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Conformal higher spin symmetries of 4D massless supermultiplets
and osp„L ,2M … invariant equations in generalized„super…space
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Realization of the conformal higher spin symmetry on the 4D massless field supermultiplets is given. The
self-conjugated supermultiplets, including the linearizedN54 super Yang-Mills theory, are considered in some
detail. Duality between nonunitary field-theoretical representations and the unitary doubleton-type representa-
tions of the 4D conformal algebrasu(2,2) is formulated in terms of a Bogolyubov transform. The set of 4D
massless fields of all spins is shown to form a representation ofsp(8). Theresults obtained are extended to the
generalized superspace invariant underosp(L,2M ) supersymmetries. A world line particle interpretation of
the free higher spin theories in theosp(2N,2M ) invariant ~super!space is given. Compatible with unitarity,
free equations of motion in theosp(L,2M ) invariant~super!space are formulated. A conjecture about the chain
of AdSd11 /CFTd→AdSd /CFTd21→••• ~where CFT indicates conformal field theory! dualities in the higher
spin gauge theories is proposed.
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I. INTRODUCTION

AdS conformal field theory~CFT! correspondence@1–5#
relates theories of gravity in the (d11)-dimensional anti–de
Sitter space AdSd11 to conformal theories ind-dimensional
~conformal! boundary space. Elementary fields in the bu
are related to the currents in boundary theory associated
nonlinear colorless combinations of the elementary bound
fields.

From thed54 example it is known@6,7# that gauge theo-
ries of massless fields of all spins 0<s<` admit a consis-
tent formulation in AdS4 ~see@8,9# for more details and ref-
erences on the higher spin gauge theories!. The cosmological
constantL52l2 should necessarily be nonzero in the inte
acting higher spin gauge theories because it appears in n
tive powers in the interaction terms that contain higher
rivatives of the higher spin gauge fields. This property is
agreement with the fact that higher spin gauge fields do
admit consistent interactions with gravity in the flat bac
ground@10#.

Since the nonlinear higher spin gauge theory conta
gravity and is formulated in AdS space-time, an interest
question is what is its AdS/CFT dual. It was recently conje
tured @11,12# that the boundary theories dual to the AdSd11
higher spin gauge theories are free conformal theories. Th
theories exhibit infinite-dimensional symmetries which a
expected to be isomorphic to the AdSd11 higher spin gauge
symmetries. This conjecture is in agreement with the res
of @13# where the conserved higher spin currents
d-dimensional free scalar field theory were shown to be
one-to-one correspondence with the set of one-forms ass
ated with the totally symmetric higher spin gauge fields. T
AdS/CFT regime associated with the higher spin gauge th
ries was conjectured@11,12# to correspond to the limitg2n
→0. It is therefore opposite to the regimeg2n→` underly-
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ing the standard AdS/CFT correspondence@1#, which relates
strongly coupled boundary theory to the classical regime
the bulk theory.

To test the AdS/CFT correspondence for the higher s
gauge theories it is instructive to realize the higher spin sy
metries of the bulk higher spin gauge theories in AdSd11 as
higher spin conformal symmetries of the free conform
fields in d dimensions. In a recent paper@14# this problem
was solved for the case of AdS4 /CFT3. In particular, it was
shown in@14# that 3D conformal matter fields are natural
described in terms of a certain Fock moduleF over the star
product algebra identified@15# with the AdS4 higher spin
algebra@16,17#. The results of@14# confirmed the conjecture
of Fradkin and Linetsky@18# that 3D conformal higher spin
algebras are isomorphic to the AdS4 higher spin algebras
The nonunitary Fock moduleF was interpreted in@14# as the
field-theoretical dual of the unitary singleton module ov
sp(4uR).

One of the aims of this paper is to extend the results
@14# to AdS5 /CFT4 higher spin correspondence, which ca
is of most interest from the string theory perspective. W
present a realization of the 4D conformal higher spin sup
multiplets in terms of the field-theoretical Fock modules~fi-
ber bundles! dual to the unitary doubleton@19# representa-
tions of su(2,2). The conformal equations of motion for
4D massless supermultiplet are formulated in the ‘‘unfolde
form of the covariant constancy conditions that makes
infinite-dimensional 4D conformal higher spin symmetri
manifest. We compare the results obtained with the con
ture on the structure of 4D conformal higher spin symmetr
made by Fradkin and Linetsky@20,21# in their analysis of 4D
nonunitary higher spin conformal theories that generalizeC2

gravity, arriving at somewhat different conclusions. Also, t
results obtained are compared with the conjecture of the
cent paper@22# and the results of the forthcoming pape
@23,24# on the ~unitary! interacting higher spin theories i
AdS5 ~i.e., those referred to in the AdS5 /CFT4 higher spin
correspondence!.
©2002 The American Physical Society06-1
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We show that the fundamental 4D conformal higher s
algebras are the infinite-dimensional algebras ca
hu(m,nu8) in @25#. Heren andm refer to the spin 1 Yang-
Mills symmetriesu(m) % u(n) while the label 8 refers to the
eight spinor generating elements of the higher spin star p
uct algebra. Let us recall the definition ofhu(m,nu8). Con-
sider the algebra of (m1n)3(m1n) matrices

S A~a,b! B~a,b!

C~a,b! D~a,b!
D ~1.1!

with the even functions~polynomials! of the auxiliary spinor
variablesaâ and bâ (â,b̂51 –4) in the diagonalm3m
block A(a,b) and then3n block D(a,b),

A~2a,2b!5A~a,b!, D~2a,2b!5D~a,b!, ~1.2!

and odd functions in the off-diagonalm3n block B(a,b)
andn3m block C(a,b),

B~2a,2b!52B~a,b!,

C~2a,2b!52C~a,b!. ~1.3!

Consider the associative algebra of matrices of the form~1.1!
with the associative star product law for the functions of
spinor variablesaâ andbb̂ defined as

~ f * g!~a,b!5
1

~p!8E d4ud4vd4sd4t f ~a1u,b1t !

3g~a1s,b1v !exp 2~sât â2uâv â!

5e(]2/]sâ]t â2]2/]uâ]v â)/2f ~a1s,b1u!

3g~a1v,b1t !us5t5u5v50 . ~1.4!

It is well known that this star product gives rise to the co
mutation relations

@aâ ,bb̂#* 5dâ
b̂ , @aâ ,ab̂#* 50, @bâ,bb̂#* 50

~1.5!

with @ f ,g#* 5 f * g2g* f . The associative star product alg
bra with eight generating elementsaâ andbb̂ is called Weyl
algebraA4 ~i.e., Al for l pairs of oscillators.! The particular
star product realization of the algebra of oscillators we
describes the totally symmetric~i.e., Weyl! ordering. The
matrices~1.1! result from the truncation ofA4^ Matm1n by
the parity conditions~1.2! and ~1.3!. Let us now treat this
algebra asZ2-graded algebra with even elements in t
blocksA andD and odd inB andC, i.e.,

p~A!5p~D !50, p~B!5p~C!51. ~1.6!

The Lie superalgebrahgl(m,nu8;C) is the algebra of the
same matrices with the product law defined via the gra
commutator

@ f ,g#65 f * g2~21!p( f )p(g)g* f . ~1.7!
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Note that theZ2 grading~1.6! in hgl(m,nu8;C) is in accor-
dance with the standard relationship between spin and st
tics onceaâ andbb̂ are interpreted as spinors.

The algebrahu(m,nu8) is a particular real form of
hgl(m,nu8;C) defined so that the finite-dimensional suba
gebra ofhu(m,nu8) identified as the spin 1 Yang-Mills al
gebra, which is spanned by the elementsA and D indepen-
dent of the spinor elementsaâ and bb̂, is the compact
algebrau(m) % u(n). The explicit form of the reality condi-
tions imposed to extracthu(m,nu8) @25# is given in Sec.
IV C of this paper.

This construction is a straightforward extension of the
conformal;AdS4 higher spin algebrashu(m,nu4) via dou-
bling of the spinor generating elements. It is in accordan
with the conjecture of@26# that higher spin algebras in an
dimension are built in terms of the star product algebras w
spinor generating elements. The definition ofhu(m,nu2p) is
analogous.

The Lie algebragl4 is spanned by the bilinears

Tâ
b̂5aâbb̂[

1

2
~aâ* bb̂1bb̂* aâ!I , ~1.8!

whereI is the unit element of the matrix part ofhu(m,nu8).
The central element is

N05aâbâ[
1

2
~aâ* bâ1bâ* aâ!I . ~1.9!

The traceless part

t â
b̂5S aâbb̂2

1

4
dâ

b̂N0D I ~1.10!

spanssl4. Thesu(2,2) real form ofsl4(C) results from the
reality conditions

āâ5bb̂Cb̂â , b̄â5Câb̂ab̂ , ~1.11!

where the overbar denotes complex conjugation whileCâb̂

52Cb̂â andCâb̂52Cb̂â are some real antisymmetric ma
trices satisfying

CâĝCb̂ĝ5dâ
b̂ . ~1.12!

In order to incorporate supersymmetry one introduces
Clifford elementsf i and their complex conjugatesf̄ j ( i , j
51 –N) satisfying the commutation relations

$f i ,f j%* 50, $f̄ i ,f̄ j%* 50, $f i ,f̄ j%* 5d i
j

~1.13!

with respect to the Clifford star product

~ f * g!~f,f̄ !52NE dNcdNc̄dNxdNx̄ f ~f1c,f̄1x̄ !

3g~f1x,f̄1c̄ !exp 2~c i c̄
i2x i x̄

i !

~1.14!
6-2
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with anticommutingf i , f̄ i , c i , c̄ i , x i , andx̄ i .
The superalgebrau(2,2uN ) is spanned by theu(2,2) gen-

erators~1.8! along with the supergenerators

Qâ
i
5aâf̄ i , Q̄i

b̂5bb̂f i ~1.15!

andu(N ) generators

Ti
j5f if̄

j . ~1.16!

The central elementNN of u(2,2uN ) is

NN5aâbâ2f if̄
i . ~1.17!

For NÞ4, su(2,2uN )5u(2,2uN )/NN . The case ofN54 is
special becauseNN , which acts as the unit operator on th
oscillators, has a trivial supertrace thus generating an a
tional ideal in su(2,2uN ). The corresponding simple quo
tient algebra is calledpsu(2,2u4).

A natural higher spin extension ofsu(2,2uN ) is associ-
ated with the star product algebra of even functions of s
eroscillators

f ~2a,2b;2f,2f̄ !5 f ~a,b;f,f̄ !. ~1.18!

Since the Clifford algebra with 2N generating elements i
isomorphic toMat2N, one finds that the appropriate re
form of the infinite-dimensional Lie superalgebra defin
this way is isomorphic tohu(2N21,2N21u8). Note that for
N54 this gives rise tohu(8,8u8). For N50 the Clifford
algebra is one dimensional and, therefo
hu(2N21,2N21u2p) at N50 is identified withhu(1,0u2p).
The restriction ofhu(2N21,2N21u8) to a particular super
multiplet gives rise to a smaller higher spin algebra we sh
call hua(2N21,2N21u8). a is a number characterizing a su
permultiplet. The case ofa50 will be shown to correspond
to the self-conjugated supermultiplets.@Note that the algebra
hu0(2N21,2N21u8) was calledshsc(4uN ) in @20#.# An ex-
citing possibility discussed at the end of this paper is th
once there exists a phase with the whole symme
hu(2N21,2N21u8) unbroken, it may imply an infinite chain
of the generalized AdS/CFT correspondences

•••AdSp11/CFTp→AdSp/CFTp21

→AdSp21/CFTp22
•••, ~1.19!

resulting in a surprising generalized space-time dimens
democracy in the higher spin theories.@Abusing notation, we
use the abbreviation AdSp for the generalized
1
2 p(p11)-dimensional space-time defined in Sec. IX.# The
algebrashu0(2N21,2N21u8) associated with the usual lowe
spin supermultiplets and AdS/CFT dualities are argued
result from some kind of spontaneous breakdown of the s
metrieshu(2N21,2N21u8).

The key idea of our approach is that the dynamics of
4D higher spin massless multiplets admits a formulation
terms of certain Fock modules overhu(m,nu8) analogously
to what was shown previously ford52 in @27# and for d
53 in @14#. Such a formulation makes the higher spin sy
06600
i-

-

,

ll

t,
y

n

o
-

e
n

-

metries of the conformal systems manifest. The field the
formalism we work with operates with modules dual to t
doubleton modules used for the description of the unit
representations associated with the one-particle states o
same system@19#. ~Note that these Fock modules are som
what reminiscent of the modules introduced for the desc
tion of noncommutative solitons in string theory@28#.!

In addition to the su(2,2uN ) generators, the algebr
hu(2N21,2N21u8) contains the bilinear generators

U âb̂5aâab̂ , Vâb̂5bâbb̂, ~1.20!

Ui j 5f if j , V̄i j 5f̄ if̄ j ~1.21!

and supergenerators

Râ i5aâf i , R̄b̂ i5bb̂f̄ i , ~1.22!

which extendu(2,2;N ) to osp(2N,8). @Recall that one can
define osp(p,2q) as the superalgebra spanned by vario
bilinears built fromp fermionic oscillators andq pairs of
bosonic oscillators; see, e.g.,@29# for more details on the
oscillator realizations of simple superalgebras.# u(2,2;N ) is
spanned by the bilinears in oscillators that commute to
operatorNN , i.e., u(2,2;N ) is the centralizer1 of NN in
osp(2N,8). An important consequence of this simple fact
that

su~2,2;N!,osp~2N;8!,hu~2N21,2N21u8!. ~1.23!

As a result, once the higher spin algebrahu(2N21,2N21u8)
is shown to admit a realization on the conformal superm
tiplets of massless fields, it follows that the same is true
its finite-dimensional subalgebraosp(2N;8). Indeed, we
shall show explicitly how theosp(2N;8) transformations
link together different massless~super!fields, requiring infi-
nite sets of massless supermultiplets to be involved. T
result is the field-theoretical counterpart of the fact that
singleton representation ofosp(2N;8) decomposes into al
doubleton representations ofsu(2,2;N ). Note that the field-
theoretical realization ofosp(2N;8) will be shown to be
local.

This result confirms the conjecture of@30,26# that the al-
gebras osp(L,2p) may play a distinguished role in th
higher spin gauge theories in higher dimensions. More g
erally, it was first suggested in@31# that algebras of this clas
result from the supersymmetrization of conformal and A
space-time symmetry algebras. In@32# a contraction of
osp(1,32) was applied for the description of 11-dimension
superalgebra. Somewhat later it was found that the alge
osp(L,2M ) ~in most cases withM52q) and their contrac-
tions appear naturally in the context of M-theory dualiti
and brane charges@33–37#. One of the messages of this p
per is that these symmetries can be unbroken in the phas
which all higher spin fields are massless. An immedi
speculation is that not only do massive higher spin mode

1I am grateful to M. Gu¨naydin for drawing my attention to this
fact.
6-3
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fundamental strings result from some spontaneous brea
of the higher spin symmetries, but also branes are built fr
the higher spin gauge fields.

This raises the important question of what are the hig
dimensional geometry and dynamics that supportosp(L,2p)
symmetries. Generally, there is no genuine reason to bel
that a higher dimensional geometry should necessarily
Riemannian and, in particular, that the bosonic coordina
are necessarily Lorentz vectors. We shall call this prese
dominating belief the ‘‘Minkowski track.’’ An alternative op
tion, which looks more natural from various points of vie
is that higher dimensional bosonic and fermionic dimensi
beyondd54 may be associated with certain coset sup
spaces built fromosp(L,2M ). We call this alternative the
‘‘symplectic track.’’ An important advantage of this altern
tive is due to supersymmetry. Indeed, the main reason
supersymmetry singles out some particular dimensions in
Minkowski track is the mismatch between the numbers
bosonic and fermionic coordinates in higher dimensions a
result of the fact that the dimension of the spinor repres
tations of the Lorentz algebra increases with the space-
dimension as 2[d/2] while the dimensions of its tensor repr
sentations increase polynomially. Only for some lower
mensionsd<11, where the number of spinor coordinates
not too high due to some Majorana and/or Weyl conditio
can the matching be restored.

Some ideas on the possible structure of an alternativ
Minkowski space-times have appeared in both the fie
theoretical@38,30,39–46# and world particle dynamics@47–
50# contexts. In particular, important algebraic and geome
insights most relevant to the subject of this paper were ela
rated by Fronsdal in the pioneering work@30#. Further exten-
sions with higher rank tensor coordinates were discusse
@51,52#. The nontrivial issue, however, is that it is nota
priori clear whether a particularosp(L,2M ) invariant sym-
plectic track equation allows for quantization compatib
with unitarity for M.2. This point is tricky. On the one
hand, a Lorentz invariant interval built from the ‘‘centr
charge coordinates’’ associated withsp(2p) has many time-
like directions which, naively, would imply ghosts. On th
other hand, it is well known@29# that osp(L,2M ) admits
unitary lowest weight representations~by ‘‘lowest weight’’
we mean that it is a quotient of a Verma module!, thus indi-
cating that some of its quantum-mechanically consist
field-theoretical realizations have to exist.

Here is where the power of the ‘‘unfolded formulation
dynamics @53–55# plays a crucial role. Because this a
proach suggests a natural Bogolyubov transform duality
tween the field-theoretical unfolded equations and low
weight unitary modules@14#, which, in fact, implies quanti-
zation, it allows us to solve the problem by identifying th
differential equations that give rise to the field-theoreti
module dual to an appropriate unitary module. This
achieved by solving a certain cohomology problem. One
the central results of this paper consists of the explicit f
mulation of theosp(L,2M /R) invariant equations of motion
in the symplectic track space associated with the mass
unitary lowest weight modules ofosp(L,2M /R) via a
Bogolyubov duality transform. Let us note that for the p
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ticular case ofsp(8) two simple equations in the symplect
track space for scalar and svector~i.e., a vector of the sym-
plectic algebra interpreted as a spinor in the Minkow
track! fields encode all massless equations in the usual
Minkowski space. This opens an exciting new avenue
higher dimensional physics in the framework of the sympl
tic track. To put it briefly, the right geometry is going to b
associated in all cases with symplectic twistors, while
some lower dimensions we happened to live in it turns ou
be equivalent to the usual Minkowski geometry.

The rest of the paper is organized as follows. In Sec. II
summarize the general approach to unfolded dynamics w
the emphasize on the cohomological interpretation of the
namical fields and equations of motion. In Sec. III we ide
tify the vacuum gravitational field and discuss the glob
higher spin symmetries. 4D free equations for massless fi
of all spins in the unfolded form are studied in Sec. IV.
Sec. IV A we reformulate the free massless equations of m
tion for 4D massless fields of all spins in terms of flat se
tions of an appropriate Fock fiber bundle and identify vario
types of the 4D higher spin conformal algebras. A gene
solution of these equations in flat space-time is presente
Sec. IV B. The reality conditions are defined in Sec. IV
The reduction to self-conjugated supermultiplets based o
certain antiautomorphism and the corresponding redu
higher spin algebras are discussed in Sec. IV D. In Sec
we explain how the formulas for any global conform
higher spin symmetry transformation of the massless fie
can be derived and present explicit formulas for the glo
osp(2N,8) transformations. The duality between the fie
theoretical Fock module and unitary@sp(8) singleton# mod-
ule is discussed in Sec. VI. The dynamics of the 4D conf
mal massless fields is reformulated in theosp(2N,8)
invariant ~super!spaces in Sec. VII. We start in Sec. VII A
with the example of the usual superspace. The unfol
equations compatible with unitarity insp(2M ) invariant
space-time are derived in Sec. VII B. The unfolded dynam
in the osp(L,2M ) invariant superspaces is formulated
Sec. VII C. Further extension of the equations to the infini
dimensional higher spin superspace is given in Sec. VII
The world line particle interpretation of the massless eq
tions of motion obtained is discussed in Sec. VIII whe
some new twistorlike particle models are presented. T
AdS/CFT correspondence in the framework of higher s
gauge theories is the subject of Sec. IX where, in particu
the possibility of an infinite chain of AdS/CFT dualities i
higher spin gauge theories is discussed. Finally, Sec. X c
tains a summary of the main results of the paper and dis
sion of some perspectives.

II. UNFOLDED DYNAMICS

As usual in the higher spin theory framework, we sh
use the ‘‘unfolded formulation’’ approach@53–55# which al-
lows one to reformulate any dynamical equations in the fo

dwA5FA~w! ~2.1!

(d5dxn]/]xn; underlined indicesm, n50 –d21 are used
for the components of differential forms! with some set of
6-4
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differential formsw and a functionFA(w) built from w with
the help of the exterior product and satisfying the comp
ibility condition

FB~w!
dFA~w!

dwB
50. ~2.2!

In the linearized approximation, i.e., expanding near so
particular solutionw0 of Eq. ~2.1!, one finds that nontrivial
dynamical equations are associated with null vectors of
linearized partF1 of F.

For example, consider the system of equations

]nCa1•••an
~x!1hn

bCba1•••an
~x!50, ~2.3!

dha50 ~2.4!

with the set of 0-formsCa1•••an
with all n50,1,2, . . . ,̀ and

the one-formha5dxnhn
a (a,b, . . . 50 –d21 are fiber vec-

tor indices!. This system is obviously consistent in the sen
of Eq. ~2.2!. Assuming thathn

a is a nondegenerate matrix~in
fact, the flat space-time frame!, say, choosinghn

a5dn
a as a

particular solution of Eq.~2.4!, one finds that the system i
dynamically empty, just expressing the highest compone
Ca1•••an

via the highest derivatives ofC:

Ca1•••an
~x!5~21!n]a1

•••]an
C~x!. ~2.5!

However, once some of the components ofCa1•••an
are

missed in a way consistent with the compatibility conditi
~2.2!, this will impose the differential restrictions on the ‘‘dy
namical field’’C(x). In particular, this happens if the tenso
are required to be traceless,

Cb
ba3 . . . an

50. ~2.6!

In accordance with Eq.~2.5! this implies the Klein-Gordon
equation

hC~x!50 ~2.7!

and, in fact, no other independent conditions.
An important point is that any system of differential equ

tions can be reformulated in the form~2.1! by virtue of in-
troducing enough~usually, infinitely many! auxiliary fields.
We call such a reformulation ‘‘unfolding.’’ In many impor
tant cases the linearized equations have the form

~D1s21s1!C50, ~2.8!

whereC denotes some~usually infinite! set of fields~i.e., a
section of some linear fiber bundle over the space-time w
a fiber spaceV) and the operatorsD ands6 have the prop-
erties

~s6!250, D 21$s2 ,s1%50, $D,s6%50. ~2.9!
06600
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It is assumed that only the operatorD acts nontrivially on
~differentiates! the space-time coordinates whiles6 act in
the fiberV. It is also assumed that there exists a gradat
operatorG such that

@G,D#50, @G,s6#56s6 , ~2.10!

G can be diagonalized in the fiber spaceV, and the spectrum
of G in V is bounded from below. In the example aboveD
5d, s150, s2(C)a1•••an

5hbCba1•••an
. The gradation op-

erator G counts a number of indicesG(C)a1•••an

5nCa1•••an
.

The important observation is~see, e.g.,@56#! that the non-
trivial dynamical equations hidden in Eq.~2.8! are in one-to-
one correspondence with the nontrivial cohomology clas
of s2 . For the case under consideration withC being a
0-form, the relevant cohomology group isH1(s2). For the
more general situation withC being ap-form, the relevant
cohomology group isHp11(s2) ~in a somewhat implicit
form this analysis for the case of one-forms was applied
@57,26#!.

Indeed, consider the decomposition of the space of fie
C into the direct sum of eigenspaces ofG. Let a field having
the definite eigenvaluek of G be denoted Cuk , k
50,1,2. . . . Suppose that the dynamical content of Eq
~2.8! with the eigenvaluesk<kq is found. Applying the op-
eratorD1s1 to the left hand side of Eqs.~2.8! at k<kq we
obtain taking into account Eq.~2.9! that

s2„~D1s21s1!~C!ukq11…50. ~2.11!

Therefore (D1s21s1)(C)ukq11 is s2 closed. If the group

H1(s2) is trivial in the gradekq11 sector, any solution of
Eq. ~2.11! can be written in the form (D1s2

1s1)(C)ukq115s2(C̃ukq12) for some fieldC̃ukq12. This,
in turn, is equivalent to the statement that one can ad
Cukq12 in such a way thatC̃ukq1250 or, equivalently, the

part of Eq.~2.8! of the gradekq11, is some constraint tha
expressesCukq12 in terms of the derivatives ofCukq11 ~to
say that this is a constraint we have used the assumption
the operators2 is algebraic in the space-time sense, i.e.
does not contain space-time derivatives!. If H1(s2) is non-
trivial, this means that Eq.~2.8! sends the corresponding co
homology class to zero and, therefore, not only expresses
field Cukq12 in terms of derivatives ofCukq11 but also im-

poses some additional differential conditions onCukq11.
Thus, the nontrivial space-time differential equations d
scribed by Eq.~2.8! are classified by the cohomology grou
H1(s2).

The nontrivial dynamical fields are associated w
H0(s2) which is always nonzero because it at least conta
a nontrivial subspace ofV of minimal grade. As follows from
theH1(s2) analysis of the dynamical equations, all fields
V/H0(s2) are auxiliary, i.e., are expressed via the spa
time derivatives of the dynamical fields by virtue of Eq
~2.8!.
6-5
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For the scalar field example one finds@56# thatH0(s2) is
spanned by the linear space of the rank-zero tensors as
ated with the scalar field. For the case with the fiberV real-
ized by all symmetric tensors,H1(s2)50 and, therefore, the
corresponding system is dynamically empty. For the cas
V spanned by traceless symmetric tensors,H1(s2) turns out
to be one dimensional with the one-form representative

khn
a ~2.12!

taking values in the subspace of rank-1 tensors~i.e., vectors!.
Indeed, it is obvious that any element of the form~2.12! is
s2 closed. It is nots2 exact becausehn bÞhn

aCab with
some symmetric tracelessCab . As a result, the only non
trivial equation contained in Eq.~2.3! is its trace part atn
51, which is just the Klein-Gordon equation~2.7!.

Let us note that the ‘‘unfolded equation’’ approach is
some extent analogous to the coordinate-free formulatio
gravity by Penrose@58# and the concept of exact sets
fields ~see@59# and references therein! in which the dynami-
cal equations are required to express all space-time de
tives of the fields in terms of the fields themselves. The
portant difference between these two approaches is
‘‘unfolded dynamics’’ operates in terms of differential form
thus leaving room for gauge potentials and gauge sym
tries that in most cases are crucial for the interaction pr
lem. In some sense, the exact sets of fields formalism co
sponds to the particular case of unfolded dynamics in wh
all fields are described as 0-forms.

III. VACUUM AND GLOBAL SYMMETRIES

Let us now consider the four-dimensional case introd
ing 4D index notation. We will use two pairs of two
component spinorsaa , ba, ã ȧ , andb̃ ḃ. The basis commu-
tation relations become

@aa ,bb#* 5da
b , @ ã ġ ,b̃ ḃ#* 5dġ

ḃ. ~3.1!

The 4D identification of the elements ofsu(2,2) is as fol-
lows:

La
b5aabb2

1

2
da

bagbg,

L̄ ȧ
ḃ5ã ȧb̃ ḃ2

1

2
dȧ

ḃãġb̃ġ ~3.2!

are Lorentz generators;

D5
1

2
~aaba2ã ȧb̃ ȧ! ~3.3!

is the dilatation generator;

Pa
ḃ5aab̃ ḃ ~3.4!

and

K ȧ
b5ã ȧbb ~3.5!
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are the generators of 4D translations and special confor
transformations, respectively. The complex conjugation ru

āa5b̃ ȧ , b̄a5ã ȧ,

ā̃ ȧ5b a , b̄̃ ȧ5a a ~3.6!

are in accordance with Eq.~1.11! with the antisymmetric
matrix Câb̂ having nonzero components

Caḃ5«aḃ, Cġb5«ġb, ~3.7!

where«ab is the 232 antisymmetric matrix normalized to
«1251.

Let v(a,b;f,f̄ux) be a one-form taking values in th
higher spin algebrahu(2N21,2N21u8), i.e., v is the gener-
ating function of the conformal higher spin gauge fields

v~a,b;f,f̄ux!5 (
m,n50

`

(
k,l 50

N
1

m!n!k! l !

3vâ1•••âm ,
b̂1•••b̂n

i 1••• i k
j 1••• j l~x!

3bâ1
•••bâmab̂1

•••ab̂n
f i 1

•••f i kf̄ j 1
•••f̄ j l

.

~3.8!

In the cases of interest the general equation~2.1! admits a
solution with all fields equal to zero except for some on
forms v0 taking values in an appropriate Lie~super!algebra
h @in the case under considerationh5hu(2N21,2N21u8)].
Equation~2.1! then reduces to the zero-curvature equation
v0. To describe nontrivial space-time geometry one has
requireh to contain an appropriate space-time symmetry
gebra whose gauge fields identify with the background gra
tational fields. In particular, the components ofv0 in the
sector of translations are identified with the gravitation
frame field which is supposed to be nondegenerate. Letv0
be such a solution of the zero-curvature equation

dv05v0`* v0 . ~3.9!

Equation~3.9! is invariant under the gauge transformation

dv05de2@v0 ,e#* , ~3.10!

where e(a,b;f,f̄ux) is an infinitesimal symmetry param
eter, which is a 0-form. Any vacuum solutionv0 of Eq. ~3.9!
breaks the local higher spin symmetry to its stability sub
gebra with the infinitesimal parameterse0(a,b;f,f̄ux) sat-
isfying the equation

de02@v0 ,e0#* 50. ~3.11!

Consistency of this equation is guaranteed by the ze
curvature equation~3.9!.

Locally, Eq. ~3.9! admits a pure gauge solution

v052g21* dg. ~3.12!
6-6
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Hereg(a,b;f,f̄ux) is some invertible element of the ass
ciative algebra, i.e.,g21* g5g* g2151. For v0 @Eq.
~3.12!#, one finds that the generic solution of Eq.~3.11! is

e0~a,b;f,f̄ux!5g21~a,b;f,f̄ux!

* j~a,b;f,f̄ !* g~a,b;f,f̄ux!,

~3.13!

wherej(a,b;f,f̄) is an arbitraryx-independent element tha
plays the role of the ‘‘initial data’’ for Eq.~3.11!.

e0~a,b;f,f̄ux!ux5x0
5j~a,b;f,f̄ ! ~3.14!

for such a pointx0 that g(x0)51. Since@e0
1 ,e0

2#* has the
same form withj125@j1,j2#* , it is clear that the globa
symmetry algebra ishu(2N21,2N21u8).

As usual, the gravitational fields~i.e., frame and Lorentz
connection! are associated with the generators of translati
and Lorentz rotations in the Poincare´ or AdS subalgebras o
the conformal algebra. For AdS4 one sets

v05v0
a

b~x!La
b1v̄0

ȧ
ḃ~x!L̄ ȧ

ḃ

1h0
a

ḃ~x!~Pa
ḃ1l2K ḃ

a!, ~3.15!

where2l2 is the cosmological constant. The indices ofK ḃ a
have been raised and lowered with the aid of the Lore
invariant antisymmetric forms«ab and«ȧḃ according to the
rules

Aa5«abAb , Ab5«abAa,

Aȧ5«ȧḃAḃ , Aḃ5«ȧḃAȧ, ~3.16!

which, as expected for the AdS4 space having a dimensionfu
radius, breaks down the scaling symmetry of the ans
~3.15!. The condition that the ansatz~3.15! solves the zero-
curvature equation~3.9! along with the condition tha
h0

a
ḃ(x) is nondegenerate implies thatv0

a
b(x), v̄0

ȧ
ḃ(x),

and h0
a

ḃ(x) describe the AdS4 Lorentz connection and th
frame field, respectively.@Note that the generatorPa

ḃ

1l2K ḃ
a describes the embedding of the AdS4 translations

into the conformal algebrasu(2,2).#
For the 4D flat Minkowski space one can choose

v05dxnsn
a

ḃaab̃ ḃ, ~3.17!

thus setting all fields equal to zero except for the flat sp
vierbein associated with the translation generator. Heresn

aḃ

is the set of 232 Hermitian matrices normalized to

sn
aḃsm aḃ5hnm , sn

aḃsm gḋhnm5dg
adḋ

ḃ , ~3.18!

wherehnm is the flat Minkowski metric tensor. The functio
g that gives rise to the flat gravitational field~3.17! is

g5exp~2xa
ḃaab̃ ḃ!, ~3.19!
06600
s

tz

tz

e

where

xaḃ5xnsn
aḃ, xn5sn

aḃxaḃ. ~3.20!

IV. 4D CONFORMAL FIELD EQUATIONS

As shown in@53,54#, the equations of motion for massles
fields in AdS4 admit a formulation in terms of the generatin
function

C~y,ȳux!5 (
m,n50

`
1

m!n!
ca1•••am ,ḃ1•••ḃn

~x!

3ya1
•••yamȳḃ1

••• ȳḃn ~4.1!

with the auxiliary spinor variablesya and ȳḃ. C(y,ȳux) is
the generating function for all on-mass-shell nontrivial sp
s>1 gauge invariant curvatures and matter fields of spi
and 1/2. Every spins massless field appears in two copi
because the generating functionC(y,ȳux) is complex. It
forms the twisted adjoint representation of the alge
hu(1,1u4). The associated covariant derivative reads

DC5dC2v* C1C* ṽ, ~4.2!

where v(y,ȳux) is the generating function for higher spi
gauge fields taking values inhu(1,1u4), * denotes the Moyal
star product induced by the Weyl~i.e., totally symmetric!
ordering of the oscillatorsya and ȳȧ with the basis commu-
tation relations

@ya,yb#* 52i«ab, @ ȳȧ,ȳḃ#* 52i«ȧḃ, ~4.3!

and the tilde denotes the involutive automorphism of
algebra2 ṽ(y,ȳux)5v(2y,ȳux). Fluctuautions of the highe
spin gauge fields are linked to the invariant field strengths
virtue of their own field equations@53,54#. The sector of
higher spin gauge fields plays an important role in the ana
sis of higher spin interactions and Lagrangian higher s
dynamics, very much as the Lagrangian form of Maxw
theory is formulated in terms of potentials rather than fie
strengths. In this paper, however, we confine ourselves
consideration of free field equations formulated in terms
field strengths withv5v0 being a fixed vacuum gravita
tional field taking values in the gravitationalsp(4uR) subal-
gebra ofhu(1,1u4) and satisfying zero-curvature equatio
for the higher spin algebra. Note that, as explained in
Introduction,sp(4uR) belongs to the finite-dimensional sub
algebraosp(2,4) of hu(1,1u4), i.e., the system under con
sideration exhibitsN52 supersymmetry.@Also note that
osp(2,4)% u(1) with theu(1) factor associated with the un

2The covariant derivative of the complex conjugated fieldC̄ is
analogous with the roles of dotted and undotted indices in
changed. Note that the twisted adjoint representation is most
veniently described with the help of Klein operators@54# ~see also
@8#!.
6-7
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element of the star product algebra is the maximal finite
mensional subalgebra ofhu(1,1u4).#

As shown in @53,54# the free equations of motion fo
massless fields of all spins have the form

D0~C!50 ~4.4!

whereD0 is the covariant derivative~4.2! with respect to the
vacuum fieldv0. Since Eqs.~3.9! and ~4.4! are invariant
under the gauge transformations~3.10! and

dC5e* C2C* ẽ, ~4.5!

from the general argument of Sec. III it follows that, f
some fixed vacuum fieldv0 satisfying Eq.~3.9!, Eq. ~4.4! is
invariant under global symmetry transformations with t
parameters~3.13! that form the AdS4 higher spin algebra
hu(1,1u4). This realization of the higher spin field equatio
therefore makes manifest the AdS4 symmetry
sp(4uR),hu(1,1u4), while the conformal symmetry
su(2,2) of the free massless equations remains hidden.

For the reader’s convenience let us analyze the conten
Eqs.~4.4! in somewhat more detail. Upon some rescaling
fields the free massless equations of motion for all spins
AdS4 of @53,54# acquire the form

D0
LC~y,ȳux!52h0

aḃS 1

]ya] ȳḃ
1l2yaȳḃD C~y,ȳux!,

~4.6!

whereD0
L is the background Lorentz covariant derivative

D0
L5d2S v0

a
b~x!yb

]

]ya
1v̄0

ȧ
ḃ~x!ȳḃ

]

] ȳȧD . ~4.7!

It gives a particular realization of Eq.~2.8! with

D5D0
L , s25h a ḃ

1

]ya] ȳḃ
,

s15l2h a ḃyaȳḃ . ~4.8!

The gradation operator is

G5
1

2 S ya
]

]ya
1 ȳȧ

]

] ȳȧD . ~4.9!

Equation~4.6! decomposes into the infinite set of subsyste
associated with the eigenvalues of the operator

s5
1

2 S ya
]

]ya
2 ȳȧ

]

] ȳȧD ~4.10!

identified with spin

sC~y,ȳux!56sC~y,ȳux! ~4.11!

~the fields associated with the eigenvalues that differ by s
are conjugated!.
06600
i-

of
f
in

s

n

The flat limit of the free equations of motion for the inte
ger and half-integer spin massless fields of@53,54# has the
form

dC~y,ȳux!1dxnsn
aḃ

1

]ya] ȳḃ
C~y,ȳux!50, ~4.12!

which provides a particular realization of Eq.~2.8! with

D5d, s25dxnsn
aḃ

1

]ya] ȳḃ
, s150. ~4.13!

Let us note that the fact that the free equations of motion
4D massless fields in the flat space admit reformulation
the form ~4.12! was also observed in@60#.

The dynamical fields associated withH0(s2) identify
with the lowest degree eigenspaces ofG for various eigen-
values of s. These are analytic fieldsC(y,0ux) and their
conjugatesC(0,ȳux). Some standard examples are provid
with spin 0:

C~0,0ux!5c~x!, ~4.14!

spin 1/2

C~y,0ux!5yaca~x!, C~0,ȳux!5 ȳȧc̄ȧ~x!, ~4.15!

spin 1

C~y,0ux!5yaybcab~x!,

C~0,ȳux!5 ȳȧȳḃc̄ȧḃ~x!, ~4.16!

spin 3/2

C~y,0ux!5ya1ya2ya3ca1a2a3
~x!,

C~0,ȳux!5 ȳȧ1ȳȧ2ȳȧ3c̄ȧ1ȧ2ȧ3
~x!, ~4.17!

and spin 2

C~y,0ux!5ya1
•••ya4ca1•••a4

~x!,

C~0,ȳux!5 ȳȧ1 . . . ȳȧ4c̄ȧ1•••ȧ4
~x!. ~4.18!

All fields C(y,ȳux) starting with spin 1 are associated wi
the appropriate field strengths, namely, with the Maxw
field strength, gravitino curvature, and Weyl tensor for sp
1, 3/2 and 2, respectively.

The analytic fields C(y,0ux) and their conjugates
C(0,ȳux) are subject to the dynamical spins massless equa
tions @54# associated withH1(s2). Using the properties of
two-component spinors it is elementary to prove that
representatives ofH1(s2) are

yahaḃEḃ~y!, ȳḃhaḃĒa~ ȳ!, yaȳḃhaḃk, ~4.19!

where the 0-formsEḃ(y) and Ēa( ȳ) are, respectively, ana
lytic and antianalytic whilek is a constant. The cohomolog
6-8
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class parametrized byk corresponds to thes50 massless
equation, while the cohomology classes parametrized
Eḃ(y) and Ēa( ȳ) are responsible for the field equations f
spin s.0 massless fields. Note that the cohomology gro
H1(s2) is the same for the flat and AdS4 cases. The explicit
form of the flat space dynamical massless equations resu
from Eq. ~4.12! is

]

]ya

]

]xa
ḃ

C~y,0ux!50,
]

] ȳḃ

]

]xa
ḃ

C~0,ȳux!50, ~sÞ0!,

05
]2

]ya] ȳḃ

]

]xa
ḃ

C~y,ȳux!uy5 ȳ50→]n]nC~0,0ux!50,

~s50!. ~4.20!

All other equations in~4.12! express the nonanalytic compo
nents of the fieldsC(y,ȳux) via higher space-time deriva
tives of the dynamical massless fieldsC(0,ȳux) and
C(y,0ux) or reduce to identities expressing some compati
ity conditions. Therefore, the nonanalytic components
C(y,ȳux) are auxiliary fields~in both the flat and AdS4
cases!.

A. Fock space realization

The formulation of@53,54# with the 0-formC(y,ȳux) tak-
ing values in the twisted adjoint representation of the Ad4
higher spin algebra made the symmetryhu(1,1u4) manifest.
Let us now show that the same equation~4.12! admits a
realization in the Fock space that makes the higher spin c
formal symmetries of the system manifest.

Let us introduce the Fock vacuumu0&^0u defined by the
relations

aa* u0&^0u50, b̃ḃ* u0&^0u50, f i* u0&^0u50.
~4.21!

It can be realized as the element of the star product alge

u0&^0u5242Nexp 2~ ãȧb̃ȧ2aaba1f if̄
i !, ~4.22!

which also satisfies

u0&^0u* ãȧ50, u0&^0u* ba50, u0&^0u* f̄ i50.
~4.23!

As a result, the vacuum is bi-Lorentz invariant

La
b* u0&^0u50, L̄ ȧ

ḃ* u0&^0u50, ~4.24!

u0&^0u* La
b50, u0&^0u* L̄ ȧ

ḃ50,
~4.25!

bi-su(N ) invariant

Ti
j* u0&^0u5u0&^0u* Ti

j5 1
2 d i

j u0&^0u, ~4.26!

and has conformal weight 1
06600
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D* u0&^0u5u0&^0u* D5u0&^0u. ~4.27!

Also, it is left Poincare´ invariant

Pa
ḃ* u0&^0u50 ~4.28!

and supersymmetric

Qa
i
* u0&^0u50, Q̄i

b̂
* u0&^0u50. ~4.29!

Note thatu0&^0u is a projector

u0&^0u* u0&^0u5u0&^0u ~4.30!

and space-time constant

du0&^0u50. ~4.31!

Let us now consider the left module over the algeb
hu(2N21,2N21u8) spanned by the states

uF~ ã,b,f̄ux!&5C~ ã,b,f̄ux!* u0&^0u, ~4.32!

where

C~ ã,b,f̄ux!5 (
m,n,k50

`
1

m!n!k!
cb1•••bm

ȧ1•••ȧn
j 1••• j k

~x!

3ã ȧ1
•••ã ȧn

bb1
•••bbmf̄ j 1

•••f̄ j k. ~4.33!

Note that

C~ ã,b,f̄ux!* u0&^0u

5C~2ã,2b,2f̄ux!242Nexp 2~ ãȧb̃ȧ2aaba1f if̄
i !.

~4.34!

The system of equations

duF&2v0* uF&50 ~4.35!

concisely encodes all 4D massless field equations prov
that Eq. ~3.9!, which guarantees the formal consistency
Eq. ~4.35!, is true. Indeed, the choice ofv0 in the form
~3.17! makes Eq.~4.35! equivalent to Eq.~4.12! upon the
identification of ba with ya and ãḃ with ȳḃ @for every
su(N ) tensor structure#. Analogously, choosingv0 in the
form Eq. ~3.15!, one finds that Eq.~4.35! describes massles
fields in AdS4. Let us note that the equations on the comp
nent fields are Lorentz and scale invariant due to the Lore
invariance~4.24! and definite scaling~4.27! of the vacuum
u0&^0u. The dynamical components identify with the hol
morphic and antiholomorphic parts

cb1•••bn i 1••• i k
~x!5

]n

]bb1
•••]bbn

]k

]f̄ i 1
•••]f̄ i k

3C~0,b,f̄ux!uba5f̄ j 50 , ~4.36!
6-9
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cȧ1•••ȧm
i 1••• i k

~x!5
]m

]ã ȧ1
•••]ã ȧm

]k

]f̄ i 1
•••]f̄ i k

3C~ ã,0,f̄ux!u ãȧ5f̄ j 50 . ~4.37!

Recall that Eq.~4.35! imposes the dynamical massle
equations of motion on the components~4.36! and~4.37! and
expresses all other components inC(āȧ ,bb,f̄ux) via their
derivatives according to Eq.~4.12! rewritten in the form

]2

]ba]ãḃ

C~ ã,b,f̄ux!5sn
a

ḃ]nC~ ã,b,f̄ux!, ~4.38!

or, equivalently,

]2

]ba]ãḃ

C~ ã,b,f̄ux!52
]

]xa
ḃ

C~ ã,b,f̄ux!. ~4.39!

As discussed in more detail in Sec. V the system of ma
less equations in the form~4.35! is manifestly invariant un-
der the higher spin global symmetryhu(1,1u8). Note that the
formulation we use is in a certain sense dual to the us
construction of induced representations@61#. The difference
is that the module we use is realized in the auxiliary Fo
space, while the space-time dependence is reconstructe
virtue of the dynamical equation~4.35! that links the depen-
dence on the space-time coordinates to the dependenc
the auxiliary coordinates. This module is induced from t
vacuum annihilated by the translation generatorPa

ḃ that acts
on the auxiliary spinor coordinates, while in the construct
of @61# the vacuum state is assumed to be annihilated by
generatorsKn of the special conformal transformations ac
ing directly on the dynamical relativistic fields.@Let us stress
that this is not just a matter of notation sincePn is eventually
identified with the]n by virtue of Eq.~4.35!.#

BecauseNN commutes to the generators ofsu(2,2uN ),
the Fock moduleF of su(2,2uN ) decomposes into submod
ulesFa of su(2,2uN ) classified by eigenvalues ofNN , i.e.,
spanned by the vectors satisfying

NN * uF&5auF&. ~4.40!

According to the definition~1.17!, the vacuum has a definit
eigenvalue ofNN

NN * u0&^0u52
N
2

. ~4.41!

Because

@NN , f #* 5~Nb1Nf̄2Na2Nf! f , ~4.42!

where

Na5aâ

]

]aâ

, Nb5bâ
]

]bâ
, ~4.43!
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Nf5f i

]

]f i
, Nf̄5f̄ j

]

]f̄ j
, ~4.44!

the eigenvalue in Eq.~4.40! takes values

a5m2
N
2

, mPZ, ~4.45!

i.e., a is an arbitrary half integer for oddN and an arbitrary
integer for evenN.

From Eq.~4.42! it follows that the fields contained inFa

areC(ãȧ ,bb,f̄ux) with

~Na2Nb2Nf̄1m!C~ ãȧ ,bb,f̄ux!50. ~4.46!

From Eq.~4.11! it follows that the relationship between th
number of inner indices and the spins of a field in the su-
permultiplet is

s5 1
2 uNf̄2mu. ~4.47!

For definiteness, letm be some nonnegative integer. Then t
following dynamical massless fields appear in the multip

ca1•••am(x) , ca1•••am21
, i~x!, . . . ,

ca1•••am2k
, i 1••• i k

~x!, . . . ,

ci 1••• i m
~x!, . . . , cḃ1•••ḃk, i 1••• i m1k

~x!, . . . ,

cḃ1•••ḃN2m, i 1••• iN~x!. ~4.48!

The modules Fa describe various supermultiplets o
su(2,2uN ) with the type of the conformal supermultiple
characterized bya. The most interesting case isa50. Ac-
cording to Eq.~4.45! a50 requiresN to be even. Let us
show that thea50 supermultiplets are self-conjugated co
formal supermultiplets. These include theN52 hypermul-
tiplet andN54 Yang-Mills supermultiplet.

From Eq.~4.45! it follows thata50 impliesm5N/2 and,
therefore, the set of dynamical massless fields in the su
multiplet contains

ca1•••aN/2
~x!, ca1•••aN/221

, i~x!, . . . ,

ca1•••aN/22k
, i 1••• i k

~x!, . . . ,ci 1••• iN/2
~x!, ~4.49!

along with

cḃ1, i 1••• iN/211
~x!, . . . , cḃ1•••ḃk, i 1••• iN/21k

~x!, . . . ,

cḃ1•••ḃN/2, i 1••• iN~x!. ~4.50!

In particular, for the caseN50 we obtain a single scala
field. ForN52 the hypermultiplet appears:

ca~x!, ci~x!, cḃ, i j . ~4.51!

For N54 we find theN54 Yang-Mills multiplet:
6-10
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cab~x!, ca , i~x!, ci j ~x!,

cȧ, i jk~x!, cȧḃ, i jkl ~x!. ~4.52!

The algebra hu(2N21,2N21u8) contains the infinite-
dimensional subalgebracu(2N21,2N21u8) which is the cen-
tralizer of NN in hu(2N21,2N21u8), i.e., cu(2N21,2N21u8)
is spanned by the elementsf P hu(2N21,2N21u8) that com-
mute withNN

@NN , f #* 50. ~4.53!

This is equivalent to

~Na1Nf! f 5~Nb1Nf̄! f . ~4.54!

Because of Eq.~4.53!, the algebracu(2N21,2N21u8) is not
simple, containing idealsI a spanned by elements of the for
h5(NN2a)* f , @ f ,NN#* 50. Now we observe that the op
erator NN2a is trivial on the moduleFa . Therefore,Fa
forms a module over the quotient algeb
hua(2N21,2N21u8)5cu(2N21,2N21u8)/I a . Thus, different
a correspond to different subsectors~quotients! of
cu(2N21,2N21u8) associated with different supermultiplet

Let us note that in@20# the algebracu(2N21,2N21u8) was
called shsc`(4uN), while the algebrahua(2N21,2N21u8)
was calledshsca

0(4uN). It was argued in@21# that it is the
algebra cu(2N21,2N21u8) that plays the role of the 4D
higher spin conformal algebra, while the algeb
shsca

0(4uN) is unlikely to allow consistent conformal highe
spin interactions. The conclusions of the present paper
somewhat opposite. We will argue that consistent confor
theories exhibiting the higher spin conformal symmetr
may correspond to the simple~modulo the trivial center as
sociated with the unit element! algebrashu(2N21,2N21u8)
or hua(2N21,2N21u8) and their further simple reductions o
orthogonal or symplectic type~see subsection IV D!. Note
that in @23# it is shown that theN50 algebrahu0(1,0u8)
admits consistent cubic higher spin interactions in AdS5. An
interesting problem for the future is to extend the propo
conformal form of massless field equations to the case w
dynamical conformal higher spin gauge fields~one-forms!
included. Taking into account that the conformal higher s
gauge theory framework allows for off-mass-shell formu
tion of higher spin constraints for higher spin gauge fie
@21,62#, such an extension is expected to be of crucial i
portance for the construction of nonlinear off-mass-sh
higher spin dynamics.

Finally, let us note that it is straightforward to introduc
color indices by allowing the Fock vacuum to be the colum

uF&5S Ep~ ã,bux!* u0&^0u

Or~ ã,bux!* u0&^0u
D , ~4.55!

whereEp(ã,b) andOr(ã,b) are, respectively, even and od
functions of the spinor variablesãȧ andba

Ep~2ã,2bux!5Ep~ ã,bux!,
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Or~2ã,2bux!52Or~ ã,bux! ~4.56!

and p51 –m, r 51 –n. The algebrahu(m,nu8) realized by
the matrices~1.1! acts naturally on such a column. It is cle
that the fermionic Fock states due to the Clifford variablesf i

and f̄ i give rise to a particular realization of this constru
tion. Most of the content of this paper applies equally well
both constructions. We will mainly use the Clifford realiz
tion because, although it is less general, it has larger su
symmetries explicit. Note that the algebrashu(m,nu8) are
not supersymmetric for genericm and n ~i.e., they do not
contain the usual supersymmetry algebras as fin
dimensional subalgebras!. They areN51 conformal super-
symmetric, however, for the casem5n and acquire more
supersymmetries whenm5n are multiples of 2q. The supe-
ralgebrashu(n2N21,n2N21u8) and their orthogonal and
symplectic reductions ho(n2N21,n2N21u8) and
husp(n2N21,n2N21u8) act on the set ofn copies of
N-extended conformal supersymmetry multiplets. In this n
tation it is then→` limit that plays a crucial role in the
string theory AdS/CFT correspondence@1,3–5#. ~For more
detail on the properties ofhu(m,nu8) we refer the reader to
@25#. See also Sec. IV D.!

B. Generic solution

Once the massless equations are reformulated in the f
~4.35! and the vacuum background fieldv0 is represented in
the pure gauge form~3.12!, the generic solution of the mass
less equations acquires the form

uF~ ã,b,f̄ux!&5g21~ ã,b;f,f̄ux!* uF0~ ã,b,f̄ !&,
~4.57!

whereuF0(ã,b,f̄)&5uF0(ã,b,f̄ux0)& at such a pointx0 that
g(x0)51. For the gauge functiong @Eq. ~3.19!# one obtains
with the help of Eq.~4.34! the general solution in the form

C~ ã,b,f̄ux!5
1

~2p!2E d2s̃d2 t̃ C0~ ã1 s̃,ba1xa
ḃ t̃ ḃ,f̄ !

3exps̃ȧ t̃ ȧ

5expS 2xa
ḃ

]2

]ba]ãḃ
D C0~ ã,b,f̄ !. ~4.58!

HereC0(ã,b,f̄) is an arbitrary function of the variablesãȧ,
ba, and f̄ i . It provides ‘‘initial data’’ for the problem.
ChoosingC0(ã,b,f̄) in the form

C0~ ã,b,f̄ !5c0~f̄ !exp~baha1h̄ ḃãḃ!, ~4.59!

whereha and h̄ ḃ are ~commuting! spinor parameters, on
obtains the plane wave solution

C~ ã,b,f̄ux!5c0~f̄ !exp~baha1h̄ ḃãḃ2h̄ ḃxa
ḃha!

~4.60!

with the lightlike wave vector
6-11
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kaḃ5hah̄ḃ . ~4.61!

Let us note that our approach exhibits deep similarity w
the twistor theory@63,64,59#. The conformal spinorsaâ and
bb̂, which play a key role in the construction as the gene
ing elements of the star product algebra, are analogous to
quantum twistors of@64#. An important difference, however
is that we do not assume thatxâ

b̂ maps one pair of twistors
to another. In our constructionx space is treated as the ba
manifold while the spinor variable generate the Fock sp
fiber. At the first stage the field variables~sections of the
vector fiber bundle! are arbitrary functions of the variable
xâ

b̂, aâ , and bb̂ so that there is no direct relationship b
tween the two sectors. They are linked to each other by
equations of motion~4.35! which imply that solutions of the
massless equations are flat sections of the Fock fiber bu
over space-time. This allows one to solve the field equati
using star product techniques as explained in this sect
thus providing a counterpart of the twistor contour integ
formulas. Typical twistor combinations of the coordinat
and spinors@such as e.g., the combinationxa

ḃ t̃ ḃ in Eq.
~4.58!# then appear as a result of insertion of the gauge fu
tion g @Eq. ~3.19!# that reproduces Cartesian coordinates
the flat space. Another difference mentioned at the end
Sec. II is due to systematic use of the language ofx space
differential forms in our approach. In fact, this allows us
handle higher spin gauge symmetries in a systematic
that is of key importance for the analysis of interactions.

Note that our approach can be used in any other coo
nate system by choosing other forms ofg. Provided that the
higher spin symmetry algebra contains conformal subalge
~as is the case in this paper!, analogously to the twisto
theory, it works for any conformally flat geometry becau
conformally flat gravitational fields satisfy the zero curvatu
equations of the conformal algebra. For example, it can
applied to the AdS4 space. The generic solution of the mas
less field equations in AdS4 was found by a similar method
in @65,8#.

C. Reality conditions

So far we have considered complex fields. The conjuga
multiplet is described by the right module formed by t
states

^C~ ã,bb,f j ux!u5u0̄&^0̄u* G~b,ã,f j ux!, ~4.62!

where the vacuumu0̄&^0̄u is defined by the conditions3

u0̄&^0̄u* aa50, u0̄&^0̄u* b̃ḃ50, u0̄&^0̄u* f̄ j50,
~4.63!

i.e.,

3Let us note that the vacuau0&^0u and u0̄&^0̄u belong to algebra-
ically distinct sectors of the star product algebra: the computatio

u0&^0u* u0̄&^0̄u leads to a divergency.
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u0̄&^0̄u5242Nexp 2~aaba2ãȧb̃ȧ1f if̄
i !. ~4.64!

In components,

G~b,ã,fux!5 (
m,n50

`

(
k50

N
1

m!n!k!
ga1•••an

ḃ1•••ḃm j 1••• j k~x!

3ba1
•••banã ḃ1

•••ã ḃm
f j 1

•••f j k
. ~4.65!

Analogously, one can consider the row representation
hu(m,nu8).

The dynamical equation for̂Cu is

d^Cu1^Cu* v050. ~4.66!

To impose the reality conditions let us define the invo
tion † by the relations

~aa!†5 i b̃ ȧ , ~ba!†5 i ã ȧ,

~ ãȧ!†5 iba , ~ b̃ȧ!†5 iaa , ~4.67!

~f i !
†5f̄ i , ~f̄ i !†5f i . ~4.68!

Since an involution is defined to reverse the order of prod
factors

~ f * g!†5g†* f † ~4.69!

and conjugate complex numbers

~m f !†5m̄ f †, mPC, ~4.70!

one can see that † leaves invariant the defining relations~1.5!
and~1.13! of the star product algebra and has the involut
property (†)25Id. By Eq. ~4.69! the action of † extends to
an arbitrary elementf of the star product algebra. Since th
star product we use corresponds to the totally~anti!symmet-
ric ~i.e., Weyl! ordering of the product factors, the result
simply

„f ~a,ã,b,b̃;f,f̄ !…†5 f r~ i b̃,ib,i ã,ia;f̄,f!, ~4.71!

wheref r implies reversal of the order of the Grassmann fa
torsf andf̄, i.e., f r5(21)n(n21)/2f if f is an order-n poly-
nomial inf andf̄. One can check directly with the formula
~1.4! and ~1.14! that Eq.~4.71! defines an involution of the
star product algebra.

Let us note that in the general case ofhu(m,nu8) the
involution † is defined by Eq.~4.67! along with the usual
Hermitian conjugation in the matrix sector. The colum
~4.55! is mapped to the appropriate conjugated row vecto

^Cu5„u0̄&^0̄u* Ēp~ ã,bux!, u0̄&^0̄u* Ōr~ ã,bux!….
~4.72!

The reality conditions on the elements of the higher s
algebra have to be imposed in a way consistent with the fo
of the zero-curvature equations~3.9!. This is equivalent to

of
6-12
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singling out a real form of the higher spin Lie superalgeb
With the help of any involution † this is achieved by impo
ing the reality conditions

f †52 i p( f ) f ~4.73!

@p( f )50 or 1#. This condition defines the real higher sp
algebrahu(m,nu2M ) for M pairs of oscillators. For the Clif-
ford realization of the matrix part one arrives at the re
algebrahu(2N21,2N21u8).

Let us stress that the condition~4.73! extracts a real form
of the Lie superalgebra built from the star product alge
but not of the associative star product algebra itself. T
situation is very much the same as for the Lie algebrau(n)
singled out from the complex Lie algebra ofn3n matrices
by the condition~4.73! (p50 for the purely bosonic case!
with † identified with the Hermitian conjugation. Anti
Hermitian matrices form the Lie algebra but not an asso
tive algebra. In fact, the relevance of the reality conditions
the form ~4.73! is closely related to this matrix example b
cause it guarantees that the spin 1~i.e., purely Yang-Mills!
part of the higher spin algebras is compact. More genera
these reality conditions guarantee that the higher spin s
metry admits appropriate unitary highest weight represe
tions ~see Sec. VI!. Note that in the sector of the conform
algebrasu(2,2) the reality condition~4.73! is equivalent to
~1.11!.

Now one observes that

~ u0&^0u!†5u0̄&^0̄u. ~4.74!

Imposing a reality condition analogous to Eq.~4.73! on the
conformal matter modules

~ uF&)†52 i p(F)^Cu ~4.75!

equivalent to

C†52 i p(C)G, ~4.76!

one finds by Eq. ~4.70! that the matter fields
ga1•••an

ḃ1•••ḃm j 1••• j k(x) are complex conjugated t

cb1•••bm
ȧ1•••ȧn j 1••• j k

(x) up to some sign factors originatin
from the factors ofi and the reversal of the order of Gras
mann factors in the definition of †@Eq. ~4.71!#. For example,
for the scalars we haveg(x)52 c̄(x), for the spin 1 field
strengths (gab )̄5cȧḃ , etc.

Let us note that the operatorNN is self-conjugate

NN
† 5NN . ~4.77!

As a result, ifuF& satisfies Eq.~4.40! the conjugated module
satisfies

^Cu* ~NN 2a!50 ~4.78!

with the same reala.
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D. Antiautomorphism reduction and self-conjugated
supermultiplets

The algebrashu(m,nu2p) were shown@25# to admit trun-
cations of the orthogonal and symplectic typesho(m,nu2p)
andhusp(m,nu2p) singled out by the appropriate antiaut
morphisms of the underlying associative algebra. Let us
call some definitions.

Let B be some algebra with the~not necessarily associa
tive! product lawL. A linear invertible mapt of B onto
itself is called automorphism ift(aLb)5t(a)Lt(b) ~i.e.,
t is an isomorphism of the algebra to itself!. A useful fact is
that the subset of elementsaPB satisfying

t~a!5a ~4.79!

spans a subalgebraBt,B. It is customary in physical appli-
cations to use this property to obtain reductions. In particu
applying the boson-fermion automorphism which chang
the sign of the fermion fields, one obtains reduction to
bosonic sector. Another example is provided by the opera
t(a)52at of the Lie algebragl(n) (t implies transposi-
tion!. The condition~4.79! then singles out the orthogona
subalgebrao(n),gl(n).

A linear invertible mapr of an algebra onto itself is called
antiautomorphism if it reverses the order of product facto

r~aLb!5r~b!Lr~a!. ~4.80!

One example is provided by the transposition of matric
More generally, letA5MatM(C) be the algebra ofM3M
matrices over the field of complex numbers, with eleme
ai

j ( i , j 51 –M ) and the product law

~a+b! i
j5ai

kb
k

j . ~4.81!

Let h i j be a nondegenerate bilinear form with the inver
h i j , i.e.,

h ikhk j5d j
i . ~4.82!

It is elementary to see that the mapping

rh~a! i
j5h ikal

kh l j ~4.83!

is an antiautomorphism ofMatM(C). If the bilinear formh i j

is either symmetric

hS
i j 5hS

ji ~4.84!

or antisymmetric

hA
i j 52hA

ji , ~4.85!

the antiautomorphismrh is involutive, i.e.,rh
25Id. One can

extend the action ofr to rows and columns in the standa
way by raising and lowering indices with the aid of the b
linear formh i j and its inverse.

The star product algebra admits the antiautomorphism
fined by the relations

r~aâ!5 ia â , r~bâ!5 ib â , ~4.86!
6-13
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r~f i !5f i , r~f̄ j !5f̄ j . ~4.87!

This definition is consistent with the property~4.80! and the
basis commutation relations~1.13! and~1.5!. For the generic
element of the star product algebra we have

r„f ~a,ã,b,b̃;f,f̄ !…5 f r~ ia,i ã,ib,i b̃;f,f̄ !. ~4.88!

Because the product law in a Lie superalgebra has defi
symmetry properties, any antiautomorphismr of an associa-
tive algebraA that respects theZ2 grading used to define th
Lie superalgebral A by Eq.~1.7! induces an automorphism o
tr of l A according to

tr~ f !52~ i !p( f )r~ f !. ~4.89!

As a result, any antiautomorphismr of the associative alge
braA allows one to single out a subalgebra ofl A by imposing
the condition~4.79!:

f 52~ i !p( f )r~ f !. ~4.90!

For example, forA5MatM(C), l A5glM(C). The subal-
gebras ofglM singled out by the condition~4.90! with tS5
2rS andtA52rA areo(M uC) andsp(M uC), respectively,
because the condition~4.90! just implies that the formh i j is
invariant. Note that analogously, one can define involutio
via nondegenerate Hermitian forms. If † is such an invo
tion of MatM(C) defined via a positive-definite Hermitia
form, the resulting Lie algebra isu(M ).

The algebrasho(m,nu2p) and husp(m,nu2p) @25# are
real Lie superalgebras satisfying the reality conditions~4.73!
and the reduction condition~4.90! with the antiautomor-
phismr defined by the relations~4.86! along with the defi-
nition ~4.83! for the action on the matrix indices with som
(m1n)3(m1n) bilinear formh i j that is block diagonal in
the basis~1.1! and is either symmetrich i j 5hS

i j or antisym-
metric h i j 5hA

i j . For hS
i j and hA

i j we arrive, respectively, a
the algebrasho(m,nu2p) andhusp(m,nu2p) with the spin 1
Yang-Mills subalgebraso(m) % o(n) and usp(m) % usp(n)
in the sector of elements independent of the spinor osc
tors.

For the particular case of the algebrahu(2N21,2N21u8)
with the Clifford star product realization of the matrix pa
the antiautomorphismr is defined in Eq.~4.87!. As argued in
@25# this antiautomorphism is diagonal in the basis~1.1! for
even N and off diagonal for oddN. To see this one can
check that the element

K5S I 0

0 2I D ~4.91!

identifies in terms of the Clifford algebra with the elementG
that is the product of all Clifford generating elements~in the
basis with the diagonal symmetric form in the defining Cl
ford relations! so thatG25I , $G,f i%50, $G,f̄ i%50. Then
one observes that

r~G!5~21!NG. ~4.92!
06600
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Therefore we confine ourselves to the case of evenN. In
fact, this case is most interesting because it admits the s
conjugated supermultiplets.4

Following the analysis of@25# one can check that the
algebras extracted by the condition~4.90! for N54p and
N54p12 are isomorphic to

ho~24p21,24p21u8! for N54p ~4.93!

and

husp~24p11,24p11u8! for N54p12. ~4.94!

In particular, forN52 andN54 we gethusp(2,2u8) and
ho(8,8u8), respectively. Let us stress that the elements of
su(2,2) algebra~1.10!, ~1.15!, ~1.16! all satisfy Eq.~4.90!
and, thus belong to the truncated superalgeb
ho(24p21,24p21u8) andhusp(24p11,24p11u8). The same is
true for the algebraosp(2N,8) spanned by various bilinear
of the superoscillators.

One observes that

r~NN!52NN . ~4.95!

This means that the reduction~4.90! is possible for the alge-
bras hua(2N21,2N21u8) if and only if a50. We call the
algebras resulting from the reduction ofhu0(2N21,2N21u8)
by the antiautomorphismr as ho0(24p21,24p21u8) for N
54p and husp0(24p11,24p11u8) for N54p12. The alge-
bra ho0(8,8u8) is the minimal higher spin conformal sym
metry algebra associated with the linearizedN54 Yang-
Mills supermultiplet, while the algebrahu(2,2u8) is the
minimal higher spin conformal algebra associated with
4D N52 massless hypermultiplet. The minimal pure
bosonic 4D conformal higher spin algebra associated w
the spin 0 4D massless scalar field isho0(1,0u8). This alge-
bra was recently discussed by Sezgin and Sundell@22# in the
context of the AdS5 higher spin gauge theory@these authors
denoted this algebrahs(2,2)]. Note that the higher spin
gauge algebra of AdS5 higher spin gauge theory dual to th
N54 Super Yang-Mills~SYM! theory isho0(8,8u8).

In the matter sector we define

r~ uF&)5r~C* u0&^0u!

5
1

N!
« j 1••• j Nu0̄&^0̄u* f j 1* •••* f j N* r~C!,

~4.96!

4Note that to maker diagonal for the case of oddN one can
modify its definition in a way that breaks thesu(N) algebra to at
leastsu(N21). To this end it is enough to modify Eq.~4.87! to

r(f1)5f̄1, r(f̄1)5f1, leaving the definition ofr for f j and f̄ j

with j .1 intact. This will bring an additional sign factor into Eq
~4.92!.
6-14
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r(^Cu!5r~ u0̄&^0̄u* G!

5
1

N!
« i 1••• iN r(G)* f̄ i 1* •••* f̄ iN* u0&^0u

~4.97!

to make Eq.~4.87! consistent with Eqs.~4.21! and ~4.63!.
Now we can impose the reduction condition on the ma
fields

r~ uF&)52 i p(F)^Cu, ~4.98!

which is consistent with Eq.~4.90!. Along with the fact that
^Cu describes the conjugated fields subject to the Hermiti
condition ~4.73! this imposes the reality conditions on th
left moduleuF&

r~ uF&)5~ uF&)†. ~4.99!

For the self-conjugated supermultiplets witha50 this
imposes the reality conditions on the fields of the same m
tiplet. In terms of components this implies that

c̄b1•••bmȧ1•••ȧn

j 1••• j k~x!

5
1

~N2k!!
« j 1••• j kiN2k••• i 1ca1•••anḃ1•••ḃm iN2k••• i 1

~x!.

~4.100!

In particular, for theN54 multiplet we have

c̄ab5
1

4!
« i jkl cȧḃ i jkl , ~4.101!

c̄a
i5

1

6
« i jkl cȧ jkl , ~4.102!

c̄i j 5
1

2
« i jkl ckl . ~4.103!

The resulting set indeed corresponds to the real 4DN54
~SYM! supermultiplet with six real scalars, four Majoran
spinors, and one spin 1 field strength.

The special property of the self-conjugated supermul
lets therefore is that the antiautomorphismr transforms them
to themselves. In other words, they are self-conjugated w
respect to the combined action of the conjugation † and
antiautomorphismr. The infinite-dimensional superalgebra
ho0(24p21,24p21u8) for N54p andhusp0(24p11,24p11u8)
for N54p12 are therefore shown to be algebras of conf
mal higher spin symmetries acting on the self-conjuga
supermultiplets. Finally, let us note that the whole constr
tion extends trivially to the case withn supermultiplets
described by the algebrashu(n2N21,n2N21u8) and
their further reductions ho(n2N21,n2N21u8),
husp(n2N21,n2N21u8) and hu0(n2N21,n2N21u8),
ho0(n24p21,n24p21u8), husp0(n24p11,n24p11u8) ~the lat-
ter algebras are assumed to be defined as before as the
tients of the centralizer ofNN).
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V. 4D CONFORMAL HIGHER SPIN SYMMETRIES

The system of equations~3.9!,~4.35! is invariant under the
infinite-dimensional local conformal higher spin symmetri
~3.10! and

duF&5e* uF&. ~5.1!

The reduction condition~4.98! reduces the higher spin alge
bra to the subalgebra~4.93! or ~4.94! with the symmetry
parameterse(a,b;f,f̄ux) satisfying the condition~4.90!.

Once a particular vacuum solutionv0 is fixed, the local
higher spin symmetry~5.1! breaks down to the global highe
spin symmetry~3.13!. Therefore the system~4.35! is invari-
ant under the infinite-dimensional algebrahu(2N21,2N21u8)
of the global 4D conformal higher spin symmetries

duF&5e0* uF&, ~5.2!

wheree0 satisfies Eq.~3.11! with the flat connection~3.17!.
After the higher components inC(ã,b,f̄ux) are expressed
via the higher space-time derivatives of the dynamical ma
less fields according to Eq.~4.38!, this implies invariance of
the 4D massless equations for all spins~4.20! under global
conformal higher spin symmetries. Thus, the fact that ma
less equations are reformulated in the form of the flatn
conditions ~4.35! supplemented with the zero-curvatu
equation~3.9! makes higher spin conformal symmetries
these equations manifest. Note that because of Eq.~4.38! and
the quantum-mechanical nonlocality of the star product~1.4!,
the higher degree ofe0(a,bux) as a polynomial ofa andb is,
the higher space-time derivatives appear in the transfor
tion law. This is a particular manifestation of the well know
fact that the higher spin symmetries mix higher derivativ
of the dynamical fields.

The explicit form of the transformations can be obtain
by the substitution of Eq.~4.38! into Eq.~5.2!. In practice, it
is most convenient to evaluate the higher spin conform
transformations for the generating parameter

j~a,ã,b,b̃,f,f̄;h,h̃, j , j̃ ,h,h̄ !

5j exp~haaa1h̃ȧãȧ1 j bbb1 j̃ ȧb̃ȧ1f i h̄
i1h if̄

i !,

~5.3!

wherej is an infinitesimal parameter. The polynomial sym
metry parameters can be obtained via differentiation
j(a,ã,b,b̃,f,f̄;h,h̃, j , j̃ ,h,h̄) with respect to the commut
ing ‘‘sources’’ ha, h̃ȧ j a , j̃ ȧ and anticommuting ‘‘sources’
h̄ i , h i . For the case of flat space, using Eqs.~3.13!,~3.19!
and the star product~1.4!, we obtain upon evaluation of el
ementary Gaussian integrals
6-15
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e0~a,ã,b,b̃,f,f̄;h,h̃, j , j̃ ,h,h̄ux!

5j exp~haaa1h̃ȧãȧ1 j bbb1 j̃ ȧb̃ȧ1f i h̄
i

1h if̄
i1 j axa

ḃb̃ḃ2aaxa
ḃh̄ḃ!. ~5.4!

Substitution ofe0 into Eq. ~5.2! gives the global higher spin
conformal symmetry transformations induced by the para
eter ~5.3!:

duF~ ã,b,f̄ux!&5dC~ ã,b,f̄ux!* u0&^0u, ~5.5!

where

dC~ ã,b,f̄ux!

5j expS h̃ȧãȧ1 j bbb1h if̄
i

2 j axa
ḃh̃ḃ2

1

2
j̃ ȧh̃ȧ1

1

2
j aha2

1

2
h i h̄

i D
3C~ ãȧ2 j̃ ȧ2 j bxb

ȧ ,ba1ha2xa
ḃh̃ḃ,f̄ i2h̄ i ux!.

~5.6!

Such a compact form of the higher spin conformal transf
mations is a result of the reformulation of the dynamic
equations in the unfolded form of the covariant constan
conditions, i.e., in terms of a flat section of the Fock fib
bundle. Differentiating with respect to the sources one
rives explicit expressions for the particular global higher s
conformal transformations.

For at most quadratic conformal supergenerators acting
C(ã,b,f̄ux) one obtains with the help of Eq.~4.38!

Pa
ḃ5

]

]xa
ḃ

, Pn5sn
aḃPaḃ5

]

]xn
, ~5.7!

D511xn
]

]xn
1

1

2 S ãȧ

]

]ãȧ

1ba
]

]baD , ~5.8!

K ȧ
b5ãȧbb2x ḋ

b
ãȧ

]

]ãḋ

2xg
ȧ

]

]bg
bb2xg

ȧx ḋ
b ]

]x ḋ
g ,

~5.9!

La
b5bb

]

]ba
1xb

ȧ

]

]xa
ȧ

2
1

2
da

bS bg
]

]bg
1xg

ȧ

]

]xg
ȧ
D ,

~5.10!

L̄ ȧ
ḃ52ãȧ

]

]ãḃ

2xg
ȧ

]

]xg
ḃ

1
1

2
dȧ

ḃS ãḋ

]

]ãḋ

1xg
ḋ

]

]xḋ
gD ,

~5.11!

Tj
i5

1

2
d i

j2f̄ j
]

]f̄ i
, ~5.12!
06600
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Qa
i5f̄ i

]

]ba
, ~5.13!

Qȧ
i5f̄ iS ãȧ2xb

ȧ

]

]bbD , ~5.14!

Q̄i
a5

]

]f̄ i S ba2xa
ḃ

]

]ãḃ
D , ~5.15!

Q̄i
ȧ52

]

]f̄ i

]

]ãȧ

. ~5.16!

Here thex-independent supercharges~5.13! and ~5.16! cor-
respond toQ supersymmetry while thex-dependent super
charges~5.14! and ~5.15! correspond toS-supersymmetry.

F is a module over the algebraosp(2N,8) which, to-
gether with theu(1) algebra generated by the unit element
the star product algebra, forms a maximal finite-dimensio
subalgebra of the higher spin algebrahu(2N21,2N21u8).
Equation~4.35! contains the equations for all supermulti
lets. Theosp(2N,8) invariance links together all free 4D
conformal supermultiplets. The explicit transformation law
derived from Eq.~5.6! are

Uab5
]2

]ba]bb
, ~5.17!

Uaḃ5S ãḃ2xg
ḃ

]

]bgD ]

]ba
, ~5.18!

U ȧḃ5S ãȧ2xg
ȧ

]

]bgD S ãḃ2xa
ḃ

]

]baD , ~5.19!

Vȧḃ5
]2

]ãȧ]ãḃ

, ~5.20!

Vaȧ52S ba2xa
ḃ

]

]ãḃ
D ]

]ãȧ

, ~5.21!

Vab5S ba2xa
ȧ

]

]ãȧ
D S bb2xb

ḃ

]

]ãḃ
D , ~5.22!
6-16
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Ui j 5
]2

]f̄ i]f̄ j
, Ui j 5f̄ if̄ j , ~5.23!

Ra i5
]2

]ba]f̄ i
, ~5.24!

Rȧ i5S ãȧ2xg
ȧ

]

]bgD ]

]f̄ i
, ~5.25!

Ra i5S ba2xa
ḃ

]

]ãḃ
D f̄ i , ~5.26!

Rȧ i52
]

]ãȧ

f̄ i . ~5.27!

To obtain the variationdC(ã,b,f̄ux), one has to apply
these generators toC(ã,b,f̄ux). Application of the formulas
~4.36! and~4.37! to dC(ã,b,f̄ux) then gives the variation o
the particular dynamical higher spin fields. The rule is th
whenever the second derivative (]2/]ba]ãȧ)(C) appears, it
has to be replaced by the space-time derivative]n according
to Eq. ~4.38!. As a result, a parameter of the higher sp
conformal transformatione(a,b;f,f̄ux) polynomial in ã
and b generates a local transformation of a dynamical fi
with a finite number of derivatives. In particular, the usu
su(2,2;N) conformal transformations and their extension
the osp(2N,8) transformations contain at most the fir
space-time derivatives of the dynamical fields. Th
osp(2N,8) is shown to act by local transformations on t
massless fields of all spins in four dimensions. Th
osp(2N,8) must act on the 4D massless fields was emp
sized by Fronsdal@30#. The reformulation of the higher spi
dynamics in terms of the flat sections of the Fock fib
bundle allows us to derive simple and manifestly local e
plicit formulas ~5.17!–~5.27!.

Analogously, one can derive from Eq.~5.6! the transfor-
mation laws for the higher spin gauge symmetries associ
with the whole infinite-dimensional superalgeb
hu(2N21,2N21u8). Note that the specific form of the depe
dence on the space-time coordinatesx

ḃ

a
originates from the

choice of the gauge function~3.19!. The approach we use i
applicable to any other coordinate system and conform
flat background~for example, AdS4). Also, let us note that it
is straightforward to realizeosp(L,8) supersymmetry with
oddL by starting with the Clifford algebra with an odd num
ber of generating elements. The reason we mostly focuse
the caseL52N was that we started withsu(2,2;N ). For
general L the maximal conformal embedding
su(2,2;1/2@L#),osp(L,8).

VI. UNFOLDED FIELD THEORY AND QUANTIZATION

The formulation of the higher spin dynamics proposed
this paper operates in terms of the Fock moduleF over
su(2,2) induced from the vacuum~4.22!. This Fock module
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is analogous to the Fock moduleSoversu(2,2) that contains
all irreducible 4D massless unitary representations of
conformal algebra called doubletons in@19#. In fact, S is the
so-called singleton module oversp(8) that decomposes into
irreducible doubleton modules oversu(2,2). The difference
is that thesp(8) singleton moduleS is unitary while the
Fock moduleF is not. That there exists a mapping betwe
the doubleton and field-theoretical representations of
conformal ~or AdS! algebra was originally shown in@66#.
The goal of this section is to demonstrate that, analogousl
the 3D case considered in@14#, in our approach the duality
between the two pictures has the simple interpretation o
certain Bogolyubov transform. Remarkably, this form of d
ality is coordinate independent. The coordinate depende
results from the gauge choice~3.12! that fixes a particular
form of the background gravitational field.

That the module~4.32! is nonunitary is obvious from the
fact that, as a result of the Lorentz invariance of the vacu
u0&^0u, the set of component fields~4.33! decomposes into
the infinite sum of finite-dimensional representations of
noncompact 4D Lorentz algebrao(3,1). ~Recall that non-
compact semisimple Lie algebras do not admit fini
dimensional unitary representations.! Also, this is in agree-
ment with the fact that the conjugated vacuumu0̄&^0̄u @Eq.
~4.64!# is different fromu0&^0u.

The unitary Fock moduleS over sp(8).su(2,2) is built
in terms of the oscillators

@enA ,emB#* 50, @ f A
n , f B

m#* 50, @enA , f B
m#* 5dn

mkAB ,

~6.1!

where m,n51,2; A,B51,2, and k1151, k22521, k12
5k2150. The oscillators obey the Hermiticity conditions

~enA!†5 f A
n . ~6.2!

The unitary Fock vacuumu0u&^0uu is defined as

en1* u0u&^0uu50, f m
2* u0u&^0uu50, u0u&^0uu* f 1

n50,

u0u&^0uu* em250. ~6.3!

The compact subalgebrau(2)% u(2) of u(2,2) is spanned by

tAn
m5eAn f A

m ~A51,2 no summation overA!. ~6.4!

Noncompact generators ofsu(2,2) are

tm
2n5e1m f 2

n , tm
1n5e2m f 1

n . ~6.5!

~Recall that we use the Weyl star product notation, i.e.,
bilinears listed above are elements of the star product a
bra.! The superextension is trivially achieved by requiring

f i* u0u&^0uu50, u0u&^0uu* f̄ j50. ~6.6!
6-17
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The relationship between the two sets of oscillators is

e1,15
1

A2
~a11 i ã 2̇!, e2,15

1

A2
~ ã1̇1 ia2!,

e1,25
1

A2
~a12 i ã 2̇!, e2,25

1

A2
~ ã1̇2 ia2!,

~6.7!

f 1
1 5

1

A2
~b21 i b̃ 1̇!, f 1

2 5
1

A2
~ b̃2̇1 ib1!,

f 2
1 5

1

A2
~2b21 i b̃ 1̇!, f 2

2 5
1

A2
~2b̃2̇1 ib1!.

~6.8!

The unitary Fock vacuum is realized in terms of the s
product algebra~1.4! as

u0u&^0uu5242Nexp 2~2e1n f 1
n2e2n f 2

n1f if̄
i !. ~6.9!

The unitary left and right Fock modulesS and S̄ built from
the vacuumu0u&^0uu are identified with the direct sum of a
superdoubleton representations ofsu(2,2) and their conju-
gates. As in the nonunitary case, the irreducible compon
are singled out by the condition~4.40!. In the unitary basis,
N0 has the form

N05enAf n
BkAB. ~6.10!

The Fock spaceS forms a unitary module oversp(8) called
a singleton. It contains two irreducible components span
by even and odd functions, respectively.

The dependence on the space-time coordinates of th
ements of the fielduF(x)& is determined completely by Eq
~4.35! in terms of its value at any fixed pointx0. This means
that the moduleuF(x0)& contains the complete informatio
on the on-mass-shell dynamics of the 4D conformal fiel
Analogously, the doubleton module contains complete in
mation on the~on-mass-shell! quantum states of the corre
sponding free field theory. Let us note that the two types
module have different gradations associated with the res
tive definitions of the creation and annihilation oscillators.
the unitary case the gradation is induced by the AdS ene
operator which, together with the maximal compact subal
bra, spans the grade zero subalgebra. In the field-theore
case the gradation is induced by theo(1,1) dilatation genera-
tor, which together with the Lorentz algebra spans the~non-
compact! grade zero subalgebra.

We conclude that there is a natural duality between
field-theoretical moduleF used in the unfolded formulation
of the conformal dynamics and the unitary moduleS. This
duality has the simple form of the Bogolyubov transfor
~6.7!,~6.8!. As a result, although unitary inequivalent, th
module associated with the classical and quantum pict
become equivalent upon complexification. The import
consequence of this fact is that the values of the Cas
operators of the symmetry algebras in the two pictures c
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cide. Indeed, the values of the Casimir operators in the c
responding irreducible representations@e.g., ofsp(8) in F or
S] are determined by the fact of the realization of the alg
bras in terms of oscillators rather than the particular con
tions ~6.3! or ~4.21! on the vacuum state. The duality ma
between the field-theoretical picture and the unitary pict
is essentially the quantization procedure. The two modu
are unitary inequivalent because the respective classe
functions associated with solutions of the field equations
different. We believe that this phenomenon is quite gene
i.e., the unfolded reformulation of dynamical systems in t
form of some flatness~i.e., covariant constancy and/or zer
curvature! conditions will make the duality between the cla
sical and quantum descriptions of the dynamical syste
manifest for the general case. Hopefully, the Bogolyub
transform duality between the classical and quantum fi
theory descriptions can eventually shed some more light
the nature of quantization and the origin of quantum mech
ics.

The classical-quantum duality of the unfolded formulati
of field-theoretical equations allows a simple criterion for t
compatibility of a field-theoretical system with consiste
quantization; namely, if a nonunitary module that appears
the unfolded description of some classical dynamics admi
dual unitary module with the same number of states~i.e.,
generated with the same number of oscillators! we interpret
this as an indication that the dynamical system under con
eration admits a consistent quantization. Since every
namical system admits some unfolded formulation, this p
vides us with a rather general criterion. Moreover, th
technique can be used in the opposite direction to de
field-theoretical differential equations compatible with un
tarity such as those associated with the cohomology gr
H1(s2) of the unfolded systems that admit consistent qu
tization. We now apply this idea to the derivation of th
compatible with unitaritysp(2M ) invariant equations in
generalized space-times.

VII. CONFORMAL DYNAMICS IN osp„L ,2M …

SUPERSPACE

The unfolded formulation of the field-theoretical dynam
cal systems allows one to extend the equations to supers
and spaces with additional coordinates in a rather straight
ward way. In this section we apply this formalism to the 4
N-extended superspace and to superspaces with ‘‘ce
charge coordinates’’ in four and higher dimensions. As a
sult, we shall be able to formulate appropriate equations
motion in the generalized~super!spaces. The manifes
Bogolyubov transform duality between the field-theoretic
picture and the singleton pictures will guarantee that the p
posed equations in generalized space-times correspond t
unitary quantum picture.

The main idea is simple. In Sec. IV we showed that t
dynamics of 4D free massless fields is described in term
the generating functionuF(ã,b,f̄ux)& satisfying Eq.~4.35!.
Equation ~4.35! can be interpreted in two ways. Thes2

picture used in Sec. II implies that Eq.~4.35! imposes Eqs.
~4.20! associated with the first cohomology groupH1(s2)
on the dynamical fields associated with the cohomolo
6-18
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group H0(s2). All other ~auxiliary! components in
uF(ã,b,f̄ux)& are expressed via space-time derivatives
the dynamical fields by virtue of Eq.~4.39!. The d picture
used in Sec. IV B implies that Eq.~4.35! allows one to re-
construct thex dependence ofuF(ã,b,f̄ux)& in terms of the
‘‘initial data’’ uF(ã,b,f̄ux0)& taken at some particular poin
of space-timex0. Thed picture is local.

Suppose now that we have a manifoldM p,q with a larger
set of p even andq odd coordinatesXA that contains the
original 4D coordinatesxn as a subset, i.e.,XA5(xn,yn),
whereyn are additional coordinates. Letd̂ be the de Rahm
differential onM p,q:

d̂5dXA
]

]XA
5dxn

]

]xn
1dyn

]

]yn
, d̂250, ~7.1!

and v̂0 be a zero-curvature connection in the~appropriate
fiber bundle over! M p,q:

v̂0~a,b,f,f̄uX!5dXAv̂0 A~a,b,f,f̄uX!,

dv̂05v̂0* `v̂0 , ~7.2!

such that its pullback to the original 4D space-timeM4

equals the 4D connectionv0, i.e.,

v̂0 n~a,b,f,f̄uX!5v0n~a,b,f,f̄ux!. ~7.3!

Replacing the 4D equation~4.35! with

d̂uF&2v̂0* uF&50, uF&5uF~ ã,b,f̄ux,y!&, ~7.4!

one observes that the extended system is formally consis
while its restriction toM4 coincides with the original system
~4.35!. As a result, it turns out that the system~7.4! is equiva-
lent to the original 4D system~4.35! at least locally in the
additional coordinates. Indeed, as is obvious in thed̂ picture,
the equations in~7.4! different from those in~4.35! just re-
construct the dependence ofuF(ã,b,f̄ux,y)& on the addi-
tional coordinatesyn of the 4D field uF(ã,b,f̄ux,y0)& for
somey0 ~e.g., y050). Let us note that to link the globa
symmetries associated with the Lie superalgebra in whichv̂0
takes its values to the symmetries of the extended sp
M p,q, one has to find such an extension of the space-t
that a frame field in the generalized space-time is invertib
In the s2 picture this means that the cohomology gro
Hr(s2) is small enough. An important example of the a
plication of the proposed scheme is the usual superspace
additional simplification here is due to the fact that the e
tension along supercoordinates is always global because
perfields are polynomial in the odd coordinates.

The extension of the unfolded dynamical equations d
cussed in this section has some similarity to the ‘‘gro
manifold approach’’ developed in the context of supersy
metry and supergravity~see@67# and references therein!. As
we shall see, the maximal natural extension of the space-
corresponds to the situation when coordinates of the
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tended space are associated with all generators of the g
Lie superalgebra that underlies the unfolded formulation.

A. Superspace

As a useful illustration let us embed the 4D dynamics
massless fields into superspace. We introduce anticommu
coordinatesu i

a and ū
ḃ

j
associated with theQ supersymmetry

supergeneratorsQa
i andQ̄j

ḃ , so thatX5(x,u,ū) ~to simplify
formulas, in the rest of this section we shall not distingu
between the underlined and fiber indices!. The vacuum con-
nection one-form satisfying the zero-curvature equation~3.9!
can be chosen in the form

v̂05S dxa
ḃ1

1

2
@~11g!du i

aūḃ
i
1~12g!dū ḃ

i
u i

a# Daab̃ ḃ

1dū ḃ
i
b̃ḃf i1du i

aaaf̄ i , ~7.5!

whereg is an arbitrary parameter. Spinor differentialsdu i
a

and dū ḃ
i are required to commute with each other but an

commute with dxa
ḃ , f i , f̄ i , and the supercoordinate

ua
i ,ū ḃ

j . v̂0 admits the pure gauge representationv̂05
2g21* dg, with the gauge functiong of the form

g5exp2F S xa
ḃ1

1

2
gua

i ū ḃ
i Daab̃ ḃ1 ū ḃ

i
b̃ḃf i1u i

aaaf̄ i G .
~7.6!

The dependence on the supercoordinates is reconstructe
the formula~4.57! in terms of the initial data fixed at an
point in superspace.

The superfield equations of motion have the form~7.4!.
The superspace formulation, however, does not have the
composition~2.8!. Instead it has theZ3Z grading

~ d̂1s221s201s02!uF&50 ~7.7!

associated separately with the elementsaa andb̃ḃ. This does
not affect the interpretation of the dynamical superfields
representatives of the zeroth cohomology gro
H0(s22 ,s20 ,s02) with the cohomologies ofs20 ands02

computed on the subspace ofs22 closed 0-forms on which
s20 ands02 anticommute to zero. As a result, the dynam
cal superfields can be identified withuF(0,b,0uX)& and with
the field uF(ã,0,f̄uX)& of maximal degreeN in f̄. Thus, as
expected, the free field dynamics is described by gen
superfields carrying external dotted or undotted spinor in
ces~contracted withba or ãḃ) that characterize the spin o
the supermultiplet. Superfields of this type were used in@68#
for the description of on-mass-shell massless supermultip
in terms of field strengths. To extend our formalism to t
off-mass-shell description of massless supermultip
@69,70# one has to introduce higher spin superconnection

The cohomological identification of the dynamical supe
space equations is less straightforward, however, in view
6-19
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Eq. ~7.7!, although the main idea is still the same: the sup
space equations are identified with the null vectors of
operators221s201s02 . One complication might be tha
as is typical for the superspace approach, it may not alw
be possible to distinguish between dynamical equations
constraints in the absence of a clears2 cohomological in-
terpretation of the dynamical equations. We hope to co
back to the analysis of this interesting issue elsewhere.

B. sp„2M … covariant space-time

As shown in Sec. V, the set of 4D conformal equations
all spins is invariant under thesp(8) symmetry that extend
the 4D conformal symmetrysu(2,2). This raises the problem
of an appropriate extension of the space-time that would
low sp(8) symmetry in a natural way. The question of po
sible extensions of the space-time beyond the traditio
Minkowski-Riemann extension to higher dimension has b
addressed by many authors~see, e.g.,@30,38–52#!. In par-
ticular, a very interesting option comes from the Jordan
gebras@39,40#. However, to the best of our knowledge, n
dynamical analysis of possible equations has been don
far. One important and difficult issue to be addressed in s
an analysis is whether the proposed equations give ris
consistent quantum mechanics, and, in particular, allow
to get rid of negative norm states.

More specifically, the analysis ofsp(8) invariant ex-
tended space-time was originally undertaken by Fronsda
@30# just in the context of a unified description of 4D mas
less higher spins. It was argued in@30# that the simplest
appropriate extension of the usual space-time is a cer
sp(8) invariant ten-dimensional space. As shown in this s
tion, our approach leads to the same conclusion. The
result will consist of the formulation of local covariant fie
equations compatible with unitarity in this generalized spa

The unfolded formulation of the dynamical equations
the form of covariant constancy conditions is ideal for t
analysis of this kind of question for several reasons.

It allows one to define an appropriately extended spa
time in a natural way via the~locally equivalent! extension
of the known conformal 4D equations of motion.

It suggests that the resulting equations are compat
with unitarity once there is Bogolyubov transform duali
with some unitary module.

Starting from the infinite unfolded system ofsp(8) in-
variant equations of motion~7.4! we identify the finite sys-
tem of sp(8) invariant dynamical differential equations a
the s2 cohomologyH1(s2). Being equivalent to the origi-
nal 4D conformal unfolded system of equations, the result
sp(8) invariant differential equations inherit all its properti
such as symmetries and compatibility with unitarity.

The approach we use is applicable to any alge
sp(2M ). We therefore consider the general case. In this s
section we suppress the dependence on the Clifford elem
f̄ i andf j which are inert in our consideration of the pure
bosonic space. They will play a role in the superspace c
sideration of the next subsection.

Let us introduce the oscillators
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@aâ ,bb̂#* 5dâ
b̂ , @aâ ,ab̂#* 50, @bâ,bb̂#* 50.

~7.8!

We still use the Weyl star product~1.4! for the oscillatorsaâ

andbb̂ instead ofaâ andbb̂ but now we allow the indicesâ
andb̂ to range from 1 toM whereM is an arbitrary positive
integer. @The normalization factor in Eq.~1.4! has to be
changed appropriately:p8→p2M.]

The generators ofsp(2M ) are spanned by various bilin
ears built from the oscillatorsaâ andbb̂:

Tâ
b̂5aâbb̂, Pâb̂5aâab̂ , K âb̂5bâbb̂. ~7.9!

We interpret the generatorsPâb̂ andK âb̂ assp(2M ) ‘‘trans-
lations’’ and ‘‘special conformal transformations,’’ respe
tively. Thegl(M ) generatorsTâ

b̂ decompose into thesl(M )
‘‘Lorentz’’ and o(1,1) ‘‘dilatation’’ generators

L â
b̂5aâbb̂2

1

M
dâ

b̂aĝbĝ, ~7.10!

D5
1

2
aâbâ. ~7.11!

Note thatD is the gradation operator

@D,Pâb̂#* 52Pâb̂ , @D,K âb̂#* 5K âb̂, @D,L â
b̂#* 50.

~7.12!

Pâb̂ andK âb̂ generate Abelian subalgebras

@K âb̂ ,K ĝ d̂#* 50, @Pâb̂ ,Pĝ d̂#* 50. ~7.13!

Together withsp(2M ) ‘‘Lorentz rotations,’’sp(2M ) ‘‘trans-
lations’’ span thesp(2M ) ‘‘Poincarésubalgebra’’

@L â
b̂ ,Pĝ d̂#* 52dĝ

b̂
Pâd̂2dd̂

b̂
Pâĝ1

2

M
dâ

b̂
Pĝ d̂ . ~7.14!

Analogously,

@L â
b̂ ,K ĝ d̂#* 5dâ

ĝ
K b̂d̂1dâ

d̂
K b̂ĝ2

2

M
dâ

b̂
K ĝ d̂. ~7.15!

The superextension toosp(1,2M ) is achieved by adding
the supergenerators

Qâ5aâ , Sb̂5bb̂. ~7.16!

According to Eq.~7.9!, we have

Tâ
b̂[L â

b̂1
1

M
dâ

b̂
D5

1

2
$Qâ ,Sb̂%* , ~7.17!

Pâb̂5
1

2
$Qâ ,Qb̂%* , K âb̂5

1

2
$Sâ,Sb̂%. ~7.18!
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To compare with the 4D case, let us note that the ope
torsbâ andaâ are to be identified with the pairsãȧ ,bb and
aa , b̃ḃ, respectively. The 4D notation used so far was c
venient in thesu(2,2) framework because of the simple for
of the operatorN0 singling outsu(2,2) as its centralizer in
sp(8). Since N0 does not play a role in the manifest
sp(2M ) invariant setting, it is now more convenient to ha
a simple form of the gradation operatorD.

The Hermiticity conditions are introduced via the invol
tion † as in Sec. IV C with

aâ
†
5 iC â

b̂ab̂ , ~bâ!†5 iC b̂
âbb̂ , ~7.19!

whereCâ
b̂ is some real involutive matrix~i.e., C25Id). In

particular, one can fixCâ
b̂5dâ

b̂ that makes all thesp(2M )
generators manifestly real. For evenM we shall sometimes
use another form ofCâ

b̂ analogous to the 4D decompositio
of a real four-component Majorana spinor into two pairs
mutually conjugated complex two-component spino
namely, we decomposeaâ andbb̂ into two pairs of mutually
conjugated oscillatorsaa , ā ȧ and ba, b̄ ȧ with a,ȧ
51 –M /2.

By analogy with the usual Minkowski space-time we i
troduce 1

2 M (M11) coordinatesXâI b̂I 5Xb̂I âI , the de Rahm
differential

d̂5dXâI b̂I
]

]XâI b̂I
, d̂250, ~7.20!

and the flat frame

v̂05dXâI b̂I hâI b̂I
âb̂aâab̂ , ~7.21!

wherehâI b̂I
âb̂ is some constant nondegenerate matrix so t

d̂v̂050. ~7.22!

For example, one can set

hâI b̂I
âb̂5

1

2
~dâ

âdb̂
b̂1dâ

b̂db̂
â!. ~7.23!

v̂0 satisfies the zero-curvature equation

d̂v̂05v̂0`* v̂0 ~7.24!

because thesp(2M ) translations are commutative an
therefore, v̂0`* v̂050. The pure gauge representatio
~3.12! for v̂0 is given by

g5exp2XâI b̂I hâI b̂I
âb̂aâab̂ . ~7.25!

For Eq.~7.23! we get

g5exp2Xâb̂aâab̂ . ~7.26!
06600
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In terms of dotted and undotted indices~for even M ),
there areM2/4 Hermitian coordinatesXaḃ and M (M12)/4
coordinates parametrized by the complex matrixXab and its
complex conjugateXȧḃ. For M52 our approach is equiva
lent to the standard treatment of the 3D conformal the
with the conformal symmetrysp(4);o(3,2). HereXâb̂ pa-
rametrize the three real coordinates. Therefore the 3D
proach of@14# was equivalent to a particularM52 case of
the generalsp(2M ) invariant approach. For the case
sp(8) ~i.e., M54), Xaḃ identify with the usual space-time
coordinatesxaḃ while Xab and Xȧḃ parametrize six addi-
tional real coordinatesyn. Altogether we have ten-
dimensional extended space in accordance with the prop
of Fronsdal@30#.

Let us now introduce the left Fock module

uF~buX!&5C~buX!* u0&^0u ~7.27!

with the vacuum state

u0&^0u5exp22aâbâ, ~7.28!

satisfying

aâ* u0&^0u50, u0&^0u* bâ50, d̂~ u0&^0u!50.
~7.29!

The sp(2M ) unfolded equation is

~ d̂2v̂0!* uF~buX!&50. ~7.30!

It is sp(2M ) @in fact,osp(1,2M )] invariant according to the
general analysis of Sec. III. Moreover, this equation has
infinite-dimensional higher spin symmetryhu(1,1u2M ).

The duality with the unitary singleton module ove

sp(2M ) in the basis with the real matrixCâ
b̂5dâ

b̂
@Eq.

~7.19!# is achieved by the Bogolyubov transform

gâ
2

5
1

A2
~aâ1 ibâ!, g1â5

i

A2
~aâ2 ibâ!, ~7.31!

@gâ
2 ,g1b̂#* 5dâ

b̂ , ~g1â!†5gâ
2 . ~7.32!

The unitary vacuum

u0u&^0uu5exp22gâ
2

g1â ~7.33!

satisfies

gâ
2

* u0u&^0uu50, u0u&^0uu* g1â50. ~7.34!

As a result of this duality, Eq.~7.30! is expected to admit
consistent quantization.

Equation~7.30! has the form

S ]

]Xâb̂
2

]2

]bâ]bb̂D C~buX!50. ~7.35!
6-21
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For the particular case ofsp(8), in the sector of ordinary
coordinatesXaḃ it reduces to the 4D conformal higher sp
equations~4.35!. Equation~7.35! has the form~2.8! with

s252dXâb̂
]2

]bâ]bb̂
, s150, D5d̂. ~7.36!

Its content can therefore be analyzed in terms of thes2

cohomology. The cohomology groupH0(s2) is param-
etrized by the solutions of the equations2„C(b,X)…50
which consist of a scalar functionc(X) and a linear function
câ(X)bâ. These are the dynamical fields of thesp(2M )
setup. We shall callsp(2M ) vectorscâ(X) ‘‘svectors’’ to
distinguish them from the vectors of the Minkowski spac
time. Svectors are fermions~i.e., anticommuting fields tha
are spinors with respect to the usual space-time symm
algebras!. The scalar and svector form an irreducible sup
multiplet of osp(1,2M ) dual to its unitary supersingleto
representation.

We see that the number of dynamical fields in thesp(8)
invariant generalized space is much smaller than in the s
dard 4D approach. Instead of the infinite set of 4D mass
fields of all spins we are left with only twosp(8) fields,
namely, the scalarc(X) and svectorcâ(X) that form an ir-
reducible supermultiplet ofosp(1,8). From this perspective
the situation in all generalizedsp(2M ) invariant symplectic
spaces is analogous to that of the 3D model of@14# contain-
ing the massless scalar and spinor as the only 3D confo
fields. The 4D fields now appear in the expansion of
scalar and svector in powers of the extra six coordinates

c~X!5(
m,n

c~x!a1b1•••anbn ,ȧ1ḃ1•••ȧmḃm

3Xa1b1
•••XanbnXȧ1ḃ1

•••Xȧmḃm, ~7.37!

cĝ~X!5(
m,n

c~x!ĝ a1b1•••anbn ,ȧ1ḃ1•••ȧmḃm

3Xa1b1
•••XanbnXȧ1ḃ1

•••Xȧmḃm, ~7.38!

wherexaḃ5Xaḃ are the 4D coordinates. It has been argu
by Fronsdal@30# that such an expansion is appropriate
the description of the set of all 4D massless fields. Anot
important point discussed in@30# was that the analytic ex
pansions in the extra coordinates in Eqs.~7.37! and ~7.38!
are complete in generalized symplectic spaces. Once th
true, the local equivalence of Eq.~7.30! to the original 4D
system extends to the full~global! equivalence.

For sp(2M ) with M.4 the interpretation in terms of th
Minkowski picture is less straightforward because the se
Hermitian coordinatesXaḃ becomes larger than the usual s
of Minkowski coordinates. To this end one has to identify t
usual coordinates with the appropriate projection ofXaḃ with
the gamma matricesGaḃ

n that is possible forM52p. It is not
at all clear, however, how important it is to describesp(2M )
invariant phenomena in terms of Minkowski geometry b
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yond d54. From this perspective, it looks as if the usu
Minkowskian supergravity and superstring models in high
dimensions might be some very specific reductions of
new class of models in generalizedsp(2M ) invariant space-
times underlying the~generalized beyondd54) higher spin
dynamics.

Note that, geometrically, the generalized space-time c
sidered in this section is the coset spacePM /SLM , whereP
is theSp(2M ) analogue of the Poincare´ group with the gen-
eratorsL â

b̂ andPâb̂ while SLM is theSp(2M ) analogue´ of
the Lorentz algebra with the generatorsL â

b̂ isomorphic to
slM(R). Thesp(2M ) conformal transformations of the gen
eralized symplectic space-time are realized by the follow
vector fields:

Pâb̂5
]

]Xâb̂
, ~7.39!

Tâ
b̂52Xb̂ĝ

]

]Xâĝ
, ~7.40!

K âb̂54XâĝXb̂ĥ
]

]Xĝĥ
. ~7.41!

To derive the independent equations on the dynam
conformal fieldsc(X) and câ(X) in the sp(2M ) invariant
conformal space, the cohomology groupH1(s2) has to be
studied fors2 of the form ~7.36!. An elementary exercise
with Young diagrams shows thatH1(s2) is parametrized by
one-forms that are either linear or bilinear in the oscillato

dXâI b̂I hâI b̂I
âb̂~F âb̂,ĝbĝ1Bâb̂,ĝ d̂bĝbd̂!, ~7.42!

where F âb̂,ĝ has the symmetry properties of the three-c
hook diagram, i.e.,

F âb̂,ĝ1F âĝ,b̂1F b̂ĝ,â50, F âb̂,ĝ5F b̂â,ĝ , ~7.43!

while Bâb̂ ,ĝ d̂ has the symmetry properties of the four-ce
square diagram, i.e., it is symmetric within each pair of
dicesâ,b̂ and ĝ,d̂ and vanishes upon symmetrization ov
any three indices,

Bâb̂,ĝ d̂1Bâĝ,b̂d̂1Bb̂ĝ,âd̂50. ~7.44!

Note that the trivial cohomology class ofH1(s2) is param-
etrized by totally symmetric~i.e., one-row! diagrams of ar-
bitrary length.

This structure ofH1(s2) implies that the only nontrivial
differential equations on the dynamical fieldsc(X) and
câ(X) hidden in the infinite system of equations~7.30! are

S ]2

]Xâb̂]Xĝ d̂
2

]2

]Xâĝ]Xb̂d̂D c~X!50 ~7.45!

for the sp(2M ) scalar and
6-22
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]

]Xâb̂
cĝ~X!2

]

]Xâĝ
cb̂~X!50 ~7.46!

for the sp(2M ) svector. Equations~7.45! and~7.46! are dy-
namically equivalent to the system of equations~7.30! and
therefore inherit all symmetries of the latter. Note that
agreement with the analysis of@14#, because antisymmetri
zation of any two-component indicesâ and b̂ is equivalent
to their contraction witheab, for the case of 3D conforma
dynamics, Eqs.~7.45! and~7.46! coincide with the 3D mass
less Klein-Gordon and Dirac equations, respectively. Fr
the 4D perspective the meaning of Eqs.~7.45! and ~7.46! is
twofold. They imply that the expansions~7.37! and ~7.38!
contain only totally symmetric multispinors and that the l
ter satisfy the 4D massless equations.

The infinitesimal global symmetry transformation th
leaves Eqs.~7.45! and ~7.46! invariant is given by the for-
mula~5.2! with the global symmetry parametere0 ~3.13!. Let
us choose the symmetry generating parameter in Eq.~3.13!
in the form

j~a,b;h, j !5j exp~hâaâ1 j b̂bb̂!, ~7.47!

wherej is an infinitesimal parameter. The polynomial sym
metry parameters can be obtained via differentiation
j(a,b;h, j ) with respect to the commuting ‘‘sources’’hâ and
j â . Using Eqs.~3.13!, ~5.2! and the star product~1.4! we
obtain upon evaluation of the elementary Gaussian integ

e0~a,b;h, j uX!5j exp~hâaâ1 j b̂bb̂12Xâb̂ j âab̂!. ~7.48!

Substitution ofe0 into Eq. ~5.2! gives the global higher spin
conformal symmetry transformations induced by the para
eterj ~5.3!

duF~b,uX!&5dC~buX!* u0&^0u, ~7.49!

where

dC~buX!5j expS j b̂bb̂1
1

2
j b̂hb̂1Xâb̂ j â j b̂D

3C~bĝ1hĝ12Xĝ d̂ j d̂uX!. ~7.50!

Differentiating with respect to the sources one derives
plicit expressions for the particular global higher spin co
formal transformations.

The physical fields are

c~X!5C~0uX!, câ~X!5
]

]bâ
C~buX!ub50 . ~7.51!

All higher derivatives with respect tobâ are expressed via
the derivatives inXâb̂ by the equation~7.35!. For example,
for c(X) we obtain
06600
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dc~X!5j expS 1

2
j b̂hb̂1Xâb̂ j â j b̂DC~hĝ12Xĝ d̂ j d̂uX!.

~7.52!

For at most quadratic supergenerators ofosp(1,2M ) act-
ing on C(buX) one finds

Pâb̂5
]

]Xâb̂
, ~7.53!

Tâ
b̂5

1

2
dâ

b̂
1bb̂

]

]bâ
12Xb̂ĝ

]

]Xâĝ
, ~7.54!

K âb̂5bâbb̂12Xâb̂14XâĝXb̂ĥ
]

]Xĝĥ

12Xâĝbb̂
]

]bĝ
12Xb̂ĝbâ

]

]bĝ
, ~7.55!

Qâ5
]

]bâ
, ~7.56!

Sâ5bâ12Xâb̂
]

]bb̂
. ~7.57!

From here one derives in particular that the fieldsc(X) and
câ(X) form a supermultiplet with respect to theQ supersym-
metry transformation

dc~x!5«âcâ~x!, dcâ~x!5«b̂
]

]Xâb̂
c~x!, ~7.58!

where«â is anX-independent global supersymmetry para
eter. TheS supersymmetry with a constant superparame
«â has the form

dc~x!52«âXâb̂cb̂~X!,

dcâ~X!52«ĝXĝb̂
]

]Xb̂ â̂
c~X!. ~7.59!

Note that the~symplectic! conformal transformations of the
scalar field are described by the transformations~7.53!–
~7.55! at bb̂50. The T and K transformation law of the
svector câ gets additional ‘‘spin’’ terms from the
b-dependent part of the generators.

The slM generalized Lorentz transformations with th
traceless infinitesimal parameter«b̂

â, «â
â50 act as follows:

d lorc~X!52«b̂
âXb̂ĝ

]

]Xâĝ
c~X!, ~7.60!

d lorcâ~X!52«b̂
d̂Xb̂ĝ

]

]Xd̂ ĝ
câ~X!1«â

b̂cb̂~X!. ~7.61!
6-23
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The dilatation transformations associated with the trace
D5 1

2 Tâ
â are

ddilc~X!5«Xâĝ
]

]Xâĝ
c~X!1

M

4
c~X!, ~7.62!

ddilcâ~X!5«Xb̂ĝ
]

]Xb̂ĝ
câ~X!1S M

4
1

1

2
D câ~X!. ~7.63!

Since Eqs.~7.45! and~7.46! are derived from an unfolded
system that admits a dual unitary formulation, they are
pected to admit consistent quantization. In a separate pu
cation @71#, where the equations in generalized space-tim
are studied within the traditional field theoretical approa
we show that they indeed admit a consistent quantizatio
nontrivial question for the future is the nature of a Lagran
ian formulation that might lead to Eqs.~7.45! and~7.46!. It is
clear that in order to solve this problem some auxiliary fie
have to be introduced in analogy with the Pauli-Fierz p
gram @72# for the usual higher spin fields.

C. osp„L ,2M … superspace

To describeosp(2N,2M ) we reintroduce the Clifford el-
ementsf i andf̄ j and add the bosonic generators~1.16! and
~1.21! along with the supergenerators

Qâ
i
5aâf̄ i , Qâ i5aâf i . ~7.64!

Sâ
i5bâf̄ i , Sâ i5bâf i . ~7.65!

In particular, the following anticommutation relations a
true:

$Qâ
i ,Qb̂ j%5d j

i Pâb̂ , $Qâ i ,Qb̂ j%50, $Qâ
i ,Qb̂

j
%50,

~7.66!

$Sâ i ,Sj
b̂%5d j

i K âb̂, $Sâ i ,Sb̂ j%50, $Si
â ,Sj

b̂%50.
~7.67!

We introduce the Grassmann odd coordinatesu i
â anduâ i and

differentialsdu i
â and duâ i associated with theQ supergen-

erators. It is convenient to define the differentialsdu i
â and

duâ i to commute with each other but anticommute w

dXâb̂ and the Grassmann coordinatesu i
â anduâ i .

The vacuum 0-form is defined as

v̂05S dXâb̂1
1

2
@~11g!duâ iu i

b̂1~12g!du i
âub̂ i # D Pâb̂

1duâ iQâ i1du i
âQâ

i . ~7.68!

The gauge function analogous to Eq.~7.65! is
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g5exp2F S Xâ b̂1
1

2
guâ

iu
b̂ i Daâab̂

1ub̂ iab̂f i1uâ
iaâf̄ i G . ~7.69!

The left Fock module uF(b,f̄uX,u)& satisfies the
osp(2N,2M ) supersymmetric equations

~ d̂2v̂0!uF~b,f̄uX,u!&50. ~7.70!

Let us note that these formulas are trivially generalized
the case ofosp(L,2M ) with odd L by writing

Qâ
i
5aâc i , Sj b̂5bâc j ~7.71!

with

$c i ,c j%* 5d i j ~7.72!

so that

$Qâ
i ,Qb̂

j
%5d i j Pâb̂ , $Sâ i ,Sb̂ j%5d i j K âb̂, ~7.73!

and

v̂05S dXâb̂1
1

2
du i

âub̂ i D Pâb̂1du i
âQâ

i , ~7.74!

g5exp2~Xâ b̂aâab̂1u i
b̂ab̂c i !. ~7.75!

Equation~7.70! still makes sense with the only comme
that the Fock vacuum has to be defined in such a way th
is annihilated by the1

2 (L21) annihilation Clifford elements
and is an eigenvector of the central elementc1•••cL.

D. Higher spin „super…space

One can further extend the base manifold description
the osp(L,2M ) conformal dynamics by introducing th
higher spin coordinatesXâ1•••â2n and Grassmann odd supe

coordinatesu i
â1•••â2n11 associated with the mutually com

muting higher spin generators

Pâ1 . . . â2n
5aâ1

•••aâ2n
~7.76!

and supercharges

Qi
â1•••â2n11

5c iaâ1
•••aâ2n11

,

$c i ,c j%* 5d i j , ~7.77!

which satisfy the higher spin super-Poincare´ algebra with the
nonzero relationships

$Qi
â1•••â2n11

,Qj
b̂1•••b̂2m11

%5d i j Pâ1 . . . â2n11b̂1•••b̂2m11
.

~7.78!

The zero-curvature vacuum one-form is
6-24
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v̂05(
n

S 1

~2n!!
dXâ1•••â2nPâ1 . . . â2n

1
1

~2n11!!
du i

â1•••â2n11Qâ1•••â2n11

i D
1

1

2 (
q,p

1

~2p11!! ~2q11!!
Pâ1•••â2p11b̂1•••b̂2q11

3du i
â1•••â2p11u i b̂1 . . . b̂2q11. ~7.79!

Let us note that the higher spin~super!coordinates intro-
duced here are to some extent reminiscent of the 4D hig
spin coordinates discussed in@52#, although the particular
realization is different. Unfolded equations of the form~7.70!
reconstruct the dependence on the higher spin coordinat
terms of the~usual! space-time derivatives of the massle
higher spin fields. In principle, one can extend the formali
to the maximal case in which every element of the infini
dimensional higher spin algebra@say, hu(m,nu2M )] has a
coordinate counterpart. This is analogous to a description
the group manifold. Let us note that any further extens
would imply a degenerate frame field and, therefore, d
not lead to interesting equations. Equations with fewer co
dinates corresponding to reductions to some coset space
possible, however. Let us note that the unfolded formulat
in these smaller spaces is reminiscent of the group mani
approach@67#.

VIII. WORLD LINE PARTICLE INTERPRETATION

Free field equations of motion in the unfolded form adm
a natural interpretation in terms of a world line particle d
namics. The free field equation~4.35! is interpreted as an
invariance condition

Q0uF&50 ~8.1!

with a Becchi-Rouet-Stora-Tyutin~BRST! operator built
from some first class constraints. The zero-curvature co
tion ~3.9! takes the form

Q0
250. ~8.2!

To make contact with some world line particle dynamics o
has to find a world line model that gives rise to an opera
Q0 associated with the unfolded equations under consi
ation. Usually it is a simple exercise.

The literature on world line~super!particle dynamics ap-
pearing after the classical work@73–76# is enormous. The
twistor reformulation was initiated in@77,78# and further de-
veloped in @79–83,47,60#. The idea that additional~often
called central charge! coordinates have to be introduced
extend the twistor approach beyond four dimensions was
ploited in @47–50,84,85#.

Thesp(2M ) invariant equation~7.35! can be obtained a
a result of quantization of the following Lagrangian:
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L5Ẋâb̂aâab̂1aâḃâ, ~8.3!

where the overdot denotes the derivative with respect to
world line parameter. Indeed, the primary constraints are

05xâb̂5pâb̂2aâab̂ ~8.4!

and

05xâ5pâ2aâ , 05xâ5pâ, ~8.5!

wherepâb̂ , pâ , andpâ are momenta conjugated toXâb̂,
bâ, and aâ , respectively. The constraints~8.5! are second
class. It is elementary to compute the corresponding D
brackets. The only important fact, however, is that within t
set of variablesXâb̂, pâb̂ , bâ, andpâ the Dirac brackets
coincide with the Poisson ones,

$Xâb̂,pĝd̂%5
1

2
~dĝ

âdd̂
b̂
1dĝ

b̂dd̂
â
!, $bâ,pb̂%5db̂

â . ~8.6!

This allows one to get rid of the variablesaâ and pâ by
expressing them in terms ofXâb̂, pâb̂ , bâ, andpâ with the
help of the second-class constraints~8.5!. The leftover con-
straints~8.4! acquire the form

005xâb̂5pâb̂2pâpb̂ , ~8.7!

and are obviously first class. Interpreting the space-time
ferentials as ghost fieldscâb̂ one arrives at the BRST opera
tor

Q5câb̂~pâb̂2pâpb̂! ~8.8!

which, upon quantization, reproduces Eqs.~7.35! in the form
~8.1!.

The superextension is straightforward:

L5Ẋâb̂aâab̂1aâḃâ2f̄ iḟ i

1 u̇ â i S aâf i1
1

2
~11g!u i

b̂aâab̂D
1 u̇̄ i

âS aâf̄ i1
1

2
~12g!ub̂ iaâab̂D . ~8.9!

~The variablesub̂ i , f i , and f̄ i are anticommuting and ar
assumed to have symmetric Poisson brackets$,% with their
momenta.! Excluding by virtue of the second class co
straints the variablesaâ , their conjugated momentapâ, and
the fermionic variablesf i with their conjugated momenta
one is left with the conjugated pairs of variables (Xâb̂, pâb̂),
6-25
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(bâ, pâ), (uâ i , pâ i) (u i
â , pâ

i ), and (f̄ i , p i) and the first
class constraints~8.7! along with

xâ i5pâ i2S aâp i1
1

2
~11g!u i

b̂pâpb̂D ,

xâ
i
5pâ

i
2S aâf̄ i1

1

2
~12g!ub̂ ipâpb̂D . ~8.10!

Altogether, these first class constraints form a supersym
try algebra with the only nonzero relation

$xâ i ,xb̂
j
%5d i

jxâb̂ . ~8.11!

Quantum-mechanical models containing ‘‘central charg
coordinates associated with symplectic algebras, analog
to the coordinatesXâb̂, were considered in@49,50,86#. How-
ever, to the best of our knowledge, the particular Lagrangi
were different from those proposed above.

Analogously, one can consider the model with the L
grangian
c

il

m
ic
th

se

in

it
S

rm

06600
e-

’’
us

s

-

L5Ẋaḃaaaḃ1aaḃa1ā ȧḃ̄ ȧ2f̄ iḟ i

1 u̇a i S aaf i1
1

2
~11g!u i

ḃaaāḃD
1 u̇̄ i

ȧS f̄ i ā ȧ1
1

2
~12g!ub i ā ȧabD ~8.12!

~hopefully, the overdotted indices cause no confusion w
the world line parameter derivative!. In the 4D case this
model gives rise to the 4D conformal equations of motion
Sec. IV A. The 4D Lagrangian~8.12! with g50 was intro-
duced in@47# and was then shown to give rise to the ma
less equations in@60# @more precisely, the Lagrangians o
@47,60# contained additional constraints giving rise to t
irreducibility condition ~4.40!#. The important difference
from many other world line twistor Lagrangians is that n
twistor relationship between the space-time coordinates
spinor variables is imposed; instead they are regarded a
dependent dynamical variables.

The generalization to the higher spin coordinates is
scribed by the Lagrangian
L5(
n

1

~2n!!
Ẋâ1•••â2naâ1

•••aâ2n
1aâḃâ2f̄ iḟ i1(

n

1

~2n11!!
~ u̇ i â1•••â2n11f iaâ1

•••aâ2n11

1 u̇ i
â1•••a2n11f̄ iaâ1

•••aâ2n11
!1

1

2 (
q,p

1

~2p11!! ~2q11!!
aâ1

•••aâ2p11
ab̂1

•••ab̂2q11

3@~11g!u̇ i â1•••â2p11u i
b̂1 . . . b̂2q111~12g!u̇ i

â1•••â2p11u i b̂1•••b̂2q11#. ~8.13!
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All world line particle Lagrangians discussed in this se
tion have the general form

L5ẊAv̂0A~a,b,f,f̄uX!1aâḃâ2f̄ iḟ i , ~8.14!

whereXA denotes the whole set of supercoordinates wh
dXAv̂0A(a,b,f,f̄uX)5v̂0(a,b,f,f̄uX) is some vacuum
one-form satisfying the zero-curvature equation~3.9!. Let us
stress that Eq.~3.9! is supposed to be true in the quantu
regime, i.e., with respect to the star product. In the class
approximation, the star product has to be replaced by
Poisson~in fact, Dirac! brackets, which usually makes sen
for the BRST interpretation~8.2! of the vacuum condition
~3.9! but not necessarily for the dynamical field equations
the essentially ‘‘quantum’’ form~8.1!.

The constraints have the form

xA5
]

]XA
2v0A~X!. ~8.15!

They are first class as a consequence of the flatness cond
~3.9!. We see that this construction indeed leads to the BR
realization of the linearized unfolded dynamics in the fo
~8.1!, ~8.2!.
-

e

al
e

ion
T

The Lagrangian~8.14! is universal in the sense that
gives rise to unfolded equations of the conformal higher s
fields interpreted as first class constraints independently

the particular form of the vacuum one-formv̂0 once it sat-

isfies the zero-curvature equation~3.9!. The ambiguity inv̂0

parametrizes the ambiguity in the choice of a particular
ometry and/or coordinate system. For the particular cas
conformal algebra, any conformally flat geometry is ava
able. For example, AdS4 geometry is described by th
vacuum one-form~3.15!. Note that it is well known that the
zero-curvature~5 left invariant Cartan! forms play the key
role in the formulation of the~super!particle and brane dy-
namics because they possess the necessary global sy
tries @namely, the symmetries~3.11!#. The fact thatv̂0 satis-
fies the zero-curvature condition guarantees that
Lagrangian~8.14! has the necessary local symmetries~i.e.,
first class constraints!. Note that some examples of the zer
curvature one-forms ofosp(1,2n) are given in@86#.

Applying the Stokes theorem and using the zero-curvat
condition for v̂0, the particle action~8.14! can be rewritten
in topological string form as an integral over a tw
dimensional surface bounded by a particle trajectory and
rametrized bys l :
6-26
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S5E
S2F v̂0~a,b,f,f̄uX!* `v̂0~a,b,f,f̄uX!

1daâ`dbâ2df̄ i`df i

1S daâ

]

]aâ

1dbâ
]

]bâ
1df i

]

]f i
1df̄ i

]

]f̄ i D
`v̂0~a,b,f,f̄uX!G , ~8.16!

where

v̂0~a,b,f,f̄uX!5ds l
]XA

]s l
v̂0 A~a,b,f,f̄uX!, ~8.17!

daa5ds l
]aa

]s l
, dba5ds l

]ba

]s l
,

df i5ds l
]f i

]s l
, df̄ i5ds l

]f̄ i

]s l
.

~8.18!

Keeping in mind that the theory of higher spin gau
fields is expected to be related to a symmetric phase of
superstring theory, let us speculate that this topological
tion can be related to superstring actions in the framewor
some perturbative expansion relevant to the usual string
ture, which, however, breaks down the manifestly topolo
cal form of the whole action defined in the generalized tar
superspace.

Note that the action~8.16! can be rewritten as

S5E
S2

@w0~a,b,f,f̄uX!* `w0~a,b,f,f̄uX!#, ~8.19!

where

w05v01dbâaâ2daâbâ1df if̄
i2f idf̄ i ~8.20!

with the convention that the star product in Eq.~8.19! acts on
the components of the differential formw0 but not on the
differentialsdaâ , dbâ, df i , anddf̄ i .

A few comments are now in order.
It is important that the ‘‘quantization’’ is performed i

such a way that equations like~7.35! contain differential
rather than multiplication operators. This allows one to e
press all higher order polynomials in the twistor variables
higher space-time derivatives of the physical fields. Note t
the ‘‘coordinate’’ and ‘‘momentum’’ representations are n
equivalent in the framework of nonunitary modules under
ing ~classical! field theory dynamics. One way to see this
to observe that the dualization~Fourier transform! that inter-
changes twistors with their conjugate momenta interchan
the translationsPâb̂ and the special conformal transform
tions K âb̂.
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The conversion procedure applied in@50# to get rid of the
complicated second class constraints in a particle-t
twistor model based on theosp(2,8) superalgebra led to firs
class constraints analogous to Eqs.~8.7! and ~8.10! modulo
exchange of the twistor variables with their momenta. It w
concluded in@50# that the space of quantum states of th
model consists of the massless fields of all spins~every spin
appears in two copies!, i.e., it is identical to the spectrum o
massless higher spin fields associated with the simplesN
52 supersymmetric conformal higher spin algeb
hu(1,1;8). Since the approach of@50# was insensitive to the
difference between the twistor variables and their mome
the one-to-one correspondence between the spectrum o
massless higher spin excitations found in@50# and in this
paper is not accidental.

Beyond the linearized approximation the world lin
quantum-mechanical interpretation of the unfolded dynam
becomes less straightforward. Indeed, the interaction p
lem consists of searching for a consistent deformation
Eqs.~8.1! and~8.2! with nonlinear contributions to Eqs.~8.1!
and ~8.2! both from the dynamical gauge fieldsv5v0
1••• and from the ‘‘matter sector’’uF&. The modification
due to the gauge fields admits interpretation in terms o
connection in the linear fiber bundle with the moduleF of
quantum statesuF& as a fiber. The terms nonlinear inuF&
can, however, hardly be interpreted in the usual quantu
mechanical framework that respects the superposition p
ciple. By relaxing the superposition principle, one arrives
the standard setting of free differential algebras~2.1!, sug-
gested originally in@54# for analysis of the higher spin prob
lem. The world line particle models can be useful for a s
ond quantized description of nonlinear higher spin dynam
in form analogous to the open string field theory function
of Witten @87#

S5^F̄uQAuF&1S3, ~8.21!

whereA is some insertion needed to make the quadratic p
well defined andS3 is the interaction part to be determine

IX. AdSÕCFT CORRESPONDENCE

The classical result of Flato and Fronsdal@88# states that
the tensor product of two singleton representations ofsp(4)
amounts to the direct sum of all unitary representations
sp(4) associated with the massless fields of all spins
AdS4. Once the unfolded formulation of massless dynam
exhibits Bogolyubov duality with the unitary representation
there must be some field-theoretical dual version of
Flato-Fronsdal theorem. This was confirmed by analysis
the boundary current and bulk gauge field representation
@89#. It was also observed in@14# that for the 3D conformal
theory there is one-to-one correspondence between the te
product of 3D boundary fields and the set of AdS4 bulk
higher spin gauge fields~and, therefore, conserved high
spin currents of@13#!. This statement is supposed to unde
the AdS4 /CFT3 duality in the framework of higher spin
theories.
6-27
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An AdS5 analog of the Flato-Fronsdal theorem sugge
@90,35# that the double tensor products of the doubleton r
resentations contain all massless unitary representation
the AdS5 algebrao(4,2);su(2,2). It is interesting to find a
field-theoretical counterpart of this statement.

Consider first the self-conjugated massless supermu
lets with a50. The corresponding conformal higher sp
gauge symmetry algebrahu0(2N21,2N21u8) was argued in
Sec. IV D to be spanned by the elements of the star prod
algebra ~i.e., polynomials of oscillators! that commute to
NN , are identified moduloNN , and satisfy the reality con
dition ~4.73!. On the other hand, the elements of the ten
product of the space of states satisfying~4.40! with its con-
jugate

E125uF1& ^ ^F̄2u ~9.1!

automatically satisfy these condition as a consequence o
~4.40!:

@NN ,E12#* 50, NN* E1250. ~9.2!

Also, it is consistent with the conditions~4.73!, ~4.90! after
appropriate specification of the action of the involution a
antiautomorphism on the tensor product symbol to comp
sate the insertions of the products of elementsf i or f̄ j in
Eqs.~4.96!, ~4.97!.

The 4D conformal higher spin algebra
hu0(2N21,2N21u8) ~being isomorphic to AdS5 higher spin
algebras! and their further orthogonal or symplectic subalg
bras can be identified with the~sub!algebras of endomor
phisms of the moduleF0 spanned by the states satisfying E
~4.40! at a50. Discarding the~sometimes important! nor-
malizability issues, it is a matter of basis choice to real
this algebra in terms of either elements~9.1! or polynomials
of the star product algebra.5 Therefore, the tensor product o
the 4D matter multiplets has the same structure as the A5
higher spin algebrahu0(2N21,2N21u8) in which 5D higher
spin gauge fields~equivalently, conserved currents@13#! take
their values. This fact provides the field-theoretical coun
part of the statement on the structure of the tensor prod
of the unitary doubleton representations of@90,35#. The non-
self-conjugated case is analogous except that the redu
condition ~4.90! is inconsistent with the eigenvaluesaÞ0
and, therefore, the subalgebras of symplectic and orthog
types allowed for the self-conjugated case are not allow
for aÞ0. Note that it is also possible to relax the conditi
~4.90! in the self-conjugated case, that effectively leads
doubling of the self-conjugated multiplets.

5Note that the action of the operator~9.1! in F0 is described by an
infinite matrix having at most a finite number of nonzero elemen
while the polynomial elements of the star product algebra have
Jacobi form with an infinite number of nonzero elements but
most a finite number of nonzero diagonals. This means that a p
nomial in the star product algebra is described by an infinite sum
the basis~9.1!.
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Thus, the higher spin AdS/CFT correspondence sugg
that the AdS5 higher spin algebra associated with the boun
ary self-conjugated matter supermultiplets is one of the s
algebras~4.93! or ~4.94!. From the AdS5 bulk perspective
only the purely bosonic caseN50 has been analyzed so fa
at the level of cubic Lagrangian interactions@23#. This analy-
sis matches the consideration of the present paper sin
was shown in@23# that the AdS5 higher spin gauge fields
associated with the algebrashu0(1,0u8) andho0(1,0u8) al-
low consistent cubic interactions. In a forthcoming pap
@24# we shall show that the same is true for theN51 super-
symmetric case. In both of these cases the situation is r
tively simple because the corresponding AdS5 higher spin
gauge fields correspond to the totally symmetric~spinor! ten-
sor representations of AdS5 algebra. The gauge field forma
ism for description of these fields suitable for the higher s
gauge problem in any dimension was elaborated in@57,26#.
As shown in the recent publication@22# ~see also@23#! for
the bosonic case and in@91# for the fermionic case, the set
of gauge fields associated with theN50 and N51 AdS5

higher spin algebras are just what is expected from the
spective of the approach of@57,26#; namely, the infinite-
dimensional higher spin algebras decompose under the
joint action of the AdS5 subalgebrao(4,2);su(2,2) into an
infinite sum of finite-dimensional representations associa
with various two-row tensors or spinor tensors ofo(4,2)
@23,91#.

Starting fromN52 representations ofo(4,2) with three
rows appear, however. The simplest way to see this is
observe that, for increasingN, the restriction@NN , f #* 50
on the types of representations ofsu(2,2) contained in the

star product elementf (a,b;f,f̄) becomes less and less r
strictive, rather imposing some relationships between
types ofsu(2,2) tensors andu(N) tensors in the supermul
tiplet. One can see that three-row diagrams ofso(4,2) appear
whenever the number of oscillatorsa andb in f can differ by
2, which is possible starting fromN>2. As a result, theN
>2 AdS5 higher spin gauge theories based on the algeb
hu0(2N21,2N21u8) and their further reductions will contai
some mixed symmetry gauge fields. Because the 5D m
less little Wigner algebra iso(3), in 5D flatspace such fields
are equivalent to the usual totally symmetric higher s
fields. This is not true, however, in the AdS5 space where the
systematics of the massless fields is different from the
one @92#. In particular, to every two-row Young diagram o
the maximal compact algebraso(4);su(2)% su(2) corre-
sponds a particular AdS5 massless field. In the flat limit suc
fields decompose into a number of flat space massless fi
each equivalent~dual! to some totally symmetric field in the
flat space. So far, no systematic approach to the mixed s
metry higher spin fields in the AdS space has been elabor
in the covariant approach underlying the unfolded dynam
although considerable progress in the flat space was achi
in @93,94#. To extend the results of@23,24# to N>2 it is first
of all necessary to develop a gauge formulation of the hig
spin fields carrying mixed symmetry representations of
AdS algebraso(d21,2). This problem is now unde
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investigation.6

It is tempting to speculate that, once the two-row mix
symmetry higher spin AdS5 fields are included, the conditio
that the elements of the higher spin algebra have to comm
with NN can be relaxed and~symplectic! AdS5 dual versions
of theosp(2N,8) conformal boundary models might be co
structed. These models are expected to contain all type
gauge~massless! fields in AdS5 having one of the algebra
hu(n,mu8), ho(n,mu8), orhusp(n,mu8) as the gauge alge
bra. In that case we arrive at the remarkable possibility t
the generalizedsp(8) AdS5 /CFT4 correspondence will re
late the bulk model that describes AdS5 massless fields of al
spins ~types! to the boundary conformal model describin
4D conformal massless fields of all spins. This is t
AdS5 /CFT4 analogue of the Flato-Fronsdal theorem relat
the AdS5 massless fields to the tensor product of thesp(8)
~super!singletons. Once such a generalization is really p
sible, it will lead to surprising conclusions on the higher sp
AdS/CFT correspondence which, in fact, would imply spa
time dimension democracy.

Indeed, the following extension of the Flato-Fronsd
theorem is likely to take place

Sosp(L,2M ) ^ Sosp(L,2M )5(
s

mosp(L,2M )
0 s 5Sosp(2L,4M ) ,

~9.3!

whereSosp(L,2M ) denotes the~super!singleton representatio
of osp(L,2M ) while mosp(L,2M )

0 s denotes all massless unita
representations ofosp(L,2M ) characterized by the spin pa
rameterss. The chain of identities can be continued to t
left provided thatL andM are even. ForL52q andM52p

the chain continues down to the case ofsp(2) or sp(4) with
the appropriate truncations in the Clifford sector associa
with L if necessary~say, by singling out the bosonic or fe
mionic constituents of some of the supersingletons!. Since
the tensor product of the representations is associated
the bilinear currents built from the boundary fields, the co
clusion is that the generalized~symplectic! higher dimen-
sional models are expected to be dual to the nonlinear ef
tive theories built from the lowest dimensional~higher spin!
models.

The equalitySosp(L,2M ) ^ Sosp(L,2M )5Sosp(2L,4M ) is obvi-
ous because the supersingletonS of Sosp(L,2M ) is the Fock
module generated byL fermionic and 2M bosonic oscilla-
tors. By definition, its tensor square is the Fock module g
erated by two sorts of the same oscillators which is equ
lent to the supersingleton module ofSosp(2L,4M ) . The fact
that Sosp(2L,4M ) is equivalent to the sum of all massless re
resentations ofosp(L,2M ) is less trivial. It is in agreemen
with the definition of masslessness given by Gu¨naydin in
@90,35#. However, to make this definition consistent with t
property that massless fields~except for the scalar an
spinor! are gauge fields, it is necessary@98,92,99# to prove
that the unitary representations corresponding to the ga

6Note that after the original version of this paper was sent
hep-th some progress in this direction was achieved in@95–97#.
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massless higher spin fields are at the boundary of the un
ity region of the modules ofosp(L,2M ), thus being associ-
ated with certain singular vectors, decoupling of which ma
fests the gauge symmetry.7

As conjectured in@11,12#, the higher spin AdS/CFT cor
respondence is expected to correspond to the limitg2n→0,
wheren is the number of boundary conformal supermulti
lets andg is the boundary coupling constant. An interesti
related question is whether the free 4D boundary theo
discussed in this paper admit nonlinear deformations p
serving the infinite-dimensional higher spin symmetr
hu(2N21,2N21u8) ~or some of their deformations!. Let us
argue that, most probably, these symmetries are broken
interactions to lower symmetries.8 One argument is based o
knowledge@7,8# of the full nonlinear higher spin dynamic
in d54.

The 4D conformal system analyzed in Sec. IV describe
set of 4D massless fields of all spins which decomposes
irreducible representations ofsp(8). From @6,7# it is known
that such sets of massless fields admit consistent interac
in AdS4 but not in flat space. The interactions are introduc
in terms of higher spin potentials rather than in terms of
~higher spin! Weyl tensors discussed in this paper. Th
breaks down the usual 4D conformal symmetry. The bre
ing of the conformal symmetry is expected to be of the sp
taneous type via the vacuum expectation values of cer
auxiliary fields needed to provide consistent higher spin
namics. This results in CFTd→AdSd deformation with re-
spect to thed-dimensional coupling constantg2;Lkd22,
whereL andk are the cosmological constant and the gra
tational constant, respectively. Let us note that by AdSd we
assume a universal covering of anti–de Sitter space-time~or
an appropriate symplectic generalization discussed belo!,
which, although being curved, is topologicallyRd. Note that
since the AdSd geometry is conformally flat it should b
possible to have AdS/CFT correspondence with the bound
CFT theory formulated in the AdS space-time rather than

o

7Let us note that beyond the AdS3 and AdS4 cases in which the
symplectic and orthogonal tracks are equivalent, the concep
masslessness may be different for, say, symplectic AdSM ~i.e., sym-
plectic bulk! and orthogonal AdSd ~i.e., the usual bulk! theories. For
the symplectic algebrasosp(L,2p), which contain the~maximally
embedded! AdS subalgebraso(2p,2) or o(2p11,2), the values of
the lowest energies compatible with unitarity are expected to
higher than the lowest energies of the lowest weight unitary rep
sentations of their AdSd subalgebras.~I am grateful to R. Metsaev
for a useful discussion of this point.! In fact, there is nothing specia
in this phenomenon, which would just signal that the extra symp
tic dimensions play a real role. Very much the same story happ
for the usual AdSd algebraso(d21,2): the lowest energies o
o(d21,2) are higher than those of its lower-dimensional subal
bra o(d22,2) @98,99#. Let us note that, from this perspective
Günaydin’s identification@90# of the massless representations
AdS algebras with those that belong to the tensor product of
singleton and doubleton representations is likely to be true for
symplectic track rather than for the usual AdSd one.

8I am grateful to E. Witten for a stimulating discussion of th
issue.
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the Minkowski one.~To the best of our knowledge this tech
nically more involved possibility has so far not been inve
tigated.! As a result, in the framework of higher spin gau
theories, AdS2M/AdSM correspondence is likely to replac
the usual AdS/CFT correspondence.@Abusing notation, we
use the notation AdSM for the generalized space-time ide
tified below with Sp(M ).] Perhaps the breakdown of th
conformal higher spin symmetries down to the AdS high
spin symmetries can be understood as a result of the con
mal anomaly arising in the process of approaching confor
infinity @100#. Also, let us note that since the AdS/CFT co
respondence refers to the conformal boundary of the b
space a possible argument against the infinite chain of A
CFT dualities~1.19! based on the fact that the boundary o
boundary is zero is avoided just because the full confor
symmetry is expected to be broken.

The formulation of the full nonlinear 4D higher spin dy
namics of@7# provides us with some hints on the character
the breaking of the ‘‘conformal’’sp(2M ) by interactions.
The full nonlinear formulation of the 4D higher spin dynam
ics was given in terms of the star product algebra with ei
spinor generating elements. In other words, the construc
of @7# has explicit localhu(1,1u8) symmetry@extension to
hu(n,mu8) is trivial by considering matrix versions of th
model along the lines of@25## and, in particular,sp(8) as its
finite-dimensional subalgebra. These local symmetries
broken by the vacuum expectation values of the auxili
fields calledS to hu(1,1u4)% hu(1,1u4) containingsp(4)
% sp(4). ~The doubling is due to the Klein operators.! The
lesson is that the higher spin interactions break the confor
hu(n,mu2M ) symmetry tohu(n8,m8uM ) ~for M even!.

This conclusion fits the analysis of the embedding of
generalized AdS algebra into the conformal alge
sp(2M ). Indeed, to embed the usual AdSd algebra o(d
21,2) into thed-dimensional conformal algebrao(d,2) one
identifies the AdSd translations with a mixture of the trans
lations and special conformal transformations in the con
mal algebra PAdSd

a 5Pd con f
a 1l2Kd con f

a . Commutators of

such defined AdSd translations close tod-dimensional Lor-
entz transformationsLab. PAdS

a andLab form the AdSd alge-
brao(d21,2),o(d,2) @cf. Eq. ~3.15! for the particular case
of AdS4]. This embedding breaks down the explicito(1,1)
dilatational covariance because it mixes the operatorsPa and
Ka, which have different scaling dimensions.

Let us now analyze the analogous embedding of a ge
alized AdS subalgebra into the conformal algebrasp(2M ) in
1
2 M (M11)-dimensional generalized space-time. Since
want to keep the dimension of the generalized space-t
intact, the generators of AdS translations have to be of
form Pâb̂

AdS
5Pâb̂1l2hâb̂ ĝd̂K ĝ d̂ with some bilinear form

hâb̂ ĝd̂ . To allow embedding of the generalized AdS sup
algebra into the conformal superalgebra with the AdS sup
charges being a mixture of theQ andS supercharges of the
conformal algebra, i.e.,Qâ

AdS
5Qâ1lVb̂âSb̂, hâb̂ĝd̂ has to

have a factorized form, i.e.,

Pâb̂
AdS

5Pâb̂1l2VâĝVb̂d̂K ĝ d̂, ~9.4!
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with some antisymmetric bilinear formVâb̂ . We requireVâb̂
to be nondegenerate, which assumes thatM is even~for the
case of oddM the resulting generalized AdS algebra is n
semisimple!. The commutator of such defined generaliz
AdS translations closes to the subalgebrasp(M ) of
slM,sp(2M ), which leaves invariant the antisymmetric b
linear formVâb̂ . The full generalized AdS subalgebra is

sp~M ! % sp~M !,sp~2M !. ~9.5!

Its Lorentz subalgebraspl(M ) is identified with the diagona
sp(M ) while AdS translations belong to the coset spa
sp(M ) % sp(M )/spl(M ). For M52 one recovers the usua
3d embedding o(2,2);sp(2)% sp(2),sp(4);o(3,2).
Analogously to the 3D case, the12 M (M11)-dimensional
space-time where the generalized AdS algebrasp(M )
% sp(M ) acts is the group manifoldSp(M ), while the two
sp(M ) symmetry algebras are induced by its left and rig
actions on itself. In particular, the ten-dimensional gene
ized space-time associated with the AdS phase of 4D m
less fields of all spins isSp(4).

Thus, for evenM we obtain that the AdS subalgebra of th
conformal algebra acting in the12 M (M11)-dimensional
space-time is isomorphic to the direct sum of the two co
formal algebras of the generalized@M (M12)/8#-
dimensional space-time. The process can be continue
lower dimensions provided thatM52q. Let us note that the
fact that the AdS algebra is semisimple may indicate that
corresponding reduced higher spin algebra acquires more
persymmetry. A particularly nice scenario would be that t
AdS reduction of theN-extended conformal higher spin a
gebra hu(2N21,2N21u2M ) in the generalized space-tim
Sp(M ) is hu(2N,2NuM ). In that case, the extensionN21
→N would imply the doubling of the even sector because
the new unimodular bosonic elementfN11f̄N11 built from
the additional Clifford elements.9 Then, the breaking of the
free field conformal symmetryhu(2N21,2N21u2M ) to the
AdSM one by interactions would imply

hu~2N21,2N21u2M !→hu~2N,2NuM !, ~9.6!

which would lead along with Eq.~9.3! to the chain of corre-
spondences

•••AdS2M ,NAdSM ,N11

→AdSM ,N11/AdSM /2,N12

→AdSM /2,N12/AdSM /4,N13→••• ~9.7!

with hu(2N21,2N21uM ) realized either as AdSM higher spin
algebra in the generalized space-timeSp(M ) or as the con-
formal higher spin algebra in the generalized space-t

Sp( 1
2 M ). @We assume that the proposed scenario is going

9Let us note that this scenario does not sound too unrealistic
ing into account that the reduction of the star product sector alge
allows for introducing unimodular Klein-type operators built fro
the bosonic oscillators.
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CONFORMAL HIGHER SPIN SYMMETRIES OF 4D . . . PHYSICAL REVIEW D66, 066006 ~2002!
work when all relevant algebrassp(m) have evenm. The
chain of correspondences continues down to the lowes
mensions forM52q.#

Let us stress that this scenario is mainly justified by
observation that the full 4Dsp(8) conformal massles
higher spin multiplets expected to provide a boundary the
for the AdS5 bulk higher spin theory have spectra identical
those of AdS4 higher spin theories thus requiring deform
tion of the flat boundary geometry to the anti–de Sitter o
in a phase with higher spin interactions respecting hig
spin gauge symmetries.@Note that an analogous observatio
was made in@14#, where it was found that the 3D free con
formal higher spin theories describe the same sets of m
less fields~scalar and spinor! as the nonlinear AdS3 higher
spin theories constructed in@101#.# Since the standard AdS
CFT duality is a nonlinear mapping of the bulk fields to t
boundary currents bilinear in the elementary boundary fie
@2,4#, the resulting generalized space-time dimension dem
racy suggests a chain of nonlinear mappings with the hig
dimensional models equivalent to the theories of compo
fields of the lower dimensional ones.

The suggested chain of AdS/CFT correspondences ca
true for full higher spin theories based on the algeb
hu(2N21,2N21u8) @say, as conjectured in Eq.~9.7!# but
makes no sense for reduced theories based on the alg
hua(2N21,2N21u8) and their further reductions. Once
theory is truncated to the subsector singled out by the c
dition ~4.40!, say, to theN54 SYM theory, no full CFTd
→AdSd deformation correspondence can be expected
other words, a reduction to the usual space-times and s
metries is expected to break the correspondence chain~1.19!
at some point. Note that such a reduction is likely to res
from some sort of spontaneous breaking mechanism wi
Higgs-type fieldw acquiring a vacuum expectation valu
proportional toNN , thus reducing the full higher spin alge
brahu(2N21,2N21u8) to its subalgebra which is the centra
izer of NN .

The argument against a nontrivial deformation of the f
higher spin conformal symmetries to a nonlinear theo
based on the peculiarities of the higher spin dynamics req
ing AdS geometry, fails to be directly applicable to mode
based on the algebrashu0(2N21,2N21u8) with N<4 be-
cause the corresponding supermultiplets do not con
higher spins. Although the problem is formulated in fl
space-time, this possibility is not strictly speaking, ruled o
by the Coleman-Mandula-type theorems because confo
theories do not admit a well-definedS matrix. Indeed, some
of the models of interest were argued to admit a conform
quantum phase compatible with higher spin symmet
@102#. In the framework of classical field theory, the proble
is to find a nonlinear deformation of Eqs.~3.9!, ~4.35! with
the matter fielduF& contributing to the right hand side of Eq
~3.9!. Provided that the deformed equations are forma
consistent, the appropriately deformed conformal higher s
symmetries will also be guaranteed. It isa priori not ex-
cluded that a nonlinear deformation of the free field dyna
ics compatible with conformal higher spin symmetries, e
in the N54 SYM theory, may exist. On the other hand,
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potential difficulty is due to the possible anomaly resulti
from the divergency of the star product of the Fock vac
~4.22! and ~4.64! in the (uF&* ^Cu)-like bilinear terms.

X. CONCLUSIONS AND OUTLOOK

In this paper, infinite-dimensional 4D conformal high
spin symmetries have been realized on free massless s
multiplets. The explicit form of the higher spin transform
tions is given by virtue of the unfolded formulation of th
equations of motion for massless fields in the form of t
covariant constancy condition for the appropriate Fock fi
bundle. Such conformal field theories were conjectured to
boundary dual to nonlinear higher spin theories in the b
AdS space@13#. In @11,12# it was conjectured that the AdS
CFT duality for higher spin theories should correspond to
weak coupling regimeg2n→0 in the superstring picture. To
verify these conjectures it is now necessary to build the Ad5
higher spin theory. Progress in this direction for the simpl
case ofN50 higher spin theory was achieved in@23# where
some cubic higher spin interactions were found. To exte
these results toNÞ0 and, in particular, toN54 it is neces-
sary to extend the results of@23# to higher spin gauge fields
carrying mixed symmetry massless representations of
AdS5 algebra associated with the two-row Young diagram

As a by-product of our formulation it is shown how th
osp(L,8) symmetry is realized on the infinite set of fre
boundary conformal fields of all spins. This result is intere
ing from various points of view. First of all, it was argued b
many authors@33–37# that the algebrasosp(m,2n) and, in
particular,osp(1,32) andosp(1,64) play a fundamental role
for the M-theory interpretation of superstring theory. It
usually believed that the related symmetries are broken
the brane charges. From the results of this paper it follo
that the algebras of this type can be unbroken if an infin
number of massless fields of all spins is allowed. A natu
mechanism of spontaneous breaking of the symplectic s
metries to the usual~AdS or conformal! symmetry algebras
might result from a scalar fieldw in the ~bulk or boundary!
theory, which acquires a nonzero vacuum expectation va
w5NN 1•••, where NN is the operator~1.9! that breaks
osp(N,8) to su(2,2u2N ) and the higher spin algebr
hu(2N21,2N21u8) to hu0(2N21,2N21u8). In that case the
breaking of the symmetries associated with the so-called c
tral charge coordinates results from a condensate of
higher spin fields.

The new equations~7.45! and ~7.46! of the scalar and
svector~symplectic vector! fields in the manifestlysp(2M )
conformally invariant 1

2 M (M11)-dimensional extended
space-time are formulated. These equations encode in a
cise form the dynamical equations for all types of massl
fields in the 3D and 4D cases forM52 andM54, respec-
tively. Remarkably, the proposedsp(2M ) invariant equa-
tions are compatible with unitarity, as follows from th
Bogolyubov transform duality of their unfolded formulatio
to the unitary singleton representation ofsp(2M ). The su-
perextension of these equations is also given in the form
an infinite chain of equations in the extended supersp
associated withosp(L,2M ).
6-31
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This result can dramatically affect our understanding
the nature of extra dimensions. In fact, we argue that, fr
the perspective of higher spin gauge theory, the propo
symplectic higher dimensional space-times have a be
chance of describing appropriately higher dimensional ex
sions of the space-time geometry than the traditio
Minkowski extension. Among other things, this improves t
situation with supersymmetry. Indeed, the main reason w
supersymmetry singles out some particular dimensions in
Minkowski track is that the dimension of the spinor repr
sentations of the Lorentz algebra increases exponent
with the space-time dimension~as 2[d/2]) while dimensions
of its tensor representations increase polynomially. This
plies mismatch between the numbers of bosonic and fe
onic coordinates, thus singling out some particular dim
sionsd<11 where the number of spinor coordinates is n
too high due to imposition of appropriate Majorana and
Weyl conditions. If our conjecture is true, the higher dime
sional models considered so far would correspond to so
specific truncations of the hypothetical symplectic theori
The crucial ingredient underlying the ‘‘symplectic track
conjecture is that the generalized symplectic conformal eq
tions ~7.45! and ~7.46! admit consistent quantization.

We argued that the generalized symplectic space-tim
the group manifoldSp(M ) that has the conformal~bound-
ary! symmetrySp(2M ) and AdS~bulk! symmetrySp(M )
3Sp(M ) (M is even!. The generalized superspace
OSp(L,M ). The usual 3D case corresponds to the case
M52, while the usual 4D geometry is embedded into
ten-dimensional generalized space-timeSp(4). Thefact that
the generalized space-time is the group manifold is inter
ing from various points of view and, in particular, becau
the generalized superstring theories may admit a natural
mulation in terms of the appropriate Wess-Zumino-Witte
Novikov models.

The algebrassp(2p) and the related generalized spac
times play a distinguished role in many respects. The
elements ofosp(L,2p) can be interpreted as forming th
spinor representations of the usual Lorentz algebras id
52p or d52p11 dimensional space-times, so that t
theories of this class admit an interpretation in terms of
usual Minkowski track space-time symmetries and sup
symmetries. In particular, the generalized space-time coo
natesXâb̂ are equivalent to a set of antisymmetric tens
coordinatesxa1•••an
. B

Y
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Xâb̂5 (
n50

d

~Ga1•••an

âb̂ 1Ga1•••an

b̂â !xa1•••an ~10.1!

associated with all those antisymmetrized combinations

theG-matricesGa1•••an

âb̂ which are symmetric in the indicesâ

andb̂. The dynamical equations~7.45! and~7.46! amount to
some sets of differential equations with respect to the ge
alized coordinatesxa1•••an. An interesting possibility con-
sists of the interpretation of the dynamics of branes in
Minkowski track picture as point particles in the generaliz
spaces of the symplectic track.

Another exciting possibility is that in the framework o
the full ~i.e., symplectic! higher spin theories the chain o
AdS/CFT correspondences can be continued~1.19! to link
together higher spin theories in symplectic space-times
various dimensions12 M (M11) via a nonlinear field-curren
correspondence@2,4#. The dramatic effect of this would be
‘‘space-time dimension democracy’’ establishing duality b
tween higher spin gauge theories in different dimensio
Since higher spin gauge theory is expected to describ
symmetric phase of the theory of fundamental interactio
like superstring theory and M theory, this would imply th
the analogous dualities are to be expected in the supers
theory, although in a hidden form as a result of spontane
breakdown of the higher spin symmetries and, in particu
the osp(L,2M ) supersymmetry. From this perspective t
dimensionsM52p again play a distinguished role becau
the analogue of the Flato-Fronsdal theorem~9.3! is expected
to be true for the generalized space-timesSp(2p) with all p.
In other words, the conjectured chain of dualities links
theories that admit an interpretation in terms of the us
space-time spinors and tensors to each other via the no
ear generalized AdS/CFT correspondence~1.19!.
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