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A new cosmological scenario in string theory
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We consider new cosmological solutions with a collapsing, an intermediate and an expanding phase. The
boundary between the expanding~collapsing! phase and the intermediate phase is seen by comoving observers
as a cosmological past~future! horizon. The solutions are naturally embedded in string and M theory. In the
particular case of a two-dimensional cosmology, space-time is flat with an identification under boost and
translation transformations. We consider the corresponding string theory orbifold and calculate the modular
invariant one-loop partition function. In this case there is a strong parallel with the BTZ black hole. The higher
dimensional cosmologies have a timelike curvature singularity in the intermediate region. In some cases the
string coupling can be made small throughout all of space-time but string corrections become important at the
singularity. This happens where string winding modes become light which could resolve the singularity. The
new proposed space-time causal structure could have implications for cosmology, independently of string
theory.
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I. INTRODUCTION

One of the central problems in our present view of t
Universe has to do with the cosmological singularity. T
observation of an expanding Universe leads us to believe
in the past the Universe was much denser. At the Pla
scale general relativity breaks down where it is usually
lieved that a spacelike cosmological singularity develo
Despite the great advances of particle cosmology from
grand unified theory~GUT! scale to present times, the un
derstanding of the cosmological singularity remains a ch
lenge. The resolution of this problem is one of the ma
motivations to find a quantum theory of gravity.

It has long been understood that string theory, as a c
sistent theory of gravity, could be a good starting point
investigate the universe at the Planck scale~see @1# for a
review and references!. In the pre-big-bang scenario, th
Universe starts in a contracting phase until string effe
along a spacelike hypersurface become important. From
spacelike hypersurface the Universe will evolve to t
present expanding phase. The main problem that has
vented a deeper understanding of the singularity problem
the understanding of the stringy phase. Recently, there
been a new proposal for a big-crunch–big-bang transi
@2,3#. These authors considered a toy model in which spa
time is seen as flat space with an identification along bo
transformations, an orbifold earlier investigated in@4#. A
problem in this string compactification is that there a
closed timelike curves and space-time is not Hausdorff.
even if space-time is flat and there is no curvature singu
ity, there is still a singularity at the big-bang. This proble
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has motivated our research. We shall present a t
dimensional toy model where we manage to smooth
string orbifold and to hide the closed timelike curves beh
a cosmological horizon. Related work, with a different kin
of orbifold, appeared recently in@5#.

The two-dimensional toy model may have a tracta
string theory description as an orbifold of flat space, and
initiate its investigation. On the other hand, as a solution
the gravity low energy equations, one expects that the n
space-time causal structure of the two-dimensional
model can be generalized to higher dimensions. Indeed,
shall construct new cosmological solutions for open U
verses in arbitrary dimensions with three phases:~1! A col-
lapsing phase with a future cosmological horizon;~2! an in-
termediate phase where there is a timelike curvat
singularity;~3! an expanding phase with a past cosmologi
horizon. In the context of string theory, we shall argue th
near the timelike curvature singularity there are string win
ing modes that are becoming very light. This fact led us
conjecture that when these new light states are taken
account the singularity could be resolved, smoothing the
ometry.

This paper is organized in the following way. In Sec.
we present the new space-time identifications that lead
two-dimensional cosmological solution. Here we were
spired by an analogous construction for the Ban˜ados-
Teitelboim-Zanelli ~BTZ! black hole @6,7#. We start with
three-dimensional flat space and identify points in space-t
under boost and translation transformations. After Kału˙a-
Klein reduction, we find a cosmological solution with th
properties described in the previous paragraph. In this c
however, there is no singularity. The apparent singula
corresponds to the surface where the compactification ci
becomes null. As a consequence, there will be causal ti
like curves in the intermediate region that can be close
one passes the causal singularity. The cosmological obs
©2002 The American Physical Society01-1
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ers in the expanding and collapsing regions will not inters
these closed timelike curves.

The geometrical construction of the two-dimension
model can be embedded in string theory. This topic is c
ered in Sec. III. We consider the case of a string orbifold a
analyze first the region of validity of the corresponding gra
ity solution. It is seen that in the intermediate region, wh
there are closed timelike curves, string effects become
portant. We calculate the one-loop bosonic partition funct
for the orbifold and show that it is modular invariant. Th
introduction of a translation in the boost identification n
only makes space-time smoother, but also introduces a r
larization scheme in the calculation of the string partiti
function.

In Sec. IV we generalize the two-dimensional cosmolo
cal toy model to higher dimensions. We start with a theory
gravity with a scalar field and a form field strength. Then
compactify space-time on a~Ricci! flat manifold along
which there is a flux of the form field. Comparison with th
two-dimensional case led us to require the geometry to
smooth and invariant along a null hypersurface that we
terpret as the cosmological horizon. These boundary co
tions and the homogeneity requirement of the cosmolog
solution imply that the geometry has the form of the high
dimensional Milne Universe along this null hypersurfac
leading to a negative curvature Universe. We analyze
resulting geometry, which has collapsing, intermediate
expanding regions as mentioned above. We finish this sec
by embedding the new solutions in string and M theory. R
lated work that considers a different type of time-depend
string theory solutions by fixing boundary conditions
spacelike hypersurfaces appeared very recently in@8#.

In Sec. V we give our conclusions. We show that in t
new cosmological solutions the usual cosmology horiz
problem does not arise. Then we comment on the poss
resolution of the cosmological timelike singularity. We arg
that many new solutions can be found by imposing
boundary conditions using a different scalar potential. In p
ticular, one can consider potentials of the type used in s
dard particle cosmology, avoiding the spacelike singula
of the big bang.

II. COSMOLOGICAL SOLUTION AS A QUOTIENT
OF FLAT SPACE

Consider flat space-time in 211 gravity with line element

ds252dT21dX21dY2. ~2.1!

We shall identify points on this space along orbits of a s
group of its isometry group, i.e. a subgroup of the thre
dimensional Poincare´ group. The situation is analogous
the BTZ black hole that is obtained from AdS3 in 211 grav-
ity with a negative cosmological constant@6,7#. Later we
shall embed the three-dimensional geometry here derive
string and M theory.

Let k be the Killing vector

k52p i ~DJ1RP!, ~2.2!
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where

iJ5T
]

]X
1X

]

]T
, iP5

]

]Y
, ~2.3!

are the generators of Lorentz boosts along theX direction
and translations along theY direction, respectively. The Kill-
ing vectork defines a one parameter subgroup of isometr
We shall identify pointsQ along the orbits of this subgrou
according to

Q;exp~k!Q. ~2.4!

The parameterD is related to the boost velocity byv
5tanh(2pD) and 2pR is the translation length. The resultin
space is a smooth manifold with a flat metric, because
identifications are along an isometry of the initial space w
no fixed points. However, now there are curves that j
identified points and one needs to worry about the cau
structure of the resulting space.

A necessary condition for the absence of timelike and n
curves isk•k.0. The boundary of this region is the surfac
k•k50 described by

2T21X25
1

E2
, ~2.5!

whereE has dimension length21 and is defined by

E5
D

R
. ~2.6!

Notice that the action induced by the Killing vectork has no
fixed points because the vectorP always induces a transla
tion along theY direction. The orbits ofk in the quotient
space are closed curves and cannot be continuously
formed to a point. These orbits are null on the surface
fined by Eq.~2.5! and become timelike beyond it.

Recently, Khoury et al.@2# considered the cosmologica
solution arising from the identification of points in spac
time that are related by a boost transformation. This c
corresponds to settingR50 in our model. In their work, the
point T5X50 is a fixed point of the orbifold and the ligh
raysuTu5uXu are mapped arbitrarily close to the origin. As
consequence, if one does not excise any region of sp
time, there will be causal closed curves arbitrarily close
the pointT5X50. Also, the resulting manifold is not Haus
dorff. In the model proposed here, the introduction of t
translation in the space-time identification has resolved th
problems. In particular, we also have causal closed cur
but we shall argue that, from the point of view of the co
mological observer, these curves are not observable, an
inconsistencies should arise.

To understand the causal structure of the quotient spa
is convenient to divide space in three different regions

I: uTu.uXu andk•k.0,
~2.7!

II: uTu,uXu and k•k.0,
1-2
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A NEW COSMOLOGICAL SCENARIO IN STRING THEORY PHYSICAL REVIEW D66, 066001 ~2002!
III: k•k,0.

We shall call region I the outer region. ForT.0 (T,0) it
describes an expanding~collapsing! universe. In this region
the above condition can be resumed tok•k.(2pR)2. Re-
gion II is the inside region, where 0,k•k,(2pR)2. The
region beyond whichk becomes timelike is called region III
In Fig. 1 the different regions are represented. The front
between regions I and II are null surfaces. This fact is v
important because these surfaces become horizons and
vent causal closed curves from being extended to both
expanding and collapsing outer regions.

A. Compactification to two dimensions

We want to interpret this flat geometry from the tw
dimensional point of view. In other words, we want to fin
the coordinate transformation that brings the Killing vectok
to the form

k52pR
]

]y
. ~2.8!

Then, to obtain the two-dimensional cosmological solut
we consider the Kałuz˙a-Klein compactification

ds3
25ds2

21e2s~dy1Aadxa!2, ~2.9!

keeping in mind that one can always add extra spect
dimensions. The above Kałuz˙a-Klein reduction of the three
dimensional Einstein-Hilbert action gives

S5
1

2k2
2E d2xA2gesFR2

1

4
e2sF2G , ~2.10!

wherek2 is the two-dimensional gravitational coupling. Th
only dynamical degree of freedom is the scalar field.

FIG. 1. The different regions in space-time in the light co
coordinatesX65(X6T)/A2. The outer regions I will be inter-
preted as the cosmological collapsing and expanding phase
regions III there are closed timelike curves that can be deforme
regions II, but always close in region III. The surfaceuTu5uXu acts
as a horizon because the closed timelike curves cannot be defo
to enter regions I.
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Now let us analyze the geometry from the tw
dimensional point of view. We consider the following coo
dinate transformations in both regions I and II:

I: H T5tcosh@E~x1y!#,

X5t sinh@E~x1y!#,

Y5y,
~2.11!

II: H T5t sinh@E~x1y!#,

X5t cosh@E~x1y!#,

Y5y.

In the new coordinate system the killing vectork is the form
~2.8! required for compactification. We consider first the r
gion I, where in the new coordinate system the line elem
becomes

ds252dt21
~Et!2

L~ t !
dx21L~ t !S dy1

~Et!2

L~ t !
dxD 2

,

~2.12!

with

L~ t !511~Et!2. ~2.13!

From the above Kałuz˙a-Klein ansatz it is straightforward to
read the two-dimensional fields from the metric eleme
Both the t and x coordinates run from2` to 1`. The
regiont,0 describes a contracting universe while the reg
t.0 describes an expanding universe. The time coordinat
is the proper time for a comoving observer with the expa
sion ~or collapse!. We shall focus on the expanding regio
The Kałuża-Klein 2-form field strength is given by

F5
2E2t

L2
dt`dx, ~2.14!

which vanishes for large cosmological times, where the m
ric becomes flat. The radius of the compactification cir
R(t)5RAL(t), determined by the scalar field, is growin
with time, and, therefore, at later times the Kałuz˙a-Klein
approximation is no longer valid. At earlier times, forEt
!1, the metric becomes

ds2;2dt21~Et!2dx2. ~2.15!

At the surfacet50, x56` there is a harmless coordina
singularity. In fact, at this surface the metric has the us
form of the Milne universe obtained from a coordinate tran
formation of the usual flat space metric. This surface rep
sents the past cosmological horizon for the observers in
expanding region I. The radius of the compact circle on
horizon isR.

The Kałuża-Klein form of the metric in region II can be
obtained from the coordinate transformation~2.11!. The final
result is a line element that can be obtained from that
region I in Eq.~2.12! by the replacementt→ i t :

In
to

ed
1-3
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LORENZO CORNALBA AND MIGUEL S. COSTA PHYSICAL REVIEW D66, 066001 ~2002!
ds252
~Et!2

L~ t !
dx21dt21L~ t !S dy2

~Et!2

L~ t !
dxD 2

,

~2.16!

where

L~ t !512~Et!2. ~2.17!

Now the coordinatest and x have flipped their spatial an
timelike characters. The surfacet50, x56` becomes a
horizon for an observer in region II using this coordina
system. In fact, near this surface the metric becomes
Rindler metric. As we move away from the horizon the co
pactification radius decreases and vanishes atEt51. At this
surface the two-dimensional curvature and the invariantF2

diverge. This is the surface where the killing vectork be-
comes null, and the Kałuz˙a-Klein approximation breaks
down. Of course from the higher dimensional point of vie
this is not a curvature singularity because the metric i
quotient of flat space, but it is the locus where the orbits ok
become causal. Figure 2 contains the Carter-Penrose dia
for the geometry at a fixed position in the compact direct
y. Similar two-dimensional space-time causal structures w
considered in@9,10#.

As a remark let us note that there is a set of coordina
that extends the metric in the outer region I to the inn
region II, and that this metric is well behaved througho
these regions. This is easily seen because the metric in re
I near the horizon behaves exactly as that for the Milne u
verse. So the coordinate transformation

T̃5t cosh~Ex!, X̃5t sinh~Ex!, ~2.18!

FIG. 2. Carter-Penrose diagram for the two-dimensional Kału˙a-
Klein cosmology. Spatial, future and past infinities are defined w
respect to the expanding region I. The past~future! horizon of the
expanding~collapsing! outer region is a Cauchy surface. The si
gularity att51/E is an artifact of the compactification because th
is the surface wherek becomes null.
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in the solution~2.12! also covers region II.

B. Geometry as a limit of the BTZ black hole

We have described, in the previous subsections, ge
etries derived as quotients of flat Minkowski thre
dimensional space. In this subsection we show that th
geometries have natural generalizations as quotients
AdS3, which are nothing but the usual BTZ black hole sol
tions. Therefore we can regard the geometries conside
previously as a limit of the BTZ black hole.

To make this relation more precise, we describe AdS3, as
usual, as the surface

2~Z0!21~Z1!21~Z2!22~Z3!252L2, ~2.19!

with the parametrization

Z01 iZ352 ieiT/LAL21X21Y2,
~2.20!

Z11 iZ25X1 iY.

The symmetry group of AdS3 is SO(2,2), with generators
iJmn5Zm]n2Zn]m . In the limit L→` we recover flat
Minkowski spaceR1,2 with isometry groupISO(1,2). More-
over, the generatorsJmn converge to the generatorsPm , Mmn
(m,n50,1,2) of ISO(1,2) according to

Jmn→Mmn ,
1

L
J3m→Pm . ~2.21!

Therefore, the natural generalization of the construction c
sidered in the last section is to consider the quotient of Ad3
by the isometryek, where

k52p i FDJ101S R

L D J32G . ~2.22!

This corresponds@7# to the BTZ black hole geometry@6#

dsBTZ
2 52N2dv21N22dr21r 2~df1Nfdv !2,

~2.23!

where

N25
1

L2r 2
~r 22r 1

2 !~r 22r 2
2 !,

~2.24!

Nf5
1

L

r 1r 2

r 2
,

and

r 15LD, r 25R. ~2.25!

We assume thatL.E21, so thatr 1.r 2 . Recall that this
geometry describes a rotating black hole with inner and ou
horizons atr 5r 2 and r 5r 1 . In the regionsr .r 1 and r
,r 2 the coordinater is spacelike, while in the regionr 2

,r ,r 1 the coordinater is timelike.

h

1-4
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A NEW COSMOLOGICAL SCENARIO IN STRING THEORY PHYSICAL REVIEW D66, 066001 ~2002!
The Euclidean continuation of the time coordinate,v
→tE , in the regionsr .r 1 and r ,r 2 , yields quotients of
the hyperbolic three-planeH3 under an element of the sym
metry groupSO(1,3) @11#. Recall that quotients ofH3 are
parametrized by the upper complex half-plane as follows
we write the metric ofH3 as

dsH3

2 5L2F ~11r2!dtE
21

dr2

11r2
1r2df2G , ~2.26!

then a quotient parametrized byt5t11 i t2 is given by the
identifications

tE;tE12pt2 , f;f12pt1 . ~2.27!

This corresponds, from the point of view of th
2-dimensional CFT on the AdS boundary, to considering
CFT on a torus with modular parametert @12#. The Euclid-
ean continuation of the regionsr .r 1 and r ,r 2 give quo-
tients of H3 with modular parameterstout and t in , respec-
tively, where

tout5
1

L
~r 21 ir 1!5

R

L
1 iD,

~2.28!

t in5
1

L
~r 11 ir 2!5D1 i

R

L
.

Now we can easily connect the discussion above with
compactification considered in the previous subsectio
which is obtained in the limitL→`, with R, D and r fixed.
In this limit clearly r 25R remains finite and

r 15DL→`, ~2.29!

so that the outer regionr .r 1 is no longer part of the geom
etry. Then the intermediate regionr .r 2 corresponds to re
gion I in the previous subsections, andr, which is a timelike
coordinate in this region, is related to the cosmological tim
More precisely, in the limitL→` one obtains the geometr

dsBTZ
2 52

1

D2 S r 2

r 22R2D dr21D2S r 22R2

r 2 D dv2

1r 2S df1
DR

r 2
dv D 2

, ~2.30!

which is nothing but the solution~2.12! under the change o
coordinates

S r

RD 2

511~Et!2, Dv52x,

~2.31!
Rf5y1x.

In the above geometry one can consider the Euclid
continuation of the inner regionr ,r 2 , which, as described
above, gives the quotient ofH3 described by the modula
06600
If

e

e
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parametert in . The geometry~2.26! becomes~calling LtE
5z and Lr5r ) the usual flat Euclidean metricdz21dr2

1r 2df2 with identifications

z;z12pR, f;f12pD. ~2.32!

This is clearly the geometry of a Euclidean flux brane, as i
natural to expect.

C. Closed timelike curves?

Now we come to the delicate point of whether we shou
excise regions III, interpreting the surfacek•k50 as a
causal singularity. We shall advocate that, from the point
view of an observer in the expanding~or collapsing! cosmo-
logical region I, there is no contradiction arising from th
inclusion of those regions.

There are closed timelike curves in the region III whe
k•k,0. These curves can be deformed to the region
resulting in causal closed curves that are partially in regio
~one needs the region III to close the open causal curve
region II that start and end on the surfacek•k50). How-
ever, there are no causal closed curves passing throug
gion I because of the cosmological horizon. Indeed the h
zon is a Cauchy surface and therefore no causal cu
intersects it more than once. Hence the comoving obse
never intersects any closed causal curve. In this sense
existence of the closed timelike curves is harmless. Any
of initial conditions at cosmological timet0 will evolve with-
out contradiction. Also, the existence of closed timeli
curves shielded by horizons appears in the BTZ black h
@6,7#, as well as in other higher dimensional rotating bla
holes@13#, both cases having string theory dual descriptio
Furthermore, near the causal singularity one expects new
grees of freedom to become important which could prev
the existence of the closed timelike curves~see@14# for a
related discussion in the case of the BTZ black hole!.

This geometry represents a smooth transition from a c
lapsing phase to an expanding phase, with the additiona
gions II and III in between. To understand how a set of init
boundary conditions propagates from the collapsing to
expanding phase, it is necessary to understand the evolu
throughout the intermediate regions. Therefore it is import
to investigate the modifications in field and string theor
due to the boundary conditions here imposed. For exam
in region II there is an increasing electric field and one wo
expect that pair production of Kałuz˙a-Klein particles occurs.
Also, the proper radius of the Kałuz˙a-Klein circle is decreas-
ing and therefore these particles become very massive a
electric field becomes very large. We can do an estimation
the pair production rate using the Schwinger formulaG
;exp„2p(m/E)…, wherem51/R(t) is the particle’s mass
andE 252F2/2 determines the electric field. This gives th
following estimation for the pair production rate:

G;expS 2
pL~ t !

2ER D . ~2.33!

Asymptotically in region I this gives a very small rate. Alon
the light rays, it can be made small providedER5D!1. In
1-5
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LORENZO CORNALBA AND MIGUEL S. COSTA PHYSICAL REVIEW D66, 066001 ~2002!
region II the argument in the exponential becomes very sm
and the semi-classical approximation for the nucleation
breaks down. Nevertheless, one expects that there wil
Kałuża-Klein particles produced in region II that, for late
cosmological times in region I, move at constant veloc
and will be distributed homogeneously through the cons
time sections of the comoving observer with the expans
Note that this invariance under translations inx is nothing
but the unbrokenSO(1,1) subgroup of theISO(1,2) left
invariant by the compactification.

Clearly, the above example points to a better understa
ing of quantum processes in this space-time. In the next
tion, we start the investigation of these issues by embedd
this construction in string theory.

III. STRING ORBIFOLD AS A COSMOLOGY

The above construction of a cosmological background
a quotient of flat space can be embedded in string and
theory by adding the appropriate number of flat specta
directions. In the case of ten-dimensional string theory o
has the usual string in flat space but there is a twisted se
arising from the orbifold compactification. Before we an
lyze this string theory let us briefly describe the underlyi
geometry and its limits of validity.

Considering type II strings, the compactification on
circle to the nine-dimensional string frame is given by

ds10
2 5ds9

21e2s~dx91Aadxa!2, ~3.1!

wheref9[f2s/2 is the nine-dimensional dilaton field. I
one adds seven spectator flat directions to the constructio
the last section and reduces along they direction, one obtains

ds9
252dt21

~Et!2

L~ t !
dx21ds2~E7!,

~3.2!

e2s511~Et!2[L~ t !, A5
~Et!2

L~ t !
dx.

The space-time causal structure of this geometry and
maximal extension was explained before. The conditions
the validity of the nine-dimensional description are as f
lows. First, the nine-dimensional string coupling has to
small

g95
ga81/4

AR~ t !
!1. ~3.3!

In region I the coupling decreases with time; therefore t
condition always holds provided the ten-dimensional str
couplingg is small. In region II, the condition fails near th
causal singularity and one needs to use the ten-dimens
approximation. Indeed, since the ten-dimensional coupling
remains constant, the string orbifold analysis holds as lon
g is kept small.

Second, the typical energy scaleE5D/R in the geometry
described by Eq.~3.2! should be much smaller than the ma
sive string states scale
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E!
1

Aa8
⇒ D!

R

Aa8
. ~3.4!

This condition can always be satisfied forD sufficiently
small. Third, the string winding states should be very m
sive, i.e.

E!
R~ t !

a8
, ~3.5!

which in region I is compatible with the condition abov
However, in region II the winding states become very lig
because the proper size of the circle converges to zero.
means that in this region new light string degrees of freed
become important and one needs to use the string orbi
description. Finally, space-time is effectively nin
dimensional provided the Kałuz˙a-Klein modes are very mas
sive

E!
1

R~ t !
. ~3.6!

In region I, this condition will fail for large cosmologica
time. However, the region of validity can be made arbitrar
large by choosingD very small. In region II the condition is
satisfied because the Kałuz˙a-Klein modes become very mas
sive. At last, one could worry that the curvature correctio
become important in region II; however, since the solution
a flat space orbifold it seems reasonable to expect that s
corrections vanish.

In the above analysis no assumption was made regar
the size of the compactification radiusR compared with the
string length. For some spacelike surface at timet in regionI,
providedD is sufficiently small, the typical energy scaleE
5D/R for phenomena on the cosmological solution is
ways much smaller than the Kałuz˙a-Klein and string mass
gaps. Also, the nine-dimensional string coupling is small.
region II the Kałuz˙a-Klein states become very massive b
the associated electric field becomes very large pointing
the Schwinger process, the winding states become very l
and the nine-dimensional string coupling blows up. Clea
in region II the relevant description is in terms of the te
dimensional string orbifold, to which we now turn.

A. String partition function

In this section we start to analyze the motion of
~bosonic! string in the quotient space described in the pre
ous sections. We leave the generalization to the supers
to future work. Readers that are not familiar with strin
theory may wish to skip this subsection and move to
classical gravity analysis in Sec. IV~Refs. @15,16# provide
the necessary background for the techniques presented h!.
Similar computations have been carried out in the case
open strings in electric fields@17#, D-branes in relative mo-
tion @18# and closed strings in magnetic backgroun
@19,20#. We will limit ourselves to the computation
1-6
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A NEW COSMOLOGICAL SCENARIO IN STRING THEORY PHYSICAL REVIEW D66, 066001 ~2002!
of the one-loop partition function, leaving to future work
more detailed analysis of the results. We will use units s
that a852.

We use, in the following, light cone coordinates

X65
1

A2
~X6T!, ~3.7!

so that the basic identifications introduced in Sec. II
given by

X6;e62pDX6, Y;Y12pR. ~3.8!

Let us then focus on the winding sector with winding nu
ber w. First of all, it is clear that the mode expansion of t
field Y(z,z̄) is the usual one of a compact boson. The o
difference with the standardS1 compactification is given by
a modified constraint on the total momentumP, which must
be compatible with the identification~3.8! and must therefore
satisfy

exp@2p i ~RP1DJ!#51,
~3.9!

P5
1

R
~n2DJ!,

wheren is an integer andJ is the boost operator. The left an
right momenta forY are then given by

pL,R5P6
wR

2
. ~3.10!

The mode expansions of the fieldsX6(z,z̄) are, on the other
hand, modified and are given explicitly by

X6~z,z̄!5 i(
n

S 1

n6 in

an
6

zn6 in
1

1

n7 in

ãn
6

z̄n7 inD ,

~3.11!

wheren5wD and where the oscillators satisfy the comm
tation relations

@am
6 ,an

7#5~m6 in!dm1n ,
~3.12!

@ ãm
6 ,ãn

7#5~m7 in!dm1n ,

and the Hermitianity conditions (am
6)†5a2m

6 , (ãm
6)†

5ã2m
6 . The contribution to the Virasoro generators from t

fields X6 has been computed previously in@18,19# and is
given by (••• denotes contributions from other fields!

L05•••1
1

2
in~12 in!1 (

n>1
a2n

1 an
21 (

n>0
a2n

2 an
1 ,

~3.13!

L̃05•••1
1

2
in~12 in!1 (

n>0
ã2n

1 ãn
21 (

n>1
ã2n

2 ãn
1 ,
06600
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where implicitly we have chosen to considera0
2 and ã0

1 as
creation operators.1 Finally, the boost operatorJ5JL1JR
defined byi @J,X6#56X6, is given explicitly by

JL52 i (
n>1

Nn
11 i (

n>0
Nn

2 ,

~3.14!

JR52 i (
n>0

Ñn
11 i (

n>1
Ñn

2 ,

where Nn
65(n7 in)21a2n

6 an
7 and Ñn

65(n6 in)21ã2n
6 ãn

7

are the usual occupation numbers. It is then clear that
can rewrite thetotal Virasoro generators for the three boso
T, X, andY in terms of the usualintegral level numbersL,L̃
and the boost operator as

L05
1

2
in~12 in!1nJL1

1

2
pL

21L,

~3.15!

L̃05
1

2
in~12 in!2nJR1

1

2
pR

21L̃.

We are now ready to compute the partition functionZ3 for
the three bosonsT, X andY. We have

Z35~qq̄!21/8(
w,n

TrqLq̄L̃S q

q̄
D (1/2)nw

3~qq̄!(1/2)[(wR/2)21„n2DJ/R…2]

3~qq̄!(1/2)n(JL2JR)~qq̄!(1/2)in(12 in), ~3.16!

where, as customary,q5e2p i t and t5t11 i t2. Performing
the usual Poisson resummation onn brings the above expres
sion to the simpler form

Z35~qq̄!21/8
R

A2t2
(

w,w8
expF2

pR2

2t2
TT̄

22pt2D2w2Gq(1/2)inTrL~e2p iTDJLqL!q̄(1/2)in

3TrR~e2p i T̄DJRq̄L̃!, ~3.17!

where

T5wt2w8. ~3.18!

In the above sum the term withw5w850, which is by itself
modular invariant, gives the usual partition function of t
uncompactified theory. We will therefore focus, in the fo
lowing, only on the other terms in the sum~we will denote

1The correct treatment of the zero modes is quite subtle. In
they form two copies of the Heisenberg algebra@a0

1 ,a0
2#

5@ ã0
2 ,ã0

1#5 in. We choose to quantize the zero modes as crea
and annihilation operators in order to preserve the conformal inv
ance of the partition function.
1-7
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the restricted sum by(8). With this in mind, the computa
tion of the holomorphic trace TrL is simple. Definingc

5e2p i ( iDT)5qine2pw8D, one has

TrL~e2p iTDJLqL!

5
1

12c)n>1

1

~12qn!~12qnc!~12qnc21!

5 iq1/8c21/2
1

u1~ iDTut!
. ~3.19!

Similarly, the antiholomorphic trace is given by TrR5 c̄TrL̄.
Therefore, the partition functionZ3 is given by the final ex-
pression~reinsertinga8)

Z35
R

Aa8t2
(

w,w8
8e2(pR2/a8)(TT̄/t2)22pt2D2w2

3uu1~ iDTut!u22. ~3.20!

Using the fact that]zu1(zut)uz5052ph3(t), we see that, as
D→0, the partition function diverges. This is due to the fa
that, in the limit, the rotational symmetry in theX–T plane is
restored and the partition function is then proportional to
space-time volume. Moreover, the modular properties ofu1
insure modular invariance of the full expression.

In order to compute the total partition function, we c
use the usual trick@21# of extending the integration regio
from the fundamental domainutu.1, ut1u, 1

2 to the strip
G5$tPCut2.0,ut1u, 1

2 %, while at the same time restrictin
the sum in Eq.~3.20! to w50,w8>1. Then we have

Z5E
G

dtdt̄

t2
2

ZgZb
23Z̃3 , ~3.21!

whereZg andZb are the usual partition functions for theb-c
ghosts and for a noncompact boson, and where

Z̃35
R

Aa8t2
(

w8>1

e2(pR2/a8)(w8/2/t2)uu1~ iDw8ut!u22.

~3.22!

Let us note that the above expression has strong simi
ties with the expression for the Euclidean BTZ black ho
partition function found in@22#, as expected from the analy
sis in Sec. II B. The expression forZ̃3 in fact exhibits a
similar structure of poles in the regionG, which are in cor-
respondence with the zeros ofu1( iDw8ut). The function
u1(zut), as a function ofz, has in fact a simple zero at th
pointsz5at2b (a,bPZ). More precisely

u1~zut!;~2 !a1b2ph3~t!e2p ia(a11)t~z2at1b!.
~3.23!

Then the poles ofZ̃3 are determined by the equationiDw8
5at2b and are located at
06600
t

e

ri-

t5
1

a
~b1 iDw8!. ~3.24!

In order for the poles to be inG, we must havea>1 and
ubu<2a. For fixedw8, the structure of the poles is the sam
as those found in@22#.

Finally let us comment on the origin of the poles. Th
arise from the zero modes of the winding sector. In fa
stretched winding strings have a length which is 2pR when
they sit at the originX5T50, but which decreases as the
approach the causal singularity, where they become alm
massless. One can easily analyze the classical dynamic
these winding strings. In particular, in region I these strin
move from the collapsing to the expanding regions, eit
passing through the origin where they have minimal len
or passing through the intermediate region. At large cosm
logical times these strings become very long and stretch
Such states could be the origin of the pole structure ofZ3. In
particular, the physical meaning ofZ3 could be related to
nucleation processes of such long strings.

We leave to future work a more detailed analysis of t
integral ~3.21! and of the precise physical meaning of th
poles in Z̃3, and the study of the possible relation of th
winding string modes with the long strings studied
@22–25#.

B. M theory and 9-11 flip

In this subsection we comment on the M-theory comp
tification. Consider the construction of Sec. II and add ei
spectator flat directions. Then reducing to the type IIA theo
one obtains the following background fields:

ds10
2 5L1/2@2dt21ds2~E8!#1

~Et!2

L1/2
dx2,

~3.25!

e4f/35L~ t !, A5
~Et!2

L
dx.

By compactifying one of the spectator directions on a circ
this solution is related to the previous nine-dimensional
lution by a 9-11 flip. Also, one can analyze the validity of th
gravity approximation, finding that this description is appr
priate for a large expansion period in region I provided th
the boost parameterD is sufficiently small, and that the com
pactification radiusR satisfies R!Aa8 ~and thereforeg
!1). In region II, the string coupling becomes small sin
the proper length of the compactification circle is decreasi
Near the causal singularity the string coupling becomes z
and the compactification radius becomes lightlike. Hen
one expects that the correct description of the apparent
dimensional singularity is given by matrix theory. We thin
this issue deserves further investigation because it wo
give a resolution of the singularity in the above cosmologi
solution.
1-8
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IV. COSMOLOGICAL SOLUTIONS IN ARBITRARY
DIMENSIONS

So far we have considered geometries that arise f
Kałuża-Klein compactifications. Naturally, one expects th
such geometries can be generalized to arbitrary dimens
and arbitrary degrees of the form gauge field. These n
space-times should share many properties with the c
where space-time is a quotient of flat space. The situatio
analogous to the BTZ black hole, which is simply a quotie
of three-dimensional anti–de Sitter space but retains
standard properties of higher dimensional black holes.

A short cut to constructing such a generalization is
realize the similarity between the dilatonic Melvin solutio
@26# and the cosmological solution of Sec. II. In the case
the Kałuża-Klein Melvin solution, the geometry is simpl
flat space with an identification along the orbits of the iso
etry subgroup generated by rotations on a plane together
translations@27#. Hence, replacing the boost by a rotation
our construction one recovers the Kałuz˙a-Klein Melvin solu-
tion. For example, starting with the cosmological soluti
~3.25! and making the analytic continuationt→ ir , E→ iE,
E8→M8, one obtains the flux 7-brane solution of the type I
theory @28,29#. This suggests that the generalization of t
two-dimensional cosmological solution to higher dimensio
can be found by an analytic continuation of the flux bra
geometries@30–32#. Earlier work on cosmological string
backgrounds can be found in@33–36#.

A. The action and basic ansatz

To keep our discussion general we shall conside
D-dimensional space-time with ad̃-form field strengthF
5dA and a scalar fieldf. The corresponding gravitationa
action is

S5
1

2kD
2 E dDxA2gFR2

1

2
~]f!22

1

2d̃!
eafF2G ,

~4.1!

wherekD is the gravitational coupling. Of course this actio
can be regarded as a consistent truncation of either strin
M-theory low energy actions, whereF represents any of the
field strengths or electromagnetic dual in these theories.
shall reduce the theory tod115D2d̃ dimensions accord
ing to the ansatz

dsD
2 5e2[2d̃/(d21)]lds21e2lds2~Ed̃!,

~4.2!
F5Ee~Ed̃!.

Then the action~4.1! becomes effectively

S5
1

2k2E dd11xA2gFR2
1

2
~]f!2

2
d̃~ d̃1d21!

d21
~]l!22V~f,l!G , ~4.3!
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where k is the (d11)-dimensional gravitational coupling
and we conveniently use the Einstein metric. The poten
V(f,l) has the form

V~f,l!5
E2

2
expS af22

dd̃

d21
l D . ~4.4!

Before deriving the equations of motion for the action it
convenient to define the scalar fieldsr andc by the relations

r5a~ d̃1d21!l1df,
~4.5!

c5
2dd̃

d21
l2af.

With this field redefinition,r5r0 constant solves the equa
tion of motion for this scalar, which decouples from the r
maining field equations. Then the gravitational acti
coupled to the scalarc becomes

S5
1

2k2E dd11xA2gFR2
b

2
~]c!22V~c!G , ~4.6!

where the potentialV(c) has the form

V~c!5
E2

2
exp~2c!, ~4.7!

andb is the numerical factor

b215a21
2d2d̃

~ d̃1d21!~d21!
. ~4.8!

B. Region I

To find the metric and scalar field in the region that
analogous to the region I of the Kałuz˙a-Klein case, conside
the Robertson-Walker space-time metric for an open u
verse

ds252dt21a2~ t !ds2~Hd!

52dt21a2~ t !~dx21sinh2xdVd21
2 !,

~4.9!

together with the time-dependent scalar fieldc(t). The equa-
tion of motion for the scalar is

bS c̈1d
ȧ

a
ċ D 52

]V

]c
5V~c!, ~4.10!

while Einstein equations take the usual form

S ȧ

a
D 2

2
1

a2
5

1

d~d21! Fb2ċ21V~c!G ,
~4.11!

d

dt
S ȧ

a
D 1

1

a2
5

b

2~12d!
ċ2,
1-9
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where dots represent derivatives with respect to the coo
natet.

In analogy with the two-dimensional case we look for
geometry with similar behavior aroundt50. In particular,
we require the geometry to have the Milne form along
light rays. This is only possible provided the homogeneo
space is the hyperboloidHd , justifying our choice for an
open universe cosmology. Then, one can find a solution
the above system of differential equations as a power exp
sion in the dimensionless quantity (Et). A straightforward
calculation gives for the first terms in this expansion

a~ t !5tS 11
e2c0

3d~d21!
~Et!21••• D ,

~4.12!

c~ t !5c01
e2c0

4b
~Et!21•••.

Next we want to find the asymptotics for this geomet
As it is the case with cosmological solutions in an op
universe, at later times we have curvature dominati
Hence, the correct ansatz for the asymptotic solution is to
a5a0t, and then solve for the scalar fieldc(t) and use the
Freedman equation to fix the constanta0. This results in the
asymptotic behavior

a~ t !5a0t, ec(t)5
~Et!2

4~d21!b
, ~4.13!

with the constanta0 given by

a0
25S 12

2b

d21D 21

. ~4.14!

The picture we have in region I is exactly the same as
the Kałuża-Klein case. An observer that is comoving wi
the expansion could think that at an earlier time the ma
density blows up and there is a cosmological spacelike
gularity. This is the usual understanding in cosmology. Ho
ever, in the picture we are proposing here, there is a
cosmological horizon where the geometry is perfec
smooth. In fact, we have fixed the boundary conditions
this horizon to evolve into the future. Of course, there is a
a collapsing region I, where the comoving observer see
future horizon where the boundary conditions are impos
We shall give a more detailed discussion of this proposa
the conclusion.

C. Region II

The boundary conditions imposed above on the surf
t50, x51` are that the geometry looks like the Miln
universe, which in fact is just flat space. The nontrivial a
sumption we are making is that the scalar field and the c
formal factor have the same behavior throughout the wh
surfacet50, x51`. This is essential to have a homog
neous cosmology.

We can pass from the expanding~or collapsing! region I
to a region II by a suitable change of coordinates. Ag
there is a close analogy with the two-dimensional case. F
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we change to a coordinate system well behaved around
coordinate singularity att50

T̃5t coshx, X̃5t sinhx. ~4.15!

In these coordinates the metric and scalar fields around
light rays uT̃u5uX̃u are well behaved and there is no coord
nate singularity, which allows us to continue the solution
region II whereuT̃u,uX̃u. To make the symmetries of spac
manifest it is convenient to define new (t,x) coordinates in
region II by

T̃5t sinhx, X̃5t coshx. ~4.16!

Then the metric ansatz takes the form

ds251dt21a2~ t !ds2~dSd!

5dt21a2~ t !~2dx21cosh2xdVd21
2 !. ~4.17!

The SO(1,d) symmetry of the original ansatz in region
realized on the constant timed-dimensional hyperboloids, is
now the symmetry of the constantt space-time slices. In fact
these slices are simply thed-dimensional de Sitter space
Notice that, in region II, the coordinatet becomes spacelike
and the coordinatex timelike. Along the horizon the
SO(1,d) symmetry acts as translations justifying the boun
ary conditions we have imposed.

The form of the solution near thet50 surface can be
obtained simply by the analytic continuation of the soluti
in region I

aII ~ t !52 iaI~ i t !, c II ~ t !5c I~ i t !. ~4.18!

This gives the following expansion:

a~ t !5tS 12
e2c0

3d~d21!
~Et!21••• D ,

~4.19!

c~ t !5c02
e2c0

4b
~Et!21•••.

To find the asymptotics of the solution in region II, notic
that if a(t)5cost the metric describes (d11)-dimensional
de Sitter space and the surfacet5p/2 is a coordinate singu
larity. In fact, if this was the case for this solution we wou
have a cosmological solution without any singularity. Sta
ing from region II att5p/2 we would have a de Sitter phas
which would then evolve to the Robertson-Walker cosm
ogy in region I. Unfortunately this is not the case for th
potentialV(c) that results from the Kałuz˙a-Klein compacti-
fication. We have done some numerics and verified that
solution develops a singularity around somet5t0, exactly as
in the two-dimensional case. The correct asymptotics can
found by doing the ansatz

a~ t !5a0~ t02t !g1•••,
~4.20!

c~ t !5h log„uE~ t02t !…1•••.
1-10
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Then the equations of motion give the following values f
the dimensionless constantsh, g andu:

h52, g5
2b

d21
, u2254b~12dg!, ~4.21!

while the value ofa0 is a constant of integration, that is fixe
by the value of the scalar field at the light rays.

We have verified that the analytic behavior for the diffe
ent asymptotics in both regions I and II exactly matches
numerical analysis. In Fig. 3~a! the Carter-Penrose diagram
for the cosmological solutions is shown. For comparison
included in Fig. 3~b! the usual Robertson-Walker open Un
verse diagram. The pre-big-bang string cosmology scen
@1# considers the latter diagram and glues a collapsing ph
to an expanding phase along the spacelike singularity.
the new space-time global structure here presentedt50 is a
cosmological horizon. For smallt the universe undergoes a
acceleration and, when it becomes curvature dominated
expands linearly with time.

D. String and M-theory cosmologies

As mentioned before the above solutions are natura
embedded in string and M theory. So we would like to u
derstand where the gravity approximation is valid and wh
space-time and world-sheet string effects become import
The behavior of the solution is essentially determined by
constanta in the coupling between the dilaton field and th
gauge field. For the RR gauge fields of the type II theor
we havea5(52d̃)/2, for the NS-NS 2-form gauge fielda
521 and for its dual 6-form gauge fielda51. If a.0

FIG. 3. Carter-Penrose diagrams for open Universe cosm
gies. In both diagrams each point represents a (d21) sphere and
x50 is a coordinate singularity. The standard diagram in~b! is
presented for comparison with our proposal.
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(a,0) the string coupling will become very large~small!
near the singularity and it will become very small~large! in
the asymptotics of regions I. In all cases the volume of
compact space becomes very small near the curvature si
larity, which is telling us that the string winding states b
come very light. Asymptotically space-time decompactifie

Let us analyze in more detail the cases witha50. Con-
sider first the type IIB theory with the self-dual 5-form fie
strength. As for the D3-brane the string coupling can
made small throughout the whole solution. There will
curvature corrections near the singularity where string wi
ing states become very light and the gravity approximat
breaks down. Two other cases witha50 correspond to the
M-theory 4-form field strength or its dual 7-form. The latt
case is particularly interesting. Ford̃57, a50 andD511,
we have a four-dimensional cosmology for an open unive
and the compact manifold is seven-dimensional. Through
this paper we considered flat manifolds in the internal dir
tions, but more generally one can consider any Ricci
manifold. In this case, one could consider aG2 manifold for
which there has been a great deal of interest for flat sp
compactifications, which yieldN51 SUSY in D54 ~see
@37# and references therein!. Here, supersymmetry is broke
by the form flux@38#.

As this work was being completed an interesting paper@8#
appeared, also considering new time dependent string th
backgrounds. These backgrounds are different from the o
introduced here. They analyzed the case where the boun
conditions for the scalar field are set on a spacelike hyp
surface, while we have considered the case of a null hy
surface. We have interpreted this null hypersurface as
cosmological horizon in an open Universe cosmology. T
fact allowed us to continue the geometry in both directio
from the horizon. A natural question is whether one can a
continue the other new geometries presented in@8# to a re-
gion similar to region II herein described. For theD54
Einstein-Maxwell solution of@8#, it is indeed possible to ex
tend the geometry to a region II where there will be a tim
like singularity. The Penrose diagram is similar to the d
gram of Fig. 2 with each point representing a tw
dimensional hyperbolic plane.

V. CONCLUSION: TOWARDS A SOLUTION OF THE
HORIZON AND SINGULARITY PROBLEMS?

In this paper we have proposed a new cosmological s
nario that tries to evade the cosmological singularity pro
lem. The essential point was to consider collapsing and
panding phases with future and past cosmological horizo
and to fix the boundary conditions along these null hypers
faces. From these horizons, we constructed the space-
geometry for specific examples that arise quite naturally
string theory. In the cosmological solution that we have st
ied, and more generally in cosmological solutions that ha
identical space-time causal structure, the usual horizon p
lem of standard cosmology does not arise. In fact, cons
two points of the hyperboloid at constant cosmological tim
t in the expanding phase, that have an arbitrarily large spa
like separation. Then from the Carter-Penrose diagram,

o-
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cause there is a past cosmological horizon, the past l
cones of these points always intersect.

Another aspect of this proposal is that it raises the hop
resolving the cosmological singularity problem. First, in t
two-dimensional toy model presented here we were able
embedding the geometry in string theory, to interpret
geometry as arising from a string theory orbifold from whi
one can at least do some calculations. In particular, we h
started the analysis of the one-loop partition function wh
is modular invariant. The analogy with strings in therm
AdS3 @22# is definitely worth pursuing. This toy model wa
inspired by the recent proposal in@2#, and provides a regu
lator for their proposal. Indeed, with the identifications by
boost and a translation, at small translation parameteR
space-time is still smooth~in particular Hausdorff! and there
is a horizon. So this looks like a good regulator for the s
gular space-time one obtains when settingR50 from the
beginning. Secondly, in the case of the higher dimensio
solutions, there are cases where the string coupling ca
kept small throughout the whole space-time. There is a tim
like singularity in the region II of space-time, where th
compact space is shrinking and where winding string sta
become important. It would be very interesting to reso
these singularities within string theory. A reasonable conj
ture is that the new light degrees of freedom could acqu
some vacuum expectation value~VEV! resolving the singu-
larity.

There is possibly another way of avoiding the cosmolo
cal singularity. This could happen if the potential for th
scalar field had a different shape. Then one would start fr
a pure de Sitter phase in region II; as the fields evolve i
the horizon one would be able to smoothly pass to the
panding region I. We have tried some numerics with differ
types of potentials but so far have not succeeded. Essent
there is a fine-tuning problem. As one starts from the
4
N
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e

Sitter phase, it seems very difficult to evolve the different
equations such that we reach the horizon with the exact
havior for the scale factor (ȧ51), and scalar field (ċ50),
such that the transition can be achieved. On the other h
there may exist solitons that interpolate between differ
vacua in regions I and II~like domain walls!. We think this
issue deserves further attention because, if successfu
would give a completely smooth cosmological solution. L
us note that this is not in contradiction with the singular
theorems because in the de Sitter phase the strong en
condition is not satisfied.

Finally, independently of string theory, one should ree
amine many issues in cosmology by considering differ
types of potentials, as those used in inflationary and part
cosmology, and by imposing the boundary conditions at
cosmological horizon. From these boundary conditions
universe can evolve into the usual cosmological epochs.
other important issue that we plan to analyze is the ques
of thermal radiation seen by the cosmological observer. C
sider, for example, a scalar field and fix its boundary con
tions to have only positive frequency modes on the cosm
logical horizon. Then one can study the spectrum at la
times. Note that the same reasoning cannot be applied in
presence of a spacelike big-bang singularity.
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@6# M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.69,
1849 ~1992!.

@7# M. Bañados, M. Henneaux, C. Teitelboim, and J. Zane
Phys. Rev. D48, 1506~1993!.

@8# M. Gutperle and A. Strominger, J. High Energy Phys.04, 018
~2002!.

@9# C. Kounnas and D. Lust, Phys. Lett. B289, 56 ~1992!.
@10# C. Grojean, F. Quevedo, G. Tasinato, and I. C. Zavala, J. H

Energy Phys.08, 005 ~2001!.
@11# S. Carlip and C. Teitelboim, Phys. Rev. D51, 622 ~1995!.
@12# J. Maldacena and A. Strominger, J. High Energy Phys.12, 005
.
.

.

h

~1998!.
@13# C.A. Herdeiro, Nucl. Phys.B582, 363 ~2000!.
@14# J.M. Maldacena, ‘‘Eternal black holes in Anti-de-Sitter

hep-th/0106112.
@15# M.B. Green, J.H. Schwarz, and E. Witten,Superstring Theory

~Cambridge University Press, Cambridge, England, 198!,
Vols. I and II.

@16# J. Polchinski, String Theory ~Cambridge University Press
Cambridge, England, 1998!, Vols. I and II.

@17# C. Bachas and M. Porrati, Phys. Lett. B296, 77 ~1992!.
@18# C. Bachas, Phys. Lett. B374, 37 ~1996!.
@19# J.G. Russo and A.A. Tseytlin, Nucl. Phys.B448, 293 ~1995!;

B461, 131 ~1996!; A.A. Tseytlin, Nucl. Phys. B~Proc. Suppl.!
49, 338 ~1996!.

@20# E. Kiritsis and C. Kounnas, Nucl. Phys.B456, 699 ~1995!.
@21# J. Polchinski, Commun. Math. Phys.104, 37 ~1986!.
@22# J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys.42, 2961

~2001!.
@23# J. Maldacena, J. Michelson, and A. Strominger, J. High Ene

Phys.02, 011 ~1999!.
1-12



y
-

s.

s,

d

A NEW COSMOLOGICAL SCENARIO IN STRING THEORY PHYSICAL REVIEW D66, 066001 ~2002!
@24# N. Seiberg and E. Witten, J. High Energy Phys.04, 017
~1999!.

@25# J. Maldacena and H. Ooguri, J. Math. Phys.42, 2929~2001!.
@26# G.W. Gibbons and D.L. Wiltshire, Nucl. Phys.B287, 717

~1987!; G.W. Gibbons and K.I. Maeda,ibid. B298, 741~1988!.
@27# F. Dowker, J.P. Gauntlett, D.A. Kastor, and J. Traschen, Ph

Rev. D49, 2909~1994!; F. Dowker, J.P. Gauntlett, G.W. Gib
bons, and G.T. Horowitz,ibid. 53, 7115 ~1996!; 52, 6929
~1995!.

@28# J.G. Russo and A.A. Tseytlin, J. High Energy Phys.04, 014
~1998!.

@29# M.S. Costa and M. Gutperle, J. High Energy Phys.03, 027
~2001!.
06600
s.

@30# P.M. Saffin, Phys. Rev. D64, 024014~2001!.
@31# M. Gutperle and A. Strominger, J. High Energy Phys.06, 035

~2001!.
@32# M.S. Costa, C.A. Herdeiro, and L. Cornalba, Nucl. Phy

B619, 155 ~2001!.
@33# R.C. Myers, Phys. Lett. B199, 371 ~1987!.
@34# I. Antoniadis, C. Bachas, J.R. Ellis, and D.V. Nanopoulo

Phys. Lett. B211, 393 ~1988!; Nucl. Phys.B328, 117 ~1989!.
@35# A.A. Tseytlin and C. Vafa, Nucl. Phys.B372, 443 ~1992!.
@36# A.A. Tseytlin, Class. Quantum Grav.9, 979 ~1992!.
@37# M. Atiyah and E. Witten, ‘‘M-theory dynamics on a manifol

of G~2! holonomy,’’ hep-th/0107177.
@38# J. Polchinski and A. Strominger, Phys. Lett. B388, 736~1996!.
1-13


