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Calibrations, monopoles, and fuzzy funnels
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We present new non-Abelian solitonic configurations in the low energy effective theory describing a col-
lection ofN parallel D1-branes. These configurations preserve 1/4, 1/8, 1/16 and 1/32 of the spacetime super-
symmetry. They are solutions to a set of generalized Nahm equations which are related to self-duality equations
in eight dimensions. Our solutions represent D1-branes which expand into fuzzy funnel configurations ending
on collections of intersecting D3-branes. Supersymmetry dictates that such intersecting D3-branes must lie on
a calibrated three-surface of spacetime and we argue that the generalized Nahm equations encode the data for
the construction of magnetic monopoles on the relevant three-surfaces.
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I. INTRODUCTION

In the absence of gauge fields branes are embedded
spacetime so as to minimize their worldvolume. In additio
requiring that the branes are supersymmetric leads to
condition that their worldvolumes are in a preferred class
sub-manifolds of spacetime known as calibrated surfaces@1#.
These surfaces were first applied to supersymmetric b
configurations within string theory compactifications
@2,3#. The theory of calibrations is also important for unde
standing intersecting D-branes which preserve some frac
of supersymmetry in flat space@4–6#. In this context the
combined worldvolume of a set of intersecting Dp-branes
can be regarded as a single (p11)-dimensional hypersurfac
embedded into spacetime. The condition that the embed
is supersymmetric is equivalent to the condition that thep
11)-dimensional hypersurface is calibrated but now th
surfaces are generically non-compact.

In particular it was shown in@5# that the calibration equa
tions of @1# are realized as a Bogomol’nyi-Prasa
Sommerfield~BPS! condition in the low energy effective
field theory of asingleDp-brane. For this reason we refer
these asAbelian embeddings. As is well known, multipl
coincident Dp-branes give rise to a non-Abelian gauge sy
metry in the low energy effective theory@7#. This has lead to
many interesting implications for the spacetime interpre
tion of D-branes and has given invaluable new geometr
insights into non-Abelian gauge theory phenomena such
monopoles and instantons. It is therefore of interest to un
standnon-Abelianembeddings of D-branes into spacetim
Ideally one would like to derive the non-Abelian generaliz
tion of the BPS conditions obtained for a single Dp-brane in
@5#. However, this issue is at present complicated by the
that the non-Abelian generalization of the Born-Infeld~BI!
action is poorly understood and in particular there is virtua
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no understanding of non-Abeliank-symmetry—see@8–10#
for some recent discussion and progress on this issue.

In this paper we will initiate a study of non-Abelian em
beddings by studying the simplest example, namely D
branes. Because of the absence of a suitable notion of
Abeliank supersymmetry we will restrict our analysis to th
Yang-Mills approximation. We expect that any supersymm
ric solution to the Yang-Mills equations of motion can b
lifted to a the full non-linear equations of motion. In th
study of Abelian embeddings this corresponds to conside
free scalar Maxwell theories and is trivial, i.e. most of t
interesting solutions crucially involve the non-linear term
However, we will find that non-trivial solutions exist in th
non-Abelian Yang-Mills approximation.

More specifically we will see that the resulting soliton
are generalizations of the D1'D3 system in whichN D1-
branes end on a single D3-brane. From the point of view
the effective theory living on the D3-brane the D1-branes
as point sources of magnetic charge. These monopole
figurations are realized as BPS solutions to the equation
motion which represent the worldvolume of the D3-bra
protruding into the ambient spacetime in a spike-like co
figuration known as a BIon@11–13#. As a BPS configuration
in a U(1) field theory the BIon is a completely Abelia
object. This system can instead be studied as a solitonic
ject in the non-Abelian theory describing theN D1-branes.
The BPS equations for this system are known to be given
the Nahm equations@14# describing BPS monopoles in (3
11)-dimensional Yang-Mills-Higgs theory@15#. The Nahm
data used in the construction of monopoles in the D3-br
theory are therefore naturally encoded in the non-Abel
dynamics of the D1-branes which end on the D3-branes

It was shown in@16# that such solitonic solutions in th
D1-brane theory in fact describe a non-commutative~or
fuzzy! funnel configuration which opens up into a D3-bra
orthogonal to the worldvolume of the D1-branes. Further
was also shown that this funnel actually acts as a source
the Ramond-Ramond four form of type IIB string theory
precisely the correct fashion to be identified with the D
©2002 The American Physical Society16-1
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brane on which the D1-branes are ending. This construc
therefore provides a self-contained description of
D1'D3 intersection which is complementary to that of t
BIon spike.

The fuzzy funnel configurations described in@16# are so-
lutions to Nahm equations and describe D1-branes endin
a single D3-brane. As such, these constructions involve o
three of the eight transverse scalars in the effective the
describing the D1-branes. It is natural to ask whether
may find analogous solitonic configurations which invol
more, perhaps all, of the transverse scalars. This ques
was addressed in@17# where such solutions involving five
scalars were found. These were shown to correspond to
branes ending on a collection of D5-branes. While sta
these configurations are not supersymmetric. It is the purp
of the present investigation to discuss new solitonic n
Abelian D1-brane configurations which involve five, six a
seven of the transverse scalars while preserving various
tions of the supersymmetry preserved by the original D
branes.

In the following we will denote the transverse scalars
the non-Abelian D1-brane theory byF i , i 51, . . . ,8 and
take the configuration to lie along thex9 direction in space-
time. We will show that there exist a class of supersymme
configurations which are solutions to the generalized Na
equations

]F i

]x9
5

1

2
ci jk@F j ,Fk#, ~1.1!

whereci jk is a totally antisymmetric constant tensor whi
we will determine exactly below. These equations can a
be derived as the dimensional reduction of the high
dimensional self-duality conditions in@18#. In the special
case that only three of the transverse scalars are non-tr
ci jk becomes« i jk and Eq.~1.1! is simply the standard Nahm
equations discussed in@15,16# corresponding to the D1
branes ending on a single D3-brane. The more general
figurations involving more than three non-Abelian scal
will turn out to correspond to fuzzy funnel configurations
which the D1-branes end on collections of intersecting D
branes. As discussed above such intersecting D3-brane
supersymmetric if their worldvolumes lie on a calibrat
three-manifold @1#. Defining the three form v
5(1/3!)ci jkdxi`dxj`dxk we will show that the non-trivial
components ofv are in a one-to-one correspondence w
the three-form which calibrates the D3-brane intersection
which the D1-branes are ending. We are thus led to con
ture that the generalized Nahm equations encode the ne
sary data to construct magnetic monopole solutions on v
ous calibrated three-manifolds via an analogous metho
the standard Nahm construction of magnetic monopoles
R3. In addition we will argue that these generalized Nah
equations also encode data on the moduli of the assoc
calibrated manifold.

The remainder of this paper is organized as follows.
Sec. II we derive the generalized Nahm equations as a
condition in the non-Abelian worldvolume theory describi
N D1-branes. In Sec. III we discuss how solutions
06501
n
e

on
ly
ry
e

on

1-
le
se
-

c-
-

f

ic
m

o
r-

ial

n-
s

-
are

n
c-
es-
ri-
to
n

ed

n
S

the generalized Nahm equations are related to supersym
ric D3-brane configurations. Specifically, we make prec
our claims that the generalized Nahm equations encode
data describing magnetic monopoles on calibrated th
manifolds. We also discuss the connection between our c
struction and the notion of higher dimensional self-du
gauge fields@18#. In Sec. IV we provide explicit solutions to
the generalized Nahm equations and demonstrate that t
solutions can be interpreted as fuzzy funnels which open
into the various D3-brane configurations discussed in Sec
and III. In Sec. V we examine the moduli associated with o
solutions and identify the deformations which correspond
the moduli of the calibrated surfaces on which the D1-bra
are ending. We conclude with some comments and o
problems.

II. GENERALIZED NAHM EQUATIONS
FROM D1-BRANES

The effective action forN D1-branes obtained by quant
zation of open strings is a non-linear generalization of
Yang-Mills action with gauge groupU(N). We will choose
conventions where the fields, which take values in the
algebrau(N), are anti-Hermitian. The worldvolume gaug
field has explicitly been set to zero. In the following we w
work in static gauge so that the worldvolume coordinates
identified with those of spacetime as,s15t and s25x9.
Furthermore, we will be considering only the leading ord
terms appearing in an expansion of the full non-Abeli
Dirac-Born-Infeld effective action1

S52T1E dtdx9FN1l2TrS 1

2
]aF i]aF i

1
1

4
@F i ,F j #@F i ,F j #1••• D G , ~2.1!

wherel52p l s
2 andi , j 51, . . . ,D labels the number of non

vanishing transverse directions. The terms involving the s
lar fields are easily recognized as the bosonic sector of m
mally supersymmetric Yang-Mills theory with gauge grou
U(N) in two spacetime dimensions described by the L
grangian

L5T1l2TrS 1

2
]mF i]mF i1

1

4
@F i ,F j #2D . ~2.2!

After subtracting off the ground state energy of the D
branes, the energy of a static configuration can be written

E5T1l2E dx9TrS 1

2
F i8F i81

1

4
@F i ,F j #@F i ,F j # D

5T1l2E dx9H 1

2
TrS F i82

1

2
ci jk@F j ,Fk# D 2

1TJ ,

~2.3!

where a prime denotes differentiation with respect tox9 and

1We assume here the conventions of@19#.
6-2
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CALIBRATIONS, MONOPOLES, AND FUZZY FUNNELS PHYSICAL REVIEW D66, 065016 ~2002!
we have introduced a constant, totally anti-symmetric ten
ci jk which will be specified below. In Eq.~2.3! we have
performed the usual Bogomol’nyi construction and writt
the energy density as a squared term plus a topological p
given by

T5
T1l2

3
ci jkTr~F iF jFk!8. ~2.4!

We must also impose that the two quartic terms in Eq.~2.3!
agree, that is we must impose that

1

2
ci jkcilmTr~@F j ,Fk#@F l ,Fm# !5Tr~@F i ,F j #@F i ,F j # !.

~2.5!

It now follows that the Bogomol’nyi equation is

F i85
1

2
ci jk@F j ,Fk#, ~2.6!

and hence the energy of such a configuration depends
on the boundary conditions of the coordinates.

Equation~2.6! can be thought of as a generalized Nah
equation. Indeed, in the case thatF iÞ0 for i 51,2,3 and
ci jk5« i jk ~2.6! is precisely the Nahm equation@14# describ-
ing BPS monopoles onR3. The emergence of this equatio
in the low energy D1-brane theory was first pointed out
@15#. This was further studied in@16# where it was found tha
this equation has supersymmetric solutions which repre
the expansion of the parallel D1-branes into a no
commutative funnel structure which opens up into an
thogonal D3-brane filling thex1,x2,x3 directions in space-
time. As will be seen below Eq.~2.6! possesses supe
symmetric non-commutative funnel solutions, with the a
propriate choices ofci jk , involving 5, 6 and 7 transvers
scalars. These solutions preserve 1/4, 1/8 and 1/16 of
supersymmetry preserved by the original collection of D
branes. Further, instead of expanding into a single D3-bra
these configurations are found to be expanding into col
tions of intersecting D3-branes.

In order to proceed note that since Eq.~2.5! is a constraint
on the fields we must also ensure that the equation of mo
is satisfied

F i952†@F i ,F j #,F j
‡, ~2.7!

or, from Eq.~2.6!,

1

2
ci jkcjlm†@F l ,Fm#,Fk

‡52†@F i ,F j #,F j
‡. ~2.8!

Multiplying Eq. ~2.8! by F i and taking the trace we find tha
the constraint~2.5! is automatically satisfied. Thus solution
to the generalized Nahm equations, along with the constr
~2.8!, are guaranteed to be solutions of the full equations
motion.

We are interested in supersymmetric solutions of E
~2.6!. The general supersymmetry variation is
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dl5S 1

2
]mF iG

m i1
1

4
@F i ,F j #G i j D e. ~2.9!

Here theG matrices form the Spin~1,9! Clifford algebra. In
our casedl50 becomes

05(
i , j

@F i ,F j #G i j ~11ci jkG i jk9!e. ~2.10!

Note thate is the preserved supersymmetry on the D1-bra
worldvolume. To solve the supersymmetry condition~2.10!
we define the projectors

Pi j 5
1

2
~11ci jkG i jk9!, ~2.11!

where there is no sum oni , j . In the cases we will consider
for a given pairi , j , ci jk is only non-zero for at most one
value of k. In this case, provided that we normalizeci jk5
61, we find thatPi j

2 5Pi j . Hence we setPi j e50 for each
pair i , j such thatci jkÞ0 for somek.2 Of course to find a
non-trivial solution fore, and hence preserve some fractio
of the D1-brane’s 16 supersymmetries, we must impose
the matricesG i jk9 which appear in thePi j projectors com-
mute with each other. It is not hard to see th

@G i jk9,G i 8 j 8k89#50 if and only if i 5 i 8 and j ÞkÞ j 8Þk8,
etc., i.e. the sets$ i , j ,k% and $ i 8, j 8,k8% have exactly one
element in common. Note that it is possible that some co
bination of projectors imply that other projectors are au
matically satisfied. The number of preserved spacetime
persymmetries is 16322k where k is the number of
independent projectorsPi j that we impose.

Once we have a particular set of mutually commuti
projectorsPi j we can return to the supersymmetry transfo
mation ~2.10!. This now becomes

(
ci jk50

@F i ,F j #G i j e50, ~2.12!

where the sum is over pairsi , j such thatci jk50 for all k.
The projectors can then be used to reduce this equation
set of conditions on the commutators@F i ,F j # alone. As a
consequence of the specific form for theci jk elements that
we will use, one can show that Eq.~2.12! and the supersym
metry projectors~2.11! imply Eq. ~2.8!. To summarize then
we must solve the Bogomol’nyi equation~2.6! and the com-
mutator conditions that follow from Eq.~2.12!.

III. D3-BRANES AND CALIBRATED GEOMETRY

In this section we wish to understand the spacetime or
of the projectors obtained in Eq.~2.11!. Recall that in type
IIB string theory there are two ten-dimensional supersymm
try generatorseL and eR with the same chirality. The pres

2Note that there may be more general solutions to the supers
metry condition but we expect that these are related to those
cussed here by a rotation.
6-3



th

re

th
s

om
he

n
s
in
e

n-
t

m
t
ifo
n
iv
3
th

ill
-

c

nd

to
nt
e

th
ns
th
ee
ed
D
e
fo

i

d

th
-
he
e

ls
ent

r-
d-

les
be

ing
ady
s
n

ne

rd

for

en-
ra-

tion

s
n

NEIL R. CONSTABLE AND NEIL D. LAMBERT PHYSICAL REVIEW D 66, 065016 ~2002!
ence of the D1-brane breaks half of the supersymmetry of
vacuum by imposing thatG09eL5eR . Using this relation the
projectionG i jk9eL57eL can be written asG0i jkeL56eR .
We immediately recognize this projector as due to the p
ence of a~anti-!D3-brane in the 0i jk plane. Therefore simul-
taneously imposing multiple projectors is equivalent to
presence of multiple intersecting D3-branes. A list of all po
sible orthogonal D3-brane intersections which preserve s
fraction of supersymmetry can be found from t
M-fivebrane intersections given in@4,5#. Combined with our
intuition from @16# these observations suggest that solutio
to the generalized Nahm equations~2.6! can be interpreted a
the D1-branes opening up into a collection of intersect
D3-branes. That this is indeed the case will be shown in S
IV. However, before discussing explicit solutions it is i
structive to consider the generalized Nahm equations and
D3-brane configurations they describe in more detail.

In general intersecting D3-branes which preserve so
fraction of the spacetime supersymmetry can be though
as a single D3-brane which is stretched over a three-man
in the space in which the branes are embedded. The co
tion that supersymmetry is preserved is known to be equ
lent to the statement that the manifold over which the D
branes are stretched is a calibrated sub-manifold of
embedding space@2,4–6#. Here the embedding space w
simply be Rn for n53,5,6,7 and the calibrated three
manifolds which we will encounter are known asR3, Kähler,
special Lagrangian and associative sub-manifolds. We re
that a calibration@1# is a closedp-form v in the bulk space
with the property that, for any tangent vectorj to a
p-dimensional sub-manifold,P@v#(j)<dvol(j), where
dvol is the induced volume form on the sub-manifold a
P@v# denotes the pull-back ofv to the worldvolume. A
sub-manifold for which this inequality is saturated is said
be calibrated. These distinguished surfaces each represe
minimal volume ~i.e. energy! elements of their respectiv
homology classes.

One of the main observations of this paper is that
constantsci jk @for which there are supersymmetric solutio
to Eq.~2.6!# are exactly the non-vanishing components of
calibration forms associated with the corresponding thr
manifold over which the D3-brane intersection is stretch
Put differently, the generalized Nahm equations describe
brane configurations which open up into D3-brane inters
tions that are stretched over a calibrated three-mani
whose calibration formv is none other than the three-form
(1/3!)ci jkdxi`dxj`dxk. Furthermore, the Bogomol’ny
bound~2.4! can be written as

E>T1l2E dx9STrP@ i Fi Fv#, ~3.1!

where i F is the the non-Abelian interior product introduce
in @19#, STr is the symmeterized trace andP denotes the
pull-back to the D1-brane by the non-Abelian scalarsF i .
Thus the energy of the D1-brane is bounded below by
~non-Abelian! pull-back of the calibrating form to the D1
brane worldvolume. This is in complete analogy with t
Abelian Bogomol’nyi bound on the D3-brane worldvolum
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@2,4–6# and provides a new interpretation of fuzzy funne
as non-Abelian calibrated three-surfaces. This is reminisc
of the notion of a generalized calibration given in@20#,
which included Abelian worldvolume gauge fields. In pa
ticular the S-dual configuration of a fundamental string en
ing on a Dp-brane is an example of such a~generalized!
calibratedp surface.

In order to demonstrate our claims in concrete examp
we now summarize the various cases with which we will
concerned. In what follows theci jk components with11 are
chosen to be so, whereas those equal to21 are then fixed by
supersymmetry. This change in sign corresponds to add
an anti-D3-brane. The simplest example is the one alre
discussed in@16# for which the only non-vanishing scalar
are taken to beF1,2,3. Here the non-Abelian D1-branes ope
up into a single D3-brane which spansR3. The relevant D3-
brane configuration, the non-vanishing components ofci jk ,
the fractionn of preserved supersymmetries on the D1-bra
and the associated Bogomol’nyi equations~2.6! can be sum-
marized as

D3:1 2 3

D1: 9

c12351, n51/2

F185@F2,F3#, F285@F3,F1#, F385@F1,F2#.
~3.2!

Note thatci jk is simply « i jk , which is indeed the volume
form onR3, and the Bogomol’nyi equations are the standa
Nahm equations describing BPS monopoles onR3 @15,16#.
More interesting examples can be found by allowing
more scalars to be turned on. If we takeF1,2,3,4,5 to be non-
trivial then there exist supersymmetric solutions to the g
eralized Nahm equations describing the following configu
tion:

D3:1 2 3 ~3.3!

D3:1 4 5

D1: 9

c1235c14551 n51/4

F185@F2,F3#1@F4,F5#,

F285@F3,F1#, F385@F1,F2#,

F485@F5,F1#, F585@F1,F4#,

@F2,F4#5@F3,F5#, @F2,F5#5@F4,F3#.

Supersymmetry tells us that such a D3-brane intersec
should be stretched overR3M where R is the common
direction andM is a complex curve. Such complex curve
are calibrated by the Ka¨hler form associated with a give
complex structure on the four-manifold spanned byF2,3,4,5.
Forming the complex pairsZ15F21 iF3 and Z25F4
6-4
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1iF5 we see thatci jkdxi`dxj`dxk in this case is nothing
but the wedge product ofdx1 with the Kähler form associ-
ated with this complex structure.

There are two distinct ways to obtain configuratio
which preserven51/8 of the supersymmetry. The first is
straightforward generalization of the Ka¨hler case above
which is obtained by turning onF1,2,3,4,5,6,7. The correspond-
ing D3-brane intersection and generalized Nahm equat
are

D3: 1 2 3

D3: 1 4 5

D3: 1 6 7

D1: 9

c1235c1455c16751 n51/8 ~3.4!

F185@F2,F3#1@F4,F5#1@F6,F7#,

F285@F3,F1#, F385@F1,F2#,

F485@F5,F1#, F585@F1,F4#,

F685@F7,F1#, F785@F1,F6#,

@F2,F4#5@F3,F5#, @F2,F5#5@F4,F3#,

@F2,F6#5@F3,F7#, @F2,F7#5@F6,F3#,

@F4,F6#5@F5,F7#, @F4,F7#5@F6,F5#.

Once again this intersection should be stretched o
R3M where nowM is to be regarded as a complex cur
embedded into six-dimensional Euclidean space. Form
complex pairs asZ15F21 iF3, Z25F41 iF5 and Z3

5F61 iF7 we see thatci jkdxi`dxj`dxk in this case is
again the wedge product ofdx1 with the Kähler form. A
more interesting example which preserves the same am
of supersymmetry is provided by turning onF1,2,3,4,5,6 as
follows:

D3: 1 2 3

D3: 2 4 6

D3: 3 5 6

D̄3: 1 4 5

D1: 9

c1235c1455c24652c35651, n51/8 ~3.5!

F185@F2,F3#1@F4,F5#,

F285@F3,F1#1@F4,F6#,

F385@F1,F2#1@F6,F5#,
06501
ns

er

g

nt

F485@F5,F1#1@F6,F2#,

F585@F1,F4#1@F6,F3#,

F685@F2,F4#1@F5,F3#,

@F2,F5#1@F3,F4#1@F6,F1#50.

Note that there is no direction shared by all of the D3-bran
Supersymmetry implies that this intersection should
stretched over a special Lagrangian three-manifold emb
ded into six-dimensional Euclidean space. Defining our co
plex coordinates to beZ15F11 iF6, Z25F21 iF5 and
Z35F31 iF4 we may introduce the holomorphic three-for
c5dZ1`dZ2`dZ3. It is then straightforward to see tha
ci jk represents the non-vanishing components ofv5Re(c)
which is the calibration form for a special Lagrangian su
face embedded into the Euclidean six-dimensional space
dowed with the above complex structure@1#.

The final example again involves the seven scal
F1,2,3,4,5,6,7and leads to the following configuration:

D3: 1 2 3

D̄3: 3 4 7

D̄3: 3 5 6

D3: 1 6 7

D3: 1 4 5

D3: 2 4 6

D̄3: 2 5 7

D1: 9

c1235c1455c1675c24652c25752c34752c35651,

n51/16 ~3.6!

F185@F2,F3#1@F4,F5#1@F6,F7#,

F285@F3,F1#1@F4,F6#1@F7,F5#,

F385@F1,F2#1@F7,F4#1@F6,F5#,

F485@F5,F1#1@F6,F2#1@F3,F7#,

F585@F1,F4#1@F3,F6#1@F2,F7#,

F685@F2,F4#1@F5,F3#1@F7,F1#,

F785@F1,F6#1@F5,F2#1@F4,F3#.

Here the components of the three-formci jk are precisely
the non-zero components of the unique three-form inR7

which is invariant under the exceptional groupG2. These
particularci jk can be identified with the octonionic structu
6-5
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constants and the calibration formv calibrates so-called as
sociative three-surfaces inR7 @1#.

In what follows we will refer to these various cases asR3,
Kähler, special Lagrangian and associative, respectively.
fore proceeding let us make several comments on the ge
alized Nahm equations.

First we note that these equations are not new but ca
recognized as the dimensional reduction of a high
dimensional self-duality condition

FIJ5
1

2
t IJKLFKL, ~3.7!

where$xI%5$xi ,x9% andt9i jk5ci jk , t i jkl 50 @18#. In particu-
lar the generalized Nahm equations arise by assuming
the gauge fieldAI depends only onx9 and choosing the
gaugeA950. These equations were previously analyzed
@21–26#.

Next we note that in theR3 and associative cases there
no constraint equation since there are no pairsi , j such that
ci jk50 for all k. Further, in these cases theci jk satisfy

ci jkclmk5d i l d jm2d j l d im1g i j lm ~3.8!

where g i j lm is antisymmetric ini , j ,l ,m. Hence Eq.~2.8!
follows from the Jacobi identity.

As a final comment we note that in all of the above ca
the D1-brane should appear as a monopole on the calibr
surface. Applying S-duality to our configurations merely h
the effect of changing the D1-branes into fundamen
strings. By definition a D3-brane is a suitable end point fo
fundamental string, and the condition that it is calibrat
implies that some supersymmetry is preserved. Therefore
expect that smooth solutions representing D1-branes,
monopoles, on calibrated three-surfaces exist. Furt
T-dualizing along thex1,x2,x3 directions produces a con
figuration of intersecting D4-branes with a single D0-bra
~corresponding to the first D3-brane!. This system should
therefore correspond to an instanton on a calibrated fo
surface and are related to non-trivial solutions to Eq.~3.7!.
Indeed it was shown in@30# that supersymemtric wrappe
D-branes in manifolds of special holonomy give rise to c
homological field theories whose equations of motion loc
ize to solutions of Eq.~3.7!. Starting with the above equa
tions such a class of solutions is obtained by taking]x9F i

50. Hence the above equations all become constraints
the commutators. These solution may therefore be in
preted as supersymmetric D0-brane states and in partic
we expect that the examples of Ka¨hler calibrations are re
lated to the construction of complex curves in~M!atrix
theory @31#.

IV. SOLUTIONS

In this section we will provide some explicit solutions
the generalized Nahm equations which can be interprete
fuzzy funnels that open up into the D3-brane intersecti
discussed in the preceding section. Our focus here is to d
onstrate that solutions to the generalized Nahm equation
in fact exist and describe D1-branes ending on supersym
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ric D3-brane intersections. We therefore present only a se
very simple configurations which correspond to the D3-bra
intersections at the origins of both the Higgs and Coulo
branches. We will argue that the generalized Nahm equat
capture all of the physics of these intersections in the follo
ing section when we analyze deformations of the solutio
presented here.3

For the purposes of orienting the reader we will begin
briefly reviewing the fuzzy funnel solutions to the bas
Nahm equations appearing in Eq.~3.2! which were originally
presented in@16#. Taking onlyF1,2,3 to be non-vanishing we
make the ansatz

F i5 f ~x9!a i , ~4.1!

where @a i ,a j #52« i jkak is an n-dimensional representatio
of su(2). This is easily seen to solve the Nahm equations
long asf 852 f 2 which gives

F i52
1

2

1

x92a
a i , ~4.2!

wherea is an arbitrary constant of integration. The profile
this solution is clearly that of a fuzzy, orsu(2) valued, fun-
nel which opens up into a three-dimensional surface i.e.,R3,
asx9→a. At each finite value ofx9 the cross section of the
funnel is a fuzzy two-sphere. Thex9-dependent radius of the
funnel is given by

R~x9!2[2
l2

n (
i 51

3

Tr@F i~x9!2#5
c2l2

4

1

~x92a!2

~4.3!

wherec2 is the quadratic Casimir of thesu(2) representa-
tion. We will work with then-dimensional irreducible repre
sentation for which we havec25n221.

The energy of this configuration may be obtained
evaluating Eq.~2.3! on the solution presented in Eq.~4.2!.
We find

E5
T1l2

3 E dx9ci jkTr~F iF jFk!8

5T3~121/n2!21/2E 4pR2dR, ~4.4!

where we have usedT15T3(2p l s)
2 and we have identified

the physical radius of the funnelR with the radial coordinate
in the space spanned byx1,x2,x3. It is now clear that for
largen the energy of the funnel configuration can be iden
fied with the energy of a single, flat D3-brane sitting atx9

5a filling the x1,x2,x3 directions. To further support the
claim that the funnel is indeed opening up into a D3-bra

3We note that a general family of solutions to the associat
example were obtained in@21,22,24,25#. However, the fields were
not in u(N) and hence they cannot be readily embedded into
D1-brane effective action.
6-6
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we note that the non-Abelian Wess-Zumino couplings id
tified in @19,28# can be evaluated as

ilm1E STrP@ i Fi FC(4)#

5
il

2
m1E dtdx9 Ctk ji

(4) Tr~Fk8@F i ,F j # !

5 im3~121/n2!21/2E 4pR2dRC0123, ~4.5!

indicating that the funnel is acting as a source for precis
the correct Ramond-Ramond four-form field to be identifi
as a D3-brane.

We will now discuss solutions to the generalized Nah
equations. It will be shown below that the Ka¨hler and special
Lagrangian cases can all be obtained as special cases o
associative example. Thus we will begin our analysis w
the configuration in Eq.~3.6!. The generalized Nahm equa
tions in Eq.~3.6! can be solved by taking

F i5 f ~x9!Ai , ~4.6!

whereAi are a set ofN3N constant matrices which satisf
1
4 ci jk@Aj ,Ak#5Ai . A solution is given by

A15diag~a1,0,0,a1,a1,0,0!

A25diag~a2,0,0,0,0,a1,a1!

A35diag~a3,a1,a1,0,0,0,0!

A45diag~0,a3,0,0,a2,a2,0! ~4.7!

A55diag~0,0,a3,0,a3,0,a3!

A65diag~0,0,a2,a2,0,a3,0!

A75diag~0,a2,0,a3,0,0,a2!,

whereaa satisfy@aa,ab#52«abcac are now regarded as a
n-dimensional representation ofsu(2) so thatN57n. No-
tice that each diagonal block contains exactly one copy
thesu(2) generators. Substituting this ansatz into the gen
alized Nahm equation leads tof 852 f 2. Hence we again find
funnel-like solutions of the form

F i52
1

2

1

x92a
Ai . ~4.8!

Analogous block diagonal solutions to the highe
dimensional self-duality equation~3.7! have previously been
constructed@27#. These have the interpretation of fou
dimensional instantons embedded onto calibrated fo
surfaces inR8.

It is easy to see that
06501
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~F1!21 . . . 1~F7!2

52
c2

4

1

~x92a!2diag~1,1,1,1,1,1,1!, ~4.9!

wherec252(1/n)Tr@(a1)21(a2)21(a3)2# is the Casimir
invariant of su(2) in our n-dimensional representation. I
this case the D1-branes should not be thought of as exp
ing into a fuzzy six sphere.4 To see this recall that each bloc
in Eq. ~4.7! contains exactly one complete set of thesu(2)
generators. As a result each block gives rise to a single c
of the fuzzy funnel described above. This configurati
should therefore be viewed as expanding into seven in
secting fuzzy two spheres each of which, asx9→a, become
one of the D3-branes making up the intersection of Eq.~3.6!.

In fact the ansatz made in Eq.~4.6! can easily be gener
alized to include a different profile for each diagonal bloc
This leads to seven independent integration constants
therefore corresponds to orthogonal D3-branes which
separated in thex9 direction. One may also trivially add a
identity matrix to each diagonal block. This corresponds
separating the fuzzy funnels in directions orthogonal to
D1-branes. In this section we will restrict ourselves to d
cussing the case where all of the D3-branes are located a
same position inx9 as well as in the transverse directions
see the following section for more details.

Under these assumptions we may take

R2~x9!5
c2l2

4

1

~x92a!2
~4.10!

to be thex9-dependent radius of each of the fuzzy funne
The energy of this configuration is then easily evaluated
be

E5
T1l2

3 E dx9ci jkTr~F iF jFk!8

57T3~121/n2!21/2E 4pR2dR, ~4.11!

which is precisely the energy one expects from the D3-br
intersection in Eq.~3.6!. Finally we may verify our interpre-
tation of the funnel by examining the induced RR couplin

ilm1E STrP@ i Fi FC(4)#

5
il

2
m1E dtdx9Ctk ji

(4) Tr~Fk8@F i ,F j # !

5 im3~121/n2!21/2E 4pR2dR~C01231C0145

1C01671C02462C02572C03472C0356! ~4.12!

4We would like to thank R. Myers for a discussion on this poin
6-7
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which indicates that this non-Abelian embedding of D
branes is a source for precisely the correct Ramond-Ram
fields to be identified with the configuration~3.6!.

In order to find similar solutions to the other generaliz
Nahm equations we observe that all of the equations~and
constraints! presented in Eqs.~3.3!, ~3.4! and ~3.5! can be
viewed as special cases of the final, associative case,
~3.6!. In particular the special Lagrangian case~3.5! follows
by settingF750 and the constraint arises from theF7 equa-
tion in Eq. ~3.6!. A solution to these equations is then foun
by simply deleting the second, fourth and seventh blo
from each of the matrices in Eq.~4.7!. We find F i

5 f (x9)Ai where

A15diag~a1,0,a1,0!

A25diag~a2,0,0,a1!

A35diag~a3,a1,0,0!

~4.13!
A45diag~0,0,a2,a2!

A55diag~0,a3,a3,0!

A65diag~0,a2,0,a3!.

Assuming the same profile for each complete set ofsu(2)
generators this solution corresponds to a collection of
intersecting fuzzy funnels which open into the D3-brane
tersection described in Eq.~3.5!. On the other hand, by im
posing the constraint relations in Eq.~3.4! directly on the
equations in Eqs.~3.6! we obtain the generalized Nahm
equations corresponding to the Ka¨hler case in Eq.~3.4!
which have the simple solutionsF i5 f (x9)Ai with

A15diag~a1,a1,a1!

A25diag~a2,0,0!

A35diag~a3,0,0!

A45diag~0,a2,0! ~4.14!

A55diag~0,a3,0!

A65diag~0,0,a2!

A75diag~0,0,a3!,

representing three intersecting fuzzy funnels which this ti
open into the D3-brane intersection of Eq.~3.4!.

Lastly by settingF65F750 in Eq. ~3.4! we obtain the
equations and constraints of the Ka¨hler intersection in Eq.
~3.3!. These are solved by truncating the matrices in
~4.14! in the obvious way to giveF i5 f (x9)Ai where
06501
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A15diag~a1,a1!

A25diag~a2,0!

A35diag~a3,0! ~4.15!

A45diag~0,a2!

A55diag~0,a3!.

As a final comment on all of the solutions presented
this section we note that as the scalarsF i are becoming large
and quickly varying nearx95a the Yang-Mills approxima-
tion in which we are working is strictly no longer valid. O
the other hand, forx9@a we should be able to trust th
solution. As discussed in detail in@16,17# this is the opposite
range of approximation that is valid on the worldvolum
theory of the D3-branes that the D1-branes are intersect
Indeed the picture presented here accurately describes
region near the intersection.

V. MODULI

In the previous section we constructed explicit supersy
metric fuzzy funnel solitons. However, these solutions
somewhat trivial since the various components of the sc
fields which describe the different D3-branes commute w
each other. Indeed these solutions simply represent sev
distinct fuzzy funnels, each interpreted as a group ofn D1-
branes ending on a single D3-brane, embedded into a
ably large matrix. Therefore we would like to obtain mo
complicated solutions. Unfortunately, finding explicit ne
solutions is, in general, a difficult task. Here we will perfor
an analysis of the linearized modes about solutions of
form ~4.8!. In what follows we will establish the existence o
a large number of moduli which lead to non-trivial solution
at least at the linearized level.

It is convenient to rewrite the solution in the form

F i~x9!52
1

2x9 Aa
i Ta. ~5.1!

Here we have placed the D3-branes atx950 and Ta, a
50,1, . . . ,N221 are the generators ofu(N); @Ta,Tb#
5 f abcTc with T0 taken to be the generator of the overa
Abelian u(1) in u(N)5u(1)% su(n). In other words we
have used the fact that we must embed our matrices
u(N) to expressAi as a linear combination of the generato
Ta. Note that sinceF i solves the Bogomol’nyi equation w
can deduce that

Aa
i 5

1

4
ci jk f abcAb

j Ac
k . ~5.2!

In addition the f abc satisfy the Jacobi identityf abef cde

1 f cbef dae1 f dbef ace50.
A linearized perturbation can also be written asdF i

5wa
i Ta and therefore satisfies the equation
6-8
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x9
dwa

i

dx9 52
1

2
ci jk f abcAb

j wc
k . ~5.3!

For most examples we will also have to worry about t
constraint equation~2.12! but here we will only consider the
R3 fuzzy funnel~3.2! and the associative case~3.6! for which
the constraint is absent. Sinceci jk , f abc and Ab

j are known
constant tensors we have a linear equation for the pertu
tions wa

i . Furthermore, since (Ta)†52Ta and ci jk f abcAb
j

5ck ji f
cbaAb

j , the matrix on the right-hand side is real an
symmetric. It follows that there is a basis of solutions w
eigenvaluesla

i and hence there areDN2 zero modes

wa
i 5ea

i ~x9!la
i
, ~5.4!

whereea
i is a small parameter. Note that the perturbation

only valid if the second order term in the variation~there are
no higher order terms! is small compared to the linear on

This corresponds toea
i !(x9)2la

i
21. So any given perturba

tion is not valid over the entire funnel but is always va
over some region. Strictly speaking we may only trust
Yang-Mills approximation when the derivatives of the gau
fields are small, corresponding to the regionx9→`. There-
fore we should only trust zero modes withla

i <21, al-
though we will see exceptions to this. We would also like
see if some of the moduli are associated with the D1-br
itself and if some in fact reflect moduli of the intersectin
D3-branes. We expect that zero modes which do not va
as x9→` correspond to moduli of the D1-branes where
those that do vanish correspond to the geometry of the
branes.

Let us start by identifying some obvious zero mod
Firstly we can separate outD center of mass coordinate
along each of the transverse directionsxi . This corresponds
simply to takingw i to be constant and proportional toT0 ~i.e.
l50). Next we can identify the translation modewa

i

5eF i
a85 1

2 eAa
i /(x9)2 ~i.e. l522). That this solves Eq

~5.3! follows from the identity~5.2!. This mode therefore
represents the location of the D3-brane along thex9 direc-
tion. Finally it is clear that we can act by gauge transform
tions on the original solution;F i→gF ig21, gPSU(N). Ex-
pandingg5ehaTa

with ha!1 leads toN221 zero modes
wa

i 52 1
2 f abchbAc

i /x9 ~i.e. l521). Using the Jacobi identity
and Eq.~5.2! one sees that this indeed solves Eq.~5.3!.

A. R3

Before analyzing the associative case it is instructive
analyze the simplest case of the original fuzzy funnel w
D53, N52, ci jk5« i jk and f abc52«abc if a,b,cÞ0, f 0bc

50. Thus there are 12 zero modes. The solution is give
Eq. ~4.1! and hasAi5a i so that Aa

i 5da
i . As mentioned

above we can identify 3 zero modesw i5ciT0 corresponding
to the constant center of mass coordinates. The rest of th
zero modes, namely those that are insu(2), arerepresented
by square 333 matricesw j

i which satisfy
06501
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x9
dw j

i

dx9 52~d i
jdk

l 2dk
j d i

l !w l
k . ~5.5!

We can split up w j
i into its trace, antisymmetric and

symmetric-traceless parts. The trace corresponds tow j
i ;d j

i

and is just the translational zero mode given above. The
tisymmetric part can be written asw j

i ;e i jkhk and can be
seen to correspond to the gauge transformations.

The symmetric part is a little more interesting. It give
five zero modes. There are diagonal choices of the form

w j
i ;S 21 0 0

0 21 0

0 0 2
D ,

S 21 0 0

0 2 0

0 0 21
D ,S 2 0 0

0 21 0

0 0 21
D . ~5.6!

Note that although there are three such modes only two
linearly independent. The corresponding eigenvalue isl51
so thatw;x9. In fact we can find the exact solution corre
sponding to this deformation. In particular consider solutio
of the formF i5 f i(x

9)a i . The Bogomol’nyi equation gives

f 1852 f 2f 3 , f 2852 f 3f 1 , f 3852 f 1f 2 . ~5.7!

A one parameter solution to these equations is@29#

f 152
d

2

cn~dx9!

sn~dx9!
, f 252

d

2

dn~dx9!

sn~dx9!
,

~5.8!

f 352
d

2

1

sn~dx9!
,

where sn, cn and dn are Jacobi’s elliptic functions with p
rameterk. Expanding in powers ofd one finds that Eq.~5.8!
corresponds to a linear combination of the zero modes in
~5.6!. Clearly one other linearly independent solution can
found in an analogous manner. These functions are gen
cally periodic inx9 and hence have other poles, indeed th
arise in the Nahm construction of charge-two monopo
@29#. Since we are primarily interested in solutions which a
well-behaved asx9→` we must restrict to the casek51
where the period diverges and the solution becomes

f 15 f 252
d

2

1

sinh~dx9!
, f 352

d

2

cosh~dx9!

sinh~dx9!
. ~5.9!

Thus as x9→`, F3 tends to the constant matri
2(d/2)a3, while F1,F2→0. Clearly the three modes in Eq
~5.6! are interpreted as separating the D1-branes along thxi

axis at infinity.
This leaves three zero modes of the form
6-9
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w j
i ;S 0 1 0

1 0 0

0 0 0
D ,S 0 0 1

0 0 0

1 0 0
D ,S 0 0 0

0 0 1

0 1 0
D .

~5.10!

These also correspond to eigenvaluel51. Let us again look
for the corresponding exact solutions of the Nahm equat
In particular we consider the first zero mode in Eq.~5.10!
and let

F15g1~x9!a11g2~x9!a2, F25g1~x9!a21g2~x9!a1,
~5.11!

F35g3~x9!a3.

This leads to the equationsg1852g1g3 , g28522g2g3 and
g3852(g1

22g2
2). The exact solution is provided by the on

parameter family

g152
b

4

dn~bx9!1cn~bx9!

sn~bx9!
,

g252
b~12k2!

4

sn~bx9!

dn~bx9!1cn~bx9!
, ~5.12!

g352
b

2

1

sn~bx9!
.

If we expand Eq.~5.12! aroundb50 with kÞ1 then we
reproduce the first zero mode in Eq.~5.10! but mixed with
the first zero mode in Eq.~5.6!. Nevertheless these solution
along with similar solutions where the ansatz forF1, F2 and
F3 are permuted, provide three more linearly independ
zero modes. Again these solutions are generically periodi
x9. Whenk51 the period is infinite and we in fact find th
solution ~5.9! again.

In summary we have found 12 zero modes. Three of th
correspond to gauge transformations and can be discar
One of these corresponds to translations of the D3-bran
the x9 direction. This leaves 8 linearly independent ze
modes. To understand these we can consider the case o
D1-branes suspended between two parallel D3-branes s
rated by a distancev. In this case we must takeF i to have
poles atx950 andx95v. These boundary conditions are a
important part of the Nahm constuction and were deriv
from string theory in@32,33#. This coincides with Nahm’s
construction of charge twoSU(2) monopoles onR3 @14# ~for
a helpful and more recent discussion see@34#!. Our counting
of 8 physical zero modes then agrees with the dimensio
the moduli space of charge twoSU(2) monopoles. In par-
ticular one can see following the discussion in@34# that Eqs.
~5.8! and~5.12! lead to monopoles which are separated alo
the x1 andx15x2, x350 axis’, respectively.

B. Associative

Next we consider the associative example withD57, N
514. Thus there are some 1372 zero modes. The large n
ber of zero modes is related to the largeN that we have used
to embed our solution and most zero modes do not refl
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any physics but rather the possible embeddings. To proc
it is helpful to split the moduli space into the form

M5MG3MR33M̃, ~5.13!

whereMG consists of the 142215195 zero modes corre
sponding to gauge transformations and do not represent
physical degrees of freedom.

The next part of the moduli space,MR3, is obtained by
embedding the zero modes of a singleR3 fuzzy funnel into
u(14). The 9su(2) zero modesw j

i we found in Sec. V A can
be embedded separately into each of the seven block di
nal entries of Eq.~4.7!. However, 3 of these are gauge tran
formations and have already been includedMG . Thus the
su(2) zero modes give an additional 42 moduli. In additi
we may also embed theu(1) center of mass zero modes th
we discussed above intou(14). In particular if we let

w i; idiag~c1
i ,c2

i , . . . ,c7
i !, ~5.14!

wherecj
i are real, then clearly@w i ,Aj #50 and so Eq.~5.3! is

solved if w i is a constant, i.e.l50. This gives another 49
zero modes which represent the center of mass of the
branes along each of the directions and each of the
branes. In total there are 91 linearly independent modul
MR3. Clearly none of these zero modes lead to interest
new solutions. Instead they affect one of the compon
fuzzy funnels but leave the others invariant. In particu
they do not lead to a mixing or interaction between the va
ous off diagonal blocks. These moduli simply represent
relative positions of the D1-branes and D3-branes.

We are, however, still left with 1086 zero modes and the
form the rest of the moduli spaceM̃. To count the number
of physically distinct moduli we note that ifg has the form
g5diag(eiu1, . . . ,eiu7), u11•••1u750 thengAig215Ai .
Thus if w is a zero mode then so isgwg21 ~with the same
value ofl). HenceM̃ has a residual gauge symmetryU(1)6

and the physical part of the moduli space in fact has a q
tient formN5M̃/U(1)6. Note thatMG is mapped to itself
under U(1)6 and MR3 is invariant. However, we do no
know what the fixed points ofU(1)6 in M̃ are; for example,
acting with U(1)6 need not always produce as many as
new linearly independent zero modes. Therefore we are
able to determine the dimension ofN, although it must beat
least as big as 1086/7'156. These zero modes cannot
interpreted as moduli that affect only one of the compon
fuzzy funnels, i.e. the corresponding solutions are not sim
7 independent fuzzy funnels but rather involve off-diagon
blocks and represent deformations which smooth out the
brane intersection.

We should now compare this with the number of ze
modes one expects from such a D1/D3-brane intersect
From the intersecting D3-branes there are 4321584 scalar
modes from the hypermultiplets arising from D3-D3 strin
with 4 DN directions. There are also 736542 zero-modes
from transverse scalar fields of the D3-branes. However,
these moduli are simply the translational zero modes of e
D3-brane alongx9 and have already been included inMR3.
6-10
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Another 7 represent the locations of the branes alongx8 and
these have been frozen out from the whole system. In a
tion any pair of D3-branes that preserve 1/8 of the spacet
supersymmetry may be rotated by a two parameter famil
angles inSU(3),SO(6). These contribute 2321542 zero
modes and hence the total number of D3-brane intersec
moduli is 154. These should be viewed as the moduli of
calibrated surface on which the D3-branes are wrapp
Moreover, in addition to the surface moduli we expect th
there will be relativeU(1) phases of the 7 distinct compo
nent monopoles, as well as possible Wilson line moduli.

Unfortunately a more complete analysis of theN moduli
space is beyond the scope of this paper. For example
have not shown that they all lift to full solutions. It is als
important to understand the correct boundary conditi
which are crucial in the standard Nahm construction. Ho
ever, we hope to have convinced the reader that the gen
ized Nahm equations do admit non-trivial solutions who
zero modes are in a one-to-one correspondence with
moduli space of D1-branes ending on intersecting D
branes. Recall that from the spacetime point of view th
configurations appear as monopoles on calibrated th
surfaces. Hence the moduli space of solutions to the ge
alized Nahm equations is naturally identified with the mod
space of monopoles on calibrated three-surfaces, inclu
the moduli of the surface itself.

VI. SUMMARY AND COMMENTS

In this paper we have analyzed the general condition
static supersymmetric and non-Abelian embeddings of
branes into spacetime. The Bogomol’nyi equations have
form of generalized Nahm equations and the resulting e
bedding has the interpretation as a non-Abelian calibra
surface. On the worldvolume theory the solutions corresp
to D1-branes which open up into non-commutative sphe
~i.e. fuzzy funnels!. From the spacetime point of view th
D1-branes end on configurations of intersecting D3-bran
Although the exact fuzzy funnel solutions we presented
Sec. IV were block diagonal, and so merely represent sev
distinct fuzzy funnels, in Sec. V we established the existe
of a large moduli space of non-trivial solutions at the line
ized level.

In the case of the original fuzzy funnel the appearance
the Nahm equation is not surprising. Soon after the discov
of D-branes it was realized that a D1-brane suspended
tween two parallel D3-branes appears as a monopole on
D3-brane worldvolume. Furthermore, introducing a pro
brane provides an explicit realization of the Nahm constr
tion of monopoles@15#. Here we have primarily examine
d

y
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solutions which live on a half-line. In the Nahm constructio
these correspond to unphysicalU(1) monopoles with infinite
mass. From the D-brane perspective this infinite mass is s
ply due to the infinite length of the D1-brane. However, w
also discussed the case of parallel D3-branes, or parallel
of intersecting D3-branes, and obtained solutions which c
respond to finite BPS monopoles.

Therefore we expect that there is an associated role
these generalized Nahm equations here. The natural inte
tation of such a system is that it encodes the data for B
monopoles on the calibrated three-surface. In addition
have argued that the geometrical data of the calibrated
face should also be so encoded. Unfortunately it is not c
to us what the recipe is for constructing the monopole fiel
or D3-brane geometry, from solutions to the generaliz
Nahm equations. In@15# the configuration ~3.2! was
T-dualized into D5-branes ending on a D7-brane. A D1-bra
probe analysis then shows how the monopole fields can
reconstructed from the solution and one recovers the Na
construction@14#. However, in our case we are limited by th
fact that the equivalent analysis requires more than ten
mensions where there is no appropriate supersymme
Yang-Mills theory.

Finally, the configurations that we have obtained in th
paper are solutions to the super-Yang-Mills approximation
the full non-Abelian Born-Infeld action. As our solutions a
supersymmetric we expect that they will lift to solutions
the full theory although they may receive corrections fro
higher orders in the non-Abelian field strength. Indeed,
self-duality equations~3.7!, from which the generalized
Nahm equations can be obtained by dimensional reduct
are known @35# to be corrected at higher orders inl
52p l s

2 . It would be very interesting to determine wheth
the fuzzy funnels presented here also receive such cor
tions.
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