implied.
- [9] Belle Collaboration, K. Abe *et al.*, Phys. Lett. B **538**, 11 (2002).
- [10] H. Kakuno et al. (unpublished).
- [11] Particle Data Group, K. Hagiwara *et al.*, Phys. Rev. D 66, 010001 (2002).
- [1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- [2] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I.
 I. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981).
- [3] Belle Collaboration, K. Abe *et al.*, Phys. Rev. Lett. **87**, 091802 (2001); Phys. Rev. D **66**, 032007 (2002).
- [4] BaBar Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 87, 091801 (2001); Phys. Rev. D 66, 032003 (2002).
- [5] Belle Collaboration, K. Abe *et al.*, Phys. Rev. Lett. **88**, 171801 (2002).
- [6] Belle Collaboration, A. Abashian et al., Nucl. Instrum. Meth-