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We present new non-Abelian solitonic configurations in the low energy effective theory describing a col-
lection of N parallel D1-branes. These configurations preserve 1/4, 1/8, 1/16 and 1/32 of the spacetime super-
symmetry. They are solutions to a set of generalized Nahm equations which are related to self-duality equations
in eight dimensions. Our solutions represent D1-branes which expand into fuzzy funnel configurations ending
on collections of intersecting D3-branes. Supersymmetry dictates that such intersecting D3-branes must lie on
a calibrated three-surface of spacetime and we argue that the generalized Nahm equations encode the data for
the construction of magnetic monopoles on the relevant three-surfaces.
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I. INTRODUCTION no understanding of non-Abelian-symmetry—sed8—10]
for some recent discussion and progress on this issue.

In the absence of gauge fields branes are embedded into In this paper we will initiate a study of non-Abelian em-
spacetime so as to minimize their worldvolume. In addition,beddings by studying the simplest example, namely D1-
requiring that the branes are supersymmetric leads to theranes. Because of the absence of a suitable notion of non-
condition that their worldvolumes are in a preferred class ofabelian x supersymmetry we will restrict our analysis to the
sub-manifolds of spacetime known as calibrated surfities  Yang-Mills approximation. We expect that any supersymmet-
These surfaces were first applied to supersymmetric brangc solution to the Yang-Mills equations of motion can be
configurations within string theory compactifications in lifted to a the full non-linear equations of motion. In the
[2,3]. The theory of calibrations is also important for under- study of Abelian embeddings this corresponds to considering
standing intersecting D-branes which preserve some fractiofiee scalar Maxwell theories and is trivial, i.e. most of the
of supersymmetry in flat spadé—6]. In this context the interesting solutions crucially involve the non-linear terms.
combined worldvolume of a set of intersectingpdbranes  However, we will find that non-trivial solutions exist in the
can be regarded as a singfe 1)-dimensional hypersurface non-Abelian Yang-Mills approximation.
embedded into spacetime. The condition that the embedding More specifically we will see that the resulting solitons
is supersymmetric is equivalent to the condition that the ( are generalizations of the DID3 system in whichN D1-
+1)-dimensional hypersurface is calibrated but now theséranes end on a single D3-brane. From the point of view of
surfaces are generically non-compact. the effective theory living on the D3-brane the D1-branes act

In particular it was shown if5] that the calibration equa- as point sources of magnetic charge. These monopole con-
tions of [1] are realized as a Bogomol'nyi-Prasad- figurations are realized as BPS solutions to the equations of
Sommerfield(BPS condition in the low energy effective motion which represent the worldvolume of the D3-brane
field theory of asingleDp-brane. For this reason we refer to protruding into the ambient spacetime in a spike-like con-
these asAbelian embeddings. As is well known, multiple figuration known as a Blofl1-13. As a BPS configuration
coincident Op-branes give rise to a non-Abelian gauge sym-in a U(1) field theory the Blon is a completely Abelian
metry in the low energy effective theofy]. This has lead to  object. This system can instead be studied as a solitonic ob-
many interesting implications for the spacetime interpretaject in the non-Abelian theory describing tiNeD1-branes.
tion of D-branes and has given invaluable new geometricalhe BPS equations for this system are known to be given by
insights into non-Abelian gauge theory phenomena such ase Nahm equationgl4] describing BPS monopoles in (3
monopoles and instantons. It is therefore of interest to under+ 1)-dimensional Yang-Mills-Higgs theoy15]. The Nahm
standnon-Abelianembeddings of D-branes into spacetime.data used in the construction of monopoles in the D3-brane
Ideally one would like to derive the non-Abelian generaliza-theory are therefore naturally encoded in the non-Abelian
tion of the BPS conditions obtained for a single-brane in  dynamics of the D1-branes which end on the D3-branes.
[5]. However, this issue is at present complicated by the fact It was shown in[16] that such solitonic solutions in the
that the non-Abelian generalization of the Born-Inféil) D1-brane theory in fact describe a non-commutatioe
action is poorly understood and in particular there is virtuallyfuzzy) funnel configuration which opens up into a D3-brane

orthogonal to the worldvolume of the D1-branes. Further, it

was also shown that this funnel actually acts as a source for
*Email address: constabl@Ins.mit.edu the Ramond-Ramond four form of type 1IB string theory in
TEmail address: nlambert@physics.rutgers.edu precisely the correct fashion to be identified with the D3-
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brane on which the D1-branes are ending. This constructiothe generalized Nahm equations are related to supersymmet-
therefore provides a self-contained description of theric D3-brane configurations. Specifically, we make precise
D11 D3 intersection which is complementary to that of theour claims that the generalized Nahm equations encode the
Blon spike. data describing magnetic monopoles on calibrated three-
The fuzzy funnel configurations described[ik6] are so- manifolds. We also discuss the connection between our con-
lutions to Nahm equations and describe D1-branes ending ostruction and the notion of higher dimensional self-dual
a single D3-brane. As such, these constructions involve onlgauge field§18]. In Sec. IV we provide explicit solutions to
three of the eight transverse scalars in the effective theorthe generalized Nahm equations and demonstrate that these
describing the D1-branes. It is natural to ask whether onesolutions can be interpreted as fuzzy funnels which open up
may find analogous solitonic configurations which involveinto the various D3-brane configurations discussed in Secs. I
more, perhaps all, of the transverse scalars. This questicand IIl. In Sec. V we examine the moduli associated with our
was addressed ifiLl7] where such solutions involving five solutions and identify the deformations which correspond to
scalars were found. These were shown to correspond to Dthe moduli of the calibrated surfaces on which the D1-branes
branes ending on a collection of D5-branes. While stableare ending. We conclude with some comments and open
these configurations are not supersymmetric. It is the purpogeroblems.
of the present investigation to discuss new solitonic non-

Abelian D1-brane configurations which involve five, six and Il. GENERALIZED NAHM EQUATIONS

seven of the transverse scalars while preserving various frac- FROM D1-BRANES

tions of the supersymmetry preserved by the original D1- . : . .
branes persy yp y 9 The effective action foN D1-branes obtained by quanti-

zation of open strings is a non-linear generalization of the

In the following we will denote the transverse scalars of . . . .
9 Yang-Mills action with gauge group(N). We will choose

the non-Abelian D1-brane theory b’ i=1,...,8 and . . . . .
take the configuration to lie along thé direction in space- c?nvberntlor'lls whrere ;Tfo'?lrii’i Vr‘:h'_l(fﬂ ta\lfterl\él?/lule?nm the Lie
time. We will show that there exist a class of supersymmetri rge au(N), are a N an. the worldvolume gauge

configurations which are solutions to the generalized Nah eld has explicitly been set to zero. In the foIIowing we wil
work in static gauge so that the worldvolume coordinates are

equations identified with those of spacetime as!=t and o?=x°.
ab 1 Furthermore, we will be considering only the leading order
—9=§Cijk[<bj,q’k]- (1.)  terms appearing in an expansion of the full non-Abelian
28 Dirac-Born-Infeld effective actioh

wherec; is a totally antisymmetric constant tensor which
we will determine exactly below. These equations can also S= _Tlf dtdx’
be derived as the dimensional reduction of the higher-

i
N+)\2Tr(§aa(l>'aa®'

dimensional self-duality conditions ifil8]. In the special 1 . i o]

case that only three of the transverse scalars are non-trivial + Z[CD N LT 2.
Cijx becomes:j, and Eq.(1.1) is simply the standard Nahm

equations discussed ifl5,16 corresponding to the D1- Where)\=27rI§ andi,j=1, ... D labels the number of non-

branes ending on a single D3-brane. The more general conanishing transverse directions. The terms involving the sca-
figurations involving more than three non-Abelian scalardar fields are easily recognized as the bosonic sector of maxi-
will turn out to correspond to fuzzy funnel configurations in mally supersymmetric Yang-Mills theory with gauge group
which the D1-branes end on collections of intersecting D3U(N) in two spacetime dimensions described by the La-
branes. As discussed above such intersecting D3-branes ageangian
supersymmetric if their worldvolumes lie on a calibrated 1 1
three-manifold [1]. Defining the three form o _ 20 = iwdiL ZTdl Bil2
= (1/31)cijdX Adx Adx* we will show that the non-trivial £=Tih Tr(Zé“(D IOt [P PT] ) 22
components ofw are in a one-to-one correspondence with .
the three-form which calibrates the D3-brane intersection OﬁAfter subtracting off the gr_ound state energy of th? e
which the D1-branes are ending. We are thus led to Conjeégranes, the energy of a static configuration can be written as
ture that the generalized Nahm equations encode the neces- T 1
sary data to construct magnetic monopole solutions on vari- E=T17\2f dngr(§<I>"<D"+Z[<D',<I>J][q>',<b‘])
ous calibrated three-manifolds via an analogous method to
the standard Nahm construction of magnetic monopoles on 1 1 _
3. In addition we will argue that these generalized Nahm =T1>\2f dxg[ETr(QJ“— Ecijk[@,dbk] ,
equations also encode data on the moduli of the associated

; : (2.3
calibrated manifold.

The remainder of this paper is organized as follows. Inwhere a prime denotes differentiation with respecttand
Sec. Il we derive the generalized Nahm equations as a BPS
condition in the non-Abelian worldvolume theory describing
N D1-branes. In Sec. lll we discuss how solutions to “We assume here the conventions b8].

2
+T
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we have introduced a constant, totally anti-symmetric tensor
Cij Which will be specified below. In Eq(2.3) we have
performed the usual Bogomol'nyi construction and written

the energy density as a squared term plus a topological pieqgere thel' matrices form the Spia,9) Clifford algebra. In

1 I
ON=| 52, DM+ Z[@LOITY Je. 2.9

given by
2

Tih i idK)

We must also impose that the two quartic terms in €93
agree, that is we must impose that

%CijkCanr([q’j@"][‘1",q)m])=Tf([¢i,®j][‘1’i,¢j])-
(2.9

It now follows that the Bogomol'nyi equation is

ir 1 i k
P =S i@, (2.6)

our cases\ =0 becomes

0= E [(Di'q)j]rij(1+Ciij”kg)e,

i<j

(2.10

Note thate is the preserved supersymmetry on the D1-brane
worldvolume. To solve the supersymmetry conditi@10
we define the projectors

1 y
Pij =5 (1+c;; M),

5 (2.1)

where there is no sum anj. In the cases we will consider,
for a given pairi,j, cjj is only non-zero for at most one
value ofk. In this case, provided that we normalizg, =
+1, we find thatPiZj =P;;. Hence we seP;je=0 for each

pair i,j such thatc;;#0 for somek.? Of course to find a
and hence the energy of such a configuration depends onhon-trivial solution fore, and hence preserve some fraction
on the boundary conditions of the coordinates. of the D1-brane’s 16 supersymmetries, we must impose that

Equation(2.6) can be thought of as a generalized Nahmthe matrices"'%° which appear in theéP;; projectors com-
equation. Indeed, in the case thht#0 for i=1,2,3 and mute with each other. It is not hard to see that
Cijk=¢ijk (2.6) is precisely the Nahm equatigfd] describ-  [Tiik9 1'iI'K'91=0 if and only ifi=i’ andj#k#]’ #k’,
ing BPS monopoles oR3. The emergence of this equation etc., i.e. the setdi,j,k} and{i’,j’,k'} have exactly one
in the low energy D1-brane theory was first pointed out inglement in common. Note that it is possible that some com-
[15]. This was further studied ifL6] where it was found that  pination of projectors imply that other projectors are auto-
this equation has supersymmetric solutions which represefhatically satisfied. The number of preserved spacetime su-
the expansion of the parallel Dl-branes into a nonpersymmetries is 162 % where k is the number of
commutative funnel structure which opens up into an orindependent projector;; that we impose.
thogonal D3-brane filling the',x*,x* directions in space-  Once we have a particular set of mutually commuting

time. As will be seen below Eq(2.6) possesses super- projectorsP;; we can return to the supersymmetry transfor-
symmetric non-commutative funnel solutions, with the ap-mation (2.10. This now becomes

propriate choices ot;j, involving 5, 6 and 7 transverse

scalars. These solutions preserve 1/4, 1/8 and 1/16 of the

supersymmetry preserved by the original collection of D1-

branes. Further, instead of expanding into a single D3-brane,

these configurations are found to be expanding into collecyhere the sum is over paiisj such thatc; =0 for all k.

tions of intersecting D3-branes. The projectors can then be used to reduce this equation to a
In order to proceed note that since E2.5) is a constraint  get of conditions on the commutatdr®’,®!] alone. As a

on the fields we must also ensure that the equation of motioBonsequence of the specific form for thg, elements that

is satisfied we will use, one can show that E@®.12 and the supersym-

metry projectorg2.11) imply Eq. (2.8). To summarize then

we must solve the Bogomol'nyi equatid@.6) and the com-

mutator conditions that follow from Ed2.12).

> [@,diriie=0,

Cijk=0

(2.12

Q= —[[®',DI],®1], (2.7

or, from Eq.(2.6),

Ill. D3-BRANES AND CALIBRATED GEOMETRY

1 S )
§Cijij|m[[(D|,CDm]1<Dk]=_[[CD'yCDJ],CDJ]- (2.9

In this section we wish to understand the spacetime origin
_ of the projectors obtained in E42.11). Recall that in type
Multiplying Eqg. (2.8 by ®' and taking the trace we find that 1IB string theory there are two ten-dimensional supersymme-
the constraint2.5) is automatically satisfied. Thus solutions try generatorss, and eg with the same chirality. The pres-
to the generalized Nahm equations, along with the constraint
(2.8), are guaranteed to be solutions of the full equations of ————
motion. 2Note that there may be more general solutions to the supersym-
We are interested in supersymmetric solutions of Eqmetry condition but we expect that these are related to those dis-
(2.6). The general supersymmetry variation is cussed here by a rotation.

065016-3



NEIL R. CONSTABLE AND NEIL D. LAMBERT PHYSICAL REVIEW D 66, 065016 (2002

ence of the D1-brane breaks half of the supersymmetry of thE2,4—€ and provides a new interpretation of fuzzy funnels
vacuum by imposing thdt %%, = er. Using this relation the as non-Abelian calibrated three-surfaces. This is reminiscent
projectionT"'*%¢, = ¥ ¢, can be written ad™%/ke =+ ¢ez.  of the notion of a generalized calibration given [ig0],
We immediately recognize this projector as due to the preswhich included Abelian worldvolume gauge fields. In par-
ence of aanti-)D3-brane in the gk plane. Therefore simul- ticular the S-dual configuration of a fundamental string end-
taneously imposing multiple projectors is equivalent to theing on a Dp-brane is an example of such (generalizegl
presence of multiple intersecting D3-branes. A list of all pos-calibratedp surface.
sible orthogonal D3-brane intersections which preserve some In order to demonstrate our claims in concrete examples
fraction of supersymmetry can be found from thewe now summarize the various cases with which we will be
M-fivebrane intersections given [4,5]. Combined with our  concerned. In what follows thg;, components witht 1 are
intuition from [16] these observations suggest that solutionschosen to be so, whereas those equat foare then fixed by
to the generalized Nahm equatidi2s6) can be interpreted as supersymmetry. This change in sign corresponds to adding
the D1-branes opening up into a collection of intersectingan anti-D3-brane. The simplest example is the one already
D3-branes. That this is indeed the case will be shown in Sediscussed iff16] for which the only non-vanishing scalars
IV. However, before discussing explicit solutions it is in- are taken to bé123 Here the non-Abelian D1-branes open
structive to consider the generalized Nahm equations and thp into a single D3-brane which spaii$. The relevant D3-
D3-brane configurations they describe in more detail. brane configuration, the non-vanishing components;Qf,

In general intersecting D3-branes which preserve somehe fractiony of preserved supersymmetries on the D1-brane
fraction of the spacetime supersymmetry can be thought ofind the associated Bogomol'nyi equatid@s) can be sum-
as a single D3-brane which is stretched over a three-manifolcharized as
in the space in which the branes are embedded. The condi-
tion that supersymmetry is preserved is known to be equiva- D3:1 2 3
lent to the statement that the manifold over which the D3-
branes are stretched is a calibrated sub-manifold of the D1: 9
embedding spacf2,4—6. Here the embedding space will
simply be R" for n=3,5,6,7 and the calibrgted three-
manifolds which we will encounter are known B, Kahler, 1 a2 a3 20 a3 4l 31 ol 42
special Lagrangian and associative sub-manifolds. We recallq) =[e%@7], @T=[2%07], V=[PP ]'(3 )
that a calibratior{1] is a closedp-form w in the bulk space '
with the property that, for any tangent vectdr to a  Note thatc; is simply e, which is indeed the volume
p-dimensional sub-manifold,P[w](§)<dvol(§), where  form onR3, and the Bogomol'nyi equations are the standard
dvol is the induced volume form on the sub-manifold andNahm equations describing BPS monopolesiSn15,16].
Plw] denotes the pull-back o# to the worldvolume. A More interesting examples can be found by allowing for
sub-manifold for which this inequality is saturated is said tomore scalars to be turned on. If we také?34°to be non-
be calibrated. These distinguished surfaces each represent figial then there exist supersymmetric solutions to the gen-
minimal volume (i.e. energy elements of their respective eralized Nahm equations describing the following configura-
homology classes. tion:

One of the main observations of this paper is that the
constants;; [for which there are supersymmetric solutions D3:1 2 3 (3.3
to Eq.(2.6)] are exactly the non-vanishing components of the
calibration forms associated with the corresponding three- D3:1 45
manifold over which the D3-brane intersection is stretched.
Put differently, the generalized Nahm equations describe D1- D1 9
brane configurations which open up into D3-brane intersec-
tions that are stretched over a calibrated three-manifold C125= C1a5= 1
whose calibration formw is none other than the three-form 1 a2 23 4 A5
(1/3!)Cijkdx'/\dx1/\dxk. Furthermore, the Bogomol'nyi OV =[0%, @7+ [P, 2],
bound(2.4) can be written as D2 =[03,01], B =[dL,d?],

C123: 1, V:]./Z

v=1/4

E>T1A2f dx*STIP[igigw], (3.1 PV =[®° @], =[O,

[D2,04=[D3,D°%], [D2D%]=[dD* D3].
whereig, is the the non-Abelian interior product introduced
in [19], STr is the symmeterized trace amidenotes the Supersymmetry tells us that such a D3-brane intersection
pull-back to the D1-brane by the non-Abelian scaldrs should be stretched ovetxX M where R is the common
Thus the energy of the D1-brane is bounded below by thelirection andM is a complex curve. Such complex curves
(non-Abelian pull-back of the calibrating form to the D1- are calibrated by the Kder form associated with a given
brane worldvolume. This is in complete analogy with thecomplex structure on the four-manifold spannedd$®#>
Abelian Bogomol'nyi bound on the D3-brane worldvolume Forming the complex pairZ'=®2+i®3 and z2=d*
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+i®® we see that;dx'/\dx)Adx in this case is nothing P4 =[ D5, L] +[ D, D2],
but the wedge product afx® with the Kéhler form associ-
ated with this complex structure. O =[P, P4+ [D°, D3],
There are two distinct ways to obtain configurations
which preserver=1/8 of the supersymmetry. The first is a DO =[D2,P*]+[ D5, D3],
straightforward generalization of the "Klar case above
which is obtained by turning o *%34567 The correspond- [@2,0°]+[ D30 +[D°,d]=0.
ing D3-brane intersection and generalized Nahm equations

Note that there is no direction shared by all of the D3-branes.

are S . :
Supersymmetry implies that this intersection should be
D3: 1 2 3 stretched over a special Lagrangian three-manifold embed-
ded into six-dimensional Euclidean space. Defining our com-
D3: 1 4 5 plex coordinates to b&'=d+id8 7?=d2+id° and
Z3=d3+id* we may introduce the holomorphic three-form
D3: 1 6 7 y=dZ*A\dZ?/\dZ3. It is then straightforward to see that
Cijx represents the non-vanishing components efR&( )
D1: 9 which is the calibration form for a special Lagrangian sur-
face embedded into the Euclidean six-dimensional space en-
C125=Cia5=Cig7=1 »=1/8 (34 dowed with the above complex structyrs.
1 a2 x3 4 s 6 <7 The final example again involves the seven scalars
P =[5 7]+ [P, D7)+ [P, 01, P12345873nd leads to the following configuration:
D =[D%0], ¥ =[d!d2], D3: 1 2 3
4r _ 5 H1 57 _ 1 4 J—
OT=[@% @7, V=[P 7, D3: 34 7
@6’=[®7,(I)1]' @7/:[q)1,q)6]' o
D3: 3 56
G2, PN =[D3,d°%], [P2,D°]=[D* 3],
[ 1=[ L0 1=l ] D3: 1 6 7
D208 =[D3,07], [D%7]=[D°,d3,
[ 1=l LI 1=[ ] D3 1 45

[D4DC]=[D° D], [P*D']=[DC DO].
D3: 2 4 6
Once again this intersection should be stretched over

RX M where nowM is to be regarded as a complex curve D3: 2 5 7

embedded into six-dimensional Euclidean space. Forming

complex pairs asZ'=®2+id3, 7?=d*+id° and Z3 D1: 9

=d°+id’ we see that; dx/\dx/\dx* in this case is

again the wedge product afx* with the Kéler form. A C193= C145= C167= C246= — Co57= — Cg47= — Cage=1,

more interesting example which preserves the same amount
of supersymmetry is provided by turning shl234563s v=1/16 (3.6)
follows:
Y =[O+ [ O] +[ DO, B 7],
D3: 1 2 3
O =[P3, D+ [ D4 DO]+[D7, D],
D3: 2 4 6 : I+ I+ ]
O =[DY P2 +[D7, D] +[DC, D5,

D3: 3 56
. D4 =[5, O]+ [ D6, B2]+[ D3, D],
D3: 1 4 5

D5 =[ D1, B4+ [D3, B8]+ [DZ, DT,
D1: 9

D8 =[ D2, B4+ [BF, B3] +[D7, D],
C123= C145= Co4= —Casp=1, »=1/8 (3.5

Y =[02, 071+ [@4, 0] T =[B1,00)+[@F, D7)+ 04,07,
= 1 + ’ ’
Here the components of the three-fooy, are precisely

G2 =[D3, D+ [ D4 DO, the non-zero components of the unique three-formRin
which is invariant under the exceptional gro@y. These
O3 =[P, P2 +[DC, D], particularc;; can be identified with the octonionic structure
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constants and the calibration foran calibrates so-called as- ric D3-brane intersections. We therefore present only a set of
sociative three-surfaces i’ [1]. very simple configurations which correspond to the D3-brane
In what follows we will refer to these various casesids  intersections at the origins of both the Higgs and Coulomb
Kahler, special Lagrangian and associative, respectively. Bésranches. We will argue that the generalized Nahm equations
fore proceeding let us make several comments on the genetapture all of the physics of these intersections in the follow-
alized Nahm equations. ing section when we analyze deformations of the solutions
First we note that these equations are not new but can bgresented heré.
recognized as the dimensional reduction of a higher- For the purposes of orienting the reader we will begin by
dimensional self-duality condition briefly reviewing the fuzzy funnel solutions to the basic
Nahm equations appearing in E§.2) which were originally

1 KL presented if16]. Taking only®*?3to be non-vanishing we
Fla=g b P B7  make the ansatz
where{x'}={x',x%} andtg;;x=Cij , tij =0 [18]. In particu- d'=f(x%a, 4.2

lar the generalized Nahm equations arise by assuming that o .
the gauge fieldA, depends only orx® and choosing the where[a',al]=2&"%a* is an n-dimensional representation
gaugeAy=0. These equations were previously analyzed irof su(2). This is easily seen to solve the Nahm equations so
[21-26. long asf’=2f2 which gives

Next we note that in th&2 and associative cases there is
no constraint equation since there are no pgirsuch that
Cij=0 for all k. Further, in these cases thg, satisfy

i 11 i
(I)=—§X9_aa, (4.2)

Cijk Cimi= 9i1 8jm~ Jj1 dim ™+ Yijim (38 wherea is an arbitrary constant of integration. The profile of

this solution is clearly that of a fuzzy, eu(2) valued, fun-
follows from the Jacobi identity. nel which opens up into a three-dimensional surfacelk®,.,

9 . . 9 .
As a final comment we note that in all of the above case@SX —a. At each finite value ok™ the cross section of the

the D1-brane should appear as a monopole on the calibratddn€l is a fuzzy two-sphere. Theé-dependent radius of the

surface. Applying S-duality to our configurations merely has'Unnel is given by

the effect of changing the D1l-branes into fundamental , 3 )
strings. By definition a D3-brane is a suitable end point for a R(x%)2=— )\_ S THdI(x9)?]= ﬂ
fundamental string, and the condition that it is calibrated n i< 4 (x%9-a)?
implies that some supersymmetry is preserved. Therefore we 4.3
expect that smooth solutions representing D1-branes, i.e.,
monopoles, on calibrated three-surfaces exist. Furthewherec, is the quadratic Casimir of theu(2) representa-
T-dualizing along thex*,x?,x3 directions produces a con- tion. We will work with then-dimensional irreducible repre-
figuration of intersecting D4-branes with a single DO-branesentation for which we have,=n?—1.
(corresponding to the first D3-branelhis system should The energy of this configuration may be obtained by
therefore correspond to an instanton on a calibrated fourevaluating Eq.(2.3) on the solution presented in EGL.2).
surface and are related to non-trivial solutions to B&7).  We find
Indeed it was shown in30] that supersymemtric wrapped
D-branes in manifolds of special holonomy give rise to co- Ti\? 9 ik
homological field theories whose equations of motion local- E= 3 f dXCiji Tr(P' 1)
ize to solutions of Eq(3.7). Starting with the above equa-
tions such a class of solutions is obtained by takingb'
=0. Hence the above equations all become constraints on
the commutators. These solution may therefore be inter-
preted as supersymmetric DO-brane states and in particuld¢here we have use®l; =T5(27l)” and we have identified
we expect that the examp|es of Kar calibrations are re- the physical radius of the funnB®with the radial coordinate
lated to the construction of complex curves (N)atrix  in the space spanned by,x*x%. It is now clear that for
theory[31]. largen the energy of the funnel configuration can be identi-
fied with the energy of a single, flat D3-brane sittingxat
V. SOLUTIONS =a filling the x*,x? x3 directions. To further support the
claim that the funnel is indeed opening up into a D3-brane
In this section we will provide some explicit solutions to

the generalized Nahm equations which can be interpreted as——
fuzzy funnels that open up into the D3-brane intersections 3we note that a general family of solutions to the associative
discussed in the preceding section. Our focus here is to dengéxample were obtained if21,22,24,25 However, the fields were
onstrate that solutions to the generalized Nahm equations d@t in u(N) and hence they cannot be readily embedded into the
in fact exist and describe D1-branes ending on supersymmeb1-brane effective action.

where v, is antisymmetric ini,j,I,m. Hence EQ.(2.9)

=Ty(1—1/in?) 12 f 47R%dR, (4.4
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we note that the non-Abelian Wess-Zumino couplings iden- (DH2+ ... +(P7)?
tified in [19,28 can be evaluated as .
c
| B =—szdiaq1,l,1,l,l,l,1, (4.9
I)\,ulj STP[i i CH]
wherec,= — (1n) Tr{ (a})?+ (a?)?+ («®)?] is the Casimir
invariant of su(2) in our n-dimensional representation. In
this case the D1-branes should not be thought of as expand-
ing into a fuzzy six spheréTo see this recall that each block
_ 12y -12 2 in Eq. (4.7) contains exactly one complete set of tg(2)
a1 =1/ f AR AR Gorze, (49 generators. As a result each block gives rise to a single copy
of the fuzzy funnel described above. This configuration
indicating that the funnel is acting as a source for preciselghould therefore be viewed as expanding into seven inter-
the correct Ramond-Ramond four-form field to be identifiedsecting fuzzy two spheres each of whichxds-a, become
as a D3-brane. one of the D3-branes making up the intersection of(Bd).

We will now discuss solutions to the generalized Nahm |n fact the ansatz made in E¢.6) can easily be gener-
equations. It will be shown below that the ier and special alized to include a different profile for each diagonal block.
Lagrangian cases can all be obtained as special cases of tiihis leads to seven independent integration constants and
associative example. Thus we will begin our analysis withtherefore corresponds to orthogonal D3-branes which are
the configuration in Eq(3.6). The generalized Nahm equa- separated in th&® direction. One may also trivially add an

i L
= 7le dtdx Cie) Tr(@X [@!, @17

tions in Eq.(3.6) can be solved by taking identity matrix to each diagonal block. This corresponds to
, , separating the fuzzy funnels in directions orthogonal to the
d'=f(xA, (4.6) D1-branes. In this section we will restrict ourselves to dis-

cussing the case where all of the D3-branes are located at the
whereA' are a set oNx N constant matrices which satisfy same position in® as well as in the transverse directions—
iCijk[Al,A]=Al. A solution is given by see the following section for more details.
Under these assumptions we may take

Al=diag ?,0,02%,a%,0,0)

Rexs) = 22 4.1

A2=diag a?,0,0,0,0a",ab) = o—ay (4.10
Ad=diag a? a',at,0,0,0,0 to be thex®-dependent radius of each of the fuzzy funnels.

The energy of this configuration is then easily evaluated to
A*=diag 0,a3,0,022, a2,0) 4.7y be
AP=diag 0,00°,0.0°,0.0°) £- 2 [ axe, T @iy
A®=diag 0,02, a?0,°0)

=7T3(1—1/n?) "2 f 47R%dR, (4.11)

A’=diag 0,a%,0,¢%,0,0a?),

. which is precisely the energy one expects from the D3-brane
a a by_ abc c
wherea® satisfy[ a®,a”]=2¢™>"a" are now regarded as an jnersection in Eq(3.6). Finally we may verify our interpre-

n-dimensional representation sti(2) so thatN=7n. No- }ation of the funnel by examining the induced RR couplings
tice that each diagonal block contains exactly one copy o

thesu(2) generators. Substituting this ansatz into the gener-
alized Nahm equation leads t6=2f2. Hence we again find i)x,ulf STrP[[i i $C™]
funnel-like solutions of the form

iN L
101 23“4 dtdXCiTr( @K @', d1])
[ i
Pl= =2 g—Al (4.8
i 2\—1/2 2

Analogous block diagonal solutions to the higher-  =i#a(1—1/in%) j 4mR*dR(Co125+ Couss
dimensional self-duality equatiai@.7) have previously been
constructed[27]. These have the interpretation of four- + Co1671 Co246~ Co257~ Cozar— Cozse) (4.12

dimensional instantons embedded onto calibrated four-
surfaces ink8.
It is easy to see that “We would like to thank R. Myers for a discussion on this point.
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which indicates that this non-Abelian embedding of D1- Al=diag at,at)
branes is a source for precisely the correct Ramond-Ramond
fields to be identified with the configuratid8.6). A2=diag @?,0)
In order to find similar solutions to the other generalized
Nahm equations we observe that all of the equati@rs 3_ i 3
constraint presented in Eqs3.3), (3.4) and (3.5 can be A'=diaga”,0) (4.19
viewed as special cases of the final, associative case, Eg. A%= diag 0.a?)
(3.6). In particular the special Lagrangian cd8e5) follows ’
by setting®’=0 and the constraint arises from t€ equa- 5 3
A°=diag 0,a”).

tion in Eqg.(3.6). A solution to these equations is then found

by simply deleting the second, fourth and seventh blocks ) ) )
from each of the matrices in Eq@.7). We find @ As a final comment on all of the solutions presented in

= f(x%)Al where this segtion we npte that %s the scaklfsare pecoming !arge
and quickly varying neak”’=a the Yang-Mills approxima-
tion in which we are working is strictly no longer valid. On
the other hand, fox®>a we should be able to trust the
solution. As discussed in detail ji6,17] this is the opposite

Al=diag a!,0,at,0)

A?=diag a?,0,0a") range of approximation that is valid on the worldvolume
theory of the D3-branes that the D1-branes are intersecting.
A3=diag o, «*,0,0) Indeed the picture presented here accurately describes the

(4.13 region near the intersection.
A*=diag 0,042, a?)

V. MODULI
5_ i 3 3 . . .
A>=diag 0,7, a>,0) In the previous section we constructed explicit supersym-
metric fuzzy funnel solitons. However, these solutions are
A®=diag0,a2,0,a%). somewhat trivial since the various components of the scalar

fields which describe the different D3-branes commute with
Assuming the same profile for each complete sesa?)  ©ach other. Indeed these solutions simply represent several
generators this solution corresponds to a collection of sidistinct fuzzy funnels, each interpreted as a groum @1-
intersecting fuzzy funnels which open into the D3-brane in-Pranes ending on a single D3-brane, embedded into a suit-
tersection described in E¢3.5). On the other hand, by im- ably Ia_trge matnx._Therefore we would _I|kg to obtqm more
posing the constraint relations in E¢3.4) directly on the complicated solutions. Unfortunately, finding explicit new

equations in Eqs(3.6) we obtain the generalized Nahm Solutions s, in general, a difficult task. Here we will perform
equations corresponding to the ier case in Eq.3.4)  an analysis of the linearized modes about solutions of the

which have the simple solution' = f(x®)Al with form (4.8). In what follows we will establish the existence of
a large number of moduli which lead to non-trivial solutions,
1 i 1.1 1 at least at the linearized level.
A =diaga’,aa) It is convenient to rewrite the solution in the form
A?=diag «?,0,0) . 1
P'(X%) == o gAaT™ (5.)

A3=diag «*,0,0)
Here we have placed the D3-branesxd&=0 and T2, a

A*=diag 0,a%,0) (414 =0,1,...N>-1 are the generators ofi(N); [T?T"]
=fab°T¢ with TO taken to be the generator of the overall
AS=diag 0,a%,0) Abelian u(1) in u(N)=u(1)®su(n). In other words we

have used the fact that we must embed our matrices into
6 . 5 u(N) to expres\! as a linear combination of the generators
A°=diag0,07) T2. Note that sinceb' solves the Bogomol'nyi equation we
can deduce that
A’=diag 0,0a3), L
i _ " A fabcpjpk
representing three intersecting fuzzy funnels which this time Aa= 7 Ciik T AvAC- (5.2
open into the D3-brane intersection of E£§.4).

Lastly by settingd®=®7=0 in Eq.(3.4) we obtain the In addition the f3°¢ satisfy the Jacobi identityfaPefcde
equations and constraints of the ler intersection in Eq. -+ fePefdae fdbeface—q .
(3.3). These are solved by truncating the matrices in Eq. A linearized perturbation can also be written ad'
(4.14 in the obvious way to giveb'=f(x%)Al where = ¢, T2 and therefore satisfies the equation
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do! 1 . de! . .
xgd—g)fz—zcijkfabCqupﬁ. (5.3 x9d—§X!:—(5{ Si—oLd) of . (5.5

For most examples we will also have to worry about theWe can split up ¢; into its trace, antisymmetric and
constraint equatiof2.12) but here we will only consider the Symmetric-traceless parts. The trace corresponds;tod;

R?® fuzzy funnel(3.2) and the associative caé6) for which ~ and is just the translational zero mode given above. The an-
the constraint is absent. Sincgy ,fa¢ and A} are known tisymmetric part can be written aﬁ}~e”khk and can be
constant tensors we have a linear equation for the perturb&een to correspond to the gauge transformations.

tions ¢,. Furthermore, sinceT®)T=—-T2 and CijkfabCA]b _ The symmetric part is a Ii_ttle more in_teresting. It gives
:ijibeaAJ , the matrix on the right-hand side is real and five zero modes. There are diagonal choices of the form

symmetric. It follows that there is a basis of solutions with

eigenvalues\, and hence there ai2N? zero modes -1 0 0
(p} ~ 0 -1 0f,
ol =€ (xO)a, (5.4) 0 0 2
. o -1 0 O 2 0 O
wheree is a small parameter. Note that the perturbation is 0 2 o 0 -1 0
only valid if the second order term in the variati¢here are ' - (5.6

no higher order termss small compared to the linear one. 0O 0 -1 0O 0 -1

This corresponds t@'a<(x9)**'a*1. So any given perturba-

tion is not valid over the entire funnel but is always valid Note that although there are three such modes only two are
over some region. Strictly speaking we may only trust thelinearly independent. The corresponding eigenvalue=isl
Yang-Mills approximation when the derivatives of the gaugeSO thate~x°. In fact we can find the exact solution corre-
fields are small, corresponding to the regidh-o. There- ~ Sponding to this deformation. In particular consider solutions
fore we should only trust zero modes wid,<-1, al- of the form®'=f;(x%)a'. The Bogomol'nyi equation gives
though we will see exceptions to this. We would also like to

see if some of the moduli are associated with the D1-brane fi'=2f,f5, f)/=2f5f;, f3'=2f;f,. (5.7)
itself and if some in fact reflect moduli of the intersecting

D3-branes. We expect that zero modes which do not vanish one parameter solution to these equationg2

as x%—o correspond to moduli of the D1-branes whereas

those that do vanish correspond to the geometry of the D3- d cn(dx®) d dn(dx®)
branes. _ - _ =5 sndx®) v =75 sndx®) .
Let us start by identifying some obvious zero modes.
Firstly we can separate ol center of mass coordinates (5.9
along each of the transverse directiotis This corresponds d 1
simply to takinge' to be constant and proportional T8 (i.e. fa=— 2 W,

A=0). Next we can identify the translation modp;

=ed!=1eAl/(x?)? (i.e. \=—2). That this solves Eq. L . .
i . . where sn, cn and dn are Jacobi’s elliptic functions with pa-
(5.3 follows from the identity(5.2). This mode therefore rameterk. Expanding in powers od one finds that Eq(5.9)

represents the location of the D3-brane alongxPealirec- . o .

. ) o corresponds to a linear combination of the zero modes in Eq.
tion. Finally it is clear that we can act by gauge transforma-(s 6). Clearly one other linearly independent solution can be
tions on the original solutior' —g®'g~%, ge SU(N). Ex- e y y P

} hra ; found in an analogous manner. These functions are generi-
pandingg=e®e" with h,<1 leads toN"~1 zero modes  ca|ly periodic inx® and hence have other poles, indeed they
¢n=—3f2h,Ai/x? (i.e.x=—1). Using the Jacobi identity arise in the Nahm construction of charge-two monopoles
and Eq.(5.2) one sees that this indeed solves E%(3. [29]. Since we are primarily interested in solutions which are
well-behaved ax®— we must restrict to the cade=1
A R3 where the period diverges and the solution becomes

Before analyzing the associative case it is instructive to d 1 d coshdx?)
analyze the simplest case of the original fuzzy funnel with fr=fpm— e ———— fa=m— - —————.
D=3,N=2, ¢ =sjj and f3°=22"C if a,b,c#0, fO° 2 sinh(dx®) 2 sinh(dx®)

=0. Thus there are 12 zero modes. The solution is given in

Eq. (4.1) and hasA'=¢' so thatA,=45,. As mentioned Thus as x°—w®, ®3 tends to the constant matrix
above we can identify 3 zero modes=c'T° corresponding  — (d/2)a?, while ®*,&2—0. Clearly the three modes in Eq.
to the constant center of mass coordinates. The rest of the t1(6.6) are interpreted as separating the D1-branes along' the
zero modes, namely those that aresin(2), arerepresented axis at infinity.

by square X3 matriceSQD} which satisfy This leaves three zero modes of the form

(5.9
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any physics but rather the possible embeddings. To proceed
it is helpful to split the moduli space into the form

010 /00 1 /00O
¢~l1 0 ofl0o 0 0l |00 1
o 0o \1 00 \0O 10 M=MgX Mysx M, (5.13

(5.10
where Mg consists of the 1%4-1=195 zero modes corre-

These also correspond to eigenvalel. Let us again ook gh0nding to gauge transformations and do not represent any
for the corresponding exact solutions of the Nahm equatlonphysica| degrees of freedom.

In particular we consider the first zero mode in E§.10 The next part of the moduli spacé/ys, is obtained by
and let embedding the zero modes of a singi fuzzy funnel into
Dl=g,(x%)al+gy(x%)a?, D2=gy(x%)a’+gy(x%)al, u(14). The 9su(2) zero mpdesp} we found in Sec. VAcar_l
(5.11) be embedded separately into each of the seven block diago-
d3=ga(x%) ad. ’ nal entries of Eq(4.7). However, 3 of these are gauge trans-

formations and have already been includet;. Thus the
This leads to the equation$; =29,93, 9,=—29,9; and  su(2) zero modes give an additional 42 moduli. In addition

g5=2(g5—g3). The exact solution is provided by the one we may also embed thg(1) center of mass zero modes that
parameter family we discussed above intg(14). In particular if we let

_ b dn(bx®) +cn(bx®)
T o)

o' ~idiagc),ch, ... .ch), (5.14

wherec; are real, then clearlye', Al]=0 and so Eq(5.3) is

go=— b(1-k?) sn(bx?) (5.12 solved if ¢' is a constant, i.eA=0. This gives another 49
4 dn(bx®) +cn(bx®)’ zero modes which represent the center of mass of the D1-
branes along each of the directions and each of the D3-
b 1 branes. In total there are 91 linearly independent moduli in
9=~ 5 sn(bx®) Mgs. Clearly none of these zero modes lead to interesting

new solutions. Instead they affect one of the component

If we expand Eq.(5.12 aroundb=0 with k#1 then we fuzzy funnels but leave the others invariant. In particular
reproduce the first zero mode in E@.10 but mixed with they do not lead to a mixing or interaction between the vari-
the first zero mode in Eq5.6). Nevertheless these solutions, 0us off diagonal blocks. These moduli simply represent the
along with similar solutions where the ansatzdot, ®?and  relative positions of the D1-branes and D3-branes.
@3 are permuted, provide three more linearly independent We are, however, still left with }086 zero modes and these
zero modes. Again these solutions are generically periodic iform the rest of the moduli spack!. To count the number
x°. Whenk=1 the period is infinite and we in fact find the of physically distinct moduli we note that @ has the form
solution (5.9) again. g=diag(e'’s, ... e'%), 6,+---+6,=0 thengAlg 1=A'

In summary we have found 12 zero modes. Three of thes&hus if ¢ is a zero mode then so geg ! (with the same
correspond to gauge transformations and can be discardeghlue of\). HenceM has a residual gauge symmetiy1)®
One of these corresponds to translations of the D3-brane ignd the physical part of the moduli space in fact has a quo-

the x° direction. This leaves 8 linearly independent Z€r04ant form A'= M/U(1)8. Note thatM is mapped to itself

modes. To understand these we can consider the case of tVMﬂderU(l)G and Ms is invariant. However, we do not

D1-branes suspended between two parallel D3-branes sepa- . . 6. =~ )
rated by a distance. In this case we must také' to have how what the fixed points dfl (1)” in M are; for example,

. . 6
poles atx®=0 andx®=v. These boundary conditions are an acting with U(1)° need not always produce as many as 6

important part of the Nahm constuction and were derived'€W linearly m_depende_nt Z€ero modes. There_fore we are un-
from string theory in[32,33. This coincides with Nahm's able to determine the dimension.&f although it must bat

construction of charge tw8U(2) monopoles ofi® [14] (for !east as big as 1086_/¥ 156. These zero modes cannot be
a helpful and more recent discussion §&4]). Our counting interpreted as moduli that affect only one of the component

of 8 physical zero modes then agrees with the dimension Otluzzy funnels, i.e. the corresponding solutions are not simply
the moduli space of charge tw®U(2) monopoles. In par- 7 independent fuzzy funnels but rather involve off-diagonal
ticular one can see following the discussior[34] that Egs. blocks and represent deformations which smooth out the D3-

: rane intersection.
Eﬁégz(f r;dnEjSX}i J(ezaigc;rgc;r;(?golrzss‘\;\;hclgcea&e separated alon We should now compare this with the number of zero
' ' modes one expects from such a D1/D3-brane intersection.

From the intersecting D3-branes there ave 2l=84 scalar
modes from the hypermultiplets arising from D3-D3 strings

Next we consider the associative example witt-7, N with 4 DN directions. There are alsoX/6=42 zero-modes
=14. Thus there are some 1372 zero modes. The large nurfrom transverse scalar fields of the D3-branes. However, 7 of
ber of zero modes is related to the lafge¢hat we have used these moduli are simply the translational zero modes of each
to embed our solution and most zero modes do not refledd3-brane along® and have already been included.irys.

B. Associative
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Another 7 represent the locations of the branes aldhand  solutions which live on a half-line. In the Nahm construction
these have been frozen out from the whole system. In addihese correspond to unphysi¢f{1) monopoles with infinite
tion any pair of D3-branes that preserve 1/8 of the spacetimeass. From the D-brane perspective this infinite mass is sim-
supersymmetry may be rotated by a two parameter family oply due to the infinite length of the D1-brane. However, we
angles inNSU(3)CSQ(6). These contribute R 21=42 zero  also discussed the case of parallel D3-branes, or parallel sets
modes and hence the total number of D3-brane intersectioof intersecting D3-branes, and obtained solutions which cor-
moduli is 154. These should be viewed as the moduli of theespond to finite BPS monopoles.
calibrated surface on which the D3-branes are wrapped. Therefore we expect that there is an associated role for
Moreover, in addition to the surface moduli we expect thatthese generalized Nahm equations here. The natural interpre-
there will be relativeU (1) phases of the 7 distinct compo- tation of such a system is that it encodes the data for BPS
nent monopoles, as well as possible Wilson line moduli. monopoles on the calibrated three-surface. In addition we
Unfortunately a more complete analysis of thémoduli  have argued that the geometrical data of the calibrated sur-
space is beyond the scope of this paper. For example, wiace should also be so encoded. Unfortunately it is not clear
have not shown that they all lift to full solutions. It is also to us what the recipe is for constructing the monopole fields,
important to understand the correct boundary condition®r D3-brane geometry, from solutions to the generalized
which are crucial in the standard Nahm construction. HowNahm equations. In[15] the configuration (3.2 was
ever, we hope to have convinced the reader that the general-dualized into D5-branes ending on a D7-brane. A D1-brane
ized Nahm equations do admit non-trivial solutions whoseprobe analysis then shows how the monopole fields can be
zero modes are in a one-to-one correspondence with theconstructed from the solution and one recovers the Nahm
moduli space of D1-branes ending on intersecting D3-<constructior{14]. However, in our case we are limited by the
branes. Recall that from the spacetime point of view thesdact that the equivalent analysis requires more than ten di-
configurations appear as monopoles on calibrated threenensions where there is no appropriate supersymmetric
surfaces. Hence the moduli space of solutions to the genelang-Mills theory.
alized Nahm equations is naturally identified with the moduli  Finally, the configurations that we have obtained in this
space of monopoles on calibrated three-surfaces, includingaper are solutions to the super-Yang-Mills approximation to

the moduli of the surface itself. the full non-Abelian Born-Infeld action. As our solutions are
supersymmetric we expect that they will lift to solutions of
VI. SUMMARY AND COMMENTS the full theory although they may receive corrections from

. . higher orders in the non-Abelian field strength. Indeed, the

In this paper we have analyzed the general condition for If-duality equations(3.7), from which the generalized

static supersymmetric and non-Abelian embeddings of Dlile y & AT . 9 .
X . . . ahm equations can be obtained by dimensional reduction,

branes into spacetime. The Bogomol'nyi equations have thgre known [35] to be corrected at higher orders i

form of generalized Nahm equations and the resulting em—_2 12 1t id b . : q . heth

bedding has the interpretation as a non-Abelian calibrated <7's " would be very interesting to etermme whether

surface. On the worldvolume theory the solutions corresponge fuzzy funnels presented here also receive such correc-

to D1-branes which open up into non-commutative sphere ons.

(i.e. fuzzy funnels From the spacetime point of view the
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