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Exact Foldy-Wouthuysen transformation for real spin-0 particle in curved space
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Up to now, the only known exact Foldy-Wouthuysen transformaféVT) in curved space is that concern-
ing Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real
spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value
of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the
conformal coupling is one-third of the corresponding term in the fermionic case. There are some arguments in
the literature that seem to favor the choice= %. We rehearse a number of claims of these works.
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The Colella-Overhauser-WerngEOW) experimenfl] as  observable is either Hermitian or pseudo-Hermitian énd
well as the Bonse-WroblewsKkR] one have not only shed the theory is invariant under certain discrete symmetries.
new light on the physical phenomena in which gravitational In our convention the signature is-(— ——). The curva-
and quantum effects are interwoven, they have also showture tensor is defined bR, 5= —d;I"“4,+ - - -, the Ricci
that the aforementioned phenomena are no more beyond otgnsor by R,,=R“,,,, and the curvature scalar bR
reach. The theoretical analysis concerning these experimenisgf”RW, whereg,,, is the metric tensor. Natural units are
consisted simply in inserting the Newtonian gravitational po-used throughout.
tential into the Schrdinger equation. To improve their analy-  Currently, we do not have a standard theory of massive
sis we need to learn certainly how to obtain an adequatspinless bosons in curved space. That is not the case as far as
interpretation for relativistic wave equations in curved spacethe Dirac fermions are concerned. Therefore our first task is
In other words, we have to acquaint ourselves with the issue find out how the Klein-GordoilKG) equation should be
of the gravitational effects on quantum mechanical systemsaritten in the general case of a spacetime with nonvanishing
This can be done by constructing the Foldy-Wouthuysercurvature. Let us then start with the following scalar field
transformation (FWT) [3,4]—the keystone of relativistic equation
guantum mechanics—for both bosons and fermions coupled
to the spacetime metric. However, there are very few known (O+m?+AR)¢=0, 2
problems in flat space that admit an exact F\W6F7]. In
curved space the situation is quite dramatic since up to nowhich is obtained from the action
the only known exact FWT is that related to Dirac particles
coupled to a static spacetime metr&]. 1

Here we address ourselves to the problem of finding the ~ S= f 5\/__9[9MV‘9M¢‘7v¢_(m2+)‘R)¢2]d4X- 3
exact FWT for a real spin-0 particle coupled to the static

metrics Note that the coupling between the real scalar figldnd

the gravitational field represented by the texiR¢?, where
ds?=Vadt?— Wadx?, ) \ is a numerical factor anR is the Ricci scalar, is included
as the only possible local scalar coupling of this dard].

Here
whereV=V(x) andW=W(x). For the sake of clarification

concerning the interpretation of the relativistic single particle 1
wave mechanics for spin-0 boson, we reproduce a remark O=g*"V,V,=—
made by Feshbach and Villaf9] in the late 1950s: “Al- \/—_g
though it is well known that the Dirac equation gives within
proper limits a relativistic wave-mechanical description of a The coupling constank, of course, can have any real
single electron, we find in the literature tfiacorrect) state-  value. This raises a delicate question: Which valuehof
ment that an analogous formalism does not exist for chargeshould we single out? There are some arguments in the lit-
spin-0 particles.” erature that seem to favor the choike=:. We rehearse a
By the middle of the 1970s, Guert[d0] constructed the number of claims of these worksi) the equation for the
generalized FWT for any 2(®+1)-component Poincare massless scalar field is conformally invaridai—13; (ii)
invariant Hamiltonian theory that describes free massive spininder the assumption thé) the scalar field satisfies E(),
—J particles and that is subject to the conditiofey: every  and(b) the field ¢ does not violate the equivalence principle,
the coupling constant is forced to assume the value 1/6
[14,15; (iii) the minimal coupling leads to a tachyonic be-
*Electronic address: accioly@ift.unesp.br havior whereas the conformal ona €1/6) has a correct
"Electronic address: blas@ift.unesp.br guasiclassical limif16].

d,(N—99"3,).
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There are other reasor(see, e.g.[17] and references

therein that perhaps may justify the presence of the non-

minimal term in Eq.(3).
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<®=fpd%Wﬂ¢ )

Here we examine the problem in the context of the exacivherep=g®°\/—g= W3/V.

FWT transformations for spin-O particles. Let us then con-

However, it is more convenient to write the wave function

centrate our attention on the curved spacetimes described Ry that# is Hermitian with respect to the usual flat space

Eqg. (1). The Ricci scalar related to this metric is given by
2

R= W

(VW)2— iVv.vw— iV2v— iVZW.
vWe VW2 w3
4

Inserting Eq.(4) into Eqg. (2), we promptly obtain

d—F2V2p—F2VIn(VWP) .V p+m?V2h+\RV2$=0,
5
whereF?= V?/W?. Here the differentiation with respect to

time is denoted by dots.
In order to bring the equation in hand to Safiryer form

we introduce the two-component formalism for the Klein-

Gordon(KG) equation

i.
b= b1+ b2, Efﬁ: b1~ Ps.

Accordingly, the KG equation can be written in first-order

form
id=HD, (6)

with the Hamiltonian given by

_m T 7
H—Ef — &0, (7)

ool el

and the operato# is defined by

where

= FZVZ sz VW)V — 2 A V2R
0=om" ~am" VWV SV o

Note that the matrix has the following algebraic prop-
erties

£=0, {¢&}=4.

It is worth mentioning that the equations of motion de-

rived from Eq.(6) are invariant undef{— —H* and ¢, ,

measure. We do this by means of a transformation

D' =fb, ¢ =fof"1, and H' =fHf L
with f=p=V~YAn3"2
Therefore
H'=2§T—§0',
where
o'd =fof 1P,

Performing the computation, we then find th#tcan be
written as

m 1 . 1 1
0'=— V- —Fp2F+—mVF-VF— 5 DAV, W),

2 2m 8 m
9

wherep=—iV denotes the momentum operator and the last
term becomes

Dy (V, W)=\ ! 2 VVZV 2VVVVW
)\(1 )_ 2)\ W2 W3 :

+

! 4 VZVZW+2V2 VW)2|. (10
NI W( )2|. (10

The fascinating property of the transformed Hamiltonian
H' is that its square,

H’D=—26’{§,§T}=—2m0’l, (12)

where
1 0
| = 0 1)-

Note that formally

\/W=(—2m0')1/2| 1/2_

Since the square root of thex2 identity matrix is not
unique the FWT transformation needs an extra diagonalizing

— * ¢21, Which implies that in the two-component descrip- transformation to the basis where positive and negative en-
tion of neutral spin-0 particles the particle and antiparticleergy eigenstates are decoupled. This process can be made
may be identified since the gravitational interaction does nofyith the help of a nondegenerate mattixsuch tha{20]

remove the particle-antiparticle degeneracy.
The operatord is formally self-adjoint[18] with respect

HIIE(_ 2m0!)l/2U Il/ZU -1

to an inner product provided the spatial integrations are car-

ried out using the correct measyr9]

:(_zmer)l/Z,r]’
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where 2MG
Goo~1-— — (16)
(1 0
n= .
0 -1 o Lme
Accordingly, H—H" is the exact FWT for the KG equa- 91179227 Fss r
tion in curved space. _ _
Taking Eq.(9) into account, we arrive at the following ~ From Egs.(16) and(17) we get immediately
expression for the Hamiltonian squared:
MG
H'O=m2V2+Fp2F— LVF-VE+D,(V,W). (12 Velz = Weli——, (18
The quasirelativistic Hamiltonian is simply obtained by MG
assuming tham is the dominating term. We thus arrive at and le_zT_ (19
" 1 —1:2 A2\£/—1 . . .
H'~ | mV+ (W p“F+Fp"W ) Inserting Eqs(18) and (19) into Eq. (15) we obtain the
nonrelativistic FW Hamiltonian, namely,
1 1
_mVF.VFJrﬁDK(V'W) ’ " H'=|m+m -X+E+i’\'( -X)p (20

Some comments are in order here.

(i) Notice the appearance of a Darwin-like term yhereg=—GMr/r®. On the other hand, in the case of the
1/2mD, (V,W) in the quasirelativistic Hamiltoniafl3). For it Minkowski space in accelerated frame,
A =1/6 conformal invariance constrains the structure of the

Darwin-like term to the form V=1+4a-x, W=1, and F=V,
LVZF (14) one gets
12mw"
Theref btai p* 1
erefore one obtains "= m+ma-X+—= —p-(a-x)p
H m+ma- X >m T om (a-x)p|»n. (21

1 - -
H'~ mV+ 7 (W 'PPR+FPPWY) In Egs. (20) and (21) we have neglected the higher order
relativistic and gravitational/inertial terms.
For the particlem far away from the bodyM one can
neglect the terms 3/8p- (g-x)p and 1/2np- (a-x)p in Egs.
i ] o ] . (20) and (21), respectively, since they are less than the ki-
(if) Equation(15) is identical to the spinless sector found petic term by a factor ofsM/r~10"® (for observations in
by Obukhov]8] for the Dirac particle except for the Darwin he solar systejrand much weaker by several orders than the
term which is one-third of the corresponding term in theleading and next to leading order terms lineaminin Eq.
fermionic casg21]. o (21) we are assuming thatis such thaja-x|~GM/r. The
(iii ) The Darwin term(14) only exists in the context of the  parwin term contributions in these expansions are zero in
exact FWT if the interaction of the scalar field with gravity is g5ch case; in fact, in EG20) we haveV2F=0 (far away
of the conformal type\ =1/6, while for A #1/6 the Darwin  from the source and in the approximation considgeet in
term is more complicated. . . . . Eq. (21) for obvious reasons. Then, we come to the conclu-
Some remarks about) and iii). It is claimed in the lit-  gjon that the conformal coupling is in agreement with the
erature that Eq(2) with A=1/6 violates the equivalence equjvalence principle.
principle and leads to the appearance of anomalous R-forces | ast hut not least, we call attention to the fact that we are
between two “scalar charged” particlef22]. Grib and ot claiming that the conformal coupling is the correct cou-
Poberii[16] showed, however, that this is not the case. Ac-pling for the various scalar particles. The question of which
cording to them the conformal coupling leads to a correctg)ygs) of A should constitute the correct coupling to gravity
quasiclassical limit while the minimal one is responsible forgepends on the particular field theory used for the scalar field
a tachyonic behavior. _ (see, e.9.[23] and references therginGiven the current
To conclude we shall prove that the conformal couplingheoretical situation it seems more of an experimental prob-
does not violate the equivalence principle by making a comier to identify which would be the correat couplings) for
parison of the true gravitational coupling with the pure iner-the various scalar particles.
tial case. To do that, we recall that far from the source the
solution of the Einstein equation for a point particle of mass A.A. thanks CNPg-Brazil and H.B. thanks FAPESP-
M located atr =0 is given by Brazil for financial support.

1
— ——_VF.VF+

2
8mvV mw |7 (19
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