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Computing in string field theory using the Moyal star product
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Using the Moyal star product, we define open bosonic string field theory carefully, with a cutoff, for any
number of string oscillators and any oscillator frequencies. Through detailed computations, such as Neumann
coefficients for all string vertices, we show that the Moyal star product is all that is needed to give a precise
definition of string field theory. The formulation of the theory as well as the computation techniques are
considerably simpler in the Moyal formulation. After identifying a monoid algebra as a fundamental math-
ematical structure in string field theory, we use it as a tool to compute with ease the field configurations for
wedge, sliver, and generalized projectors, as well as all the string interaction vertices for perturbative as well
as monoid-type nonperturbative states. Finally, in the context of VSFT we analyze the small fluctuations
around any D-brane vacuum. We show quite generally that to obtain nontrivial mass and coupling, as well as
closed strings, there must be an associativity anomaly. We identify the detailed source of the anomaly, but leave
its study for future work.
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[. INTRODUCTION Recently, it has been shown that Witten'’s star product can
be reformulated as the standard Moyal star pro@@ktThis
Witten’s formulation of open string field theof8FT) [1]  is obtained by transforming to a “half Fourier space” in
is one of the few tools available to discuss nonperturbativevhich only the odd modes,,_, are Fourier transformed to
phenomena in string theory. Recent discussions of tachyofpomentum spacp,,,_; while the even modes,, remain in
condensation that were carried out in the context of VaCUUrﬁosition space. In order to diagona”ze the star product in
string field theory(VSFT) showed the relevance of D-branes mode space a linear transformation is applied in mode space
and spurred renewed interest in the overall string field theoryy the Fourier variable,,_1=(2/6) Z1=0P2mT 2m 2n—1-
framework[2—30]. The main objective of the present paper then the Moyal star is defined in the phase space of even
is to sys_temgtically develop the Moyal star formulation of string modes X£,,p% ) except the midpoint, and the overall
open string f|9|d theorﬂMSFT) [.6] a_md .ShPW how to carry star is a product over the even modes. The product is local at
out computations in deFall n th|s S|m.p'l|fy|ng fram_ework. he midpoint. This reformulates string field theory as a non-
SF.T is usually considered in position space in terms ol mmutative field theory where noncommutativity is inde-
functionals§(x*(a), ¢(c)) that depend on the string coor- yonqent for each even mode, thus establishing an explicit
dinatex*(c) and bosonized ghosi(). For convenience | petween open string field theory and noncommutative
we will rename the ghost as a 27th dimensiof(o)  geometry in a form which is familiar in olf34] and recent
=Xp7(0), and allow theu index to run over 27 instead of 26 jiiara1yre[35]. This result was originally obtained {i6] by
dimensions. The string field may be rewritten in terms of theusing the split string formalisrf2—6,33 as an intermediate
string modes)(Xy Xy, X2 -1) Which are defined by the ex- stepand by now it has been confirmed through a different
pansion for open strings approach that focuses on the spectroscopy of the Neumann
coefficients[25-27.
* In this paper we develop methods of computation in
xH(o)=xh+1/2 2, xtcodna). (1.)  MSFT systematically and apply them to explicit examples.
n=t Section Il gives details of the formulation of MSFT, includ-
] . ] ing a cutoff procedure, and provides a dictionary for relating
A star product was defined by Witten among these fiflds it to other formulations of open string field theory. MSFT is

This amounts to matching the right half of the first string tojnjtially defined more generally for any number of oscillators
the left half of the second string and integrating over the

overlap. Computations in SFT using this overlap have showap———
that Witten's star product does indeed lead to the correctithg rejation betweef] and[25] amounts to a change of basis
description of interactions among strinigl,32. through orthogonal transformations which diagonalize the matrix
(ke)Y?T(x,) Y2 (see notation in text We will come back to this
transformation at several points in this paper. In particular, the dis-
*Electronic address: bars@usc.edu cussions related to Eq$2.29,(2.62,(2.107 provide answers to
TElectronic address: matsuo@phys.s.u-tokyo.ac.jp some issues raised [25].
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and any oscillator frequencies. The contact with standar@f mass mode of the string. The stdte| may also be writ-
open string field theory is made when the number of oscillaten out explicitly as above for any frequengy.

tors is infinite and when the frequencies match the free string In much of our formulation it is not necessary to specify
oscillator frequencies. The oscillator and Virasoro algebrahe number of oscillators or the frequencigg as a function
are constructed as special field configurations in Moyal spacef n. We will take advantage of this to easily define a some-
that can be star multiplied on either the left or right side ofwhat generalized formulation of string field theory by allow-
general fields. This provides the first representation of théng arbitrary frequencies, and number of oscillatorsh2.
Virasoro algebra in noncommutative space, distinguished by his flexibility will permit us to discuss a cutoff theory as
the fact that its basic building blocks are half as many oscildefined in[24] and described below in detail. This will be
lators(only even or only odd onéss the usual case. Section important to obtain well defined quantities and resolve asso-
[l introduces a noncommutative algebra for a special clasgiativity anomalies in string field theory. Thus, we will not
of string fields which are generating functions for correlatorsindicate upper limits in sums or produdsuch as Eq(2.1)]
This closed algebra forms a monoid with an explicit structureto imply that such equations are valid in either the cutoff
which plays an important role as a computational tool. Intheory (with upper limit n=2N) or the full theory (with
Sec. IV it is shown that the monoid algebra is sufficient toupper limit n=«). To make contact with the usual open
compute explicitly and with ease all the interaction verticesstring field theory at various points we need to 6},

for any number of oscillators and any frequencies. The sim-—|n| and 2N—«. While most structures exist for a large
plicity of such computations is one of the payoffs of therange of parameters, ,N, certain quantities, such as the
reformulation provided by MSFT. We reproduce and genery/irasoro algebra, exist only in this limit.

alize many results that were obtained through other methods The MSFT formulation is obtained by performing a Fou-
and obtain new ones that are computed for the first time. Ifjer transform only on the odd string position modeixjfor
particular, in Sec. V we obtain simple analytic eXpreSSionsequivaIentIyz,b(xo,x2n,x2n,1). We will use the notatiore

for the Neumann coefficients, including zero modes, for all=2n ando=2n—1 for even and odd integere excludes
n-point string vertices, for any frequencies. The spectroscopyéer@' The Fourier image in the Moyal bas{!e(;x Do) is

of these coefficients for the case of=3 and an infinite  iuen o follows[6]: e
number of oscillators agrees with the available results in th(-:(~J

literature[28]. This helps establish MSFT as a precise defi-

nition of string field theory. In Sec. VI we analyze the small — _ di2 u
fluctuations in VSFT[2]. We show quite generally that, to A(X,Xe,Pe) =del2T) f dxg
obtain nontrivial masses and couplings for the small fluctua-

tions, there has to be an associativity gnom_aly of the star Xe—(2i/0)n,w2;0 pgTe"xg‘ﬂ(Xo,Xe,Xo):
product in any formulation of VSFT. We identify the source '
that could explain the anomaly in detail for an infinite num- (2.2

ber of oscillators, but leave the full resolution of the problem

to future work. whered is the number of dimensionsl& 27 including the

Il. MOYAL FORMULATION OF STRING FIELD THEORY bosonized ghos)_sa is a pa_rameter_ tha_lt has units of area in
(MSFT) phase spacel,, is a special matrix given below which is
intimately connected to split strings, amd=x(7/2) is the
string midpoint which may be rewritten in termsxf, X, via
The position representatiofi(Xq,Xon,Xon—1) Of @ string  Eq. (1.1
field is related to the oscillator representation of the figtd
by the Fock space bra-ket produat(Xg,Xon,Xon—1)

A. Moyal star product

=(x|). The position statéx| is constructed in Fock space Xo=X+ > XWe, (2.3

from string oscillatorsy,, with frequencies,, [31],? e>0
(x| =<xo|exp2 (iaﬁﬂ\/?x” an— K_”zxﬁ wherew, is given below. For the center of mass stéxg|

=1 | 24 s 2l this change of variables may be written as a translatigix/of
o\

X H nz) , (2.1 _ _

n=1 | mlg (Xo| = { X+ > XeWe =(x|exp< ip- >, xewe), (2.9
e>0 e>0

wherel is the fundamental string length arglis the center

wherep* is the center of mass momentum operator for the
2Compared to the conventional harmonic oscillatagsused in  full string. Then the Moyal imagé2.2) of the position space
[31] we normalize our string oscillators ag,=k,a, and a_, state(x| is obtained by applying the Fourier transform as
= Jkna! for n=1. These satisfy the commutation rules,,a,,]  Well as the change of variabl¢8.3) to Eq.(2.1). The result
=&(N) K|n|On+m Wheree(n)=sgn() for all n+0. is
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Then one can directly reIatA(;,xe,pe) to the statd) in
the oscillator formalism

A(er vpe):<;vxevpe| ¢> (2.9

As shown in[6] the Witten star product becomes the
Moyal star product in the phase space of each even fode

except the midpoint

(A*B)(X,Xe,Pe)

J d
IXg IPe

- i0
= e(3|/2)X27A(X,Xe :pe) ex% ? 77/'”}; (

B(X,Xe,Pe)- (2.10

P
IPe IXg
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of x and x. by using Eq.(2.3) before the Moyal star is
computed® This setup can be related to the star product in
the oscillator formalism by the following formula in the os-
cillator language:

(A*B)(X,Xe,Pe) = {1X,Xe , Pel (2A(3B[|V129. (2.11)

Indeed in Sec. V we will show in detail how the Neumann
coefficients ¥}°),, in n-point vertices in the oscillator for-
malism, including the zero mode¥ (), (V;)oo, directly
follow from the straightforward and concise Moyal product
in Eq. (2.10. Thus, MSFT is a precise definition of string
field theory.

Note that the noncommutativity is independent for each
mode. The Moyal product has been diagonalized in string
mode space by the insertion of the matffix, in the defini-
tion of the Fourier transform. Therefore for each independent
even string mode, except the midpoint, we have the star
commutation rulesfor simplicity, we suppress the midpoint
ghost insertion

[x& X 1« =[PE ,Pe ] =0.
(2.12

Taking all the modes together we have a noncommutative
space of 2N dimensions labeled by, with commutation
relations

[X& P s =107 Seer

0 1
[t &)=y, a=ie( ) 2.13

-1 0
Here the blocks 1 (0) represent the u(@erg matrices in
even mode space. In terms @f; the star is given by

< -

Jd J

——. 2.
238 (%;”) 24

. e(3i/2>x27€Xp< % D

It must be emphasized that the noncommutativity associated
with 6 is a device for formulating string interactions. The
commutators above do not follow from quantum mechanics,
and 6 has no relation to the Planck quantuimalthough it

has the same units. The parameters present already in
classicalstring field theory. When string field theory is quan-
tized# is introduced as an additional parameter as a measure
of the quantum noncommutativity of fields. Tl#enoncom-
mutativity is in a spacetime with®dimensions X4 ,p%) for

The product is local at the midpoint in all dimensions, and®2ch €ven mode. One may think ofo;; »“” as a giant con-

. . . . . iy 27,
there is a midpoint insertiog' 3" /2

sized that alk, dependence should first be rewritten in term

3Itis also possible to take a Fourier transform for the exgrand

end up with a formulation in the odd phase spaxg, (1,Pon-1)-

in the 27th dimension

stant “magnetic field” in the space of all the modes. String
theory has sufficient gauge symmetry to ensure unitarity in

;s'uch a noncommutative spacetime which includes timelike

components?.

We emphasize that as far as; is concerned, the mid-
point positionsx* are commutative. If a constant background
antisymmetrid3,,, field is introduced then some components

4An alternative approach that produces the same result is to keepf the midpoinb?”“ will also become noncommutative. In this

the xo, dependence intact, but replace the derivativéx, in the

Moyal star product in Eq(2.10 by
N g Al X+ (X | ) Al Xy = Il X+ Wil X

case our formalism is easily generalized to accommodate the
noncommutative midpoint. In this paper, for simplicity, we
will assume that thé,,, background is zero.
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B. The matricesT,R,w,v 2 2
VoK Oeer

The matrixT in Eq. (2.2) plays a crucial role in bringing
the star product to the diagonal form in mode space as in Eq.

(2.10, and is an important bridge in making connectionsf(Jr anv aiven We proved this theorem analvticall
between MSFT and other formulations of SFT. Therefore we o;ﬁyog and’:;’ﬁ g’o.and cphecked it via computer a)I/gebrg—

list some of its properties here. It is label&g, with even ically and numerically foo=0" ande=e’. Then, as a cor-

positive integerge) on its left and odd positive integefs) 1101y of the theoreni2.21). the T.R of Eds.(2.19 are each
on its right(zero is excluded frone). Its inverse isR,., and othe)r/’s inverseél’R:ml.:Ig',l' ' gs.(2.19

thlere ;re twohsper::ial veit%rs witthomEone\:wt_sandzl;o,_ TheseT,R,w,v satisfy all of the remaining relations in
related to each other hy,=Xe.oWeTeo, thatplay arolein - gqq 5 16_(2.18 for any ., «,, and any set of signs for

?onnecthn with the m|d?omt quas)' (‘jr(;lerte_ are als_l? :he We, Uy, at anyN. Using the remaining freedom, the signs of
requenciesk,,, k,,_1 Of even and odd string oscillators W, v, are chosen as

that we designate as two diagonal matriegs «,. These
quantities satisfy the following matrix relatioh4]: sgnwe) =(y—1)"%*2,  sgrivg)=(y—1)°"1,

; =
0>0 (Kg_ Kg)(Ke, - K(Z)) ngg

_ - (2.22
R=(ko) ?T(ke)?, R=T+ow,
(2.15  to agree with the larg&l theory. Also, one may choose,
v=Tw, W=Rup, =e, ko,=0 in the cutoff theory for alN, although this is not

necessary.
At large N when k.—e, k,—0, theseT,R,w,v become
(2.16 precisely the infinite matrices that emerged in the split string
' formalism given by

TR=1, RT=1, RR=1+ww,

TT=1-vv,
2( _ 1)m+n+l
_ W w T2n,2m—1: .
TT=1-——, Tv=—"—,
1+ww 1+ww 1 1
— 217 X(Zm—1+2n+ 2m—1—2n>’ (.23
— ww
vV = —,
1+ww R _An(—p"m
_ _ o M1 4(2m—1)
Rw=v(1+ww), RR=1-vv(1+ww), (2.18 1 1
where a bar on top of a symbol means its transpose. The four X ( 2m—1+2n 2m-— 1—2n) ' (2.29
equations in Egs(2.15 are defining equations in the sense
that they determing&,R,w,v as we will see in the next para- " 22 (- 1)+t
graph. All the other equations follow from these defining Wzn:\/z(—l)n v Van-1T T o T
equations; we listed all of them for later convenience.
The first two equations in Eq$2.15 are uniquely solved (2.29
by the NX N matrices Kon=2N, Kpy_1=2n—1. (2.26)
wevoxg Wevoxg These infinite matrices satisfy all the relations in Egs.
Teo= 22 Roe= 2.2 (219 (2.15-(2.18. We emphasize that here we obtained them di-
e [0} e [0}

rectly from the defining relations in Eq&.15).

We have shown that the relatiofi.15 play a defining
role in the theory. The oscillator frequencies, ., and the
set of signg2.22 are additional inputs in defining the cutoff

w2 1 02 1 or the infinite theory through these relations. In the cutoff
> 2_92=_2, > ﬁ: =. (2.20  theoryke, k, may be taken to be identical to E¢®.26 at
e>0 Kg— Ky, Ko 00 Kg— K, K¢ any N, or some other convenient choice that tends to Egs.
(2.26 at largeN.
These determina/2, v2 for each component in terms of the
frequenciesc,, «,. We now state a theorem: the, v2 that C. Cutoff procedure
satisfy EQs.(2.20 obey the following orthogonality rela-
tions:

Inserting these into the last two equations in E(s15
gives

SFT needs some regularization in any formulation to give
rigorous mathematical meaning to some computations. As
discussed ii24] the origin of the singular behavior in MSFT
is due to the even vectav whose norm becomes infinite as

2 = 1 J—
e>0 (Kg_Kg)(Kg_Ko/) voKs (2.2)  the number of modes goes to infiniyw— 2N—o0 as seen

2 2
WeKe 500'
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from Egs.(2.295. Therefore in some computations we will dure that we will use when a computation is delicate; but
use a finite number of modes to regularize certain quantitiestherwise it is not important to use the cutoff, and the ex-
before taking the larg® limit. This is somewhat similar to plicit infinite version ofT,R,v,w, k.k, in EQs.(2.23—(2.26
level truncation, but our cutoff procedure is more reliable inmay be used directly.
that all the relations in Eq$2.15—(2.18 remain valid at all We provide here another basis fo/R,w,v, k¢, ko, Which
values of the cutoffN and any set of frequencies,, «,. It  sheds additional insight into the nature of the cutoff and the
turns out that for certain delicate computations, where naivatructure of Eqs(2.15—(2.18. In the new basis we see more
level truncation could not be fully trusted, our cutoff method clearly why the largeN limit is tricky and different than the
gives unambiguous results consistent with gauge invarianceaive level truncation. Let us apply two orthogonal transfor-
However, there will remain some open issues on how tanationsS,, S, to the relationg2.15—(2.18 to write them in
recover certain non-perturbative effects in the context ofa basis in which the vectoms., v, point in a single direc-

vacuum string field theory, such as closed strings, tachyoflon, Then we find from Egs. (2.15-(2.18 w,

mass, and D-brane tensions, as we will explain in Sec. VI, = — s .
. ’ . " =(0,...,0Ww)S; andv,=(0, ...,0w(1+ S, whil
Such issues are all related to the existence of a zero elgeﬂié matricey;g Re Sgccl))r(r)\e (block di;’Z]E)naIW )~ "9S, while

value in the infinite theory, as explained below, and its rela-

tion to an associativity anomaly in the star product in a very t 0
special way[24]. To sharpen these issues first we will exam- _
ine the theory through our cutoff procedure, and then we will T=S, 0 1 S,
see the precise point on which to focus to be able to extract J1+w?
nonperturbative information from vacuum string field theory.
In the largeN limit the infinite matricesT,R,w,v as well T 0
as the star produg¢2.10 have an associativity anomaly that R= ( S (2.29
needs to be treated delicatdlg4]. In particular, from Egs. Lo Vi+w?) Y

(2.17) note thatTv—0 when ww—oo, indicating a zero
mode which is the cause for the associativity anomaly. At tt=tt=1,
finite N there is no associativity anomaly because the zero
mode is shifted away from zero as seen by computing theuch that the l—1)x(N—1) matrixt is orthogonal(note
determinant ofl thatt could be replaced by 1 by absorbing it into a redefini-
tion of S; or Sy). Then all the relations are satisfied by the
1 detx, Kon—1 new forms of T,R,v,w except for the first relation in Eq.
de(T)= == Gote. I1 , (2.2 (2.15 which contains the information on the oscillator fre-
V1+ww elke n=1 Kan quencies. This last relation determinB&R,w,v uniquely in
terms of the frequencies,, «, as discussed if24]. When
The right-hand side follows from Eq€2.15—(2.18 as a the ragk of the matriceN goes ;o infinity, the §ing|e param-
nontrivial relation® Thus, all ambiguities are uniquely con- €t€rw” also grows at the rate“—2N— . This combined
trolled by the cutoff, and one can proceed with confidencdiMmit is the nontrivial aspect in our cutoff procedure. In par-

using associativity both for the matric&sR,w,v and for the ~ ticular note thatT develops a zero eigenvalue which is the
star product in Eq(2.10. cause of associativity anomali¢24]. But in all computa-

Generically, to perform a computation in the cutoff theory, tions where an anomaly occurs in the infinifce theory, it comes
we do not need an explicit form of the finite matrices from ambiguous terms/« that become uniquely evaluated

T,RW,0,Ke,Kq,

since in most cases it is sufficient to use N the form ofw/w in the cutoff theory, thus resolving the

the relations(2.159—(2.18 which are valid at any cutoff, anomaly. The block diagonal basis of this paragraph sheds

including infinity. The useful information that the cutoff further light into our consistent cutoff procedure, but we pre-

theory supplies is the behavior of a computation as a functer using the original basis, along with the consistency equa-

. tions (2.19-(2.18, since the explicit forms of
tion of ww [see, e.g., Eq(2.27) or Egs.(2.17,(2.18]. As T,R,v,W, ke, K, are available in the infinite limit in the origi-

seen from Eq(2.29 ww enlarges as the cutoff is removed at 15 pasis as in Eq€2.23—(2.26.

the rateww—2N—o. Knowing theww dependence of a Other bases may also be considered. In particular, it is

quantity determines its dependence on the cutoff at the veryseful to study the basis in which the matrix

end of a calculation wheh—o. This is the cutoff proce- ()T (k,) %2, which occurs prominently in many expres-
sions, is diagonal. We will see later that in this basis the
Neumann coefficients for ali-point string vertices are diag-

®Note that if we had first sent the cutoff to infinity, Eq&.16 onal. The orthogonal transformations that diagonalize this

would give TT=1 with a determinant def(T)=1, while TT=1  matrix are denote®®, V°

—vv with a determinant deT(T) =1—vv=0. This is another ex- _

ample of the associativity anomaly which is resolved uniquely and (ko) V2T (Ko) ™ H2=VerVO, (2.29

controlled with our cutoff method. The naive level truncation would

still be ambiguous in this case, and would not yield the type ofwhere 7 is an NXN diagonal matrix with eigenvalues,

analytic relations given in Eq2.27) or many others. labeled by integerk=0,1,...,N—1). These orthogonal
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transformations provide the map between the bases intro- D. Identity, nothing state, reality, trace, integral,

duced in[6] and[25]. In the largeN limit, the matrix ele- gauge invariant action

ments becozne functions of a continuous parame€) The reformulation of the star product greatly simplifies
—Ve(K), (V?)ok—=Vo(k), mc—7(K), and Eq.(2.29 takes  computations of interacting string fields. Recall that the
the form representation/(Xq,Xon ,X2n—1) IS related to the oscillator

L representation by the Fock space bra-ket product
(" W(Xg,Xon »Xon—1) = {(X| ) where(x| is constructed from os-
‘/ETeoﬁ_fO dk Ve(K)Vo(k)7(k), (230 cillators in Eq. (2.<1) azld | ) ié a string state, while the
MSFT field A(X,X,,,P2n) IS the Fourier transform given in
such that the eigenvalues become a continuous function as Eq.(2.2). In this section we give a few simple illustrations of
seen from Eq(6.7) in [25] the simplifications obtained in MSFT which help make string
field theory more manageable. More involved examples of
k simplified computations will appear in later sections in this
7(K) =tank(7) . (23D paper.
The first example is the identity field. If we ignore the
Furthermore, the functiong(k), V,(k) are obtained from !”nidp_oint ghost insertion we can easily notice that _the .only
the following generating functions extracted from E¢f&4) identity of the Moyal product is the number 1. Taking into

in [25° for k=0, account the ghost field iniertion, the identity field is the pure
midpoint field, | = exp(—3ix,7/2). The midpoint phase is in-
V,(k)(tanz)° sinh(k2) sensitive to the Moyal star; it is designed to cancel the mid-

E point ghost insertion in the definition in E@2.10), so it

0 VO - / r(Wk) ’ really acts like the number 1. Therefore, it satisfies
4k sinhh —
2 I*A=Ax1=A (2.33

V(k)(tanz)® 1—coshkz) for any string fieldA(X, X5, ,Xon—1). This result forl can be
=- . (2.32  verified directly by taking the Fourier transform of the iden-
€ \/; [k tity field in the x representation which is proportional to
4k sinh — M., 8(x )
n=1 2n—-1)-

A second example is the “nothing state.” In tixerepre-
As seen from the expressions in E¢®.17,(2.27,(2.29, a sentation the nothing state is a constant. The corresponding
zero mode is expected in the larydimit, and this is explic- Moyal field is a delta function for all even momenta
itly seen in the expression o{k) atk=0. The associativity “nothing™ In=18(P2n). In computing the Moyal star product
anomalies caused by the zero mode in the lagenit, as of extremely localized states, such as the nothing state, one
discussed ii24], must occur also in the continuous basis of MUSt be aware of some nonperturbative properties in the

[25]. These are absent in the cutoff theory because the simpowers ofo [8]. _ ) N
larity transformationsve, V° are well definedNx N finite A third example is the reality condition on string fields. In

matrices, the basis labeled lyis discrete, and the lowest the oscillator representation this is an awkward condition. In

eigenvalue among the, is positive definite. Our regularized theé X representation it becomesy” (Xo,Xzn,Xzn-1)
theory removes the associativity anomaly by shifting this= #(Xo,X2n,~Xzn-1). In the Moyal basis it takes its sim-
mode away from zero in any formalism, including in the plest form, namely the field is a real function lfder complex
basis. Thus some issues raised 25] are avoided and re- conjugation in the wusual senseA*(X,Xzn,P2n)
solved in our regularized theofyn this connection see also = A(X,X,p,Pan).
EqQ. (2.62 and the spectrum of the Virasoro operalkgy in A fourth example is the integration which is needed to
Eqg. (2.107]. definec-number quantities such as an action. In the original
In the infinite theory the zero eigenvalue of the matrix formulation of SFT integration corresponds to folding a
(ke)Y2T(x,) " Y2is related to a number of important nonper- string on itself and integrating over the overlap and mid-
turbative issues. We will see in Sec. VI that certain nonperpoint. In MSFT this simplifies to phase space integrals which
turbative effects vanish when the star product is strictly asdefine a “trace” as in other applications of noncommutative
sociative, as guaranteed by our cutoff procedure. We wilgeometry, and a further integral over the midpoint with a
suggest that to recover such nonperturbative effects somghost insertion
nonassociativity will need to be introduced in ttefinition

of the inverse of the matrix«y) YT (k) ~ 2 dx& dp4,

Y(x)]= LU LY S 70N

TIA(x)] f Il =55 A (X Pan). (234
50ur normalization ofV(k) and V,(k) are consistent with the

orthonormality conditions of the matric®$, V°. OurVg(k), Vy(k) YT PR v

are related by a factor of2 to thev(k), vo(k) of [25]. TIAT(x)) = | (dxF)e T2 AT(X)], (2.39
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wherevy is the ghost number of the fieldl”. In particular, the  well as in the usual limit. The perturbative string states are
action takes the form represented by some very special field configurationsc In
L . space a string fielg/(xq, X5, ,Xon— 1) in the perturbativeHil-
S:f (d?”)e’i“’z)xﬂ'l'r ZA*(QA)+ —A*A*A| . bert space may be.expanded in terms of a complete set of
2 3 perturbative string f|eldﬂ/(n1,n2, )
(2.36

Here A has ghost number 1/2, the kinetic operato@ has g= 2 M2 )X i iy, (Xe Xo)-
ghost number 1, and the star product has ghost number 3/2 M1onz,-=0 23
due to the insertion in Eq2.10. Therefore the action den- (2.39
sity has ghost numbey=3/2 which explains the midpoint The $(Mn2: - )(x.) are local fields that represent the ex-
ghost insertion in the last integral. cited levels of the string in position spaes functions of the
The choice of the kinetic operata@ corresponds t0 & center of mass mode of the string), while the field con-
choice of a va(_:L_Jum(or D-brane};_ For the open string figurationsy, . )(Xan.X2n-1) represent the string exci-
vacuum(space filling Qs brang, Q is the usual BRST op- tations that are obtained by applying creation operators on

erator Qg constructed from ghosts and Virasoro operators ; 2
Later in this paper we will construct the Virasoro operators in’[he grour_1d §tate f|.ela1/0(x.e,?<o) . eXp@”le“Xﬁ/ZI 5)- Up to
a normalization, this basis is given by

Moyal space and will study some of their properties. Since
the Virasoro algebra is infinite dimensional, we cannot
achieve closure unless we take an infinite number of oscilla- P(n, ny,--)(Xe Xo) ~
tors. Therefore to construct the theory and discuss its gauge

invariance around the perturbative vacuum, we must tak . . .
_ _ _p EIl'he oscillatorses become represented by differential opera-
ke=|€|, ko=|o| andN=co, n

For the conjectured nonperturbative closed string vacuuri®'s forall positive and negative integers(not zerg acting

(no D-branes Q is constructed purely from ghosts. In par- ©" @MY #(Xo.X|2n| X|2n-1])
ticular it is suggested ifiL3] that Q= (1/2i)[c(i)—c(—i)] is 1
the fermionic ghost at the midpoint. This version of the (X|ap| )= \ﬁ
theory is called vacuum string field theotySFT). In this 2
caseQ satisfies the usual properties of an exterior derivative . . . .
without recourse to the Virasoro algebra. Then our actionWhereKW is the oscn_lator fre_zquencys_ s the strmg length
which formally looks like a Chern-Simons action, is gaugescale’ and(n) =n/|n| is the sign function. Fon=0, instead
invariant under the gauge transformation of an oscillator we have a derivative

i];ll(a—i)”i)él/o(xe,xo)- (2.39

) $(x) (2.40

mx +1 e(n)i
ls ™ 7s IX|n|

B B . IP(X)
OA=0A+A*A—A*A (2.37 <X|ao|l//>=—l|s(9—xo- (241
for any number of oscillatorsNe and any frequencieg,, ) . ) . .
K. Of course, the gauge invariance requires an associativenese differential operators satisfy the standard string oscil-
star product. The setup of our theory guarantees associativitflor commutation relations when acting gn
rigorously at anyfinite N R wv
We will see that the sliver state introduces a singularity at [an s an]= e(n) knnem7™”. (242

infinite N This is directly related to the zero eigenvalue of T : :
; ) - In Eqg. (2.39 f licity of notat h tted th
the infinite matrix o) *°T(x,) ~ > we discussed in the pre- n Eq. (2.39 for simplicity of notation we have omitied the

ceding section. In order to obtain closed strings in VSFT, ancfpacgt'me indices ?{:‘ tnh@/ili )and th(_a corresponding space-
have nontrivial physical results, an associativity anomalylime indices on they™"+"2 -/, but it is well understood that
needs to be introduced through tHefinition of the inverse they should be included since they repr_esentotge spin of the
of this infinite matrix[24]. Inevitably, this implies less gauge fi€ld. For example, when alt;=0, the field ‘,f’( ’ "")_(XO)
invariance which is introduced in a rather subtle way. VSFT=t(Xo) is the tachyon field with no spin, while the first ex-

is not well defined until the singularity is universally defined Citation a”;g(X2n,X2n-1) is associated with the vector
and the gauge invariance principle understood. To studfield (¢ Xxo)) ,=A,(Xo) with spin 1.

these issues we will proceed with full gauge invariance at In the Moyal basis we have the corresponding expansion
finite N and examine its conclusions. By doing so, we iden-in terms of a complete set of perturbative string fields

tify the source of the possible associativity anomaly in this

paper but leave its resolution to later work. /'\(;,in Pon) = 2 ¢("1’”2"“)(Xo)/-\(n N
ny.ng,- =0 e
E. Perturbative vacuum and basis in Moyal formalism X (X s Pan) (2.43
n» n/» .

We now establish several concrete maps between the
usual formulation and the Moyal formulation. These will be With the same set of local fields"1-"2:*)(xo). But nowx,
useful to compare the Moyal formalism to others. We keep irhas to be rewritten in terms of and x,, as in Eq.(2.3
mind that the statements we make hold at &gy «,,N as  before applying the Moyal products as described following
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Eq. (2.10. The complete S, n,, (X2n,P2n) is related
to the complete Sedn, n,, .. )(X2n,X2n-1) Via the Fourier
transform in Eq.(2.2). It will be sufficient to construct the
ground state in the Moyal basi&sy(X,,,p2n) Since all ex-
cited states will be obtained by applying oscillators in
Moyal space which will be defined below.

The ground state field for the string is independenkpf

or;(except for the ghost part which contributes only in the
selection rul¢ and is given by
) d/4]

K2n

212

Kon K2n-1

I1

n=1 (

2
oz o
Kan-1

— 5 Xon—-1"Xon-1] |-
212

ho(X)=

2
alg

>

n=1

— > Xon" Xon

+

(2.44)

As seen from Eq(2.40 it is annihilated by the positive
oscillators (x| a,| o) =0 for n=1,2, . ... Thestate is nor-
malized so that

|

d
]._.[ H d X2nd X2n 1

n=1 u=0

)|l//o (X2n Xan—1)|*= 1.
(2.49

The ground state field in the Moyal basis is obtained through

the Fourier transform ofy, as in Eq.(2.2), with the result

oo

Zzn 2mP2n* pZm) )

2 KZnX X
2n° A2n
n=1 2|§

n

S

Kon—1

Ao= H
n=1

212
92

- 2>

n,m=1

(2.49

where the matriXZ is given explicitly by

1
Zzn,zm:kz1 Ton2k-1 o Tomo—1- (2.47

In the infinite cutoff limit we havdi.e. using Eqs(2.23-
(2.26]

1
5 n

1)m+n+l

(_
72(n2—m?)
1

-2

2

1)
l/l(§+n +i

||m Zzn,zm:

N— oo

— (2.48

4(_1)m+n+1
- mA(n?-m?)

s

m

1
r=1 2r_1

(2.49
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1 1
1 -
9 15

1 5 1

4]l 9 9 =5

2

m 1 1 7x37
15 25 3352

(2.50

wherey(z)=1"(z)/T'(z) is the digamma function.
The norm ofAq(X,n,P2n) IS determined through its rela-
tion to ¢ in Eq. (2.2) and is given by

p2n

HH

n=1 u=0

[2=1.

— - |Ao(Xzn,P2n) (2.51

Note that this measure is consistent with E&s2),(2.45 as
well as Eq.(2.34). In computing this norm we needed to use

I

n=1 (K2n)2

Kon—1

I1

n=1 Kan-1

de(2) =de(?T)( (2.52

where the right-hand side is unambiguously computed by
using the relation Eq2.27).

In summary, the normalized vacuum field in Moyal space
is given by

Ag=Noe Mot Tr(Ag*Ag)=1,

e 2250

with M, defined in Egs.(2.8. Note that Tr@g*Ap)
=Tr(A§)=1 because the Moyal star product between two
factors can be removed under integration. Here we have de-
fined the norm\j,, and the matrix K,);; sandwiched be-
tween theg!* whose basis is given in Eq&.6) This form, or
Eq.(2.46), is valid for either the cutoff or the infinite version
of the theory.

It is useful to record at this juncture some of the technical
properties of the matrix

(2.53
det(16k,)

detx,

(2.59

which will come up in the course of computing several quan-
tities in later sections, including the wedge field¥g(x,p) or
sliver field E(x,p) as functions of the vacuum field,. The
inverse ofl" is given by

I'=Zke=Tk, Tke=Tr,Rr;*

Y =k, 'RkR= kT, 'R. (2.59
Using Eq.(2.27 we compute its determinant
detl' =[de(T)]? detre _ derT= ——— (2.56
detx, Ji+ww
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Furthermore, using Eq$2.15—(2.18 we compute

ww

IT =Tk, TkiTky 'T=TkoRTk, ' T=TT=1- ——
1+ww
(2.57
and
TT=keT, ATT)ky Tke
=keTky (1—vv)k, Tke=1-uUu  (2.59

PHYSICAL REVIEW D 66, 066003 (2002

ww

UEKeTK;1U=FW, uu=pp=——-,
1+ww
(2.59

Fu=w(1+ww) L.

We see that'u approaches 0 ad—x, sou is a vector that
tends to become the zero modelbin the largeN limit.

A numerical estimate of the eigenvalueslofcan be ob-
tained by using the numerical matr& given in Eq.(2.50
and then using naive level truncatigthis is less accurate
than using the exact cutoff version ©f. Numerical compu-
tations show that almost all of the eigenvalueslofire 1
except for a very small number of them which deviate from
1. For example foN=50, within 1% error, 46 eigenvalues
are 1.00, and the last four eigenvalues are 0.99272, 0.95752,
0.79796, 0.35755. Thus, the 50 eigenvalueE afe approxi-

where we have defined and used its properties as follows: mately

eigen(I")~{(1.00, ... ,1.00,(0.99,(0.96,(0.80,(0.36}.

The approach to a zero eigenvaluevas— 2N— is ex-

(2.60

+w?) "2 Also, for an infinite number of modes, writing

pected since a zero mode was already identified in the large(k) =tanh(mk/4), we see its compatibility with the numeri-
N limit, but it is interesting that this zero eigenvalue seems tocal computation in Eq(2.60.
be almost isolated in the numerical estimates. To see this

analytically we can brintho block diagonal form by or-
thogonal transformations that map the vectarsu to point

in a single directiol v_v=(0, cen ,Ow)§e and u
=[0,...,0w(1+w?) ¥2S.. Then consistently with Egs.
(2.57),(2.58 we derive

y 0
T=s{ , 1 |S. »=yr=1 (260
V1+w?

where the N—1)X (N—1) block y is orthogonal. Given the

numerical estimates in E¢2.60 we see that the eigenvalue
that tends to zero at largd is indeed isolated, and that we
may takey=1 since it can be absorbed into a redefinition of

S.orS;.

F. Oscillators as differential operators in Moyal space

By taking the Fourier transform of the oscillators expres-
sions given in Egs(2.40,(2.41) we construct the oscillators
as differential operatorg,, B, 85 (or B5, BR) acting on
any fieldA(x,X¢|,pj¢)) In Moyal space. The notation we are
using in this section is as followse indicates positive or
negative even numbers excluding zeooindicates positive
or negative odd numbers. The result of the Fourier transform
is also obtained directly by using the properties of the oscil-

lator state(X,Xe,Pel

We also compare this result to the basis that diagonalizes

kT Y2 as defined in Eq.(2.29. We see thatl’
= KeTKng: Kilz KélzTKgllz)(K(;llz?Ké/Z) Kgl/z takes the
form

= (xe) V(1) ?Vo(ie) V2

0% 0
=S, 0 1 S,. (2.62
V1+w?

This provides the relation between the eigenvaltesnd the
eigenvalues ofl". In particular, we see that (def’=(1

— _0A

<X1Xeape|a0|‘//>EIBOA:_”s_— (2.63
IX

(X,Xe ,Pel atel )= BEA= (BE—TW/Bo)A (2.64

(X,Xe Pl ao|w>z,88A=e§O (BEAU 0. (2.65

Note that we have distinguished in our notation betwggn
versusgy, and 8P versusgl, where

—_ \f( Kel | J
Be= N5 rx\eﬁ sf(e)y‘e‘ :

(2.69
__\F( Ok 0 2l )
Be=I > Tsm-f—?G(E)pﬁel .
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The 8%, B° commute with each other and satisfy oscillator
commutation rules among themselves

[B%.851=0, (2.70
while B, commutes with allg}, BP.

The 2NX2N matrix U plays the role of a Bogoliubov
transformation(a linear combination of positive and negative
frequency oscillatojsand produces odd oscillators from the
even ones, and vice versa. It satisfies the following relations

[EEaEE!]:s(e)K|e|5e+e’ )

[BR. B2 1=6(€) ke Beser (2.67)

[8%.B%1=0.

The extra shift with w,=e(e)wjq/V2 in Eq. (2.64 does
not change the commutation relations singg commutes
with B%.

The matrixU and its inversdJ ~*, with matrix elements
U co, (U1 _oe, are given by

! ! ! !

Wel oKq . _ Wev
v (U ) ge=—

e

! !
oKe

U_eo= , (268

! !

’
Ke K Ko

where we have extended the definition of the quantities

We,Uq,Ke, Ko 10 both positive and negative valueseb as
follows:

_ €(0)v |,

5

ke=&(€)K|q|,

_ E(E)W‘e‘

5

ko=8(0) K|,

!
vO

!
e

(2.69

such that(after the sum over_both positive and negative in-

tegers v'v' =vo andw’w’ =ww. After the transformation
with the matrixU _ , one can verify easily thatdy, 8%, 85)

are differential operators that satisfy the oscillator commuta

tion rules that are in one to one correspondence with those
ay given in Eq.(2.42

[Bé’lg:r]zs(e)"|e|5e+e’ )

[B5.Bo1=e(0) Ko S0+ 0 »

"We have taken into account thatdxe , as part ofa, acts on
(X0, Xl 1X|o|) at fixed ¥ whereasd/dxe, as part of B acts on
A(X,X|¢ 1 Pje)) atfixed x The latter is required for compatibility with
the definition ofd/dxe that appears in the Moyal star product in
Eq. (2.10. This difference in the definition af/dx|¢ is taken into
account by replacingO:;+2‘e|>ow‘e|x‘e| in ¢ and also replacing
(9!///(9X‘9|—>(91///!9X‘e|—(!9X0/(9X‘e|)((9l///(9;) before taking the Fourier
transform. This is the reason for the shift2n)(we/+/2)8, that
appears as the difference betweghand 5. It should be noted
that 85 commutes with any function ofp=x+ SWigX|¢| @S @ coNn-
sequence of this Structufgf (x+ SwizeX|e) = f(X+ SWieX|e) B
this is analogous ta, commuting with any function ok,.

8An intermediate step in deriving E¢2.65 from Fourier trans-
forms is the formU,e,O:[%(KM [ Ko) + %e(e)e(o)]T|e‘,|0|. After
inserting the expression g o, R,/ ¢ IN EQs.(2.19, the sim-
pler form of U andU ~* follow.

which follow from those of theN X N matricesT,R,v,w in
Egs.(2.19—(2.29°

U l=«k."'Uk., U '=U+v'W,
. o (2.71)
v'=Uw, w=U Y,
uuTl=1, U lu=1, U luUTl=1+w'w,
o . (2.72
uu=1-v'v’,
— w'w’ w’
uu=1- — , v'= —,
1+w'w’ 1+w'w’
- 2.73
— w'w’
v’y =——,
1+w'w’
U lw'=v'(1+w'w’),
(2.74

U lu l=1-0"v'(1+w'w’),

whereU is the transpose dfl.
In the largeN limit, after using Egs.(2.23—(2.26), the

infinite matrix element) ¢, U5, ke, K5, 05, Wo get
%ﬁmpllﬁed to the form
io—e—1 i0—e—1
U :EI u-? :EEI w.=jet2
&% 7 o—e’ % 70 o—e ' ® ’
(2.79
jo—1
/_EI r_ r_
Vo= 0’ Ke=€, K,=0

wherei=+/—1. The relationg2.71)—(2.74 can be verified
explicitly in the infinite cutoff limit by using the following

identities that are valid only for integefsecall thatU _ , or
1

U_; e do not includee=0):
” 1 1 1 e
2 =o—0m+on
k==x 2m+2k—1 2k—1 2n—2k+1 8m

(2.79

9Instead of deriving these relations from thoseToR,v,w, it is
also possible to consider EqR.71) as the primary defining rela-
tions forU,U~1,u/ ,w, which determindJ,U~! as in Eqs(2.69
and givew’,v’ as the solutions ofc;'=2.o(W.)?(kL— kL),
ke '=3o(v))?(ks— Kl for any k},« . The rest of the relations in
Eqgs.(2.72—(2.74 and those ofl,R,v,w follow from them.
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i 1 is not necessarily shared by the cutoff versionlgfand it
—(2K)5— leads to the derivation of additional properties for the infinite
k= 2mH2k=1""72n = 2k+1 U, such adJ o e e =U_ et and
™ 2n+1)s 2.79
=——(04n 2m+2n . B
4 ; Ue’gU,oJreu’er:6e+er+en, (28@
- 1 1 w2
= 2m+2k—12n-2k+1 4 Sam-+2n which follows fromU~1U=1. This relation holds for any
(2.79  shifte” in the infinite theory, but is only true f@” =0 in the
cutoff theory.
* 1 We now analyze the action of the oscillators on the
> mMIok—1 0, vacuum state. By construction, the vacuum fidlgdefined
k=—w in the previous section should be annihilated by the positive
o 1)k (2.79 frequency oscillator@/, , B[, . It is instructive to verify this
2ﬁ$+2|1 1= ;(_ 1)m property directly by using the explick, given in Eq.(2.46
k== -

" . 1 K|e| Jd
The conditional convergence of these sums cause anomalies BXAo(Xje) 1Pje)) = \/;(_Xe+|sé(e)_ Ay+0

in multiple sums if a cutoff is not present. For example, if ls IX|e|

w’'w’ = is first set in relation$2.71)—(2.74), and then one (28D
computes U Uy’ one finds two different answers:

(U tU)v' =0’ versusU~}(Uv’)=0. This is the source of \/IK|e|

many associativity anomalies in string field theory as dis- - §fx\e\[1_5(e)]A0:0

cussed in[24]. For this reason one must proceed carefully
with a cutoff N, and take the larg®l limit only at the very
end of a calculation to obtain unique and unambiguous an-
swers.

Note that in the infinite cutoff limit) _, , is a function of ~ We see that the shift in E¢2.64) plays no role here because
only the sum of its arguments. This is a useful property tha#\, is independent ok, or x. Similarly we have

if and only if e>0. (2.82

BEA(X(e] . Pje)) =e§0 (BRA)U e (2.83

. 1 Okje 0 2l

_|eZO E(Tsm+76(e)pe AOU,e’O (2.84
N 1) Oxg 412 2l

—le;) E(_Tsﬁ(pz)ﬁ?f(e)p'e' AoU e (2.89

- 121
=iV575 A2 [~ (PDjeixje T e()Plg]U e (2.86
e#0
.12 . .
=—i\/5=| 2 PeTel |[1—€(0)]A;=0 ifand onlyif 0>0 (2.87)
2 6 \&o '

where Eq(2.87) was computed by rewriting the sum only over positive integers, and using the relsfidetweenJ andT,
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_ 2 Zeoker(Ug ot U_gr o) <;’Xe’pe| ao|¢>:BO*A_A*:8—o (2.97)
M ’
eZO Pe e=0 (288 where B, is the Bogoliubov transform o8,
+8(e)(U—e,o_ Ue,o)
BO:;O IBeU—e,o- (2-98
=2 Pt| 2 ~ZeeRijerkot Teje(0) | (2:89
'>0 .
¢ B, does not star commute witB,,
——[1— w 1
[1 6(0)]e§>:0 peTe,\o| ' (2.90 [B-e:Bol« :E nﬂvs(e)K\e\Ufe,o (2.99

To prove the last line we have used the definitionZgf,,  but g, satisfies the star commutator of oscillators with the
given in Eq.(2.47 and appliedRT=1. These properties of g frequencies

the vacuum fieldA, hold both in the cutoff and the infinite
theory. The perturbative string states can now be constructed P v
by applying the oscillatorg™ ¢, 87, on the perturbative (85 Bor L 27 £(0)KoB0+0 - (2.100
vacuumA, of Eq. (2.53.
This is verified by using Eq(2.92 and the properties df
G. Oscillators as fields in Moyal space given in Eq.(2.71) below. Note again the factor gf com-
. pared to Eq(2.70. It is also possible to display the proper-
Instead of differential operatorgg, 8¢ or 85, it is pos- ties of 8, by performing the transformation to the odd phase

sible to construct the oscillators in terms of star productspace!' # which we give here without proof,

among fields in Moyal space. To this end we defefor

e#0 as a function ok ¢ ,pj¢ in Moyal space 1/« il
BOZ‘;O > %X\eﬁ_ fé(e)p|e| U_¢o (2.100
1/ k il s
Be= \ﬁ xgt —See)py]. (2,92
2\ 2l 0 5 \F( Ko il
-5 VY g tecomy).
These are functions in phase space, not differential operators. 0 2\ 2 S (0)Pro (2102
For By we have a differential operat@,= —il s, as before.

Under the Moyal star product obeyed by fields they satisfy We have seen that the only fundamental oscillators in

1 MSFT are the oscillators in Moyal space, either B of
[BE . Belx =5 1""e(@)K|g|Ferer (292  Eq.(2.9)) or theB, of Egs.(2.98), (2.102. Either set may be
considered as a special set of string fields.

while 8, commutes with all others. Note the factor &f _ o _
compared to Eq(2.70. These can be star multiplied on ei- H. Differential Virasoro operators in Moyal space

ucts are evaluated by using explicitly the Moyal product wecqrrespondence we have established betweerxtiaed 3
find the following two combinations that act like differential ygcijlators. We find

operator representations of oscillators acting onlyxgnor

only onpjy dependence (Xe P LE ) =LEA,  (XXe,PelLS| 1) =LEA
— (2.103
Bex A+A*B_.=BIA, (2.93
where we have the differential operatqsum overe’ in-
BerA—A*B_o=BEA, (2.94  Cludese’=0)
. . — = . . 1 1
where the differential operatorgg,5¢ are given in Eq. L§=§2 :,B’ie,~ﬁ’ef+e,:+52 B Bh
(2.66). This implies that we can construct the effect of all e o’

oscillators o, for n#0 in terms of only star products by (2.109

substituting the differential operatof__ﬁA, BPA everywhere
by the star product expressions given above. In terms of L§=z :Bg_e,ﬂz, L (2.105
them we can write e’

The normal ordering of the differential operator is the same

(X Xe ,Pel ol ) = BoA= il sGxA (2.99 as thea oscillators. Then it is evident that the positive ones
_ , annihilate the vacuum fieldA, that satisfies Eqgs.
(X,Xe ,Pe| e ) = (Bex A+ Ax B_¢) —iW ¢ BoA (296  (2.81),(2.83. These Virasoro operators obviously satisfy the
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Virasoro algebra since thg}, 8- have identical commuta- A related anomaly occurs in the commutation rules if the

tion relations to thea,, «,, respectively. Closure of the L are expressed in terms of only the eyghoscillators. To
Virasoro algebra is possible only when the cutdfis sentto  see this, we apply the Bogoliubov transformatidrio Egs.
infinity. *° (2.104,(2.105 to obtairt*

We now introduce the cutoff to study certain issues re-
lated to anomalies. In particular the cutoff version of the
Virasoro operatot_g which determines the spectrum of the L'g(N):
cutoff theory is

N| -

2N
(% X P L .
/EZN {Ber Berer T Bler Berer):
o' =——

. 2N 2
i€ —_ —
2N 2N—-1 _ _ 2 W /(Bpf+Bp /)
LEN)=B3+ 3, Bre BSt 2 BPo- Y. (2108 2(L+ww) | o o e
e= o=
(2.108
The spectrum of this operator is the same as the one de- N
scribed in the preceding section, which is obtained by apply- BNy 2 — X
ing even and odd creation operators on the vacuum sigte LO(N)_e, o U—er0-erBer Ber - (2.109
in the cutoff theory. The oscillator frequencies, , x|y in T
Eq. (2.70 determine the spectrum, as usual. As usual, closure of the Virasoro algebra is not possible un-

Next, by using the R 2N Bogoliubov transformatiot)  jessN— . At infinite N the second term i%(N) is for-

we can express the odg} in terms of the evergg. After  mally zero. Using only the first term ib%(N) at infinite N,
using Eq.(2.73) the Virasoro operatok, takes the form we find that closure works in the commutatéts,,L.] and
[Lo,Lo] but it does not work in the commutatplt.,L,].
. Again this is an anomaly because closure was guaranteed
L5(N) =85+ 22 (B e Bt B2 e BY) before the Bogoliubov transformation was applied. The
&~ subtle point involves the second term in E8.108 which is
1 2N 2 formally zero. In fact, some of its commutators yield finite
- —_< > We(BR+ ﬂ‘ie)) , results if first the commutator is evaluated and then the large
(1+ww) \e>0 N limit is applied. Indeed, if the largdl limit is taken after
(2.107  all commutators are performed, then all commutators of the
Virasoro algebra close correctly. We emphasize again that the

where only even oscillators with only even frequencigs ~ Closure of the algebra was evident from the beginning by
using the version withg?. The lesson learned is that it is

appear. Note that there is no zero mq_ﬁgesince it does not .

L . S important to use the cutoff theory.
exist in the formalism and therefore it is taken as zero. For-
mally the second term vanishes when the cutoff is removed

sinceww— o in the infinite mode limit. It would appear then
that the spectrum is different than the original theory since Next we would like to point out a fundamental structure
now only ¢ appears in the spectrum without any informa- for the Virasoro fields in Moyal space, and in this process
tion of the x,. This is an anomaly related to the other build a new representation of the Virasoro algebra. We will
anomalous cases that we discussed before. To understand gee that the Virasoro fields can be star multiplied either on
problem let us focus on the second term which plays dhe left side or the right side of an arbitrary fieddn Moyal
subtle role. First, in its absence, a false perturbative vacuurspace. These generate independent left or right Virasoro
state would be given by a function proportional to transformations. A special combination of the left and right
exd —(1/2 §)K|e|xfe‘—(2|§/ 92K\e\)P\2e\] as assumed if25].  star products generate the usual differential form of the Vi-
This cannot be the correct perturbative vacuum since wéasoro operators that we discussed in the preceding section.
have already determined that it is given by the figjdof Eq. First we define the following Virasoro field§, and £,
(2.46 which is different. Indeed, due to the presence of thethat are functions oXje|,pje|

second term in Eq2.107 the false vacuum is not an eigen-

function of theLg(N) of Eq. (2.107. The correct vacuum ﬁeZE B-o Besor (2.110
state is theAy at any value of the cutoff, as is evident from o'

the Bogoliubov transformet5(N) in Eq. (2.106.

2N

I. Virasoro fields in Moyal space

Ustrictly speaking these expressions are validNate because
9n a mathematically rigorous sense, the closure is subtle even ishifted formulas, such as E(.80 which are needed for this deri-
the largeN limit. A sample computation ofL,,L_,]—2nL, re- vation, are valid only aN=«. So, we will be a bit sloppy in the
veals that there is roughly speakingterms located neap. following argument because we have introduced the cutbfh
whose coefficients diverge &— . In this sense, we may at most Egs.(2.108 after the Bogoliubov transformatidiby contrast Eq.
have the convergence of the operator algebra only in the weak2.107 is rigorous because the unshifted formulas are valid at any
topology. NJ.

066003-13



ITZHAK BARS AND YUTAKA MATSUO PHYSICAL REVIEW D 66, 066003 (2002

[LE LEIA=LE(LEA)—(ee) (2.118

Lo= 2 Uo+or,0'B-0r B0 - (2111
0,,0”
=[Ler (LG +(LGA) L]~ (e—e).

Note the factor of 1/2 is absent compared to E9104. We (2.119

chose to use the odd Moyal oscillat@#s of Eq. (2.98 as the

building blocks of all the Virasoro field€.,£,. These can . . 8 . . .
be rewritten in terms of the8, by using Eq.(2.93 or its After insertingL¢, A again from Eq.(2.112 this expression

inverse. However, to avoid anomalies of the type discusseffduces to star commutators of the Moyal fields that can be
in Egs. (2.107,(2.108 the use of theB, as the building €valuated through Eq2.113
blocks are more convenient. Evidently, the Virasoro algebra

can close only in the infinite cutoff limit. [Lg,Lfr]A=[£e,Eer]**A+A*[£,er Lo ely (2.120
TheseL., L, are fields in Moyal space, not differential

operators. No normal ordering is needed in Moyal space. a

When we evaluate their star products with any field =(e—€')Leser*A+ 5e+e,§eA (2.12)1

A(X,X|¢|,Pje)) in the following combinations, they produce

the Virasoro differential operators?A, LAA that we dis- .

cussed in the preceding secttén (e T )AL o ot S w ;el A
L&y LEA=LHA+AL_, (2.112 (2.122
Lot LEA=Lo*A—Ax L. (2.113 =(e—e)LP, LA+ 8e.0aA. (2.123

This reproduces the correct closure and anomaly for the dif-
ferential Lg consistently with the closure of, and their
half-anomaly as above. The consistency of the other commu-
tators[LZ L% A, [LZ,LE]A can be verified in the same
way.

We have seen that the fundamental Virasoro operation
consists of independent left and right star products involving
the Virasoro fieldsCe,L,. Therefore, let us consider finite

By using the properties o) and the fundamental star
commutatof B, , B¢ 1« =(0/2) 5,1 (note the 1/2it can be
shown that the Virasoro field§,, £, satisfy the following
star commutation rules with the oscillator fiel@s, B,:

[Le.Bols=—0Bcior [LeiBerls=—€"Beser,

[L£o:Bor]x=—0"Bo 10, [Lo,Bels="€Bcto-

(2.114 left or right transformations in the form
From these we can show that the Virasoro fields satisfy the A—u*A*u,, (2.124
Virasoro algebra under star commutators
a. ur=exp, (ief, Letiel, Lo). (2.1259
[Le Lo ]ly=(e—€")Leio+ Sere > (2.115
Due to Eqs(2.115—(2.117 these close to form two Virasoro
groups, one on the left side, the other on the right side. To
a, ! . ; :
[Lo,Lo]le=(0—0")Loso+80so =, (2.116 obtain the usual Virasoro transformations consistently with
2 Egs.(2.112,(2.113 we need to take the subgroup generated
by ef=¢; ande/=—¢/ in the form
[Lo,Lelx=(0—€)Lose. (2.117

. ) ie€Lo+icL ie®L.—i0L,
The anomalies are half of the usual anomatgsa, that A— gl Te e Fox Ax gl Fe Tl o, (2.126

appear for the differential operatdr§ ,Lf. Indeed using the
algebra that we have just obtained we can then show it§0 far the parameters®° are complex. IfA(x,p) is a real
consistency with the usual Virasoro algebra obeyed by thétring field we must also require that both sides of this equa-
differential operators. For example, using the correspondendéon are Hermitian, usingA'=A, £1=£_,. Then the al-
in Eg. (2.112 we replace the differential operators with lowed Virasoro transformation on real fields is restricted to
Moyal star products complex parameters that satisfy*{* = —¢ € and (°)* =
+e7°
Note that we have used onBf; as the fundamental struc-

12Here, for simplicity, we have suppressed the shift proportionalture and yet we built botlf, and £, . This uses half as many
to —iw, B, that appeared in E¢2.96). Therefore, strictly speaking oscillators as the standard representation of the Virasoro al-
the formulas forl,, L, are valid for fields independent of the gebra, and therefore it is a new representation. Also, it seems

midpoint; However, it is straightforward to generalizg, £, by
including B, to obtain the fuIILg, L? of the previous section.

to be the first representation of the Virasoro algebra in the
context of noncommutative field theory.
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[1l. MONOID ALGEBRA IN NONCOMMUTATIVE etc. So, we wish to include in our set all possible complex
GEOMETRY M’s since there are such string field configurations that are

. . - relevant. Whenever we compute traces of Gaussians we will
In this section we will introduce an algebra among a sub-

set of string fields that form a monoid. The mathematical'>< Eq.(3.2) under the assumption that it is well defined.

structure of the monoid becomes a tool for performing com-, The motivation for considering such Gaussians comes
. ; o P 9 from examining the perturbative and nonperturbative sectors
putations in string field theory.

of the theory. We have seen that the vacuum stgtef Eq.
(2.53 is of the form of Eq.(3.1) with a specialM,. All
perturbative states have the form of polynomials that multi-

We start from the phase space Wfeven modes of a ply the Gaussiai,. Such polynomials can be obtained by
bosonic string &=(x4 x4, ....p5,p4,...) with x  differentiating a generating function of the forAy.\ ,(£)
=1, ... d denoting the number of dimensions. Eventually with respect to the parameters Nonperturbative states such
we will sendN to infinity, but at first all structures are de- as the sliver and many other nonperturbative vacua are rep-
fined at finiteN. The commutators betweet,,p,, under  resented by fields of the fori.y \(£). Furthermore, the
the Moyal star product define noncommutative coordinatedirasoro group that we identified in the preceding section
in 2Nd dimensions as in Eq2.13 [£*,£/], = *"ay; . also has the same structure.

By a linear coordinate redefinition one may simplify any  More generally, any field\(x,X.,pe) can be written as a
general skew symmetrig to the canonical form given in Eq. superposition of Gaussians of the foff1). This is seen by
(2.13. Therefore, unless we specify otherwise, our generajyriting A(X,Xe,Pe) =(X,Xe,Pe ) Where (X,Xq,pe| is the
formulas below are written for the genefatkew symmetric  state of Eq(2.5). In the coherent state basis where the oscil-
purely imaginaryo. The Moyal star product is then the one |ators o are diagonal, we see from E¢.5) this becomes a
given by Eq.(2.14). For the sake of simplicity of presenta- superposition of shifted Gaussians
tion we will suppress the spacetime indexbut will always
assume its presence, and will take it into account in all com-
putations. Similarly, we will suppress the midpoint insertion
and establish it in computations when needed. This product o
defines a commutative ring of functiond on RZN% The  where ¢(x,\) includes the measure of integration and nor-
integration of functions in phase space is interpreted as thgajization. Thus we see that the structukée Moé— &

trace of the algebral, as in Eq.(2.34. . _whereM,, of Egs.(2.8) appears, is a generating function for
In many computations a certain class of functions will computations involving any set of perturbative string fields.
play a primary role. These are generating functions that are For purely perturbative computations it is sufficient to
' i ' = — Fax’ : . M BN e 4
Gaussians with shifts of the formh=Nexd — 7, (x“ax consider the restricted Sét_/\/,MO,)\:NeigMogia\ with dif-

+XMbp’+ pHeTX + phext) — (XN +p“AP)]. In brief notation, _ . .
il prox) = (N, )] ferent\’s but a fixedM. But to consider nonperturbative

we write sectors which correspond to D-brane lumps described by
Ay n= Ne—EMg—EA (3.1) _Gaussians with differenl’s, and to _com_pute correlators that
o involve several [-brane sectors with differeqt’'s, we need
whereM; is a 2NX 2N symmetric constant matrin* is a  to consider generating functioms,;y ,(£) with all possible
2N-component constant spacetime vector, AAis an over- M, \, V.
all normalization. The normalization may be related to the It must also be mentioned that there is a one-to-one cor-
trace respondence between the Gaussi@b in Moyal space and
_ coherent states built on a vacuum of squeezed states in the
NeWmm—i oscillator formalism. Squeezed states in the oscillator for-
m- (3.2 malism of [31] are defined by_exp(%aTSaT)|O). In the x
representation they are given by Gaussiangx)
exp(—xLx) where

A. Generating functions

A(X,Xe,Pe) = f (dh)e Moty (3.9

Tr(Ayma) =

The trace is computed under the assumption that the phase
space integral in Eq2.34) converges, which implies a posi- 1
tive definite matrixM. We will also be interested in more L=—
general compleM for which the integral is not necessarily 2I§
well defined. For example, the identity field has infinite

trace, the Virasoro transformation of Eq2.125 does not  With x=diag(,). By applying the Fourier transform of Eq.
have a well defined trace because of tha the exponent, (2.2 on this form one obtains a Gaussian-exp(-&M¢)

1-8 Le £
&1+5 "Z(Z LO)

with
Our formulas are easily further generalized to ahythat is not Le—4L(Ly) "L —L(Ly) 1T
necessarily of the forna'" »*”. Although we do not discuss this in 0
detail in this paper, such configurations are relevant for strings in M= 4i 4]2 . (3.4
B, backgrounds. For this generalization we use(ix) and re- —T(Lo)flf _ZST(LO)*I?
place everywhere formally'! by ¢ and substitutel—1. 0 0
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We see that the general symmetkicis related to a general m;,=(m;+m,m;)(1+m,m,) !
symmetricL or equivalently to a general symmet&cIf the

matrix Sis block diagonal in the even/odd mode space, one +(My—mymy)(1+mym,) 7, (3.11
obtains£=0, which simplifies these relations to the form .
N1p=(1—=mg)(1+mymy) A,
:(Se 0 oM +(1+my)(1+mymy) I, (3.12
0o S,
NV
1 1p1=Se 1 12~ —=2
— 0 det( 1+ m,m;)%?

2|§Ke 1+S.°¢ e B
= 212 LS, : ¢ @I+ N oMy + M) LAy +X5) =N yp0(my) " Thgg)
?TKO 1——80K0 (313)
(3.5  One can show
Similarly, the generating functiomMM,A=Ne‘EM§‘5 de(m; +m,) = detmy.det1+m,m,), (3.14
with nonzero\ is related to a shifted squeezed state expynq
(—2a'sa’ha')|p), with momentump*. Then, for block

?Ziasgczga;)s, the vectors\ andh,p are related by using Egs. (N +N2)a(My+my) “HN +No) = N oo (M) "IN,
B . =Na0Kap\p (3.15
T\/K—e —1+Seh§—ip“we where
NH= . (3.6 _ 7 _
242l S T, 12 1 i Ky=(my ' +my)~h  Kp=(1+mmy -t  (3.16
6 &So 00 1-§,° -1 -1y-1
K== (1+mumy) ™7, Kyp=(my+my 5"~ (3.17)
B. Monoid Other useful forms ofny,,\ 15, are included in the Ap-
In the following, we will focus on the shifted Gaussian- pendix A. S S
type generating functions of Eq3.1). Generally we will If we ignore the midpoint insertion, the identity elemént

allow M;; ,\; A to be complex numbers. Applying the star discussed in Eq(2.33 can be thought of as an element of
product on any two Gaussians closes into a third Gaussian ¢fi¢ monoid withA’=1, M=0, A=0, sinceA; ;=1 is the
the same form(suppressing the midpoint insertjon natural number one. Indeed inserting these values in the for-
mulas above we verify thak; o o=1 is the identity element
(N8~ M= Eayx (N e~ M2t = o) = N/ e EM12~ Ehap in the monoid. Furthermore, using the formulas above we see
(3.7)  thatfor a generié\y;\ ) there is an inversAy i x under the

star product *Agmi=1=Axm3*A , Where
Therefore these elements form a closed algebra under the. " Anm* AR X N.MAZNM

Moyal star multiplication, 5 . m+1
M = - M y A= m)\,
AN My AN M0, T AN My (3.8
The quantitiesV;,,M 15\ 1, were computed ifi6], and those N= i[de(l— mz)]dlzefvm(lfmz)’zx_ (3.18
details are included in the Appendix. It is convenient to de- N
fine

Evidently, the inverse does not exist whenr has eigenval-
m=M,o, My=M,o, mMy=M 0, (3.9 ues 1. In particular, the vacuum fielg) of_ Eqg. (2.53, which

is an element of the monoid, has an inverse. We note that
where o is the antisymmetric noncommutativity matrix When the inverse exists, it is not normalizable undewf)(
given Eq.(2.13. Actually our formulas below hold for any sinceM=—M is negative definite wheM is positive defi-
general noncommutativity matrix. Note that symmetric nite; however, this does not prevent us from using the prop-
matrices M;,M,,M;, imply that under transposition the erties of the monoid under star products.

m; ,m;, satisfy Thus, the algebra generated by the set of functigs;
- - has the following properties:
m=—omo %, mp=—ompo L (3.10 (i) The algebra is closed under star products.

(i) The product is associative.
Then the result fom,,\ 15,7, given in the Appendix A is (ii ) It has an identity given by the number(&uppressing
written more simply in the form the midpoint insertion ir).
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(iv) While the generic element has an inverse, not everghe left or right, form an infinite dimensional subgroup of
element has an inverse. exactly this type. As far as we know these types of structures
The structure is almost a group, but not quite because ndtave not been investigated in the mathematical literature or
every element in the set has an inverse. This kind of algein the context of noncommutative geometry.
braic structure is called anitary semigroumr monoidin the
mathematical literature. In our case we have a monoid with v COMPUTATIONS IN MSET USING THE MONOID
special properties which we identify as a fundamental alge-
bra in open string field theory. The general formulas above
give the structure of the monoid. They will form the basis for  From Eq.(3.7) we see that thath star power of a gener-
all the computations we will present in the rest of the paperating function is also a generating function of the same form
Note that there are subsets of complik; ,\;, N for _ _ _
which the submonoid has an inverse for every element. For (Ne~EME=ann — rrmg—eMMe-al 4.1
such subsets the monoid becomes a genuine infinite dimen-
sional group. In particular, the exponentiated Virasoro transMultiplying one more time on both sides of this equation
formations of Eq(2.125, acting on string fields from either gives an iteration according to Eq8.11)—(3.13

A. Powers and traces with the samem and A

m" D= (m+mMm)(1+m®m) "1+ (m" —mmV)(1+mm") "1, (4.2)

NP =(1+m)(L+mm) "I+ (1= m)(1+m®m) "I, (4.3
(n) _

(n+1)_ NN e(1/4)(x+>7”>)o(m+m(”>)‘1(>\+>\(”))—(1/4)x7”+1>a(m("+1))‘1x(”+1). (4.4)

det(1+mmnim)d2

If we apply a similarity transformation that diagonalizes — n
and perform the iteration of E¢4.2) in the diagonal basis, o Nex ZMV'_ A
we easily see than™ andm(™*) must also be diagonal in  Tr[(Ne™ &8N = o5
the same basis. From this we conclude thatommutes with def(1+Mo)"—(1-Mo)"]
m(". Using their commutativity we simplify these formulas (4.10
as follows: L -
As applications of these results we specializextse 0 to
compute the wedge and sliver fields below.
m™* D= (m+mM)(1+mmm)~1 (4.5 P 9
1. Wedge states for ang,,x,,N
A= (1+mmim)~? From our calculation above, it is now straightforward to
") (M — ey () give the representation of the wedge std@&sin the Moyal
XA +mPA —mA ). (4.6 formalism. Wedge states are defined by two equivalent defi-
nitions. One of them is the surface state defined by the con-
The explicit solution of the iteration is then given by formal transformation
1+iz)|2M+1)
1+m)"—(1—m)" =
m(™ = ( )¢ ) 4.7) (@) =|15; , (4.11)

(1+m)"+(1—m)"
which illuminates its geometrical nature in conformal field
A= (m)~L(mM)x (4.9 theory. The other definition is the powers of the perturbative
" " ' vacuum stateg0)+ - - - *|0). In this definition, the algebraic
aspect of wedge states is more clearly illuminated. In the

n— 1 MSFT formalism the wedge field is given b
N“exr{z)\am‘l)\—Zﬂn)a(m(”))‘lx(”)} J J Y

N = (1+m)"+(1—m)" arz Wn(xeape):(AO)::AO*"'*AO (4.12
o T
2 where the vacuum field\, is given in Egs.(2.53 with A
(4.9 =0. Using associativity, it is evident that these satisfy the
algebraW,*W,,=W,, . Equations(4.7)—(4.10 with X
The trace is computed from E.2) =0 give the wedge fields explicitly
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14+my)"—(1—mgy)"
(No)”eXP< Mo — (7o) alf)
3 (14+mg)"+(1—mg)"
Wn(xevpe)_ <(1+mo)n+(1_m0)n)d/2
de
2
(4.13
(No)"
TrH(W,) = , 4.1
) et (1 mo)™— (1 mg) ]2 (419
where
i6
. 2127°
= a‘— y
O —ai2
0
0
4.1
R A L0 o (419
Z=Tk,'T, o=| “detn,

follows from Eqs.(2.53. In computing the powers ahy we
encounter the expressidh=Z«.=Tk, Tk, in the form

2_(F o)_ keTko 1T 0
mg= = =
0 Tky Tke

(4.19

The properties of" were given in Eqs(2.53—(2.62.

2. Sliver state for anyk,, #,,N

PHYSICAL REVIEW D 66, 066003 (2002

matrix. Introduction of the extra matrixappears redundant.
However, we have to note thaiy= Mo is anoff-diagonal
matrix and difficult to handle whem—o, by contrastt?
=mj3 is block diagonal and written in terms f as in Eq.
(4.16. We can use the fact which we observed in E461),
namely that we can diagonaliZé and that it has positive
definite eigenvalues.

If we make a similarity transformation to a basis in which
tzzmg is diagonal, for each eigenvalue Bfthe square root
can be either positive or negative, and the functfq(it)
would be evaluated at that eigenvalue. Now, taking rthe
—oo |imit of f,(t) for each eigenvalue, we see that, since the
square root of the eigenvalue/t? is real, the result is

lim f(t)=]t] 2

n—o

(4.19

wherelt| is the real positive square root. If the square-root of
the eigenvaluet \t? were imaginary, the limit would have
oscillated wildly and there would have been no well defined
limit. Therefore, the limit of the whole matrix lim _(m™)

is well defined thanks to the fact tha is a positive definite
matrix which is the case as seen in our analysis. Having
established this fact, we can now write that the limit for the
entire matrix, after transforming back to the general non-
diagonal basis, isf.(t)=|t|"*=(m3) "2 by which we
mean that we keep only the positive square root of the ei-
genvalues.

With this analysis, we have now established that the sliver
field in Eq. (4.17) is uniquely given by

_ _ 2\—1/2
ms=Mgo= mO(mO) !

The sliver field E(x.,pe) is defined as the limit of an — ke
infinite number of star products of the perturbative vacuum 2I§

field Ag, so it is proportional taV., , which is in the monoid — 2|2
S
Z 0
E(Xe,Pe) =N e M~ lim (Ag)] 0
n—oo
i emoen VR Tk 0
= lim (Npe™ o5 . (4.1 X S— (4.20
N 0 VKeTky "R

The overall constantVy depends on the relative normaliza-
tion of Ag andE. Itis possible to compute this limit by using
the exact results of the preceding section as follows. To take

After multiplying with o, we extract the block diagona ¢

the n—o limit, we need to rewrite the wedge staté, in a a 0 0 ad
form that has a well-defined limit. First rewrita(™ in the _ —il =
Mg 1], mg=i 1 ,
form 0 — —
a02 ab

m(n): mO fn(t)y

LA+ —@a-p"
(1+H)"+(1-t)"

= -1 2_
t=\/m—§. (4.19 a 2|2Ke\/KeTK0 R, mg=1. 4.2)

f.()=t

We note that for finiten, f,(t) is really a function oft?  Note thatxey k; RioR# \ keRkoR. Note also thaa is a
=m rather than the square robt \/mz. In this sense, there symmetric matrix, and can be rewritten in several forms by
is no ambiguity coming from taking the square root of theusing the first relation in Eq2.15
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The first equation reduces tm(m?—1)=0 which implies
a= izKe\/KeTKgl = iz\/RKngKeKe M=0 or (Mo)?=1. For M=0, one must also demand
25 25 =0. This is nothing but the identity element. For the second
choice, there is no constraint anbut one needs to impose
:iKélz /Kélz-l— Kgl?KéIZKéIZ' (4.22 N=det(2%exp(—:AM~\). The general matri that sat-
2I§ isfies the condition lf1o)2=1 will be denotedD. It can be
parametrized in terms of blocks as follows:
Furthermore, using Eq2.29 a can also be rewritten in

terms of the eigenvalues a ab
1 D= ba ! +bab
_ —+ba
a= PKé/ZVeTVeK_(]e./Z7 aaz
S
B 4.23 a o0
a” 1_ 2] gKe— 1/2Ve7'_ 1VeKe— 1/2 ) _ 1 0 1 1 b (428)
b 1/10 — 0 1)’
Note that @ 1), is well defined at finiteN for generic a

Ke,Ko. Furthermore, at infinitdN the integral ) ) ) ) )
erroe g with a,b arbitraryNx N symmetrianatrices. The normV'is

w also uniquely determined. Thus a projector, which is a can-
f dkV.(k)[tanH 7k/4)]~ Ve (k) didate for a nonperturbative vacuum associated with
0 D-branes is characterized by a matrix of the fdbrand an

. . . arbitrary\#, and takes the form
is convergent despite the zero eigenvatie0 atk=0, be- y

cause lim V(k)=0(k), therefore @ 1) is still well o o o
k—0 _ H d 1

defined at infiniteN. So, the sliver field is explicitly given by ~ Apa(§)= LR 27 |exg — s oDo) [exp(—EDE— €M)

(4.29

1
= _ 4] oxd — x.ax.—p.
E (Xan,Pan) (81;102)@([{ XeAXe peaazpe)- Apr=Ap,\*Ap,, THAp,)=1,

(4.29 .
where we have use® “=oDo. The trace ofAp, (),

We have fixed the relative coefficient in E4.17) so that the ~ which corresponds to its rank, is exactly 1 for any,b.
normalization factorNy=1II,-,2% is chosen to satisfy the ~ We see that the sliver field is a special case with0,
projector equation b=0, and a particulaa given in Eqs.(4.22,(4.23. Another

simpler and natural projector is when=(1/212) k, with
*E=E, (4.25 =0, b=0. It takes the explicit form

I

as verified through Eqg4.1)—(4.9) for A=0, (M0)?=1, 1
and n=2. With this normalization we compute the trace Abutterﬂy(xe,pe)=< H Zd)ex;( — —5XeKeXe
from Eq. (3.2 and find e=0 213
= 212 1
Tr(:)—l. (426) _ a_zspek_epe> ) (43@
So, the rank of this projector is 1. This is a special form of a
projector as can be seen by comparing to E4s28 and  This is the state that we referred to as the “false vacuum” in

(4.29 in the next section. our discussion following E¢(2.107. In fact, it corresponds
to the product of the vacua for the left and right oscillators of
B. Projectors the split string formalism, and it was named the “butterfly”
in [28].

1. Projectors in monoid
In noncommutative field theory an important role is 2. Closure of products of projectors in monoid
played by so-called noncommutative solitons which satisfy consider two projectorsAp ,., Ap. ,. of the form
17 282

the unipotency relatiof~ f = f. Such solutions are associated ; ; ; -
with D-branes. Using the monoid closure of Eq8.7)- (4.29. Their product is found to be proportional to a projec

(3.13 one can find such soliton solutions by the requirement,

ADly"l*ADzﬁ‘z:C12AD121>‘12‘
(4.27) (4.3)
N=N1=No=N5. Ab,, 055 Ay, 0, T AD 0

M:Ml:Mzlez, )\:)\1:)\2,
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whereD 15,\ 15 iS given in Eqs(3.11),(3.12), the overall norm OﬂDlz:Mz is fixed as in Eq(4.29 and

—d/2

C=|d e(1/4)(>\1+)\2)(D1+Dz)_l(M*)\z)*(1/4)}\1([)1)_1)\1*(1/4)>\2(D2)_1)\2. (4.32

(1+ Dlo'thr)
€ 2

To show thatADlz,)\12 is a projector we must prove that which behaves like string modes, the Wigner functions could
(D1,0)2=1 whenD, is given by Eq.(3.1) and D;0)?2 be taken in the form of polynomials that multiply the projec-
—(D,0)2=1. We use an alternate form of E@®.11) given  tor in Eq.(4.29.

in the Appendixes in Eq(A21) As is well known, under Moyal star products, which is
equivalent to the string star product in our case, the Wigner
Dy,0=Dj0+(1-D;0)[Dy0+(Dyo) 171 functions satisfy
X(1+Dj0). (4.33

Ars* A (Xop = 05 Ar (Xop . 4.3
The square of this expression satisfi€®;40)?>=1 due to rs* A (Xan :Pan) = st (Xan . Pan) (437

(D,0)?=1, since the second term squares to zero and the

cross terms cancel each other{. _ Therefore all diagonal Wigner functions,, (X, ,p,,) are
WhenD,=D,=D but theX's are different we geD1,  proiectors. The trace of the Wigner function is given (g
=D and sum onr)

Ap,*Ap,=C1Ap

_ - dxz,dp,
Clzze—(1/8)(>\1—>\2)(D) 1(x1—x2), Tr(A”):f (n];[l #)A”(in’p%)
M—l Ko\ M -
Ma=5 (AT FAZ). (4.34 = j T1 () g (Xan) 07 (y20) =1 (4.38

Furthermore, ifA;=X\, we get\;,=\ andC,,=1, as ex-

pected from Eqs(4.29. so the rank of each projectdy;, is 1. Presumably the pro-

jectors that are in the monoiths in Sec. IVB2 can be
rewritten as special Wigner functions of the foiy, .

Not all projectors are of the monoid form. More general  Multi-D-brane states can now be easily constructed by
projectors may be constructed by using generalized Wignegaking sums of othogonal projectors. Thus a state wkfh

3. More general projectors

distribution functiond36]. These have the form D-branes is given by
Ars(XZn , Pzn) = f ( nl;[1 (dyzn)e(”")yzn' pZn) N
AN (X, ,pon) = 21 Arr(Xon,Pan),  TrAMN=N,
X | X+ 22" wg(xzr ‘%) 435
(4.35

Then one may choose a setifaf(x,,,) that form the basis for
wherer,s denote any set of orthogonal functions U(N) transformations which correspond to Chan-Paton-type
symmetries associated with D-branes at the ends of strings.

f nl;[l (dyZn)¢r(y2n)¢:(y2n):5rs- (4.36

C. Products and traces for samem and different \;

In the literature on deformation quantization one finds many As argued following Eq(3.3) for computations involving
ways of obtaining a complete set of Wigner functions byfields built on a given vacuum, such as the perturbative
using the complete set of normalizable wave functions fovacuum, it is sufficient to compute the star products of ele-
any quantum mechanics proble@ particle in a potential  ments of the monoid with the sanM, but different\’s and

Of course, the Wigner functions found in the literature areA’s. When all\’s are identical the results should coincide
functions appropriate for a particle, but it is straightforwardwith Egs. (4.1)—(4.10. Therefore these products are gener-
to generalize them to our case with many string modes. Faalizations of the wedge field&/,,(x.,pe). The closure of the
example, by imitating the case of the harmonic oscillatormonoid gives the form of the answer
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Ay, M)\ =AN, M FAN, MY FAN M "I
12...n" LS VIR 1Ay 2:VhAo M -1
’ ’ " (4n4@ Kn()\)ZE 7\r0'n_+)\r
r=1 Jn
=Niz...n@XP—EMME—ENp ). —2% o A mT T AT
(4.41) < ¥ >
From the general formula favl;, in Eq. (3.11) we see that (4.47)

M 1, is independent of the's and \'s. Therefore the product
of n factors produces the same result as if\all and \’s are
the same. Therefore we haw(o=m( wherem™ was
already computed in Ed4.7).

To obtain the dependence &fi,..., and \45..., on the

This result may be used in conjunction with E§.3) to
compute star products of any number of arbitrary string
fields built around a vacuum. For example, the cube of a
general string field is given by

\’s, let us first consider the product of two elements. Using _ s _
Egs.(3.12,(3.13 we find (AxAxA)(x,§)=€ 'X27J dN1dNdNg(X, N g)
1 X (X N2 (X, \3)
MNZGXP(ZK”) A (&) (4.48
_ XAy M@, .
Any, M\ (§)= de( 1+ m?) o2 123:M™ A 53
where the midpoint insertions have been made explicit.
—2m . — The trace of Eq(4.40, which gives then-point vertices,
xXex _§1+m20 §— &N is straightforward to compute
with
n
1 _
NN, - Npexp ~ 2 )\ro'o(s—r)mod s
1+m)\ 1—m)\ s 3 4.5
2 M (442 def (1+m)"— (1 m)"J2
(4.49
K12=)\10' 2)\1+Y20'—2)\2 Where
(1+m)" 4+ (1-mn?
_ — 1 Op(m) = . —, (450
TN ——= Ny Mo — Ay (4.43 (1+m)"—(1-m)
m 1+m
B (1+m)nfifl(1_m)ifl
_To compute the case far=3 we can useAl_23=A12*A3, Oi(m)=2 (1+m)"—(1—m)"
insert the above result fok,,, and apply again the general
formulas in Eqgs(3.11),(3.13 for commuting matricesn,, (1<isn-1). (4.5)

=m® and mg=m. This process is repeated to build the
generalVy, .,, MM, X, ., that appear in Eq4.40. In  In our notationO(_ 1ymed n=Oh—1, etc. It will be shown in
these computations Eq63.11),(3.13 simplify because the Sec. V that our computation of the-string vertex
matricesm, ,m, commute with each other since they are all T'(A12...,) given above provides a simple analytic expres-
functions of the samen. This is explained fully in the next sion of the Neumann coefficient¥/(),, that are needed in
section. The result for theth product gives the definition of then-point string vertex in the oscillator
approach.

It is useful to note the following simplifications. For nor-

M(n)a_:m(n)ziy Ji= (A+m"x(1-m)" (4.44  malized fields the normalization factarg are fixed as fol-
! 2 lows:
1
n Tr(A*A)=1—N;=(detdm)¥exp — —\;om~I\,].
+y-1 -1 -r—-1 4
No..n=(J1) 71> (1—m) Y L+m)" I, (4.45
= (452

Then then-point vertices depend only on the differences

1 . ..
_ F\q—df2 + (Ai—X\j). We give here the explicit forms for the 2- and
Nig.n=NiNo-- - Ni[detdy )] ex;{4 K“()\)) (446 3-point vertices with these normalizations
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1 —
Tr(A)\l*AAZ)=eX[< - g()\l—)\z)am_l()\l—)\z) (453

1

(\i—A)a(3m+md) "L\ —)))

3
2, (
5 (4.54)
2 Ni—

det(16m)%4

8
Tr(A, *A, *A, )= ——ex
(M Ao %3) de(3+m2)d/2 1
Z

)\|+1)0'(3+m2) 1(7\ )\|+2)

where the indices on the’s should be understood mod 3. Note that if these fields are also projectors satisfnty the
expressions simplify further.

D. Products and traces for commutingm; and arbitrary X\;

The multiplication formula for the monoid looks rather complicated and it is difficult to calculatentthgroduct for
arbitrarym;=M,o. However, for certain applications in string field theory, as we saw in the preceding section, one may restrict
the form of the monoid to a submonoid with commuting matrices

[M;0,M,0]=0. (4.59

Such cases would arise when we consider products or correlators between states built on different vacua, such as perturbative
states around the Gaussian with,, wedge states or sliver states built around the GaussiansM{sPtth, etc., all of which
are functions of the sam, and therefore satisfy the conditiof%.55).

Thus, consider the product ofelementsANi M (i=1,...)n) for commutingm,=M;o which generalize those in the

preceding sectiofwhich had the samm),
AN12~~n'M12~«n')‘12«-»NEAvaMl'}\l*ANZ'MZ')‘Z* o ‘*ANn*Mn'}\n' (4.56

Using the closure property we know the result in an element of the monoid label&@,by,, M15...n, N12...n. TO derive
these expressions we use associativity to WKHg .. (n11)=A12...n* An 1. Applying Egs.(3.11), (3.12), (3.13 for commuting
m'’'s we set up the recursion relations

Mo ..nTMpyg

Mo, .. = 4.5
R S R WS (4.57)
Moonen=[1F Mz qMng 17 (=M )N 1+ (14 My )N g5 0] (4.58
K12»--(n+l):K12--~n+(r12-~-n+xn+l)0'(m12-~-n+ Ms1) "N 12 nt A1) (4.59
_)\12"'(n+1)0-m12:~[--(n+1))\12-~-(n+1)- (4.60
I
For the overall normalization constant the recursion formula 1/ n
s I =5 I (1+mo=]1 (1—mk>) (4.62
k=1 k=1
N, _ le--~nNn+1 i—-1 n
T det 1 my, My 1) 92 o [T (a-mo IT a+m)
= I=i+1
< U)Kz (n+1)=Kiz...n) (4.61) )\12"‘”:-21 77 A (4.63
= 12.-n
We will prove that the solution of these recursion relations is NNy - N, 1
Nip. n= de‘(J+—)d’zeX ZKlZ'”“) (4.649
Ji2..n
My . n =My no=—"7—,
J12..0n where
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j—1

vk SN e

n= N+ )\U A (4.69
=N, e 1*2...nsgr(|—1> '

‘Jl() =012 n)|m =0- (4.66

In the last line only one of then's is set to zero if),=
=m;) in theJ, ., of Egs.(4.62.

The trace ofAlemn,,\,|12mn,)\12‘uN

0), which means thaﬂl_z(_i.).n

is defined by omitting the factors (1

computed according to E@3.2) takes the following form:

Tr(Ag. )= oz M p( Q ) (4.67
e de(235, )d’2 2 '
where
n
Quz n=Kiz.nt 2 Nio(myz. )\, (4.68
i—1 j—1
n 350 n H (1+my I - m) H (1+m)
— 12-..n r=i+1
=D Ne— N+ DN )\,0' - A (4.69
i=i Ji2..n i#] Jio.n
|
E. Angle variables andK n
To check the recursion relations is straightforward but COS{,; ®l) sm( Z’l ®l)
rather tedious. Some aspects of the recursion formulas canbe  J;, ,=— N e
more illuminating if we make a change of variables. The H c0s® H c0s®
recursion formula fom becomes much simpler if we intro- =1 ! =1 !
duce the “angle” variableswhich are commuting matricgs (4.72

1 1+m,

Iog— This immediately gives Eq4.62 by rewriting Eq.(4.71) in

terms of the variablen.

To derivehq,...,, We rewrite the recursion relatiq3.12
in terms of a new variabl&, =\, /cos@)), which simplifies
the relation
With these variables, the above relations can be simply writ-
ten as® 5. .n11=0 ..., + 0O, 1. Since this is a linear re-
lation, one can immediately solve it as

O,=tan (—im,)=

(4.70

@12...nEtanil(_imlg...n).

Xlzz e_i®1X2+ ei®2X1.

4.73

Then, one can derive,,..., from the simpler recursion

n
=> 0,. (4.70) N L . -
" =1 | )\12-~-n+1:e|®n+l)\12---n+e_|®12”'n)\n+1- (4-74)
By using the elementary relations betwe@nandm, The result is
%) ! 0,——_m i S 0+ 0%
cos®, = , Sin®,= , =, expg —i +i N.o (47
1-m L 1—m? =1 e e T @79

Coming back to the original variableg, it is easy to see
that we arrive at Eq(4.63. The derivation ofK4,...,, and
Q1,...n IS more complicated but can be done with similar
arguments. We give the angular variable version of these
we find formulas:
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5 -1
lee(1/4))\12M 12 )\12

M:

K. .n=i X_a(tan(@lz —tan®,)X; To=

=1  (det2M 1,0)92
1 -
_ 7|k2ﬁ—10k+lk§—10k~ NlNZeXF{Z()\l_'—)\Z)(Ml—'_MZ)1()\1—'—)\2)
\io N (47 =
Z‘ cog015...n) p (478 {def2(M;+M,)o]}¥?
n (4.80

'Q12~-n:§1 Aio(COtOy, . nF1an®;)x; We now specialize t&1,=M,=M as in a previous section,

but still keepA 1,\, arbitrary. The matriXM represents some
vacuum state. This could be the perturbative vacudim

_ ekgﬂok 'k210k~ given in Egs.(2.8) or a nonperturbative D-brane vacuum
+ 22 \Nio 0 i. (477  represented by a matr as in(4.28), for example the sliver
1<) SiN(©12...n) vacuumMy as in Eq.(4.21). We also use tha/; ,\, consis-
_ tent with normalized states for arbitraiy’s, Tr(A;)%2=1
To derive these formulas, we use the relationo =Tr(A,)? as follows:
=(Mo) o=—oMo=—om for a symmetricM and anti-
symmetrico, and its extension to functions af as follows: A;=(det4M g)d/4e—(1/4)MM’l>\1e— EME—Eng
_ » (4.8)
F(mN)To=raf(—m), A,=(detdM o) He~ (UMM~ hog—EME—Eny
(4.78
Ny f (M= — oo f(—m)A,. For these, the two-point vertex becomes
. 1
Actually the angle variabl@ turns out to be more than a TM=e F( — g()\l—Rz)M_l(M—Xz))- (4.82
computational device which simplifies the recursion formula.

In Sec. VI we will give an explicit formula of the three string
Neumann coefficients in terms af,. Through that relation,
in the notation off 18], the spectrum ofn, is identified as
tanh@x/4) wherex is the spectrum oK,;=L;+L_;. If we
write @,=tan }(—img), the spectrum o®, is identified

The center of mass mode may also be included. For ex-
ample, for tachyon waves, it takes the form

el Xop @ EME- BN = giki X p7 g EME-EN]

with (— mri/4)«. It implies that®, equals ( mi/4)K, up to (4.83
a similarity transformation. We note thit, is the basic ma- N =M.+ w K
trix from where the essential properties of the Neumann co- tw Tt g )
efficients are derived in the infinitd limit as well as in the
level truncation regularization. Therefore,\ gets replaced by’ in the previous discussion
which otherwise remains unchanged. In addition to the trace
F. Products and traces with generaim; and A, there is also the integrald?x/(2)¢. This additional inte-

. . ) o o gration produces the Dirac delta function as an overall factor
In certain computations in string field theory we anticipate

also Gaussians with noncommutiiy o. For example, this Tr[(e'*1 oA )* (e'k2 oA ,) = 89(k, + kz)T(M) (4.84)
may occur when we would like to compute products or cor-

relators for string states in the presence of different D- branewhereT(M) is given above.

such as those described by Gaussians of the fdr@8). In

this section we analyze properties of such products. 2. Three points

To compute the three-point vertex, use associativity and

the cyclicity of the trace to find three different expressions
The product for two general generating functions is given

1. Two points

in Eq. (3.7). The two-point vertex is given by its trace T123= Tr(Am, g A AM, 2, N A g a,) (48D
TlZETr(AMlr)\lle*AMzrkzyNz) :Tr(AMlz,klz,le* AM3,)\3,N3) (48@
(AN 1 M5 N 1o _
_Nawe _ 4.79 = Tr(AM 5 0 g5 Nog* ANy 2 ) (4.87
(det 20M ;,) 92
=Tr(AM gy hay N ANy 0, N,) (4.88

This expression simplifies since the star can be dropped in
evaluating the integral. Then we obtain the relation whichand then use the result for the two-point function to write the
was shown in the Appendix, three expressions
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T123= Tr(Amy g A AMY G, AL AN 5 ;) (4.89 Y de(2M p50) |92
1723 def2(M1+Myga]
1 _
NlNZﬁX%Z()\l"' N2a)(My+Myg) 1N+ )\23)} X exp (1/4) (N 1+ N29) (M1 +Mag) “H(N 1+ Npg)
- (def20(M+ M52 [192 —(1/8(M 129" (M129 "N 12al. (4.100
4.9
@29 Furthermore, we must have the three-point vertex
1
NstleXF{Z()\z‘H\sl)(Mz"' M31)1()\2+)\31)} leae(l/4)hlzs'\45213>\123 102
= T123: 4.10
{def20(M -+ M4y 13972 [de(2M ;p50) ]9
(4.92

which must be equal to the expressions for the three-point
1 . vertex given above. This gives a lot of identities, in particular
N3N1£X Z()‘3+)‘12)(M3+ M1 “(Ag+ A1) many relations are obtained by comparing the quadratics in
= a2 . various\'’s in the exponent.
{def20(Ms+My)]} The expressions simplify, by insertintl;=M,=M,
(4.92 =M, but keeping the\’s different as in previous sections.
eWhenM =M, the expressions are appropriate for computing
{fe perturbative three-point function. Whevi=Mg (the
sliver field) it will be appropriate for computing nonpertur-
Dative three-point vertex, etc.

Each form makes explicit the dependence on the paramet
of strings 1,2,3, respectively.

The product for three generating functions may also b
evaluated as follows:

3. n points
AMl'MrNi*AszkzyNz*AMav’\arNs P . . .
We can compute the four-point vertex by using associa-

=AM, a1 Ny AV G N (4.93 tivity and the cyclic property of the trace to obtain the fol-
lowing forms:
=AM, N A g N, (4.99
17107V 232723723
Tr(AM, N AV, a A A g AL AV, ) (4103
:AM123')‘123*N123 (4.99
1 —
with two different, but equivalentdua), expressions for N1W34GXF{Z()\12+)\34)(M12+M34) 1()\12“\34)}
each quantityM 153, A 123, V123 =
{def2(Myp+ Mgy o]}
M123= (M1t M3oM1p)(1+oMzoMp) (4.109

+(M3—M,0M3)(1+0MpoM3) L (4.9 1
N23A/419XF{Z(7\23+ Nap) (M g3+ M) " H(Npst 7\41)}
:(M1+M23O'M1)(1+0'M230'M1)_1 =
{def2(M y3+ My o ]}92

+(Mz=M1oMya)(1+0oMioMyy) ~* (4.97) (4.105

Mog=(1+M3z0)(1+MpoMzo) I\,

1
N123A/49XF{Z()\123+ Na)(M o3+ My) " H(N o5t N y)

{def2(M 151+ M,) o]}
=(1+My30)(1+MoMyzo) K (4.100

+(1-Mpo)(1+MzoM o) " INE  (4.99

T(1-M10)(1+MaoM10) 05, (4.99 = cyclic permutations. (4.107

and
These can be further computed by inserting the formulas for

det(2M 1,40) d/2 /\/ij WNij s Mi; gi_ven in the_ preceding sect@on. The_zse twq fprms
Ni2g=N1N3 de2(M it Ma) o) of the four-point vertex is compatible with dualitshe origi-
127 M3)a nal duality of the Veneziano amplituge

X exf (1/4) (N 15 N3) (M 1o+ M3) “L(A 1o+ A 3) Similarly, the five-point vertex is computed in several
. . forms by using the star product and the result for the three-
= (L4 (N 129 (M129  "N123] (4.100  point vertex
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Tr(AM, np N AM, N AV G N AM, A, A AV g ) (4.108
' .
Ni2aNasexp Z(Mza"‘ N4s5) (M 123+ M4s) ™ “(N 125+ Ngs)
- - (4.109
{def2(M 15+ M y5) o ]}92
' §
Ni2zaNsexp 1 (N1234t N5) (M 1234+ M5) ™ (N 1234+ N5)
- - (4.110
{def2(M 3.+ M5) o]} 42
=more forms by cyclic permutations of 1,2,3,4,5. (4.111

The process is similar fan points. These forms are compat- tion that other closed expression for Neumann coefficients
ible with duality of the n-point function. As before these have been given in the recent literati29].

expressions reduce to the computations in the previous sec- The n-point off-shell amplitudes are written in terms of
tions when we tak,=- - - =M,=M, but still keep the\'s  (V,| as

different.

V. NEUMANN COEFFICIENTS (Vn||‘lf1>1®-~®|\lrn>nzf Wox-oxW 0 (5.2

As we have seen, the MSFT formulation gives a simple
mathematical framework to calculate all string vertices of thefor the n elementd¥) in the Hilbert space. 1i31], (V,| is
open string field theory. In this section we apply our resultsuniquely determined from the overlap conditiotieere we
to derive a new and simpler expression for the Neumanmvrite them in terms of the split string variab)efer the star
coefficients for all string vertices in the oscillator formalism. product,
We will do this for any oscillator frequencies,, x, and any
number of oscillators. In this process we also establish a

more explicit connection between our results and the oscil- (Fon W) Wo=Wax(I2nV2),
lator approach. One of the purposes of this computation is to (5.9
derive an explicit regularized formula for physical quantities, J g )*q} N d 7y )
such as the brane tension, tachyon mass and so on, in terms arpn YT TR G,
of our regularization scheme.
In the Moyal formalism, it can be verified that these condi-
A. Computation of Neumann coefficients in MSFT tion reduce to the associativity of the Moyal star product,
In the operator approach to the open string field theory
[31], the n-vertex is written in terms of the open string os- (A% Xon)* Ao=Ar* (Xon* A,),
cillator in the form, (5.4)
aln al® Ap* Do) * Ap=Aq* *A,).
(Val = (plexp 2 Z TV Pt e A (Par e
=1 VKK K In this sense, the equivalence between the two formalisms is
( by definition ensured, and up to an overall constant we
——(VI'shy op®+ = p(f)(vlfsl) ooP® |, should have the relation
& \/_

(5.
Vol ¥y)1®-- '®|‘I'N>N~f dAXTr(Ag* - - - *Ay). (5.9

times a momentum conservation delta function
(2m)95(=,pY), where we have taken a finite number of
modesN and inserted arbitrary frequencieg. The square We will use this correspondence to compute the Neumann
root factors in the exponential are added because our normateefficients ¥/,){s, (V™) o, (VL) o for any ke, ko, N in
ization of the oscillators is different frof81]. We will com-  terms of the expressions we obtained in the previous sec-
pute the coefficients\({'),, for any «.,«,,N by using the  tions.
methods of the Moyal star product. Our results provide a In the following computation, we tak&,; as the coherent
simple expression for these Neumann coefficients. We merstates
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_ where we have usetk|p™)=exp(x-p"). Then, as in Eq.
|‘Pi>:eXP< E md ) )|p(')) (2.7 A\ is given by
J—' " "
=ex |p(')Xo+E K -12 (I) (l) |0). (5.6 Keftg — WP
Ne(p,p)=
2\/—| kg V20
eO (o]
<Vn||‘If1>1® -®|W¥ ), is easily computed using the prop-
erty o] W)= Vi ul’|¥;) of coherent states ZZK(M(r)+Wp(r)), (5.9

n where in the right-hand side we have definedV
exp >, ( 2 O (VED)

rs=1
+ 2 (r)(V[fS]) (8) E (f)(V[fS]) (s) ;
24 Vi )iop™ + 5 P (Ve o™ | —_|\/E 0
g V2
0 s R /3
This gives enough information since the factors;dj) or 0 Ko
p( in the exponent identify the Neumann coefficients (5.10
Vit Vst VST, |
To perform the equivalent Moyal computatioane use the S
p basis given in Eq(2.5 to obtain the fieldA,(X,Xe,Pe) W={ v2xke
=(X,Xe,Pe|¥,) for the coherent state 0
_ detdro| ™ | (0r 1o 00, ®
— 12( - )
Ar(X,Xe, Pe) = detxe) el e e e o s This A,(x,p) has the standard form of the monoid ele-
. . ments. Therefore, the right-hand side of E§.5 is easily
X exp(— EMé— EN(M) (5.8 computed through Eq4.49

n
_ 1 1_ 1
ot 3, (105 Fa sl S+ 5 0u0 )

TrAs A= def(1+mo)"— (1 mg)"] 2 64D

whereQ,, was computed in Eq4.49 [OVEEShy (VIS o (Vs o]
n =—[(CM(s-r)kisVis-1)k:Cs-n)s (.13
QM= 2 MO moa n(Mo)hs  (5.12
rs=1 whereCy,=(—1)¥8,,, and from our explicitly computation

in Eq. (5.11) we obtain
but now A (u,p) is replaced by Eq(5.9). The O rymod n

were given explicitly in Eq(4.50. All together M;=2my0i(mg) — &, 0 (5.14

* .00k ~ ~

JaxTr(Ay---*Aq) V= ( — 2Oy (— Mg) — %) W, (5.15
has an overall momentum-conservation delta function
(2m)95(=,pY) times a factor of the form E¢5.7). Match- - .2
ing the exponents in Eq$5.5),(5.7),(5.11), we see from the Ci=W<2m0(’)i(m0)— ﬁ) W, (5.19
structure of Eq.(5.12 that the Neumann coefficients" !
must depend only on the difference<{r)mod n. Therefore  with the functionsO;(m) defined in Eqs(4.50,(4.51). Ac-
we define the matrixM, vector V| and scalarC' for tually a naive comparison of the zero mode coefficient gives
imod n as follows: only the first terms in Eqge5.15,(5.16. However from the
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momentum conservation of thevertex, we have some ar- rectly give all Neumann coefficients consistently for all
bitrariness in choosing them up to the translation$)(  n-point string vertices either in the finifd or the infiniteN
—(W)k+0ak, andC;—C; +c, for any constantg, andc. We  theory.

have used this freedom to ensure As in [31], we obtain a simpler expression if we perform
the following discrete Fourier transformation for the oscilla-
tors:
> V=0, X Ci=0, 517 O
1 I
~ ~ 1 "
by using the identitymyZ;0;(mg) =1. We emphasize that (ay)=— E 0" D(a),, w=e2mn
this compact form depends only on the maimig which is Vn =
described below. (5.2

Note that initially theO;(mg) in Egs.(5.12 are functions
of my=Myqo for the vacuum state E¢(2.8), not m,. To

arrive at the above forms we have uséd=—CK™m,,
and performed the similarity transformatida10;(mg)K

which resulted in the above expressions @q(ﬁ%) written
in terms ofm,

Je{0,12,..n-1}=2,.

With respect to this combination, the overlap conditions be-
come diagonal. We use the similar recombination for the

source, ;) =(1/\yn) =, 0’ " (u,). In terms of this
variables, the Neumann function is transformed to
Mo=K *meK=K }(Myo)K. (5.18

1
. . . ~ [y = —1(r=1)—J(s— 1) \Ir,s]
Using our expressions fd¢,M in Egs.(5.10,(2.8), my and (V™) n, 2 o TTHTREEAVEE). (5.22

anS take the following more explicit forms in terms of

12+ —1/2 ; ; . . e 0 A .
Ke Tro " O its diagonalized versioW"rV™ given in Eg. In the Moyal basis, the discrete Fourier transformation gives

(2.29:
(LT 12 . -
° . — —(14+3)(r—1)— JKY (I J
( ~UZ 1/2 0 ) < )\raok)\k+r—ﬁ 2, 2, 1+ -1)=IN " 50, N
- Ve 0 T Ve 0 (5.19 _ 2 WUZ")[}((*U
- Ve/ir 0/\ 0 Vo : I'eZ,
K1/2-|- SIT K1/2 0 where
5 UZT e T K5 1/2
ve® o0 \/7#2 o\[v® 0 O(Mg)=2 0" O (Mg)
- (0) 2 — - (5.20 r
0O Vv 0 r 0 v©

_ 1+ w'
 (1+mg) — (1—mg) o'

Recalling thatTeo is determined in Eq(2.19), Ke/ZTeoKo 2

—Kl/ZVVev K3/2 K 0) 1 we see that we have explicitly

computed in Eq.(5.14) the 2N X 2N regularized Neumann _ 1 (5.23
coefficients for anyxe,x,,N. Furthermore, the diagonal wl '
forms of my,m3 in Egs.(5.19,(4.16 give the spectroscopy mo—ita

for Neumann coefficients for all string vertices. In the large
N limit «2?Toox; Y2 is given in Egs.(2.23—(2.26), or
7,V&,V° are given in Eq.(2.31), and therefore all matrix
elements ofmy, and hence all Neumann coefficients, are

Then the Neumann coefficients take a much simpler form
because Y!'7') become diagonalproportional to 8, ;).

fully determined. Therefore we definé\},,V,,C'
In [18] the spectroscopy of Neumann matric®$; oq 3
for the three-point vertex was computed. We may compare ((V["J]) (V[I,J]) (V[I,J]) o
our spectroscopy fon=3 and infiniteN to their results by n kb Eno k0T U0
using the eigenvalues(k)=tanh@@k/4) explained in Eq. E—((C/T/h)kl,(vu)k,a)&u (5.24)

(2.31), and find full agreement. This is seen in the more
explicit expressions fon=3 given below in Eqgs(5.32.
This confirmation provides confidence that our formulas corwhere we obtain fot=0,1,...n—1
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~ ~ 0 [leMJ]:OI [MliM']zol [MIM]:O
My(mo)=————+ (5.29 : Y 529
The O, (m) satisfy the following nontrivial identities:
n—-1
-~ 2m 2mg Y, O —mg)Os_ (M
(o) = © 20|, (5.26 02 Od=Mg) Ox (M)
my+i tal ~ ~
° r( n) +Os(Mp) = Os(—Mg) =0. (5.30
- These translate to the following relations among the Neu-
-~ ~ — 2m ici :
C\(o) =W o —26,,| W. mann coefficients:
n N
my—i ta
° ’(n) > 2 VEIVES =5 s,
(5.27 t=1 b=1 D
n N
As already argued above this is an explicit form of the Neu- yirtylts] = y/Lrs]
mann coefficients for all string vertices. They depend on a 21 bgl ab b0 a0
single matrixm, which we have determined in either the nN
finite N or infinite N theory. [rtIy/Lts] — o /Irs]
= Voo Vo =2Vio' - 5.3
The M, can also be rewritten in terms of the eigenvalues tzl k;l 0b Tbo 0 (633

7 and the orthogonal matrica&? V%) by using the second

form of M in Eq. (5.19 and inserting it in Eq(5.25 For | =0, the matrixM, becomes particularly simple for

any n-vertex, M0= 1
(V(e) 0 ) For n=3, the Neumann coefficientd;,V;,C; of Eq.

M= © (5.14 become using the notation { 1,0,1)mod3=(2,0,1)]
o v
mi—1 1+mg 1-mg
2 il 0T =2 o +T Ay o T IP
27 io Tta N my+3 my+3 m“+3
2y ar? wl) o TRty (5.32
+tarr| — 5 w _ _ ~
N s 2+tarf W) 4m§ 2mp(3+my)
X VOZ —“‘ZW' V+ S
l ) 3(3+mp) 3(3+mg)
|§ Ttal W 27 _s 5 3 (533
10
i ) 2tart| T _2Mo(3~Mo)
2+ tarf —) N T 3(3+m))
ve 0 _ 4mj 2
0 Vo (5.28 Co=—2C.= —2C_=W3(TFT,%)W= §V00. (5.39

o -~ -~ o~ ) It is also convenient to define the following combinations
and similarly for))(mo) andcC(mo). If we further insert the  that appeared in the literature, which have even or odd pow-

perturbative frequencies.=¢, x,=0, and an infinite nUM- . ¢35 (these are called twist even/odd in the literature
ber of oscillators, we obtain our results in the continuous

Moyal basis given by the eigenvaluefk) =tanh(rk/4) and

the functionsV(k), V,(k) given in[25]. Meen=M i+ M_= ~2. 3’
0
. . ~ (5.39
B. Properties of Neumann coefficients 4my
From these expressions, we may observe the following M°dd=M+_M*=ﬁ]o+3’
properties of the Neumann matrices. These are standard in
the literature in the case of the larljetheory, but in our case —4mZ
they hold for anyx,,x,,N, which seems remarkable. Veven=V++V_= >
We note that, for any-vertex, the Neumann matrices!’ 3(m0+3)
or M' are written in terms of theI2x 2N matrix m, in Eq. —4m (5.39
(5.19. This automatically implies that they commute for any Vodd=Vi —V-== 0
I,Jmoch or anyi,jmoch my+3
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We note that due to momentum conservatip ,p(7=0

1
we can rewrite \/__erO,s]:(_1)r+5(vg,s1_vg,s+3])k_
Kk
1 3 1 n (5.43
Z M. pGylrsly = — (r). p(s)
Zr"sz:lp p (Vn )00 2r,52:1p p C(s—r)mod3 Defining
° rsly, = — (c 9"
=3Co >, p”-p. (637 O = = (CMEmnmosdu
r=1
(X[r'S])kOZ B (V?shfr)modS)k (5.49

From this parametrization, it is straightforward to verify
some relations that have been noticed before in the literatu
without having our explicit formulas for the Neumann coef-

I%nd inserting the explicit formula of the six string vertex,
which is given in Eq.5.14) for n=6, we obtain[using the
notation (—1,0,1)mod3=(2,0,1)]

ficients
Mo+t M+ M_=1, M, M_=M2 M, man= 270 gn_ e 1Mo
53 0 YR + o~
(5.39 3m3+1 3m3+1
(5.47
M3+ M2+ M> =1, . 14
39 ME=2Mo gt
MOM++M+M_+M_M0:O 0
-2
M?:_Mi:MOMi! VgthoA\fv
(5.40 3(1+3mj)
Mga= (1= Mo) (1+3Mo) o
2(1—mg)mg ..
h
= W, 4
3(1~ Mo) Vo=~ MoaeVada . T e (548
3MiggVo= = (143 M) Vodd 2m (1+ ﬁq) R
h_ 0T, W
o__ 3 1+ 3I’”\ﬂg
2Voo= 7V0Vot 7VoddVodd- (5.42
where
We emphasize that in our case these results hold for any set My= \/;(%o)i
of frequencies<,, k, and any number of oscillatof¥. They N
were obtained using th@ssociativestar product in complete ’
compliance with gauge invariance. 25
— T
Vkgve 0 0
C. Ghost Neumann coefficients = 0 \/K—OVO 0
In the operator formulation of string field theory, the Neu- P T
mann coefficients of the ghost field are also key ingredients. N
Since they can be related to the Neumann coefficients of the _ 1
matter sector, one may derive the regularized expression for VeE— 0
them for anyx., x,,N. We write the ghost part of the three % \/K_e (5.49
string vertex in the following form: 1 )
3 0 VO\/—_
K
Va=exp — 2 > cxXEbG), |10). i
r,s=1 n=1, m=0
(5.43 Is
W=kW=| 2 |. (5.50
The matrixX can be written in terms of the matter Neumann 0

coefficient of the six string vertex 44,12],

1 We see thaim ?h has exactly the same form as E§.32) if
— XIS i = (= 1) (VLS —yLrst3l) (544 we replacemg by mg*. This implies that the matricest ?"
Ve automatically satisfy the same relations as E§38—(5.40
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for any x¢,k,,N. On the other hand, the zero mode part 1—7 0
satisfies modified nonlinear relations, \/K—eve 0 =1
T9N= Jrve 1
0 \ -7
(1—M8h)V‘1h+M3hV8h=O, Ko 0 P
(5.5)
(1= MM+ MmeMVE"=o0, Vei 0
Vrce
. . . . X (5.56
which are again famous in the literatUr@l,12. 0 — 1
Vio
D. Regularized sliver matrices
Another quantity which has appeared often in the litera- 1-7°
ture is the description of the sliver state in terms of a matrix JroVe 0 14372
CT written in terms of another matrig, z9h— ©
0 \/K—oVO 1-72
1
T= 2—2[1+z— V(1+32)(1-2)]. (5.52 1+372
Vel o
In our parametrization, for any,, x, the 2\ X 2N matrix 2 ke
is given by the Neumann coefficietit, of Eq. (5.32, Z X (5.57
= M(m). Then Z, T become 0 Voi
Vico
- Fn%— 1 - \/r~n§— 1 Again, all of our expressions are valid for ary, «,,N.
Z(mo): = y ﬂmo):— (553)
mo+3 Vm2+1
0 VI. VSFT AND ASSOCIATIVITY ANOMALY

In this section we first show that any fluctuation around a
brane vacuum becomes pure gauge if we use the associa-
tivity of the star product. Some of our arguments here over-
lap with section(5.3) of [3] but our emphasis is on associa-
—1 tivity. This implies that there is no physical excitation in the
ve 0 41 0 ve o D-brane vacuum. Since associativity is part of the gauge in-
( ) variance, the undesired result has implications on the prin-
0 VO ( ciples underlying the definition of gauge invariance in VSFT.
T+1 Once we understand the issue which is rigorous for any non-
(5.59 singular sliver-like projector, we will point toward a possible
solution atinfinite N through the introduction of an associa-
tivity anomaly which arises from the singular nature of the
sliver state at infiniteN. VSFT is not well defined until the
singularity is universally defined and the gauge invariance
2-1 principle understood.
(V(e) 0 ) 243 0 (— A need for the anomaly is anticipat¢d7,24] from the
Z=

For finiteN these are the regularized matrices. In terms of they_
eigenvaluesr, we have

T=

0

and

fact that the object which VSFT describes at the outset is
o Vv supposed to be closed string excitations around the closed
5 string vacuum. Furthermore, the D-brane itself is the soliton
7+3 of “closed strings.” We will clarify the associativity issues in
(5.59 the framework of MSFT. The reconciliation of the gauge
invariance, associativity anomaly, and nonperturbative string

showing clearly the eigenvalue structure of these much disPhysics in VSFT remains as a challenge that we leave to

7?—1
0

cussed matrices. future work.
In the ghost sector, we replao®g by ﬁwo in comparing the
matter and/or ghost Neumann coefficients, as seen from Egs. A. Fluctuations around a D-brane vacuum

(5.32 and(5.47. This gives the sliver matriceZ(mo) and7 The action of VSFT has the form of E¢R.36 with Q
(mg) with my of Eq. (5.49 replacingmy in the expressions constructed purely from ghosts. Then associativity and gauge
of Eq. (5.53. In terms of the eigenvalues, we get invariance holds exactly for generie,, x,,N as discussed
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following Eg. (2.36. In a sector in Whi(C? t(m? field is the top of the effective tachyon potentiahereby fixingk and
product of a ghost and matter pass=A'YA'™, the equa-  consequently computing the absolute value ofihe-brane
tions of motion separate tension.

In a perturbative expansiom=T,+T,+---, the qua-
dratic part determines the spectrum of the fluctuatidns

. . — while the cubic part determines their coupling. Attempts to

We take the %—brane_solu'_uon to be a projector that>s compute these quantities have run into a controversy in the
independent, Lorentz invariant in 26 dimensions, and tracﬁterature[ll 15,16. We will now clarify that at the root of
one (a single D-brang Any projector of the type of Eq. the controversy is the need to introduce nonassociativity of

(4'%9) at)\T]O ishsmih a (S,T?)'E“B”’ but in the.literature thgre iSthe star product to extract nontrivial results from VSFT.
evidence that the slivek™ ==(x,p) given in Eq.(4.24 is The equation of motion foT at the linearized level is
the candidate for th® ,s-brane

OA@ = —A@xA@)  AMxAM = A(M) (6.2)

_ T1:E*T1+T1*E. (67)
E=de(2%)exp — émgo ™ 1§),
In Appendix B, it is shown that the general solution to Eq.

0 aé# (6.7) is
me=i| —1 . mi=1, (6.2 _ _
a5 ° TyG0%e pe) = | OALT () (A1)
and a is given explicitly in Egs.(4.22,(4.23 for any +_(x,\)(efl-m2h_1)=1 (6.9

Ke Ko N, _ _
for any functionsf .. (x,\). Taking anyx-dependent solution
1 1/2\/m 12 1U2,e e 172 T,(x) with a definite center of mass momentynand re-
8= 3 Ke NKe T o T K K™= e VITVEKGE plia(ci)ng it back in the action, one hopes to ideLr?tIi]fy the mass
(6.3 and the coupling constant for the particle represented by the
solution, with a properly normalized,, as follows:
The ghost parA¥ also has a solution related to the sliver as

discussed if11]. _~f — }_:)
The next step is to study fluctuations around the-Brane K] dxTrm Tox 2 "y
and interpret them as open string states. If one seeks fluctua- 2 97¢2
tions that have the same universal ghost factor, as advocated =[p*+(mass7]f(p) ©.9
in [2], then effectively one has to study the action reduced to 1
the following form: _Rf dxTr. | - §T1*T1*Tl)
S=—KTr.(A@xAW©
o ) = (coupling f3(p) (6.10
_ 1
Xf dxTr, EA(”‘)*A(’“) wheref(p) represents the particle wave function in momen-

tum space. Of course, the left side of E6.9) must vanish as
1 long asT; is the solution of Eq.(6.7), which implies p?

- §A(m)*A(m)*A(m))- (6.4  +(massf=0. So to identify the normalizatiof?(p) as the

coefficient ofp? one works slightly off shell. We will show
Expanding the matter field around the projectf?==  thatthe left-hand side of E¢6.10 exactly vanishes at arly

+T, and using as a consequence of associativity, therefore the coupling van-
ishes. So it is problematic to extract the coupligpor the
ExE=E, (6.5  D,sbrane tension.
. ] . To prove this point we give the following arguments. As-
gives a quadratic and cubic termTh suming associativity is satisfied by the star product, we can

a projector represented by a diagonal matrix that contains
one entry 1 and the rest zeros. Then it is easy to see that the
(6.6 most general solution of Eqé5.5),(6.6) for the matrix prob-

} always map this problem to a matrix problem in whighis

1 1
Te| S—E ¢ T ST TeT

s=S(E)—Rf dxTr,, 3

- lem is
whereK=KTry(A@*Al9)). The value of the action of the
classical solutiorS(Z) is related to theD,s-brane tension. (10 0 bt
To determine its absolute value one notices that the overall == o 0/ 1= b 0 (6.1

coefficientK is related to the cubic coupling. Therefore one
would like to extract the value of the cubic coupling, say forwhereb is a complex column matrix. This solution may also
the fluctuation that corresponds to the tachyon statehe  be rewritten ag;=i[H,Z] for any Hermitian matrix-. For
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this matrix solution it is easy to see that T T,;*T;)=0, how can nonassociativity arise in the theory in detail? In our
and hence the cubic coupling of the fluctuations vanishes. previous papef24] we had argued that the associativity
The same statements can now be made for any associatia@@omaly of the star product is closely linked to the associa-
star product. Namely, iE is given by the string field of Eq. tivity anomaly of the matricesT,R,w,v in the infinite N
(6.2), then the most general solution of E@.7), including  limit. This was due to the fact that the matil, develops a

Eg. (6.8), must take the form zero mode in that limit,Tv—0, as shown clearly in Egs.
(2.28. Hence whenever the inverse of the matrix occurs one
Ti=i(H*E—-E*H), (6.12  must define it carefully, and watch that sometimes the zero

] o ] ] ) ~ mode is compensated by infinite sums, thus giving rise to

fied the inverse of the matrim ! and this enters in the expres-
ST, 4 T E=iE* (H S — ZxH)+i(H*E— ExH)*E Eg)r?ss that determine the mass and couplings of the fluctua-
613 Also, as it is clear from the computation bfstring ver-
=—iE*xExH+iH*E*x= (6.14 tices from MSFT, the basic ingredients are Hwand vector
W. All the Neumann coefficients are written in terms of
=iH*E—iE*H=T,. (6.15 them. In this sense, in the MSFT context, the understanding

of the associativity anomaly can be reduced to the study of
Inserting the result into the formulas for mass and couplingﬁ10 andW in the largeN limit.

we see that the left-hand sides of E(%9),(6.10 vanish by Since we derived the explicit form of the Neumann coef-

’ P y tion of the Neumann coefficients such an anomaly occurs.

associativity leads to a unique consequence, namely that t@ome of the examples are
fluctuations T, are pure gauge. Indeed, if we define the P
gauge transformation for as A2

1+ 3Mo=on® | Moas= 4my
E+T =U*(E+T)*UT (6.16 M2z’ TN m243
. . (6.18
we see that for the small fluctuation, we can write the a2
infinitesimal gauge transformation fdy =exp, (iH) in the 1_Mgh: _ o
form 3ma+1
Ti=UxE*xUT—E+.. . =i(H*E—E*H)+--- All of them have zero eigenvalue in the larydimit as seen

(6.17 from Egs.(5.20,(5.49 and Eq.(2.3)). In this sense, when-

_ _ ever we try to invert these matrices, we meet the anomaly as
which has the form of the general solution. . will be discussed in the next section. We note that the order

Are there cohomologically non-trivial solutionk, (i-.  of i in these expressions coincides with the degree of sin-
not pure gaugeas suggested ifl1]? In analyzing their sug- gularity introduced i 15].
gestion, we find that in fact it is not a solution at all, if and Actually all fluctuations around the D-brane vacuum
only if we use associativity freely. One way to see the probyyhich are claimed to be cohomologically non-trivial in the
lem is to examine the quantities,H related to mass and |iterature, use the inverse of such matrices. For example, the

coupling, as identified in15]. We find that these quantities tachyon wave function conjectured in1] takes the form
vanish identically at an\N, x.,x, when we insert our ex-

plicit expressions for the Neumann coefficients. The same

result was obtained ifL5] by using the Neumann coefficient |‘DT>:eXP< -2 tapalt || @),

identities in Eqs(5.38—(5.42, which now hold also for any n=1

N, xe,Kko- This vanishing is a consequence of associativity (6.19

— -1
pure and simple. The vanishing & implies that theT, t=3(1+D(1+3Mo)" V.
given in [11] is not a solution, while the vanishing o |®c) is a classical solution which describes the D-brane.

corresponds to the vanishing of the coupling. Also. th host BRST ch itself takes the “sinqular”
To avoid this outcome, VSFT must have an associativityforsncfl’[ﬂengrleag 08 ST charge itself takes the "singular

anomaly, which we discuss next.

B. Focus on anomalies Q=Co+n§>ll fa(ca+(—1)"c)),
We have shown very generally that there can be no inter- (6.20
esting nonperturbative phenomena in VSFT unless there is f=(1—/\/l8h)‘1v8h.

an associativity anomaly. In a previous paper we had argued
that the existence of closed strings in open string field theorBy now, it is quite well known that such singular vectors are
is also closely related to an associativity anom@]. So, related to the midpoin28,19,24.
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So far, the nonperturbative effects from VSFT are basecver, as we have seen, even at filit¢éhe left-hand sides of
on such singular states. For example, in recent literdibe  Eqgs.(6.9),(6.10 vanish. So this means that associativity it-
the computation of the tachyon mass and coupling of Egself must be broken in some other subtle way, and this must
(6.9),(6.10 were performed based on such states. If we try tdoe incorporated as part of the principles of setting up VSFT.
keep associativity everywhere it would give only a trivial For this reason, we re-examine the “bare” infinite matrices
value for such physical quantities independent of the detailglirectly in the following discussion.
of a solutionT; as discussed in the preceding section. Let us first describe the characteristic behaviorm%fin

The authors of(15] suggested a regularization schemene |imit [recallmé=KmZK ~* andmy=M o is given in Eq.
that introduces a “twist anomaly” to obtain nontrivial values. 2.9)]
In our language their proposal is equivalent to a slight shift

of the eigenvalues ahy in such a way that in Eq6.26) the , [xZ O r o
eigenvalues in the upper block are different than those in the mo= 0 Zk = o 1/ (6.21
lower block. While this prescription gave the correct nonzero €

value for G, i_t produced_ the wrong result fdd. Since W€ 7 was given in Eq$2.47—(2.50 andI" was discussed in
have argued in the previous paragraph that a cutoff conS|steths_(2_5LD_(2_62)_ Recall that this matrix occurs in the com-

with associativity cannot alter the conclgsion, a tWiStputation of the wedge states as in E4.16 and it needs to
anomaly must be equivalent to nonassociativity. But breakpe inverted to define the sliver state as in E420. We

ing associativity also breaks the gauge invariance of thgyqyq Jike to re-examine this operation in the lafgdimit to
theory, and this is likely to be the reason for obtaining theidentify a source of associativity anomaly.

wrong value ofH. , , By using the largeN version of the propertie$2.15),
_ Nevertheless some of the argument$1i6] seem to point (5 16 and(2.17), we have the properties of the infinite ma-
in the right direction. The precise way in which the anomaly;yjceg

could occur is in the definition of the inverse of the infinite

matrix m, 2. This general issue should now be investigated in = TT=1, TT=1-vp, Tv=0 ovv=1 ov=Tw.

a systematic way by using our consistent techniques, which (6.22
tie together all the places where the zero eigenvala® _ _

could occur in the largdN limit, and concentrating on the In the same way we can derive the lafgeequations as the

proper definition of fng 2)¥2 This definition has to introduce IMits of Egs.(2.57~(2.59
an associativity anomaly, but the anomaly should be gentle = - - _
enough to keep sufficient gauge symmetry intact. I'r=1, I''=1-uu, Tu=0,
Thus, the emergence of closed strings in open string field _ _ (6.23
theory, as well as the nontrivial values of the masses or cou- uu=1, u=Tw.

plings of fluctuations in VSFT, all need the same source of ) o )
associativity anomaly that resides in the definition of!f one worries about the associativity of the product involved

2)112 in the definition ofI", one may use the following explicit

(mg It is crucial to weigh the desirability of the . .
anomaly versus the gauge invariance of the theory. In th{aorm of the matrix elements df andu to prove these iden-

next section we identify the source of the anomaly. ities directly
Before closing this section, let us mention that there is a

different pr_oposal for the resoll_Jtion of the controvef8%] Teo=Zoo€, Fe o=€Zo o, UeZEZeo
for computing the D-brane tension on the one hand and mass ' ’ ' ’ \/E '
and coupling of the fluctuations on the other hand. In this (6.249

case the approach is based on BSFT which uses conformal
field theory techniques. So far it has not been possible t#vheree,e’ are non-negative even indices as before, but to
translate this proposal to the context of algebraic techniquegefine the last formula we formally extended the expression
used in previous investigatioh$5] or in the present paper. It in Eq. (2.48 for Z, ., to includee’ =0.
must be emphasized, however, that in the proposdB8f We see that the matrik defines ashift operatorin the
there is noT; that solves the equations of motion in Eq. Hilbert spaceH " which appears typically in the solution
(6.7, and this is a way of avoiding the pure gauge configu-generating techniqugd9]. To see it more explicitly, we in-
ration. Until this proposal is understood in the algebraic apiroduce a new basis,
proach and the problems encountered above solved in all . .
languages, there remains a cloud in our understanding. We e=u, e =lu, e=Ie,,....
believe that a key here is the associativity anomaly. .

It is easy to see thdt andI" are the shift operators on this

basis,
C. Origin of associativity anomaly in MSFT
One approach is to define the inverse of potentially sin- Ie,=eqi1, l'eqi=e, (n>0),
gular matrices at finit&l when they are not singular, perform o
all the computations, and sk to infinity at the end. How- I'ep=0, e, -en=23mm-
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We note that we have a close analogy betw&eandI.
One difference is that while the operafbrinterpolates be-
tween the different Hilbert spacelq °?® and H ", T is
defined within the same Hilbert spage®’c". In this sense,
the eigenstate equation is well-defined for Obviously, it
has one zero eigenstate As in our previous pap€i24], it
causes the associativity anomaly,

(I'T)yw=w versus I'(I'w)=T"'u=0,

(6.25

(YT')u=u versus Y(I'u)=0, etc.

where the invers& was defined in Eqs(2.55 with YT
=1. It is interesting that just lik&R exists,Y also exists in
the infinite N limit.

Thus, whilel" has a zero eigenstate in the lafgémit, its

PHYSICAL REVIEW D 66, 066003 (2002

expressions are not only more general, but also considerably
simpler than those in the existing literature, while agreeing
with them whenever they are available in the laiémit.

MSFT, taken with a specific cutoff procedure that guaran-
tees associativity, is apparently a consistent field theory of
open strings. The appearance of closed strings in open string
field theory require an associativity anoma88,40,41,24.

In the context of VSFT we have shown that there has to
be an associativity anomaly in order to recover certain non-
perturbative results. Quantities such as masses and couplings
for fluctuations around a D-brane, the D-brane tension, as
well as closed strings, all depend on the same source of
nonassociativity. Using the MSFT framework, we have iden-
tified in detail the possible source of the anomaly, namely the

zero eigenvalue am, at N— o, and the corresponding non-

transposd” has no zero eigenstate. The other nonzero eigertrivial definition of (m3) =2 This zero eigenvalue is intro-

values are shared Hy andT. This is seen from Eq(2.62)

wherel was diagonalized
T = (ko) YV 1)2Ve(ke) Y2, (6.26

and we saw thatr, became the continuous functior(k)

=tanh@k/4) at largeN. Thus, every nonzero eigenvalue of

duced by the sliver field which defines tibgs-brane. The

breaking of associativity by the definition o) ~*/2 has to
be sufficiently gentle as to maintain enough gauge symmetry.
If this can be successfully accomplished then MSFT will be
useful to compute certain nonperturbative quantities in the
VSFT scenario. We have left this task to future work.

In the setup of MSFT we have used an equal number of

m3 comes in pairs ak+0. On the other hand, we have just even and odd oscillators. Whéh— it is impossible to say
argued that ak=0 there is only one eigenstate. This asym-that they are equal in number. Therefore, it would be inter-

metry which occurs in the larg®l limit is related to the
associativity anomaly.

esting to investigate the case Nf even oscillators andN
+1 odd oscillators in the cutoff theory and then seido

To summarize, the associativity anomaly occurs when wénfinity at the end. In this casg,, is a rectangular matrix at
try to invert the matrices which contain the zero eigenvaludinite N and does not have an inverse. It could be that this
in the continuous spectrum. It is curious that inverses exiswould be an approach for incorporating the associativity
explicitly such aRandY as we have seen. Now we see thatanomaly while still having a cutofi.

for mg of Eq. (6.21), at infinite N the left inverse is different
than the right inverse

, _(r o) L, (YO
(my )= 0o Y/ (Mg )r= o T/ (6.27

The Moyal star formulation for fermionic ghosts should
be possible. Although we have already included bosonized
ghosts in our formulation, we expect to learn more about the
ghost sector and simplify computations that involve the fer-
mionic ghostgsuch as the BRST operajanore directly.

The Moyal formulation allows us to consider the system

one mode at a time in the formalism of noncommutative

This is a characteristic structure of the nonassociative algegeometry that is formally the same as the quantization of the

bra. From these we may defims, >=Kmg, 2K~ and then
try to find a proper definition ofrfi; 2)¥2 It is already evi-

relativistic spinless particle in phase space a la Wigner-Weyl-
Moyal (although the star in MSFT does not follow from

dent that associativity is not trivial and that in this way anguantum mechanics, as emphasized at the end of Seg. Il A
associativity anomaly is likely to be introduced. The gaugeThis makes it tempting to consider the spinning particle and
symmetry needs to be analyzed carefully and then the norihe superparticle with this method of quantization and in-
perturbative quantities in VSFT could be extracted. Sincéventing the corresponding noncommutative geometry in su-
this was not the focus of this paper, we will discuss thesderspace. Perhaps this would be an approach to building the
issues in future work. supersymmetric string field theory that has been a challenge
so far.

The same temptation applies to building the generaliza-
tion of 2T-physics to string field theorj42]. The particle

We have formulated MSFT and showed that it is an easieversion of 2T-physics field theory uses precisely the same
framework for performing computations in string field noncommutative geometry approadivhich does follow
theory. We introduced the monoid algebra as a tool that fafrom quantum mechanigs@nd is therefore a formalism that
cilitates computations. The expressions we obtained for variis directly related to our current formulation of MSFT. In
ous quantities, such as wedge, sliver, projectors, Neumanfact, the hint for introducing the Moyal star product in string
coefficients, vertices both perturbative and nonperturbativefjeld theory came directly from the formalism of 2T-physics
etc., are generalizations that are valid for any frequenciefield theory. Reversing the process, now one can try to find
Ke, Ko fOr any number of string oscillatorsNe Our analytic  the string field theory version of 2T-physics by incorporating

VII. SUMMARY AND OUTLOOK
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the features of 2T field theory2]. NSF-9724831 and JSP8J.S.-Japan cooperative science
Since we have introduced arbitrary frequencigsk, it program. I.B. is grateful to University of Tokyo and Y.M. is
may be possible to apply our more general string field theorgrateful to the Caltech-USC Center for hospitality. We would
formalism to circumstances where string backgrounds altelike thank T. Kawano, I. Kishimoto and Y. Okawa for helpful
the frequencies, such as a quadratic “mass” term in theliscussions.
sigma model. One such case that has arisen recently is called
the “pp wave.” It would be of interest to investigate thisand ~ APPENDIX A: DERIVATION OF MONOID ALGEBRA
similar cases in our string field theory context. ) )
Generalizations of the Moyal product are known in non-  We first note that for any functio; , A, the star product

commutative geometrj43]. If such generalizations of the aCts agusingd; to meand/#¢', and suppressing the midpoint
star product are used in our setup of string field theory, onéSertion
wonders whether this corresponds to strings in various non- _ _(12)i0d’ ,
trivial backgrounds. This question can be investigated by A(&)*Ay(é)=e ALEAAE)[g=¢ (AL
computingn-point vertices using our methods with a given 1
star produgts and comparing them to vertices computed in =A1(§+ —U&’)Az(f’)|§/§
conformal field theory. 2

We also note that when thHé¢S-N Stwo-form field B has a (A2)
nontrivial curvaturedB+#0, Kontsevich's star product be- 1
comes inevitably non-associatiy44], :Az( ¢ 503)A1(§)|grg-
(fxg)*h—f(gxh)~Cyydif ;0 ayh, (A3)

(7.1)  We apply this formula for the product of the two elements in

c=dB. the Monoid algebra,

This is an indication that nontrivial closed string physics canA (&) =A1(&€)* Ax(€) (A4)
be recovered when associativity is broken. One related issue
is that in the presence of nontrividB, the gauge symmetry =Ne~ Mt Bax N e EMaEm e (A5)
of Born-Infeld theory gets modified because of the coupling o ) -
F=F+B. In this sense, the conventional gauge transforma- = NN e [EF(12)ed T IMy[e+ (12)0 ] g~ [ 6+ (12)0d"] Ny
tion is affected by the gauge symmetry of tBdield. This is R
the origin of the appearance of twist&gtheory. It is tempt- Xe Mt mEe (AB)
ing to imagine that the breaking of the gauge symmetry of .
Witten-type SFT in the presence of the associativity anomaly = NN ,eU2Ma hag= My e—éhy (A7)
is directly related to the coupling to the closed string degree ,
of freedom. In this sense, a generalizatior] 44] to the full x @' [oM 1€+ (12)oN ] o(1/4)d oM 09’
string variables(like we did for the flat spageshould be o .
quite interesting. X @ L&'+ (12)Mg "ol Mol £+ (12)M "A,] (A8)

These and other investigations are underway and they will
be reported in future pub"ca‘tions_ To perfOI’m the derivatives we use the basic relations

e~ E+ru(A+BTH e+
ACKNOWLEDGMENTS (L4)aAdg=(£+u)B(é+u) = , (A9)

dr2
[.B. is supported in part by a DOE grant DE-FGO03- [det1+BA)]

84ER40168. Y.M. is supported in part by Grant-in-ANo. e f(&)=f(+v), (A10)

13640267 from the Ministry of Education, Science, Sports

and Culture of Japan. Both Y.M. and I.B. thank the NSF andor any constant vectons,v and constant matrice,B. No-

the JSPS for making possible the collaboration between Tatice that the dimensiod appears in the power of the deter-

kyo University and USC through the collaborative grants,minant. Then we get

NN UM, Nog—eMaé— 6y

12~ (A11)

[de(1+M,oM;0)]%?
x @' [oM1é+ (U2)on ] = [€' +(W2)My Nl T(My 4 oM y0) T E +(12M,, I (A12)
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NNV M, DogeMaé—

(A13)
[de(1+M,yoM,)]9?
@ [E+ oM &+ (U2)on + (UM o) T(My T+ oM10) ~ e+ oMy &+ (U2)on + 3 M5 ) (A14)
NlNze(1/4)>\2M2’1>\2e—§Mlg— Ny
= a2 (A15)
[de{(1l+MyoMq0)]
w @ LEHaM &+ (12)ong +(12M5 Nl (M5 4 oM o) ~H g+ oM £+ (12)ohg +(12M5 h] (A16)
=Nye Mt~ (A17)
|
In the last expression the coefficients of the quadratic, linear, N1,=N;N,[de( 1+ M,oM,o)]~ ¥2eM4MaKapts
and zeroth order terms iéihave been collected to the form (A27)
M=M+(1-Mo)(M; '+ oM;o) ~? where the matricesK(,p);; with a or b=1,2, are the coeffi-
X(1+0M,) (A18) cients of AL\
_ -1 -1
)\12:)\1+(1_M]_O')(Mz_l"f‘O'Ml(T)_l(O')\l"f‘Mz_l)\z) Kll_(O-MZ O-+Ml) ’
(A19) (A28)
Kiz=(o+MaoMy) ™,
NlNze(”“)”ZMz_l"Z
le:[de‘(l+M2(era)]d’2 Ky=—(o+MioMp) 74,
(A29)
w @~ (LN + M5 D) T(My T+ oM o) Hoh My M) K= (M,+ oMy to) L.

(A20) By fairly complex matrix manipulations they can be reas-

These can be rewritten in a form that make explicit the symSeémbled to the form
metry under (3:-2) ando— —o
NaKaphp=(N1+N2)(M1+Mp) "H(A1+\p)
M=M;+(1-M0) (M, +oM0) "X (1+oMy)

(AZl) - ()\12)T( M 12) B 17\ 12 (A30)
=M+ (1+Myo) (M 1+ oMyo) H(1—oM,) and we can also show that
(A22) det(M ) de(1+M,oM o) =def (M,+M,)].
=(M;+M,yoM;)(1+oMyoM) ™t (A31)
+(Ma=M1oMy)(1+0oMioM,) ~H, (A23)  Thus, we can writdN;, in the following form which will be
useful later:
and
_ _ de(lez(T) a7z
A=A+ (1—Myo)(My tH+oMyo) t =
12 1 ( 10-)( 2 o 10-) le NlNZ(de(Z(M1+M2)U]
X +M;?
(k1 +M2722) (h24) Xexg (LB (N1+X2)(Mi+My) YN +Xy)
=Np+(1+Ma0) (M '+ oMaa) * —(UAH(\ 1) (M) "\ 1], (A32)
X(—ohp+ M7 I\ A25
(TRt 29 =Ty de(2M 1) ¥
=(1-M;0)(1+MyoMyo) I\, p( 1 . .
xXexpg —=(N\12) (Mgp) "M ) (A33)
+(1+M,0)(1+MioMyo) " Ih,,  (A26) g M2 (M2 Rz
and where
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NN, Using this formula we comput&*T. (with \;=0, and
Tio= N»,=0,[(1£m)/2]\ as needed We find
def2(M,+M,)o]92
1 — iy _
Xexl{z()‘l"')\z)T(Ml"‘ M) "t (N1 +Nyp) ExT.=N.e**de(2%)exp — émo~1¢)
(A34) x| e(L/32n (1= mTom(1£m)\
is the trace ofA;,. Therefore, we have shown that 1-m\/1xm
Xexpg &l —— || ——|N|— 1. (B5)
2 2
Ar2=T10et(2M 1,07) 92
1, T Similarly we computeT.* Z ( with A;=0,[(1£=m)/2]\ as
Xexpg —| &+ §M12 N2 needed, and ,=0). We find
1 — KX _
XMy £+ zMz;xlz) } (A35) T.xE=N . de(2??) expp — gmo 1)

% { e(L/32 (1= mNom(1=m)\
The results of this appendix were given 8] and are used in

the text.
X exr{ 3

APPENDIX B: GENERAL SOLUTION OF FLUCTUATIONS
AROUND A PROJECTOR

1+m

2

1=m
T Ny

—1]. (B6)

Now, taking into account tham?=1 andm'=—omo?

Let us consider any project@& of the form of Eq.(6.2) (symmetricM =mo 1), we see that these expressions sim-
for any matrixm that satisfiesn?=1. We want to give here plify to
the solution that is analogous to the matrix solution Tqr
given in Eqg.(6.11). Namely, we expect the analogue of a row
and a column, which we will denote &s, . Two particular (U3 = (=mDom(I=mh . — g0 1 (B7)
solutions forT.. have the following explicit form:

L= Therefore
T.=N.e**de(29?)exp — £émo1¢)

X (etlt=mi2n_ 1y (B1) E+xT,=0, E*T_=T_ (B8)

wherex* is the midpoint. The factoe* is insensitive to TorE=T,, T*2=0, (B9)
the star product, so we can ignore it in the following argu-
ment.

To verify that theseT .. are solutions we use the product
formula for monoid elementsh,=Aje €M7 €6\ with
identical m's, which simplifies to the following form when
m’=1: ExT,.+T.*E=T., (B10)

as expected from columns and rows if fhe were matrices.
So we find

e fmo ey, (B2)  which shows that we have indeed a solution for angnd
any coefficients\/, e'* %,
Using these properties df.. a more general solution is

1+m 1-m constructed as a superposition of the form
A= T)\1+T)\2 (B3)
T(X,Xe,Pe) = f AN f 4 (N (e F Mz — )=
K12: —rl(]'m)\l"l' —rzo'm)\z J—
2 2 +E_(xn)(eflA-mEN_1y=]  (B11)
1 _
T3 (Mohamha0hy). B tor any functionsf . (X,\).
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