PHYSICAL REVIEW D 66, 066001 (2002

A new cosmological scenario in string theory

Lorenzo Cornalb&a
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

) Miguel S. Costh
Laboratoire de Physique Theque de I'Ecole Normale Supeure, 24 rue Lhomond, F-75231 Paris Cedex 05, France
(Received 26 March 2002; published 3 September 2002

We consider new cosmological solutions with a collapsing, an intermediate and an expanding phase. The
boundary between the expandif@llapsing phase and the intermediate phase is seen by comoving observers
as a cosmological pastuture) horizon. The solutions are naturally embedded in string and M theory. In the
particular case of a two-dimensional cosmology, space-time is flat with an identification under boost and
translation transformations. We consider the corresponding string theory orbifold and calculate the modular
invariant one-loop partition function. In this case there is a strong parallel with the BTZ black hole. The higher
dimensional cosmologies have a timelike curvature singularity in the intermediate region. In some cases the
string coupling can be made small throughout all of space-time but string corrections become important at the
singularity. This happens where string winding modes become light which could resolve the singularity. The
new proposed space-time causal structure could have implications for cosmology, independently of string
theory.
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I. INTRODUCTION has motivated our research. We shall present a two-
dimensional toy model where we manage to smooth this

One of the central problems in our present view of thestring orbifold and to hide the closed timelike curves behind
Universe has to do with the cosmological singularity. Thea cosmological horizon. Related work, with a different kind
observation of an expanding Universe leads us to believe thatf orbifold, appeared recently ib].
in the past the Universe was much denser. At the Planck The two-dimensional toy model may have a tractable
scale general relativity breaks down where it is usually bestring theory description as an orbifold of flat space, and we
lieved that a spacelike cosmological singularity developsinitiate its investigation. On the other hand, as a solution of
Despite the great advances of particle cosmology from théhe gravity low energy equations, one expects that the new
grand unified theorfGUT) scale to present times, the un- space-time causal structure of the two-dimensional toy
derstanding of the cosmological singularity remains a chalmodel can be generalized to higher dimensions. Indeed, we
lenge. The resolution of this problem is one of the mainshall construct new cosmological solutions for open Uni-
motivations to find a quantum theory of gravity. verses in arbitrary dimensions with three phasgésA col-

It has long been understood that string theory, as a corlapsing phase with a future cosmological horiz@); an in-
sistent theory of gravity, could be a good starting point totermediate phase where there is a timelike curvature
investigate the universe at the Planck scadee[1] for a  singularity;(3) an expanding phase with a past cosmological
review and referencgsin the pre-big-bang scenario, the horizon. In the context of string theory, we shall argue that
Universe starts in a contracting phase until string effectsiear the timelike curvature singularity there are string wind-
along a spacelike hypersurface become important. From thiag modes that are becoming very light. This fact led us to
spacelike hypersurface the Universe will evolve to theconjecture that when these new light states are taken into
present expanding phase. The main problem that has praccount the singularity could be resolved, smoothing the ge-
vented a deeper understanding of the singularity problem ismetry.
the understanding of the stringy phase. Recently, there has This paper is organized in the following way. In Sec. I
been a new proposal for a big-crunch—big-bang transitionve present the new space-time identifications that lead to a
[2,3]. These authors considered a toy model in which spacewo-dimensional cosmological solution. Here we were in-
time is seen as flat space with an identification along boostpired by an analogous construction for the™ &dws-
transformations, an orbifold earlier investigated [#]. A Teitelboim-Zanelli (BTZ) black hole[6,7]. We start with
problem in this string compactification is that there arethree-dimensional flat space and identify points in space-time
closed timelike curves and space-time is not Hausdorff. Sainder boost and translation transformations. After Katuz
even if space-time is flat and there is no curvature singularKlein reduction, we find a cosmological solution with the
ity, there is still a singularity at the big-bang. This problem properties described in the previous paragraph. In this case,

however, there is no singularity. The apparent singularity
corresponds to the surface where the compactification circle

*Email address: Icornalb@yukawa.wins.uva.nl becomes null. As a consequence, there will be causal time-
TOn leave from Departamento déska, Faculdade de Tieias,  like curves in the intermediate region that can be closed if
Universidade do Porto. Email address: miguel@Ipt.ens.fr one passes the causal singularity. The cosmological observ-
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ers in the expanding and collapsing regions will not intersectvhere
these closed timelike curves.

The geometrical construction of the two-dimensional
model can be embedded in string theory. This topic is cov-
ered in Sec. Ill. We consider the case of a string orbifold and
analyze first the region of validity of the corresponding grav-are the generators of Lorentz boosts along Xhdirection
ity solution. It is seen that in the intermediate region, whereand translations along thédirection, respectively. The Kill-
there are closed timelike curves, string effects become iming vectorx defines a one parameter subgroup of isometries.
portant. We calculate the one-loop bosonic partition functionVe shall identify point€Q along the orbits of this subgroup
for the orbifold and show that it is modular invariant. The according to
introduction of a translation in the boost identification not

d Jd
—, iP=— (2.3

. J
=T T X7 Y’

only makes space-time smoother, but also introduces a regu- Q~exp(x)Q. 2.4
larization scheme in the calculation of the string partition ) )
function. The parameterA is related to the boost velocity by

In Sec. IV we generalize the two-dimensional cosmologi-=tanh(2rA) and 2R is the translation length. The resulting
cal toy model to higher dimensions. We start with a theory ofSPace is a smooth manifold with a flat metric, because the
gravity with a scalar field and a form field strength. Then weldentifications are along an isometry of the initial space with
compactify space-time on &Ricci) flat manifold along NO fl?(_ed points. However, now there are curves that join
which there is a flux of the form field. Comparison with the identified points and one needs to worry about the causal
two-dimensional case led us to require the geometry to bétructure of the resulting space. o
smooth and invariant along a null hypersurface that we in- A necessary condition for the absence of timelike and null
terpret as the cosmological horizon. These boundary condRUrves isk-«>0. The boundary of this region is the surface
tions and the homogeneity requirement of the cosmologicak - <=0 described by
solution imply that the geometry has the form of the higher
dimensional Milne Universe along this null hypersurface,
leading to a negative curvature Universe. We analyze the
resulting geometry, which has collapsing, intermediate and
expanding regions as mentioned above. We finish this sectiofhereE has dimension length and is defined by
by embedding the new solutions in string and M theory. Re-
lated work that considers a different type of time-dependent A
string theory solutions by fixing boundary conditions on E=&: (2.6)
spacelike hypersurfaces appeared very recent[in

In Sec. V we give our conclusions. We show that in thenggice that the action induced by the Killing vectemhas no
new cosmological solutions the usual cosmology horizoRiyeq points because the vectBralways induces a transla-
problem does not arise. Then we comment on the possiblgyn along theY direction. The orbits of« in the quotient
resolution of the cosmological timelike singularity. We argUegpace are closed curves and cannot be continuously de-
that many new solutions can be found by imposing theormed to a point. These orbits are null on the surface de-
boundary conditions using a different scalar potential. In parsjeq by Eq.(2.5) and become timelike beyond it.
ticular, one can consider potentials of the type used in stan- Racently, Khoury et al[2] considered the cosmological
dard particle cosmology, avoiding the spacelike singularityso|ytion arising from the identification of points in space-

1
_ 72 2__
T24+X —= (2.5

of the big bang. time that are related by a boost transformation. This case
corresponds to setting=0 in our model. In their work, the
Il. COSMOLOGICAL SOLUTION AS A QUOTIENT point T=X=0 is a fixed point of the orbifold and the light
OF FLAT SPACE rays|T|=|X| are mapped arbitrarily close to the origin. As a

consequence, if one does not excise any region of space-
time, there will be causal closed curves arbitrarily close to
_ ) ) ) the pointT=X=0. Also, the resulting manifold is not Haus-
ds’=—dT?+dX*+dY2 (2.1) dorff. In the model proposed here, the introduction of the
translation in the space-time identification has resolved these
We shall identify points on this space along orbits of a subproblems. In particular, we also have causal closed curves
group of its isometry group, i.e. a subgroup of the threeyt we shall argue that, from the point of view of the cos-
dimensional Poincargroup. The situation is analogous to mological observer, these curves are not observable, and no
the BTZ black hole that is obtained from Ag 2+1 grav-  inconsistencies should arise.
ity with a negative cosmological constaj,7]. Later we To understand the causal structure of the quotient space it

shall embed the three-dimensional geometry here derived i convenient to divide space in three different regions
string and M theory.

Let « be the Killing vector I |T|>|X| and k- k>0,

Consider flat space-time in+21 gravity with line element

2.7
k=27 (AJ+RP), (2.2 Il |T|<|X| and «-x>0,
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x* Now let us analyze the geometry from the two-
dimensional point of view. We consider the following coor-
dinate transformations in both regions | and II:

T=tcosHE(x+Yy)],
[:¢ X=tsinfE(x+y)],

Y=y,

(2.11
T=tsinfE(x+y)],

II:{ X=tcoshE(x+y)],
Y=y.

x°

In the new coordinate system the killing vectors the form

FIG. 1. The different regions in space-time in the light cone (2.8) required for compactification. We consider first the re-
coordinatesX™ =(X*T)/y2. The outer regions | will be inter- gion I, where in the new coordinate system the line element
preted as the cosmological collapsing and expanding phases. lbecomes
regions lll there are closed timelike curves that can be deformed to
regions Il, but always close in region Ill. The surfgd@@=|X| acts ) (Et)? )
as a horizon because the closed timelike curves cannot be deformed ds’=—dt’+ A(t) dx“+A(t)
to enter regions I.

(Et)2 2
dy+ AD dx) ,
(2.12

N k- x<O. with

We shall call region | the outer region. Fo>0 (T<<0) it A(t)=1+(Et) (2.13
describes an expandirigollapsing universe. In this region,

the above condition can be resumedstox>(27R)*. Re-  From the above KafiKlein ansatz it is straightforward to
gion Il is the inside region, where<Ox- xk<(27R)® The read the two-dimensional fields from the metric element.
region beyond whicl becomes timelike is called region lll. Both thet and x coordinates run from—o to +«. The

In Fig. 1 the different regions are represented. The frontiergegiont<0 describes a contracting universe while the region
between regions | and Il are null surfaces. This fact is vert >0 describes an expanding universe. The time coordinate
important because these surfaces become horizons and pig-the proper time for a comoving observer with the expan-
vent causal closed curves from being extended to both thgion (Or Co||apse. We shall focus on the expanding region_

expanding and collapsing outer regions. The Katiza-Klein 2-form field strength is given by
A. Compactification to two dimensions 2E2
We want to interpret this flat geometry from the two- F= A2 dtAdx, 219

dimensional point of view. In other words, we want to find

the coordinate transformation that brings the Killing veator \which vanishes for large cosmological times, where the met-
to the form ric becomes flat. The radius of the compactification circle
3 R(t)=RyA(t), determined by the scalar field, is growing
k=27R—. (2.9  with time, and, therefore, at later times the Kadtilein
d approximation is no longer valid. At earlier times, f&it

. . . . . <1, the metric becomes
Then, to obtain the two-dimensional cosmological solution

we consider the KaluzKlein compactification d?~ — dt?2+ (Et)2dx2. (2.15
dé:d%jLezg(derAadxa)z’ (2.9 At the surfacet=0, x=* o there is a harmless coordinate
singularity. In fact, at this surface the metric has the usual
%%rm of the Milne universe obtained from a coordinate trans-
formation of the usual flat space metric. This surface repre-
sents the past cosmological horizon for the observers in the
expanding region I. The radius of the compact circle on the
(2.10 horizon isR.

The Katua-Klein form of the metric in region Il can be

obtained from the coordinate transformati@il1). The final

wherek, is the two-dimensional gravitational coupling. The result is a line element that can be obtained from that of
only dynamical degree of freedom is the scalar field. region | in Eq.(2.12 by the replacemertt—it:

keeping in mind that one can always add extra spectat
dimensions. The above Kalaxlein reduction of the three-
dimensional Einstein-Hilbert action gives

1
_ T Q202
R 4e F

1
S=— | d®xJ-ge’
2K2

066001-3



LORENZO CORNALBA AND MIGUEL S. COSTA PHYSICAL REVIEW D66, 066001 (2002
in the solution(2.12 also covers region Il

B. Geometry as a limit of the BTZ black hole

We have described, in the previous subsections, geom-
etries derived as quotients of flat Minkowski three-
dimensional space. In this subsection we show that these
geometries have natural generalizations as quotients of
AdS;, which are nothing but the usual BTZ black hole solu-
tions. Therefore we can regard the geometries considered
previously as a limit of the BTZ black hole.

To make this relation more precise, we describe AdS

t=const.”s usual, as the surface

. —(ZH (22 H (22 (ZP= -2, (219

with the parametrization
Z0+iz3=—ie L2+ X2+ Y?,
: Z+iZ2=X+iY (220
FIG. 2. Carter-Penrose diagram for the two-dimensional Katuz \em= A

Klein cosmology. Spatial, future and past infinities are defined wit
respect to the expanding region |. The pdature) horizon of the

Mhe symmetry group of AdSis SO(2,2), with generators

. : C . i13,,=2,0,—2,0,. In the limit L—o~ we recover flat
expanding(collapsing outer region is a Cauchy surface. The sin- ~# o “ T
gularity att="1/E is an artifact of the compactification because this Minkowski spacel ™= with isometry groud SQ(1,2). More-

is the surface where becomes null. over, the generatoid,, converge to the generatdps,, M,
(m,n=0,1,2) ofISO(1,2) according to

(Et)? (EH? |2
~ AWM dx2+dt2+A(t)(dy— o) dx) , I Mo, %JSmHPm- (2.21)
(2.16

ds’=

Therefore, the natural generalization of the construction con-
where sidered in the last section is to consider the quotient of AdS

by the isometrye”, where
A(t)=1—(Et)% (2.17

K=2i

R
AJ10+<_ J32}. (222

L

Now the coordinate$ and x have flipped their spatial and
timelike characters. The surfade=0, x==*=% becomes a
horizon for an observer in region Il using this coordinate This correspond§7] to the BTZ black hole geometi6]
system. In fact, near this surface the metric becomes the
Rindler metric. As we move away from the horizon the com- dsgr,=—N’dv?+N"2dr’+r%(dé+N%dv)?,
pactification radius decreases and vanishdstatl. At this (2.23
surface the two-dimensional curvature and the invarfeint
diverge. This is the surface where the killing vectorbe-
comes null, and the KatazKlein approximation breaks 1
down. Of course from the higher dimensional point of view N2=— (r2—r2)(r2—r2),
this is not a curvature singularity because the metric is a L2r? "
quotient of flat space, but it is the locus where the orbitg of (2.24
become causal. Figure 2 contains the Carter-Penrose diagram 1
for the geometry at a fixed position in the compact direction N¢=E
y. Similar two-dimensional space-time causal structures were
considered if9,10].

As a remark let us note that there is a set of coordinateglnd
tha’g extends the met_ric in t_he_outer region | to the inner r,=LA, r_=R. (2.29
region Il, and that this metric is well behaved throughout
these regions. This is easily seen because the metric in regigle assume that>E 1, so thatr,>r_. Recall that this
I near the horizon behaves exactly as that for the Milne unigeometry describes a rotating black hole with inner and outer

where

verse. So the coordinate transformation horizons atr=r_ andr=r . In the regionsr>r, andr
5 5 <r_ the coordinate is spacelike, while in the region_
T=tcosHEx), X=tsinhEXx), (2.18 <r<r, the coordinate is timelike.
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The Euclidean continuation of the time coordinate, parameterr,,. The geometry(2.26 becomes(calling L ¢
— g, in the regions >r, andr<r_, yields quotients of =z andLp=r) the usual flat Euclidean metridz’+dr?
the hyperbolic three-plani; under an element of the sym- +r2d¢? with identifications
metry groupSO(1,3) [11]. Recall that quotients ofl; are
parametrized by the upper complex half-plane as follows. If z~z+27R, ¢~¢p+27mA. (2.32

we write the metric oH5 as o . -
This is clearly the geometry of a Euclidean flux brane, as it is

2 natural to expect.
+p%de®|, (2.26

d
dsf=L2 (1+pAdr+ P

2
TP C. Closed timelike curves?
then a quotient parametrized by=7,+i, is given by the Now we come to the delicate point of whether we should
identifications excise regions lll, interpreting the surface k=0 as a
causal singularity. We shall advocate that, from the point of
Te~Tet 27Ty, G~P+2mTy. (2.27)  view of an observer in the expandiiigr collapsing cosmo-

logical region I, there is no contradiction arising from the
This corresponds, from the point of view of the inclusion of those regions.
2-dimensional CFT on the AdS boundary, to considering the There are closed timelike curves in the region Il where
CFT on a torus with modular parametef12]. The Euclid- . x<0. These curves can be deformed to the region II,
ean continuation of the regioms>r . andr<r_ give quo-  resulting in causal closed curves that are partially in region ||
tients of H; with modular parameters,, and 7;,, respec- (one needs the region lll to close the open causal curves in
tively, where region Il that start and end on the surfacex=0). How-
ever, there are no causal closed curves passing through re-
gion | because of the cosmological horizon. Indeed the hori-
zon is a Cauchy surface and therefore no causal curve
(2.29  intersects it more than once. Hence the comoving observer
1 _ ) never intersects any closed causal curve. In this sense the
Tn=p (F+ Fir-)=A+ir. existence of the closed timelike curves is harmless. Any set
of initial conditions at cosmological timig will evolve with-

compactification considered in the previous subsectionsgurves shielded by horizons appears in the BTZ black hole

1 : R
Toutzt(r,+|r+)zt+|A,

which is obtained in the limit —, with R, A andr fixed. 6,7], as well as in other higher dimensional rotating black

In this limit clearlyr =R remains finite and holes[13], both cases having string theory dual descriptions.
Furthermore, near the causal singularity one expects new de-

ro=AL—omo, (2.29 grees of freedom to become important which could prevent

the existence of the closed timelike curvege[14] for a
so that the outer regior>r .. is no longer part of the geom- related discussion in the case of the BTZ black hole
etry. Then the intermediate regioi>r _ corresponds to re- This geometry represents a smooth transition from a col-
gion | in the previous subsections, andvhich is a timelike  lapsing phase to an expanding phase, with the additional re-
coordinate in this region, is related to the cosmological timegions Il and Ill in between. To understand how a set of initial
More precisely, in the limi. —« one obtains the geometry boundary conditions propagates from the collapsing to the
expanding phase, it is necessary to understand the evolution

2 r2— RZ) ) throughout the intermediate regions. Therefore it is important
dv

dr?+A2 to investigate the maodifications in field and string theories
due to the boundary conditions here imposed. For example,
AR 2 in region Il there is an increasing electric field and one would
de+ _2dv) , (2.30 expect that pair prO(_:Iuctlon of KaiazKIe_m partlc_les occurs.
r Also, the proper radius of the KataZlein circle is decreas-
ing and therefore these particles become very massive as the

which is nothing but the solutiof2.12) under the change of electric field becomes very large. We can do an estimation of

2

1
Ao — — [ —
Stz AZ(rZ—R2 r

+r2

coordinates the pair production rate using the Schwinger formila
) ~exp(—7(m/&)), wherem=1/R(t) is the particle’s mass
(L) 11 (ED2  Av=-—x and £2=—F?/2 determines the electric field. This gives the
R ’ ' following estimation for the pair production rate:
2.3
Rp=y+x. (230 wA(t)
I'~exp — >ER |- (2.33

In the above geometry one can consider the Euclidean
continuation of the inner region<r_, which, as described Asymptotically in region | this gives a very small rate. Along
above, gives the quotient dfi; described by the modular the light rays, it can be made small providER=A<1. In
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region Il the argument in the exponential becomes very small

and the semi-classical approximation for the nucleation rate E< = A< )
breaks down. Nevertheless, one expects that there will be Ja' Va'
Katuza-Klein particles produced in region Il that, for later

cosmological times in region |, move at constant velocityThis condition can always be satisfied fdr sufficiently
and will be distributed homogeneously through the constansmall. Third, the string winding states should be very mas-
time sections of the comoving observer with the expansionsive, i.e.

Note that this invariance under translationsxins nothing

(3.9

but the unbrokenSO(1,1) subgroup of thdS0O(1,2) left R(t)
invariant by the compactification. E<—-, (3.5
Clearly, the above example points to a better understand- a

ing of quantum processes in this space-time. In the next sec- . _ _ _ -
tion, we start the investigation of these issues by embeddinghich in region | is compatible with the condition above.

this construction in string theory. However, in region Il the winding states become very light
because the proper size of the circle converges to zero. This
IIl. STRING ORBIFOLD AS A COSMOLOGY means that in this region new light string degrees of freedom

become important and one needs to use the string orbifold

The above construction of a cosmological background bydescription. Finally, space-time is effectively nine-
a quotient of flat space can be embedded in string and Mimensional provided the KatazKlein modes are very mas-
theory by adding the appropriate number of flat spectatogive
directions. In the case of ten-dimensional string theory one
has the usual string in flat space but there is a twisted sector
arising from the orbifold compactification. Before we ana- E
lyze this string theory let us briefly describe the underlying
geometry and its limits of validity.

Considering type Il strings, the compactification on a',” region |, this condit_ion will f_ai_l for large cosmologica!
circle to the nine-dimensional string frame is given by time. However, the region of validity can be made arbitrarily
large by choosing\ very small. In region Il the condition is

ds?,=ds3+e?7(dx®+ A,dx®)?, (3.1  satisfied because the KahtKlein modes become very mas-
sive. At last, one could worry that the curvature corrections
where ¢o= ¢— o/2 is the nine-dimensional dilaton field. If become important in region Il; however, since the solution is
one adds seven spectator flat directions to the construction @f flat space orbifold it seems reasonable to expect that such

the last section and reduces along yttirection, one obtains = corrections vanish. _ _
In the above analysis no assumption was made regarding

(Et)? the size of the compactification raditscompared with the

dsg=—dt*+ AY) dx?+ds*(E), string length. For some spacelike surface at tinmeregionl,
(3.2 providedA is sufficiently small, the typical energy scdle
(Et)2 =A/R for phenomena on the cosmological solution is al-
e2’=1+(Et)’=A(t), A= de. ways much smaller than the KakKlein and string mass

gaps. Also, the nine-dimensional string coupling is small. In

The space-time causal structure of this geometry and itE9ion Il the Katuza-Klein states become very massive but

maximal extension was explained before. The conditions fof'€ @ssociated electric field becomes very large pointing to
the validity of the nine-dimensional description are as fol-t€ Schwinger process, the winding states become very light

lows. First, the nine-dimensional string coupling has to be2"d the nine-dimensional string coupling blows up. Clearly
in region |l the relevant description is in terms of the ten-

small . )
dimensional string orbifold, to which we now turn.
ga/l/4< L (3 3)
99 RO : A. String partition function

In this section we start to analyze the motion of a

In region | the coupling decreases with time; therefore thigbosonig string in the quotient space described in the previ-
condition always holds provided the ten-dimensional stringous sections. We leave the generalization to the superstring
couplingg is small. In region Il, the condition fails near the to future work. Readers that are not familiar with string
causal singularity and one needs to use the ten-dimensiontileory may wish to skip this subsection and move to the
approximation. Indeed, since the ten-dimensional couging classical gravity analysis in Sec. I§Refs.[15,16 provide
remains constant, the string orbifold analysis holds as long ahie necessary background for the techniques presented here
g is kept small. Similar computations have been carried out in the case of

Second, the typical energy scdle= A/R in the geometry open strings in electric fieldsl7], D-branes in relative mo-
described by Eq(3.2) should be much smaller than the mas-tion [18] and closed strings in magnetic backgrounds
sive string states scale [19,20. We will limit ourselves to the computation
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of the one-loop partition function, leaving to future work a where implicitly we have chosen to considej andag as
more detailed analysis of the results. We will use units suclyyeation operators.Finally, the boost operatod=J, +Jg

thata'=2. o _ defined byi[J,X*]= =X, is given explicitly by
We use, in the following, light cone coordinates
1 J==i2 Ny+i X Ny,
Xiz—(XiT), (37) n=1 n=0
V2 (3.14
. IR -
so that the basic identifications introduced in Sec. Il are Jr= 'n;, N +'n§1 N »
given by

where N, =(nFiv) 'a® a, and N;=(n+i») 'a*a,

are the usual occupation numbers. It is then clear that one
can rewrite theotal Virasoro generators for the three bosons
T, X, andY in terms of the usuahtegral level numberd.,I.

and the boost operator as

X*~e2™AX* Y~Y+27R. (3.9

Let us then focus on the winding sector with winding num-
berw. First of all, it is clear that the mode expansion of the

field Y(z,?) is the usual one of a compact boson. The only

difference with the standar@' compactification is given by 1 ) 1,

a modified constraint on the total moment@#nwhich must Lo=5iv(l=iv)+vd+5pi+l,

be compatible with the identificatiai3.8) and must therefore (3.15
satisfy 1 1 :

E0=§i v(l—iv)— VJR—I—Esz-I-E.
exg2#i(RP+AJ)]=1,

3.9  we are now ready to compute the partition functionfor

p— l(n—AJ) the three boson$, X andY. We have
R B (1/2)nw
wheren is an integer and is the boost operator. The left and Zs=(qﬁl)_1/8%1 quLqL(:)
right momenta forY are then given by ' q

% (1/2)[(WR/2)2+ (n— AJIR)?]
WR (qa)

PLR=P=—-. (3.10 X (qq)M¥OL—IR) (qq) ML= (316

+ N = 2 = 1 1
The mode expansions of the fields (z,2) are, on the other Where, as customarg=e~"" and 7=, +ir,. Performing
hand, modified and are given explicitly by the usual Poisson resummationmhrings the above expres-

sion to the simpler form

— 1 ay 1 a, 2
* —i — R TR —
X=(2.2) 'zn: nTiv neiv  nEip geiv)’ Zz=(qq) Y= X ex;{—Z—TT
(3.11 V273 ww! T2
wherer=wA and where the oscillators satisfy the commu- —27772A2W2}q(1/2)i YTr (€27 T4 gl) g
tation relations B
o < Tr ezwiTAJR_TL , 3.1
[a7.a5 1= (M=) S, R ) o4
(3.12 where
[am @, |=(MFiv)6min, T=wr—w’. (3.18

and the Hermitianity conditions af)"=a”,, (&n)"  Inthe above sum the term with=w’' =0, which is by itself
=a*,,. The contribution to the Virasoro generators from themodular invariant, gives the usual partition function of the
fields X* has been computed previously [i8,19 and is uncompactified theory. We will therefore focus, in the fol-

given by ( .. denotes contributions from other f|e}ds Iowing, onIy on the other terms in the SU(IWG will denote
1 ; + 4— - 4t
Lo=---+5i v(l—iv)+ 21 a_pap + 20 a_ndn The correct treatment of the zero modes is quite subtle. In fact
"~ "= (313 they form two copies of the Heisenberg algebfag ,a ]
1 ' =[a, ,aj ]=iv. We choose to quantize the zero modes as creation
[Oz ceetoiv(l—iv)+ E 'éfn5;+ E a na; ’ and annihilation operators in order to preserve the conformal invari-
2 n=0 n=>1 ance of the partition function.
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the restricted sum b¥'). With this in mind, the computa- 1 .
tion of the holomorphic trace Tris simple. Definingc 7= (b+idw’). (3.29

— e2'n’i(iAT) — qi Ve27TW,A’ one has

Tr (e*™ ™) In order for the poles to be iff, we must havea=1 and
|b|<2a. For fixedw’, the structure of the poles is the same
_ 1 1 as those found if22].
1-cn=1 (1-g")(1—q"c)(1—q"c 1) Finally let us comment on the origin of the poles. They
arise from the zero modes of the winding sector. In fact,
1 stretched winding strings have a length which iR when
:iqllscfllza-—- (3.19  they sit at the originX=T=0, but which decreases as they
1(1AT|7) . .
approach the causal singularity, where they become almost
massless. One can easily analyze the classical dynamics of
these winding strings. In particular, in region | these strings
move from the collapsing to the expanding regions, either
passing through the origin where they have minimal length
or passing through the intermediate region. At large cosmo-

Similarly, the antiholomorphic trace is given bygFrcTr, .
Therefore, the partition functiods is given by the final ex-
pression(reinsertinga’)

Zy= R 2 1@ (TR’ )(TTImp) —2m oA 2w logical times these strings become very long and stretched.
va! 7o ww Such states could be the origin of the pole structurgfin
) _2 particular, the physical meaning @; could be related to
X[02(1AT|7)[*. (3.20 nucleation processes of such long strings.

) 3 We leave to future work a more detailed analysis of the
Using the fact thatl 01(£| 7)|;-o=27%°(7), we see that, as integral (3.21) and of the precise physical meaning of the
A—0, the partition function diverges. This is due to the factpoles inZ,, and the study of the possible relation of the
that, in the limit, the rotational symmetry in tie-T plane is winding s3t’ring modes with the long strings studied in
restored and the partition function is then proportional to the[zz_23
space-time volume. Moreover, the modular propertie® of '
insure modular invariance of the full expression.

In order to compute the total partition function, we can B. M theory and 9-11 flip

use the usual trick21] of extending the integration region ) )
from the fundamental domaifr|>1, |ry|<% to the strip In this subsection we comment on the M-theory compac-
I'={re(|r,>0,r]<i}, while at the same time restricting tification. Consider the construction of Sec. Il and add eight

the sum in Eq(3.20 to w=0w'=1. Then we have spectator flat directions. Then reducing to the type lIA theory
' one obtains the following background fields:

ZZJ dTd?Z 7257 (3.21 2 AU 24 4<2(F8 (ED)? 2
P2 e : dsfo=AY] —dt?+ d (L )]+de,
" . (3.2
whereZy andZy, are the usual partition functions for thec
ghosts and for a noncompact boson, and where (Et)2
e*B=A(1), A= T
~ R 2/ 1yt l2
23: Z e*('n'R la")(w /72)|01(iAWI|T)|72.
va' 1 wi=1

(3.22 By compactifying one of the spectator directions on a circle,
this solution is related to the previous nine-dimensional so-
Let us note that the above expression has strong similariution by a 9-11 flip. Also, one can analyze the validity of the
ties with the expression for the Euclidean BTZ black holegravity approximation, finding that this description is appro-
partition function found ir{22], as expected from the analy- priate for a large expansion period in region | provided that
sis in Sec. IIB. The expression f&3 in fact exhibits a the boost parametéy is sufficiently small, and that the com-
similar structure of poles in the regidn, which are in cor- pactification radiusR satisfies R< Ja' (and thereforeg
respondence with the zeros @f(iAw’|7). The function <1). In region II, the string coupling becomes small since
6.(L|7), as a function of/, has in fact a simple zero at the the proper length of the compactification circle is decreasing.

points{=ar—b (a,beZ). More precisely Near the causal singularity the string coupling becomes zero
_ and the compactification radius becomes lightlike. Hence
01| 7)~ (=) P27 i (r)e” MA@ VT r—ar+b). one expects that the correct description of the apparent ten-

(3.23 dimensional singularity is given by matrix theory. We think
this issue deserves further investigation because it would
Then the poles oF; are determined by the equatibAw’ give a resolution of the singularity in the above cosmological
=ar—b and are located at solution.
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V. COSMOLOGICAL SOLUTIONS IN ARBITRARY where « is the (d+1)-dimensional gravitational coupling
DIMENSIONS and we conveniently use the Einstein metric. The potential

So far we have considered geometries that arise frorr\1/(¢’)\) has the form
Katuza-Klein compactifications. Naturally, one expects that E2 g
such geometries can be generalized to arbitrary dimensions V(p,\)= —ex;{ a¢,_2_)\)
and arbitrary degrees of the form gauge field. These new 2 d-1
space-times s.houl.d share. many properties with . the_ €as€ pefore deriving the equations of motion for the action it is
where space-time is a quotient of flat space. The situation IS nvenient to define the scalar fieldsnd by the relations
analogous to the BTZ black hole, which is simply a quotient
of three-dimensional anti—de Sitter space but retains the
standard properties of higher dimensional black holes.

(4.4

p=a(d+d—1)A+ddg,

A short cut to constructing such a generalization is to ~ (4.5
realize the similarity between the dilatonic Melvin solution - 2dd N—ad
[26] and the cosmological solution of Sec. Il. In the case of d-1

the Katua-Klein Melvin solution, the geometry is simply o o

flat space with an identification along the orbits of the isom-With this field redefinition,p=p, constant solves the equa-
etry subgroup generated by rotations on a plane together wi#on of motion for this scalar, which decouples from the re-
translationg27]. Hence, replacing the boost by a rotation in Maining field equations. Then the gravitational action
our construction one recovers the Kaauilein Melvin solu-  coupled to the scalay becomes

tion. For example, starting with the cosmological solution

(3.295 and making the analytic continuatidr-ir, E—IE, 5= if 4+ g
E8— M8, one obtains the flux 7-brane solution of the type IIA 2 2 9
theory [28,29. This suggests that the generalization of the

two-dimensional cosmological solution to higher dimensionsvhere the potentiaV/(¢) has the form
can be found by an analytic continuation of the flux brane
geometries[30—32. Earlier work on cosmological string _
backgrounds can be found [83—36. V(y) =5 exp(— ), (4.7)

R— g(aw)z—vw) , (4.9

E2

A. The action and basic ansatz and B is the numerical factor

To keep our discussion general we shall consider a L 2d%d
D-dimensional space-time with d-form field strengthF B =att @rd—1)d-1)
=dA and a scalar fieldb. The corresponding gravitational
action is

4.9

B. Region |
1

S= 2—2 dDX\/—g

Kp

To find the metric and scalar field in the region that is
analogous to the region | of the KalsKlein case, consider
(4.1  the Robertson-Walker space-time metric for an open uni-
verse
wherexp is the gravitational coupling. Of course this action
can be regarded as a consistent truncation of either string or
M-theory low energy actions, wheferepresents any of the
field strengths or electromagnetic dual in these theories. We
shall reduce the theory to+1=D—d dimensions accord-
ing to the ansatz together with the time-dependent scalar figld). The equa-

B B tion of motion for the scalar is
dSZD: ef[2d/(dfl)])\dsz+ eZ}\dSZ(Ed),

1 1
_ 2_ T padpr2
R=5(¢) T Fl,

ds2= —dt?+a(t)ds2(Hy)

=—dt?+a%(t)(dyx?+sintPxdQ3_,),
(4.9

LAl Y
Then the actior(4.1) becomes effectively while Einstein equations take the usual form
2
a 11 (B,
s= % dd“x\/—_g{R— (a2 (5) T2 dd-D) [E‘f” +V(‘/’)}’
- (4.11)
d(d+d—1) dla) 1 B .
TTaer NTVeM| @3 E(E fa A
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where dots represent derivatives with respect to the coordiwe change to a coordinate system well behaved around the

natet. coordinate singularity at=0
In analogy with the two-dimensional case we look for a 3 5
geometry with similar behavior arourtd=0. In particular, T=tcoshy, X=tsinhy. (4.15

we require the geometry to have the Milne form along the

light rays. This is only possible provided the homogeneoudn these coordinates the metric and scalar fields around the
space is the hyperboloitiy, justifying our choice for an |ight rays|T|=|X| are well behaved and there is no coordi-
open universe cosmology. Then, one can find a solution tpate singularity, which allows us to continue the solution to
the above system of differential equations as a power eXpaigion I where|'~l'|<|?(|. To make the symmetries of space

sion in the dimensionless quantit(). A straightforward  manifest it is convenient to define new, ¥) coordinates in
calculation gives for the first terms in this expansion

region Il by
e o ~ ~
a(t)=t| 1+ m(Et)2+ ce ], T=tsinhy, X=tcoshy. (4.16
e Yo , (412 Then the metric ansatz takes the form
W= dot g (U A= +d2+a%(1)d2(dS,)
Next we want to find the asymptotics for this geometry. =dt?+a?(t)(—dy?+cosfxdQ3_,). (4.19

As it is the case with cosmological solutions in an open

universe, at later times we have curvature dominationThe SO(1,d) symmetry of the original ansatz in region I,
Hence, the correct ansatz for the asymptotic solution is to sgbalized on the constant timedimensional hyperboloids, is
a=aot, and then solve for the scalar fiel(t) and use the now the symmetry of the constanspace-time slices. In fact,
Freedman equation to fix the constagt This results in the  these slices are simply the:dimensional de Sitter space.
asymptotic behavior Notice that, in region II, the coordinatebecomes spacelike
(E1)2 and the coordinatey timelike. A_Iong _ the _horizon the

— (4.13 SO(1,d) symmetry acts as translations justifying the bound-

4d-1)p ary conditions we have imposed.

The form of the solution near the=0 surface can be

obtained simply by the analytic continuation of the solution

28 )1 in region |

a(t)=apt, e’V=
with the constang, given by

1——— (4.14

a6=|1- g1

a(t)y=—ia(it), (1) =(it). (4.18

The picture we have in region | is exactly the same as fo

the Kalua-Klein case. An observer that is comoving with tl'h|s gives the following expansion:

the expansion could think that at an earlier time the matter oo

density blows up and there is a cosmological spacelike sin- a(t)=t| 1— (Et)2+--. |,

gularity. This is the usual understanding in cosmology. How- 3d(d—1)

ever, in the picture we are proposing here, there is a past (4.19
cosmological horizon where the geometry is perfectly e Yo ’

smooth. In fact, we have fixed the boundary conditions on ()= tho— 4B (ED+---.

this horizon to evolve into the future. Of course, there is also To find the asymptotics of the solution in region 11, notice

a collapsing region I, where the comoving observer sees g, it a(t) =cost the metric describesd 1)-dimensional

future horizon where the boundary conditions are imposedye sjtter space and the surface/2 is a coordinate singu-
We shall give a more detailed discussion of this proposal ifjir | fact, if this was the case for this solution we would

the conclusion. have a cosmological solution without any singularity. Start-
. ing from region Il att= 7/2 we would have a de Sitter phase,
C. Region II which would then evolve to the Robertson-Walker cosmol-
The boundary conditions imposed above on the surfac9y in region I. Unfortunately this is not the case for the
t=0, y=+ are that the geometry looks like the Milne potentialVV(#) that results from the Kat@Klein compacti-
universe, which in fact is just flat space. The nontrivial as_ﬁca.tion. We have done some numerics and verified that the
sumption we are making is that the scalar field and the consolution develops a singularity around sotwet,, exactly as
formal factor have the same behavior throughout the wholén the two-dimensional case. The correct asymptotics can be
surfacet=0, y=+. This is essential to have a homoge- found by doing the ansatz
neous cosmology.

We can pass from the expandifigr collapsing region | a(t)=ao(to—t)"+-- -,
to a region Il by a suitable change of coordinates. Again (4.20
there is a close analogy with the two-dimensional case. First #(t)=nlog(PE(tg—t))+ - -.
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(a<0) the string coupling will become very largemall)
near the singularity and it will become very sméérge in
the asymptotics of regions I. In all cases the volume of the
compact space becomes very small near the curvature singu-
larity, which is telling us that the string winding states be-
come very light. Asymptotically space-time decompactifies.
Let us analyze in more detail the cases with-0. Con-
sider first the type 1IB theory with the self-dual 5-form field
strength. As for the D3-brane the string coupling can be
made small throughout the whole solution. There will be
curvature corrections near the singularity where string wind-
ing states become very light and the gravity approximation
breaks down. Two other cases with=0 correspond to the

t=0 M-theory 4-form field strength or its dual 7-form. The latter

case is particularly interesting. Fde=7, =0 andD =11,
we have a four-dimensional cosmology for an open universe,
and the compact manifold is seven-dimensional. Throughout
this paper we considered flat manifolds in the internal direc-
tions, but more generally one can consider any Ricci flat
manifold. In this case, one could consideGa manifold for
@) ®) which there has been a great deal of interest for flat space
compactifications, which yieldv=1 SUSY inD=4 (see
FIG. 3. Carter-Penrose diagrams for open Universe cosmolok37] and references thergirHere, supersymmetry is broken
gies. In both diagrams each point representsia 1) sphere and by the form flux[38].
x=0 is a coordinate singularity. The standard diagram(tinis As this work was being completed an interesting papér
presented for comparison with our proposal. appeared, also considering new time dependent string theory
backgrounds. These backgrounds are different from the ones
Then the equations of motion give the following values forintroduced here. They analyzed the case where the boundary
the dimensionless constanis y and 6: conditions for the scalar field are set on a spacelike hyper-
25 surface, while we have considered the case of a null hyper-
-~ _ . surface. We have interpreted this null hypersurface as the
n=2, 7= d-1' 077=4p(1-dy), (4.2) cosmological horizon inpan open Univers)épcosmology. This
fact allowed us to continue the geometry in both directions
while the value ofa, is a constant of integration, that is fixed from the horizon. A natural question is whether one can also
by the value of the scalar field at the light rays. continue the other new geometries presentefBirno a re-
We have verified that the analytic behavior for the differ- gion similar to region Il herein described. For tie=4
ent asymptotics in both regions | and Il exactly matches theinstein-Maxwell solution of8], it is indeed possible to ex-
numerical analysis. In Fig.(8) the Carter-Penrose diagram tend the geometry to a region Il where there will be a time-
for the cosmological solutions is shown. For comparison weike singularity. The Penrose diagram is similar to the dia-
included in Fig. 8b) the usual Robertson-Walker open Uni- gram of Fig. 2 with each point representing a two-
verse diagram. The pre-big-bang string cosmology scenarigimensional hyperbolic plane.
[1] considers the latter diagram and glues a collapsing phase
to an expanding phase along the spacelike singularity. For v coNCLUSION: TOWARDS A SOLUTION OF THE
the new space-time global structure here presentel is a HORIZON AND SINGULARITY PROBLEMS?
cosmological horizon. For smdllthe universe undergoes an

acceleration and, when it becomes curvature dominated, it In this paper we have proposed a new cosmological sce-
expands linearly with time. nario that tries to evade the cosmological singularity prob-

lem. The essential point was to consider collapsing and ex-
panding phases with future and past cosmological horizons,
] ) and to fix the boundary conditions along these null hypersur-
As mentioned before the above solutions are naturallfaces. From these horizons, we constructed the space-time
embedded in string and M theory. So we would like to un-geometry for specific examples that arise quite naturally in
derstand where the gravity approximation is valid and wher&tring theory. In the cosmological solution that we have stud-
space-time and world-sheet string effects become importanfed, and more generally in cosmological solutions that have
The behavior of the solution is essentially determined by thggentical space-time causal structure, the usual horizon prob-
constantx in the coupling between the dilaton field and the |em of standard cosmology does not arise. In fact, consider
gauge field. For the RR gauge fields of the type Il theorieswo points of the hyperboloid at constant cosmological time
we havea=(5—d)/2, for the NS-NS 2-form gauge field tin the expanding phase, that have an arbitrarily large space-
=—1 and for its dual 6-form gauge field=1. If «>0 like separation. Then from the Carter-Penrose diagram, be-

ig

D. String and M-theory cosmologies
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cause there is a past cosmological horizon, the past ligh®itter phase, it seems very difficult to evolve the differential
cones of these points always intersect. equations such that we reach the horizon with the exact be-

Another aspect of this proposal is that it raises the hope ofavior for the scale factora=1), and scalar field ¢=0),
resolving the cosmological singularity problem. First, in thesych that the transition can be achieved. On the other hand,
two-dimensional toy model presented here we were able, byhere may exist solitons that interpolate between different
embedding the geometry in string theory, to interpret the/acua in regions | and lflike domain wall3. We think this
geometry as arising from a string theory orbifold from whichjssye deserves further attention because, if successful, it
one can at least do some calculations. In particular, we haugould give a completely smooth cosmological solution. Let
started the analysis of the one-loop partition function whichys note that this is not in contradiction with the singularity
is modular invariant. The analogy with strings in thermaltheorems because in the de Sitter phase the strong energy
AdS; [22] is definitely worth pursuing. This toy model was ¢ondition is not satisfied.
inspired by the recent proposal @], and provides a regu-  Finally, independently of string theory, one should reex-
lator for their proposal. Indeed, with the identifications by damine many issues in Cosmo]ogy by Considering different
boost and a translation, at small translation param®er types of potentials, as those used in inflationary and particle
space-time is still smootfin particular Hausdorjfand there  cosmology, and by imposing the boundary conditions at the
is a horizon. So this looks like a good regulator for the sin-cosmological horizon. From these boundary conditions the
gular space-time one obtains when settRg 0 from the  ynjverse can evolve into the usual cosmological epochs. An-
beginning. Secondly, in the case of the higher dimensionadther important issue that we plan to analyze is the question
solutions, there are cases where the string coupling can kg thermal radiation seen by the cosmological observer. Con-
kept small throughout the whole space-time. There is a timesjder, for example, a scalar field and fix its boundary condi-
like singularity in the region Il of space-time, where the tions to have only positive frequency modes on the cosmo-
compact space is shrinking and where winding string stategpgical horizon. Then one can study the spectrum at later

become important. It would be very interesting to resolvetimes. Note that the same reasoning cannot be applied in the
these singularities within string theory. A reasonable conjecpresence of a spacelike big-bang singularity.

ture is that the new light degrees of freedom could acquire
some vacuum expectation val(#¢EV) resolving the singu-
larity. _ o , ACKNOWLEDGMENTS
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