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Computing in string field theory using the Moyal star product
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Using the Moyal star product, we define open bosonic string field theory carefully, with a cutoff, for any
number of string oscillators and any oscillator frequencies. Through detailed computations, such as Neumann
coefficients for all string vertices, we show that the Moyal star product is all that is needed to give a precise
definition of string field theory. The formulation of the theory as well as the computation techniques are
considerably simpler in the Moyal formulation. After identifying a monoid algebra as a fundamental math-
ematical structure in string field theory, we use it as a tool to compute with ease the field configurations for
wedge, sliver, and generalized projectors, as well as all the string interaction vertices for perturbative as well
as monoid-type nonperturbative states. Finally, in the context of VSFT we analyze the small fluctuations
around any D-brane vacuum. We show quite generally that to obtain nontrivial mass and coupling, as well as
closed strings, there must be an associativity anomaly. We identify the detailed source of the anomaly, but leave
its study for future work.
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I. INTRODUCTION

Witten’s formulation of open string field theory~SFT! @1#
is one of the few tools available to discuss nonperturba
phenomena in string theory. Recent discussions of tach
condensation that were carried out in the context of vacu
string field theory~VSFT! showed the relevance of D-brane
and spurred renewed interest in the overall string field the
framework@2–30#. The main objective of the present pap
is to systematically develop the Moyal star formulation
open string field theory~MSFT! @6# and show how to carry
out computations in detail in this simplifying framework.

SFT is usually considered in position space in terms
functionalsc„xm(s),f(s)… that depend on the string coo
dinatexm(s) and bosonized ghostsf(s). For convenience
we will rename the ghost as a 27th dimension,f(s)
5x27(s), and allow them index to run over 27 instead of 2
dimensions. The string field may be rewritten in terms of
string modesc(x0

m ,x2n
m ,x2n21

m ) which are defined by the ex
pansion for open strings

xm~s!5x0
m1A2(

n>1

`

xn
mcos~ns!. ~1.1!

A star product was defined by Witten among these fields@1#.
This amounts to matching the right half of the first string
the left half of the second string and integrating over
overlap. Computations in SFT using this overlap have sho
that Witten’s star product does indeed lead to the cor
description of interactions among strings@31,32#.

*Electronic address: bars@usc.edu
†Electronic address: matsuo@phys.s.u-tokyo.ac.jp
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Recently, it has been shown that Witten’s star product
be reformulated as the standard Moyal star product@6#. This
is obtained by transforming to a ‘‘half Fourier space’’
which only the odd modesx2n21 are Fourier transformed to
momentum spacep2n21 while the even modesx2n remain in
position space. In order to diagonalize the star produc
mode space a linear transformation is applied in mode sp
to the Fourier variablesp2n215(2/u) (m.0p2mT2m,2n21.
Then the Moyal star is defined in the phase space of e
string modes (x2n

m ,p2n
m ) except the midpoint, and the overa

star is a product over the even modes. The product is loca
the midpoint. This reformulates string field theory as a no
commutative field theory where noncommutativity is ind
pendent for each even mode, thus establishing an exp
link between open string field theory and noncommutat
geometry in a form which is familiar in old@34# and recent
literature@35#. This result was originally obtained in@6# by
using the split string formalism@2–6,33# as an intermediate
step, and by now it has been confirmed through a differ
approach that focuses on the spectroscopy of the Neum
coefficients@25–27#.1

In this paper we develop methods of computation
MSFT systematically and apply them to explicit example
Section II gives details of the formulation of MSFT, includ
ing a cutoff procedure, and provides a dictionary for relati
it to other formulations of open string field theory. MSFT
initially defined more generally for any number of oscillato

1The relation between@6# and @25# amounts to a change of bas
through orthogonal transformations which diagonalize the ma
(ke)

1/2T(ko)21/2 ~see notation in text!. We will come back to this
transformation at several points in this paper. In particular, the
cussions related to Eqs.~2.29!,~2.62!,~2.107! provide answers to
some issues raised in@25#.
©2002 The American Physical Society03-1



a
lla
rin
br
a
o
th
b

ci
n
as
rs

ur
In
to
e
im
he
e
o
.
n
a
op

th
fi

al
o
ua
st
e
-

m

e

ify

e-
-

s
e
so-
t

off

n

e
e

u-

in
s

the

as

ITZHAK BARS AND YUTAKA MATSUO PHYSICAL REVIEW D 66, 066003 ~2002!
and any oscillator frequencies. The contact with stand
open string field theory is made when the number of osci
tors is infinite and when the frequencies match the free st
oscillator frequencies. The oscillator and Virasoro alge
are constructed as special field configurations in Moyal sp
that can be star multiplied on either the left or right side
general fields. This provides the first representation of
Virasoro algebra in noncommutative space, distinguished
the fact that its basic building blocks are half as many os
lators~only even or only odd ones! as the usual case. Sectio
III introduces a noncommutative algebra for a special cl
of string fields which are generating functions for correlato
This closed algebra forms a monoid with an explicit struct
which plays an important role as a computational tool.
Sec. IV it is shown that the monoid algebra is sufficient
compute explicitly and with ease all the interaction vertic
for any number of oscillators and any frequencies. The s
plicity of such computations is one of the payoffs of t
reformulation provided by MSFT. We reproduce and gen
alize many results that were obtained through other meth
and obtain new ones that are computed for the first time
particular, in Sec. V we obtain simple analytic expressio
for the Neumann coefficients, including zero modes, for
n-point string vertices, for any frequencies. The spectrosc
of these coefficients for the case ofn53 and an infinite
number of oscillators agrees with the available results in
literature@28#. This helps establish MSFT as a precise de
nition of string field theory. In Sec. VI we analyze the sm
fluctuations in VSFT@2#. We show quite generally that, t
obtain nontrivial masses and couplings for the small fluct
tions, there has to be an associativity anomaly of the
product in any formulation of VSFT. We identify the sourc
that could explain the anomaly in detail for an infinite num
ber of oscillators, but leave the full resolution of the proble
to future work.

II. MOYAL FORMULATION OF STRING FIELD THEORY
„MSFT…

A. Moyal star product

The position representationc(x0 ,x2n ,x2n21) of a string
field is related to the oscillator representation of the fielduc&
by the Fock space bra-ket productc(x0 ,x2n ,x2n21)
5^xuc&. The position statêxu is constructed in Fock spac
from string oscillatorsan with frequencieskn @31#,2

^xu5^x0uexp(
n>1

S 1

2kn
an

21 i
A2xn

l s
an2

kn

2l s
2

xn
2D

3 )
n>1

S kn

p l s
2D d/4

, ~2.1!

wherel s is the fundamental string length andx0 is the center

2Compared to the conventional harmonic oscillatorsan used in
@31# we normalize our string oscillators asan5Aknan and a2n

5Aknan
† for n>1. These satisfy the commutation rules@an ,am#

5«(n)k unudn1m where«(n)5sgn(n) for all nÞ0.
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of mass mode of the string. The state^x0u may also be writ-
ten out explicitly as above for any frequencyk0.

In much of our formulation it is not necessary to spec
the number of oscillators or the frequenciesk unu as a function
of n. We will take advantage of this to easily define a som
what generalized formulation of string field theory by allow
ing arbitrary frequenciesk unu and number of oscillators 2N.
This flexibility will permit us to discuss a cutoff theory a
defined in@24# and described below in detail. This will b
important to obtain well defined quantities and resolve as
ciativity anomalies in string field theory. Thus, we will no
indicate upper limits in sums or products@such as Eq.~2.1!#
to imply that such equations are valid in either the cut
theory ~with upper limit n52N) or the full theory ~with
upper limit n5`). To make contact with the usual ope
string field theory at various points we need to setk unu
→unu and 2N→`. While most structures exist for a larg
range of parametersk unu ,N, certain quantities, such as th
Virasoro algebra, exist only in this limit.

The MSFT formulation is obtained by performing a Fo
rier transform only on the odd string position modes of^xu or
equivalentlyc(x0 ,x2n ,x2n21). We will use the notatione
52n and o52n21 for even and odd integers (e excludes
zero!. The Fourier image in the Moyal basisA( x̄,xe ,pe) is
given as follows@6#:

A~ x̄,xe ,pe!5det~2T!d/2S E dxo
m D

3e2(2i /u)hmn (
e,o.0

pe
mTeoxo

n
c~x0 ,xe ,xo!,

~2.2!

whered is the number of dimensions (d527 including the
bosonized ghosts!, u is a parameter that has units of area
phase space,Teo is a special matrix given below which i
intimately connected to split strings, andx̄5x(p/2) is the
string midpoint which may be rewritten in terms ofx0 ,xe via
Eq. ~1.1!

x05 x̄1 (
e.0

xewe , ~2.3!

wherewe is given below. For the center of mass state^x0u
this change of variables may be written as a translation of^ x̄u

^x0u5K x̄1 (
e.0

xeweU5^x̄uexpS ip•(
e.0

xeweD , ~2.4!

wherepm is the center of mass momentum operator for
full string. Then the Moyal image~2.2! of the position space
state ^xu is obtained by applying the Fourier transform
well as the change of variables~2.3! to Eq. ~2.1!. The result
is
3-2
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K x̄,xe ,peU5K x̄UexpF( S ae
2

2ke
2

ao
2

2ko
D G

3e2(
i j

j i(M0) i j j j2(
i

j il i

3det~4ke
1/2Tko

21/2!d/2, ~2.5!

where x0 is written in terms ofx̄ as above, and we hav
definedj i

m , l i
m , (M0) i j as follows:

j i
m5~x2

m ,x4
m , . . . ,p2

m ,p4
m , . . . !, ~2.6!

lm5S 2
iA2

l s
ae

m2 ipmwe

2
2A2l s

u (
o.0

Teoko
21ao

mD , ~2.7!

M05S 1

2l s
2
kedee8 0

0
2l s

2

u2
Zee8

D ,

Zee85 (
o.0

Teoko
21Te8o . ~2.8!

Then one can directly relateA( x̄,xe ,pe) to the stateuc& in
the oscillator formalism

A~ x̄,xe ,pe!5^x̄,xe ,peuc&. ~2.9!

As shown in @6# the Witten star product becomes th
Moyal star product in the phase space of each even m3

except the midpoint

~A* B!~ x̄,xe ,pe!

5e(3i /2)x̄27A~ x̄,xe ,pe!expF iu

2
hmn(

n
S ]Q

]xe
m

]W

]pe
n

2
]Q

]pe
n

]W

]xe
mD GB~ x̄,xe ,pe!. ~2.10!

The product is local at the midpoint in all dimensions, a
there is a midpoint insertionei3x̄27/2 in the 27th dimension
which is the bosonized ghost coordinate. It should be emp
sized that allx0 dependence should first be rewritten in term

3It is also possible to take a Fourier transform for the evenx2n and
end up with a formulation in the odd phase space (x2n21 ,p2n21).

4An alternative approach that produces the same result is to
the x0 dependence intact, but replace the derivative]/]xe in the
Moyal star product in Eq.~2.10! by

]/]xe→]/]xe1~]x0 /]xe!]/]x05]/]xe1we]/]x0.
06600
e

a-

of x̄ and xe by using Eq.~2.3! before the Moyal star is
computed.4 This setup can be related to the star product
the oscillator formalism by the following formula in the os
cillator language:

~A* B!~ x̄,xe ,pe!5^1x̄,xe ,peu^2Au^3BuuV123&. ~2.11!

Indeed in Sec. V we will show in detail how the Neuman
coefficients (Vn

rs)kl in n-point vertices in the oscillator for-
malism, including the zero modes (Vn

rs)k0 , (Vn
rs)00, directly

follow from the straightforward and concise Moyal produ
in Eq. ~2.10!. Thus, MSFT is a precise definition of strin
field theory.

Note that the noncommutativity is independent for ea
mode. The Moyal product has been diagonalized in str
mode space by the insertion of the matrixTeo in the defini-
tion of the Fourier transform. Therefore for each independ
even string mode, except the midpoint, we have the
commutation rules~for simplicity, we suppress the midpoin
ghost insertion!

@xe
m ,pe8

n
#* 5 iuhmndee8 , @xe

m ,xe8
n

#* 5@pe
m ,pe8

n
#* 50.

~2.12!

Taking all the modes together we have a noncommuta
space of 2dN dimensions labeled byj i

m , with commutation
relations

@j i
m ,j j

m#* 5s i j h
mn, s5 iuS 0 1

21 0D . ~2.13!

Here the blocks 1 (0) represent the unit~zero! matrices in
even mode space. In terms ofs i j the star is given by

* 5e(3i /2)x̄27expS s i j

2
hmn

]Q

]j i
m

]W

]j j
nD . ~2.14!

It must be emphasized that the noncommutativity associa
with u is a device for formulating string interactions. Th
commutators above do not follow from quantum mechan
and u has no relation to the Planck quantum\ although it
has the same units. The parameteru is present already in
classicalstring field theory. When string field theory is qua
tized\ is introduced as an additional parameter as a mea
of the quantum noncommutativity of fields. Theu noncom-
mutativity is in a spacetime with 2d dimensions (xe

m ,pe
m) for

each even modee. One may think ofs i j h
mn as a giant con-

stant ‘‘magnetic field’’ in the space of all the modes. Strin
theory has sufficient gauge symmetry to ensure unitarity
such a noncommutative spacetime which includes time
componentsj i

0 .
We emphasize that as far ass i j is concerned, the mid-

point positionsx̄m are commutative. If a constant backgroun
antisymmetricBmn field is introduced then some componen
of the midpointx̄m will also become noncommutative. In thi
case our formalism is easily generalized to accommodate
noncommutative midpoint. In this paper, for simplicity, w
will assume that theBmn background is zero.

ep
3-3
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B. The matricesT,R,w,v

The matrixT in Eq. ~2.2! plays a crucial role in bringing
the star product to the diagonal form in mode space as in
~2.10!, and is an important bridge in making connectio
between MSFT and other formulations of SFT. Therefore
list some of its properties here. It is labeledTeo with even
positive integers~e! on its left and odd positive integers~o!
on its right~zero is excluded frome). Its inverse isRoe , and
there are two special vectors with componentswe and vo ,
related to each other byvo5(e.0weTeo , that play a role in
connection with the midpoint Eq.~2.3!. There are also the
frequenciesk2n , k2n21 of even and odd string oscillator
that we designate as two diagonal matriceske , ko . These
quantities satisfy the following matrix relations@24#:

R5~ko!22T̄~ke!
2, R5T̄1vw̄,

~2.15!
v5T̄w, w5R̄v,

TR51, RT51, R̄R511ww̄,
~2.16!

T̄T512vv̄,

TT̄512
ww̄

11w̄w
, Tv5

w

11w̄w
,

~2.17!

v̄v5
w̄w

11w̄w
,

Rw5v~11w̄w!, RR̄512vv̄~11w̄w!, ~2.18!

where a bar on top of a symbol means its transpose. The
equations in Eqs.~2.15! are defining equations in the sen
that they determineT,R,w,v as we will see in the next para
graph. All the other equations follow from these defini
equations; we listed all of them for later convenience.

The first two equations in Eqs.~2.15! are uniquely solved
by theN3N matrices

Teo5
wevoko

2

ke
22ko

2
, Roe5

wevoke
2

ke
22ko

2
. ~2.19!

Inserting these into the last two equations in Eqs.~2.15!
gives

(
e.0

we
2

ke
22ko

2
5

1

ko
2

, (
o.0

vo
2

ke
22ko

2
5

1

ke
2

. ~2.20!

These determinewe
2 , vo

2 for each component in terms of th
frequencieske , ko . We now state a theorem: thewe

2 , vo
2 that

satisfy Eqs.~2.20! obey the following orthogonality rela
tions:

(
e.0

we
2ke

2

~ke
22ko

2!~ke
22ko8

2
!

5
doo8

vo
2ko

2
,

~2.21!
06600
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(
o.0

vo
2ko

2

~ke
22ko

2!~ke8
2

2ko
2!

5
dee8

we
2ke

2

for any givenke , ko . We proved this theorem analyticall
for oÞo8 and eÞe8, and checked it via computer algebr
ically and numerically foro5o8 ande5e8. Then, as a cor-
ollary of the theorem~2.21!, theT,R of Eqs.~2.19! are each
other’s inversesTR515RT.

TheseT,R,w,v satisfy all of the remaining relations in
Eqs.~2.16!–~2.18! for any ke , ko , and any set of signs fo
we , vo , at anyN. Using the remaining freedom, the signs
we , vo are chosen as

sgn~we!5~A21!2e12, sgn~vo!5~A21!o21,
~2.22!

to agree with the largeN theory. Also, one may chooseke
5e, ko5o in the cutoff theory for allN, although this is not
necessary.

At large N whenke→e, ko→o, theseT,R,w,v become
precisely the infinite matrices that emerged in the split str
formalism given by

T2n,2m215
2~21!m1n11

p

3S 1

2m2112n
1

1

2m2122nD , ~2.23!

R2m21,2n5
4n~21!n1m

p~2m21!

3S 1

2m2112n
2

1

2m2122nD , ~2.24!

w2n5A2~21!n11, v2n215
2A2

p

~21!n11

2n21
,

~2.25!

k2n52n, k2n2152n21. ~2.26!

These infinite matrices satisfy all the relations in Eq
~2.15!–~2.18!. We emphasize that here we obtained them
rectly from the defining relations in Eqs.~2.15!.

We have shown that the relations~2.15! play a defining
role in the theory. The oscillator frequencieske , ko and the
set of signs~2.22! are additional inputs in defining the cuto
or the infinite theory through these relations. In the cut
theoryke , ko may be taken to be identical to Eqs.~2.26! at
any N, or some other convenient choice that tends to E
~2.26! at largeN.

C. Cutoff procedure

SFT needs some regularization in any formulation to g
rigorous mathematical meaning to some computations.
discussed in@24# the origin of the singular behavior in MSFT
is due to the even vectorw whose norm becomes infinite a
the number of modes goes to infinityw̄w→2N→` as seen
3-4
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COMPUTING IN STRING FIELD THEORY USING THE . . . PHYSICAL REVIEW D 66, 066003 ~2002!
from Eqs. ~2.25!. Therefore in some computations we w
use a finite number of modes to regularize certain quant
before taking the largeN limit. This is somewhat similar to
level truncation, but our cutoff procedure is more reliable
that all the relations in Eqs.~2.15!–~2.18! remain valid at all
values of the cutoffN and any set of frequencieske , ko . It
turns out that for certain delicate computations, where na
level truncation could not be fully trusted, our cutoff meth
gives unambiguous results consistent with gauge invaria

However, there will remain some open issues on how
recover certain non-perturbative effects in the context
vacuum string field theory, such as closed strings, tach
mass, and D-brane tensions, as we will explain in Sec.
Such issues are all related to the existence of a zero ei
value in the infinite theory, as explained below, and its re
tion to an associativity anomaly in the star product in a v
special way@24#. To sharpen these issues first we will exa
ine the theory through our cutoff procedure, and then we w
see the precise point on which to focus to be able to ext
nonperturbative information from vacuum string field theo

In the largeN limit the infinite matricesT,R,w,v as well
as the star product~2.10! have an associativity anomaly th
needs to be treated delicately@24#. In particular, from Eqs.
~2.17! note thatTv→0 when w̄w→`, indicating a zero
mode which is the cause for the associativity anomaly.
finite N there is no associativity anomaly because the z
mode is shifted away from zero as seen by computing
determinant ofT

det~T!5
1

A11w̄w
5

detko

detke

5 )
n>1

k2n21

k2n

, ~2.27!

The right-hand side follows from Eqs.~2.15!–~2.18! as a
nontrivial relation.5 Thus, all ambiguities are uniquely con
trolled by the cutoff, and one can proceed with confiden
using associativity both for the matricesT,R,w,v and for the
star product in Eq.~2.10!.

Generically, to perform a computation in the cutoff theo
we do not need an explicit form of the finite matric
T,R,w,v,ke ,ko , since in most cases it is sufficient to u
the relations~2.15!–~2.18! which are valid at any cutoffN,
including infinity. The useful information that the cuto
theory supplies is the behavior of a computation as a fu
tion of w̄w @see, e.g., Eq.~2.27! or Eqs. ~2.17!,~2.18!#. As
seen from Eq.~2.25! w̄w enlarges as the cutoff is removed
the ratew̄w→2N→`. Knowing the w̄w dependence of a
quantity determines its dependence on the cutoff at the v
end of a calculation whenN→`. This is the cutoff proce-

5Note that if we had first sent the cutoff to infinity, Eqs.~2.16!

would give TT̄51 with a determinant det(TT̄)51, while T̄T51

2vv̄ with a determinant det(T̄T)512 v̄v50. This is another ex-
ample of the associativity anomaly which is resolved uniquely a
controlled with our cutoff method. The naive level truncation wou
still be ambiguous in this case, and would not yield the type
analytic relations given in Eq.~2.27! or many others.
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dure that we will use when a computation is delicate; b
otherwise it is not important to use the cutoff, and the e
plicit infinite version ofT,R,v,w,keko in Eqs.~2.23!–~2.26!
may be used directly.

We provide here another basis forT,R,w,v,ke ,ko which
sheds additional insight into the nature of the cutoff and
structure of Eqs.~2.15!–~2.18!. In the new basis we see mor
clearly why the largeN limit is tricky and different than the
naive level truncation. Let us apply two orthogonal transf
mationsSe , So to the relations~2.15!–~2.18! to write them in
a basis in which the vectorswe , vo point in a single direc-
tion. Then we find from Eqs. ~2.15!–~2.18! w̄e

5(0, . . . ,0,w)S̄e and v̄o5(0, . . . ,0,w(11w2)21/2)S̄o while
the matricesT,R become block diagonal

T5SeS t 0

0
1

A11w2
D S̄o ,

R5SoS t̄ 0

0 A11w2D S̄e , ~2.28!

t t̄ 5 t̄ t51,

such that the (N21)3(N21) matrix t is orthogonal~note
that t could be replaced by 1 by absorbing it into a redefi
tion of Se or So). Then all the relations are satisfied by th
new forms ofT,R,v,w except for the first relation in Eq
~2.15! which contains the information on the oscillator fr
quencies. This last relation determinesT,R,w,v uniquely in
terms of the frequencieske , ko as discussed in@24#. When
the rank of the matricesN goes to infinity, the single param
eterw2 also grows at the ratew2→2N→`. This combined
limit is the nontrivial aspect in our cutoff procedure. In pa
ticular note thatT develops a zero eigenvalue which is th
cause of associativity anomalies@24#. But in all computa-
tions where an anomaly occurs in the infinite theory, it com
from ambiguous terms̀ /` that become uniquely evaluate
in the form of w/w in the cutoff theory, thus resolving th
anomaly. The block diagonal basis of this paragraph sh
further light into our consistent cutoff procedure, but we p
fer using the original basis, along with the consistency eq
tions ~2.15!–~2.18!, since the explicit forms of
T,R,v,w,ke ,ko are available in the infinite limit in the origi-
nal basis as in Eqs.~2.23!–~2.26!.

Other bases may also be considered. In particular, i
useful to study the basis in which the matr
(ke)

1/2T(ko)21/2, which occurs prominently in many expres
sions, is diagonal. We will see later that in this basis
Neumann coefficients for alln-point string vertices are diag
onal. The orthogonal transformations that diagonalize t
matrix are denotedVe, Vo

~ke!
1/2T~ko!21/25VetV̄o, ~2.29!

where t is an N3N diagonal matrix with eigenvaluestk
labeled by integersk50,1, . . . ,(N21). These orthogona

d

f
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transformations provide the map between the bases in
duced in@6# and @25#. In the largeN limit, the matrix ele-
ments become functions of a continuous parameter (Ve)ek
→Ve(k), (Vo)ok→Vo(k), tk→t(k), and Eq.~2.29! takes
the form

AeTeo

1

Ao
5E

0

`

dk Ve~k!Vo~k!t~k!, ~2.30!

such that the eigenvaluestk become a continuous function a
seen from Eq.~6.7! in @25#

t~k!5tanhS pk

4 D . ~2.31!

Furthermore, the functionsVe(k), Vo(k) are obtained from
the following generating functions extracted from Eqs.~3.4!
in @25#6 for k>0,

(
o

Vo~k!~ tanz!o

Ao
5

sinh~kz!

A4k sinhS pk

2
D

,

(
e

Ve~k!~ tanz!e

Ae
52

12cosh~kz!

A4k sinhS pk

2
D

. ~2.32!

As seen from the expressions in Eqs.~2.17!,~2.27!,~2.28!, a
zero mode is expected in the largeN limit, and this is explic-
itly seen in the expression oft(k) at k50. The associativity
anomalies caused by the zero mode in the largeN limit, as
discussed in@24#, must occur also in the continuous basis
@25#. These are absent in the cutoff theory because the s
larity transformationsVe, Vo are well definedN3N finite
matrices, the basis labeled byk is discrete, and the lowes
eigenvalue among thetk is positive definite. Our regularize
theory removes the associativity anomaly by shifting t
mode away from zero in any formalism, including in thek
basis. Thus some issues raised in@25# are avoided and re
solved in our regularized theory@in this connection see als
Eq. ~2.62! and the spectrum of the Virasoro operatorL0 in
Eq. ~2.107!#.

In the infinite theory the zero eigenvalue of the mat
(ke)

1/2T(ko)21/2 is related to a number of important nonpe
turbative issues. We will see in Sec. VI that certain nonp
turbative effects vanish when the star product is strictly
sociative, as guaranteed by our cutoff procedure. We
suggest that to recover such nonperturbative effects s
nonassociativity will need to be introduced in thedefinition
of the inverse of the matrix (ke)

1/2T(ko)21/2.

6Our normalization ofVe(k) and Vo(k) are consistent with the
orthonormality conditions of the matricesVe, Vo. OurVe(k), Vo(k)
are related by a factor ofA2 to theve(k), vo(k) of @25#.
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D. Identity, nothing state, reality, trace, integral,
gauge invariant action

The reformulation of the star product greatly simplifi
computations of interacting string fields. Recall that thex
representationc(x0 ,x2n ,x2n21) is related to the oscillator
representation by the Fock space bra-ket prod
c(x0 ,x2n ,x2n21)5^xuc& where^xu is constructed from os-
cillators in Eq. ~2.1! and uc& is a string state, while the
MSFT field A( x̄,x2n ,p2n) is the Fourier transform given in
Eq. ~2.2!. In this section we give a few simple illustrations o
the simplifications obtained in MSFT which help make stri
field theory more manageable. More involved examples
simplified computations will appear in later sections in th
paper.

The first example is the identity field. If we ignore th
midpoint ghost insertion we can easily notice that the o
identity of the Moyal product is the number 1. Taking in
account the ghost field insertion, the identity field is the pu
midpoint field, I 5exp(23ix̄27/2). The midpoint phase is in
sensitive to the Moyal star; it is designed to cancel the m
point ghost insertion in the definition in Eq.~2.10!, so it
really acts like the number 1. Therefore, it satisfies

I * A5A* I 5A ~2.33!

for any string fieldA( x̄,x2n ,x2n21). This result forI can be
verified directly by taking the Fourier transform of the ide
tity field in the x representation which is proportional t
)n>1d(x2n21).

A second example is the ‘‘nothing state.’’ In thex repre-
sentation the nothing state is a constant. The correspon
Moyal field is a delta function for all even momen
Anothing;)n>1d(p2n). In computing the Moyal star produc
of extremely localized states, such as the nothing state,
must be aware of some nonperturbative properties in
powers ofu @8#.

A third example is the reality condition on string fields.
the oscillator representation this is an awkward condition
the x representation it becomesc* (x0 ,x2n ,x2n21)
5c(x0 ,x2n ,2x2n21). In the Moyal basis it takes its sim
plest form, namely the field is a real function under comp
conjugation in the usual sense A* ( x̄,x2n ,p2n)
5A( x̄,x2n ,p2n).

A fourth example is the integration which is needed
definec-number quantities such as an action. In the origi
formulation of SFT integration corresponds to folding
string on itself and integrating over the overlap and m
point. In MSFT this simplifies to phase space integrals wh
define a ‘‘trace’’ as in other applications of noncommutati
geometry, and a further integral over the midpoint with
ghost insertion

Tr@Ag~ x̄!#[E )
n>1,m

dx2n
m dp2n

m

2pu
Ag~ x̄,x2n ,p2n!, ~2.34!

E Tr~Ag~ x̄!!5E ~dx̄m!e2 ig x̄27Tr@Ag~ x̄!#, ~2.35!
3-6



r 3
-
t

rs
in
c
o

illa
u
ak

u
r-

he

iv
on
ge

ti
iv

a
o
-
n

al

e
FT
d

ud
a
n

hi

t
e
i

are
n

t of

x-

-
on

a-

cil-

e
e-
t
the

-
r

ion

ng

COMPUTING IN STRING FIELD THEORY USING THE . . . PHYSICAL REVIEW D 66, 066003 ~2002!
whereg is the ghost number of the fieldAg. In particular, the
action takes the form

S5E ~dx̄m!e2 i (3/2)x̄27TrS 1

2
A* ~QA!1

1

3
A* A* AD .

~2.36!

HereA has ghost number21/2, the kinetic operatorQ has
ghost number 1, and the star product has ghost numbe
due to the insertion in Eq.~2.10!. Therefore the action den
sity has ghost numberg53/2 which explains the midpoin
ghost insertion in the last integral.

The choice of the kinetic operatorQ corresponds to a
choice of a vacuum~or D-branes!. For the open string
vacuum~space filling D25 brane!, Q is the usual BRST op-
eratorQB constructed from ghosts and Virasoro operato
Later in this paper we will construct the Virasoro operators
Moyal space and will study some of their properties. Sin
the Virasoro algebra is infinite dimensional, we cann
achieve closure unless we take an infinite number of osc
tors. Therefore to construct the theory and discuss its ga
invariance around the perturbative vacuum, we must t
ke5ueu, ko5uou andN5`.

For the conjectured nonperturbative closed string vacu
~no D-branes! Q is constructed purely from ghosts. In pa
ticular it is suggested in@13# thatQ5(1/2i )@c( i )2c(2 i )# is
the fermionic ghost at the midpoint. This version of t
theory is called vacuum string field theory~VSFT!. In this
caseQ satisfies the usual properties of an exterior derivat
without recourse to the Virasoro algebra. Then our acti
which formally looks like a Chern-Simons action, is gau
invariant under the gauge transformation

dA5QL1L* A2A* L ~2.37!

for any number of oscillators 2N and any frequencieske ,
ko . Of course, the gauge invariance requires an associa
star product. The setup of our theory guarantees associat
rigorously at anyfinite N.

We will see that the sliver state introduces a singularity
infinite N. This is directly related to the zero eigenvalue
the infinite matrix (ke)

1/2T(ko)21/2 we discussed in the pre
ceding section. In order to obtain closed strings in VSFT, a
have nontrivial physical results, an associativity anom
needs to be introduced through thedefinitionof the inverse
of this infinite matrix@24#. Inevitably, this implies less gaug
invariance which is introduced in a rather subtle way. VS
is not well defined until the singularity is universally define
and the gauge invariance principle understood. To st
these issues we will proceed with full gauge invariance
finite N and examine its conclusions. By doing so, we ide
tify the source of the possible associativity anomaly in t
paper but leave its resolution to later work.

E. Perturbative vacuum and basis in Moyal formalism

We now establish several concrete maps between
usual formulation and the Moyal formulation. These will b
useful to compare the Moyal formalism to others. We keep
mind that the statements we make hold at anyke , ko ,N as
06600
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well as in the usual limit. The perturbative string states
represented by some very special field configurations. Ix
space a string fieldc(x0 ,x2n ,x2n21) in theperturbativeHil-
bert space may be expanded in terms of a complete se
perturbative string fieldsc (n1 ,n2 , . . . )

c5 (
n1 ,n2 ,•••>0

f (n1 ,n2 ,•••)~x0!c (n1 ,n2 ,•••)~xe ,xo!.

~2.38!

The f (n1 ,n2 , . . . )(x0) are local fields that represent the e
cited levels of the string in position space~as functions of the
center of mass mode of the stringx0

m), while the field con-
figurationsc (n1 ,n2 , . . . )(x2n ,x2n21) represent the string exci
tations that are obtained by applying creation operators
the ground state fieldc0(xe ,xo);exp((n>1knxn

2/2l s
2). Up to

a normalization, this basis is given by

c (n1 ,n2 ,•••)~xe ,xo!;S )
i>1

~a2 i !
ni Dc0~xe ,xo!. ~2.39!

The oscillatorsan
m become represented by differential oper

tors forall positive and negative integers n~not zero! acting
on anyc(x0 ,xu2nu ,xu2n21u)

^xuanuc&5A1

2S k unu

l s
xunu1 l se~n!

]

]xunu
Dc~x! ~2.40!

wherek unu is the oscillator frequency,l s is the string length
scale, ande(n)5n/unu is the sign function. Forn50, instead
of an oscillator we have a derivative

^xua0uc&52 i l s

]c~x!

]x0
. ~2.41!

These differential operators satisfy the standard string os
lator commutation relations when acting onc

@an
m ,an

n#5e~n!kndn1mhmn. ~2.42!

In Eq. ~2.39! for simplicity of notation we have omitted th
spacetime indices on thea

2 i
m i and the corresponding spac

time indices on thef (n1 ,n2 , . . . ), but it is well understood tha
they should be included since they represent the spin of
field. For example, when allni50, the fieldf (0,0, . . . )(x0)
[t(x0) is the tachyon field with no spin, while the first ex
citation a21

m c0(x2n ,x2n21) is associated with the vecto
field (f (1,0, . . . )(x0))m[Am(x0) with spin 1.

In the Moyal basis we have the corresponding expans
in terms of a complete set of perturbative string fields

A~ x̄,x2n ,p2n!5 (
n1 ,n2 ,•••>0

f (n1 ,n2 ,•••)~x0!A(n1 ,n2 ,•••)

3~x2n ,p2n!, ~2.43!

with the same set of local fieldsf (n1 ,n2 ,•••)(x0). But nowx0

has to be rewritten in terms ofx̄ and x2n as in Eq.~2.3!
before applying the Moyal products as described followi
3-7
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Eq. ~2.10!. The complete setA(n1 ,n2 , . . . )(x2n ,p2n) is related

to the complete setc (n1 ,n2 , . . . )(x2n ,x2n21) via the Fourier
transform in Eq.~2.2!. It will be sufficient to construct the
ground state in the Moyal basisA0(x2n ,p2n) since all ex-
cited states will be obtained by applyingb oscillators in
Moyal space which will be defined below.

The ground state field for the string is independent ofx0

or x̄ ~except for the ghost part which contributes only in t
selection rule! and is given by

c0~x!5F )
n>1

S k2n

p l s
2

k2n21

p l s
2 D d/4G

3expF2 (
n>1

S k2n

2l s
2

x2n•x2n

1
k2n21

2l s
2

x2n21•x2n21D G . ~2.44!

As seen from Eq.~2.40! it is annihilated by the positive
oscillators^xuanuc0&50 for n51,2, . . . . Thestate is nor-
malized so that

S )
n>1

)
m50

d E dx2n
m dx2n21

m D uc0~x2n ,x2n21!u251.

~2.45!

The ground state field in the Moyal basis is obtained throu
the Fourier transform ofc0 as in Eq.~2.2!, with the result

A05 )
n>1

S 24
k2n

k2n21
D d/4

expS 2 (
n>1

k2n

2l s
2

x2n•x2n

2 (
n,m>1

2l s
2

u2
Z2n,2mp2n•p2mD , ~2.46!

where the matrixZ is given explicitly by

Z2n,2m5 (
k>1

T2n,2k21

1

k2k21
T2m,2k21 . ~2.47!

In the infinite cutoff limit we have@i.e. using Eqs.~2.23!–
~2.26!#

lim
N→`

Z2n,2m5
~21!m1n11

p2~n22m2!
FcS 1

2
1nD1cS 1

2
2nD

2cS 1

2
1mD2cS 1

2
2mD G ~2.48!

5
4~21!m1n11

p2~n22m2!
F (

r 51

n
1

2r 21

2(
r 51

m
1

2r 21G ~2.49!
06600
h

5
4

p2S 1
1

9
2

1

15
•••

1

9

5

9

1

25
•••

2
1

15

1

25

7337

3352
•••

A A A �

D
~2.50!

wherec(z)5G8(z)/G(z) is the digamma function.
The norm ofA0(x2n ,p2n) is determined through its rela

tion to c0 in Eq. ~2.2! and is given by

)
n>1

)
m50

d E dx2n
m dp2n

m

2pu
uA0~x2n ,p2n!u251. ~2.51!

Note that this measure is consistent with Eqs.~2.2!,~2.45! as
well as Eq.~2.34!. In computing this norm we needed to us

det~Z!5det~ T̄T!S )
n>1

1

k2n21
D 5 )

n>1

k2n21

~k2n!2
~2.52!

where the right-hand side is unambiguously computed
using the relation Eq.~2.27!.

In summary, the normalized vacuum field in Moyal spa
is given by

A05N 0e2 j̄M0j, Tr~A0* A0!51,
~2.53!

N05S det~16ke!

detko
D d/4

,

with M0 defined in Eqs. ~2.8!. Note that Tr(A0* A0)
5Tr(A0

2)51 because the Moyal star product between t
factors can be removed under integration. Here we have
fined the normN0, and the matrix (M0) i j sandwiched be-
tween thej i

m whose basis is given in Eqs.~2.6! This form, or
Eq. ~2.46!, is valid for either the cutoff or the infinite versio
of the theory.

It is useful to record at this juncture some of the techni
properties of the matrix

G[Zke5Tko
21T̄ke5TkoRke

21 ~2.54!

which will come up in the course of computing several qua
tities in later sections, including the wedge fieldsWn(x,p) or
sliver fieldJ(x,p) as functions of the vacuum fieldA0. The
inverse ofG is given by

Y5ke
21R̄koR5keTko

21R. ~2.55!

Using Eq.~2.27! we compute its determinant

detG5@det~T!#2
detke

detko

5detT5
1

A11w̄w
. ~2.56!
3-8
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Furthermore, using Eqs.~2.15!–~2.18! we compute

GḠ5Tko
21T̄ke

2Tko
21T̄5TkoRTko

21T̄5TT̄512
ww̄

11w̄w
~2.57!

and

ḠG5keTko
21~ T̄T!ko

21T̄ke

5keTko
21~12vv̄ !ko

21T̄ke512u ū ~2.58!

where we have definedu and used its properties as follow
r
t

th

.

e
e
o

iz

06600
u[keTko
21v5Ḡw, ūu5 v̄v5

w̄w

11w̄w
,

~2.59!
Gu5w~11w̄w!21.

We see thatḠu approaches 0 asN→`, sou is a vector that
tends to become the zero mode ofG in the largeN limit.

A numerical estimate of the eigenvalues ofG can be ob-
tained by using the numerical matrixZ given in Eq.~2.50!
and then using naive level truncation~this is less accurate
than using the exact cutoff version ofT). Numerical compu-
tations show that almost all of the eigenvalues ofG are 1
except for a very small number of them which deviate fro
1. For example forN550, within 1% error, 46 eigenvalue
are 1.00, and the last four eigenvalues are 0.99272, 0.95
0.79796, 0.35755. Thus, the 50 eigenvalues ofG are approxi-
mately
eigen~G!'$~1.00!, . . . ,~1.00!,~0.99!,~0.96!,~0.80!,~0.36!%. ~2.60!
i-

s-

e

rm
cil-
The approach to a zero eigenvalue asw̄w→2N→` is ex-
pected since a zero mode was already identified in the la
N limit, but it is interesting that this zero eigenvalue seems
be almost isolated in the numerical estimates. To see
analytically we can bringḠ to block diagonal form by or-
thogonal transformations that map the vectorsw, u to point
in a single direction w̄5(0, . . . ,0,w)S̄e and ū

5@0, . . . ,0,w(11w2)21/2#S̄e8 . Then consistently with Eqs
~2.57!,~2.58! we derive

Ḡ5Se8S g 0

0
1

A11w2
D S̄e , gḡ5ḡg51, ~2.61!

where the (N21)3(N21) blockg is orthogonal. Given the
numerical estimates in Eq.~2.60! we see that the eigenvalu
that tends to zero at largeN is indeed isolated, and that w
may takeg51 since it can be absorbed into a redefinition
Se or Se8 .

We also compare this result to the basis that diagonal
ke

1/2Tko
21/2 as defined in Eq.~2.29!. We see that Ḡ

5keTko
21T̄5ke

1/2(ke
1/2Tko

21/2)(ko
21/2T̄ke

1/2)ke
21/2 takes the

form

Ḡ5~ke!
1/2Ve~t!2V̄e~ke!

21/2

5Se8S g 0

0
1

A11w2
D S̄e . ~2.62!

This provides the relation between the eigenvaluestk and the
eigenvalues ofḠ. In particular, we see that (dett)25(1
ge
o
is

f

es

1w2)21/2. Also, for an infinite number of modes, writing
t(k)5tanh(pk/4), we see its compatibility with the numer
cal computation in Eq.~2.60!.

F. Oscillators as differential operators in Moyal space

By taking the Fourier transform of the oscillators expre
sions given in Eqs.~2.40!,~2.41! we construct the oscillators
as differential operatorsb̄0 , be

x , bo
p ~or b̄e

x , b̄e
p) acting on

any fieldA( x̄,xueu ,pueu) in Moyal space. The notation we ar
using in this section is as follows:e indicates positive or
negative even numbers excluding zero,o indicates positive
or negative odd numbers. The result of the Fourier transfo
is also obtained directly by using the properties of the os
lator statê x̄,xe ,peu

^x̄,xe ,peua0uc&[b0A52 i l s

]A

] x̄
~2.63!

^x̄,xe ,peuaeuc&[be
xA5~ b̄e

x2 iwe8b0!A ~2.64!

^x̄,xe ,peuaouc&[bo
pA5 (

eÞ0
~ b̄e

pA!U2e,o . ~2.65!

Note that we have distinguished in our notation betweenbe
x

versusb̄e
x , andbo

p versusb̄e
p , where

b̄e
x5A1

2S k ueu

l s
xueu1 l se~e!

]

]xueu
D ,

~2.66!

b̄e
p5 iA1

2S uk ueu

2l s

]

]pueu
1

2l s

u
e~e!pueu

m D .
3-9
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The b̄e
x , b̄e

p commute with each other and satisfy oscillat
commutation rules among themselves

@b̄e
x ,b̄e8

x
#5«~e!k ueude1e8 ,

@b̄e
p ,b̄e8

p
#5«~e!k ueude1e8 , ~2.67!

@b̄e
x ,b̄e8

p
#50.

The extra shift7 with we85e(e)wueu /A2 in Eq. ~2.64! does
not change the commutation relations sinceb0 commutes
with b̄e

x .
The matrixU and its inverseU21, with matrix elements

U2e,o , (U21)2o,e , are given by8

U2e,o5
we8vo8ko8

ke82ko8
, ~U21!2o,e5

we8vo8ke8

ke82ko8
, ~2.68!

where we have extended the definition of the quanti
we ,vo ,ke ,ko to both positive and negative values ofe,o as
follows:

vo85
e~o!v uou

A2
, we85

e~e!wueu

A2
,

~2.69!
ke85«~e!k ueu , ko85«~o!k uou ,

such that~after the sum over both positive and negative
tegers! v̄8v85 v̄v and w̄8w85w̄w. After the transformation
with the matrixU2e,o one can verify easily that (b0 ,be

x ,bo
p)

are differential operators that satisfy the oscillator commu
tion rules that are in one to one correspondence with thos
an given in Eq.~2.42!

@be
x ,be8

x
#5«~e!k ueude1e8 ,

@bo
p ,bo8

p
#5«~o!k uoudo1o8 ,

7We have taken into account that]/]xueu , as part ofae , acts on

c(x0 ,xueu ,xuou) at fixed x0 whereas]/]xueu , as part ofb̄e
x acts on

A( x̄,xueu ,pueu) at fixed x̄. The latter is required for compatibility with
the definition of]/]xueu that appears in the Moyal star product
Eq. ~2.10!. This difference in the definition of]/]xueu is taken into

account by replacingx05 x̄1( ueu.0wueuxueu in c and also replacing

]c/]xueu→]c/]xueu2(]x0 /]xueu)(]c/] x̄) before taking the Fourier
transform. This is the reason for the shift«(2n)(wueu /A2)b0 that

appears as the difference betweenbe
x and b̄e

x . It should be noted

that be
x commutes with any function ofx05 x̄1(wueuxueu as a con-

sequence of this structurebe
xf ( x̄1(wu2euxueu)5 f ( x̄1(wueuxueu)be

x ;
this is analogous toae commuting with any function ofx0.

8An intermediate step in deriving Eq.~2.65! from Fourier trans-

forms is the formU2e,o5@
1
2 (k ueu /k uou)1

1
2 e(e)e(o)#Tueu,uou . After

inserting the expression forTueu,uou , Ruou,ueu in Eqs.~2.19!, the sim-
pler form of U andU21 follow.
06600
s

-

-
of

@be
x ,bo

p#50, ~2.70!

while b0 commutes with allbe
x , bo

p .
The 2N32N matrix U plays the role of a Bogoliubov

transformation~a linear combination of positive and negativ
frequency oscillators! and produces odd oscillators from th
even ones, and vice versa. It satisfies the following relati
which follow from those of theN3N matricesT,R,v,w in
Eqs.~2.15!–~2.29!9

U215ko8
21Ūke8 , U215Ū1v8w̄8,

~2.71!
v85Ūw8, w85Ū21v8,

UU2151, U21U51, Ū21U21511w8w̄8,
~2.72!

ŪU512v8v̄8,

UŪ512
w8w̄8

11w̄8w8
, Uv85

w8

11w̄8w8
,

~2.73!

v̄8v85
w̄8w8

11w̄8w8
,

U21w85v8~11w̄8w8!,
~2.74!

U21Ū21512v8v̄8~11w̄8w8!,

whereŪ is the transpose ofU.
In the largeN limit, after using Eqs.~2.23!–~2.26!, the

infinite matrix elementsU2e,o , U2o,e
21 , ke8 , ko8 , vo8 , wo8 get

simplified to the form

U2e,o5
2

p

i o2e21

o2e
, U2o,e

21 5
2

p

e

o

i o2e21

o2e
,we85 i e12,

~2.75!

vo85
2

p

i o21

o
, ke85e, ko85o.

where i 5A21. The relations~2.71!–~2.74! can be verified
explicitly in the infinite cutoff limit by using the following
identities that are valid only for integers~recall thatU2e,o or
U2o,e

21 do not includee50):

(
k52`

`
1

2m12k21

1

2k21

1

2n22k11
5

p2

8m
d2m12n

~2.76!

9Instead of deriving these relations from those ofT,R,v,w, it is
also possible to consider Eqs.~2.71! as the primary defining rela
tions for U,U21,vo8 ,we8 which determineU,U21 as in Eqs.~2.68!
and give w8,v8 as the solutions ofko

215(eÞ0(we8)
2(ke82ko8),

ke
215(o(vo8)

2(ke82ko8) for anyke8 ,ko8 . The rest of the relations in
Eqs.~2.72!–~2.74! and those ofT,R,v,w follow from them.
3-10
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(
k52`

`
1

2m12k21
~2k!

1

2n22k11

52
p2

4
~2n11!d2m12n ~2.77!

(
k52`

`
1

2m12k21

1

2n22k11
52

p2

4
d2m12n

~2.78!

(
k52`

`
1

2m12k21
50,

~2.79!

(
k52`

`
~21!k

2m12k21
52

p

2
~21!m.

The conditional convergence of these sums cause anom
in multiple sums if a cutoff is not present. For example,
w̄8w85` is first set in relations~2.71!–~2.74!, and then one
computes U21Uv8 one finds two different answers
(U21U)v85v8 versusU21(Uv8)50. This is the source o
many associativity anomalies in string field theory as d
cussed in@24#. For this reason one must proceed carefu
with a cutoff N, and take the largeN limit only at the very
end of a calculation to obtain unique and unambiguous
swers.

Note that in the infinite cutoff limitU2e,o is a function of
only the sum of its arguments. This is a useful property t
06600
ies

-

n-

t

is not necessarily shared by the cutoff version ofU, and it
leads to the derivation of additional properties for the infin
U, such asU2o1e9,e85U2o,e91e8 and

(
o

Ue,o
21U2o1e9,e85de1e81e9 , ~2.80!

which follows from U21U51. This relation holds for any
shift e9 in the infinite theory, but is only true fore950 in the
cutoff theory.

We now analyze the action of the oscillators on t
vacuum state. By construction, the vacuum fieldA0 defined
in the previous section should be annihilated by the posi
frequency oscillatorsb ueu

x ,b uou
p . It is instructive to verify this

property directly by using the explicitA0 given in Eq.~2.46!

be
xA0~xueu ,pueu!5A1

2S k ueu

l s
xueu1 l se~e!

]

]xueu
DA010

~2.81!

5A1

2

k ueu

l s
xueu@12e~e!#A050

if and only if e.0. ~2.82!

We see that the shift in Eq.~2.64! plays no role here becaus
A0 is independent ofx0 or x̄. Similarly we have
bo
pA0~xueu ,pueu!5 (

eÞ0
~be

pA0!U2e,o ~2.83!

5 i (
eÞ0

A1

2S uk ueu

2l s

]

]pueu
1

2l s

u
e~e!pueu DA0U2e,o ~2.84!

5 i (
eÞ0

A1

2S 2
uk ueu

2l s

4l s
2

u2
~pZ! ueu1

2l s

u
e~e!pueu D A0U2e,o ~2.85!

5 iA1

2

2l s

u
A0(

eÞ0
@2~pZ! ueuk ueu1e~e!pueu#U2e,o ~2.86!

52 iA1

2

2l s

u S (
e.0

peTe,uou D @12e~o!#A050 if and only if o.0 ~2.87!

where Eq.~2.87! was computed by rewriting the sum only over positive integers, and using the relationsII F betweenU andT,
3-11
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(
e.0

pe
mS 2 (

e8.0

Ze,e8ke8~Ue8,o1U2e8,o!

1«~e!~U2e,o2Ue,o!
D ~2.88!

5 (
e.0

pe
mS (

e8.0

2Ze,e8Ruou,e8ko1Te,uoue~o!D ~2.89!

52@12e~o!#(
e.0

pe
mTe,uou . ~2.90!

To prove the last line we have used the definition ofZ2k,2n
given in Eq.~2.47! and appliedRT51. These properties o
the vacuum fieldA0 hold both in the cutoff and the infinite
theory. The perturbative string states can now be constru
by applying the oscillatorsb2ueu

x , b2uou
p on the perturbative

vacuumA0 of Eq. ~2.53!.

G. Oscillators as fields in Moyal space

Instead of differential operatorsb̄e
x ,b̄e

p or bo
p , it is pos-

sible to construct the oscillators in terms of star produ
among fields in Moyal space. To this end we definebe for
eÞ0 as a function ofxueu ,pueu in Moyal space

be5A1

2S k ueu

2l s
xueu1

i l s

u
e~e!pueu D . ~2.91!

These are functions in phase space, not differential opera
For b0 we have a differential operatorb052 i l s] x̄ as before.
Under the Moyal star product obeyed by fields they satis

@be
m ,be8

n
#* 5

1

2
hmn«~e!k ueude1e8 , ~2.92!

while b0 commutes with all others. Note the factor of1
2

compared to Eq.~2.70!. These can be star multiplied on e
ther the left or right side of string fields. When the star pro
ucts are evaluated by using explicitly the Moyal product
find the following two combinations that act like differenti
operator representations of oscillators acting only onxueu or
only on pueu dependence

be* A1A* b2e5b̄e
xA, ~2.93!

be* A2A* b2e5b̄e
pA, ~2.94!

where the differential operatorsb̄e
x ,b̄e

p are given in Eq.
~2.66!. This implies that we can construct the effect of
oscillatorsan for nÞ0 in terms of only star products b
substituting the differential operatorsb̄e

xA, b̄e
pA everywhere

by the star product expressions given above. In terms
them we can write

^x̄,xe ,peua0uc&5b0A[2 i l s] x̄A ~2.95!

^ x̄,xe ,peuaeuc&5~be* A1A* b2e!2 iwe8b0A ~2.96!
06600
ed

s
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of

^x̄,xe ,peuaouc&5bo* A2A* b2o ~2.97!

wherebo is the Bogoliubov transform ofbe

bo5 (
eÞ0

beU2e,o . ~2.98!

bo does not star commute withbe ,

@b2e ,bo#* 5
1

2
hmn«~e!k ueuU2e,o ~2.99!

but bo satisfies the star commutator of oscillators with t
odd frequencies

@bo
m ,bo8

n
#* 5

1

2
hmn«~o!kodo1o8 . ~2.100!

This is verified by using Eq.~2.92! and the properties ofU
given in Eq.~2.71! below. Note again the factor of12 com-
pared to Eq.~2.70!. It is also possible to display the prope
ties ofbo by performing the transformation to the odd pha
space,II A which we give here without proof,

bo5 (
eÞ0

A1

2S k ueu

2l s
xueu1

i l s

u
e~e!pueu DU2e,o ~2.101!

5(
o
A1

2S ko

2l s
xuou1

i l s

u
e~o!puou D . ~2.102!

We have seen that the only fundamental oscillators
MSFT are the oscillators in Moyal space, either thebe

m of
Eq. ~2.91! or thebo of Eqs.~2.98!, ~2.102!. Either set may be
considered as a special set of string fields.

H. Differential Virasoro operators in Moyal space

We can now construct the Virasoro operators by using
correspondence we have established between thea and b
oscillators. We find

^x̄,xe ,peuLe
auc&5Le

bA, ^x̄,xe ,peuLo
auc&5Lo

bA
~2.103!

where we have the differential operators~sum overe8 in-
cludese850)

Le
b5

1

2 (
e8

:b2e8
x

•be1e8
x :1

1

2 (
o8

:b2o8
p

•be1o8
p :

~2.104!

Lo
b5(

e8
:bo2e8

p
•be8

x :. ~2.105!

The normal ordering of the differential operator is the sa
as thea oscillators. Then it is evident that the positive on
annihilate the vacuum fieldA0 that satisfies Eqs
~2.81!,~2.83!. These Virasoro operators obviously satisfy t
3-12
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Virasoro algebra since thebe
x , bo

p have identical commuta
tion relations to theae , ao , respectively. Closure of the
Virasoro algebra is possible only when the cutoffN is sent to
infinity.10

We now introduce the cutoff to study certain issues
lated to anomalies. In particular the cutoff version of t
Virasoro operatorL0 which determines the spectrum of th
cutoff theory is

L0
b~N!5b0

21 (
e>2

2N

b2e
x

•be
x1 (

o>1

2N21

b2o
p

•bo
p . ~2.106!

The spectrum of this operator is the same as the one
scribed in the preceding section, which is obtained by app
ing even and odd creation operators on the vacuum statA0
in the cutoff theory. The oscillator frequenciesk ueu ,k uou in
Eq. ~2.70! determine the spectrum, as usual.

Next, by using the 2N32N Bogoliubov transformationU
we can express the oddbo

p in terms of the evenb̄e
p . After

using Eq.~2.73! the Virasoro operatorL0 takes the form

L0
b~N!5b0

21 (
e>2

2N

~b2e
x

•be
x1b̄2e

p
•b̄e

p!

2
1

~11w̄w!
S (

e.0

2N

we~ b̄e
p1b̄2e

p !D 2

,

~2.107!

where only even oscillators with only even frequenciesk ueu

appear. Note that there is no zero modeb̄0
p since it does not

exist in the formalism and therefore it is taken as zero. F
mally the second term vanishes when the cutoff is remo
sincew̄w→` in the infinite mode limit. It would appear the
that the spectrum is different than the original theory sin
now only k ueu appears in the spectrum without any inform
tion of the ko . This is an anomaly related to the oth
anomalous cases that we discussed before. To understan
problem let us focus on the second term which plays
subtle role. First, in its absence, a false perturbative vacu
state would be given by a function proportional
exp@2(1/2l s

2)k ueuxueu
2 2(2l s

2/u2k ueu)pueu
2 # as assumed in@25#.

This cannot be the correct perturbative vacuum since
have already determined that it is given by the fieldA0 of Eq.
~2.46! which is different. Indeed, due to the presence of
second term in Eq.~2.107! the false vacuum is not an eigen
function of theL0

b(N) of Eq. ~2.107!. The correct vacuum
state is theA0 at any value of the cutoff, as is evident fro
the Bogoliubov transformedL0

b(N) in Eq. ~2.106!.

10In a mathematically rigorous sense, the closure is subtle eve
the largeN limit. A sample computation of@Ln ,L2n#22nL0 re-
veals that there is roughly speakingn terms located nearb6N

whose coefficients diverge asN→`. In this sense, we may at mos
have the convergence of the operator algebra only in the w
topology.
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A related anomaly occurs in the commutation rules if t
Ln are expressed in terms of only the evenb̄e

p oscillators. To
see this, we apply the Bogoliubov transformationU to Eqs.
~2.104!,~2.105! to obtain11

Le
b~N!5

1

2 (
e8522N

2N

:~b2e8
x

•be1e8
x

1b̄2e8
p

•b̄e1e8
p

!:

2
i e

2~11w̄w!
S (

e8.0

2N

wue8u~ b̄e8
p

1b̄2e8
p

!D 2

,

~2.108!

Lo
b~N!5 (

e8,e9522N

2N

U2e9,o2e8b̄e9
p
•be8

x . ~2.109!

As usual, closure of the Virasoro algebra is not possible
lessN→`. At infinite N the second term inLe

b(N) is for-
mally zero. Using only the first term inLe

b(N) at infinite N,
we find that closure works in the commutators@Le ,Le# and
@Lo ,Lo# but it does not work in the commutator@Le ,Lo#.
Again this is an anomaly because closure was guaran
before the Bogoliubov transformation was applied. T
subtle point involves the second term in Eq.~2.108! which is
formally zero. In fact, some of its commutators yield fini
results if first the commutator is evaluated and then the la
N limit is applied. Indeed, if the largeN limit is taken after
all commutators are performed, then all commutators of
Virasoro algebra close correctly. We emphasize again tha
closure of the algebra was evident from the beginning
using the version withbo

p . The lesson learned is that it i
important to use the cutoff theory.

I. Virasoro fields in Moyal space

Next we would like to point out a fundamental structu
for the Virasoro fields in Moyal space, and in this proce
build a new representation of the Virasoro algebra. We w
see that the Virasoro fields can be star multiplied either
the left side or the right side of an arbitrary fieldA in Moyal
space. These generate independent left or right Viras
transformations. A special combination of the left and rig
star products generate the usual differential form of the
rasoro operators that we discussed in the preceding sec

First we define the following Virasoro fieldsLe and Lo
that are functions ofxueu ,pueu

Le5(
o8

b2o8•be1o8 ~2.110!

in

ak

11Strictly speaking these expressions are valid atN5` because
shifted formulas, such as Eq.~2.80! which are needed for this deri
vation, are valid only atN5`. So, we will be a bit sloppy in the
following argument because we have introduced the cutoffN in
Eqs. ~2.108! after the Bogoliubov transformation@by contrast Eq.
~2.107! is rigorous because the unshifted formulas are valid at
N#.
3-13
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Lo5 (
o8,o9

Uo1o9,o8b2o9•b2o8 . ~2.111!

Note the factor of 1/2 is absent compared to Eq.~2.104!. We
chose to use the odd Moyal oscillatorsbo of Eq. ~2.98! as the
building blocks of all the Virasoro fieldsLe ,Lo . These can
be rewritten in terms of thebe by using Eq.~2.91! or its
inverse. However, to avoid anomalies of the type discus
in Eqs. ~2.107!,~2.108! the use of thebo as the building
blocks are more convenient. Evidently, the Virasoro alge
can close only in the infinite cutoff limit.

TheseLe , Lo are fields in Moyal space, not differentia
operators. No normal ordering is needed in Moyal spa
When we evaluate their star products with any fie
A( x̄,xueu ,pueu) in the following combinations, they produc
the Virasoro differential operatorsLe

bA, Lo
bA that we dis-

cussed in the preceding section12

Le
ac↔Le

bA5Le* A1A* L2e , ~2.112!

Lo
ac↔Lo

bA5Lo* A2A* L2o . ~2.113!

By using the properties ofU and the fundamental sta
commutator@bo ,bo8#* 5(o/2)do1o8 ~note the 1/2! it can be
shown that the Virasoro fieldsLe , Lo satisfy the following
star commutation rules with the oscillator fieldsbe , bo :

@Le ,bo#* 52obe1o , @Le ,be8#* 52e8be1e8 ,

@Lo ,bo8#* 52o8bo81o , @Lo ,be#* 52ebe1o .
~2.114!

From these we can show that the Virasoro fields satisfy
Virasoro algebra under star commutators

@Le ,L e8#* 5~e2e8!Le1e81de1e8

ae

2
, ~2.115!

@Lo ,L o8#* 5~o2o8!Lo1o81do1o8

ao

2
, ~2.116!

@Lo ,Le#* 5~o2e!Lo1e . ~2.117!

The anomalies are half of the usual anomaliesae ,ao that
appear for the differential operatorsLe

b ,Lo
b . Indeed using the

algebra that we have just obtained we can then show
consistency with the usual Virasoro algebra obeyed by
differential operators. For example, using the corresponde
in Eq. ~2.112! we replace the differential operators wi
Moyal star products

12Here, for simplicity, we have suppressed the shift proportio
to 2 iwe8b0 that appeared in Eq.~2.96!. Therefore, strictly speaking
the formulas forLe , Lo are valid for fields independent of th

midpoint x̄. However, it is straightforward to generalizeLe , Lo by
including b0 to obtain the fullLe

b , Lo
b of the previous section.
06600
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@Le
b ,Le8

b
#A5Le

b~Le8
b A!2~e↔e8! ~2.118!

5@Le* ~Le8
b A!1~Le8

b A!* L2e#2~e↔e8!.
~2.119!

After insertingLe8
b A again from Eq.~2.112! this expression

reduces to star commutators of the Moyal fields that can
evaluated through Eq.~2.115!

@Le
b ,Le8

b
#A5@Le ,L e8#* * A1A* @L2e8 ,L2e#* ~2.120!

5~e2e8!Le1e8* A1de1e8

ae

2
A ~2.121!

1~2e81e!A* L2e82e1d2e82e

a2e8
2

A

~2.122!

5~e2e8!Le1e8
b A1de1e8aeA. ~2.123!

This reproduces the correct closure and anomaly for the
ferential Le

b consistently with the closure ofLe and their
half-anomaly as above. The consistency of the other com
tators @Lo

b ,Lo8
b

#A, @Le
b ,Lo

b#A can be verified in the sam
way.

We have seen that the fundamental Virasoro opera
consists of independent left and right star products involv
the Virasoro fieldsLe ,Lo . Therefore, let us consider finit
left or right transformations in the form

A→ul* A* ur , ~2.124!

ul ,r5exp* ~ i« l ,r
e Le1 i« l ,r

o Lo!. ~2.125!

Due to Eqs.~2.115!–~2.117! these close to form two Virasoro
groups, one on the left side, the other on the right side.
obtain the usual Virasoro transformations consistently w
Eqs.~2.112!,~2.113! we need to take the subgroup genera
by « l

e5« r
e and« l

o52« r
o in the form

A→ei«eLe1 i«oLo* A* ei«eLe2 i«oLo. ~2.126!

So far the parameters«e,o are complex. IfA(x,p) is a real
string field we must also require that both sides of this eq
tion are Hermitian, usingA†5A, L n

†5L2n . Then the al-
lowed Virasoro transformation on real fields is restricted
complex parameters that satisfy («e)* 52«2e and («o)* 5
1«2o.

Note that we have used onlybo
m as the fundamental struc

ture and yet we built bothLe andLo . This uses half as many
oscillators as the standard representation of the Virasoro
gebra, and therefore it is a new representation. Also, it se
to be the first representation of the Virasoro algebra in
context of noncommutative field theory.

l
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III. MONOID ALGEBRA IN NONCOMMUTATIVE
GEOMETRY

In this section we will introduce an algebra among a s
set of string fields that form a monoid. The mathemati
structure of the monoid becomes a tool for performing co
putations in string field theory.

A. Generating functions

We start from the phase space ofN even modes of a
bosonic string j i

m5(x2
m ,x4

m , . . . ,p2
m ,p4

m , . . . ) with m
51, . . . ,d denoting the number of dimensions. Eventua
we will sendN to infinity, but at first all structures are de
fined at finiteN. The commutators betweenx2n ,p2n under
the Moyal star product define noncommutative coordina
in 2Nd dimensions as in Eq.~2.13! @j i

m ,j j
n#* 5hmns i j .

By a linear coordinate redefinition one may simplify a
general skew symmetrics to the canonical form given in Eq
~2.13!. Therefore, unless we specify otherwise, our gene
formulas below are written for the general13 skew symmetric
purely imaginarys. The Moyal star product is then the on
given by Eq.~2.14!. For the sake of simplicity of presenta
tion we will suppress the spacetime indexm, but will always
assume its presence, and will take it into account in all co
putations. Similarly, we will suppress the midpoint inserti
and establish it in computations when needed. This prod
defines a commutative ring of functionsA on R2Nd. The
integration of functions in phase space is interpreted as
trace of the algebraA, as in Eq.~2.34!.

In many computations a certain class of functions w
play a primary role. These are generating functions that
Gaussians with shifts of the formA5Nexp@2hmn(x

maxn

1xmbpn1pmcTxn1pmcxn)2(xmlm
x 1pmlm

p)#. In brief notation,
we write

AN,M ,l5Ne2 j̄Mj2 j̄l ~3.1!

whereMi j is a 2N32N symmetric constant matrix,lm is a
2N-component constant spacetime vector, andN is an over-
all normalization. The normalization may be related to t
trace

Tr~AN,M ,l!5
Ne(1/4)l̄M21l

@det~2Ms!#d/2
. ~3.2!

The trace is computed under the assumption that the p
space integral in Eq.~2.34! converges, which implies a pos
tive definite matrixM. We will also be interested in mor
general complexM for which the integral is not necessari
well defined. For example, the identity field has infin
trace, the Virasoro transformation of Eqs.~2.125! does not
have a well defined trace because of thei in the exponent,

13Our formulas are easily further generalized to anyu IJ that is not
necessarily of the forms i j hmn. Although we do not discuss this in
detail in this paper, such configurations are relevant for string
Bmn backgrounds. For this generalization we useI 5( im) and re-
place everywhere formallys i j by u IJ and substituted→1.
06600
-
l
-

s

al

-

ct

e

l
re

e

se

etc. So, we wish to include in our set all possible comp
M ’s since there are such string field configurations that
relevant. Whenever we compute traces of Gaussians we
use Eq.~3.2! under the assumption that it is well defined.

The motivation for considering such Gaussians com
from examining the perturbative and nonperturbative sec
of the theory. We have seen that the vacuum stateA0 of Eq.
~2.53! is of the form of Eq.~3.1! with a specialM0. All
perturbative states have the form of polynomials that mu
ply the GaussianA0. Such polynomials can be obtained b
differentiating a generating function of the formAN,M ,l(j)
with respect to the parametersl. Nonperturbative states suc
as the sliver and many other nonperturbative vacua are
resented by fields of the formAN,M ,l(j). Furthermore, the
Virasoro group that we identified in the preceding sect
also has the same structure.

More generally, any fieldA( x̄,xe ,pe) can be written as a
superposition of Gaussians of the form~3.1!. This is seen by
writing A( x̄,xe ,pe)5^x̄,xe ,peuc& where ^x̄,xe ,peu is the
state of Eq.~2.5!. In the coherent state basis where the os
latorsan

m are diagonal, we see from Eq.~2.5! this becomes a
superposition of shifted Gaussians

A~ x̄,xe ,pe!5E ~dl!e2 j̄M0j2 j̄lc~ x̄,l! ~3.3!

wherec( x̄,l) includes the measure of integration and no
malization. Thus we see that the structureNe2 j̄M0j2 j̄l,
whereM0 of Eqs.~2.8! appears, is a generating function fo
computations involving any set of perturbative string field

For purely perturbative computations it is sufficient
consider the restricted setAN,M0 ,l5Ne2 j̄M0j2 j̄l with dif-

ferent l8s but a fixedM0. But to consider nonperturbativ
sectors which correspond to D-brane lumps described
Gaussians with differentM ’s, and to compute correlators tha
involve several Dp-brane sectors with differentp’s, we need
to consider generating functionsAN,M ,l(j) with all possible
M ,l,N.

It must also be mentioned that there is a one-to-one c
respondence between the Gaussians~3.1! in Moyal space and
coherent states built on a vacuum of squeezed states in
oscillator formalism. Squeezed states in the oscillator f
malism of @31# are defined by exp(21

2a
†Sa†)u0&. In the x

representation they are given by Gaussiansc(x)
;exp(2xLx) where

L5
1

2l s
2
Ak

12S
11SAk[S Le L

L̄ Lo
D

with k5diag(kn). By applying the Fourier transform of Eq
~2.2! on this form one obtains a GaussianA;exp(2jMj)
with

M5S Le24L~Lo!21L̄ 4i

u
L~Lo!21T̄

4i

u
T~Lo!21L̄ 4l s

2

u2
T~Lo!21T̄

D . ~3.4!in
3-15
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We see that the general symmetricM is related to a genera
symmetricL or equivalently to a general symmetricS. If the
matrix S is block diagonal in the even/odd mode space, o
obtainsL50, which simplifies these relations to the form

S5S Se 0

0 So
D↔M

5S 1

2l s
2
ke

1/212Se

11Se
ke

1/2 0

0
2l s

2

u2
Tko

21/211So

12So
ko

21/2T̄
D .

~3.5!

Similarly, the generating functionAN,M ,l5Ne2 j̄Mj2 j̄l

with nonzerol is related to a shifted squeezed state e
(21

2a
†Sa†2ha†)up&, with momentumpm. Then, for block

diagonalS, the vectorsl andh,p are related by using Eqs
~2.9!,~2.7!

lm5S iA2

l s
Ake

1

11Se
he

m2 ipmwe

2A2l s

u (
o.0

Teoko
21/2 1

12So
ho

mD . ~3.6!

B. Monoid

In the following, we will focus on the shifted Gaussia
type generating functions of Eq.~3.1!. Generally we will
allow Mi j ,l i ,N to be complex numbers. Applying the st
product on any two Gaussians closes into a third Gaussia
the same form~suppressing the midpoint insertion!

~N 1e2jM1j2jl1!* ~N 2e2jM2j2jl2!5N 12e
2jM12j2jl12.

~3.7!

Therefore these elements form a closed algebra under
Moyal star multiplication,

AN1 ,M1 ,l1* AN2 ,M2 ,l2
5AN12 ,M12 ,l12

. ~3.8!

The quantitiesN12,M12,l12 were computed in@6#, and those
details are included in the Appendix. It is convenient to d
fine

m15M1s, m25M2s, m125M12s, ~3.9!

where s is the antisymmetric noncommutativity matr
given Eq.~2.13!. Actually our formulas below hold for any
general noncommutativity matrixs. Note that symmetric
matrices M1 ,M2 ,M12 imply that under transposition th
mi ,m12 satisfy

m̄i52smis
21, m̄1252sm12s

21. ~3.10!

Then the result form12,l12,N12 given in the Appendix A is
written more simply in the form
06600
e

p

of

he

-

m125~m11m2m1!~11m2m1!21

1~m22m1m2!~11m1m2!21, ~3.11!

l125~12m1!~11m2m1!21l2

1~11m2!~11m1m2!21l1 , ~3.12!

N125
N1N2

det~11m2m1!d/2

3e(1/4)[(l̄11l̄2)s(m11m2)21(l11l2)2l̄12s(m12)
21l12] .

~3.13!

One can show

det~m11m2!5detm12det~11m2m1!, ~3.14!

and

~ l̄11l̄2!s~m11m2!21~l11l2!2l̄12s~m12!
21l12

5l̄asKablb ~3.15!

where

K115~m2
211m1!21, K125~11m2m1!21, ~3.16!

K2152~11m1m2!21, K225~m21m1
21!21. ~3.17!

Other useful forms ofm12,l12,N12 are included in the Ap-
pendix A.

If we ignore the midpoint insertion, the identity elemenI
discussed in Eq.~2.33! can be thought of as an element
the monoid withN51, M50, l50, sinceA1,0,051 is the
natural number one. Indeed inserting these values in the
mulas above we verify thatA1,0,051 is the identity element
in the monoid. Furthermore, using the formulas above we
that for a genericAN,M ,l there is an inverseAÑ,M̃ ,l̃ under the
star product,AN,M ,l* AÑ,M̃ ,l̃515AÑ,M̃ ,l̃* AN,M ,l , where

M̃52M , l̃5
m11

m21
l,

Ñ5
1

N @det~12m2!#d/2el̄sm(12m2)22l. ~3.18!

Evidently, the inverse does not exist whenm2 has eigenval-
ues 1. In particular, the vacuum fieldA0 of Eq. ~2.53!, which
is an element of the monoid, has an inverse. We note
when the inverse exists, it is not normalizable under Tr(A2)
sinceM̃52M is negative definite whenM is positive defi-
nite; however, this does not prevent us from using the pr
erties of the monoid under star products.

Thus, the algebra generated by the set of functionsAN,M ,l
has the following properties:

~i! The algebra is closed under star products.
~ii ! The product is associative.
~iii ! It has an identity given by the number 1~suppressing

the midpoint insertion inI ).
3-16
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~iv! While the generic element has an inverse, not ev
element has an inverse.

The structure is almost a group, but not quite because
every element in the set has an inverse. This kind of a
braic structure is called aunitary semigroupor monoidin the
mathematical literature. In our case we have a monoid w
special properties which we identify as a fundamental al
bra in open string field theory. The general formulas abo
give the structure of the monoid. They will form the basis f
all the computations we will present in the rest of the pap

Note that there are subsets of complexMi j ,l i ,N for
which the submonoid has an inverse for every element.
such subsets the monoid becomes a genuine infinite dim
sional group. In particular, the exponentiated Virasoro tra
formations of Eq.~2.125!, acting on string fields from eithe
,

s

06600
y

ot
e-

h
-
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r
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or
n-
-

the left or right, form an infinite dimensional subgroup
exactly this type. As far as we know these types of structu
have not been investigated in the mathematical literature
in the context of noncommutative geometry.

IV. COMPUTATIONS IN MSFT USING THE MONOID

A. Powers and traces with the samem and l

From Eq.~3.7! we see that thenth star power of a gener
ating function is also a generating function of the same fo

~Ne2 j̄Mj2 j̄l!
*
n 5N (n)e2 j̄M (n)j2 j̄l(n)

. ~4.1!

Multiplying one more time on both sides of this equatio
gives an iteration according to Eqs.~3.11!–~3.13!
m(n11)5~m1m(n)m!~11m(n)m!211~m(n)2mm(n)!~11mm(n)!21, ~4.2!

lm
(n11)5~11m(n)!~11mm(n)!21lm1~12m!~11m(n)m!21lm

(n) , ~4.3!

N (n11)5
N (n)N

det~11mm(n)!d/2
e(1/4)(l̄1l̄(n))s(m1m(n))21(l1l(n))2(1/4)l̄(n11)s(m(n11))21l(n11). ~4.4!
to

efi-
on-

ld
ive

the

he
If we apply a similarity transformation that diagonalizesm,
and perform the iteration of Eq.~4.2! in the diagonal basis
we easily see thatm(n) andm(n11) must also be diagonal in
the same basis. From this we conclude thatm commutes with
m(n). Using their commutativity we simplify these formula
as follows:

m(n11)5~m1m(n)!~11mm(n)!21 ~4.5!

l (n11)5~11mm(n)!21

3@~l1l (n)!1m(n)l2ml (n)#. ~4.6!

The explicit solution of the iteration is then given by

m(n)5
~11m!n2~12m!n

~11m!n1~12m!n
~4.7!

lm
(n)5~m!21~m(n)!lm ~4.8!

N (n)5

N nexpFn

4
l̄sm21l2

1

4
l̄ (n)s~m(n)!21l (n)G

detS ~11m!n1~12m!n

2 D d/2 .

~4.9!

The trace is computed from Eq.~3.2!
Tr@~Ne2 j̄Mj2 j̄l!
*
n #5

S N expF1

4
l̄M 21lG D n

det@~11Ms!n2~12Ms!n#d/2
.

~4.10!

As applications of these results we specialize tol50 to
compute the wedge and sliver fields below.

1. Wedge states for anyke ,ko ,N

From our calculation above, it is now straightforward
give the representation of the wedge states@2# in the Moyal
formalism. Wedge states are defined by two equivalent d
nitions. One of them is the surface state defined by the c
formal transformation

f n~z!5S 11 iz

12 izD 2/(n11)

, ~4.11!

which illuminates its geometrical nature in conformal fie
theory. The other definition is the powers of the perturbat
vacuum states,u0&* •••* u0&. In this definition, the algebraic
aspect of wedge states is more clearly illuminated. In
MSFT formalism the wedge field is given by

Wn~xe ,pe!5~A0!
*
n 5A0* •••* A0 ~4.12!

where the vacuum fieldA0 is given in Eqs.~2.53! with l
50. Using associativity, it is evident that these satisfy t
algebra Wn* Wm5Wn1m . Equations ~4.7!–~4.10! with l
50 give the wedge fields explicitly
3-17
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Wn~xe ,pe!5

~N0!nexpS 2 j̄
~11m0!n2~12m0!n

~11m0!n1~12m0!n
s21j D

detS ~11m0!n1~12m0!n

2 D d/2

~4.13!

Tr~Wn!5
~N0!n

det@~11m0!n2~12m0!n#d/2
, ~4.14!

where

m0[M0s5S 0
iu

2l s
2
ke

22i l s
2

u
Z 0

D ,

~4.15!

Z5Tko
21T̄, N05S det~16ke!

detko
D d/4

follows from Eqs.~2.53!. In computing the powers ofm0 we
encounter the expressionG5Zke5Tko

21T̄ke in the form

m0
2[S Ḡ 0

0 G
D 5S keTko

21T̄ 0

0 Tko
21T̄ke

D
5S ke

21R̄koT̄ 0

0 TkoRke
21D . ~4.16!

The properties ofG were given in Eqs.~2.53!–~2.62!.

2. Sliver state for anyke ,ko ,N

The sliver fieldJ(xe ,pe) is defined as the limit of an
infinite number of star products of the perturbative vacu
field A0, so it is proportional toW` , which is in the monoid

J~xe ,pe!5N se
2jMsj; lim

n→`

~A0!
*
n

5 lim
n→`

~N0e2jM0j!
*
n . ~4.17!

The overall constantNs depends on the relative normaliz
tion of A0 andJ. It is possible to compute this limit by usin
the exact results of the preceding section as follows. To t
the n→` limit, we need to rewrite the wedge stateWn in a
form that has a well-defined limit. First rewritem(n) in the
form

m(n)5m0 f n~ t !,

f n~ t !5t21
~11t !n2~12t !n

~11t !n1~12t !n
, t5Am0

2. ~4.18!

We note that for finiten, f n(t) is really a function oft2

5m0
2 rather than the square roott5Am0

2. In this sense, there
is no ambiguity coming from taking the square root of t
06600
e

matrix. Introduction of the extra matrixt appears redundant
However, we have to note thatm05M0s is anoff-diagonal
matrix and difficult to handle whenn→`, by contrastt2

5m0
2 is block diagonal and written in terms ofG as in Eq.

~4.16!. We can use the fact which we observed in Eq.~2.61!,
namely that we can diagonalizeG and that it has positive
definite eigenvalues.

If we make a similarity transformation to a basis in whic
t25m0

2 is diagonal, for each eigenvalue oft2 the square root
can be either positive or negative, and the functionf n(t)
would be evaluated at that eigenvalue. Now, taking then
→` limit of f n(t) for each eigenvalue, we see that, since
square root of the eigenvalue6At2 is real, the result is

lim
n→`

f n~ t !5utu21 ~4.19!

whereutu is the real positive square root. If the square-root
the eigenvalue6At2 were imaginary, the limit would have
oscillated wildly and there would have been no well defin
limit. Therefore, the limit of the whole matrix lim

n→`
(m(n))

is well defined thanks to the fact thatm0
2 is a positive definite

matrix which is the case as seen in our analysis. Hav
established this fact, we can now write that the limit for t
entire matrix, after transforming back to the general no
diagonal basis, isf `(t)5utu215(m0

2)21/2, by which we
mean that we keep only the positive square root of the
genvalues.

With this analysis, we have now established that the sli
field in Eq. ~4.17! is uniquely given by

ms5Mss5m0~m0
2!21/2

5S 0
iu

2l s
2
ke

22i l s
2

u
Z 0

D
3S AR̄ko

21T̄ke 0

0 AkeTko
21R

D . ~4.20!

After multiplying with s, we extract the block diagonalMs

Ms5S a 0

0
1

au2
D , ms5 iS 0 au

21

au
0 D ,

a5
1

2l s
2
keAkeTko

21R, ms
251. ~4.21!

Note thatkeAke
21R̄koRÞAkeR̄koR. Note also thata is a

symmetric matrix, and can be rewritten in several forms
using the first relation in Eq.~2.15!
3-18
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a5
1

2l s
2
keAkeTko

21R5
1

2l s
2
AR̄ko

21T̄keke

5
1

2l s
2
ke

1/2Ake
1/2T ko

21T̄ ke
1/2ke

1/2. ~4.22!

Furthermore, using Eq.~2.29! a can also be rewritten in
terms of the eigenvaluestk

a5
1

2l s
2
ke

1/2VetV̄eke
1/2,

~4.23!
a2152l s

2ke
21/2Vet21V̄eke

21/2.

Note that (a21)ee8 is well defined at finiteN for generic
ke ,ko . Furthermore, at infiniteN the integral

E
0

`

dkVe~k!@ tanh~pk/4!#21Ve8~k!

is convergent despite the zero eigenvaluet50 at k50, be-
cause lim

k→0
Ve(k)5O(k), therefore (a21)ee8 is still well

defined at infiniteN. So, the sliver field is explicitly given by

J~x2n ,p2n!5S )
e.0

2dDexpS 2xeaxe2pe

1

au2
peD .

~4.24!

We have fixed the relative coefficient in Eq.~4.17! so that the
normalization factorNs5)e.02d is chosen to satisfy the
projector equation

J* J5J, ~4.25!

as verified through Eqs.~4.1!–~4.9! for l50, (Mss)251,
and n52. With this normalization we compute the trac
from Eq. ~3.2! and find

Tr~J!51. ~4.26!

So, the rank of this projector is 1. This is a special form o
projector as can be seen by comparing to Eqs.~4.28! and
~4.29! in the next section.

B. Projectors

1. Projectors in monoid

In noncommutative field theory an important role
played by so-called noncommutative solitons which sati
the unipotency relationf * f 5 f . Such solutions are associate
with D-branes. Using the monoid closure of Eqs.~3.7!–
~3.13! one can find such soliton solutions by the requireme

M5M15M25M12, l5l15l2 ,
~4.27!

N5N15N25N12.
06600
y

t,

The first equation reduces to,m(m221)50 which implies
M50 or (Ms)251. For M50, one must also demandl
50. This is nothing but the identity element. For the seco
choice, there is no constraint onl but one needs to impos
N5dete(2

d)exp(21
4lM21l). The general matrixM that sat-

isfies the condition (Ms)251 will be denotedD. It can be
parametrized in terms of blocks as follows:

D5S a ab

ba
1

au2
1babD

5S 1 0

b 1D S a 0

0
1

au2
D S 1 b

0 1D , ~4.28!

with a,b arbitraryN3N symmetricmatrices. The normN is
also uniquely determined. Thus a projector, which is a c
didate for a nonperturbative vacuum associated w
D-branes is characterized by a matrix of the formD and an
arbitrarylm, and takes the form

AD,l~j!5S )
e.0

2dDexpS 2
1

4
l̄sDsl Dexp~2 j̄Dj2 j̄l!

~4.29!

AD,l5AD,l* AD,l , Tr~AD,l!51,

where we have usedD215sDs. The trace ofAD,l(j),
which corresponds to its rank, is exactly 1 for anyl,a,b.

We see that the sliver field is a special case withl50,
b50, and a particulara given in Eqs.~4.22!,~4.23!. Another
simpler and natural projector is whena5(1/2l s

2) ke with l
50, b50. It takes the explicit form

Abutter f ly~xe ,pe!5S )
e.0

2dDexpS 2
1

2l s
2

xekexe

2
2l s

2

u2
pe

1

ke
peD . ~4.30!

This is the state that we referred to as the ‘‘false vacuum’
our discussion following Eq.~2.107!. In fact, it corresponds
to the product of the vacua for the left and right oscillators
the split string formalism, and it was named the ‘‘butterfly
in @28#.

2. Closure of products of projectors in monoid

Consider two projectorsAD1 ,l1
, AD2 ,l2

of the form
~4.29!. Their product is found to be proportional to a proje
tor

AD1 ,l1* AD2 ,l2
5C12AD12 ,l12

,

~4.31!
AD12 ,l12* AD12 ,l12

5AD12 ,l12
,

3-19
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whereD12,l12 is given in Eqs.~3.11!,~3.12!, the overall norm ofAD12 ,l12
is fixed as in Eq.~4.29! and

C125FdetS 11D1sD2s

2 D G2d/2

e(1/4)(l11l2)(D11D2)21(l11l2)2(1/4)l1(D1)21l12(1/4)l2(D2)21l2. ~4.32!
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To show thatAD12 ,l12
is a projector we must prove tha

(D12s)251 when D12 is given by Eq.~3.11! and (D1s)2

5(D2s)251. We use an alternate form of Eq.~3.11! given
in the Appendixes in Eq.~A21!

D12s5D1s1~12D1s!@D1s1~D2s!21#21

3~11D1s!. ~4.33!

The square of this expression satisfies (D12s)251 due to
(D1s)251, since the second term squares to zero and
cross terms cancel each other.

When D15D25D but thel8s are different we getD12
5D and

AD,l1* AD,l2
5C12AD,l12

,

C125e2(1/8)(l12l2)(D)21(l12l2),

l12
m 5

1

2
~l1

m1l2
m!. ~4.34!

Furthermore, ifl15l2 we getl125l and C1251, as ex-
pected from Eqs.~4.29!.

3. More general projectors

Not all projectors are of the monoid form. More gene
projectors may be constructed by using generalized Wig
distribution functions@36#. These have the form

Ars~x2n ,p2n!5E S )
n51

`

~dy2n!e( i /u)y2n•p2nD
3c r S x2n1

y2n

2 Dcs* S x2n2
y2n

2 D
~4.35!

wherer ,s denote any set of orthogonal functions

E )
n51

`

~dy2n!c r~y2n!cs* ~y2n!5d rs . ~4.36!

In the literature on deformation quantization one finds ma
ways of obtaining a complete set of Wigner functions
using the complete set of normalizable wave functions
any quantum mechanics problem~a particle in a potential!.
Of course, the Wigner functions found in the literature a
functions appropriate for a particle, but it is straightforwa
to generalize them to our case with many string modes.
example, by imitating the case of the harmonic oscilla
06600
e
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e

or
r,

which behaves like string modes, the Wigner functions co
be taken in the form of polynomials that multiply the proje
tor in Eq. ~4.29!.

As is well known, under Moyal star products, which
equivalent to the string star product in our case, the Wig
functions satisfy

Ars* Akl~x2n ,p2n!5dskArl ~x2n ,p2n!. ~4.37!

Therefore all diagonal Wigner functionsArr (x2n ,p2n) are
projectors. The trace of the Wigner function is given by~no
sum onr )

Tr~Arr !5E S )
n51

`
dx2ndp2n

2pu D Arr ~x2n ,p2n!

5E )
n51

`

~dx2n!c r~x2n!c r* ~y2n!51 ~4.38!

so the rank of each projectorArr is 1. Presumably the pro
jectors that are in the monoid~as in Sec. IV B 2! can be
rewritten as special Wigner functions of the formArr .

Multi-D-brane states can now be easily constructed
taking sums of othogonal projectors. Thus a state withN
D-branes is given by

A(N)~x2n ,p2n!5(
r 51

N

Arr ~x2n ,p2n!, Tr A(N)5N.

~4.39!

Then one may choose a set ofc r(x2n) that form the basis for
U(N) transformations which correspond to Chan-Paton-ty
symmetries associated with D-branes at the ends of strin

C. Products and traces for samem and different l i

As argued following Eq.~3.3! for computations involving
fields built on a given vacuum, such as the perturbat
vacuum, it is sufficient to compute the star products of e
ments of the monoid with the sameM, but differentl ’s and
N’s. When all l ’s are identical the results should coincid
with Eqs. ~4.1!–~4.10!. Therefore these products are gen
alizations of the wedge fieldsWn(xe ,pe). The closure of the
monoid gives the form of the answer
3-20
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AN12•••n ,M (n),l12•••n
[AN1 ,M ,l1* AN2 ,M ,l2* •••* ANn ,M ,ln

~4.40!

5N12•••nexp~2 j̄M (n)j2 j̄l12•••n!.

~4.41!

From the general formula forM12 in Eq. ~3.11! we see that
M12 is independent of thel ’s andN’s. Therefore the produc
of n factors produces the same result as if alll ’s andN’s are
the same. Therefore we haveM (n)s5m(n) wherem(n) was
already computed in Eq.~4.7!.

To obtain the dependence ofN12•••n and l12•••n on the
l ’s, let us first consider the product of two elements. Us
Eqs.~3.12!,~3.13! we find

AN12 ,M (n),l12
~j!5

N1N2expS 1

4
K12D

det~11m2!d/2

3expS 2 j̄
2m

11m2
s21j2 j̄l12D

with

l125
11m

11m2
l11

12m

11m2
l2 , ~4.42!

K125l̄1s
m

11m2
l11l̄2s

m

11m2
l2

1l̄1s
1

11m2
l22l̄2s

1

11m2
l1 . ~4.43!

To compute the case forn53 we can useA1235A12* A3,
insert the above result forA12, and apply again the genera
formulas in Eqs.~3.11!,~3.13! for commuting matricesm12
5m(2) and m35m. This process is repeated to build th
generalN12•••n , M (n), l12•••n that appear in Eq.~4.40!. In
these computations Eqs.~3.11!,~3.13! simplify because the
matricesm1 ,m2 commute with each other since they are
functions of the samem. This is explained fully in the nex
section. The result for thenth product gives

M (n)s5m(n)5
Jn

2

Jn
1

, Jn
6[

~11m!n6~12m!n

2
~4.44!

l12•••n5~Jn
1!21(

r 51

n

~12m!r 21~11m!n2r 21l r ~4.45!

_N12•••n5N1N2•••Nn@det~Jn
1!#2d/2expS 1

4
Kn~l! D ~4.46!
06600
g

l

Kn~l!5(
r 51

n

l̄ rs
Jn21

2

Jn
1

l r

22(
r ,s

n

l̄ rs
~12m!s2r 21~11m!n1r 2s21

Jn
1

ls .

~4.47!

This result may be used in conjunction with Eq.~3.3! to
compute star products of any number of arbitrary str
fields built around a vacuum. For example, the cube o
general string field is given by

~A* A* A!~ x̄,j!5e3i x̄27E dl1dl2dl3c~ x̄,l1!

3c~ x̄,l2!c~ x̄,l3!

3AN123,M (3),l123
~j! ~4.48!

where the midpoint insertions have been made explicit.
The trace of Eq.~4.40!, which gives then-point vertices,

is straightforward to compute

Tr~A12•••n!

5

N1N2•••NnexpS 1

4 (
r ,s51

n

l̄ rsO(s2r )mod nlsD
det@~11m!n2~12m!n#d/2

~4.49!

where

O0~m!5
~11m!n211~12m!n21

~11m!n2~12m!n
, ~4.50!

Oi~m!52
~11m!n2 i 21~12m! i 21

~11m!n2~12m!n

~1< i<n21!. ~4.51!

In our notationO(21)mod n5On21, etc. It will be shown in
Sec. V that our computation of then-string vertex
Tr(A12•••n) given above provides a simple analytic expre
sion of the Neumann coefficients (Vn

rs)kl that are needed in
the definition of then-point string vertex in the oscillato
approach.

It is useful to note the following simplifications. For no
malized fields the normalization factorsNi are fixed as fol-
lows:

Tr~Ai* Ai !51→Ni5~det 4m!d/4expS 2
1

4
l̄ ism21l i D .

~4.52!

Then then-point vertices depend only on the differenc
(l i2l j ). We give here the explicit forms for the 2- an
3-point vertices with these normalizations
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Tr~Al1* Al2
!5expS 2

1

8
~ l̄12l̄2!sm21~l12l2! D ~4.53!

Tr~Al1* Al2* Al3
!5

det~16m!d/4

det~31m2!d/2
expS 2

1

8 (
i , j 51

3

~ l̄ i2l̄ j !s~3m1m3!21~l i2l j !

1
1

4 (
i 51

3

~ l̄ i2l̄ i 11!s~31m2!21~ l̄ i2l̄ i 12!
D ~4.54!

where the indices on thel ’s should be understood mod 3. Note that if these fields are also projectors satisfyingm251 the
expressions simplify further.

D. Products and traces for commutingmi and arbitrary l i

The multiplication formula for the monoid looks rather complicated and it is difficult to calculate thenth product for
arbitrarymi5Mis. However, for certain applications in string field theory, as we saw in the preceding section, one may
the form of the monoid to a submonoid with commuting matrices

@M1s,M2s#50. ~4.55!

Such cases would arise when we consider products or correlators between states built on different vacua, such as p
states around the Gaussian withM0, wedge states or sliver states built around the Gaussians withM0

(n) ,Ms , etc., all of which
are functions of the sameM0 and therefore satisfy the conditions~4.55!.

Thus, consider the product ofn elementsANi ,Mi ,l i
( i 51, . . . ,n) for commutingmi[Mis which generalize those in th

preceding section~which had the samem),

AN12•••n ,M12•••n ,l12•••N
[AN1 ,M1 ,l1* AN2 ,M2 ,l2* •••* ANn ,Mn ,ln

. ~4.56!

Using the closure property we know the result in an element of the monoid labeled byN12•••n , M12•••n , l12•••N . To derive
these expressions we use associativity to writeA12•••(n11)5A12•••n* An11. Applying Eqs.~3.11!, ~3.12!, ~3.13! for commuting
m’s we set up the recursion relations

m12•••(n11)5
m12•••n1mn11

11m12•••nmn11
~4.57!

l12•••(n11)5@11m12•••nmn11#21@~12m12•••n!ln111~11mn11!l12•••n# ~4.58!

K12•••(n11)5K12•••n1~ l̄12•••n1l̄n11!s~m12•••n1mn11!21~l12•••n1ln11! ~4.59!

2l̄12•••(n11)sm12•••(n11)
21 l12•••(n11) . ~4.60!
ul

i

For the overall normalization constant the recursion form
is

N12•••(n11)5
N12•••nNn11

det~11m12•••nmn11!d/2

3e(1/4)(K12•••(n11)2K12•••n). ~4.61!

We will prove that the solution of these recursion relations

m12•••n[M12•••ns5
J12•••n

2

J12•••n
1

,

06600
a

s

J12•••n
6 [

1

2 S )
k51

n

~11mk!6)
k51

n

~12mk!D ~4.62!

l12•••n5(
i 51

n )
k51

i 21

~12mk! )
l 5 i 11

n

~11ml !

J12•••n
1

l i ~4.63!

N12•••n5
N1N2•••Nn

det~J12•••n
1 !d/2

expS 1

4
K12•••nD ~4.64!

where
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K12•••n[(
i 5 i

l̄ is
12•••n

J12•••n
1

l i1(
iÞ j

l̄ is
J12•••n

1 sgn~ i 2 j !
l j ~4.65!

J12•••n
2( i ) [~J12•••n

2 !umi50 . ~4.66!

In the last line only one of them’s is set to zero (mi50), which means thatJ12•••n
2( i ) is defined by omitting the factors (1

6mi) in the J12•••n
2 of Eqs.~4.62!.

The trace ofAN12•••n ,M12•••n ,l12•••N
computed according to Eq.~3.2! takes the following form:

Tr~A12•••n!5
N1N2•••Nn

det~2J12•••n
2 !d/2

expS 1

4
Q12•••nD ~4.67!

where

Q12•••n[K12•••n1(
i 5 i

n

l̄ is~m12•••n
21 !l i ~4.68!

5(
i 5 i

n

l̄ is
J12•••n

1( i )

J12•••n
2

l i1(
iÞ j

n

l̄ is

)
k51

i 21

~11mk! )
r 5 i 11

j 21

~12mr ! )
l 5 j 11

n

~11ml !

J12•••n
2

l j . ~4.69!
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E. Angle variables andK1

To check the recursion relations is straightforward b
rather tedious. Some aspects of the recursion formulas ca
more illuminating if we make a change of variables. T
recursion formula form becomes much simpler if we intro
duce the ‘‘angle’’ variables~which are commuting matrices!

Q l5tan21~2 iml !5
1

2i
log

11ml

12ml
,

~4.70!
Q12•••n[tan21~2 im12•••n!.

With these variables, the above relations can be simply w
ten asQ12•••n115Q12•••n1Qn11. Since this is a linear re
lation, one can immediately solve it as

Q12•••n5(
l 51

n

Q l . ~4.71!

By using the elementary relations betweenQ andm,

cosQ l5
1

A12ml
2

, sinQ l5
2 iml

A12ml
2

,

e6 iQ l5
16ml

A12ml
2

we find
06600
t
be

t-

J12•••n
1 5

cosS (
l 51

n

Q l D
)
l 51

n

cosQ l

, J12•••n
2 5 i

sinS (
l 51

n

Q l D
)
l 51

n

cosQ l

.

~4.72!

This immediately gives Eq.~4.62! by rewriting Eq.~4.71! in
terms of the variablem.

To derivel12•••n , we rewrite the recursion relation~3.12!
in terms of a new variablel̃ l[l l /cos(Ql), which simplifies
the relation

l̃125e2 iQ1l̃21eiQ2l̃1 . ~4.73!

Then, one can derivel12•••n from the simpler recursion

l̃12•••n115eiQn11l̃12•••n1e2 iQ12•••nl̃n11 . ~4.74!

The result is

l̃12•••n5(
l 51

n

expS 2 i(
k, l

Qk1 i(
k. l

QkD l̃ l . ~4.75!

Coming back to the original variablesl i , it is easy to see
that we arrive at Eq.~4.63!. The derivation ofK12•••n and
Q12•••n is more complicated but can be done with simil
arguments. We give the angular variable version of th
formulas:
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K12•••n5 i(
i 51

n

l̄̃ is~ tanQ12•••n2tanQ i !l̃ i

22(
i , j

l̄̃ is
e2 i (

k5 i 11

j 21

Qk1 i (
k5 j 11

i 21

Qk

cos~Q12•••n!
l̃ j ~4.76!

iQ12•••n5(
i 51

n

l̄̃ is~cotQ12•••n1tanQ i !l̃ i

12(
i , j

l̄̃ is
ei (

k5 j 11

i 21

Qk2 i (
k5 i 11

j 21

Qk

sin~Q12•••n!
l̃ j . ~4.77!

To derive these formulas, we use the relationm̄s
5(Ms)Ts52sMs52sm for a symmetricM and anti-
symmetrics, and its extension to functions ofm as follows:

„f ~m!l…Ts5l̄s f ~2m!,
~4.78!

l̄1s f ~m!l252l̄2s f ~2m!l1 .

Actually the angle variableQ turns out to be more than
computational device which simplifies the recursion formu
In Sec. VI we will give an explicit formula of the three strin
Neumann coefficients in terms ofm0. Through that relation,
in the notation of@18#, the spectrum ofm0 is identified as
tanh(pk/4) wherek is the spectrum ofK1[L11L21. If we
write Q05tan21(2 im0), the spectrum ofQ0 is identified
with (2p i /4)k. It implies thatQ0 equals (2p i /4)K1 up to
a similarity transformation. We note thatK1 is the basic ma-
trix from where the essential properties of the Neumann
efficients are derived in the infiniteN limit as well as in the
level truncation regularization.

F. Products and traces with generalmi and l i

In certain computations in string field theory we anticipa
also Gaussians with noncommutingMis. For example, this
may occur when we would like to compute products or c
relators for string states in the presence of different D-bran
such as those described by Gaussians of the form~4.28!. In
this section we analyze properties of such products.

1. Two points

The product for two general generating functions is giv
in Eq. ~3.7!. The two-point vertex is given by its trace

T12[Tr~AM1 ,l1 ,N1* AM2 ,l2 ,N2
!

5
N 12e

(1/4)l12M12
21l12

~det 2sM12!
d/2

. ~4.79!

This expression simplifies since the star can be droppe
evaluating the integral. Then we obtain the relation wh
was shown in the Appendix,
06600
.

-

-
s,

n

in
h

T125
N 12e

(1/4)l̄12M12
21l12

~det 2M12s!d/2

5

N1N2expF1

4
~ l̄11l̄2!~M11M2!21~l11l2!G

$det@2~M11M2!s#%d/2
.

~4.80!

We now specialize toM15M25M as in a previous section
but still keepl1 ,l2 arbitrary. The matrixM represents some
vacuum state. This could be the perturbative vacuumM0
given in Eqs.~2.8! or a nonperturbative D-brane vacuu
represented by a matrixD as in~4.28!, for example the sliver
vacuumMs as in Eq.~4.21!. We also use theN1 ,N2 consis-
tent with normalized states for arbitraryl ’s, Tr(A1)251
5Tr(A2)2 as follows:

A15~det 4Ms!d/4e2(1/4)l1M21l1e2jMj2jl1,
~4.81!

A25~det 4Ms!d/4e2(1/4)l2M21l2e2jMj2jl2.

For these, the two-point vertex becomes

T12
(M )5expS 2

1

8
~l12l2!M 21~l12l2! D . ~4.82!

The center of mass mode may also be included. For
ample, for tachyon waves, it takes the form

eik1•x0N 1e2jMj2jl15eik1• x̄N 1e2jMj2jl18,
~4.83!

l1m8 5l1m1S w

0 D k1m

Therefore,l gets replaced byl8 in the previous discussion
which otherwise remains unchanged. In addition to the tr
there is also the integral*ddx̄/(2p)d. This additional inte-
gration produces the Dirac delta function as an overall fac

Tr@~eik1•x0A1!* ~eik2•x0A2!#5dd~k11k2!T12
(M ) ~4.84!

whereT12
(M ) is given above.

2. Three points

To compute the three-point vertex, use associativity a
the cyclicity of the trace to find three different expression

T1235Tr~AM1 ,l1 ,N1* AM2 ,l2 ,N2* AM3 ,l3 ,N3
! ~4.85!

5Tr~AM12 ,l12 ,N12* AM3 ,l3 ,N3
! ~4.86!

5Tr~AM23 ,l23 ,N23* AM1 ,l1 ,N1
! ~4.87!

5Tr~AM31 ,l31 ,N31* AM2 ,l2 ,N2
! ~4.88!

and then use the result for the two-point function to write t
three expressions
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T1235Tr~AM1 ,l1 ,N1* AM2 ,l2 ,N2* AM3 ,l3 ,N3
! ~4.89!

5

N1N23expF1

4
~l11l23!~M11M23!

21~l11l23!G
$det@2s~M11M23!#%

d/2

~4.90!

5

N2N31expF1

4
~l21l31!~M21M31!

21~l21l31!G
$det@2s~M21M31!#%

d/2

~4.91!

5

N3N12expF1

4
~l31l12!~M31M12!

21~l31l12!G
$det@2s~M31M12!#%

d/2
.

~4.92!

Each form makes explicit the dependence on the parame
of strings 1,2,3, respectively.

The product for three generating functions may also
evaluated as follows:

AM1 ,l1 ,N1* AM2 ,l2 ,N2* AM3 ,l3 ,N3

5AM12 ,l12 ,N12* AM3 ,l3 ,N3
~4.93!

5AM1 ,l1 ,N1* AM23 ,l23 ,N23
~4.94!

5AM123,l123,N123
~4.95!

with two different, but equivalent~dual!, expressions for
each quantityM123,l123,N123

M1235~M121M3sM12!~11sM3sM12!
21

1~M32M12sM3!~11sM12sM3!21 ~4.96!

5~M11M23sM1!~11sM23sM1!21

1~M232M1sM23!~11sM1sM23!
21 ~4.97!

l123
m 5~11M3s!~11M12sM3s!21l12

m

1~12M12s!~11M3sM12s!21l3
m ~4.98!

5~11M23s!~11M1sM23s!21l1
m

1~12M1s!~11M23sM1s!21l23
m ~4.99!

and

N1235N12N3S det~2M123s!

det~2~M121M3!s! D
d/2

3exp@~1/4!~l121l3!~M121M3!21~l121l3!

2~1/4!~l123!
T~M123!

21l123# ~4.100!
06600
rs

e

5N1N23S det~2M123s!

det@2~M11M23!s# D
d/2

3exp@~1/4!~l11l23!~M11M23!
21~l11l23!

2~1/4!~l123!
T~M123!

21l123#. ~4.101!

Furthermore, we must have the three-point vertex

T1235
N 123e

(1/4)l123M123
21l123

@det~2M123s!#d/2
~4.102!

which must be equal to the expressions for the three-p
vertex given above. This gives a lot of identities, in particu
many relations are obtained by comparing the quadratic
variousl ’s in the exponent.

The expressions simplify, by insertingM15M25M3
5M , but keeping thel ’s different as in previous sections
WhenM5M0 the expressions are appropriate for comput
the perturbative three-point function. WhenM5Ms ~the
sliver field! it will be appropriate for computing nonpertur
bative three-point vertex, etc.

3. n points

We can compute the four-point vertex by using assoc
tivity and the cyclic property of the trace to obtain the fo
lowing forms:

Tr~AM1 ,l1 ,N1* AM2 ,l2 ,N2* AM3 ,l3 ,N3* AM4 ,l4 ,N4
! ~4.103!

5

N12N34expF1

4
~l121l34!~M121M34!

21~l121l34!G
$det@2~M121M34!s#%d/2

~4.104!

5

N23N41expF1

4
~l231l41!~M231M41!

21~l231l41!G
$det@2~M231M41!s#%d/2

~4.105!

5

N123N4expF1

4
~l1231l4!~M1231M4!21~l1231l4!G
$det@2~M1231M4!s#%d/2

~4.106!

5cyclic permutations. ~4.107!

These can be further computed by inserting the formulas
Ni j ,l i j ,Mi j given in the preceding section. These two form
of the four-point vertex is compatible with duality~the origi-
nal duality of the Veneziano amplitude!.

Similarly, the five-point vertex is computed in sever
forms by using the star product and the result for the thr
point vertex
3-25
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Tr~AM1 ,l1 ,N1* AM2 ,l2 ,N2* AM3 ,l3 ,N3* AM4 ,l4 ,N4* AM5 ,l5 ,N5
! ~4.108!

5

N123N45expF1

4
~l1231l45!~M1231M45!

21~l1231l45!G
$det@2~M1231M45!s#%d/2

~4.109!

5

N1234N5expF1

4
~l12341l5!~M12341M5!21~l12341l5!G
$det@2~M12341M5!s#%d/2

~4.110!

5more forms by cyclic permutations of 1,2,3,4,5. ~4.111!
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The process is similar forn points. These forms are compa
ible with duality of the n-point function. As before these
expressions reduce to the computations in the previous
tions when we takeM15•••5Mn5M , but still keep thel ’s
different.

V. NEUMANN COEFFICIENTS

As we have seen, the MSFT formulation gives a sim
mathematical framework to calculate all string vertices of
open string field theory. In this section we apply our resu
to derive a new and simpler expression for the Neum
coefficients for all string vertices in the oscillator formalism
We will do this for any oscillator frequencieske ,ko and any
number of oscillators. In this process we also establis
more explicit connection between our results and the os
lator approach. One of the purposes of this computation i
derive an explicit regularized formula for physical quantitie
such as the brane tension, tachyon mass and so on, in t
of our regularization scheme.

A. Computation of Neumann coefficients in MSFT

In the operator approach to the open string field the
@31#, the n-vertex is written in terms of the open string o
cillator in the form,

^Vnu5^puexp (
r ,s51

n S 1

2 (
k,l>1

ak
(r )

Akk

~Vn
[ rs] !kl

a l
(s)

Ak l

1 (
k>1

ak
(r )

Akk

~Vn
[ rs] !k0p(s)1

1

2
p(r )~Vn

[ rs] !00p
(s)D ,

~5.1!

times a momentum conservation delta functi
(2p)dd(( rpm

(r )), where we have taken a finite number
modesN and inserted arbitrary frequencieskk . The square
root factors in the exponential are added because our nor
ization of the oscillators is different from@31#. We will com-
pute the coefficients (Vn

[ rs] )kl for any ke ,ko ,N by using the
methods of the Moyal star product. Our results provide
simple expression for these Neumann coefficients. We m
06600
c-

e
e
s
n

a
il-
to
,
ms
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a
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tion that other closed expression for Neumann coefficie
have been given in the recent literature@20#.

The n-point off-shell amplitudes are written in terms o
^Vnu as

^VnuuC1&1^ •••^ uCn&n[E C1* •••* Cn , ~5.2!

for the n elementsuC& in the Hilbert space. In@31#, ^Vnu is
uniquely determined from the overlap conditions~here we
write them in terms of the split string variables! for the star
product,

~r 2nC1!!C25C1!~ l 2nC2!,
~5.3!

S ]

]r 2n
C1D!C252C1!S ]

] l 2n
C2D .

In the Moyal formalism, it can be verified that these con
tion reduce to the associativity of the Moyal star product

~A1* x2n!* A25A1* ~x2n* A2!,
~5.4!

~A1* p2n!* A25A1* ~p2n* A2!.

In this sense, the equivalence between the two formalism
by definition ensured, and up to an overall constant
should have the relation

^VnuuC1&1^ •••^ uCN&N;E dx̄ Tr~A1* •••* AN!. ~5.5!

We will use this correspondence to compute the Neum
coefficients (Vn)kl

[ rs] , (Vn
[ rs] )k0 , (Vn

[ rs] )00 for anyke ,ko ,N in
terms of the expressions we obtained in the previous s
tions.

In the following computation, we takeC i as the coheren
states
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uC i&5expS (
n51

`

mn
( i )a2n

( i ) D up( i )&

5expS ip ( i )x01 (
n51

`

kn
21/2mn

( i )a2n
( i ) D u0&. ~5.6!

^VnuuC1&1^ •••^ uCn&n is easily computed using the prop
erty an

( i )uC i&5Aknmn
( i )uC i& of coherent states

exp (
r ,s51

n S 1

2 (
k.l>1

mk
(r )~Vn

[ rs] !klm l
(s)

1 (
k>1

mk
(r )~Vn

[ rs] !k0p(s)1
1

2
p(r )~Vn

[ rs] !00p
(s)D .

~5.7!

This gives enough information since the factors ofmk
(r ) or

p(r ) in the exponent identify the Neumann coefficien
Vkl

[ rs] ,Vk0
[ rs] ,V00

[ rs] .
To perform the equivalent Moyal computation, we use

p basis given in Eq.~2.5! to obtain the fieldAr( x̄,xe ,pe)
5^x̄,xe ,peuC r& for the coherent state

Ar~ x̄,xe ,pe!5S det 4ko

detke
D d/4

eip(r )x̄e1/2(m̄e
(r )me

(r )
2m̄o

(r )mo
(r ))

3exp~2 j̄M0j2 j̄l (r )! ~5.8!
io

06600
e

where we have used̂x̄up(r )&5exp(ix̄•p(r)). Then, as in Eq.
~2.7! l (r ) is given by

l r~m,p!5S 2
A2i

l s
Akeme

(r )2 iwep
(r )

2
2A2l s

u (
o.0

Te,oko
21/2mo

(r )D
52K~m (r )1Wp(r )!, ~5.9!

where in the right-hand side we have definedK,W

K[S 2 i

l s
Ake

2
0

0
2 l s

u
TA 2

ko

D ,

~5.10!

W[S l s

A2ke

w

0
D .

This Ar(x,p) has the standard form of the monoid el
ments. Therefore, the right-hand side of Eq.~5.5! is easily
computed through Eq.~4.49!
Tr~A1* •••* An!5

expF (
r 51

n S ip (r )x̄1
1

2
m̄e

(r )keme
(r )2

1

2
m̄o

(r )komo
(r )D1

1

4
Qn„l~m,p!…G

det@~11m0!n2~12m0!n#d/2
~5.11!
es
whereQn was computed in Eq.~4.49!

Qn~l!5 (
r ,s51

n

l̄ rsO(s2r )mod n~m0!ls ~5.12!

but now l r(m,p) is replaced by Eq.~5.9!. The O(s2r )mod n
were given explicitly in Eq.~4.50!. All together

*dx̄Tr~A1* •••* An!

has an overall momentum-conservation delta funct
(2p)dd(( rpm

(r )) times a factor of the form Eq.~5.7!. Match-
ing the exponents in Eqs.~5.5!,~5.7!,~5.11!, we see from the
structure of Eq.~5.12! that the Neumann coefficientsVn

[ r ,s]

must depend only on the difference (s2r )mod n. Therefore
we define the matrixM kl

i , vector V k
i and scalarC i for

imod n as follows:
n

@~Vn
[ r ,s] !kl ,~Vn

[ r ,s] !k0 ,~Vn
[ r ,s] !00#

[2@~CM(s2r )!kl ,~V(s2r )!k ,C(s2r )#, ~5.13!

whereCkl5(21)kdkl , and from our explicitly computation
in Eq. ~5.11! we obtain

Mi52m̃0Oi~m̃0!2d i ,0 , ~5.14!

Vi5S 22m̃0Oi~2m̃0!2
2

nDW, ~5.15!

Ci5W̄S 2m̃0Oi~m̃0!2
2

nDW, ~5.16!

with the functionsOi(m) defined in Eqs.~4.50!,~4.51!. Ac-
tually a naive comparison of the zero mode coefficient giv
only the first terms in Eqs.~5.15!,~5.16!. However from the
3-27
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momentum conservation of then vertex, we have some ar
bitrariness in choosing them up to the translations (Vi)k
→(Vi)k1qk , andCi→Ci 1c, for any constantsqk andc. We
have used this freedom to ensure

(
i

Vi50, (
i

C i50, ~5.17!

by using the identitym̃0( iOi(m̃0)51. We emphasize tha
this compact form depends only on the matrixm̃0 which is
described below.

Note that initially theOi(m0) in Eqs.~5.12! are functions
of m05M0s for the vacuum state Eq.~2.8!, not m̃0. To
arrive at the above forms we have usedK̄s52CK21m0,
and performed the similarity transformationK21Oi(m0)K
which resulted in the above expressions forOi(m̃0) written
in terms ofm̃0

m̃05K21m0K5K21~M0s!K. ~5.18!

Using our expressions forK,M0 in Eqs.~5.10!,~2.8!, m̃0 and
m̃0

2 take the following more explicit forms in terms o

ke
1/2Tko

21/2 or its diagonalized versionVetV̄o given in Eq.
~2.29!:

m̃05S 0 ke
1/2Tko

21/2

ko
21/2T̄ke

1/2 0 D
5S Ve 0

0 VoD S 0 t

t 0D S V̄e 0

0 V̄oD ~5.19!

m̃0
25S ke

1/2Tko
21T̄ke

1/2 0

0 ko
21/2T̄keTko

21/2D
5S V(e) 0

0 V(o)D S t2 0

0 t2D S V̄(e) 0

0 V̄(o)D . ~5.20!

Recalling thatTeo is determined in Eq.~2.19!, ke
1/2Teoko

21/2

5ke
1/2wevoko

3/2(ke
22ko

2)21, we see that we have explicitl
computed in Eq.~5.14! the 2N32N regularized Neumann
coefficients for anyke ,ko ,N. Furthermore, the diagona
forms of m̃0 ,m̃0

2 in Eqs. ~5.19!,~4.16! give the spectroscopy
for Neumann coefficients for all string vertices. In the lar
N limit ke

1/2Teoko
21/2 is given in Eqs. ~2.23!–~2.26!, or

t,Ve,Vo are given in Eq.~2.31!, and therefore all matrix
elements ofm̃0, and hence all Neumann coefficients, a
fully determined.

In @18# the spectroscopy of Neumann matricesMi mod 3
for the three-point vertex was computed. We may comp
our spectroscopy forn53 and infiniteN to their results by
using the eigenvaluest(k)5tanh(pk/4) explained in Eq.
~2.31!, and find full agreement. This is seen in the mo
explicit expressions forn53 given below in Eqs.~5.32!.
This confirmation provides confidence that our formulas c
06600
re

-

rectly give all Neumann coefficients consistently for a
n-point string vertices either in the finiteN or the infiniteN
theory.

As in @31#, we obtain a simpler expression if we perfor
the following discrete Fourier transformation for the oscill
tors:

~ ãJ!k5
1

An
(
i 51

n

vJ( i 21)~a i !k , v5e2p i /n,

~5.21!

JP$0,1,2,...,n21%5Zn .

With respect to this combination, the overlap conditions b
come diagonal. We use the similar recombination for
source, (m̃J)k5(1/An) ( rv

J(r 21)(m r)k . In terms of this
variables, the Neumann function is transformed to

~Vn
[ I ,J] !5

1

n (
I ,JPZn

v2I (r 21)2J(s21)~Vn
[ r ,s] !. ~5.22!

In the Moyal basis, the discrete Fourier transformation giv

(
r ,k

l̄ rsOklk1r5
1

n (
r ,k

(
I ,J

v2(I 1J)(r 21)2Jkl̃ (I )sOkl̃
(J)

5 (
I PZn

l̃ (I )sÕI l̃
(2I )

where

ÕI~m̃0![(
r

v Ir Or~m̃0!

5
11v I

~11m̃0!2~12m̃0!v I

5
1

m̃02 i tanS pI

n D . ~5.23!

Then the Neumann coefficients take a much simpler fo
because (Vn

[ I ,J] ) become diagonal~proportional to d I 1J).

Therefore we defineM̃kl
I ,Ṽk

I ,C̃I

„~Vn
[ I ,J] !kl ,~Vn

[ I ,J] !k0 ,~Vn
[ I ,J] !00…

[2„~CM̃I !kl ,~ ṼI !k ,C̃I…d I 1J ~5.24!

where we obtain forI 50,1, . . . ,n21
3-28
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M̃I~m̃0!5
2m̃0

m̃02 i tanS pI

n D 2d I ,0 , ~5.25!

ṼI~m̃0!5S 2m̃0

m̃01 i tanS pI

n D 22d I ,0D W, ~5.26!

C̃I~m̃0!5W̄S 2m̃0

m̃02 i tanS pI

n D 22d I ,0D W.

~5.27!

As already argued above this is an explicit form of the Ne
mann coefficients for all string vertices. They depend o
single matrixm̃0 which we have determined in either th
finite N or infinite N theory.

TheM̃I can also be rewritten in terms of the eigenvalu
tk and the orthogonal matricesVek

(e) ,Vok
(o) by using the second

form of m̃0 in Eq. ~5.19! and inserting it in Eq.~5.25!

M̃I5S V(e) 0

0 V(o)D

3S 2t2

t21tan2S pI

N D 2d I0
iu

l s
2

t tanS pI

N D
t21tan2S pI

N D
l s
2

iu

t tanS pI

N D
t21tan2S pI

N D
2t2

t21tan2S pI

N D 2d I0
D

3S V̄(e) 0

0 V̄(o)D ~5.28!

and similarly forṼI(m̃0) andC̃I(m̃0). If we further insert the
perturbative frequencieske5e, ko5o, and an infinite num-
ber of oscillators, we obtain our results in the continuo
Moyal basis given by the eigenvaluest(k)5tanh(pk/4) and
the functionsVe(k), Vo(k) given in @25#.

B. Properties of Neumann coefficients

From these expressions, we may observe the follow
properties of the Neumann matrices. These are standa
the literature in the case of the largeN theory, but in our case
they hold for anyke ,ko ,N, which seems remarkable.

We note that, for anyn-vertex, the Neumann matricesM̃I

or M i are written in terms of the 2N32N matrix m̃0 in Eq.
~5.19!. This automatically implies that they commute for a
I ,Jmodn or any i , j modn
06600
-
a

s

s

g
in

@M̃I ,M̃J#50, @M̃I ,Mj #50, @Mi ,Mj #50.
~5.29!

The Ok(m̃0) satisfy the following nontrivial identities:

2m̃0(
t50

n21

Ot~2m̃0!Os2t~m̃0!

1Os~m̃0!2Os~2m̃0!50. ~5.30!

These translate to the following relations among the N
mann coefficients:

(
t51

n

(
b51

N

Vab
[ rt ]Vbc

[ ts]5d r ,sda,c ,

(
t51

n

(
b51

N

Vab
[ rt ]Vb0

[ ts]5Va0
[ rs] ,

(
t51

n

(
b51

N

V0b
[ rt ]Vb0

[ ts]52V00
[ rs] . ~5.31!

For I 50, the matrixM̃0 becomes particularly simple fo
any n-vertex,M̃051.

For n53, the Neumann coefficientsMi ,Vi ,Ci of Eq.
~5.14! become@using the notation (21,0,1)mod35(2,0,1)#

M05
m̃0

221

m̃0
213

, M152
11m̃0

m̃0
213

, M252
12m̃0

m̃213
,

~5.32!

V05
4m̃0

2

3~31m̃0
2!

W, V152
2m̃0~31m̃0!

3~31m̃0
2!

W,

~5.33!

V25
2m̃0~32m̃0!

3~31m̃0
2!

W,

C0522C1522C25W̄
4m̃0

2

3~31m̃0
2!

W[
2

3
V00. ~5.34!

It is also convenient to define the following combinatio
that appeared in the literature, which have even or odd p
ers ofm̃0 ~these are called twist even/odd in the literature!

Meven5M11M25
4

m̃0
213

,

~5.35!

Modd5M12M25
4m̃0

m̃0
213

,

Veven5V11V25
24m̃0

2

3~m̃0
213!

W,

~5.36!

Vodd5V12V25
24m̃0

m̃0
213

W.
3-29
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We note that due to momentum conservation( r 51
3 p(r )50

we can rewrite

1

2 (
r ,s51

3

p(r )
•p(s)~Vn

[ rs] !005
1

2 (
r ,s51

n

p(r )
•p(s)C(s2r )mod3

53C0(
r 51

3

p(r )
•p(r ). ~5.37!

From this parametrization, it is straightforward to veri
some relations that have been noticed before in the litera
without having our explicit formulas for the Neumann coe
ficients

M01M11M251, M1M25M 0
22M0

~5.38!

M 0
21M1

2 1M2
2 51,

~5.39!
M0M11M1M21M2M050

M 6
2 2M65M0M7 ,

~5.40!
M odd

2 5~12M0!~113M0!

3~12M0!V052ModdVodd ,
~5.41!

3ModdV052~113M0!Vodd

2V005
9

4
V̄0V01

3

4
V̄oddVodd . ~5.42!

We emphasize that in our case these results hold for any
of frequencieske ,ko and any number of oscillatorsN. They
were obtained using theassociativestar product in complete
compliance with gauge invariance.

C. Ghost Neumann coefficients

In the operator formulation of string field theory, the Ne
mann coefficients of the ghost field are also key ingredie
Since they can be related to the Neumann coefficients of
matter sector, one may derive the regularized expression
them for anyke ,ko ,N. We write the ghost part of the thre
string vertex in the following form:

uV3&5expS 2 (
r ,s51

3

(
n>1, m>0

c2n
(r ) Xnm

[ r ,s]b2m
(s) D u0&.

~5.43!

The matrixX can be written in terms of the matter Neuma
coefficient of the six string vertex as@4,12#,

1

Akk

Xkl
[ r ,s]Ak l5~21!r 1s~V6

[ r ,s]2V6
[ r ,s13]!kl , ~5.44!
06600
re
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1

Akk

Xk0
[ r ,s]5~21!r 1s~V6

[ r ,s]2V6
[ r ,s13]!k .

~5.45!

Defining

~X[ r ,s] !kl52~CM(s2r )mod3
gh !kl ,

~X[ r ,s] !k052~V(s2r )mod3
gh !k ~5.46!

and inserting the explicit formula of the six string verte
which is given in Eq.~5.14! for n56, we obtain@using the
notation (21,0,1)mod35(2,0,1)#

M 0
gh5

12m̂0
2

3m̂0
211

, M1
gh52m̂0

11m̂0

3m̂0
211

,

~5.47!

M2
gh52m̂0

211m̂0

3m̂0
211

,

V 0
gh5

4m̂0
2

3~113m̂0
2!

Ŵ,

V1
gh52

2~12m̂0!m̂0

~113m̂0
2!

Ŵ, ~5.48!

V2
gh52

2m̂0~11m̂!

113m̂0
2

Ŵ

where

m̂05Ak~m̃0!
1

Ak

5S AkeV
e 0

0 AkoVoD S 0
2l s

2

u
t

u

2l s
2
t 0 D

3S V̄e
1

Ake

0

0 V̄o
1

Ako

D ~5.49!

Ŵ5AkW5S l s

A2
w

0
D . ~5.50!

We see thatM i
gh has exactly the same form as Eq.~5.32! if

we replacem̂0 by m̃0
21. This implies that the matricesM i

gh

automatically satisfy the same relations as Eqs.~5.38!–~5.40!
3-30
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for any ke ,ko ,N. On the other hand, the zero mode p
satisfies modified nonlinear relations,

~12M 0
gh!V2

gh1M1
ghV 0

gh50,
~5.51!

~12M 0
gh!V1

gh1M2
ghV 0

gh50,

which are again famous in the literature@31,12#.

D. Regularized sliver matrices

Another quantity which has appeared often in the lite
ture is the description of the sliver state in terms of a ma
CT written in terms of another matrixZ,

T5
1

2Z @11Z2A~113Z!~12Z!#. ~5.52!

In our parametrization, for anyke ,ko the 2N32N matrix Z
is given by the Neumann coefficientM0 of Eq. ~5.32!, Z
5M0(m̃). ThenZ, T become

Z~m̃0!5
m̃0

221

m̃0
213

, T~m̃0!5
Am̃0

221

Am̃0
211

. ~5.53!

For finiteN these are the regularized matrices. In terms of
eigenvaluestk we have

T5S V(e) 0

0 V(o)D S t21

t11
0

0
t21

t11

D S V̄(e) 0

0 V̄(o)D
~5.54!

and

Z5S V(e) 0

0 V(o)D S t221

t213
0

0
t221

t213

D S V̄(e) 0

0 V̄(o)D ,

~5.55!

showing clearly the eigenvalue structure of these much
cussed matrices.

In the ghost sector, we replacem̃0 by m̂0 in comparing the
matter and/or ghost Neumann coefficients, as seen from
~5.32! and~5.47!. This gives the sliver matricesZ(m̂0) andT
(m̂0) with m̂0 of Eq. ~5.49! replacingm̃0 in the expressions
of Eq. ~5.53!. In terms of the eigenvalues, we get
06600
t
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T gh5S AkeV
e 0

0 AkoVoD S 12t

t11
0

0
12t

t11

D
3S V̄e

1

Ake

0

0 V̄o
1

Ako

D ~5.56!

Z gh5S AkeV
e 0

0 AkoVoD S 12t2

113t2
0

0
12t2

113t2

D
3S V̄e

1

Ake

0

0 V̄o
1

Ako

D . ~5.57!

Again, all of our expressions are valid for anyke ,ko ,N.

VI. VSFT AND ASSOCIATIVITY ANOMALY

In this section we first show that any fluctuation around
D-brane vacuum becomes pure gauge if we use the ass
tivity of the star product. Some of our arguments here ov
lap with section~5.3! of @3# but our emphasis is on associ
tivity. This implies that there is no physical excitation in th
D-brane vacuum. Since associativity is part of the gauge
variance, the undesired result has implications on the p
ciples underlying the definition of gauge invariance in VSF
Once we understand the issue which is rigorous for any n
singular sliver-like projector, we will point toward a possib
solution atinfinite N through the introduction of an associa
tivity anomaly which arises from the singular nature of t
sliver state at infiniteN. VSFT is not well defined until the
singularity is universally defined and the gauge invarian
principle understood.

A need for the anomaly is anticipated@37,24# from the
fact that the object which VSFT describes at the outse
supposed to be closed string excitations around the clo
string vacuum. Furthermore, the D-brane itself is the soli
of ‘‘closed strings.’’ We will clarify the associativity issues i
the framework of MSFT. The reconciliation of the gaug
invariance, associativity anomaly, and nonperturbative str
physics in VSFT remains as a challenge that we leave
future work.

A. Fluctuations around a D-brane vacuum

The action of VSFT has the form of Eq.~2.36! with Q
constructed purely from ghosts. Then associativity and ga
invariance holds exactly for genericke ,ko ,N as discussed
3-31
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following Eq. ~2.36!. In a sector in which the field is the
product of a ghost and matter partsA5A(g)A(m), the equa-
tions of motion separate

QA(g)52A(g)* A(g), A(m)* A(m)5A(m). ~6.1!

We take the D25-brane solution to be a projector that isx̄
independent, Lorentz invariant in 26 dimensions, and tr
one ~a single D-brane!. Any projector of the type of Eq
~4.29! at l50 is such a solution, but in the literature there
evidence that the sliverA(m)5J(x,p) given in Eq.~4.24! is
the candidate for theD25-brane

J5det~2d/2!exp~2 j̄mss
21j!,

ms5 iS 0 au

21

au
0 D , ms

251, ~6.2!

and a is given explicitly in Eqs. ~4.22!,~4.23! for any
ke ,ko ,N,

a5
1

2l s
2
ke

1/2Ake
1/2T ko

21T̄ ke
1/2ke

1/25ke
1/2VetV̄eke

1/2.

~6.3!

The ghost partA(g) also has a solution related to the sliver
discussed in@11#.

The next step is to study fluctuations around the D25-brane
and interpret them as open string states. If one seeks fluc
tions that have the same universal ghost factor, as advoc
in @2#, then effectively one has to study the action reduced
the following form:

S52KTrg~A(g)* A(g)!

3E dx̄TrmS 1

2
A(m)* A(m)

2
1

3
A(m)* A(m)* A(m)D . ~6.4!

Expanding the matter field around the projectorA(m)5J
1T, and using

J* J5J, ~6.5!

gives a quadratic and cubic term inT

S5S~J!2K̃E dx̄TrmFT* S 1

2
2J D * T2

1

3
T* T* TG

~6.6!

whereK̃5KTrg(A(g)* A(g)). The value of the action of the
classical solutionS(J) is related to theD25-brane tension.
To determine its absolute value one notices that the ove
coefficientK̃ is related to the cubic coupling. Therefore o
would like to extract the value of the cubic coupling, say f
the fluctuation that corresponds to the tachyon state~at the
06600
e

a-
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top of the effective tachyon potential! thereby fixingK̃ and
consequently computing the absolute value of theD25-brane
tension.

In a perturbative expansionT5T11T21•••, the qua-
dratic part determines the spectrum of the fluctuationsT1,
while the cubic part determines their coupling. Attempts
compute these quantities have run into a controversy in
literature@11,15,16#. We will now clarify that at the root of
the controversy is the need to introduce nonassociativity
the star product to extract nontrivial results from VSFT.

The equation of motion forT at the linearized level is

T15J* T11T1* J. ~6.7!

In Appendix B, it is shown that the general solution to E
~6.7! is

T1~ x̄,xe ,pe!5E dl@ f 1~ x̄,l!~ej[(11m)/2]l21!J

1 f 2~ x̄,l!~ej[(12m)/2]l21!J# ~6.8!

for any functionsf 6( x̄,l). Taking anyx̄-dependent solution
T1( x̄) with a definite center of mass momentump, and re-
placing it back in the action, one hopes to identify the ma
and the coupling constant for the particle represented by
solution, with a properly normalizedT1, as follows:

2K̃E dx̄ TrmFT1* S 1

2
2J D * T1G

5@p21~mass!2# f 2~p! ~6.9!

2K̃E dx̄ TrmS 2
1

3
T1* T1* T1D

5~coupling! f 3~p! ~6.10!

wheref (p) represents the particle wave function in mome
tum space. Of course, the left side of Eq.~6.9! must vanish as
long asT1 is the solution of Eq.~6.7!, which implies p2

1(mass)250. So to identify the normalizationf 2(p) as the
coefficient ofp2 one works slightly off shell. We will show
that the left-hand side of Eq.~6.10! exactly vanishes at anyN
as a consequence of associativity, therefore the coupling
ishes. So it is problematic to extract the coupling,K̃ or the
D25-brane tension.

To prove this point we give the following arguments. A
suming associativity is satisfied by the star product, we
always map this problem to a matrix problem in whichJ is
a projector represented by a diagonal matrix that conta
one entry 1 and the rest zeros. Then it is easy to see tha
most general solution of Eqs.~6.5!,~6.6! for the matrix prob-
lem is

J5S 1 0

0 0D , T15S 0 b†

b 0 D ~6.11!

whereb is a complex column matrix. This solution may als
be rewritten asT15 i @H,J# for any Hermitian matrixH. For
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this matrix solution it is easy to see that Tr(T1* T1* T1)50,
and hence the cubic coupling of the fluctuations vanishe

The same statements can now be made for any associ
star product. Namely, ifJ is given by the string field of Eq
~6.2!, then the most general solution of Eq.~6.7!, including
Eq. ~6.8!, must take the form

T15 i ~H* J2J* H !, ~6.12!

whereH is any string field. This solution can be easily ve
fied

J* T11T1* J5 iJ* ~H* J2J* H !1 i ~H* J2J* H !* J
~6.13!

52 iJ* J* H1 iH * J* J ~6.14!

5 iH * J2 iJ* H5T1 . ~6.15!

Inserting the result into the formulas for mass and coupl
we see that the left-hand sides of Eqs.~6.9!,~6.10! vanish by
simple algebra and cyclicity of the trace.

This shows that, independent of any detail of the soluti
associativity leads to a unique consequence, namely tha
fluctuations T1 are pure gauge. Indeed, if we define t
gauge transformation forT as

J1T85U* ~J1T!* U† ~6.16!

we see that for the small fluctuationT1 we can write the
infinitesimal gauge transformation forU5exp*(iH) in the
form

T185U* J* U†2J1•••5 i ~H* J2J* H !1•••

~6.17!

which has the form of the general solution.
Are there cohomologically non-trivial solutionsT1 ~i.e.

not pure gauge! as suggested in@11#? In analyzing their sug-
gestion, we find that in fact it is not a solution at all, if an
only if we use associativity freely. One way to see the pro
lem is to examine the quantitiesG,H related to mass and
coupling, as identified in@15#. We find that these quantitie
vanish identically at anyN,ke ,ko when we insert our ex-
plicit expressions for the Neumann coefficients. The sa
result was obtained in@15# by using the Neumann coefficien
identities in Eqs.~5.38!–~5.42!, which now hold also for any
N,ke ,ko . This vanishing is a consequence of associativ
pure and simple. The vanishing ofG implies that theT1
given in @11# is not a solution, while the vanishing ofH
corresponds to the vanishing of the coupling.

To avoid this outcome, VSFT must have an associativ
anomaly, which we discuss next.

B. Focus on anomalies

We have shown very generally that there can be no in
esting nonperturbative phenomena in VSFT unless ther
an associativity anomaly. In a previous paper we had arg
that the existence of closed strings in open string field the
is also closely related to an associativity anomaly@24#. So,
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how can nonassociativity arise in the theory in detail? In o
previous paper@24# we had argued that the associativi
anomaly of the star product is closely linked to the assoc
tivity anomaly of the matricesT,R,w,v in the infinite N
limit. This was due to the fact that the matrixTeo develops a
zero mode in that limit,Tv→0, as shown clearly in Eqs
~2.28!. Hence whenever the inverse of the matrix occurs o
must define it carefully, and watch that sometimes the z
mode is compensated by infinite sums, thus giving rise
anomalies. In particular the sliver in Eq.~6.2! does involve
the inverse of the matrixa21 and this enters in the expres
sions that determine the mass and couplings of the fluc
tions.

Also, as it is clear from the computation ofN-string ver-
tices from MSFT, the basic ingredients are them̃0 and vector
W. All the Neumann coefficients are written in terms
them. In this sense, in the MSFT context, the understand
of the associativity anomaly can be reduced to the study
m̃0 andW in the largeN limit.

Since we derived the explicit form of the Neumann co
ficients in terms ofm̃0, we can pinpoint in which combina
tion of the Neumann coefficients such an anomaly occu
Some of the examples are

113M05
4m̃0

2

m̃0
213

, Modd5
4m̃0

m̃0
213

,

~6.18!

12M 0
gh5

4m̂0
2

3m̂0
211

.

All of them have zero eigenvalue in the largeN limit as seen
from Eqs.~5.20!,~5.49! and Eq.~2.31!. In this sense, when
ever we try to invert these matrices, we meet the anomal
will be discussed in the next section. We note that the or
of m̃0 in these expressions coincides with the degree of
gularity introduced in@15#.

Actually all fluctuations around the D-brane vacuum
which are claimed to be cohomologically non-trivial in th
literature, use the inverse of such matrices. For example,
tachyon wave function conjectured in@11# takes the form

uFT&5expS 2 (
n>1

tnpman
†mD uFC&,

~6.19!
t53~11T !~113M0!21V0 .

uFC& is a classical solution which describes the D-bra
Also, the pure ghost BRST charge itself takes the ‘‘singula
form @11,28,12#,

Q5c01 (
n>1

f n~cn1~21!ncn
†!,

~6.20!
f 5~12M 0

gh!21V 0
gh.

By now, it is quite well known that such singular vectors a
related to the midpoint@28,19,24#.
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So far, the nonperturbative effects from VSFT are ba
on such singular states. For example, in recent literature@15#
the computation of the tachyon mass and coupling of
~6.9!,~6.10! were performed based on such states. If we try
keep associativity everywhere it would give only a trivi
value for such physical quantities independent of the det
of a solutionT1 as discussed in the preceding section.

The authors of@15# suggested a regularization schem
that introduces a ‘‘twist anomaly’’ to obtain nontrivial value
In our language their proposal is equivalent to a slight s
of the eigenvalues ofm̃0 in such a way that in Eq.~6.26! the
eigenvalues in the upper block are different than those in
lower block. While this prescription gave the correct nonze
value for G, it produced the wrong result forH. Since we
have argued in the previous paragraph that a cutoff consis
with associativity cannot alter the conclusion, a tw
anomaly must be equivalent to nonassociativity. But bre
ing associativity also breaks the gauge invariance of
theory, and this is likely to be the reason for obtaining t
wrong value ofH.

Nevertheless some of the arguments in@15# seem to point
in the right direction. The precise way in which the anoma
could occur is in the definition of the inverse of the infini
matrix m̃0

22. This general issue should now be investigated
a systematic way by using our consistent techniques, wh
tie together all the places where the zero eigenvaluet50
could occur in the largeN limit, and concentrating on the
proper definition of (m̃0

22)1/2. This definition has to introduce
an associativity anomaly, but the anomaly should be ge
enough to keep sufficient gauge symmetry intact.

Thus, the emergence of closed strings in open string fi
theory, as well as the nontrivial values of the masses or c
plings of fluctuations in VSFT, all need the same source
associativity anomaly that resides in the definition
(m̃0

22)1/2. It is crucial to weigh the desirability of the
anomaly versus the gauge invariance of the theory. In
next section we identify the source of the anomaly.

Before closing this section, let us mention that there i
different proposal for the resolution of the controversy@38#
for computing the D-brane tension on the one hand and m
and coupling of the fluctuations on the other hand. In t
case the approach is based on BSFT which uses confo
field theory techniques. So far it has not been possible
translate this proposal to the context of algebraic techniq
used in previous investigations@15# or in the present paper. I
must be emphasized, however, that in the proposal of@38#
there is noT1 that solves the equations of motion in E
~6.7!, and this is a way of avoiding the pure gauge config
ration. Until this proposal is understood in the algebraic
proach and the problems encountered above solved in
languages, there remains a cloud in our understanding.
believe that a key here is the associativity anomaly.

C. Origin of associativity anomaly in MSFT

One approach is to define the inverse of potentially s
gular matrices at finiteN when they are not singular, perform
all the computations, and setN to infinity at the end. How-
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ever, as we have seen, even at finiteN the left-hand sides of
Eqs. ~6.9!,~6.10! vanish. So this means that associativity
self must be broken in some other subtle way, and this m
be incorporated as part of the principles of setting up VS
For this reason, we re-examine the ‘‘bare’’ infinite matric
directly in the following discussion.

Let us first describe the characteristic behavior ofm0
2 in

the limit @recallm̃0
25Km0

2K21 andm05M0s is given in Eq.
~2.8!#

m0
25S keZ 0

0 Zke
D[S Ḡ 0

0 G
D . ~6.21!

Z was given in Eqs.~2.47!–~2.50! and G was discussed in
Eqs.~2.54!–~2.62!. Recall that this matrix occurs in the com
putation of the wedge states as in Eq.~4.16! and it needs to
be inverted to define the sliver state as in Eq.~4.20!. We
would like to re-examine this operation in the largeN limit to
identify a source of associativity anomaly.

By using the largeN version of the properties~2.15!,
~2.16! and ~2.17!, we have the properties of the infinite ma
trices

TT̄51, T̄T512vv̄, Tv50, v̄v51, v5T̄w.
~6.22!

In the same way we can derive the largeN equations as the
limits of Eqs.~2.57!–~2.59!

GḠ51, ḠG512u ū, Gu50,
~6.23!

ūu51, u5Ḡw.

If one worries about the associativity of the product involv
in the definition ofG, one may use the following explici
form of the matrix elements ofG andu to prove these iden-
tities directly

Ge,e85Ze,e8e8, Ḡe,e85eZe,e8 , ue5
e

A2
Ze,0

~6.24!

wheree,e8 are non-negative even indices as before, but
define the last formula we formally extended the express
in Eq. ~2.48! for Ze,e8 to includee850.

We see that the matrixG defines ashift operatorin the
Hilbert spaceH even which appears typically in the solutio
generating technique@39#. To see it more explicitly, we in-
troduce a new basis,

e0[u, e1[Ḡu, e2[Ḡ e1 , . . . .

It is easy to see thatG and Ḡ are the shift operators on thi
basis,

Ḡ en5en11 , G en115en ~n.0!,

Ge050, ēn•em5dnm .
3-34
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We note that we have a close analogy betweenT andG.
One difference is that while the operatorT interpolates be-
tween the different Hilbert spacesH odd and H even, G is
defined within the same Hilbert spaceH even. In this sense,
the eigenstate equation is well-defined forG. Obviously, it
has one zero eigenstateu. As in our previous paper@24#, it
causes the associativity anomaly,

~GḠ!w5w versus G~Ḡ w!5Gu50,
~6.25!

~Y G!u5u versus Y~G u!50, etc.

where the inverseY was defined in Eqs.~2.55! with YG
51. It is interesting that just likeR exists,Y also exists in
the infiniteN limit.

Thus, whileG has a zero eigenstate in the largeN limit, its
transposeḠ has no zero eigenstate. The other nonzero eig
values are shared byG and Ḡ. This is seen from Eq.~2.62!
whereḠ was diagonalized

Ḡ5~ke!
1/2Ve~t!2V̄e~ke!

21/2, ~6.26!

and we saw thattk became the continuous functiont(k)
5tanh(pk/4) at largeN. Thus, every nonzero eigenvalue
m0

2 comes in pairs atkÞ0. On the other hand, we have ju
argued that atk50 there is only one eigenstate. This asy
metry which occurs in the largeN limit is related to the
associativity anomaly.

To summarize, the associativity anomaly occurs when
try to invert the matrices which contain the zero eigenva
in the continuous spectrum. It is curious that inverses e
explicitly such asR andY as we have seen. Now we see th
for m0

2 of Eq. ~6.21!, at infiniteN the left inverse is different
than the right inverse

~m0
22!L5S G 0

0 Y
D , ~m0

22!R5S Ȳ 0

0 Ḡ
D . ~6.27!

This is a characteristic structure of the nonassociative a
bra. From these we may definem̃0

225Km0
22K21 and then

try to find a proper definition of (m̃0
22)1/2. It is already evi-

dent that associativity is not trivial and that in this way
associativity anomaly is likely to be introduced. The gau
symmetry needs to be analyzed carefully and then the n
perturbative quantities in VSFT could be extracted. Sin
this was not the focus of this paper, we will discuss the
issues in future work.

VII. SUMMARY AND OUTLOOK

We have formulated MSFT and showed that it is an ea
framework for performing computations in string fie
theory. We introduced the monoid algebra as a tool that
cilitates computations. The expressions we obtained for v
ous quantities, such as wedge, sliver, projectors, Neum
coefficients, vertices both perturbative and nonperturbat
etc., are generalizations that are valid for any frequen
ke ,ko for any number of string oscillators 2N. Our analytic
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expressions are not only more general, but also consider
simpler than those in the existing literature, while agree
with them whenever they are available in the largeN limit.

MSFT, taken with a specific cutoff procedure that guara
tees associativity, is apparently a consistent field theory
open strings. The appearance of closed strings in open s
field theory require an associativity anomaly@38,40,41,24#.

In the context of VSFT we have shown that there has
be an associativity anomaly in order to recover certain n
perturbative results. Quantities such as masses and coup
for fluctuations around a D-brane, the D-brane tension,
well as closed strings, all depend on the same source
nonassociativity. Using the MSFT framework, we have ide
tified in detail the possible source of the anomaly, namely
zero eigenvalue ofm̃0 at N→`, and the corresponding non
trivial definition of (m̃0

2)21/2. This zero eigenvalue is intro
duced by the sliver field which defines theD25-brane. The
breaking of associativity by the definition of (m̃0

2)21/2 has to
be sufficiently gentle as to maintain enough gauge symme
If this can be successfully accomplished then MSFT will
useful to compute certain nonperturbative quantities in
VSFT scenario. We have left this task to future work.

In the setup of MSFT we have used an equal numbe
even and odd oscillators. WhenN→` it is impossible to say
that they are equal in number. Therefore, it would be int
esting to investigate the case ofN even oscillators andN
11 odd oscillators in the cutoff theory and then sendN to
infinity at the end. In this caseTeo is a rectangular matrix a
finite N and does not have an inverse. It could be that t
would be an approach for incorporating the associativ
anomaly while still having a cutoffN.

The Moyal star formulation for fermionic ghosts shou
be possible. Although we have already included bosoni
ghosts in our formulation, we expect to learn more about
ghost sector and simplify computations that involve the f
mionic ghosts~such as the BRST operator! more directly.

The Moyal formulation allows us to consider the syste
one mode at a time in the formalism of noncommutat
geometry that is formally the same as the quantization of
relativistic spinless particle in phase space a la Wigner-We
Moyal ~although the star in MSFT does not follow from
quantum mechanics, as emphasized at the end of Sec. I!.
This makes it tempting to consider the spinning particle a
the superparticle with this method of quantization and
venting the corresponding noncommutative geometry in
perspace. Perhaps this would be an approach to building
supersymmetric string field theory that has been a challe
so far.

The same temptation applies to building the generali
tion of 2T-physics to string field theory@42#. The particle
version of 2T-physics field theory uses precisely the sa
noncommutative geometry approach~which does follow
from quantum mechanics! and is therefore a formalism tha
is directly related to our current formulation of MSFT. I
fact, the hint for introducing the Moyal star product in strin
field theory came directly from the formalism of 2T-physi
field theory. Reversing the process, now one can try to fi
the string field theory version of 2T-physics by incorporati
3-35
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the features of 2T field theory@42#.
Since we have introduced arbitrary frequencieske ,ko it

may be possible to apply our more general string field the
formalism to circumstances where string backgrounds a
the frequencies, such as a quadratic ‘‘mass’’ term in
sigma model. One such case that has arisen recently is c
the ‘‘pp wave.’’ It would be of interest to investigate this an
similar cases in our string field theory context.

Generalizations of the Moyal product are known in no
commutative geometry@43#. If such generalizations of the
star product are used in our setup of string field theory,
wonders whether this corresponds to strings in various n
trivial backgrounds. This question can be investigated
computingn-point vertices using our methods with a give
star products and comparing them to vertices compute
conformal field theory.

We also note that when theNS-NS two-form fieldB has a
nontrivial curvaturedBÞ0, Kontsevich’s star product be
comes inevitably non-associative@44#,

~ f !g!!h2 f !~g!h!;Ci jk] i f ] jg ]kh,
~7.1!

C5dB.

This is an indication that nontrivial closed string physics c
be recovered when associativity is broken. One related is
is that in the presence of nontrivialdB, the gauge symmetry
of Born-Infeld theory gets modified because of the coupl
F5F1B. In this sense, the conventional gauge transform
tion is affected by the gauge symmetry of theB field. This is
the origin of the appearance of twistedK-theory. It is tempt-
ing to imagine that the breaking of the gauge symmetry
Witten-type SFT in the presence of the associativity anom
is directly related to the coupling to the closed string deg
of freedom. In this sense, a generalization of@44# to the full
string variables~like we did for the flat space! should be
quite interesting.

These and other investigations are underway and they
be reported in future publications.
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APPENDIX A: DERIVATION OF MONOID ALGEBRA

We first note that for any functionA1 , A2, the star product
acts as~using] i to mean]/]j i , and suppressing the midpoin
insertion!

A1~j!* A2~j!5e(1/2)]s]8A1~j!A2~j8!uj85j ~A1!

5A1S j1
1

2
s]8DA2~j8!uj85j

~A2!

5A2S j82
1

2
s] DA1~j!uj85j .

~A3!

We apply this formula for the product of the two elements
the Monoid algebra,

A12~j!5A1~j!* A2~j! ~A4!

5N 1e2jM1j2jl1* N 2e2jM2j2jl2 ~A5!

5N1N 2e2[ j1(1/2)s]8] TM1[ j1(1/2)s]8]e2[ j1(1/2)s]8] Tl1

3e2j8M2j82j8l2 ~A6!

5N1N 2e(1/4)l2M2
21l2e2jM1j2jl1 ~A7!

3e]8[sM1j1(1/2)sl1]e(1/4)]8sM1s]8

3e2[ j81(1/2)M2
21l2] TM2[ j81(1/2)M2

21l2] . ~A8!

To perform the derivatives we use the basic relations

e(1/4)]A]e2(j1u)B(j1u)5
e2(j1u)(A1B21)21(j1u)

@det~11BA!#d/2
, ~A9!

e]v f ~j!5 f ~j1v !, ~A10!

for any constant vectorsu,v and constant matricesA,B. No-
tice that the dimensiond appears in the power of the dete
minant. Then we get
A125
N1N2e(1/4)l2M2

21l2e2jM1j2jl1

@det~11M2sM1s!#d/2
~A11!

3e]8[sM1j1(1/2)sl1]e2[ j81(1/2)M2
21l2] T(M2

21
1sM1s)21[ j81(1/2)M2

21l2] ~A12!
3-36
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5
N1N2e(1/4)l2M2

21l2e2jM1j2jl1

@det~11M2sM1!#d/2
~A13!

3e2[ j1sM1j1(1/2)sl11(1/2)M2
21l2] T(M2

21
1sM1s)21[ j1sM1j1(1/2)sl11

1
2 M 2

21l2] ~A14!

5
N1N2e(1/4)l2M2

21l2e2jM1j2jl1

@det~11M2sM1s!#d/2
~A15!

3e2[ j1sM1j1(1/2)sl11(1/2)M2
21l2] T(M2

21
1sM1s)21[ j1sM1j1(1/2)sl11(1/2)M2

21l2] ~A16!

5N12e
2jM12j2jl12. ~A17!
ea

m

s-
In the last expression the coefficients of the quadratic, lin
and zeroth order terms inj have been collected to the form

M125M11~12M1s!~M2
211sM1s!21

3~11sM1! ~A18!

l125l11~12M1s!~M2
211sM1s!21~sl11M2

21l2!
~A19!

N125
N1N2e(1/4)l2M2

21l2

@det~11M2sM1s!#d/2

3e2(1/4)(sl11M2
21l2)T(M2

21
1sM1s)21(sl11M2

21l2).

~A20!

These can be rewritten in a form that make explicit the sy
metry under (1↔2) ands↔2s

M125M11~12M1s!~M2
211sM1s!21~11sM1!

~A21!

5M21~11M2s!~M1
211sM2s!21~12sM2!

~A22!

5~M11M2sM1!~11sM2sM1!21

1~M22M1sM2!~11sM1sM2!21, ~A23!

and

l125l11~12M1s!~M2
211sM1s!21

3~sl11M2
21l2! ~A24!

5l21~11M2s!~M1
211sM2s!21

3~2sl21M1
21l1! ~A25!

5~12M1s!~11M2sM1s!21l2

1~11M2s!~11M1sM2s!21l1 , ~A26!

and
06600
r,

-

N125N1N2@det~11M2sM1s!#2d/2e(1/4)laKablb,
~A27!

where the matrices (Kab) i j with a or b51,2, are the coeffi-
cients ofla

i lb
j

K115~sM2
21s1M1!21,

~A28!
K125~s1M2sM1!21,

K2152~s1M1sM2!21,
~A29!

K225~M21sM1
21s!21.

By fairly complex matrix manipulations they can be rea
sembled to the form

laKablb5~l11l2!~M11M2!21~l11l2!

2~l12!
T~M12!

21l12, ~A30!

and we can also show that

det~M12!det~11M2sM1s!5det@~M11M2!#.
~A31!

Thus, we can writeN12 in the following form which will be
useful later:

N125N1N2S det~2M12s!

det@2~M11M2!s# D
d/2

3exp@~1/4!~l11l2!~M11M2!21~l11l2!

2~1/4!~l12!
T~M12!

21l12#, ~A32!

5T12det~2M12s!d/2

3expS 2
1

4
~l12!

T~M12!
21l12D ~A33!

where
3-37



w

u

ct

m-

ITZHAK BARS AND YUTAKA MATSUO PHYSICAL REVIEW D 66, 066003 ~2002!
T125
N1N2

det@2~M11M2!s#d/2

3expS 1

4
~l11l2!T~M11M2!21~l11l2! D

~A34!

is the trace ofA12. Therefore, we have shown that

A125T12det~2M12s!d/2

3expF2S j1
1

2
M12

21l12D T

3M12S j1
1

2
M12

21l12D G . ~A35!

The results of this appendix were given in@6# and are used in
the text.

APPENDIX B: GENERAL SOLUTION OF FLUCTUATIONS
AROUND A PROJECTOR

Let us consider any projectorJ of the form of Eq.~6.2!
for any matrixm that satisfiesm251. We want to give here
the solution that is analogous to the matrix solution forT1
given in Eq.~6.11!. Namely, we expect the analogue of a ro
and a column, which we will denote asT6 . Two particular
solutions forT6 have the following explicit form:

T65N 6eik• x̄det~2d/2!exp~2jms21j!

3~ej[(16m)/2]l21! ~B1!

where x̄m is the midpoint. The factoreik• x̄ is insensitive to
the star product, so we can ignore it in the following arg
ment.

To verify that theseT6 are solutions we use the produ
formula for monoid elementsAi5N ie

2jms21j2jl i with
identical m’s, which simplifies to the following form when
m251:

A1* A25
N1N2eK12/4

det~2d/2!
e2jms21j2jl12 ~B2!

l125
11m

2
l11

12m

2
l2 ~B3!

K125
1

2
l̄1sml11

1

2
l̄2sml2

1
1

2
~ l̄1sl22l̄2sl1!. ~B4!
06600
-

Using this formula we computeJ* T6 „with l150, and
l250, @(16m)/2#l as needed…. We find

J* T65N 6eik• x̄det~2d/2!exp~2jms21j!

3H e(1/32)l(16mT)sm(16m)l

3expFjS 12m

2 D S 16m

2 DlG21J . ~B5!

Similarly we computeT6* J „ with l150, @(16m)/2#l as
needed, andl250…. We find

T6* J5N 6eik• x̄det~2d/2!exp~2jms21j!

3H e(1/32)l(16mT)sm(16m)l1

3expFjS 11m

2 D S 16m

2 Dl1G21J . ~B6!

Now, taking into account thatm251 and mT52sms21

~symmetricM5ms21), we see that these expressions si
plify to

e(1/32)l6(16mT)sm(16m)l65e051. ~B7!

Therefore

J* T150, J* T25T2 ~B8!

T1* J5T1 , T2* J50, ~B9!

as expected from columns and rows if theT6 were matrices.
So we find

J* T61T6* J5T6 , ~B10!

which shows that we have indeed a solution for anyl and
any coefficientsN 6eik• x̄.

Using these properties ofT6 a more general solution is
constructed as a superposition of the form

T~ x̄,xe ,pe!5E dl@ f 1~ x̄,l!~ej[(11m)/2]l21!J

1 f 2~ x̄,l!~ej[(12m)/2]l21!J# ~B11!

for any functionsf 6( x̄,l).
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