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Conformal higher spin symmetries of 4D massless supermultiplets
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Realization of the conformal higher spin symmetry on the 4D massless field supermultiplets is given. The
self-conjugated supermultiplets, including the linearizéd 4 super Yang-Mills theory, are considered in some
detail. Duality between nonunitary field-theoretical representations and the unitary doubleton-type representa-
tions of the 4D conformal algebisu(2,2) is formulated in terms of a Bogolyubov transform. The set of 4D
massless fields of all spins is shown to form a representatisp(@). Theresults obtained are extended to the
generalized superspace invariant undep(L,2M) supersymmetries. A world line particle interpretation of
the free higher spin theories in tlesp(2,2M) invariant (supejspace is given. Compatible with unitarity,
free equations of motion in thesp(L,2M) invariant(supejspace are formulated. A conjecture about the chain
of AdSy, 1 /CFT4—AdSy/CFTy_1— - - - (where CFT indicates conformal field thepualities in the higher
spin gauge theories is proposed.
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[. INTRODUCTION ing the standard AdS/CFT correspondefitg which relates
strongly coupled boundary theory to the classical regime of
AdS conformal field theoryCFT) correspondencfgl-5] the bulk theory.
relates theories of gravity in thel (- 1)-dimensional anti—de To test the AAS/CFT correspondence for the higher spin
Sitter space Ad$ ; to conformal theories im-dimensional gauge theories it is instructive to realize the higher spin sym-
(conforma) boundary space. Elementary fields in the bulkmetries of the bulk higher spin gauge theories in AdSas
are related to the currents in boundary theory associated withigher spin conformal symmetries of the free conformal
nonlinear colorless combinations of the elementary boundarfields in d dimensions. In a recent papgt4] this problem
fields. was solved for the case of AgBCFT;. In particular, it was
From thed=4 example it is knowi6,7] that gauge theo- shown in[14] that 3D conformal matter fields are naturally
ries of massless fields of all spinss@<c admit a consis- described in terms of a certain Fock mod&lever the star
tent formulation in AdS (see[8,9] for more details and ref- product algebra identifiefl5] with the AdS, higher spin
erences on the higher spin gauge theori€se cosmological algebra[16,17]. The results of14] confirmed the conjecture
constantA = —\? should necessarily be nonzero in the inter-of Fradkin and Linetsky18] that 3D conformal higher spin
acting higher spin gauge theories because it appears in negagebras are isomorphic to the Ad8igher spin algebras.
tive powers in the interaction terms that contain higher de-The nonunitary Fock module was interpreted if14] as the
rivatives of the higher spin gauge fields. This property is infield-theoretical dual of the unitary singleton module over
agreement with the fact that higher spin gauge fields do nap(4|R).
admit consistent interactions with gravity in the flat back- One of the aims of this paper is to extend the results of
ground[10]. [14] to ADS;/CFT, higher spin correspondence, which case
Since the nonlinear higher spin gauge theory contaings of most interest from the string theory perspective. We
gravity and is formulated in AdS space-time, an interestingoresent a realization of the 4D conformal higher spin super-
question is what is its AAS/CFT dual. It was recently conjec-multiplets in terms of the field-theoretical Fock modulés
tured[11,12 that the boundary theories dual to the Ad$  ber bundles dual to the unitary doubletofl9] representa-
higher spin gauge theories are free conformal theories. Thes®ns of su(2,2). The conformal equations of motion for a
theories exhibit infinite-dimensional symmetries which are4D massless supermultiplet are formulated in the “unfolded”
expected to be isomorphic to the A4S higher spin gauge form of the covariant constancy conditions that makes the
symmetries. This conjecture is in agreement with the resultinfinite-dimensional 4D conformal higher spin symmetries
of [13] where the conserved higher spin currents inmanifest. We compare the results obtained with the conjec-
d-dimensional free scalar field theory were shown to be inture on the structure of 4D conformal higher spin symmetries
one-to-one correspondence with the set of one-forms assoainade by Fradkin and Linetskg0,21] in their analysis of 4D
ated with the totally symmetric higher spin gauge fields. Thenonunitary higher spin conformal theories that generalize
AdS/CFT regime associated with the higher spin gauge theagravity, arriving at somewhat different conclusions. Also, the
ries was conjecturefil1,17 to correspond to the limig®n results obtained are compared with the conjecture of the re-
—0. Itis therefore opposite to the regirgén—« underly-  cent papef22] and the results of the forthcoming papers
[23,24 on the (unitary) interacting higher spin theories in
AdSs (i.e., those referred to in the AgBCFT, higher spin
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We show that the fundamental 4D conformal higher spinNote that theZ, grading(1.6) in hgl(m,n|8;C) is in accor-
algebras are the infinite-dimensional algebras calledlance with the standard relationship between spin and statis-
hu(m,n|8) in [25]. Heren andm refer to the spin 1 Yang- tics oncea;, andb? are interpreted as spinors.

Mills symmetriesu(m) @ u(n) while the label 8 refers to the The algebrahu(m,n|8) is a particular real form of
eight spinor generating elements of the higher spin star prochg|(m,n|8;C) defined so that the finite-dimensional subal-
uct algebra. Let us recall the definition loti(m,n|8). Con-  gebra ofhu(m,n|8) identified as the spin 1 Yang-Mills al-
sider the algebra ofng+n) X (m+n) matrices gebra, which is spanned by the elemeAtand D indepen-

(A(a,b) B(a,b) dent of the spinor elemente_igy_ and b?, is the _compagt
(1.2 algebrau(m)@u(n). The explicit form of the reality condi-
C(a,b) D(a,b) tions imposed to extradiu(m,n|8) [25] is given in Sec.
IV C of this paper.
This construction is a straightforward extension of the 3D

with the even functiongpolynomialg of the auxiliary spinor

variablesa; and b* (a,f=1-4) in the diagonamxm  cqnformal~AdsS, higher spin algebrasu(m,n|4) via dou-
block A(a,b) and thenxn block D(a,b), bling of the spinor generating elements. It is in accordance
A — o hy— with the conjecture of26] that higher spin algebras in any
A(=a,—b)=A(a,b), D(~a-b)=D(ab), (1.2 dimension are built in terms of the star product algebras with
and odd functions in the off-diagonahx n block B(a,b) ~ SPinor generating elements. The definitiorhe{m,n|2p) is

andnxm block C(a,b), analogous.
The Lie algebragl, is spanned by the bilinears

B(—a,—b)=—B(a,b),

T&B: a&béz (a&* bB+ bB* a&)l ) (18)

N| -

C(—a,—b)=—C(a,b). (1.3

Consider the associative algebra of matrices of the fdrit) ~ wherel is the unit element of the matrix part bii(m,n|8).
with the associative star product law for the functions of theThe central element is

spinor variablesa;, andb? defined as 1 o
1 No=a b= E(a;,* b*+b*a;)l. (1.9
(fxg)(a,b)= —sf dud*vd*sd'tf(a+u,b+t)

() The traceless part

X g(a+s,b+v)exp Asyt*—uzw?) o

.1 -
asbP— Za;,ﬁNc)) | (1.10

_ e(ﬁzlas[,at‘;f&Zlﬁu';av&)IZf(a+ s,b+u)
spanssl,. Thesu(2,2) real form ofsl,(C) results from the
Xg(a+v,b+t)|s-i=u=y=-0- (1.4 reality conditions

It is well known that this star product gives rise to the com- A hBCA- he— ~afs-
mutation relations P ’ 2,=b"Ci,  b*=Cap, (1.13
. - .. where the overbar denotes complex conjugation waijg;
[a;.bfl, = 55* [a;.a3], =0, [b*b"],=0 =—Cjp;, andC*#= —CF® are some real antisymmetric ma-
(1.5 trices satisfying

with [f,g], =f*g—g=*f. The associative star product alge- C&;Cia‘y: 5§ (1.12

bra with eight generating elemerdag and b is called Weyl

algebraA, (i.e., A for | pairs of oscillators. The particular In order to incorporate supersymmetry one introduces the

star product realization of the algebra of oscillators we US&-|ifford elementsa; and their complex conjugates (i.]
describes the totally symmetrig.e., Wey) ordering. The —1-\) satisfying tlhe commutation relations '

matrices(1.1) result from the truncation oA,® Mat,, ., by

the parity conditiong1.2) and (1.3). Let us now treat this o = - — DT — s
algebra asZ,-graded algebra with even elements in the {4,411, =0,  {4',¢'1,=0, {4, ¢} 5.(1 "
blocksA andD and odd inB andC, i.e., '

with respect to the Clifford star product
m(A)=m(D)=0, m(B)=w(C)=1. (1.6)

The Lie superalgebrangl(m,n|8;C) is the algebra of the (f*g)(¢,$)=2NJ dVydNydNydVyf(d+ g, b+ x)
same matrices with the product law defined via the graded

commutator Xg(p+x, b+ h)exp A — xix')
[f,g].=frg—(—1)"(N7Ogsf, (1.7) (1.14
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with anticommutinge; , @', ¢, &', x;, andy'. metries of the conformal systems manifest. The field theory
The superalgebra(2,2\) is spanned by the(2,2) gen-  formalism we work with operates with modules dual to the
erators(1.8) along with the supergenerators doubleton modules used for the description of the unitary
R representations associated with the one-particle states of the
Q- =ad, QP= bii'd,i (1.15  same systerfl9]. (Note that these Fock modules are some-
* what reminiscent of the modules introduced for the descrip-
andu(\") generators tion of noncommutative solitons in string thed38].)
In addition to thesu(2,2 ) generators, the algebra
Ti= . (1.16  hu(2V"1,2V"1|8) contains the bilinear generators
The central elemeritl\; of u(2,2/N) is Usp=azaz, V*=bbP, (1.20
Ny=ab— ¢’ (1.17 Uij=¢i¢;, Vi=¢'¢p (1.21)

ForN#4, su(2,24N)=u(2,2N)/Ny. The case ofV=4 is  and supergenerators
special becaushl,,, which acts as the unit operator on the

oscillators, has a trivial supertrace thus generating an addi- R,i=a, i, ﬁkizbifﬁ, (1.22
tional ideal insu(2,2N). The corresponding simple quo- )
tient algebra is callepsu(2,24). which extendu(2,2;\’) to osp(2,8). [Recall that one can

A natural higher spin extension sfu(2,2\) is associ- defineosp(p,2q) as the superalgebra spanned by various
ated with the star product algebra of even functions of supPilinears built fromp fermionic oscillators andj pairs of

eroscillators bospnic oscil!ato_rs; see, .e.g[29] for more details on .the
oscillator realizations of simple superalgebtag2,2;\) is
f(—a,—b;—¢,—d)=f(a,b:d,b). (1.19  spanned by the bilinears in oscillators that commute to the

operatorN,, i.e., u(2,2;\) is the centralizér of Ny in
Since the Clifford algebra with & generating elements is 0sp(2N,8). An important consequence of this simple fact is
isomorphic toMat,v, one finds that the appropriate real that
form of the infinite-dimensional Lie superalgebra defined . .
this way is isomorphic tdu(2"V~1,2V~1|8). Note that for su(2,2;V)Cosp(2\;8)Chu(2**,2V"18).  (1.23
N=4 this gives rise tchu(8,88). For =0 the Clifford
algebra is one dimensional and, therefore,
hu(2V=%,2V"2p) at N=0 is identified withhu(1,02p).
The restriction ofhu(2V~1,2V=1|8) to a particular super- "
multiplet gives rise to a smaller higher spin algebra we shaIL
call hu,(2V~%,2V"48). a is a number characterizing a su-
permultiplet. The case at=0 will be shown to correspond
to the self-conjugated supermultiplefblote that the algebra
hug(2V~1,2V-1|8) was calledshsd4|A) in [20].] An ex-
citing possibility discussed at the end of this paper is that
once there exists a phase with the whole symmetr
hu(2V~1,2Y=18) unbroken, it may imply an infinite chain

As a result, once the higher spin algelra(2V~1,2V=1|8)

is shown to admit a realization on the conformal supermul-
tiplets of massless fields, it follows that the same is true for
s finite-dimensional subalgebrasp(2/;8). Indeed, we
hall show explicitly how theosp(2A;8) transformations
link together different masslegsupeifields, requiring infi-
nite sets of massless supermultiplets to be involved. This
result is the field-theoretical counterpart of the fact that the
singleton representation afsp(2V;8) decomposes into all
doubleton representations ®6(2,2;N'). Note that the field-
Xheoretical realization obsp(2N;8) will be shown to be

) local.
of the generalized AdS/CFT correspondences This result confirms the conjecture [#0,26] that the al-
. AdSPTYCETP— AdSP/CETP L gebrasosp(L,2P) may play a distinguished role in the
higher spin gauge theories in higher dimensions. More gen-
—AdSP YCFTP2..., (1.19 erally, it was first suggested [B81] that algebras of this class

result from the supersymmetrization of conformal and AdS

resulting in a surprising generalized space-time dimensioBpace-time symmetry algebras. [82] a contraction of
democracy in the higher spin theoriabusing notation, we  osp(1,32) was applied for the description of 11-dimensional
use the abbreviation AdS for the generalized superalgebra. Somewhat later it was found that the algebras
3Pp(p+1)-dimensional space-time defined in Sec.]JIXhe  osp(L,2M) (in most cases wittM =2% and their contrac-
algebrashug(2V~ 1,2V~ 1(8) associated with the usual lower tions appear naturally in the context of M-theory dualities
spin supermultiplets and AdS/CFT dualities are argued tand brane chargd83—-37. One of the messages of this pa-
result from some kind of spontaneous breakdown of the symper is that these symmetries can be unbroken in the phase in
metrieshu(2V~1,2V"1(8). which all higher spin fields are massless. An immediate

The key idea of our approach is that the dynamics of thespeculation is that not only do massive higher spin modes in
4D higher spin massless multiplets admits a formulation in
terms of certain Fock modules oveu(m,n|8) analogously
to what was shown previously fat=2 in [27] and ford 1| am grateful to M. Guaydin for drawing my attention to this
=3 in[14]. Such a formulation makes the higher spin sym-fact.
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fundamental strings result from some spontaneous breakinirular case obp(8) two simple equations in the symplectic
of the higher spin symmetries, but also branes are built fronfrack space for scalar and svectoe., a vector of the sym-
the higher spin gauge fields. plectic algebra interpreted as a spinor in the Minkowski
This raises the important question of what are the highetrack fields encode all massless equations in the usual 4D
dimensional geometry and dynamics that Suppsrﬂ(l_,zp) Minkowski space. This opens an eXCiting new avenue to
symmetries. Generally, there is no genuine reason to believdigher dimensional physics in the framework of the symplec-
that a higher dimensional geometry should necessarily bc track. To put it briefly, the right geometry is going to be
Riemannian and, in particular, that the bosonic coordinategssociated in all cases with symplectic twistors, while for
are necessarily Lorentz vectors. We shall call this presentlgome lower dimensions we happened to live in it turns out to
dominating belief the “Minkowski track.” An alternative op- e equivalent to the usual Minkowski geometry.
tion, which looks more natural from various points of view,  The rest of the paper is organized as follows. In Sec. Il we
is that higher dimensional bosonic and fermionic dimension§ummarize the general approach to unfolded dynamics with
beyondd=4 may be associated with certain coset superthe emphasize on the cohomological interpretation of the dy-
spaces built fronpsp(L,2M). We call this alternative the namical fields and equations of motion. In Sec. Ill we iden-
“symplectic track.” An important advantage of this alterna- tify the vacuum gravitational field and discuss the global
tive is due to supersymmetry. Indeed, the main reason Whp]igher spin symmetries. 4D free equations for massless fields
supersymmetry singles out some particular dimensions in th@f all spins in the unfolded form are studied in Sec. IV. In
Minkowski track is the mismatch between the numbers ofSec. IV A we reformulate the free massless equations of mo-
bosonic and fermionic coordinates in higher dimensions as Hon for 4D massless fields of all spins in terms of flat sec-
result of the fact that the dimension of the spinor representions of an appropriate Fock fiber bundle and identify various
tations of the Lorentz algebra increases with the space-timtypes of the 4D higher spin conformal algebras. A generic
dimension as 22 while the dimensions of its tensor repre- Solution of these equations in flat space-time is presented in
sentations increase polynomially. Only for some lower di-Sec. IV B. The reality conditions are defined in Sec. IV C.
mensionsd<11, where the number of spinor coordinates is The reduction to self-conjugated supermultiplets based on a
not too high due to some Majorana and/or Weyl conditionsCertain antiautomorphism and the corresponding reduced
can the matching be restored. higher spin algebras are discussed in Sec. IV D. In Sec. V,
Some ideas on the possible structure of an alternative t9e¢ explain how the formulas for any global conformal
Minkowski space-times have appeared in both the fieldhigher spin symmetry transformation of the massless fields
theoretical[38,30,39—4% and world particle dynamicgt7—  can be derived and present explicit formulas for the global
50] contexts. In particular, important algebraic and geometric@SR2\,8) transformations. The duality between the field-
insights most relevant to the subject of this paper were elabdheoretical Fock module and unitargp(8) singletorj mod-
rated by Fronsdal in the pioneering WC[BO] Further exten- ule is discussed in Sec. VI. The dynamics of the 4D confor-
sions with higher rank tensor coordinates were discussed ifal massless fields is reformulated in tlesp(2V,8)
[51,52. The nontrivial issue, however, is that it is nat invariant (supejspaces in Sec. VII. We start in Sec. VII A
priori clear whether a particularsp(L,2M) invariant sym-  With the example of the usual superspace. The unfolded
plectic track equation allows for quantization compatible€quations compatible with unitarity isp(2M) invariant
with unitarity for M>2. This point is tricky. On the one Space-time are derived in Sec. VII B. The unfolded dynamics
hand, a Lorentz invariant interval built from the “central in the osp(L,2M) invariant superspaces is formulated in
Charge coordinates” associated Wﬁp(Zp) has many time- Sec. VII C. Further extension of the equations to the infinite-
like directions which, naively, would imply ghosts. On the dimensional higher spin superspace is given in Sec. VII D.
other hand, it is well knowr29] that osp(L,2M) admits The world line particle interpretation of the massless equa-
unitary lowest We|ght representatioﬂsy “lowest Weight“ tions of motion obtained is discussed in Sec. VIl where
we mean that it is a quotient of a Verma modukbus indi- ~ SOMe new twistorlike particle models are presented. The
cating that some of its quantum-mechanically consistenf\dS/CFT correspondence in the framework of higher spin
field-theoretical realizations have to exist. gauge theories is the subject of Sec. IX where, in particular,
Here is where the power of the “unfolded formulation” the pOSSlblIlty of an infinite chain of AdS/CFT dualities in
dynamics[53-55 plays a crucial role. Because this ap- higher spin gauge theories is discussed. Finally, Sec. X con-
proach suggests a natural Bogolyubov transform duality bet2ins @ summary of the main results of the paper and discus-
tween the field-theoretical unfolded equations and lowes$ion of some perspectives.
weight unitary module$§14], which, in fact, implies quanti-
zation, it allows us to solve the problem by identifying the Il. UNFOLDED DYNAMICS
differential equations that give rise to the field-theoretical
module dual to an appropriate unitary module. This is
achieved by solving a certain cohomology problem. One o
the central results of this paper consists of the explicit for-
mulation of theosp(L,2M/R) invariant equations of motion dwA=FA(w) 2.1)
in the symplectic track space associated with the massless
unitary lowest weight modules obsp(L,2M/R) via a  (d=dx2/dx"; underlined indicesn, n=0-d—1 are used
Bogolyubov duality transform. Let us note that for the par-for the components of differential formsvith some set of

As usual in the higher spin theory framework, we shall
se the “unfolded formulation” approad®3—-55 which al-
ows one to reformulate any dynamical equations in the form
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differential formsw and a functiorFA(w) built from w with It is assumed that only the operatBr acts nontrivially on

the help of the exterior product and satisfying the compat{differentiate$ the space-time coordinates whie. act in

ibility condition the fiberV. It is also assumed that there exists a gradation
operatorG such that

SFA(w)

FB(w) o

0. (2.2 [G,D]=0, [G,0.]=*0-, (2.10

In the linearized approximation, i.e., expanding near somé3 can be diagonalized in the fiber spageand the spectrum

particular solutiorw, of Eqg. (2.1), one finds that nontrivial Of Gin Vis bounded from below. In the example abave

_ _ _pb ; ~
dynamical equations are associated with null vectors of the_d’ 01+=0,0-(Ca,...a,=N"Coa,...a,- The gradation op

linearized parf, of F. erator G counts a number of indicesG(C),,.. 4,
For example, consider the system of equations =nCqy .. .a .
The important observation isee, e.g.[56]) that the non-
InCa,...a,(X) +Ny°Cpa,...a (X) =0, (2.3 trivial dynamical equations hidden in E.8) are in one-to-
N B one correspondence with the nontrivial cohomology classes
dh?=0 (2.4 of o_. For the case under consideration withbeing a

0-form, the relevant cohomology grouphtii(o_). For the
with the set of 0-form<, .., with all n=0,1,2 w and Mmore general situation witle being ap-form, the relevant
Loay 12,

the one-formh®=dx"h, 2 (a,b, ...=0-d—1 are fiber vec- cohomology group isHP*Y(o_) (in a somewhat implicit

tor indices. This system is obviously consistent in the sense{g;mzéh)'s analysis for the case of one-forms was applied in

: Q- ;
of Eq. (2.2 Assuming thahy,” is & nondeg_ener:tie maatnﬂm Indeed, consider the decomposition of the space of fields
fact, the flat space-time framesay, choosindl,"=6," @S @ ¢ jnto the direct sum of eigenspaces@fLet a field having
particular solution of Eq(2.4), one finds that the system is the definite eigenvaluek of G be denoted C|,, k

dynamically empty, just expressing the highest components-0,1,2. ... Suppose that the dynamical content of Egs.
Ca,...a, Via the highest derivatives @ (2.8 with the eigenvaluek=k, is found. Applying the op-
eratorD+ o, to the left hand side of Eq$2.8) atk<k, we
Calu.an(x)z(—l)”aal- ++ g C(X). (2.5  obtain taking into account E¢2.9) that
However, once some of the components @f ..., are o (Dto_+0.)(C)l+1)=0. (2.1

missed in a way consistent with the compatibility condition _
(2.2), this will impose the differential restrictions on the “dy- Therefore O+o_+0,)(C) |kq+1 is o closed. If the group

namical field”C(x). In particular, this happens if the tensors H(¢_) is trivial in the gradek,+ 1 sector, any solution of
are required to be traceless, Eq. (2.1)) can be written in the form M+o_

+U+)(C)|kq+120_(6|kq+2) for some fie|d6|kq+2. This,

in turn, is equivalent to the statement that one can adjust
C|kq+2 in such a way thaf:|kq+2=0 or, equivalently, the
part of Eq.(2.8) of the gradek,+ 1, is some constraint that

Cbba3...an:O- (2.6

In accordance with Eq2.5) this implies the Klein-Gordon

equation expresse£|kq+2 in terms of the derivatives otttlkq+1 (to
OC(x)=0 (2.7)  say that this is a constraint we have used the assumption that
the operatolo_ is algebraic in the space-time sense, i.e., it
and, in fact, no other independent conditions. does not contain space-time derivativeé H'(o_) is non-

An important point is that any system of differential equa-trivial, this means that Eq2.8) sends the corresponding co-
tions can be reformulated in the for(@.1) by virtue of in- nNomology class to zero and, therefore, not only expresses the

troducing enoughusually, infinitely many auxiliary fields. ~ field Cly 2 in terms of derivatives oC|y ., but also im-
We call such a reformulation “unfolding.” In many impor- poses some additional differential conditions @1‘kq+1-

tant cases the linearized equations have the form Thus, the nontrivial space-time differential equations de-
scribed by Eq(2.8) are classified by the cohomology group
(P+o_+0,.)C=0, (2.8  H(o.).

The nontrivial dynamical fields are associated with
whereC denotes soméusually infinite set of fields(i.e., a  H%(o_) which is always nonzero because it at least contains
section of some linear fiber bundle over the space-time witta nontrivial subspace &f of minimal grade. As follows from
a fiber spacé&/) and the operator® ando .. have the prop- theH!(o_) analysis of the dynamical equations, all fields in
erties V/H%(o_) are auxiliary, i.e., are expressed via the space-

time derivatives of the dynamical fields by virtue of Egs.
(04)?°=0, D?*+{o_,0,}=0, {D,0.}=0. (29 (2.9.
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For the scalar field example one finds] thatH%(o_) is  are the generators of 4D translations and special conformal
spanned by the linear space of the rank-zero tensors assotiansformations, respectively. The complex conjugation rules
ated with the scalar field. For the case with the filleneal-

ized by all symmetric tensors{'(o_)=0 and, therefore, the a,=b,, b*=a“

corresponding system is dynamically empty. For the case of

V spanned by traceless symmetric tensbrY,o_) turns out 2-=b Be=a@ (3.6
to be one dimensional with the one-form representative «oTe '

<h.a 2.12 are in accordance with Eq1.11) with the antisymmetric
2 matrix C*# having nonzero components

taking values in the subspace of rank-1 tengbes, vectors. . . _ .
Indeed, it is obvious that any element of the fofh12 is CoB=gaB,  CVP=g7F, (3.7
o_ closed. It is noto_ exact becausé,,#h,C,p, with . ) ) ) )
some symmetric traceless,,. As a result, the only non- Wlhzeres“ﬁ is the 22 antisymmetric matrix normalized to
trivial equation contained in Eq2.3) is its trace part ah g=1. o
=1, which is just the Klein-Gordon equatid@.7). Let w(a,b; ¢, 4|x) be a one-form taking values in the

Let us note that the “unfolded equation” approach is to higher spin algebraau(2V~1,2V=18), i.e., » is the gener-
some extent analogous to the coordinate-free formulation cditing function of the conformal higher spin gauge fields
gravity by Penrosd58] and the concept of exact sets of
fields (see[59] and references thergim which the dynami- — - N 1
cal equations are required to express all space-time derivé&l(aybi¢’¢|x):m%0 kéo mintkiin
tives of the fields in terms of the fields themselves. The im- ’ ’

portant difference between these two approaches is that X, 5 B1-~Bni i)

“unfolded dynamics” operates in terms of differential forms, rotm Lok

th_us Ieavi_ng room for gauge potgntials anq gauge symme- Xb;‘l~~~b‘;ma;3 .-ap d)ilmd)ikgj gj _

tries that in most cases are crucial for the interaction prob- 1 n 1 !

lem. In some sense, the exact sets of fields formalism corre- (3.8

sponds to the particular case of unfolded dynamics in which

all fields are described as O-forms. In the cases of interest the general equatii) admits a

solution with all fields equal to zero except for some one-

IIl. VACUUM AND GLOBAL SYMMETRIES forms wy taking values in an appropriate Lisupejalgebra

h [in the case under consideratitn=hu(2V~1,2V"1[8)].
Let us now consider the four-dimensional case introducEquation(2.1) then reduces to the zero-curvature equation on
ing 4D index notation. We will use two pairs of two- «,. To describe nontrivial space-time geometry one has to
component spinora,,, b% a;, andb”?. The basis commu- requireh to contain an appropriate space-time symmetry al-

tation relations become gebra whose gauge fields identify with the background gravi-
. _ tational fields. In particular, the components @f in the
[a,.bPl, =685, [a;Dbfl,=3,~ (3.1)  sector of translations are identified with the gravitational

frame field which is supposed to be nondegenerate.dget
The 4D identification of the elements efi(2,2) is as fol-  be such a solution of the zero-curvature equation
lows:
dw0=w0/\*w0. (39)
B— B_ 1 B b
L."=a.b 2 5a"a,p7, Equation(3.9) is invariant under the gauge transformations
1 Swo=de—[wq, €], , (3.10
La5=adb5—§5,‘féb7 (3.2
where €(a,b; ¢, ¢|x) is an infinitesimal symmetry param-
are Lorentz generators; eter, which is a 0-form. Any vacuum soluties, of Eq. (3.9)
breaks the local higher spin symmetry to its stability subal-

1 . . . . - . . ] _
_ = v T T gebra with the infinitesimal parametegg(a,b; ¢, ¢|x) sat
D= 2(a“b aqb?) 33 isfying the equation
is the dilatation generator; deg—[wg, €0l =0. (3.11
szaaBB (3.9 Consistency of this equation is guaranteed by the zero-
curvature equatioi3.9).
and Locally, Eqg. (3.9 admits a pure gauge solution
K. P=a,bP (3.5 wo=—g '*dg. (3.12
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Hereg(a,b; ¢, $|x) is some invertible element of the asso- Where
ciative algebra, i.e.,g”*g=g*rg 1=1. For w, [Eq.

(3.12)], one finds that the generic solution of H8.11) is Xaﬁ:XEUEaB. x2=gn, px P, (3.20
€o(a,b; b, 1) =g *(a,b; ¢, ¢|x) IV. 4D CONFORMAL FIELD EQUATIONS
*&(a,b; b, )*g(a,b; ¢, ¢|x), As shown in[53,54), the equations of motion for massless
(3.13 fields in AdS, admit a formulation in terms of the generating
' function
whereg(a,b;q'),a) is an arbitraryx-independent element that o
plays the role of the “initial data” for Eq(3.11). C(y,y|X)=m;:O — Cal--»amﬁr--'ﬁn(x)
€0(a,0; ¢, B|X) |x=x,= &(a,b; b, b) (3.14 .
xyal. . .ya’mylgl. . .yﬁn (4_‘]_)

for such a pointx, that g(xo)=1. Since[e5,€5], has the _ _
same form with&??=[£L ¢2], , it is clear that the global With the auxiliary spinor variableg® andy”. C(y,y|x) is
symmetry algebra igu(2V~1,2V=1/8). the generating function for all on-mass-shell nontrivial spin
As usual, the gravitational fields.e., frame and Lorentz S=1 gauge invariant curvatures and matter fields of spin 0
connection are associated with the generators of translation@nd 1/2. Every spirs massless field appears in two copies
and Lorentz rotations in the Poincave AdS subalgebras of because the generating functi@(y,y|x) is complex. It
the conformal algebra. For Ad®ne sets forms the twisted adjoint representation of the algebra
. . hu(1,14). The associated covariant derivative reads
wo= 0o s(X)L P+ (X)L P 5
- - DC=dC—-w*C+C*w, (4.2
+ho®3(X) (P P+ N2KE,), (3.15
where w(y,y|x) is the generating function for higher spin
gauge fields taking values lu(1,14), * denotes the Moyal
star product induced by the Weyi.e., totally symmetrig

ordering of the oscillatorg® andya with the basis commu-
tation relations

where— \? is the cosmological constant. The indiceskof ,
have been raised and lowered with the aid of the Lorent
invariant antisymmetric forms“? ande“# according to the
rules

A*=e"PAg,  Ag=g,pAY, _ — y
[y*yfl,=2ie*?,  [y*yFl,=2ie"’, (4.3
AT=e Ay, Ap=eipAt, 318 nd the tilde denotes the involutive automorphism of the
which, as expected for the A¢gSpace having a dimensionful algebrd w(y,y|x)=w(—Y,y|x). Fluctuautions of the higher
radius, breaks down the scaling symmetry of the ansatspin gauge fields are linked to the invariant field strengths by
(3.15. The condition that the ansat3.15 solves the zero- Vvirtue of their own field equation§53,54. The sector of
curvature equation(3.9) along with the condition that higher spin gauge fields plays an important role in the analy-
ho“4(x) is nondegenerate implies that,®4(x), ;o“r';(x)' sis of higher spin interactions and Lagrangian higher spin
andhy“5(x) describe the AdSLorentz connection and the dynamics, very much as the Lagrangian form of Maxwell
frame field, respectively[Note that the generatoP,? theory is formulated in terms of potentials rather than field
o B ) ) @ stren_gths. _In this paper, howevar, we confine qurselves to
+A\°K”, describes the embedding of the AdBanslations  gnsideration of free field equations formulated in terms of
into the conformal algebrau(2,2) ] field strengths withw=w, being a fixed vacuum gravita-
For the 4D flat Minkowski space one can choose tional field taking values in the gravitationsp(4|R) subal-
gebra ofhu(1,14) and satisfying zero-curvature equation
for the higher spin algebra. Note that, as explained in the
. ' Introduction,sp(4|R) belongs to the finite-dimensional sub-
thus setting all fields equal to zero except for the flat -Spaceotlgebraosp(2,4) of hu(1,1/4), i.e., the system under con-
vierbein associated with the translation generator. Hefé sideration exhibits\’'=2 supersymmetry[Also note that

w0=dXEUE“'BaaBB, (3.17

is the set of 22 Hermitian matrices normalized to ~ osp(2,4)®u(1) with theu(1) factor associated with the unit
Una'BUTaBZ nm> Un“ﬁam yo = 535‘? , (3.18

. . ) . . ’The covariant derivative of the complex conjugated fi€lds
where 7, is the flat Minkowski metric tensor. The function analogous with the roles of dotted and undotted indices inter-

g that gives rise to the flat gravitational fie(d8.17) is changed. Note that the twisted adjoint representation is most con-
. veniently described with the help of Klein operatf®l] (see also
g=exp(—x“za,b”?), (3.19  [8).
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The flat limit of the free equations of motion for the inte-
ger and half-integer spin massless fieldy%®,54] has the

As shown in[53,54] the free equations of motion for form

massless fields of all spins have the form

Dy(C)=0 4.9

whereD, is the covariant derivativét.2) with respect to the
vacuum fieldwy. Since EQs.(3.9) and (4.4) are invariant

under the gauge transformatio(®&10 and

dC(y,y[x)+dxo, 2B C(y,y|x)=0, (4.12

ay“ayP

which provides a particular realization of E@.8) with

- 1
~ D=d, o_=dx"g,*" —, ot=0. (4.13
SC=exC—Cre, (4.5 = ay“ay”
from the general argument of Sec. Ill it follows that, for Let us note that the fact that the free equations of motion of

some fixed vacuum field satisfying Eq.(3.9), Eq. (4.4) is

4D massless fields in the flat space admit reformulation in

invariant under global symmetry transformations with thethe form(4.12 was also observed if60].

parameterg3.13 that form the Ad$ higher spin algebra

The dynamical fields associated with®(o_) identify

hu(1,14). This realization of the higher spin field equations with the lowest degree eigenspaces@®for various eigen-

therefore makes manifest the AdS symmetry

values ofo. These are analytic field€(y,0/x) and their

sp(4[R)chu(1,14), while the conformal symmetry conjugatesC(0y|x). Some standard examples are provided

su(2,2) of the free massless equations remains hidden.

with spin 0O:

For the reader’s convenience let us analyze the content of

Egs.(4.4) in somewhat more detail. Upon some rescaling of

C(0,0x)=c(x), (4.19

fields the free massless equations of motion for all spins in

AdS, of [53,54] acquire the form

+ xzya%) C(y,y[x),
(4.6)

D5C(y,y[x)= —ho* —
oC(Y,y[X)=—ho (ayayﬁ

whereD}; is the background Lorentz covariant derivative

DL=d—(w0“ (x)yﬁi+;0""(x)y5—i—>. 4.7
0 ﬁ O')ya 'B aya

It gives a particular realization of E¢2.8) with

D=Dyg, U’:haﬁay“(ﬁﬁ’
o =\2hoPy ys. (4.9
The gradation operator is
G= E(yaiJJ&—i—) . (4.9
2 aye -

spin 1/2

Cly,0X)=yc,(x), C(Oy[x)=y“Cy(x), (4.15

spin 1
C(y,0x) =y*yPc p5(x),
C0Yx)=y*yPe (), (4.16
spin 3/2
C(y,0/x) =y“1y“2y“3C, 4,0 (X),
C(0y[x) =y™y“2y“ac,, ;.o (X), (4.17
and spin 2
C(y, %)=y - y™c, .. 4,(X),
COY[X)=y™...y%c, (%) (4.18

All fields C(y,y|x) starting with spin 1 are associated with
the appropriate field strengths, namely, with the Maxwell

Equation(4.6) decomposes into the infinite set of subsystemdield strength, gravitino curvature, and Weyl tensor for spins

associated with the eigenvalues of the operator

1 N J — J
O'ZE y _a_y —_; (410)
ay ay
identified with spin
oC(y,y|x)= =sC(y,y|x) (4.1

1, 3/2 and 2, respectively.

The analytic fields C(y,0)x) and their conjugates
C(0,y|x) are subject to the dynamical spggrmassless equa-
tions [54] associated witiH!(o_). Using the properties of
two-component spinors it is elementary to prove that the
representatives dfl}(o_) are

Y PERY),  Y3h*PEL(Y), Yaysh®k, (4.19

(the fields associated with the eigenvalues that differ by signvhere the 0-formsE;(y) and Ea(y) are, respectively, ana-

are conjugated

lytic and antianalytic whilec is a constant. The cohomology
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class parametrized by corresponds to the=0 massless D*|0)(0|=]0)(0|*D=10)(0]. (4.27)
equation, while the cohomology classes parametrized by

Ex(y) andE,(y) are responsible for the field equations for Also, it is left Poincarénvariant

spin s>0 massless fields. Note that the cohomology group

H(o_) is the same for the flat and Ag8ases. The explicit P.”%|0)(0[=0 (4.28
form of the flat space dynamical massless equations resulting .
from Eq.(4.12 is and supersymmetric

Q.*|0)(0[=0, Qf*|0)(0|=0. (4.29

J J —
e g BC(y,0|X)=0, v aTC(O,Y|X):O, (s#0),
y© oXa Y= oxTp Note that|0)(0| is a projector

4 10)(0]|0)(0]=|0)(0] (4.30

Jd _
0= — ——C(Y,Y|X)|y—y=0—31@"C(0,0x) =0,
y“ayz Ix P -

(s=0). (4.20

and space-time constant

d|0){0|=0. (4.30)
All other equations in4.12 express the nonanalytic compo- _
nents of the field<C(y,y|x) via higher space-time deriva- Le}/ﬁuls How consider the left module over the algebra
) . . — hu(2V~1,2V1|8) spanned by the states
tives of the dynamical massless fieldS(0y|x) and
C(y,0|x) or reduce to identities expressing some compatibil-
ity conditions. Therefore, the nonanalytic components in
C(y,y|x) are auxiliary fields(in both the flat and Ad$S
cases

|d(a,b,$|x))=C(a,b,p[x)*|0)0],  (4.32

where

A. Fock space realization C(E,b,d)lx):m gio ﬁcﬁl' ' ‘ﬁ’mal' . .oznjl. ' 'jk(x)
The formulation of 53,54 with the 0-formC(y,y|x) tak- ~ - _
ing values in the twisted adjoint representation of the AdS Xa,, - --a, bl -bfmgli... gl (4.33
higher spin algebra made the symmehiny(1,1/4) manifest.
Let us now show that the same equatighl?2 admits a Note that
realization in the Fock space that makes the higher spin con-

formal symmetries of the system manifest. C(a,b, ¢|x)*|0)(0|
Let us introduce the Fock vacuuf@)(0| defined by the 5 _ . .
relations =C(2a,2b,2¢[x)2* exp 2a b —ab '+ ¢ ¢').
a.#10)(0]=0, B#+|0)(0]=0, @*0)(0]=0. (439

The system of equations

It can be realized as the element of the star product algebra d| ) — gt | D) =0 (4.39

— 24-N, T Ta_ a i
[0)0[=2"""expAa;b"~ab"+ ¢id), (4.22 concisely encodes all 4D massless field equations provided

which also satisfies that Eq.(3.9), which guarantees the formal consistency of
_ Eq. (4.39, is true. Indeed, the choice ab, in the form
|0><0|*5a:0’ 10)(0|*b,=0, |O><O|*$=O. (3.17 makes Eq.(4.35 equivalent to Eq.(4_.12) upon the

(4.23 identification of b* with y* and 55 with yz [for every
su(N) tensor structure Analogously, choosingyg in the

As a result, the vacuum is bi-Lorentz invariant form Eq.(3.15, one finds that Eq4.35 describes massless
5 3 — 5 3 fields in AdS,. Let us note that the equations on the compo-
L.P*[0)(0[=0, L.P*|0)(0|=0, (4.24  nentfields are Lorentz and scale invariant due to the Lorentz
. invariance(4.24) and definite scaling4.27) of the vacuum
|0)(0[*L,A=0, |0){0J*L,’=0, |0)(0|. The dynamical components identify with the holo-

(4.29  morphic and antiholomorphic parts

bi-su(\) invariant g P
i = i=1 i €y Baiy i (X) = B Br oAl Y
T/%[0)(0]=[0){0[* T’ =3 4{[0)(0, (4.26 dbFL. . gbFn gl .- '

and has conformal weight 1 X C(0,b, |X)|pe=gio, (4.36
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SO — ’ Ny= i Ng= (4.44
Ca...am._”. X)=— — — — = —, .
ek ga; ---da;, Itk ¢ o No= ¢9¢J
X C(2,0,4|%)]3. —Z=0- (4.37)  the eigenvalue in Eq4.40 takes values
. . N
Recall that Eq.(4.35 imposes the dynamical massless a=m—§, meZ, (4.45

equations of motion on the compones36 and(4.37) and

expresses all other components@fa,, ,bf,¢|x) via their i e « is an arbitrary half integer for odd/" and an arbitrary
derivatives according to E¢4.12 rewritten in the form integer for even\V.

From Eq.(i42) it follows that the fields contained iR,
C(a b,d1x) =07, 3,C(ab.d]x), (4.38 areC(a, ,b”, ¢[x) with
(Na—Np—Ng+m)C(a, ,b?, ¢[x)=0.  (4.46

2

db®sa

or, equivalently,
a Y From Eq.(4.1]) it follows that the relationship between the

2 number of inner indices and the sprof a field in the su-

- 4~ — o
——C(a,b,[x)=———C(ab,4[x). (439  permultipletis
db*daj X“p

_ _ N s=3|Ng—ml. (4.47)
As discussed in more detail in Sec. V the system of mass-
less equations in the forif#.39 is manifestly invariant un-  For definiteness, leh be some nonnegative integer. Then the
der the higher spin global symmetnyi(1,18). Note that the  following dynamical massless fields appear in the multiplet:
formulation we use is in a certain sense dual to the usual

construction of induced representatidi6d]. The difference Cap-rap@)r Cayoeeap_ g i(X), ...,
is that the module we use is realized in the auxiliary Fock
space, while the space-time dependence is reconstructed by Cayooany rig i (X oo

virtue of the dynamical equatio@.35 that links the depen-
dence on the space-time coordinates to the dependence on Ci.. i (X),..
the auxiliary coordinates. This module is induced from the e

vacuum annihilated by the translation gener&gf that acts chrPr-m, i W(x). (4.48

on the auxiliary spinor coordinates, while in the construction ’

of [61] the vacuum state is assumed to be annihilated by th&#he modules F, describe various supermultiplets of

generatorK" of the special conformal transformations act- su(2,2\) with the type of the conformal supermultiplet

ing directly on the dynamical relativistic fieldd.et us stress  characterized byr. The most interesting case is=0. Ac-

that this is not just a matter of notation singis eventually  cording to Eq.(4.45 a=0 requires\ to be even. Let us

identified with thed, by virtue of Eq.(4.35.] show that thew=0 supermultiplets are self-conjugated con-
BecauseN - commutes to the generators ®(2,2.\), formal supermultiplets. These include thé=2 hypermul-

the Fock modulé of su(2,2.A) decomposes into submod- tiplet andA'=4 Yang-Mills supermultiplet.

ulesF, of su(2,2N) classified by eigenvalues of,, i.e., From Eq.(4.45 it follows that =0 impliesm=A7/2 and,

spanned by the vectors satisfying therefore, the set of dynamical massless fields in the super-

multiplet contains

o, cPr B (X)),

Ny | @)= | D). (4.40
. . el L. Cal'“a/\//Z(X)7 Ca1.<.aM271,i(X), f ey
According to the definitior{1.17), the vacuum has a definite

eigenvalue oN Cayrraygy iy i (X - %) (4.49
N along with
Np*[0)(0] =~ 5. (4.41) . o
Because
chi B vigi (%) (4.50
Ny, fle =(Np+Ngy—Na—Ny)f, (4.42
[Ny P =N+ Ng=Na— Ny In particular, for the cas&/=0 we obtain a single scalar
where field. For V=2 the hypermultiplet appears:
J ~ 0 Ca(x)v Ci(x)! CBI ij - (451)
Na=a;——, Np=b"——, (4.43 : : .
Ja;, ab® For N=4 we find theA'=4 Yang-Mills multiplet:
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CaB(X)I Ca!i(x)1 Cij(x)y
' o (4.52

The algebrahu(2V~12V"18) contains the infinite-
dimensional subalgebru(2V~1,2V~1|8) which is the cen-
tralizer of Ny in hu(2V=1,2V=8), i.e.,cu(2V=%,2V"1/8)
is spanned by the elemerfts hu(2¥~1,2V-1/8) that com-
mute with N

chiik(¥), € (X).

[Ny, f],=0. (4.53

This is equivalent to

(NatNy)f=(Ny+Ngf. (4.54
Because of Eq(4.53, the algebracu(2~%,2V"1|8) is not
simple, containing ideall, spanned by elements of the form
h=(Ny—a)*f, [f,Ny], =0. Now we observe that the op-
erator N,— « is trivial on the moduleF . Therefore,F,,
forms a module over the quotient
hu,(2V"1,2V"38)=cu(2V 1,2V 48)/I,,. Thus, different
a correspond to different subsectorgquotients of
cu(2V~1,2V71I8) associated with different supermultiplets.
Let us note that ii20] the algebrau(2V~*,2V~1|8) was
called shs&(4|A\), while the algebrahu,(2V~1,2V1|8)
was calledshs@(4|N). It was argued if21] that it is the
algebracu(2V~1,2V-1/8) that plays the role of the 4D
higher spin conformal algebra, while
shséi(4|f\/) is unlikely to allow consistent conformal higher

algebra

PHYSICAL REVIEW B6, 066006 (2002

O"(—a,—b|x)=—0"(a,b|x) (4.56
andp=1-m, r=1-n. The algebrahu(m,n|8) realized by
the matriceg1.1) acts naturally on such a column. It is clear
that the fermionic Fock states due to the Clifford variahes

and ¢' give rise to a particular realization of this construc-
tion. Most of the content of this paper applies equally well to
both constructions. We will mainly use the Clifford realiza-
tion because, although it is less general, it has larger super-
symmetries explicit. Note that the algebrag(m,n|8) are

not supersymmetric for generim and n (i.e., they do not
contain the wusual supersymmetry algebras as finite-
dimensional subalgebrasThey areA’=1 conformal super-
symmetric, however, for the case=n and acquire more
supersymmetries whem=n are multiples of 2. The supe-
ralgebrashu(n2*~*,n2V=%|8) and their orthogonal and
symplectic  reductions ho(n2V~1,n2V"18)  and
huspgn2V=1,n2"~%8) act on the set ofn copies of
N-extended conformal supersymmetry multiplets. In this no-
tation it is then—oo limit that plays a crucial role in the
string theory AdS/CFT correspondengg3-5. (For more
detail on the properties dfu(m,n|8) we refer the reader to
[25]. See also Sec. IV D.

B. Generic solution

Once the massless equations are reformulated in the form
(4.35 and the vacuum background fieldg, is represented in

the algebrathe pure gauge forrt8.12), the generic solution of the mass-

less equations acquires the form

spin interactions. The conclusions of the present paper are

somewhat opposite. We will argue that consistent conformal
theories exhibiting the higher spin conformal symmetries

may correspond to the simplenodulo the trivial center as-
sociated with the unit elemenalgebrashu(2¥~1,2V-1/8)
or hu,(2V=1,2V=1/8) and their further simple reductions of
orthogonal or symplectic typésee subsection IV D Note
that in [23] it is shown that theN'=0 algebrahuy(1,08)
admits consistent cubic higher spin interactions in Adsh

interesting problem for the future is to extend the proposed
conformal form of massless field equations to the case with

dynamical conformal higher spin gauge fielgme-forms

|D(a,b,¢|x)) =g~ X(a,b; ¢, p|x)* | Do(a,b, $)),
(4.57

where|®y(a,b, ¢))=|Po(a,b, $|X,)) at such a poink, that
g(xg)=1. For the gauge functiog [Eqg. (3.19] one obtains
with the help of Eq(4.34) the general solution in the form

U 1
C(a,b,¢|x)—(27T)2

f (74T Co(B 45,07+ X 5T, B)

X exps,t“

included. Taking into account that the conformal higher spin

gauge theory framework allows for off-mass-shell formula-
tion of higher spin constraints for higher spin gauge fields
[21,62, such an extension is expected to be of crucial im-
portance for the construction of nonlinear off-mass-shell

higher spin dynamics.

Finally, let us note that it is straightforward to introduce b,

&2 - —
:ex;{ —X“p abaﬂa'ﬁ) Co(a,b, ). (4.58

HereCo(E_,b,E) is an arbitrary function of the variables,,
and ¢'. It provides “initial data” for the problem.

color indices by allowing the Fock vacuum to be the columnChoosingCy(a,b, ¢) in the form

EP(a,b|x)*[0)(0]

®)=| -
O'(a,b|x)*|0)(0|

R

whereEP(a,b) andO'(a,b) are, respectively, even and odd

functions of the spinor variables;, andb®

EP(—a,—b|x)=EP(a,b|x),

(4.59

where 7, and ;ﬁ are (commuting spinor parameters, one
obtains the plane wave solution
C(a,b, ¢[x)=Cco( )exp(b“n,+ 725~ 7x57.)
(4.60

Cola,b, d)=co( @)exp(b®n, + 77a5),

with the lightlike wave vector
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Kajg= 707 (4.6 [0)(0]=2*“expAa,b*~a ;b + 4 d). (4.64

Let us note that our approach exhibits deep similarity withIn components,
the twistor theory63,64,59. The conformal spinora;, and

~ o0 N
pﬁ, which play a key role in the construction as the generat- G(ba, B|x) = 2 1 Do ,gl...[';mjl...jk(x)
ing elements of the star product algebra, are analogous to the min=0 k=0 M!N!k!H =17 "n
quantum twistors of64]. An important difference, however, ~ _
is that we do not assume thet? maps one pair of twistors Xb..-b%ag ---ag ¢ -y (469

to another. In our constructionspace is treated as the base _ )
manifold while the spinor variable generate the Fock spacénalogously, one can consider the row representation of
fiber. At the first stage the field variablésections of the hu(m,n[8). _ _ _

vector fiber bundigare arbitrary functions of the variables ~ The dynamical equation faf| is

X272, a;, andb? so that there is no direct relationship be-

o 8a, _ W[+ (U |* wy=0. 4,
tween the two sectors. They are linked to each other by the (W[ +(W[rwo=0 (4.66
equations of motiort4.35 which imply that solutions of the To impose the reality conditions let us define the involu-

massless equations are flat sections of the Fock fiber bundjg), + by the relations

over space-time. This allows one to solve the field equations

using star product techniques as explained in this section, (a,)=ib: (ba)T:i’a“_d
thus providing a counterpart of the twistor contour integral “ “ ’
formulas. Typical twistor combinations of the coordinates

and spinors[such as e.g., the combinatiorfﬁﬁ in Eq.

(4.58] then appear as a result of insertion of the gauge func- T i

tion g [Eq. (3.19] that reproduces Cartesian coordinates in (d)'=¢" (&) =¢i. (4.68

the flat space. Another difference mentioned at the end O§jnce an involution is defined to reverse the order of product

Sec. Il is due to systematic use of the language space ¢, tors

differential forms in our approach. In fact, this allows us to

handle higher spin gauge symmetries in a systematic way (fxg) =g f" (4.69

that is of key importance for the analysis of interactions.

Note that our approach can be used in any other coordiand conjugate complex numbers

nate system by choosing other formsgfProvided that the

higher spin symmetry algebra contains conformal subalgebra (qu)T:;fT, neC, (4.70

(as is the case in this papermnalogously to the twistor

theory, it works for any conformally flat geometry becauseone can see that t leaves invariant the defining relatibss

conformally flat gravitational fields satisfy the zero curvatureand(1.13 of the star product algebra and has the involutive

equations of the conformal algebra. For example, it can beroperty (¥=1d. By Eq. (4.69 the action of T extends to

applied to the Ad$space. The generic solution of the mass-an arbitrary element of the star product algebra. Since the

less field equations in AdSwvas found by a similar method star product we use corresponds to the totédlyt)symmet-

in [65,8]. ric (i.e., Wey) ordering of the product factors, the result is
simply

(a)'=ib,, (b, =ia,, (4.67)

C. Reality conditions (f( bE 4 $))T ?r('E ib i3 E(ﬁ) 4.7
a,a,n,b; o, =rap,io,la,1a;9,¢), .
So far we have considered complex fields. The conjugated

multiplet is described by the right module formed by thewheref" implies reversal of the order of the Grassmann fac-
states tors ¢ ande, i.e., f’=(—1)"""V/2f if fis an ordem poly-
W (a,b8. ¢ x)| =[0%(0]*G(b., b |x), 4.6 nomial in ¢ and¢. One can check directly with the formulas
(w( ¢‘| )1=10){0}*G( ¢'| ) (4.62 (1.4) and(1.14) that Eq.(4.71) defines an involution of the
star product algebra.
Let us note that in the general case haf(m,n|8) the
— TR S — involution T is defined by Eq(4.67) along with the usual
|0){0[*a,=0, [0)(0[*b"=0, [0)( Hermitian conjugation in the matrix sector. The column
(4.63 (4.55 is mapped to the appropriate conjugated row vector

where the vacuunf0)(0| is defined by the conditiofis

ie., — — — .
(V|=(|0)(0[*Ep(a,blx), [0)(0[*O,(a,b|x)).
4.72
3Let us note that the vacy@)(0| and|0)(0| belong to algebra- The reality conditions on the elements of the higher spin
ically distinct sectors of the star product algebra: the computation ofllgebra have to be imposed in a way consistent with the form
|0)(0|*|0)(0] leads to a divergency. of the zero-curvature equatiori8.9). This is equivalent to
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singling out a real form of the higher spin Lie superalgebra. D. Antiautomorphism reduction and self-conjugated
With the help of any involution T this is achieved by impos- supermultiplets

ing the reality conditions The algebrasiu(m,n|2p) were showrj25] to admit trun-
" () cations of the orthogonal and symplectic types(m,n|2p)
fr=—im"f (4.73 andhusp(m,n|2p) singled out by the appropriate antiauto-

) N ) _ ~morphisms of the underlying associative algebra. Let us re-
[7(f)=0 or 1]. This condition defines the real higher spin ¢l some definitions.

algebrahu(m,n|2M) for M pairs of oscillators. For the Clif- Let B be some algebra with th@ot necessarily associa-
ford realization of the matrix part one arrives at the realijye) product law ¢ . A linear invertible mapr of B onto
algebrahu(2~*,2¥"1/8). itself is called automorphism i(a ¢ b)=7(a) ¢ (b) (i.e.,

of the Lie superalgebra built from the star product algebrapat the subset of elemends: B satisfying
but not of the associative star product algebra itself. The

situation is very much the same as for the Lie algaifa) r(a)=a (4.79
singled out from the complex Lie algebra & n matrices
by the condition(4.73 (7=0 for the purely bosonic case Spans a subalgebB CB. Itis customary in physical appli-
with T identified with the Hermitian conjugation. Anti- Cations to use this property to obtain reductions. In particular,
Hermitian matrices form the Lie algebra but not an associa@Pplying the boson-fermion automorphism which changes
tive algebra. In fact, the relevance of the reality conditions ofthe sign of the fermion fields, one obtains reduction to the
the form(4.73 is closely related to this matrix example be- bosonic sector. Another example is provided by the operation
cause it guarantees that the spiri.e., purely Yang-Millg ~ 7(&)=—a" of the Lie algebragl(n) (t implies transposi-
part of the higher spin algebras is compact. More generallytion). The condition(4.79 then singles out the orthogonal
these reality conditions guarantee that the higher spin synubalgebrab(n)Cgl(n).
metry admits appropriate unitary highest weight representa- Alinear invertible magp of an algebra onto itself is called
tions (see Sec. V)l Note that in the sector of the conformal antiautomorphism if it reverses the order of product factors
lgebr 2,2) the realit nditior(4.73 i ivalen
?ﬂle]t)).asu( ,2) the reality conditior(4.73 is equivalent to (20 b)=p(b) & p(a). (4.80

Now one observes that One example is provided by the transposition of matrices.

_ More generally, letA=Mat,,(C) be the algebra oM XM
(l0)(op*=10)(0l. (474 matrices over the field of complex numbers, with elements
a'j (i,j=1-M) and the product law
Imposing a reality condition analogous to E4.73 on the

conformal matter modules (ach)’j=a'yb;. (4.80
(|®))T=—i (| (475 Let 7 be a nondegenerate bilinear form with the inverse
M, 1€,
equivalent to 7 =6 . (4.82
Cl=-i"9gG, (4.76 It is elementary to see that the mapping
one finds by Eq. (4.70 that the matter fields p, (@)= n"a 7 (4.83

O, P Pmiri(x) are complex conjugated to
1 n ) o .
cﬁl"'ﬁm;ll...g,njl._‘jk(x) up to some sign factors originating
from the factors of and the reversal of the order of Grass- o
mann factors in the definition of fiEq. (4.71)]. For example, nd=nk (4.84

for the scalars we havg(x)=—c(x), for the spin 1 field
strengths §,5) =C.j, €tc.
Let us note that the operatdt, is self-conjugate

is an antiautomorphism dfl aty,(C). If the bilinear formz"
is either symmetric

or antisymmetric

A=A, (4.89
Ni=Ny. (477 the antiautomorphism, is involutive, i.e.,p2=1d. One can
extend the action op to rows and columns in the standard

As aresult, iff @) satisfies Eq(4.40 the conjugated module way by raising and lowering indices with the aid of the bi-

satisfies linear form ' and its inverse.
The star product algebra admits the antiautomorphism de-
(P[*(Ny—a)=0 (4.78  fined by the relations
with the same read. p(az)=iay, p(b=ibe, (4.8

066006-13



M. A. VASILIEV PHYSICAL REVIEW D 66, 066006 (2002

p(b) =i, p(gj):gj_ (4.87) ;I'herefqre we gonfine purselvgs to the case of g%nln
act, this case is most interesting because it admits the self-
This definition is consistent with the propei.80 and the ~ conjugated supermultiplets.
basis commutation relatiori4.13 and(1.5). For the generic Following the analysis of25] one can check that the
element of the star product algebra we have algebras extracted by the conditi¢A.90 for N=4p and
N=4p+2 are isomorphic to

p(f(a,a,b,b;¢,¢))=f(ia,ia,ib,ib;¢,¢). (4.89

, _ o ho(24~1,2*~1|8) for N=4p (4.93
Because the product law in a Lie superalgebra has definite
symmetry properties, any antiautomorphipmf an associa-
tive algebraA that respects th&, grading used to define the and
Lie superalgebrd, by Eqg.(1.7) induces an automorphism of
7, of | according to husp24P*1,2%0*118)  for N=4p+2. (4.99

=—(i)7(H
7p(1) == ()™ p(f). (4.89 In particular, forN=2 and N'=4 we gethusp(2,2/8) and

As a result, any antiautomorphispnof the associative alge- ho(8,88), respectively. Let us stress that the elements of the
braA allows one to single out a subalgebra gby imposing ~ SU(2,2) algebra(1.10, (1.19, (1.16 all satisfy Eq.(4.90

i ) and, thus belong to the truncated superalgebras
the condition(4.79): ho(2%P~1,2*P~1|8) andhusp(2*P"1,2*P*1|8). The same is
f=—(i)"Op(f). (4.90 true for the algebrasp(2.V,8) spanned by various bilinears
of the superoscillators.
For example, foA=Maty(C), |o=9glu(C). The subal- One observes that
gebras ofgly singled out by the conditiotd.90 with 7=
—psandra=—pp areo(M|C) andsp(M|C), respectively, p(N)=—N,. (4.95

because the conditio@.90 just implies that the formy" is
invariant. Note that analogously, one can define involutions

; e ; ; This means that the reducti@ga.90 is possible for the alge-
via nondegenerate Hermitian forms. If T is such an involu-
g f bras hu,(2V~%,2V71|8) if and only if a=0. We call the

:I(s)rrr]n?];h'\e/zl ?é'\s"slct:l)n; ﬁgi?g\élgr; bf(cl)\j;t!ve-deflmte Hermitian algebras resulting from the reduction léig(2V~1,2V71(8)
The algebrasho(m,n|2p) and husp(m,n|2p) [25] are Y the a”“a“tom‘er*}'Wj‘s hoo(2%°7*,2'7"78) for N
real Lie superalgebras satisfying the reality conditigh33 =4p andhusp?(Z P 24p 8) 'forJ\/= 4_p+2. The alge-
and the reduction conditioi4.90 with the antiautomor- brahog(8,88) is the minimal higher spin conformal sym-
phism p defined by the relationé+.86 along with the defi- metry algebra associated with the lineariz&@=4 Yang-

nition (4.83 for the action on the matrix indices with some Mills supermultiplet, while the algebr&u(2,28) is the
(m+n) X (m+n) bilinear form 7/ that is block diagonal in minimal higher spin conformal algebra associated with the

the basis(1.1) and is either symmetri! = 74 or antisym- ﬁD />1/i: iDmaS:flersri Ih);ﬁerr]mrultlpilnet. IThber m|n|mail tpgr(\j\%h
metric "' = 3 . For »d and 5} we arrive, respectively, at osonic coniormal igher spin aigebra assoclate

. . the spin 0 4D massless scalar fielchigy(1,08). This alge-
the algebrasio(m,n|2p) andhusp(m,n|2p) with the spin 1 ; ) .
Yang-Mills subalgebras(m)ao(n) and usp(m) e usp(n) bra was recently discussed by Sezgin and Sufdg]lin the

. ; . ._context of the Ad$ higher spin gauge theofyhese authors
|trc1)r;he sector of elements independent of the spinor oscnladenoted this algebrns(2,2)]. Note that the higher spin

: — — auge algebra of AdShigher spin gauge theory dual to the
For the particular case of the algetra(2"~1,2V-1g) 92! . ,
with the Clifford star product realization of the matrix part, N=4 Super Yang-Mills(SYM) theory ishoq(8.98).

the antiautomorphism is defined in Eq(4.87). As argued in In the matter sector we define
[25] this antiautomorphism is diagonal in the bagisl) for

even A and off diagonal for oddV. To see this one can p(|®))=p(C*[0)(0)
check that the element 1
| 0 :A_A8J1~..j/“10><0|*¢jl*...*d)jN*p(C),
K:(o —|) (4.9 (4.96

identifies in terms of the Clifford algebra with the elemént
that is the product of all Clifford generating elemefitsthe “Note that to makep diagonal for the case of odd/ one can
basis with the diagonal symmetric form in the defining Clif- modify its definition in a way that breaks trei(\V) algebra to at
ford relations so thatI'?=1, {I',¢;}=0, {F,¢i}=0_ Then leastsu(N—1). To this end it is enough to modify E¢4.87) to

one observes that p(h1) =, p(d*) = ¢4, leaving the definition op for ¢; and ¢/
with j>1 intact. This will bring an additional sign factor into Eq.
p(T)=(—-1)"T. (4.92  (4.92.
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p((¥])=p(]0)(0[*G)

1 — —
_ j\_/lgil'“wp(G)* P'1x % bl [0)(O|

(4.97
to make Eq.(4.87) consistent with Eqs(4.21) and (4.63).

PHYSICAL REVIEW B6, 066006 (2002

V. 4D CONFORMAL HIGHER SPIN SYMMETRIES

The system of equatior(8.9),(4.39 is invariant under the
infinite-dimensional local conformal higher spin symmetries
(3.10 and

5| @)= x| D). (5.1)

Now we can impose the reduction condition on the matter

fields

p(|@))= ="l (4.98

which is consistent with Eq4.90. Along with the fact that

The reduction conditior4.98 reduces the higher spin alge-
bra to the subalgegra4.93) or (4.94 with the symmetry

parameters(a,b; ¢, ¢|x) satisfying the conditiori4.90).

(W] describes the conjugated fields subject to the Hermiticity Once a particular vacuum solutiany is fixed, the local
condition (4.73 this imposes the reality conditions on the higher spin symmetry5.1) breaks down to the global higher

left module|®)

p(|@))=(|D)". (4.99

For the self-conjugated supermultiplets with=0 this
imposes the reality conditions on the fields of the same mul-

tiplet. In terms of components this implies that

~ . N PEEES
CBl"'ﬁmal"'an 1 Jk(x)

1 S i
= —(J\/— 1 PR PV '1Ca1--~an51"‘BmiN-k-”il(X)-
(4.100
In particular, for the\’=4 multiplet we have
N 1 ikl A
Cap= T Capijkl » (4.101
i 1 ikl - 410
Ca=58" Cajk (4.102
cl= Esijklcm- (4.103

The resulting set indeed corresponds to the realMB4

spin symmetry(3.13. Therefore the systert#.35 is invari-
ant under the infinite-dimensional algetira(2~*,2V~1|8)
of the global 4D conformal higher spin symmetries

3 ®) = eg*| ®), (5.2

where e, satisfies Eq(3.11 with the flat connectiori3.17).

After the higher components i@(ﬁ,b,¢|x) are expressed
via the higher space-time derivatives of the dynamical mass-
less fields according to E¢4.38), this implies invariance of
the 4D massless equations for all spids20 under global
conformal higher spin symmetries. Thus, the fact that mass-
less equations are reformulated in the form of the flatness
conditions (4.35 supplemented with the zero-curvature
equation(3.9) makes higher spin conformal symmetries of
these equations manifest. Note that because of&88 and
the quantum-mechanical nonlocality of the star produed,
the higher degree afy(a,b|x) as a polynomial ofi andb is,
the higher space-time derivatives appear in the transforma-
tion law. This is a particular manifestation of the well known
fact that the higher spin symmetries mix higher derivatives
of the dynamical fields.

The explicit form of the transformations can be obtained
by the substitution of Eq4.38 into Eq.(5.2). In practice, it

(SYM) supermultiplet with six real scalars, four Majorana is most convenient to evaluate the higher spin conformal
spinors, and one spin 1 field strength. transformations for the generating parameter

The special property of the self-conjugated supermultip-
lets therefore is that the antiautomorphigrtransforms them
to themselves. In other words, they are self-conjugated with(a,a,b,b, ¢, ¢:h.0,j.], 7. 7)
respect to the combined action of the conjugation T and the
antiautomorphisnp. The infinite-dimensional superalgebras
hog(24P~1,2*°~1|8) for N=4p andhusp,(24°"1,2*P*1|8)
for N=4p+2 are therefore shown to be algebras of confor-
mal higher spin symmetries acting on the self-conjugated

s_upermultlplets._ Emally, let us note th‘."‘t the whole C.onStruc'vvhereg is an infinitesimal parameter. The polynomial sym-
tion extends trivially to the case witim supermultiplets

described by the algebrashiu(n2V-1n2V-18) and metry parameters .cim be optained via differentiation of
their further reductions ho(nZNfl,nZN*1|8), f(a,a,b,b,¢,¢;h,|1,_j,j,7],~77) with respect to the commut-
huspn2V=1,n2V=1/8) and  hug(n2V=1 n22"18), ing “sources”h®, h* j,, j, and anticommuting “sources”
hog(n2%P~1,n2%P~18), husp(n24P*1 n24P*18) (the lat- 7', #,. For the case of flat space, using E(®.13,(3.19

ter algebras are assumed to be defined as before as the qamd the star produdil.4), we obtain upon evaluation of el-
tients of the centralizer dfi,). ementary Gaussian integrals

= gexp(h®a, +h9a, +j oA+ b+ ¢ 7 + 7 ),
(5.3
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6 aia!blBl 1_;h|’F]5-!’T’I l_X . —_— (7
o b, )Jnnl) o Qi=d (5.13
= cexpha, +ha, + P +7 6%+ 7 b
+ 9 +jax“555—aax“gﬁb). (5.4
Co— ~ d
Substitution ofey into Eq. (5.2 gives the global higher spin =~ Q.'= ¢'< aa—xﬁa—ﬁ), (5.19
conformal symmetry transformations induced by the param- b
eter(5.3):
8| ®(a,b, ¢|x))=6C(a,b, $|x)*|0)(0], 5.5 — 9 J
(@b, ¢lx)=6C(@b,dlx)*[0)0], (55 - _i(ba_xa_ﬁ), 5.15
where ¢ 93
5C(a,b,¢|x)
— Jd d
e — iaz_:iT. (5.16
= £exp h*a,+ ] sbP+ 7;¢' ag' da,
. e Lo 1 1 — .
—Jax“'ﬁhﬁ— 21 Jhe+ 51 NE— 57 7 Here thex-independent superchargés13 and (5.16 cor-

respond toQ supersymmetry while th&-dependent super-
chargeg5.14) and(5.15 correspond td&S-supersymmetry.
F is a module over the algebmsp(2\,8) which, to-

(5.6 gether with theu(1) algebra generated by the unit element of
i i the star product algebra, forms a maximal finite-dimensional
Such a compact form of the higher spin conformal tra”Sfor'subalgebra of the higher spin algebnai(2"~1,2V-1/8).
mations is a result of the reformulation of t_he dynam'calEquation(4.35) contains the equations for all supermultip-
equations in the unfolded form of the covariant constancygg Theosp(2\V.8) invariance links together all free 4D

conditions, i.e., in terms of a flat section of the Fock fiberqqfoma| supermultiplets. The explicit transformation laws
bundle. Differentiating with respect to the sources one deyqarived from Eq(5.6) are

rives explicit expressions for the particular global higher spin
conformal transformations.
For at most quadratic conformal supergenerators acting on

X C(a,—]a—ipgxP, b*+he— x“'ﬁﬁb,g —7'[x).

C(a,b, #|x) one obtains with the help of E¢4.39 Upp=—"", (5.1
db*obP
- d - J
Pa'B: ) Pn:UﬁBPQB:_1 (57)
X% - - axn
U-—a-_xy-ii (5.18
J 1(. 9 J “ P B&by b’ .
D=1+x"—+ | a,—= +b*—/], (5.8
axt 2\ “aa, ab®
J d J T S | =S 1
N T A S Vap™| BamX0ag S| @8 50a ) (519
daj ab” ax”s
(5.9
d g 1 d d Y A
_ _ Vb= ——— (5.20
Lof=bF— +x~, ——5§(b7—+x7a ) gm
db® axe;, 2 abY ax”, dagdap
(5.10
—. .9 a 1 4. a e «_va. 9|9
Lof= 2, = X", ——+ 58| =+ X" — |, v :_(b_XBfTJTT’ (5.2
Jaj XV 2 ajs ax’ dap) oa,
(5.11
d d
TJI—}5=_¢JL__, (5.12) Vb= b“—x“&T)(bﬁ—xﬁBT» (5.22
2 g da, Jag
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52 o is analogous to the Fock moduloversu(2,2) that contains
U =——, Ul=¢'¢, (5.23  all irreducible 4D massless unitary representations of the
dd'dP! conformal algebra called doubletons[it9]. In fact, Sis the
so-called singleton module ovep(8) that decomposes into
R — 9 (5.24 irreducible doubleton modules over(2,2). The difference
ai ™ ﬁbaﬁg' ' is that thesp(8) singleton moduleS is unitary while the
Fock moduleF is not. That there exists a mapping between
B P ) P the doubleton and field-theoretical representations of the

— (5.25 conformal (or AdS) algebra was originally shown if66].
J¢' The goal of this section is to demonstrate that, analogously to
the 3D case considered [i4], in our approach the duality
wil e cu — between the two pictures has the simple interpretation of a
R¥=|b*—x"5—= ' (5.26 certain Bogolyubov transform. Remarkably, this form of du-
ality is coordinate independent. The coordinate dependence
results from the gauge choid8.12 that fixes a particular
RY—_ gl (5.27  form of the background gravitational field.
That the moduld4.32 is nonunitary is obvious from the
. fact that, as a result of the Lorentz invariance of the vacuum
To obtain the variationsC(a,b, ¢|x), one has to apply |0)(0|, the set of component field4.33 decomposes into

these generators fb("é,b,glx). Application of the formulas ~ the infinite sum of finite-dimensional representations of the
(4.36 and(4.37 to 5C(5,b,$|x) then gives the variation of noncomtpact 4.D. Lolren':_z_ alglebrz(&l)a(Rec?II tzat_tnof_n-_t
the particular dynamical higher spin fields. The rule is that,cOMPact semisimpie Lie algebras do mnot admit finite-

o ~ _dimensional unitary representationélso, this is in agree-
whenever the second derivative(db“da,)(C) appears, it t with the fact that th ‘ugated - 6| E
has to be replaced by the space-time derivagiyaccording MeNt Wi e fact that the conjugated vacul@( o}

LAY . (4.64)] is different from|0){0|.
to Eq. (4.38. As a result, a parameter of the higher spin The unitary Fock modul& oversp(8)Dsu(2,2) is built

conformal transformatiore(a,b; ¢, $|x) polynomial in a in terms of the oscillators

andb generates a local transformation of a dynamical field

with a finite number of derivatives. In particular, the usual

su(2,2;N) conformal transformations and their extension to  [e,5,e,5], =0, [fA.f51,=0, [e,a.f5], = kns,
the osp(2N,8) transformations contain at most the first (6.1)
space-time derivatives of the dynamical fields. Thus,

0sp(2N,8) is shown to act by local transformations on thewhere w,»=1,2; A,B=1,2, and ky;=1, kpp=—1, K1
massless fields of all spins in four dimensions. That=,, =0. The oscillators obey the Hermiticity conditions
osp(2N,8) must act on the 4D massless fields was empha-

sized by Fronsddl30]. The reformulation of the higher spin

dynamics in terms of the flat sections of the Fock fiber (e,n)T="1%. (6.2
bundle allows us to derive simple and manifestly local ex-
plicit formulas (5.19—~(5.27. The unitary Fock vacuurf0,)(0,| is defined as

Analogously, one can derive from E(.6) the transfor-
mation laws for the higher spin gauge symmetries associated _ B v
with the whole infinite-dimensional  superalgebra v [05)(0u[ =0, #5%[04)(04[=0, [0,)(0y[*f; =0,
hu(2V~1,2V-1|8). Note that the speacific form of the depen- |0,){0,|*e,2=0. (6.3
dence on the space-time coordinaXe§ originates from the

choice of the gauge functiof8.19. The approach we use is The compact subalgebtg2)& u(2) of u(2,2) is spanned by
applicable to any other coordinate system and conformally

flat backgroundfor example, Ad$). Also, let us note that it
is straightforward to realizesp(L,8) supersymmetry with
oddL by starting with the Clifford algebra with an odd num-
ber of generating elements. The reason we mostly focused dhoncompact generators eti(2,2) are

the casel =2\ was that we started witku(2,2;\). For

general L the maximal conformal embedding is t,"=ey,fy, t;”zezﬂff. (6.5
su(2,2;1/2L])Cosp(L,8).

T =eafA (A=1,2 no summation oved). (6.4

(Recall that we use the Weyl star product notation, i.e., all
VI. UNFOLDED FIELD THEORY AND QUANTIZATION bilinears listed above are elements of the star product alge-

The formulation of the higher spin dynamics proposed inbra.) The superextension is trivially achieved by requiring

this paper operates in terms of the Fock modElever _
su(2,2) induced from the vacuuid.22). This Fock module &i*|0,)(0y|=0, |0y){0,|* p'=0. (6.6

066006-17



M. A. VASILIEV PHYSICAL REVIEW D 66, 066006 (2002

The relationship between the two sets of oscillators is cide. Indeed, the values of the Casimir operators in the cor-
responding irreducible representatidesy., ofsp(8) in F or
1 ~ 1 . S] are determined by the fact of the realization of the alge-
€117 E(aﬁ'aé), ez,ﬁﬁ(aﬁ'az% bras in terms of oscillators rather than the particular condi-
tions (6.3 or (4.21) on the vacuum state. The duality map
between the field-theoretical picture and the unitary picture
L= ——(ay—13y), €p,=——(ai—ia,) is essentially the quantization procedure. The two modules
L ot T maE R Eeh are unitary inequivalent because the respective classes of
(6.7) functions associated with solutions of the field equations are
different. We believe that this phenomenon is quite general,
1 5 1 _ i.e., the unfolded reformulation of dynamical systems in the
fl.=—(b,+ib;y), % =—=(by+iby), form of some flatnes§.e., covariant constancy and/or zero-
\/E \/E curvature conditions will make the duality between the clas-
sical and quantum descriptions of the dynamical systems
1 1 bt B 2 _ 1 _Eetib manifest for the general case. Hopefully, the Bogolyubov
Z_E( 2Fib3), Z_E( 2tiby). transform duality between the classical and quantum field
(6.9 theory descriptions can eventually shed some more light on
the nature of quantization and the origin of quantum mechan-
The unitary Fock vacuum is realized in terms of the starics.
product algebrdl.4) as The classical-quantum duality of the unfolded formulation
_ of field-theoretical equations allows a simple criterion for the
|0,)(0y|=2%Vexp 2 —e,,fi—e, f5+ did). (6.9 compatibility of a field-theoretical system with consistent
_ guantization; namely, if a nonunitary module that appears in
The unitary left and right Fock modulesand S built from  the unfolded description of some classical dynamics admits a
the vacuun0,)(0,| are identified with the direct sum of all dual unitary module with the same number of stafies.,
superdoubleton representationsaf(2,2) and their conju- generated with the same number of oscillatave interpret
gates. As in the nonunitary case, the irreducible componentis as an indication that the dynamical system under consid-
are singled out by the conditio@.40. In the unitary basis, eration admits a consistent quantization. Since every dy-
Ny has the form namical system admits some unfolded formulation, this pro-
vides us with a rather general criterion. Moreover, this
No=e,af"gx"". (6.10 technique can be used in the opposite direction to derive
field-theoretical differential equations compatible with uni-
tarity such as those associated with the cohomology group
Y(o_) of the unfolded systems that admit consistent quan-
zation. We now apply this idea to the derivation of the
ompatible with unitaritysp(2M) invariant equations in
generalized space-times.

The Fock spac& forms a unitary module ovesp(8) called
a singleton. It contains two irreducible components spanne
by even and odd functions, respectively. :
The dependence on the space-time coordinates of the ei
ements of the field®(x)) is determined completely by Eq.
(4.35 in terms of its value at any fixed poirg. This means
that the modulg®(xo)) contains the complete information VIl. CONFORMAL DYNAMICS IN  osp(L,2M)
on the on-mass-shell dynamics of the 4D conformal fields. SUPERSPACE
Analogously, the doubleton module contains complete infor-
mation on the(on_mass_she”quantum states of the corre- The unfolded formulation of the field-theoretical dynami'
sponding free field theory. Let us note that the two types ofal systems allows one to extend the equations to superspace
module have different gradations associated with the respe@nd spaces with additional coordinates in a rather straightfor-
tive definitions of the creation and annihilation oscillators. Inward way. In this section we apply this formalism to the 4D
the unitary case the gradation is induced by the AdS energg¥-€xtended superspace and to superspaces with “central
operator which, together with the maximal compact subalgecharge coordinates” in four and higher dimensions. As a re-
bra, spans the grade zero subalgebra. In the field-theoretica¥lt, we shall be able to formulate appropriate equations of
case the gradation is induced by thl,1) dilatation genera- motion in the generalizedsupejspaces. The manifest
tor, which together with the Lorentz algebra spans (then- Bogolyubov transform duality between the field-theoretical
compact grade zero subalgebra. picture and the singleton pictures will guarantee that the pro-
We conclude that there is a natural duality between thé?0sed equations in generalized space-times correspond to the
field-theoretical modulé used in the unfolded formulation Uunitary quantum picture.
of the conformal dynamics and the unitary mod&eThis The main idea is simple. In Sec. IV we showed that the
duality has the simple form of the Bogolyubov transform dynamics of 4D free massless_fields is described in terms of
(6.7),(6.9). As a result, although unitary inequivalent, the the generating functioh®(a,b, ¢|x)) satisfying Eq.(4.35.
module associated with the classical and quantum pictureSquation (4.35 can be interpreted in two ways. The_
become equivalent upon complexification. The importanipicture used in Sec. Il implies that EGt.35 imposes Eqs.
consequence of this fact is that the values of the Casimif4.20 associated with the first cohomology grotid(o_)
operators of the symmetry algebras in the two pictures coinen the dynamical fields associated with the cohomology
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group H%o_). All other (auxiliary) components in tended space are associated with all generators of the gauge
|(I)(’é,b,glx)> are expressed Via space-time derivatives Oﬂ_ie Superalgebra that Underlies the unfolded formulation.

the dynamical fields by virtue of Ed4.39. The d picture

used in Sec. IV B implies that Eq4.35 allows one to re- A. Superspace

construct thex dependence dfb(a,b, ¢|x)) in terms of thg As a useful illustration let us embed the 4D dynamics of
“initial data” |®(a,b, $|xo)) taken at some particular point massless fields into superspace. We introduce anticommuting

of space-timex,. Thed picture is local. , coordinatess® and 6% associated with th€ supersymmetry
Suppose now that we have a maniféttP4 with a larger N _
set of p even andq odd coordinatesX® that contains the —Supergeneratoi®,, andQ}, so thatX=(x, 6, 6) (to simplify
original 4D coordinatex” as a subset, i.eX"=(x"yY), formulas, in the rest of this section we shall not distinguish
wherey” are additional coordinates. Létbe the de Rahm Petween the underlined and fiber indiceBhe vacuum con-
differential onMP:9: nection one-form satisfying the zero-curvature equati®)
can be chosen in the form

- d d J .
= A—: L p— [— 2: ~ 1 o + N o _
‘ dx_&xﬁ dx_axﬂ+dy'ayz’ =0, Y wo= dx“BJrE[(1+y)d0i§rg+(1—7)d5r-ﬁei] ab?

and @, be a zero-curvature connection in tteppropriate +d5;-;65¢>i+d9i“aa$, (7.5
fiber bundle overMmP4:
- — ~ — where y is an arbitrary parameter. Spinor differentiag”
a,b, ¢, ¢|X)=dx2 a,b,¢,¢|X), : _ _ b
©o(a,b,¢, $1X) @0 A(,0,¢,$1X) anddd), are required to commute with each other but anti-
(7.2) commute withdx“z, ¢;, E and the supercoordinates
0% ,05. w, admits the pure gauge representatiop=
such that its pullback to the original 4D space-tit®  —g~*+dg, with the gauge functiony of the form
equals the 4D connection,, i.e.,

d(,l)oza)o*/\a)o,

a,b B+5;Bf*¢i +6%,d |

1 =
X B+§76 ia[é

&)Og(a,b,qﬁ,aX)=w02(a,b,¢,$|x). (7.3 g=exp—

Replacing the 4D equatio@.35 with (7.6

The dependence on the supercoordinates is reconstructed by
the formula(4.57 in terms of the initial data fixed at any
rHoint in superspace.

" The superfield equations of motion have the foff).
The superspace formulation, however, does not have the de-
composition(2.8). Instead it has th& X Z grading

d|®)— we*|P)=0, [®)=|D(ab,pxy)), (7.9

one observes that the extended system is formally consiste
while its restriction toM* coincides with the original system
(4.35. As a result, it turns out that the systéim4) is equiva-
lent to the original 4D systen.35 at least locally in the

additional coordinates. Indeed, as is obvious in&micture, .
the equations ir(7.4) different from those in(4.35 just re- (d+o__+0_gto)|P)=0 (7.7)

construct the dependence bb(é,b,ﬂx,y)) on the addi-

tional coordinates/” of the 4D field |®(5,b,$lx,yo)) for  associated separately with the elementsindb?. This does
somey, (e.g.,¥o=0). Let us note that to link the global Not affect the interpretation of the dynamical superfields as

symmetries associated with the Lie superalgebra in whigh representatives of the zeroth cohomology group

0 . .
takes its values to the symmetries of the extended spadd (0 .0_0,00-) with the cohomologies oF_o andoyp_
MP:9 one has to find such an extension of the space—timcgOmpUted on the subspace®f _ closed 0-forms on which

that a frame field in the generalized space-time is invertible? -0 @Nd o anticommute to zero. As a result, the dynami-

In the o picture this means that the cohomology groupC@! Superfields can be identified wi#h (0,b,0/X)) and with
H'(o_) is small enough. An important example of the ap-the field|®(a,0,¢[X)) of maximal degreeV'in ¢. Thus, as
plication of the proposed scheme is the usual superspace. Atxpected, the free field dynamics is described by general
additional simplification here is due to the fact that the ex-Superfields carrying external dotted or undotted spinor indi-
tension along supercoordinates is always global because sces(contracted withb® or a;) that characterize the spin of
perfields are polynomial in the odd coordinates. the supermultiplet. Superfields of this type were uselb8]

The extension of the unfolded dynamical equations disfor the description of on-mass-shell massless supermultiplets
cussed in this section has some similarity to the “groupin terms of field strengths. To extend our formalism to the
manifold approach” developed in the context of supersym-off-mass-shell description of massless supermultiplets
metry and supergravitisee[67] and references thergims  [69,70 one has to introduce higher spin superconnections.
we shall see, the maximal natural extension of the space-time The cohomological identification of the dynamical super-
corresponds to the situation when coordinates of the exspace equations is less straightforward, however, in view of
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Eq. (7.7), although the main idea is still the same: the super- . Bl — B o1 = & pBl —
space equations are identified with the null vectors of the [ac B le=0q, [ac,aple=0. [B%B"; 0'(7 8
operatoro_ _+o_g+0y_ . One complication might be that, ’

as is typical for the superspace approach, it may not alwaygye stjll use the Weyl star product.4) for the oscillatorse;,
be possible to distinguish between dynamical equations angndﬁ;; instead ofa- andb® but now we allow the indicea

constraints in the absence of a clear cohomological in- gndﬁ’ o range from 1 tdvl whereM is an arbitrary positive
terpretation of the dynamical equations. We hope to com o )
P y q P integer. [The normalization factor in Eq(1.4) has to be

back to the analysis of this interesting issue elsewhere. changed appropriatelyr®— 72M |

The generators o§p(2M) are spanned by various bilin-
B. sp(2M) covariant space-time ears built from the oscillatora;, and g#:

As shown in Sec. V, the set of 4D conformal equations for
all spins is invariant under thep(8) symmetry that extends

the 4D conformal symme_tryu(2,2). This raises the problem We interpret the generatoR,; andK 8 assp(2M) “trans-

of an appropriate extgnsmn of the space-time thgt would alfations” and “special conformal transformations,” respec-
low sp(8) symmetry in a natural way. The question of pos- ively. Thegl(M) eneratord -# decompose into thel(M)
sible extensions of the space-time beyond the traditiona}lL Y. i7" 9 q 191 “dilat t.“ . pt
Minkowski-Riemann extension to higher dimension has been orentz” and o(1,1) “dilatation” generators
addressed by many authofsee, e.g.[30,38-52). In par- ) 1. A
ticular, a very interesting option comes from the Jordan al- LiP=a,pl— — 8P asp?, (7.10
gebras[39,40. However, to the best of our knowledge, no M

dynamical analysis of possible equations has been done so

TiP=aiBP, Pip=azap, KP=pegh. (1.9

far. One important and difficult issue to be addressed in such .

an analysis is whether the proposed equations give rise to D= Eaaﬂ : (7.19
consistent quantum mechanics, and, in particular, allow one

to get rid of negative norm states. Note thatD is the gradation operator

More specifically, the analysis odp(8) invariant ex- o B R
tended space-time was originally undertaken by Fronsdal in [D.Pssle=—Pai, [D,K*f], =K*#, [D,L;#],=0.
[30] just in the context of a unified description of 4D mass- (7.12
less higher spins. It was argued [i80] that the simplest -
appropriate extension of the usual space-time is a certaip&[} andK“? generate Abelian subalgebras
sp(8) invariant ten-dimensional space. As shown in this sec-
tion, our approach leads to the same conclusion. The new [K&Z%,K;Qs]*:()' [Pa3,P;3lx =0. (7.13
result will consist of the formulation of local covariant field e
equations compatible with unitarity in this generalized spacetogether withs p(2M) “Lorentz rotations,”sp(2M) “trans-

The unfolded formulation of the dynamical equations inations” span thesp(2M) “Poincare subalgebra”
the form of covariant constancy conditions is ideal for the
analysis of this kind of question for several reasons. . . .

It allows one to define an appropriately extended space- [Li2, P55l = _5€P&§s_ 5§P&;+ Méﬁ 35 (7.14
time in a natural way via thélocally equivalent extension
of the known conformal 4D equations of motion.

It suggests that the resulting equations are compatibl
with unitarity once there is Bogolyubov transform duality o O T
with some unitary module. [L;2 K], = 62KAo+ 5§K37— — 5§K 7. (7.19

Starting from the infinite unfolded system ef(8) in- M
variant equations of motiofi7.4) we identify the finite sys-
tem of sp(8) invariant dynamical differential equations as
the o_ cohomologyH*(o_). Being equivalent to the origi-
nal 4D conformal unfolded system of equations, the resulting S
sp(8) invariant differential equations inherit all its properties Qa=as,
such as symmetries and compatibility with unitarity.

The approach we use is applicable to any algebr
sp(2M). We therefore consider the general case. In this sub- ) 1 1 )
iaction we suppress the dependence on the Clifford elements T A=A+ —5§D= -{Q;.s%, , (7.17
¢' and ¢; which are inert in our consideration of the purely M 2
bosonic space. They will play a role in the superspace con-

sideration of the next subsection. MZE P Zyig:E o of
Let us introduce the oscillators ap Z{Q“’Qﬁ}* K Z{S 5. (7.18

eAnalogously,

The superextension tosp(1,2M) is achieved by adding
the supergenerators

SP=g". (7.16

éAccording to Eq.(7.9), we have
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To compare with the 4D case, let us note that the opera- In terms of dotted and undotted indicé®r even M),

tors 8% and «;, are to be identified with the paies, ,b? and

there areM?/4 Hermitian coordinateX“? and M (M + 2)/4

a,, bP, respectively. The 4D notation used so far was con<oordinates parametrized by the complex makf¥ and its
venient in thesu(2,2) framework because of the simple form complex conjugatéX“?. For M =2 our approach is equiva-

of the operatolN, singling outsu(2,2) as its centralizer in

lent to the standard treatment of the 3D conformal theory

sp(8). Since No does not play a role in the manifestly with the conformal symmetrgp(4)~0(3,2). HereX*# pa-
sp(2M) invariant setting, it is now more convenient to have rametrize the three real coordinates. Therefore the 3D ap-

a simple form of the gradation operatDr

proach of[14] was equivalent to a particuldi =2 case of

The Hermlthlty conditions are introduced via the involu- the generajsp(ZM) |nvar|ant approach For the case of

tion T as in Sec. IV C with

T B at_ i -apf
a:=iClap, (BM'=iCp*BP, (7.19
whereC;j” is some real involutive matrix.e., C?=1d). In

particular, one can fix;#= 6;” that makes all thep(2M)
generators manifestly real. For evéhwe shall sometimes

use another form of;#? analogous to the 4D decomposition
of a real four-component Majorana spinor into two pairs of
mutually conjugated complex two-component spinors;

namely, we decompose;, and3” into two pairs of mutually
conjugated oscillatorse,, «, and B¢ B¢ with «,«
=1-M/2.

By analogy with the usual Minkowski space-time we in-

troduce M (M +1) coordinatesx®#=X5?, the de Rahm
dn‘ferenual

d=dx*®—— d2=0, (7.20
IXP
and the flat frame
wo=dX%Ph;5 P aag, (7.20)

sp(8) (i.e., M=4), NG identify with the usual space-time
coordinatesx®? while X*# and X*# parametrize six addi-
tional real coordinatesy?. Altogether we have ten-
dimensional extended space in accordance with the proposal
of Fronsdal[30].

Let us now introduce the left Fock module

|®(BIX))=C(B|X)*[0)(0] (7.27)
with the vacuum state
10)(0] = exp—2a;8°, (7.28
satisfying
a;#|0)(0[=0, [0)(0[*#*=0, d(|0)(0])=0.
The sp(2M) unfolded equation is
(d—awg)*|D(B]X))=0. (7.30

Itis sp(2M) [in fact,0sp(1,2M)] invariant according to the
general analysis of Sec. Ill. Moreover, this equation has the
infinite-dimensional higher spin symmethyu(1,12M).

The duality with the unitary singleton module over

8
whereh““ﬁ is some constant nondegenerate matrix so thaf P(ZM) in the basis with the real matric;, b= 5, [Ea.

dwy=0 (7.22
For example, one can set
1 ..
h?§“5=§(5&“555+5 F53%) (7.23
w satisfies the zero-curvature equation
dwo= we/\* @, (7.24

because thesp(2M) translations are commutative and,
therefore, wo/\*wo=0. The pure gauge representation

(3.12 for w is given by

g=exp— X‘}@h““ﬁa‘aﬁ. (7.29
For Eq.(7.23 we get
gzexp—X&Ba&alg. (7.26

(7.19] is achieved by the Bogolyubov transform

-1 e el g
7&_E(aa+lﬁ )! Y \/E(auz IB )1 (731)

vy v Ple=d8, (v '=y,. (132
The unitary vacuum
10,)(0u| =exp-2y; y** (7.33
satisfies
¥ *104)(0u/ =0, [0,)(0,xy**=0.  (7.34

As a result of this duality, Eq(7.30 is expected to admit
consistent quantization.
Equation(7.30 has the form

C(BIX)= (7.39

( P L
aXB 9% BP
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For the particular case ofp(8), in the sector of ordinary yond d=4. From this perspective, it looks as if the usual
coordinatesx“? it reduces to the 4D conformal higher spin Minkowskian supergravity and superstring models in higher

equationg4.35. Equation(7.35 has the form(2.8) with dimensions might be some very specific reductions of the
new class of models in generalized(2M) invariant space-
- . times underlying thégeneralized beyond=4) higher spin
o_=—dX*¥—— ¢,=0, D=d. (7.3 dynamics.
BB’ Note that, geometrically, the generalized space-time con-

) sidered in this section is the coset sp&gg/SL,,, whereP
Its content can therefore be analyzed in terms of ¢he g theSp(2M) analogue of the Poincaggoup with the gen-

O .
cohomology. The cohomology groupl (o) is param- eratorsL ;# andP;; while SLy, is theSp(2M) analogueof

etrized by the solutions of the equatian (C(B,X))=0 i B i
which consist of a scalar functiar(X) and a linear function e Lorentz algebra with the generatdrs” isomorphic to
: sly(R). Thesp(2M) conformal transformations of the gen-

Cx{(X)B°%. These are the dynamical fields of ts@(2M) eralized symplectic space-time are realized by the following
setup. We shall calkp(2M) vectorsc®(X) “svectors” to  yector fields:

distinguish them from the vectors of the Minkowski space-
time. Svectors are fermiong.e., anticommuting fields that 9
are spinors with respect to the usual space-time symmetry aB="= (7.39
algebrag The scalar and svector form an irreducible super- aXP
multiplet of osp(1,2M) dual to its unitary supersingleton
representation. . e 0

We see that the number of dynamical fields in &p8) T P=2XP"—, (7.40
invariant generalized space is much smaller than in the stan- axXY
dard 4D approach. Instead of the infinite set of 4D massless
fields of all spins we are left with only twep(8) fields, . .
namely, the scalac(X) and svectorc,(X) that form an ir- KB =aXTXPT —— (7.4
reducible supermultiplet adsp(1,8). From this perspective, JxX7"
the situation in all generalizeslp(2M) invariant symplectic To derive the ind dent i the d ical
spaces is analogous to that of the 3D modd]1df] contain- o derlve the Independent equations on the dynamica

ing the massless scalar and spinor as the only 3D conformgf)nformaI fieldsc(X) andc;(X) in the sp(2M) invariant

fields. The 4D fields now appear in the expansion of theconformal space, the cohomology groti(o) has to be

scalar and svector in powers of the extra six coordinates, studied foro of the form (7.36).1An elementary exercise
with Young diagrams shows thét*(o_) is parametrized by

one-forms that are either linear or bilinear in the oscillators,

C(X):% C(X)"‘lﬁl'"anﬁn'&lﬁl"'&mgm aB oB N 55
' A dX2Ph;5 P (F o5 387+ BapssB B0, (742
X X@1B1. . XnBnx@iBi. .. XamPm (737

whereF;; 5 has the symmetry properties of the three-cell

2 hook diagram, i.e.,
c(X)= c(X); B ]
Y Y aBy - apBn a1 By apPy e O,
mn o o Fa5,7+Fa7,B+FB%a_O' aB,y™ " Ba,y> (7.43
XX@1PL. . XX @abL. .. XomPm, - (7.38  while B.j .55 has the symmetry properties of the four-cell
5 5 _ square diagram, i.e., it is symmetric within each pair of in-
wherex“”=X"" are the 4D coordinates. It has been arguedjicesq, 3 and 5,6 and vanishes upon symmetrization over
by Fronsdal[30] that such an expansion is appropriate forany three indices

the description of the set of all 4D massless fields. Another ’

important point discussed if80] was that the analytic ex- Bap. 53+ Bassst Bpas=0. (7.44
pansions in the extra coordinates in E¢g.37 and (7.39 ' ' '

are complete in generalized symplectic spaces. Once this Note that the trivial cohomology class Bf*(o_) is param-
true, the local equivalence of E(r.30 to the original 4D  etrized by totally symmetri¢i.e., one-row diagrams of ar-
system extends to the fulglobal) equivalence. bitrary length.

Forsp(2M) with M >4 the interpretation in terms of the This structure oH(o_) implies that the only nontrivial
Minkowski picture is less straightforward because the set otlifferential equations on the dynamical field$X) and
Hermitian coordinateX*# becomes larger than the usual setC;(X) hidden in the infinite system of equatio(30 are
of Minkowski coordinates. To this end one has to identify the
usual coordinates with the appropriate projectioXX&f with B ¢(X)=0 (7.45
the gamma matriceE, that is possible foM =2P. It is not aXBIXYS  gx@VgX PP '
at all clear, however, how important it is to descriqg2M)
invariant phenomena in terms of Minkowski geometry be-for thesp(2M) scalar and

9 9?
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/ J Sc(X)= LB XBi 2| C(hv+ 2503 5]
—(X) = ——cp(X) =0 (7.46 c(X)=¢Eexp 5 jph"+ X )5j5 |C(h7+2X7]5(X).
X IXY (7.52
for thesp(2M) svector. Equationé7.45 and (7.46) are dy- For at most quadratic supergenerator®ef(1,2V) act-

namically equivalent to the system of equatigi@s30 and  ing on C(B|X) one finds
therefore inherit all symmetries of the latter. Note that in
agreement with the analysis ff4], because antisymmetri-

zation of any two-component indices and 3 is equivalent
to their contraction withe®?, for the case of 3D conformal
dynamics, Eqs(7.45 and(7.46) coincide with the 3D mass- 1 - L9 0

less Klein-Gordon and Dirac equations, respectively. From T;f”:—5§+ BP——+2XPY ——, (7.54
the 4D perspective the meaning of E¢g.45 and(7.46) is 2 B XY

twofold. They imply that the expansior§.37 and (7.39
contain only totally symmetric multispinors and that the lat-
ter satisfy the 4D massless equations.

14
P&A = —==, (753)
P gxaB

I T
K= gpP+ 2X P4 4X*YXPT —

The infinitesimal global symmetry transformation that 24
leaves Eqs(7.45 and (7.46 invariant is given by the for- P P
mula(5.2) with the global symmetry parameteg (3.13. Let +2X7gE— 4 oxBYgY— (7.55
us choose the symmetry generating parameter in(E43 B B
in the form

J
Ea.Bih))=¢exphaz+]36%), (.47 Q= 5w (759

where¢ is an infinitesimal parameter. The polynomial sym- o 9
metry parameters can be obtained via differentiation of S¥= e+ 22X — | (7.57
&(a,B;h,j) with respect to the commuting “sourcel™ and apP

ja. Using Egs.(3.13, (5.2) and the star produdtl.4) we  £rom here one derives in particular that the fietg) and
obtain upon evaluation of the elementary Gaussian mtegralé&(x) form a supermultiplet with respect to t@supersym-

. . o metry transformation
eol@,B:h,j|X)=Eexpha;+]pB°+2X P ap). (748

= 2( n - = B
Substitution ofe, into Eq. (5.2) gives the global higher spin oe(x)=e%Ca(x),  aCa(x)=e X P c(x), (7.58
conformal symmetry transformations induced by the param- i
eter¢ (5.3 wheree“ is anX-independent global supersymmetry param-
eter. TheS supersymmetry with a constant superparameter
8| @ (B,]X))=8C(B|X)*[0)(0, (7.49 &, has the form

where 8c(x) = 2e ;X*Pcy(X),

SC(BIX) = £ extl i ~BP+ i shB s XaBi - - 5¢4(X) = 265X7P—¢(X) (7.59

(BIX)=¢&exp B+ 51 ph"+ X[ 5] p « 7 e
><C(,8ﬂ h7+ ZX;:Sj 31X). (7.50 Note that the(symplecti¢ conformal transformations of the

scalar field are described by the transformatigib3d—
Differentiating with respect to the sources one derives ex(7.55 at 8#=0. The T and K transformation law of the
plicit expressions for the particular global higher spin con-svector c; gets additional “spin” terms from the
formal transformations. B-dependent part of the generators.
The physical fields are The sly generalized Lorentz transformations with the

traceless infinitesimal parameteg”, £;,“=0 act as follows:

a
c(X)=C(0[X), ca(X)= gc(ﬁ|x)|,3=o- (7.51)

5°Tc(X) = 26 3*XPY —=¢(X), (7.60

IXAY
All higher derivatives with respect t8“ are expressed via
the derivatives inX®? by the equatior(7.35. For example, 5'°’ca(X)=Zs;3:5X/§;

—cy(X)tefey(X).  (7.60)
for ¢(X) we obtain ax°or
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The dilatation transformations associated with the trace part
D=1T, are g=exp—

1
(X“ﬁ-l—zyﬁaiﬁ'g')a&ag

M +0Eiag¢i+0&ia;{$

c(X)+ ZC(X)’ (7.62 : (7.69

sdlg(X)=eX7

IX
The left Fock module |<I>(,8,$|X,0)) satisfies the
B osp(2N,2M) supersymmetric equations

5%y (X)=eXPY

c,(X)+ c,(X). (7.63

M 1
_+_
4 2

oXBY

(d—wo)| (B, 4|X,6))=0. (7.70

Since Eqs(7.45 and(7.46 are derived from an unfolded Let us note that thesg formulas are t.ri.vially generalized to
system that admits a dual unitary formulation, they are extne case obsp(L,2M) with odd L by writing
pected to admit consistent quantization. In a separate publi- i o B
cation[71], where the equations in generalized space-times Q. =z, I7=b%y (7.79
are studied within the traditional field theoretical approach, |
we show that they indeed admit a consistent quantization. Nvith
nontrivial question for the future is the nature of a Lagrang- it — il (7.72
ian formulation that might lead to Eq&7.45 and(7.46). Itis W' :
clear that in order to solve this problem some auxiliary fields

. . . f— that
have to be introduced in analogy with the Pauli-Fierz pro-SO a
gram[72] for the usual higher spin fields. {Q'& inZe}: §1P;5, {sU,P=61KE, (7.73
C. osp(L,2M) superspace and
To describeosp(2V,2M) we reintroduce the Clifford el- 1 . o
ementse; and ¢’ and add the bosonic generat¢tsl6 and fuoz(dxaﬁ+ Ede?a’“) P.p+dorQs,  (7.79

(1.22) along with the supergenerators
Qi=a;d, Qu=aid. (7.64 g=exp- (X" Pazapt Ofapy). (7.79

. . .. Equation(7.70 still makes sense with the only comment
SH=B¢', S"=p%;. (7.65  that the Fock vacuum has to be defined in such a way that it
is annihilated by the (L—1) annihilation Clifford elements
In particular, the following anticommutation relations are and is an eigenvector of the central elemémnt - - i, .
true:
' o D. Higher spin (supenspace
I R _od N ~ ~ _ I Iy
{Q;.Qpi}= 5} agr Qi Qpi}=0, {Q&,Q@}—O, One can further extend the base manifold description of
(760 the osp(L,2M) conformal dynamics by introducing the
. o . o higher spin coordinatex®1""*“2» and Grassmann odd super-
{s,Sf}=6)K*#, {s*,8%]}=0, {S",Sf}=0. coordinatesd* " “2"*1 associated with the mutually com-
(7.67) muting higher spin generators

We introduce the Grassmann odd coordinaieand g% and Py gy = ¥ay " gy, (7.76
differentialsd 6 andd#® associated with th€ supergen-

and supercharges
erators. It is convenient to define the differentidlg® and P g

de‘kfiA to commute with each other but antjcommute with ay ey lﬂia&l"'a&mﬂ-
dX*# and the Grassmann coordina@sand §°'. o B

The vacuum O-form is defined as {y' '} =6, (7.77)

A 1 . . which satisfy the higher spin super-Poincatgebra with the

wo=| dX*F+ Sha+ y)do“ 0P +(1— )67 0P'] | Poj nonzero relationships

. . i i . _dip~ o~ . .
+d6°'Q,; +dorQ: . (7.68 Q%+t @By o) = J Pay . oniaby Bamia
“ (7.79

The gauge function analogous to Ed@.65) is The zero-curvature vacuum one-form is
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L=XBa ay+asf ‘;‘, (8.3
©0o=2 2n>' dx P o BTl
i where the overdot denotes the derivative with respect to the
do*r a2n+1Q world line parameter. Indeed, the primary constraints are

' (2n+1)! ! 0‘2n+1
> | Py i if 7 0= Xap= Taj— @2t ®.4
2 ap (2p+1)1(2g+1)! @y agp 1By Bagia

T o and
Xdaialv--a2p+16iﬂl---ﬁ2q+l_ (7.79

O=xi=mi—a;, O0=x*=77 (8.5
Let us note that the higher spifsupejcoordinates intro-
duced here are to some extent reminiscent of the 4D higher ~ ) ~-
spin coordinates discussed [i52], although the particular Wheremz, m;, and 7 are momenta conjugated X7,
realization is different. Unfolded equations of the fofri70 B¢, and a;, respectively. The constraint8.5 are second
reconstruct the dependence on the higher spin coordinates @fass. It is elementary to compute the corresponding Dirac
terms of the(usua) space-time derivatives of the masslessbrackets. The only important fact, however, is that within the
higher spin fields. In principle, one can extend the formalismset of variablesx®?, = w5, B, and i, the Dirac brackets
to the maximal case in which every element of the infinite-coincide with the Poisson ones,
dimensional higher spin algebfaay, hu(m,n|2M)] has a
coordinate counterpart. This is analogous to a description on B 1 - - o R .
the group manifold. Let us note that any further extension {X“'B,W;Es}= _(55‘5§+ 543555’), {B“,Wk}= s5*. (8.6)
would imply a degenerate frame field and, therefore, does 2 7 p
not lead to interesting equations. Equations with fewer coor-

d|nates COI’reSpondlng to I’edUCtIOI’lS to some coset Spaces afﬁ|s a.”OWS one to get nd of the Var|ab|e£* and T¢ by
possible, however. Let us note that the unfolded formulatio xpressing them in terms o B 5, B andm; with the

1: thr(ca’zc(a:ég;]xller spaces Is reminiscent of the group manifol elp of the second-class constrau(ﬁsS) The Ieftover con-
PP ' straints(8.4) acquire the form

VIIl. WORLD LINE PARTICLE INTERPRETATION OOZX&Z%: Top— ToTg, (8.7

Free field equations of motion in the unfolded form admit
a natural interpretation in terms of a world line particle dy-and are obviously first class. Interpreting the space-time dif-

namics. The free field equatiof.39 is interpreted as an ferentials as ghost fields*” one arrives at the BRST opera-
invariance condition tor

Qo|®)=0 (8.1) Q=cB(myp— mymp) (8.9

with a Becchi-Rouet-Stora-TyutifBRST) operator built which, upon quantization, reproduces Es35 in the form
from some first class constraints. The zero-curvature cond|(8 1.

tion (3.9) takes the form The superextension is straightforward:

2 “a ~
Q=0 82 L=XPagap+ a&B“— )
To make contact with some world line particle dynamics one
has to find a world line model that gives rise to an operator
Qo associated with the unfolded equations under consider-
ation. Usually it is a simple exercise. +'§_&

The literature on world lindsupejparticle dynamics ap-
pearing after the classical wofR3—76 is enormous. The
twistor reformulation was initiated ifi77,78 and further de-
veloped in[79-83,47,6Q The idea that additionaloften
called central chargecoordinates have to be introduced to
extend the twistor approach beyond four dimensions was e

+ g

a,dit (1+7)0 a a;;)

i 1 Bi - .
aaqﬁ-l-z(l—y)ﬁ azap|. (8.9

(The variablesa'é‘, bi, anda are anticommuting and are
assumed to have symmetric Poisson brackgtsvith their
){pomenta). Excluding by virtue of the second class con-

ploited in[47-50,84,8% straints the variablea;,, their conjugated momenta®, and
Thesp(2M) invariant equatior{7.35 can be obtained as the fermionic variablesp' with their conjugated momenta,
a result of quantization of the following Lagrangian: one is left with the conjugated pairs of vanablé@“é Top)s
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(B, 72), (Gf‘, m) (67, wi&.), and (¢', =) and the first L:)’(aﬂaaaBjLamgaJr;&Ed_E(y,i
class constraint8.7) along with
+ g

1 S
1 - a’aglsi‘l'i(l-l-‘y)aiﬁaaa'ﬁ)
X&iZW&i—(a&Wi+ 5(1+ ’}’)aiﬁ’ﬁ&’ﬂl@),

ol T 1 Bi
+ 6; ¢aa+§(l—'y)0 a,ap (8.12

(hopefully, the overdotted indices cause no confusion with
the world line parameter derivativeln the 4D case this
Fhodel gives rise to the 4D conformal equations of motion of
Sec. IV A. The 4D Lagrangia8.12 with y=0 was intro-
o S duced in[47] and was then shown to give rise to the mass-
WXai Xph=OiXa- (811 |ess equations ifi60] [more precisely, the Lagrangians of
Quantum-mechanical models containing “central charge"-[A'“Sq-C-O-ntaim:)d _qdditional constrajnts giving r_ise (o the
irreducibility condition (4.40]. The important difference

coordinates associated with symplectic algebras, analogoygm many other world line twistor Lagrangians is that no
to the coordinateX*#, were considered if49,50,86. How-  twistor relationship between the space-time coordinates and
ever, to the best of our knowledge, the particular Lagrangianspinor variables is imposed; instead they are regarded as in-

try algebra with the only nonzero relation

were different from those proposed above. dependent dynamical variables.
Analogously, one can consider the model with the La- The generalization to the higher spin coordinates is de-
grangian scribed by the Lagrangian

L=2 ! X&l"'g’Zna” s +a”,-8&—$¢-+2 ;(0' ‘;‘1"‘&2n+1¢.aA ceear
n (2n)! @ @2 @ 4 (2n+1)! 1May @on+1

1

P T Py - — ~ L S s
+6 Uhlan g, )T % (2p+rD)l(2q+ 1) T Farpra BT Fhogia
X[(1+ ,y) éi 211"'2’2p+10iﬁl i -qu+1+(1_ ,y) 'eial"'a2p+16i Bl"'B2q+l]_ (8_13

All world line particle Lagrangians discussed in this sec- The Lagrangian(8.14 is universal in the sense that it
tion have the general form gives rise to unfolded equations of the conformal higher spin
fields interpreted as first class constraints independently of

— YA” Y “pa_ i -
L—X_woé(a,ﬁ,¢,¢|X)+aaﬂ ¢'i. (814 the particular form of the vacuum one-for@y once it sat-

where X2 denotes the whole set of supercoordinates whildsfies the zero-curvature equati®9). The ambiguity'in&o
dXﬁ@OA(a,B,¢,$| X)=(:)O(a,,8,¢,$|X) is some vacuum Parametrizes the am'blgwty in the choice of a partlcular ge-
one-fofm satisfying the zero-curvature equatidre). Let us ometry and/or coordinate system. For the part|cula_r case of
stress that Eq(3.9) is supposed to be true in the quantum conformal algebra, any conformally flat geometry is avail-
regime, i.e., with respect to the star product. In the classica"ilble' For exfampge,l AC%‘\IS %GC:PT?.?/. IS d”eicrlbedthb)g t:\he
approximation, the star product has to be replaced by thgacuum onte- or_n(l ftS ote té‘ It IS ;Ne nﬁwnth ak €
Poisson(in fact, Dirag brackets, which usually makes sense€ro-curva urg= left invariant Cartanforms play the key

for the BRST interpretatiori8.2) of the vacuum condition role _in the formulation of thésupejparticle and brane dy-
(3.9 but not necessarily for the dynamical field equations iphamics because they possess the necessary global symme-

the essentially “quantum” forn{8.1). tries[namely, the symmetrie@.11)]. The fact thatw, satis-
The constraints have the form fies the zero-curvature condition guarantees that the
Lagrangian(8.14 has the necessary local symmetries.,
9 first class constraintsNote that some examples of the zero-
X5=%—w05(x)- (8.19  curvature one-forms adsp(1,2n) are given in[86].

Applying the Stokes theorem and using the zero-curvature

They are first class as a consequence of the flatness conditieandition for w,, the particle actior{8.14 can be rewritten
(3.9). We see that this construction indeed leads to the BRSTh topological string form as an integral over a two-
realization of the linearized unfolded dynamics in the formdimensional surface bounded by a particle trajectory and pa-
(8.1), (8.2. rametrized byo':
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-]
22

+daz/NdB —dd Adg,

. B The conversion procedure applied[B0] to get rid of the
&)o(a,,e,¢,¢|X)*/\&>O(a,ﬂ,¢,¢|X) complicated second class constraints in a particle-type
twistor model based on tresp(2,8) superalgebra led to first
class constraints analogous to E¢&7) and(8.10 modulo
exchange of the twistor variables with their momenta. It was
concluded in[50] that the space of quantum states of this

J -~ d J — J . ) : .
+|da,— +dB*——+d¢p— +dp — model consists of the massless fields of all sgeery spin
da,, B« i ' appears in two copigsi.e., it is identical to the spectrum of
massless higher spin fields associated with the simplést
- i =2 supersymmetric conformal higher spin algebra
Nwola.B.4,4X) . (8.1 hu(1,1;8). Since the approach ¢60] was insensitive to the

difference between the twistor variables and their momenta,
where the one-to-one correspondence between the spectrum of 4D
massless higher spin excitations found[50] and in this
N _ IXA _ paper is not accidental.
wo(a@,B,¢,¢|X)=da' —wo a(@.B,$,¢|X), (8.17) Beyond the linearized approximation the world line
do- - guantum-mechanical interpretation of the unfolded dynamics
becomes less straightforward. Indeed, the interaction prob-

| 0 o | IB” lem consists of searching for a consistent deformation of
da,=do—, dp“=do Jo Egs.(8.1) and(8.2) with nonlinear contributions to Eqé8.1)
and (8.2) both from the dynamical gauge fields= wq
9 P + ... and from the “matter sectorf®). The modification

d¢=do' —, d¢'=do’—. due to the gauge fields admits interpretation in terms of a
g0’ ao’ connection in the linear fiber bundle with the mod@&leof

(8.189  quantum state§d) as a fiber. The terms nonlinear )

o ) ) ) can, however, hardly be interpreted in the usual quantum-
~ Keeping in mind that the theory of higher spin gaugémechanical framework that respects the superposition prin-
fields is expected to be related to a symmetric phase of thgiple. By relaxing the superposition principle, one arrives at
superstring theory, let us speculate that this topological aghe standard setting of free differential algebfasl), sug-
tion can be related to superstring actions in the framework Obested originally if54] for analysis of the higher spin prob-
some perturbative expansion relevant to the usual string piqem. The world line particle models can be useful for a sec-
ture, which, however, breaks down the manifestly topologi-ond quantized description of nonlinear higher spin dynamics
cal form of the whole action defined in the generalized targetn form analogous to the open string field theory functional

superspace. _ _ of Witten [87]
Note that the actiori8.16) can be rewritten as

4| 3 S=(®|QA|®)+S, (8.21
S:LJWM,B,¢,¢IX>*Aw0<a,B,¢,¢|><>], (8.19

whereA is some insertion needed to make the quadratic part
where well defined ands® is the interaction part to be determined.

Wo=wo+dB%a;—da,B%+dd ¢ — didd (8.2
0= g+ 05 Airddid - didd (820 IX. AdS/CFT CORRESPONDENCE
with the convention that the star product in E8.19 acts on

X ' The classical result of Flato and Frons states that
the components of the differential form, but not on the et

ll the tensor product of two singleton representations g# )
differentialsde;,, d*, d¢;, andd¢'. amounts to the direct sum of all unitary representations of
A few comments are now in order. sp(4) associated with the massless fields of all spins in
It is important that the “quantization” is performed in AdS,. Once the unfolded formulation of massless dynamics
such a way that equations lik&.35 contain differential  exhibits Bogolyubov duality with the unitary representations,
rather than multiplication operators. This allows one to €Xthere must be some field-theoretical dual version of the
press all higher order polynomials in the twistor variables viar|ato-Fronsdal theorem. This was confirmed by analysis of
higher space-time derivatives of the physical fields. Note thaghe boundary current and bulk gauge field representations in
the “coordinate” and “momentum” representations are not[gg]. |t was also observed if14] that for the 3D conformal
equivalent in the framework of nonunitary modules underly-theory there is one-to-one correspondence between the tensor
ing (classical field theory dynamics. One way to see this is product of 3D boundary fields and the set of AdBulk
to observe that the dualizati¢Rourier transformthat inter-  higher spin gauge fieldéand, therefore, conserved higher
changes twistors with their conjugate momenta interchangespin currents of13]). This statement is supposed to underly
the translations;; and the special conformal transforma- the AdS,/CFT; duality in the framework of higher spin
tions K*~. theories.
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An AdS; analog of the Flato-Fronsdal theorem suggests Thus, the higher spin AAS/CFT correspondence suggests
[90,35 that the double tensor products of the doubleton repthat the Ad$g higher spin algebra associated with the bound-
resentations contain all massless unitary representations afy self-conjugated matter supermultiplets is one of the sub-
the AdS; algebrao(4,2)~su(2,2). It is interesting to find a algebras(4.93 or (4.94). From the Ad$ bulk perspective
field-theoretical counterpart of this statement. only the purely bosonic cas§=0 has been analyzed so far

Consider first the self-conjugated massless supermultipat the level of cubic Lagrangian interactidi®s]. This analy-
lets with «=0. The CO”‘?SPON”di”Q conformal higher Spin sis matches the consideration of the present paper since it
gauge symmetry algebitaug(2"~*,2"7*|8) was argued in a5 shown in[23] that the Ad$ higher spin gauge fields
Sec. IV D to be spann_ed by the e_zlements of the star producisqyciated with the algebrasi(1,08) andhoy(1,08) al-
algebra(i.e., polynomials of oscillatojsthat commute t0 |, onsistent cubic interactions. In a forthcoming paper

15 o e b o e Secpane o b onsof24we shell show ht th same i e for 1 uper
o ' symmetric case. In both of these cases the situation is rela-

product of the space of states satisfyldgd0 with its con- tively simple because the corresponding Ad8gher spin

Jugate gauge fields correspond to the totally symmefsiginon ten-
_ sor representations of Ad@lgebra. The gauge field formal-
E1=|P1) (D, 9.9 ism for description of these fields suitable for the higher spin
gauge problem in any dimension was elaboratefbif26.
automatically satisfy these condition as a consequence of E@\s shown in the recent publicatidi22] (see alsd23]) for
(4.40: the bosonic case and [91] for the fermionic case, the sets
of gauge fields associated with thié=0 and N'=1 AdS;
[Ny, Eqo], =0, N* Eq,=0. 9.2 higher spin algebras are just what is expected from the per-
spective of the approach ¢67,2€; namely, the infinite-
Also, it is consistent with the condition@.73, (4.90 after ~ dimensional higher spin algebras decompose under the ad-
appropriate specification of the action of the involution andjoint action of the Ad$ subalgebra(4,2)~su(2,2) into an
antiautomorphism on the tensor product symbol to compeninfinite sum of finite-dimensional representations associated

sate the insertions of the products of elemepitsor ¢ in ~ With various two-row tensors or spinor tensors @(f4,2)
Eqgs.(4.96), (4.97. [23,91].

The 4D  conformal higher  spin algebras  Starting from/N/=2 representations af(4,2) with three
hug(2V~1,2V~18) (being isomorphic to AdShigher spin  rows appear, however. The simplest way to see this is to
algebrag and their further orthogonal or symplectic subalge-observe that, for increasiny, the restriction[N,.,f], =0
bras can be identified with thésubalgebras of endomor- on the types of representations ®ii(2,2) contained in the
phisms of the modul&, spanned by the states satisfying Eq. star product elemerit(a,b; ¢, $) becomes less and less re-
(4.40 at «=0. Discarding thelsometimes importaptnor-  gyictive, rather imposing some relationships between the

malizability issues, it is a matter of basis choice to reaIizetypes ofsu(2,2) tensors and(/\) tensors in the supermul-

this algebra in terms of either elemeri®1) or polynomials . ) -
of the star product algebraTherefore, the tensor product of “%Ig:; e?/ 2? t(;]in niergggft);h(;(seiillr;xvmii%rs ?:]sfméf;r,?()jizfafgfeb?r

the 4D matter multiplets has the same structure as the Ad . which is possible starting fro=2. As a result, the\’

higher spin algebranug(2~*,2¥~8) in which 5D higher <’ . . .
’ : : =2 AdS higher spin gauge theories based on the algebras
field lently, d B3)) tak - 2 : ) . :
spin gauge fieldéequivalently, conserved currers3)) take _huo(2N 1oV 118) and their further reductions will contain

their values. This fact provides the field-theoretical counter ) )
part of the statement on the structure of the tensor produc@2me mixed symmetry gauge fields. Because the 5D mass-
of the unitary doubleton representationg@®,35. The non- less I|ttIe_ Wigner algebra is(3), in 5D flatspace_z su<_:h fields _
self-conjugated case is analogous except that the reductié€ equivalent to the usual totally symmetric higher spin
condition (4.90 is inconsistent with the eigenvalues+0  fields. This is not true, however, in the AdSpace where the
and, therefore, the subalgebras of symplectic and orthogongystematics of t_he massless fields is different fr_om the flat
types allowed for the self-conjugated case are not allowe@n€[92]. In particular, to every two-row Young diagram of
for @#0. Note that it is also possible to relax the condition the maximal compact algebso(4)~su(2)®su(2) corre-

(4.90 in the self-conjugated case, that effectively leads toSPONds a particular AdSnassless field. In the flat limit such
doubling of the self-conjugated multiplets. fields decompose into a number of flat space massless fields,

each equivalentdual) to some totally symmetric field in the
flat space. So far, no systematic approach to the mixed sym-
SNote that the action of the operat@:1) in F is described by an  Metry higher spin fields in the AdS space has been elaborated

infinite matrix having at most a finite number of nonzero elementsin the covariant approach underlying the unfolded dynamics,
while the polynomial elements of the star product algebra have thé@lthough considerable progress in the flat space was achieved
Jacobi form with an infinite number of nonzero elements but atn [93,94. To extend the results 23,24 to N=2 it is first
most a finite number of nonzero diagonals. This means that a polyof all necessary to develop a gauge formulation of the higher
nomial in the star product algebra is described by an infinite sum irspin fields carrying mixed symmetry representations of the
the basig(9.1). AdS algebraso(d—1,2). This problem is now under
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investigatior? massless higher spin fields are at the boundary of the unitar-
It is tempting to speculate that, once the two-row mixedity region of the modules obsp(L,2M), thus being associ-
symmetry higher spin AdSfields are included, the condition ated with certain singular vectors, decoupling of which mani-
that the elements of the higher spin algebra have to commufests the gauge symmetty.
with N, can be relaxed angymplecti¢ AdS; dual versions As conjectured irf11,12, the higher spin AdS/CFT cor-
of theosp(2V,8) conformal boundary models might be con- respondence is expected to correspond to the ffit—0,
structed. These models are expected to contain all types @fheren is the number of boundary conformal supermultip-
gauge(masslessfields in AdS; having one of the algebras lets andg is the boundary coupling constant. An interesting
hu(n,m|8), ho(n,m|8), orhusp(n,m|8) as the gauge alge- related question is whether the free 4D boundary theories
bra. In that case we arrive at the remarkable possibility thadiscussed in this paper admit nonlinear deformations pre-
the generalizedp(8) AdS;/CFT, correspondence will re- serving the infinite-dimensional higher spin symmetries
late the bulk model that describes Agassless fields of all hu(ZN‘l,Z“/‘1|8) (or some of their deformationsLet us
spins (types to the boundary conformal model describing argue that, most probably, these symmetries are broken by
4D conformal massless fields of all spins. This is theinteractions to lower symmetriéOne argument is based on
AdS;/CFT, analogue of the Flato-Fronsdal theorem relatingknowledge[7,8] of the full nonlinear higher spin dynamics
the AdS; massless fields to the tensor product of $ipg8) ind=4.
(supebsingletons. Once such a generalization is really pos- The 4D conformal system analyzed in Sec. IV describes a
sible, it will lead to surprising conclusions on the higher spinset of 4D massless fields of all spins which decomposes into
AdS/CFT correspondence which, in fact, would imply space-rreducible representations ef(8). From[6,7] it is known

time dimension democracy. that such sets of massless fields admit consistent interactions
Indeed, the following extension of the Flato-Fronsdalin AdS, but not in flat space. The interactions are introduced
theorem is likely to take place in terms of higher spin potentials rather than in terms of the

(higher spin Weyl tensors discussed in this paper. This
S ©S :2 mos _s _breaks down the usual 4D conformal symmetry. The break-
0sp(L,2M) = =osp(L,2M) ™ & Tosp(L,2M) ™ “0osp(2L,4M) » ing of the conformal symmetry is expected to be of the spon-
(9.3)  taneous type via the vacuum expectation values of certain
auxiliary fields needed to provide consistent higher spin dy-
where S, om) denotes thésupejsingleton representation namics. This results in CRT-AdS; deformation with re-
of osp(L,2M) while mg:p(LVZM) denotes all massless unitary spect to thed-dimensional coupling constam®~ A x%2,
representations afsp(L,2M) characterized by the spin pa- whereA and« are the cosmological constant and the gravi-
rameterss. The chain of identities can be continued to thetational constant, respectively. Let us note that by Ad@
left provided that. andM are even. Fot. =29 andM=2P  assume a universal covering of anti—de Sitter space-fine
the chain continues down to the casesp{2) orsp(4) with an appropriate symplectic generalization discussed below
the appropriate truncations in the Clifford sector associatetvhich, although being curved, is topologicaRy. Note that
with L if necessary(say, by singling out the bosonic or fer- since the Adg geometry is conformally flat it should be
mionic constituents of some of the supersinglejoi@nce  possible to have AdS/CFT correspondence with the boundary
the tensor product of the representations is associated witBFT theory formulated in the AdS space-time rather than in
the bilinear currents built from the boundary fields, the con-
clusion is that the generalizeymplecti¢ higher dimen-
sional models are expected to be dual to the nonlinear effec-Let us note that beyond the Ag@nd AdS cases in which the
tive theories built from the lowest dimensiori@igher spin symplectic and orthogonal tracks are equivalent, the concept of
models. masslessness may be different for, say, symplectic¥Ad$., sym-
The equality Syspi 2m)® SospL,2M) = Sosp2L,am) 1S ObVi- plectic bulk a_nd orthogonal Adg(i.e., t_he usual _buu<theori(_es. For
ous because the supersinglet8of S;qyi ov) is the Fock the symplectic algebrassp(L,2P), which contain thgmaximally
module generated by fermionic and M bosonic oscilla-  €mbeddefiAdS subalgebras(2p,2) oro(2p+1,2), the values of
tors. By definition, its tensor square is the Fock module gen;he lowest energies compatible with unitarity are expected to be

erated by two sorts of the same oscillators which is equivabigher than the lowest energies of the lowest weight unitary repre-

lent to the supersingleton module 6f)sp(2L ) - The fact sentations of their Adgsubalgebras(| am grateful to R. Metsaev

that Sosp(ZL IS equivalent to the sum of all massless rep_for a useful discussion o_f this pom_ln fac_t, there is nothing special
\ L . o o in this phenomenon, which would just signal that the extra symplec-
resentations 0bsp(L,2M) is less trivial. It is in agreement . =~ . )
. o . .. N tic dimensions play a real role. Very much the same story happens
with the definition of masslessness given byn@ydin in

. . ’ . for the usual Adg algebraso(d—1,2): the lowest energies of
[90,39. However, to make this definition consistent with the o(d—1,2) are higher than those of its lower-dimensional subalge-

prqperty that mas;less .figldsaxcept for the scalar and 5 0o(d—2,2) [98,99. Let us note that, from this perspective,
spinoy are gauge fields, it is necessd88,92,99 to prove  Ginaydin's identification[90] of the massless representations of
that the unitary representations corresponding to the gaugeys aigebras with those that belong to the tensor product of the
singleton and doubleton representations is likely to be true for the
symplectic track rather than for the usual Ad&e.
Note that after the original version of this paper was sent to & am grateful to E. Witten for a stimulating discussion of this
hep-th some progress in this direction was achieveg®i-97. issue.
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the Minkowski one(To the best of our knowledge this tech- with some antisymmetric bilinear forM, ;. We requireV;;
nically more involved possibility has so far not been inves-to be nondegenerate, which assumes kfas even(for the
tigated) As a result, in the framework of higher spin gauge case of oddM the resulting generalized AdS algebra is not
theories, Ad8/AdSV correspondence is likely to replace semisimpl¢. The commutator of such defined generalized
the usual AdS/CFT corresponden¢@busing notation, we AdS translations closes to the subalgebs@(M) of
use the notation Ad$ for the generalized space-time iden- sl Csp(2M), which leaves invariant the antisymmetric bi-
tified below with Sp(M).] Perhaps the breakdown of the linear formV;;. The full generalized AdS subalgebra is
conformal higher spin symmetries down to the AdS higher

spin symmetries can be understood as a result of the confor- sp(M)@esp(M)Csp(2M). (9.9
mal anomaly arising in the process of approaching conformal o N ] .

infinity [100]. Also, let us note that since the AdS/CFT cor- Its Lorentz subalgebrap (M) is identified with the diagonal
respondence refers to the conformal boundary of the bulRP(M) while AdS translations belong to the coset space
space a possible argument against the infinite chain of AdSYP(M) ®sp(M)/sp/(M). For M=2 one recovers the usual
CFT dualities(1.19 based on the fact that the boundary of a3d embedding 0(2,2)~sp(2)®sp(2)Csp(4)~0(3,2).
boundary is zero is avoided just because the full conformafinalogously to the 3D case, thgM (M +1)-dimensional
symmetry is expected to be broken. space-time where the generalized AdS algeli(M)

The formulation of the full nonlinear 4D higher spin dy- ®sp(M) acts is the group manifol& (M), while the two
namics of[ 7] provides us with some hints on the character ofSp(M) symmetry algebras are induced by its left and right
the breaking of the “conformal’sp(2M) by interactions. actions on itself. In particular, the ten-dimensional general-
The full nonlinear formulation of the 4D higher spin dynam- ized space-time associated with the AdS phase of 4D mass-
ics was given in terms of the star product algebra with eightess fields of all spins iSp(4).
spinor generating elements. In other words, the construction Thus, for everM we obtain that the AdS subalgebra of the
of [7] has explicit localhu(1,1/8) symmetry[extension to ~conformal algebra acting in th¢ M (M + 1)-dimensional
hu(n,m|8) is trivial by considering matrix versions of the Space-time is isomorphic to the direct sum of the two con-
model along the lines d25]] and, in particularsp(8) asits formal algebras of the generalized M(M +2)/8]-
finite-dimensional subalgebra. These local symmetries ar@imensional space-time. The process can be continued to
broken by the vacuum expectation values of the auxiliarylower dimensions provided that =29. Let us note that the
fields calledS to hu(1,14)@hu(1,14) containingsp(4) fact that the AdS algebra is semisimple may indicate that the
@sp(4). (The doubling is due to the Klein operator§he  corresponding reduced higher spin algebra acquires more su-
lesson is that the higher spin interactions break the conformalersymmetry. A particularly nice scenario would be that the
hu(n,m|2M) symmetry tohu(n’,m’|M) (for M even. AdS reduction of theV-extended conformal higher spin al-

This conclusion fits the analysis of the embedding of thegebra hu(22~*,2V"1|2M) in the generalized space-time
generalized AdS algebra into the conformal algebraSP(M) is hu(2V,2\|M). In that case, the extensioki—1
sp(2M). Indeed, to embed the usual Agd®lgebrao(d — N would imply the doubling of the even sector because of
—1,2) into thed-dimensional conformal algebii(d,2) one  the new unimodular bosonic elememprl(bN“ built from
identifies the Adg translations with a mixture of the trans- the additional Clifford element§Then, the breaking of the
lations and special conformal transformations in the conforfree field conformal symmetri u(ZN‘l,ZN‘1|2M) to the
mal algebraPys = Pg conrt N?K§ cons- Commutators of AdSY one by interactions would imply

such defined Adgtranslations close td-dimensional Lor-
entz transformationk 2. Pa4sandL ., form the AdS alge-
brao(d—1,2)Co(d,2) [cf. Eq.(3.15 for the particular case
of AdS,]. This embedding breaks down the explioif1,1)

hu(2V=1,2V=Y2M)—hu(2V,2V|M), (9.6

which would lead along with Eq9.3) to the chain of corre-

dilatational covariance because it mixes the operd®8rand spondences
K2, which have different scaling dimensions. . AJSMANAGEM VL
Let us now analyze the analogous embedding of a gener-
alized AdS subalgebra into the conformal algedpé2M) in —AdSVAFL AdgMI2 N2

1M (M +1)-dimensional generalized space-time. Since we
want to keep the dimension of the generalized space-time

|fntact,|3t/r3deS generators of AdS translations have to be of thevith hu(2V~ 1,2V 1|M) realized either as AdShigher spin
orm

2 S VUG JENURR P, S e ; . .
ap — Papt A 7map v_ﬁKy with some .b|||near form  aigebra in the generalized space-ti®p(M) or as the con-
Mapys- To allow embedding of the generalized AdS super-formal higher spin algebra in the generalized space-time
algebra into the cor_1forma| superalgebra with the AdS supersp(%M)_ [We assume that the proposed scenario is going to
charges being a mixture of th@ and S supercharges of the
conformal algebra, i.e.Q’idS: Q.+ )\V,@[;Sﬂ, Na355 has to
have a factorized form, i.e., 9Let us note that this scenario does not sound too unrealistic tak-
ing into account that the reduction of the star product sector algebra
allows for introducing unimodular Klein-type operators built from
the bosonic oscillators.

— ADSWZNFZ AGEMIANTS L (9.7)

AJS_ bk N2V3oV 5K P2, (9.4)

P
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work when all relevant algebrasp(m) have everm. The  potential difficulty is due to the possible anomaly resulting

chain of correspondences continues down to the lowest dffom the divergency of the star product of the Fock vacua
mensions foM = 2°.] (4.22 and(4.64 in the (®)*(W¥|)-like bilinear terms.

Let us stress that this scenario is mainly justified by the
observation that the full 4Dsp(8) conformal massless X. CONCLUSIONS AND OUTLOOK
higher spin multiplets expected to provide a boundary theory

for the AdS bulk higher spin theory have spectra identical to___. . )
those of AdS higher spin theories thus requiring deforma- spin symmetries have been realized on free massless super-
. . . multiplets. The explicit form of the higher spin transforma-
.IIOI’I of the flat_ boundary gepmetry to _the anti—de _Sltter. ON&ions is given by virtue of the unfolded formulation of the
in a phase with higher spin interactions respecting highegyations of motion for massless fields in the form of the
spin gauge symmetriegNote that an analogous observation oy ariant constancy condition for the appropriate Fock fiber
was made irf14], where it was found that the 3D free con- pyngle. Such conformal field theories were conjectured to be
formal higher spin theories describe the same sets of masgpundary dual to nonlinear higher spin theories in the bulk
less fields(scalar and spingras the nonlinear Adshigher  AdS spacd13]. In [11,17 it was conjectured that the AdS/
spin theories constructed [1101].] Since the standard AdS/ CFT duality for higher spin theories should correspond to the
CFT duality is a nonlinear mapping of the bulk fields to theweak coupling regimg?n—0 in the superstring picture. To
boundary currents bilinear in the elementary boundary fieldserify these conjectures it is now necessary to build the,AdS
[2,4], the resulting generalized space-time dimension demodiigher spin theory. Progress in this direction for the simplest
racy suggests a chain of nonlinear mappings with the highetase ofA/=0 higher spin theory was achieved[i23] where
dimensional models equivalent to the theories of compositeome cubic higher spin interactions were found. To extend
fields of the lower dimensional ones. these results tav# 0 and, in particular, todV=4 it is neces-
The suggested chain of AdS/CFT correspondences can Isary to extend the results fi23] to higher spin gauge fields
true for full higher spin theories based on the algebrasarrying mixed symmetry massless representations of the
hu(2V=1,2V=18) [say, as conjectured in Eq9.7)] but  AdSs algebra associated with the two-row Young diagrams.
makes no sense for reduced theories based on the algebrasAs a by-product of our formulation it is shown how the
hu,(2V~1,2V"%8) and their further reductions. Once a osp(L,8) symmetry is realized on the infinite set of free
theory is truncated to the subsector singled out by the conboundary conformal fields of all spins. This result is interest-
dition (4.40, say, to theN'=4 SYM theory, no full CF];  ing from various points of view. First of all, it was argued by
—AdS,; deformation correspondence can be expected. Imany authorg§33-37 that the algebrassp(m,2") and, in
other words, a reduction to the usual space-times and synparticular,osp(1,32) andosp(1,64) play a fundamental role
metries is expected to break the correspondence ¢h&i)  for the M-theory interpretation of superstring theory. It is
at some point. Note that such a reduction is likely to resultusually believed that the related symmetries are broken by
from some sort of spontaneous breaking mechanism with the brane charges. From the results of this paper it follows
Higgs-type field ¢ acquiring a vacuum expectation value that the algebras of this type can be unbroken if an infinite
proportional toN ., thus reducing the full higher spin alge- number of massless fields of all spins is allowed. A natural
brahu(2V~1,2V=18) to its subalgebra which is the central- mechanism of spontaneous breaking of the symplectic sym-
izer of N . metries to the usudlAdS or conformal symmetry algebras
The argument against a nontrivial deformation of the fullmight result from a scalar fielgh in the (bulk or boundary
higher spin conformal symmetries to a nonlinear theorytheory, which acquires a nonzero vacuum expectation value
based on the peculiarities of the higher spin dynamics require=N,+ - - -, where N, is the operator(1.9) that breaks
ing AdS geometry, fails to be directly applicable to modelsosp(\,8) to su(2,22N) and the higher spin algebra
based on the algebrasu,(2V~1,2V"18) with N'<4 be- hu(2" 1 2V"1[8) to huy(2V 1,2V"1[8). In that case the
cause the corresponding supermultiplets do not contaibreaking of the symmetries associated with the so-called cen-
higher spins. Although the problem is formulated in flattral charge coordinates results from a condensate of the
space-time, this possibility is not strictly speaking, ruled outhigher spin fields.
by the Coleman-Mandula-type theorems because conformal The new equation$7.45 and (7.46) of the scalar and
theories do not admit a well-defin&Imatrix. Indeed, some svector(symplectic vectorfields in the manifesthsp(2M)
of the models of interest were argued to admit a conformatonformally invariant 3M (M + 1)-dimensional extended
guantum phase compatible with higher spin symmetriespace-time are formulated. These equations encode in a con-
[102]. In the framework of classical field theory, the problem cise form the dynamical equations for all types of massless
is to find a nonlinear deformation of Eq&.9), (4.395 with  fields in the 3D and 4D cases fM=2 andM =4, respec-
the matter field®) contributing to the right hand side of Eq. tively. Remarkably, the proposesip(2M) invariant equa-
(3.9. Provided that the deformed equations are formallytions are compatible with unitarity, as follows from the
consistent, the appropriately deformed conformal higher spiogolyubov transform duality of their unfolded formulation
symmetries will also be guaranteed. Itaspriori not ex-  to the unitary singleton representation sgf(2M). The su-
cluded that a nonlinear deformation of the free field dynam-perextension of these equations is also given in the form of
ics compatible with conformal higher spin symmetries, e.g.an infinite chain of equations in the extended superspace
in the N=4 SYM theory, may exist. On the other hand, a associated witlosp(L,2M).

In this paper, infinite-dimensional 4D conformal higher
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This result can dramatically affect our understanding of .. d . e
the nature of extra dimensions. In fact, we argue that, from XPB= (TP +Th* _ jx2a (10.1)
the perspective of higher spin gauge theory, the proposed n=0 L v
symplectic higher dimensional space-times have a better
chance of describing appropriately higher dimensional exten-
sions of the space-time geometry than the traditionaRssociated with all those antisymmetrized combinations of

Minkowski extension. Among other things, this improves thethel“-matricesl“gf ... Which are symmetric in the indices
n

situation with supersymmetry. Indeed_, the main reason Wh%md,@. The dynamical equatior@.45 and(7.46 amount to
supersymmetry singles out some particular dimensions in the

Minkowski track is that the dimension of the spinor repre_some sets of differential equations with respect to the gener-

. . .~ alized coordinatex® "2, An interesting possibility con-
sentations of the Lorentz algebra increases exponentially. . . - X
; . : ) di2] . . . ists of the interpretation of the dynamics of branes in the
with the space-time dimensioas 29?) while dimensions

. : : . .. _Minkowski track picture as point particles in the generalized
of its tensor representations increase polynomially. This im- .

. i . spaces of the symplectic track.
plies mismatch between the numbers of bosonic and fermi- e P .

; . o : . Another exciting possibility is that in the framework of
onic coordinates, thus singling out some particular dimen; . N . . .
sionsd=<11 where the number of spinor coordinates is notthe full (i.e., symplectig higher spin theories the chain of

o= : . pin X AdS/CFT correspondences can be contin@®d9 to link
too high due to imposition of appropriate Majorana and/or.

Weyl conditions. If our conjecture is true, the higher dimen-mgether higher spin theories in symplectic space-times of

sional models considered so far would correspond to som\éarious dimensionéM(M +1) via a nonlinear field-current
P correspondencg2,4]. The dramatic effect of this would be

specific truncations of the hypothetical symplectic theories, . . . ) o .
The crucial ingredient underlying the “symplectic track” space-time dimension democracy” establishing duality be-
tween higher spin gauge theories in different dimensions.

qonjecture is that the gene.ralized' symplectic .con'formal €AU%ince higher spin gauge theory is expected to describe a
tions (7.49 and (7.46 admit consistent quantization. symmetric phase of the theory of fundamental interactions,

We argued that the generalized symplectic space-time ke superstring theory and M theory, this would imply that

the group manifoldSp(M) that has the conformabound- the analogous dualities are to be expected in the superstring
i“g SKAmmel;c;ySFXZM) an_lc_jhAdS(bqu)l_syrcm;metrySp(M) ._theory, although in a hidden form as a result of spontaneous
o SE(L I)\/I)( Th:es ug\JZPéD c(;sgecr:)er:zgzin d:utzetrsgaccaeselso reakdown of the higher spin symmetries and, in particular,
M=2 'whiie the usual 4D geometry ispembedded into the he osp(L,2M) supersymmetry. From this perspective the

’ dimensionsM = 2P again play a distinguished role because

ten-dimensional generalized space-ti84). Thefact that the analogue of the Flato-Fronsdal theoré@n®) is expected

Fhe generali;ed spape—time i.s the group manifold Is interes&—o be true for the generalized space-tingg%2P) with all p.
ing from various points of view and, in particular, becauseln other words, the conjectured chain of dualities links all

the ggnerglized superstring theori.es may admit a ”at“'fa' foﬁheories that admit an interpretation in terms of the usual
mulation in terms of the appropriate Wess'zum'nO'W'tten'space-time spinors and tensors to each other via the nonlin-

Novikov models. ;
The algebrasp(2P) and the related generalized space-ear generalized AdS/CFT correspondefitd .

times play a distinguished role in many respects. The odd
elements ofosp(L,2P) can be interpreted as forming the
spinor representations of the usual Lorentz algebras in
=2p or d=2p+1 dimensional space-times, so that the The author is grateful to |. Bandos, I. Bars, M i@ydin,
theories of this class admit an interpretation in terms of ther. Metsaev, V. Rubakov and E. Witten for useful discussions.
usual Minkowski track space-time symmetries and supert would like to thank O. Shaynkman for careful reading of
symmetries. In particular, the generalized space-time coordihe manuscript and helpful comments. This research was
natesX*? are equivalent to a set of antisymmetric tensorsupported in part by INTAS, Grant No. 99-1-590, and RFBR
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