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Counting domain walls inNÄ1 super Yang-Mills theory
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We study the multiplicity of BPS domain walls inN51 super Yang-Mills theory, by passing to a weakly
coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two
specified vacuum states is then determined via the Witten index of the induced world volume theory, which is
invariant under the deformation to the Higgs phase. The world volume theory is a sigma model with a
Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall
solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and
Vafa in which the walls were realized as wrappedD4-branes in type IIA string theory.
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I. INTRODUCTION

It is well known that N51super Yang-Mills ~SYM!
theory with a gauge groupG exhibitsh distinct vacua where
h, the dual Coxeter number of the group, is equal to
adjoint Casimir invariantTG . This vacuum structure result
from the spontaneous breakdownZ2TG

→Z2 of the discrete

Z2TG
remnant of the anomalous U(1)R symmetry. As initially

suggested by Witten@1#, the relevant order parameter is th
gluino condensatêl2&[^0uTrl2u0&, first demonstrated to
be nonzero within the framework of the Venezian
Yankielowicz effective Lagrangian@2#. Subsequently, the ex
act calculation of this condensate@3–5# was performed via a
controlled deformation to weak coupling. The result tak
the form

^l2&k5
16p2

g2
MPV

3 expS 2p i ~t1k!

TG
D53TGL3expS 2p ik

TG
D ,

~1!

where t54p i /g21u/2p is the complex gauge coupling
MPV is the Pauli-Villars regulator scale, and the subscripk
50, . . . ,TG21 marks thek-th vacuum. The second equalit
defines the renormalization group invariant dynamical sc
L.

The presence of discrete vacuum states implies the e
tence of topologically stable domain walls interpolating b
tween them. Moreover, one expects Bogomol’nyi-Pras
Sommerfield~BPS! saturated domain walls to exist since t
N51supersymmetry algebra contains a central chargeZ
whose operator form is@6–8#

Z5
TG

8p2E dz
]

]z
l2, ~2!

where z is the spatial coordinate perpendicular to the w
plane. The expectation value of the central charge is non
0556-2821/2002/66~6!/065015~14!/$20.00 66 0650
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nishing for states in the sectorukn&, corresponding to do-
main wall configurations interpolating between thenth and
(k1n)th vacua:

Zkn5^knuZukn&5
TG

8p2
~^l2&k1n2^l2&n!. ~3!

The absolute value ofZkn provides a lower bound for the
mass per unit area~i.e. the wall tension! of ukn&-sector states.
This bound is saturated by BPS domain walls whose tens
T @making use of Eqs.~1!, ~3!# is given by

Tk5uZknu5
3

4p2
TG

2 L3sin
pk

TG
, ~4!

which depends only onk. We will refer to these BPS walls a
k-walls. They preserve two of the four supercharges, and t
form short 1/2-BPS multiplets containing one bosonic a
one fermionic state.

In this paper, we address the problem of counting
number of such BPS supermultiplets for domain walls int
polating between two given vacua inN51 SYM theory, and
we limit ourselves henceforth to gauge group SU(N) where
TSU(N)5N. The number of BPS multipletsnk is counted by
the Cecotti-Fendley-Intriligator-Vafa~CFIV! index @9–11#,

nk5Trkn@F~21!F#, ~5!

whereF is the fermion number, and the trace~suitably de-
fined! runs over all states in theukn& sector. The index counts
walls as solitonic objects in 311D, and thus there is an im
plicit infrared regulator required to make the total wall ma
finite.

An alternative way to view the CFIV index is that
counts the number of supersymmetric vacua in the~211!D
theory induced on the world volume of the wall. We can th
equivalently rewritenk as given by the Witten index@1# of
the world volume theory:

nk5TrWV@~21!F#. ~6!
©2002 The American Physical Society15-1
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It is this alternative point of view which will be particularl
useful for us.

The status ofnk as an index refers to its invariance und
smoothD-term deformations, as shown in@9#, and it is this
feature which makes it a valuable quantity in theories w
four supercharges, whereD-terms are generally uncon
strained. The index does, however, depend on theF-terms
but these are quantities over whichN51supersymmetry ex
ercises some control.

For a strongly coupled system likeN51 SYM theory, the
invariance of the index under various deformations is cru
for the counting problem to be tractable. It is clear that
make progress in evaluating Eq.~5!, we should first deform
the theory to a weak coupling regime where theF-terms
upon which the index depends—in this case the holomorp
superpotential—are calculable. Our strategy will then be
determinenk in this regime, and then rely on holomorphy
the superpotential, and the independence ofnk on the
D-terms to return to pure SYM theory and deduce the co
sponding wall spectrum. To this end, there are many poss
deformations one could consider. Before outlining the p
ticular route we will follow, it is appropriate to conside
some other recent approaches to this problem, which in
motivated our work.1

One particular deformation, in which there has been c
siderable recent interest@20–24#, involves a geometric real
ization ofN51gauge theories as the low energy decoupl
limit of M theory on a 7-manifold ofG2 holonomy. Making
use of a smooth geometric transition in the moduli of theG2
manifold @22,24# ~see also@25,26#! leads to a tractable larg
volume regime which exhibits many of the features of t
confining phase of SYM theory@20,21#. For SU(N), the dual
7-manifold is topologicallyR43S3/ZN , and Acharya and
Vafa @23# proposed that in this context BPS walls correspo
to M5-branes wrapping the Lens spaceS3/ZN . Reducing to
type IIA string theory via the fiber of the Hopf map leads
D4-branes wrapping theS2 base, pierced byN units of
Ramond-Ramond flux. When thisS2 is large, the low energy
on the unwrapped~211!-dimensional part of theD4-brane
preserves two supercharges, with a field content consistin
a photon, a photino, a massless neutral scalar and an
spinor, where the gauge half-multiplet is given a topologi
mass by the presence of a Chern-Simons term of leveN
@27,28#.

In calculating the indexnk in this system one can identif
~and factor out! the massless fields with the expected tra
lational modes of the wall. The remaining massive gau
modes can be dualized to massive scalars which decou
with the caveat that the Chern-Simons term induces a r
nant set of quantum mechanical zero modes described
Landau system,

SL5E dtF 1

2e2
Ȧi

22
N

8p
e i j Ai Ȧj G . ~7!

Here Ai5Ai(t) ( i 51,2) are the spatially homogeneou

1For additional related work on domain walls see@12–19#.
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modes of the gauge field. The number of vacuum stat2

given by the degeneracy of the lowest Landau level@27,28#,
is N provided the theory has an infrared regulator on
world volume. Consequently, one concludes that the deg
eracy of 1-wall multiplets isN @23#.

This discussion was extended@23# to k-walls by wrapping
k D4-branes around theS2. The simplest twisted theory aris
ing at low energies is thenN51 Chern-Simons Yang-Mills
~CSYM! theory in ~211!D with gauge group U(k). The
massless sector has now expanded to include a real s
transforming in the adjoint ofU(k), whose eigenvalues we
naturally associate with the positions of the constitu
1-walls. All but one of these fields should gain a mass if t
configuration is to form a bound state, but the requir
mechanism was not apparent in this construction. None
less, it was argued that provided this lifting took place, vac
would arise as in the correspondingN52 CSYM theory
@30,31# at the origin of the moduli space, with the inde
taking the value

nk5S N

k D[
N!

k! ~N2k!!
, ~8!

which reduces toN for k51 as above. Once again an infra
red regulator on the world volume was a necessary co
tion.

One may view the picture arising from this constructi
not just as a quantitative prediction for the spectrum of B
walls ~8!, but also as an interesting conjecture about
structure of the world volume theory, and it is interesting
contrast it with expectations from field theory. One unr
solved issue is the existence of additional moduli associa
with the constituent 1-wall positions in ak-wall system, as
noted above. Given the suggestions that the effective w
cutoff may scale withN in SYM theory, one possible mean
of reconciling these descriptions is to take the largeN limit,
where the binding energies are suppressed. This is indee
expected regime where the geometric transition is indu
@20#. Having this regime in mind, we will find a world vol
ume description within supersymmetric QCD~SQCD! which
matches surprisingly well with this construction.

A second tractable deformation ofN51 SYM theory,
which will also provide a useful reference point, involve
compactification onR33S1 @32,33#. In this process, the
SU(N) gauge symmetry can be broken to its maximal Ab
lian subgroup by a Wilson linefa5*S1dx1A1

a , a
51, . . . ,N21, associated with the Cartan components
the gauge fieldAm

a along the compact direction. If the radiu
of the S1 is much smaller thanL21, and fa;1, then we
arrive at a weakly coupled effective U(1)N21 gauge theory
in ~211!D. Furthermore, on this Coulomb branch the ph
tons can be dualized to periodic scalarssa @34#, and the

2As an aside, this domain wall system provides an interes
viewpoint on the subtle vacuum structure of Maxwell-Cher
Simons theory@27,29#.
5-2
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system is then described as anN52 Kähler sigma model
with target spaceT2(N21)/SN21 parametrized by the comple
fields

Va5fa1tsa. ~9!

This moduli space is lifted by a nonperturbative superpot
tial generated by 3D instantons~BPS monopole configura
tions! @32,33#. Its general form for gauge group SU~N! has
been determined in various ways@32,33,35–37# and has the
structure of a complexified affine-Toda potential

W}F (
a51

N21

e2Va
1e2p i te(aVaG . ~10!

This superpotential therefore leads as expected toN chirally
asymmetric vacua, and the corresponding condensates
be continued back toR33R1 as the complex structure man
fest in Eq.~10! was shown to be independent of the radius
the circle @33#. In this system, the wall configurations a
lowed by Eq.~10! may be counted individually as there a
no additional moduli. Each wall forms a single multiplet, a
in the ukn& sector one finds the same overall multiplicitynk
@23,38# as in Eq.~8!, which is consistent given that we aga
have an explicit infrared regulator.

With these approaches in mind, we will follow an alte
nate strategy, deformingN51 SYM theory to weak cou-
pling. To this end we replace SYM theory by SQCD wi
Nf>N21 massive fundamental flavors, a route also f
lowed for the exact calculation of the gluino condensate@5#.
When the tree-level mass terms are large compared to
dynamical scale, we return to pure SYM theory in the inf
red. However, taking the masses as small perturbations
pass to a Higgs phase where the gauge fields are heavy
the theory is well-defined in the infrared@3,39#. The low
energy dynamics of this system is in terms of meson qu
moduli M, and in the case ofNf5N21 flavors one has the
standard 1-instanton induced Affleck-Dine-Seiberg~ADS!
superpotential@3# in addition to the mass terms,

W5Tr~mM!1
~LN21!2N11

detM
. ~11!

Note that with a diagonal ansatz for the meson moduli, t
superpotential formally coincides with Eq.~10!, up to issues
related to the compactification of the target space. Inde
the structure of this superpotential already allows us to in
that the wall degeneracy will be nontrivial. As recalled
more detail below, BPS domain walls describe straight l
trajectories in theW plane. Thus, forN52 with a single
chiral meson field, we see from Eq.~11! that the wall trajec-
tories will be given by the roots of a quadratic equation. T
suggests a 2-fold wall degeneracy, consistent with Eq.~8!,
which was indeed observed in earlier investigations of t
system@7#.

While the similarity with Eq.~10! is apparent, the Higgs
phase approach can now be seen as a way of bridging
the above regimes, and thus testing some aspects o
M-theoretic construction. For gauge group SU(N), the num-
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ber of meson moduli entering Eq.~11! increases asO(N2),
and we will find that the BPS wall solutions exhibit a modu
space coordinatized by Goldstone modes which arise f
broken flavor symmetries. It will be convenient to focus
the caseNf5N, where the full quantum flavor symmetry i
manifest, and the corresponding description of the Hig
phase is discussed in more detail in the next section. We
that wall solutions break the flavor symmetries in such a w
that the world volume theory, after factoring out the trans
tional mode, is anN51 Grassmannian sigma model in~2
11!D. The vacuum states of this theory therefore count
number of BPS wall supermultiplets, Eq.~6!.

We make significant use of the fact that the index is ind
pendent of variations in the Ka¨hler potential. This and holo-
morphy of the superpotential are sufficient to ensure that
index is preserved under the flow back to pure SYM theo
We will explicitly show in this way thatnk is given precisely
by Eq.~8! provideda suitable infrared regulator is in place
full accord with @23#, e.g. compactifying one spatial worl
volume dimension. However, when the external infrar
regulator is removed, the status of the wall multiplicity cou
is less clear.

The layout of the paper is as follows. In Sec. II we discu
the structure of the Higgs phase in SQCD whenNf5N. With
this background in hand, we turn to the calculation of t
BPS wall moduli space in Sec. III, while the index calcul
tion, and subtleties related to the need for an infrared re
lator, are discussed in Sec. IV. Some aspects of the H
phase system with fewer flavors are discussed in Sec. V,
we conclude in Sec. VI with some additional comments
the world volume dynamics.

II. FROM SYM THEORY TO SQCD

A convenient tractable deformation ofN51 SYM theory
is obtained by addingNf5N chiral superfields,Qf and Q̄g

( f ,g51, . . . ,Nf), transforming respectively in the funda
mental and anti-fundamental representations of the ga
group~the gauge indices are suppressed!. This matter content
is sufficient to fully break the gauge symmetry of the theo
through the Higgs mechanism in any vacuum in which
matter fields have a nonzero vacuum expectation value.
may then integrate out the gauge fields obtaining an effec
description of the meson moduli matrixM,

M f
g5QfQ̄

g, ~12!

which involves a quantum constraint, first discussed
Seiberg@39#. On the non-baryonic Higgs branch, which w
can restrict our attention to here, this constraint takes
form

detM5~LN!2N, ~13!

which defines a manifold of complex dimensionN221 in
CN2

. Here LN is the dynamical scale of SQCD withNf
5N.
5-3
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If we introduce a tree-level mass term

Wtree5Tr~mM!, ~14!

wheremf
g is the mass matrix in flavor space, then the effe

tive superpotential can be written as

W5Tr~mM!1l@detM2~LN!2N#, ~15!

wherel is a Lagrange multiplier. There areN chirally asym-
metric vacua of the theory, which lie at

^M &k5m21mLN
2 vN

k , k50, . . .N21, ~16!

wherevN
k 5exp(2pik/N) is anN-th root of unity and we have

defined

m5~detm!1/N. ~17!

For the weak coupling Higgs regime to set in we require th
for some of the meson fields,^M &@LN

2 . From Eq.~16! we
see that this is only possible when the mass matrixm is
hierarchical. For example, we can choose the mass matr
block diagonal form, with the mass of theN-th flavor mN

N

much larger than all the others,

mN
N@~m8! f

g , f ,g51, . . . ,N21. ~18!

We can then integrate out the heaviest flavor, which reso
the constraint in Eq.~15! with MN

N5LN
2N/detM 8 ~the fields

M f
N and MN

g vanish!, leading to the ADS superpotential@3#
for the theory withNf5N21 flavors, as introduced earlie
in Eq. ~11!,

W5Tr~m8M 8!1
~LN21!2N11

detM 8
,

~LN21!2N115mN
N~LN!2N, ~19!

wherem8 andM 8 refer to the reduced theory. If all remain
ing entries in the mass matrixm8 are much less thanLN21
then theN vacua of the theory lie at weak coupling and o
can reliably calculate the indexnk by counting solutions of
the classical BPS equations.

Thus, we conclude that to ensure the validity of we
coupling analysis the mass matrix should be of the hierar
cal form ~18! which diminishes the flavor symmetry. Reca
that the classical Ka¨hler potential K of the underlying
N-flavor theory is U(N)3U(N) symmetric, although only
SU(N)3SU(N)3U(1) is realized canonically in terms o
the meson moduli, whereK5Tr(M̄M )1/2. This symmetry is
broken by the superpotential~15! to at most SU(N), when
all masses are equal. The mass matrix~18! breaks this further
to SU(N21). Nonetheless, the reason we have emphas
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the N-flavor perspective is that we can restore the maxim
SU(N) flavor symmetry of the superpotential, despite t
presence of the hierarchical mass matrix~18!, by a holomor-
phic field rescaling. In practice it is convenient to introdu
the dimensionless fieldsXf

g ,

X5mM~mLN!22. ~20!

In terms of X the superpotential~15! is manifestly SU(N)
symmetric,

W5mLN
2 @TrX1l~detX21!#. ~21!

Of course, this is at the expense of diminishing the symme
of the Kähler potential, which in terms ofX becomesK
}Tr@X̄m̄21m21X#1/2.

The crucial point, as emphasized above, is that the C
indexnk does not depend on nonsingular deformations of
Kähler potential@9#. Thus it is convenient to choose a fie
rescaling that maximizes the symmetry of the superpoten
as we can then deform the metric back to a more symme
form K}Tr(X̄X)1/2 if so desired, for the purpose of analyz
ing the BPS equations. Formally, this procedure is equiva
to taking a symmetric mass matrix in Eq.~15!. However, we
emphasize that our dynamical model is that of Eq.~18! and
the deformation described above is appropriate only for c
culating an invariant quantity likenk .

III. MODULI SPACE OF BPS DOMAIN WALLS

Having deformedN51 SYM theory to SQCD in the
Higgs phase, we can again verify that the vacuum struc
and supersymmetry algebra still imply the existence of 1
BPS domain walls with tension determined by the cen
charge. However, the expression for the central charge
erator itself is modified@8#. Ignoring total superderivatives
and making use of the Konishi relation@40#, this operator
can be written in the form@6,7,41#

Z5E dz
]

]z
$2 Ŵ %u50 ,

Ŵ 5Wtree2

TG2(
f

T~Rf !

16p2
Tr W2, ~22!

wherez is again the transverse coordinate to the wall. T
first term is due to the tree level superpotential, while t
second represents the anomalous contribution, given in p
SYM theory by Eq.~2!. For Nf5N flavors, which is our
main focus here, the anomalous term vanishes sinceTSU(N)
5N, andT(Rf)51.

In the Higgs regime at weak coupling this expression
duces in theukn& sector to the simple form

Zkn52@Wk1n2Wn#, ~23!
5-4
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whereW is now the effective superpotential~21! depending
on the moduliX while Wk is the value of this superpotentia
in the kth vacuum,

Xk5vN
k
•1, Wk5NmLN

2 vN
k , ~24!

where1 is theN3N unit matrix. For reference, the explic
expression for the central charge is given by

Zkn5uZ knueigkn

54iNmLN
2 sin

pk

N
expS ip~2n1k!

N D , ~25!

which leads to Eq.~4! in pure SYM theory, via the decou
pling relation 16p2mLN

2 →3NL3 asm→`.
BPS walls in this system satisfy the first order different

equations@11,42,43#,

gāb]zX
b5eig] āW̄, ~26!

where we have chosen a convenient basis to expand the
son matrices, in which the Ka¨hler metric is given bygāb

5] ā]bK, and the derivatives] ā and]b are taken overX̄ and
X. Finally, g[gkn is the phase of the central chargeZk n as
defined in Eq.~25!. An important consequence of the BP
equations is that

]zW5eigi] iXi2, ~27!

and thus the domain wall describes a straight line in theW
plane connecting the two vacua@11,42,43#.

In calculating the number of solutions to these equatio
with specified boundary conditions in theukn& sector, we
will need a more precise characterization of the depende
of the CFIV index on variations of the superpotential itse
The structure of the BPS mass spectrum implies that cha
can occur only if a marginal stability condition is satisfied
where three vacua align in theW plane@42,43#. This allows
considerable freedom~beyond that of deforming the Ka¨hler
metric! in perturbing the system in order to verify the exi
tence or otherwise of BPS wall solutions.

We will make use of this freedom as follows, followin
the construction of Cecotti and Vafa@11#. First, since we
consider massive vacua, one can expand the superpoten
quadratic order about each vacuum, and the set of all lin
ized solutions to Eq.~26! forms a cycleD j in field-space
diffeomorphic to a sphere. It then follows@11# that the
weighted soliton number, namely the indexnk , is given by
the intersection number of the cycles associated with the
vacua@11#

nk5Dn+Dn1k . ~28!

This formulation of the index is manifestly topological, an
provides a clear picture of how robust it is under deform
tions. In particular, it follows from Eq.~28! thatnk counts all
trajectories in the puncturedW plane ~with the vacua ex-
cised! which are homotopic to the straight line connecti
the vacua describing the exact wall solution. Moreover,
change in the soliton spectrum as paths wrap around o
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vacua, crossing curves of marginal stability via changes
the mass parameters for example, can also be understoo
the intersection numbers change in such a process acco
to Picard-Lefschetz monodromies@11#.

This point of view will prove useful in analyzing the BP
equations below. However, one must bear in mind that
approach refers strictly to~111!D, and thus to a compacti
fication of SQCD on a torusT2. The stability of the index
under decompactification must also be addressed for any
rect application of the results to~311!D. Taking these ques
tions in turn, for the remainder of this section we analyze
space of wall solutions in SQCD, which we will demonstra
includes continuous flavor moduli, and then move to a d
cussion ofnk itself in the following section.

A. Broken symmetries and Goldstone modes

As we will now demonstrate, the BPS wall solutions
this theory possess a nontrivial bosonic moduli spaceM. In
fact, on the general grounds that ak-wall spontaneously
breaks translational invariance, we have the isometric
composition,

M5R3M̃, ~29!

where the factorR reflects the center of mass positionz0,
while M̃ denotes the reduced moduli space. The consiste
of this decomposition with supersymmetry can be made
plicit if we lift M to the corresponding supermanifold whic
also encodes the fermionic moduli. In particular, the tw
fermionic moduli associated withz0 lift R to the supermani-
fold R1;2; quantization of these moduli naturally explains t
two state multiplet structure, described algebraically in S
I, from the semiclassical point of view. A final point to em
phasize is that, since only two supercharges are realize
the moduli,M is a real manifold, not endowed with an
Kähler structure.

The decomposition~29! implies that eachk-wall super-
multiplet corresponds to a unique vacuum onM̃. Therefore,
provided we decouple moduli associated with the trans
tional zero mode, the problem of calculatingnk is reduced to
that of finding the Witten index of the world volume theo
on the wall. Consequently, we now turn to the problem
deducing the structure ofM̃. Given that the low energy
description of SQCD outlined in Sec. II is of Landau
Ginzburg form, it is natural to expect that this space is d
termined purely by the flavor symmetries broken by the w
In the remainder of this subsection, we will present the ba
symmetry argument which determinesM̃. In the following
subsection, we show how this arises from a more dir
analysis of the BPS equations.

As reviewed in the previous section, the superpoten
~21! exhibits a SU(N) global symmetry which is preserve
by the vacua and is also supported by the deformed Ka¨hler
metric. This superpotential depends only on the eigenva
$h i%, i 51, . . . ,N of the dimensionless meson matrixX. In
terms of these eigenvalues it takes the form
5-5
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W5mLN
2 F(

i 51

N

h i1lS )
i 51

N

h i21D G . ~30!

Now consider ak-wall trajectory, choosing theuk0& sector
for simplicity. The N eigenvalues are restricted to be t
same in each vacuum, i.e.h i51 at z→2` and h i
5e2p ik/N at z→1` for all i 51, . . . ,N. The modulus of the
field is unity in each vacuum and thus the only ‘‘pseu
topological’’ means of characterizing the eigenvalue traj
tory in the wall is via its winding number,

wi5
1

2p i EG

dh i

h i
, ~31!

whereG denotes the wall trajectory. Up to integer multipl
this is clearlyk/N for thek-wall, but we can also keep trac
of the additional windings. In principle there are an infin
number of possibilities, but its clear that energetically on
two will occur in stable walls, namely,

w15k/N, w25~k/N!21 ~32!

as exhibited in Fig. 1.
The index is independent of the Ka¨hler potential and thus

one can use the freedom to perform diffeomorphisms of
Kähler metric to set all fields characterized by the sa
winding numbers equal to each other. To see that this
possible note that two trajectoriesha andhb in a given wall
with the same winding, sayw1, can be mapped into eac
other by an analytic mapping on a domain given by the co
plex plane with the vacuum points deleted. In other wo
from this point of view there are only two inequivalent tr
jectories in the wall, up to permutation.

Now let us prove that fork-wall trajectories there are
preciselyk eigenvalues that have windingw1 andN2k hav-
ing winding w2. Thus, if N(wi) is the number of fields hav
ing winding wi , then

N~w1!5k, N~w2!5N2k. ~33!

FIG. 1. Possible winding trajectoriesh1 and h2 for the eigen-
values.
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To verify this, denote the trajectories with the windingsw1
andw2 by h1 andh2, respectively. IfN(w1)5 l , the super-
potential~30! takes the form

W5mLN
2 $ lh11~N2 l !h21l@h1

l h2
N2 l21#%. ~34!

The constraint imposed by the Lagrange multiplier ensu
that h15h2

2(N2 l )/ l . The vacuum values of the fields the
requirek5nl with nPZ, and under the assumption that th
fields do not undergo multiple windings in the wall, as a
gued above, then we havek5 l .

Consequently, since we have two sets of field configu
tions in the wall with respectivelyk and N2k coinciding
eigenvalues, we find thatk-wall trajectories preserve the fol
lowing ~continuous! subgroup of the SU(N) flavor symme-
try:

SU~k!3SU~N2k!3U~1!. ~35!

Note that the rank of symmetry group is preserved, followi
from the fact that the constraints on$h i% do not break the
Cartan torus of SU(N). Thus far, we have not kept track o
the global structure of the symmetry groups. However,
determine the precise coset associated with the broken s
metry generators, and thus the Goldstone modes induce
the wall world volume, it is sufficient to realize that, sinc
our description involves only adjoint-valued meson field
the center of each SU(p) symmetry group, forp5N,k or
N2k, acts trivially. Thus, the nonabelian symmetry grou
are strictly of the form SU(p)/Zp .

Therefore, taking this global structure into account,
deduce that the reduced moduli space fork-walls is the com-
plex Grassmannian3

M̃k5G~k,N![
U~N!

U~k!3U~N2k!
~36!

reflecting the Goldstone modes induced by the broken fla
symmetries. For 1-walls,G(1,N)5CPN21. This result appar-
ently depends on the number of flavors, but can nonethe
be used to determine the world volume Witten index as
shall discuss in more detail below.

One may note that the information on eigenvalue traj
tories is actually sufficient to deduce the ‘‘classical’’ wa
degeneracy. It is given by the number of possible permu
tions of the eigenvalues~as discussed in@38#!, leading to the
result for nk given in Eq. ~8!. However, this argument ne
glects infrared effects on the wall, an understanding of wh
requires a more detailed analysis of the world volume
namics. Before turning to this, we will present in the ne
subsection a more explicit derivation ofM̃ following from
the BPS equations.

3We thank A. Smilga for helpful discussions on the geometry
soliton moduli.
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B. Analysis of the BPS equation

The BPS equations~26! depend not just on the form o
the superpotential, but also on the Ka¨hler metric, and it is the
latter dependence which, while irrelevant for obtainingnk ,
determines the precise wall profile. Therefore, it is usefu
disentangle the crucial dependence on the moduli, aris
from the superpotential, from the inessential details relat
to the actual profile of the wall.

To this end, we first introduce a basis of Hermitian ma
ces$T0 ,TA%, A51, . . . ,N221, whereT051/AN and $TA%
are orthonormal generators for the Lie algebra of SU(N),
satisfying Tr(TATB)5dAB . Then we can expand the dimen
sionless meson matrix in this basis,

X5AN~X0T01 iXATA!, ~37!

where$X0,XA%PC. In this basis, the vacua lie at

^X0&5vN
k , ^XA&50, ~38!

and on imposing the constraint obtained by integrating
the Lagrange multiplierl, the superpotential takes the for

W5mLN
2 X0. ~39!

BPS wall profiles are then given formally by parametrizi
the constraint thatW, and thusX0, must follow a straight
line connecting the two vacua, as follows from Eq.~27!. In
other words,any k-wall trajectory, parametrized by a fiducia
scaletP@0,1#, is given by the relation

X0~ t !5 f ~ t ![~12t !1tvN
k , ~40!

with XA subject to the constraint

det@X0~ t !11 iANXATA#51 ~41!

with the appropriate boundary conditions at the vacua. T
existence, and the moduli space, of wall solutions then
volves on the analysis of this constraint.

In essence, we have simply shifted the nontrivial fie
dependence from the superpotential to the metric. Wit
suitable coordinate choice the BPS equations will then p
vide a nontrivial profile for a single coordinate, consiste
with Eq. ~27!, with the other coordinates either fixed or r
maining constant and thus leading to moduli. We turn firs
the simplest case with gauge group SU~2!.

1. Gauge group SU(2)

We will study first the theory with gauge group SU~2!,
and two flavors. In this case, the constraint~41! takes the
form

(
a50

3

~Xa!251, ~42!
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wherea5(0,A)50, . . . ,3. This constraint yields a smoot
complex submanifold ofC4, known as the deformed
conifold.4

The real section of the deformed conifold~42! defines a
3-sphere, and we see that the two vacua of the theory g
by Eq. ~38! lie at antipodal points on thisS3. The geometry
of the space becomes more transparent by defining a ra
coordinater,

r 25Tr~X̄X!, ~43!

where constant values ofr define a foliation with sections
having the generic form SU(2)3SU(2)/U(1), where the
U~1! acts in such a way that this space is topologica
S23S3; see@44#. However, at the minimal radiusr 51 the
coset becomes SU(2)3SU(2)/SU(2) andthese sections
collapse to anS3 identifiable as the real section above. Thu
the manifold is conical for larger, while the apex of the cone
is rounded off to anS3.

Supersymmetry demands that we use a Ka¨hler metric on
the deformed conifold. Such a metric preserving t
SU(2)3SU(2) action apparent from therÞ1 sections will
be a function only ofr 2. In terms of the Ka¨hler potential
K5K(r 2), and the meson matrixX, the metric will take the
form

dsC
2 5K8~r 2!Tr~dX̄dX!1K9~r 2!uTr~X̄dX!u2. ~44!

Kähler metrics on the deformed conifold, which are al
Ricci flat, were first obtained in@44#. Supersymmetry does
not impose the latter constraint here,5 but in fact we will not
need to choose a precise form forK(r 2) away from the apex.
In this region, the symmetry we have imposed is sufficien
ensure that the metric~44! takes the asymptotic form@44,45#

dsr→1
2 5L2

2Fdr21dV3
21

1

2
r2dV2

2G , ~45!

wherer5A2(r 21) anddV2
2 represents a 2-surface~topo-

logically S2) which shrinks asr→0, while dV3
2 is a round

S3—equivalent to the real section—which remains with
nite volume at the apex. Thus, the metric reduces locally n
r 51 to R33S3.

The crucial simplifying feature is that it is not just th
vacua, but the entire wall trajectory which lies on the re
section. To see this we adopt a different viewpoint on
deformed conifold, first discussed by Stenzel@46,47#. The
manifold is symplectic, given by the co-tangent bund
T* (S3) over S3, and this is made manifest by introducin
real coordinatesxa and momentapa via

4The singular conifold is recovered in the classical limit,L→0,
where Eq. ~42! reduces to (a50

3 (Xclass
a )250 with Xclass

5 limL→0(L2X).
5In contrast, withN52 SUSY the Higgs branch metric is require

to be hyper-Ka¨hler, which would imply Ricci flatness.
5-7
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Xa5cosh~Apbpb!xa1 i
sinh~Apbpb!

Apcpc

pa ,

a,b,c50,1,2,3. ~46!

The defining constraint then takes the form

(
a50

3

~xa!251, (
a50

3

xapa50, ~47!

which describes the canonical phase space of a dynam
system with configuration spaceS3, with momenta lying in
the cotangent space.

Now, from the condition that the superpotential lie along
real line connecting the two vacua, see Eqs.~39!,~40!, we
deduce thatp0(t)50, and the superpotential reduces toW
5mLN

2 cosh(ApApA)x0, where A51,2,3. Since
cosh(ApApA) is strictly positive, and the vacua lie on the re
section so thatpA(0)5pA(1)50, we can smoothly deform
the Kähler potential if necessary so thatpA(t)50, A
51,2,3, for allt. One can readily verify that this solves th
constraints~47!. The solution then corresponds to a ze
‘‘energy’’ configuration of the analog system, whereE
5(a50

3 (pa)2/2, and remains entirely within the real sectio
S3 at r 51.

By deformation, we have chosen the Ka¨hler metric on the
field theory moduli space to respect the maxim
SU(2)3SU(2) symmetry, and so the corresponding me
on S3 will be the round one. Re-expressing the real coor
nates $xa%, a50 . . . 3, on S3 in terms of Euler angles
$u,j,f%, the metric takes the form

dsr 51
2 5L2

2dV3
2 ,

dV3
25du21sin2u~dj21sin2jdf2!, ~48!

while the superpotential, restricted to the real section
given by

Wu trajectory52mL2
2cosu. ~49!

The vacua lie at the polesu50,p, and the BPS equation
reduce to

]zu52msinu, ]zj5]zf50, ~50!

which are solved by the sine-Gordon soliton,

u~z!52arctane2m(z2z0). ~51!

This solution, schematically represented in Fig. 2, is char
terized by three moduli$z0 ,j0 ,f0%. The angular modes ar
Euler angles on the 2-sphere, and so we recover the mo
space deduced earlier from symmetry considerations,

M N525R3CP1, ~52!

where sinceN52, we have necessarily been consideri
minimal walls withk51.
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In preparation for later analysis, we can compactify t
spatial dimensions on a 2-torus of areaL2. Then, at excita-
tion energiesE!L21, we are effectively reducing the syste
to one of the kinks in~111!D, where this reduction to quan
tum mechanical moduli makes sense. Integrating over
wall profile leads to the corresponding bosonic moduli sp
Lagrangian which takes the form

Lbose52M1
1

2
Mż0

21RM̃~ j̇21sin2jḟ2!, ~53!

where M5T1L2 is the kink mass, determined by the wa
tensionT158mL2

2, while integrating over the wall profile
leads to a scale

RM̃;L2
L2

2

m
~54!

for the flavor moduli spaceM̃.

2. Gauge group SU(N)

The general case can be understood by following
slightly less direct approach. It will be convenient to descr
generick-walls as embedded sine-Gordon solitons, althou
we emphasize that this simply reflects a particular choice
the Kähler metric. In more detail, along the wall trajecto
we make the change of variablest5sin2u/2 where u
P@0,p#. The superpotential~39!,~40! can then be written as

Wu trajectory5NmLN
2 eipk/NFcos

kp

N
2 isin

kp

N
cosuG . ~55!

If we now choose a Ka¨hler potential of the form

K5LN
2 @u21Trf ~ X̄̃X̃!#, ~56!

wheref is any smooth function along the wall trajectory an
X̃5X2(1/N)(TrX)1 is the trace-free part ofX, then the BPS
equation fork-walls takes the form

FIG. 2. Wall trajectory on the resolvedS3 at the tip of the
deformed conifold.
5-8
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]zu5Nmsin
kp

N
sinu, ~57!

which is again solved by the sine-Gordon soliton,

u~z!52arctane2m̃(z2z0), m̃5
N

2
msin

kp

N
. ~58!

This profile is dependent entirely on the choice of the me
~56!, which naturally generalizes Eq.~48!. However, since
we are not concerned with its precise form the only point
concern is whether it introduces additional singularities.
check this, we need to compare it with the canonical me
at weak coupling, which is the only regime in which th
metric is known. One can verify that the mapping to Eq.~56!
is nonsingular in the vicinity of the wall trajectory.

With this profile in hand we can now investigate th
moduli of this solution. The corresponding reduced mod
spaceM̃ is determined by the space of smooth solutions
the constraint~41! with fixed boundary conditions at the ap
propriate vacua.

Geometrically, the manifold~41! is a determinental vari-
ety of complex dimensionN221, which is rather difficult to
analyze directly, except in the SU~2! case discussed abov
and so we will adopt a different approach motivated by
discussion in Sec. III A. First of all, note that although t
flavor symmetry of the theory is SU(N), the symmetry of the
constraint~41! is its complexification SL(N,C). This allows
us to diagonalize the meson matrixX5AN(X0T01 iXATA)
by the adjoint action of SL(N,C), with X→diag$h i% as be-
fore, where now the eigenvalues are functions of a sin
complex variablex. Following the arguments of Sec. III A
to solve the constraint

)
i 51

N

h i„x~ t !…51, ~59!

we must imposeh i5h j for i , j 51, . . . ,k, and hk5h l for
k,l 5k11, . . . ,N. We can then represent the diagonalizati
of X in the form

X→ f ~ t !11xANV, ~60!

where we have used Eq.~40! andV is the following genera-
tor of the Cartan subalgebra

V5diagH 2AN2k

Nk
1k ,A k

N~N2k!
1N2kJ , ~61!

with 1k the k3k unit matrix.
The constraint~59! then reduces to

S f ~ t !1AN2k

k
xD kS f ~ t !2A k

N2k
xD N2k

51. ~62!

The number of solutionsx(t) to this equation asymptoting t
the vacuax(0)5x(1)50 can be obtained as follows@38#.
Note first that the constraint is resolved by defining a n
variabley,
06501
c
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yk5 f ~ t !2A k

N2k
x,

y2(N2k)5 f ~ t !1AN2k

k
x. ~63!

An apparent phase ambiguity which is dropped in this tr
sition is actually fake once the vacua are fixed. Then, eli
nating thex dependence we obtain

Wansatz

mLN
2

5N f~ t !5kyk2N1~N2k!yk, ~64!

which we recognize as the constraint that the ADS super
tential, evaluated within the ansatz~60!, follows the straight
line wall trajectory. Note that another phase ambiguity h
been dropped to ensure the correct asymptotic vacua.

Since the vacua are massive, and thus the second de
tive of the superpotential is finite, there are at most two p
sible trajectories emanating from each vacuum point. Ho
ever, a perturbative analysis shows that only one of these
interpolate between both. Existence of this unique solut
can be demonstrated@38# by taking the trial solutiony(t)
5e2p i t /N and showing that its image in the puncturedWansatz
plane~with the vacua excised! is homotopic to a straight line
the latter describing the exact wall trajectory.

Thus, we have found precisely one solution for allk as-
sociated with the ansatz~60! and the generatorV. Conse-
quently, following standard arguments, the moduli space
these solutions is given by the coadjoint orbit ofV under the
symmetry group, which in this case is SU(N). This is the
manifold swept out by the adjoint action of SU(N) mod the
stability group of V, which we see immediately is
SU(k)3SU(N2k)3U(1) up to discrete factors. Thus, tak
ing into account the fact that the center of each nonabe
group acts trivially, we recover the result obtained earlier t
the reduced moduli space,

M̃k5G~k,N!, ~65!

is the complex Grassmannian ofk-planes inCN.
Having factored out the transverse position modul

which is decoupled and not visible in the construction abo
we find that the moduli associated with the broken flav
symmetries induce a nontrivial~211!D sigma model on the
wall world volume, the supersymmetric vacuum states
which—to be identified with inequivalentk-walls—we will
count in the next section.

IV. THE WORLD VOLUME WITTEN INDEX

Having determined the structure of the bosonic mod
space asR3M̃k , the calculation ofnk simplifies in that the
massless field associated with the translational zero mod
5-9
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factorized, and its associated multiplet decoupled. We t
identify each inequivalentk-wall with a unique vacuum stat
of the N51 sigma model onM̃k , and count then with the
Witten index. The index is conveniently defined by imposi
an infrared regulator on the spatial coordinates of the wo
volume. In general, the result is insensitive to removal of
regulator if the theory has a mass gap, an issue which
quires some dynamical knowledge of the system in quest
In this section, we discuss the status of the index for
world volume sigma model onM̃k by systematically remov-
ing the infrared regulators.

A. Compactification on T2

We first consider a fully regularized system putting t
spatial part of the world volume on a torus. Then in t
low-energy limit, the world volume theory reduces to a qua
tum mechanical problem with the moduli dependent only
time. In effect, we are now analyzing the quantum mecha
cal moduli of kinks in~111!D, as discussed in detail in@11#.
Given that the flavor moduli parametrize the Grassmann
G(k,N), which is compact, the techniques for calculating t
index and thus the number of quantum ground states w
described in@1#, and the result is given by@11#

nk5x„G~k,N!…5S N

k D[
N!

k! ~N2k!!
, ~66!

where x„G(k,N)… is the Euler characteristic of the Gras
mannian. The resulting spectrum ofk-walls is consistent with
the results of@23#. Note that the result is independent of th
original SQCD Kähler metric, and depends only on the t
pology of the bosonic moduli space. This is a necessary c
sistency check as we have relied on the independence o
result under smooth deformations of the metric@9#. More-
over, the invariance of the index under small perturbation
the superpotential, for which no vacua become aligned@11#,
is now transparent. Specifically, were we to perturb the m
son mass terms slightly, thus reducing the residual symm
of the wall, the spectrum would not change as this wo
deform the metric onG(k,N) but clearly not its topology.

Let us note that in the context of kinks, the degenera
~66! has an interesting interpretation. The moduli space
1-walls is CPN21, and the corresponding degeneracy fro
Eq. ~66! is N. It is natural to interpret this in terms of th
walls forming anN-plet of SU(N), which is the isometry
group of CPN21 ~see also@38#!. The degeneracy~66! then
implies that compositek-walls fall into antisymmetric tenso
multiplets of SU(N), namely thek-th fundamental represen
tation. This implies that 1-walls, when reduced to kinks
~111!D, are ‘‘fermionic’’ in flavor, consistent with expecta
tions for solitons in similar Landau-Ginzburg systems.

B. Compactification on S1

We now decompactify one cycle of the torus. The ind
obtained above will remain valid provided vacuum sta
cannot disappear to infinity in the process of decompac
cation. In this case, we are left with the moduli dynam
06501
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described by anN51 Grassmannian sigma model in~1
11!D. Such systems are well understood, the nontrivial
frared behavior of the~111!D sigma model restores th
original SU(N) symmetry, allowing a dynamically generate
mass gap for the flavor moduli. Since the vacua are mass
we are guaranteed that on considering scales below the
the problem reduces to one of quantum mechanics as ab
Thus we can conclude that the number of discrete supers
metric vacua, and therefore the spectrum ofk-walls in SYM
theory compactified onR33S1, is still given by Eq.~66!.
This conclusion is clearly consistent with the results obtain
by direct compactification of SYM theory@23,38#, as re-
viewed in Sec. I.

In concluding this subsection, we note that the~111!D
sigma model provides another interesting point of view
the degeneracy~66!. In particular, theN-plet wall multiplet
structure seems in this case rather closely tied to restora
of the SU(N) symmetry in the infrared.

C. Decompactification and an alternative regulator

On decompactifying the second cycle of the torus,
have removed all infrared regulators and the status of
index ~66!, in as far as it correctly describes the wall mul
plicity, devolves on the infrared dynamics of theN51
Grassmannian sigma model in~211!D. This system, specifi-
cally theCPN21 model, has received less attention than t
corresponding models in~111!D. In perturbation theory
there is no evidence for infrared divergences, and this c
clusion extends to leading order in the largeN expansion
@48,49#. However, due to the fact that the flavor modes c
be combined into complex chiral multiplets, there is no o
vious symmetry@50# or anomaly constraint@32# which for-
bids a mass term. Moreover, one must also bear in mind
the UV divergences of the model are cut off physically a
scale given by the inverse width of the wall, which isO(m)
in SQCD, and this introduces an additional scale. Thus, w
out a more detailed understanding of the dynamics of
UV regularizedN51 G(k,N) sigma model, the status of th
wall multiplicity count remains unclear after decompactific
tion.

In contrast, the index itself can be regulated in an alter
tive manner via a perturbation of the theory which lifts t
additional flavor moduli.6 In practice, we require a perturba
tion which lifts the off-diagonal elements of the meson m
trix, so that the system reduces to a theory of the eigenva
M→ diag$h i% with

W5mLN
2 F(

i 51

N

h i1lS )
i 51

N

h i21D G ~67!

as in Eq.~30!. One may then construct wall solutions whic
possess no flavor moduli, and determine the multiplicity
rectly as in@23,38#, finding the result~8! once again.

There are several possible mechanisms for lifting the o

6We thank A. Losev for suggesting this approach and for rela
discussions.
5-10
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diagonal modes and all have certain side effects. One
simply perturb the superpotentialW→W1dW with nonlin-
ear termsdW which break the SU(N) flavor symmetry, but
this generically introduces new vacua, and care is neede
discarding any spurious wall solutions which decouple as
perturbation is removed. Alternatively, one may weak
gauge the flavor symmetry, under which the meson matrixM
transforms in the adjoint. The decoupling limit for the gau

modes then enforces aD-term constraint, Tr@M ,M̄ #250, en-
suring that the off-diagonal modes ofM are lifted, leading to
Eq. ~67!. This procedure does introduce an additional dec
pled set of light U~1! fields, but has the merit of retaining th
symmetry structure we expect to be important in the p
SYM regime, as is apparent on comparison with the
proach of compactifying onR33S1; see Eq.~10!.

Perturbing the original theory in this way indicates th
the index is, as it should be, stable under different choices
the regulator. However, its connection to the physical w
multiplicity still rests on the question of stability under r
moval of the regulator. As we noted above, this can be
phrased as a dynamical question about the vacuum stru
of the world volume sigma model. On this issue, we w
limit ourselves here to a few comments describing the t
possible scenarios.

The first is that a nonperturbative mechanism generat
mass for the flavor modes, which implies that the index
mains unchanged. In this regard, recall that supersymm
nonlinear sigma models are most conveniently studied
embedding them in a corresponding gauged linear sig
model @51,52#. For theCPN21 model, this gauge theory i
Abelian and at first sight there are no obvious no
perturbative effects which could generate a mass gap. H
ever, the presence of the UV cutoff complicates this issue
the UV completion of the theory may allow nonperturbati
mass generation. A classic example, although not dire
relevant here, is the Polyakov mass for the photon@32,34# in
U~1! theories where, from the low energy perspective
nonperturbative mechanism involves ‘‘singular’’ instanton
which are resolved above the cutoff scale.

With this in mind it is intriguing to note that, if we assum
for a moment that a mass gap for the flavor modes wer
arise via some mechanism, one could integrate them
within the linear sigma model, which in effect corresponds
flowing back to pure SYM theory. This process is known
induce a standard kinetic term for the gauge fields, and
~211!D will also lead to a Chern-Simons term@48,49#. In
the case of 1-walls, the resulting system would beN51
Maxwell-Chern-Simons theory at levelN ~up to higher de-
rivative corrections!, remarkably consistent with the worl
volume theory obtained by Acharya and Vafa@23#. This con-
nection can also be made, at a formal level, within the co
pactified system, where the light flavor fields have mas
scaling inversely with the volume.

The second scenario is that the flavor modes remain m
less at the quantum level, anda priori there is no obvious
inconsistency with this. More precisely, as we flow back
N51 SYM theory, these modes must disappear, but this
occur without direct mass generation. In particular, the fla
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modes may ‘‘freeze’’ in this limit. Recall for the SU~2! case,
that the Kähler class of the~211!D CP1 sigma model scales
as

MM̃}
L2

2

m
5

3L3

8p2m2
, ~68!

whereL is the N51 SYM scale defined in Eq.~1! and m
5(detm)1/N. Thus, as we begin to decouple the mat
fields, the moduli space shrinks. In the absence of any m
generation, it is plausible that in the limit thatm→`, the
manifoldM̃ shrinks to zero size, and the corresponding fl
vor modes are frozen, and consequently decouple. Howe
this conclusion requires a significant assumption about
behavior of the SQCD Ka¨hler metric in this regime. It would
be natural for the scale~68! to have corrections ofO(m/L)
which may significantly change its form whenm>L.

V. BREAKING THE FLAVOR SYMMETRY AND NfÄNÀ1

Thus far, we have purposefully chosen to work withN
flavors, to make the multiplet structure of the walls und
global symmetries quite explicit. This required us to ma
use of the invariance of the index underD-term deforma-
tions, so as to restore the maximal SU(N) symmetry of the
N-flavor theory. Recall that in Sec. II, for consistency, w
required that the mass matrix was hierarchical to ensur
weak coupling regime, which implies that the weak coupli
flavor symmetry of the underlying theory is at most SU(N
21).

While this approach was convenient for obtaining the
dex, it is also instructive to see how the explicit breaking
flavor symmetries is manifest at the level of the flav
moduli spaceM̃ , in a regime where the direct relation t
Goldstone modes is lost. For ease of illustration, we focus
the simplest case with gauge group SU~2!. In the analysis of
Sec. III, as just described, we deformed the Ka¨hler metric so
as to restore the maximal SU~2! symmetry of the theory,
despite the hierarchical mass matrix of Eq.~18!,

m5diag$m1 ,m2%, m1!m2!L2 . ~69!

At the level of the Ka¨hler potential, settingm1Þm2
breaks the symmetry from SU(2)3SU(2)3U(1)
>SO(4)3SO(2) to SO(2)3SO(2).

This reduction in symmetry can be traced through to
metric structure of the wall moduli space as follows. Rec
that in the analysis of Sec. III, the wall profile described
path between the poles of anS3—the real section of the
deformed conifold—with theS3 having the round SO~4!-
invariant metric. It is convenient to visualize theS3 via ste-
reograhic projection asR3ø$`%. The poles of theS3 and
thus the two vacua of the theory are projected to 0 and`,
and hence the wall trajectory is described by a line from
origin to infinity in R3. This line is parametrized by Eule
angles on the sphere at fixed radius, and hence this cons
tion realizes theCP1>S2 flavor moduli space as a subman
fold of R3. In Sec. III, the SO~4! symmetry of the original
Kähler metric ensures an SO~3!-invariant round metric on
5-11
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the S2. However, with unequal masses, the metric induc
on theS2 has only an SO~2! isometry, which we can arrang
to generate rotations in the horizontal plane. Metrically,
S2 moduli space is then an ellipsoid, with the ellipticity cha
acterized by the dimensionless parameter,

j[
m22m1

Am1m2

. ~70!

This metric structure for the moduli space is exhibited
Fig. 3.

In the process of decoupling the heavy flavor,m2@m1,
the ellipticity parameterj;Am2 /m1 diverges, and the ellip-
soidal metric onS2 becomes singular. As shown schema
cally in Fig. 3, the corresponding moduli are then ‘‘frozen
with two possible orientations, thus reproducing the expec
result that there are two inequivalent 1-walls in this theo
and explaining why a direct analysis of the SU~2! theory
with 1 flavor would uncover two inequivalent solutions, wi
no additional moduli. This latter result for the 1-flavor theo
has been known for some time@7#.

At this point it is worth contrasting the decoupling sc
nario with our discussion in the previous section. First, n
that the limit m2@m1 serves as a partial alternative to e
plicitly ‘‘lifting’’ the additional flavor moduli by perturbing
the theory withNf5N flavors, and thus allows a direct ca
culation of the wall multiplicity. However, this freezing o
moduli within weak coupling SQCD is distinct from wha
may happen on integrating out all the matter fields, which
cannot do here, and returning to the strong coupling reg
in pure SYM theory. We see that despite the increasing
lipticity in this case, all mass scales are small relative toL2,
and the overall Ka¨hler class of M̃ which scales as
O(L2

2/Am1m2) remains large.
This picture of the hierarchical freezing of flavor mode

as some subset of the matter fields are decoupled, allow
to make contact more generally with the picture of the w
spectrum that emerges in SQCD withNf5N21 flavors. Re-
call that in the hierarchical regime~18!, we could simply
integrate out theN-th flavor, leading to the ADS superpoten
tial ~19! which exhibits an SU(N21) symmetry if we set the

FIG. 3. A schematic representation of the flavor moduli sp
realized topologically asS2,R3, showing the dependence of th
induced metric on the hierarchical structure of the masses:~a! equal
masses implying SO~3! isometry; ~b! jÞ0 implying SO~2! isom-
etry; and~c! the decoupling limit wherej@1. The overall scale has
been chosen for convenience. The bold arrows indicate an exa
of the dominant flavor mode profile in the wall.
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remaining mass matrix proportional to the identity. In th
system, the wall multiplet structure is less explicit, butnk
must necessarily be the same. As explained above, for S~2!
the agreement follows straightforwardly from the fact th
although the additional flavor modes are frozen, this can h
pen in two possible ways, reproducing the two-wall spectr
obtained some time ago@7#.

The case of SU~3! gauge group broken via the Higg
mechanism through the introduction of two flavors can
understood in a similar manner. This system been treate
some detail in the literature. There is now a 232 meson
matrix M 8, and the flavor symmetry of the canonical Ka¨hler
potential is SU(2)3SU(2) provided the mass matrixm8 is
chosen proportional to the identity. There are three vacu
states at̂ M 8&}v3

k12 (k50,1,2), and this theory again pos
sesses only minimal 1-wall solutions.

In searching for classical BPS configurations, it is natu
to first introduce a diagonalansatz, namely (M 8) f

g5Md f
g ,

(g, f 51,2). Such field configurations will not break the fl
vor SU~2!, and are flavor-symmetric domain walls. Cons
quently, there are no massless excitations on the wall w
volume, other than the translational modes. Numerical an
sis in @15–17,19# demonstrated the existence of a uniq
flavor-symmetric solution. However, this is not the end of t
story as the symmetric ansatz should be relaxed to find
the possible 1-wall solutions. If one demands simply th
(M 8) f

g is diagonal, with (M 8)1
1Þ(M 8)2

2, then additional so-
lutions will arise in pairs by permutation of the fields. Pe
turbative analysis indicates that there are at most four tra
tories emanating from each vacuum, and an analysis a
the lines of@38# demonstrates that only two of these interp
late to the second vacuum providing true wall configuratio
This conclusion is backed up by explicit numerical solutio
found7 in @17# which were confirmed in@19#. More generally,
if we retain the dependence on the full 232 meson matrix,
the flavor asymmetric ansatz will break the SU~2! symmetry
down to U~1!, inducing flavor moduli parametrizing aCP1

sigma model on the world volume. When regulated in t
infrared, the Witten index is equal to two, which is consiste
with the findings above. Thus, in total there are three
equivalent solutions in agreement with our earlier results
accord with our discussion above regarding freezing of
moduli associated with decoupled fields, we see here tha
full moduli spaceCP2 of the 3-flavor theory is reduced t
CP1 in the hierarchical mass regime due to the reduction
flavor symmetry. Accounting correctly for the frozen mod
ensures that the result for the index in each case is, of cou
the same.

This counting of minimal walls, using an unconstrain
parametrization of the moduli in theN21 flavor theory, is
easily extended. For gauge group SU(N), there is an (N
21)3(N21) meson matrix and an explicit SU(N21) fla-
vor symmetry. Once again there is a unique flavor symme
wall, while flavor asymmetric walls induce Goldstone mod

7These authors work instead with a Taylor-Venezian
Yankielowicz superpotential, but one can compare the results
small m8.
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parametrizing aCPN22 sigma model via the broken flavo
symmetry. The corresponding Witten index isN21, leading
again to 11(N21)5N possible 1-wall configurations. Thu
the N-plet observed in Sec. IV decomposes in this case
N→11(N21).

VI. DISCUSSION

Deforming SYM theory to SQCD in the Higgs phase h
allowed us to tune the symmetry structure so that classic
there was a moduli space of BPS domain walls, enablin
robust calculation of the wall multiplicity given a suitab
infrared regulator. Note that this genuine weak coupling
proach is in contrast to others for which relevant fields fail
remain weakly coupled throughout the wall trajectory. T
results we obtained are consistent with those deduced
Acharya and Vafa@23# using a string dual construction, an
the world volume description has intriguing parallels w
this work on which we will elaborate further below.

In particular, we will finish with a few comments on th
dynamics of the translational moduli, an issue that we h
suppressed thus far. Specifically, while the center of m
modulus certainly decouples, one can also study the for
tion of composite 2-walls from primary 1-walls with adja
cent phase boundary conditions. We have emphasized th
this system the positions of the constituents are not mo
~in contrast to certainN52 domain wall systems@53#!, but
one can still set up an unstable configuration@54# where the
two constituents are well separated and observe the inte
tions which will be sensitive to the SQCD spectrum. Mor
over, one can arbitrarily suppress the binding energy in
large N limit. The binding energy per unit volume follow
from the BPS formula,

T222T152
3pL3

4N
1O~N23!, ~71!

and thus the walls decouple at largeN. If we set up such an
unstable configuration and allow the walls to evolve to
bound state, there is a moduli space transition,
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2~R3CPN21!→R3G~2,N!, ~72!

which leads to a reduction in bosonic moduli. A remarkab
feature of the Grassmannian sigma model is that this red
tion in moduli has a consistent interpretation in terms of
enhanced gauge symmetry for the composite. More p
cisely, if we formulate the corresponding gauged line
sigma models, the above transition corresponds directly
the gauge symmetry enhancement U(1)3U(1)→U(2), re-
calling that the nonlinear model is realized in the limit
which the gauge kinetic term decouples. In any regi
where these gauge modes become dynamical, say at 1-
this picture becomes quite consistent with the construction
@23#, and indeed more generally with any realization
k-walls in terms ofD-branes@55#.

The leading behavior of the potential on the asympto
moduli space of two 1-walls is calculable within the SQC
regime, and aspects of the binding process in Eq.~72! can be
studied within the context of the correspondingN51 gauged
linear sigma model@51,52#, but we will defer discussion@56#
of these features, and other details of the world volume
namics. It is important to note that, while this analysis
tractable for smallm in the SQCD regime, the lack of supe
symmetric constraints on the SQCD Ka¨hler metric makes
extrapolation to SYM theory at any more than a speculat
level fraught with difficulty. This is why the world volume
index has a privileged position as essentially the only p
tected quantity that we are guaranteed can survive this t
sition.

ACKNOWLEDGMENTS

We would like to thank B. Acharya, J. Gauntlett, F. Gol
haber, A. Gorsky, A. Losev, C. Nun˜ez, A. Smilga, M.
Strassler, D. Tong, C. Vafa, T. ter Veldhuis, and A. Yung f
many useful discussions and/or comments on the manusc
The work of M.S. and A.V. was supported in part by DO
grant DE-FG02-94ER408.
l.

cz,
@1# E. Witten, Nucl. Phys.B202, 253 ~1982!.
@2# G. Veneziano and S. Yankielowicz, Phys. Lett.113B, 231

~1982!.
@3# I. Affleck, M. Dine, and N. Seiberg, Phys. Rev. Lett.51, 1026

~1983!; Nucl. Phys.B241, 493 ~1984!.
@4# V.A. Novikov, M.A. Shifman, A.I. Vainshtein, and V.I. Za-

kharov, Nucl. Phys.B260, 157 ~1985!; Yad. Fiz. 42, 1499
~1985!.

@5# M.A. Shifman and A.I. Vainshtein, Nucl. Phys.B296, 445
~1988!.

@6# G. Dvali and M. Shifman, Phys. Lett. B396, 64 ~1997!; 407,
452E ~1997!.

@7# A. Kovner, M. Shifman, and A. Smilga, Phys. Rev. D56, 7978
~1997!.

@8# B. Chibisov and M. Shifman, Phys. Rev. D56, 7990 ~1997!;
58, 109901~E! ~1997!.
@9# S. Cecotti, P. Fendley, K.A. Intriligator, and C. Vafa, Nuc
Phys.B386, 405 ~1992!.

@10# P. Fendley and K.A. Intriligator, Nucl. Phys.B372, 533~1992!.
@11# S. Cecotti and C. Vafa, Commun. Math. Phys.158, 569~1993!.
@12# A. Smilga and A. Veselov, Phys. Rev. Lett.79, 4529 ~1997!;

Nucl. Phys.B515, 163 ~1998!; Phys. Lett. B428, 303 ~1998!;
I.I. Kogan, A. Kovner, and M.A. Shifman, Phys. Rev. D57,
5195 ~1998!; D. Binosi and T. ter Veldhuis,ibid. 63, 085016
~2001!.

@13# V.S. Kaplunovsky, J. Sonnenschein, and S. Yankielowi
Nucl. Phys.B552, 209 ~1999!; Y. Artstein, V.S. Kaplunovsky,
and J. Sonnenschein, J. High Energy Phys.02, 040 ~2001!.

@14# G.R. Dvali and Z. Kakushadze, Nucl. Phys.B537, 297~1999!;
G.R. Dvali, G. Gabadadze, and Z. Kakushadze,ibid. B562,
158 ~1999!.
5-13



o,

o,

d

.

m
i-

-

h-

gy

,

no

0

-

ett.

,

ics

ADAM RITZ, MIKHAIL SHIFMAN, AND ARKADY VAINSHTEIN PHYSICAL REVIEW D 66, 065015 ~2002!
@15# A.V. Smilga, Phys. Rev. D58, 065005~1998!.
@16# B. de Carlos and J.M. Moreno, Phys. Rev. Lett.83, 2120

~1999!.
@17# B. de Carlos, M.B. Hindmarsh, N. McNair, and J.M. Moren

Nucl. Phys. B~Proc. Suppl.! 101, 330 ~2001!.
@18# B. de Carlos, M.B. Hindmarsh, N. McNair, and J.M. Moren

J. High Energy Phys.08, 056 ~2001!.
@19# A.V. Smilga, Phys. Rev. D64, 125008~2001!.
@20# C. Vafa, J. Math. Phys.42, 2798~2001!.
@21# B.S. Acharya, ‘‘On realising N51 super Yang-Mills in M

theory,’’ hep-th/0011089; ‘‘Confining strings from G~2!-
holonomy spacetimes,’’ hep-th/0101206.

@22# M. Atiyah, J.M. Maldacena, and C. Vafa, J. Math. Phys.42,
3209 ~2001!.

@23# B. Acharya and C. Vafa, ‘‘On domain walls of N5 1 super-
symmetric Yang-Mills in four dimensions,’’ hep-th/0103011.

@24# M. Atiyah and E. Witten, ‘‘M-theory dynamics on a manifol
of G ~2! holonomy,’’ hep-th/0107177.

@25# F. Cachazo, K.A. Intriligator, and C. Vafa, Nucl. Phys.B603, 3
~2001!; F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz, and C
Vafa, ibid. B628, 3 ~2002!.

@26# K. Dasgupta, K. Oh, and R. Tatar, Nucl. Phys.B610, 331
~2001!; ‘‘Open/closed string dualities and Seiberg duality fro
geometric transitions in M-theory,’’ hep-th/0106040; A. G
veon, A. Kehagias, and H. Partouche, J. High Energy Phys.12,
021 ~2001!.

@27# S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett.48, 975
~1982!; Ann. Phys. ~N.Y.! 140, 372 ~1982!; 185, 406~E!
~1988!; 281, 409 ~2000!; Y.I. Kogan and A.Y. Morozov, Zh.
Éksp. Teor. Fiz.88, 3 ~1985! @Sov. Phys. JETP61, 1 ~1985!#.

@28# For a review, see G.V. Dunne, inTopological Aspects of Low
Dimensional Systems, Proceedings of the Les Houches Sum
mer School, Session LXIX, edited by A. Comtetet al., NATO
Advanced Study Institute~Springer-Verlag, Berlin, 2000!, pp.
177-263, hep-th/9902115.

@29# E. Witten, inQuantum Fields and Strings: A Course for Mat
ematicians, edited by P. Deligneet al. ~AMS/IAS, Providence,
RI, 1999!, Vol. 2 ~Sec. 12.3!.

@30# E. Witten, inThe Many Faces of the Superworld, edited by M.
Shifman ~World Scientific, Singapore, 2000!, p. 156,
hep-th/9903005.

@31# O. Bergman, A. Hanany, A. Karch, and B. Kol, J. High Ener
Phys.10, 036 ~1999!; K. Ohta, ibid. 10, 006 ~1999!.
06501
@32# I. Affleck, J.A. Harvey, and E. Witten, Nucl. Phys.B206, 413
~1982!.

@33# N. Seiberg and E. Witten, hep-th/9607163.
@34# A.M. Polyakov, Nucl. Phys.B120, 429 ~1977!.
@35# S. Katz and C. Vafa, Nucl. Phys.B497, 196 ~1997!.
@36# N.M. Davies, T.J. Hollowood, V.V. Khoze, and M.P. Mattis

Nucl. Phys.B559, 123 ~1999!; N.M. Davies, T.J. Hollowood,
and V.V. Khoze, ‘‘Monopoles, affine algebras and the glui
condensate,’’ hep-th/0006011.

@37# A. Ritz, in Proceedings of Continuous Advances in QCD 200,
edited by M. Voloshin~World Scientific, Singapore, 2001!, p.
51.

@38# K. Hori, A. Iqbal, and C. Vafa, ‘‘D-branes and mirror symme
try,’’ hep-th/0005247.

@39# N. Seiberg, Phys. Rev. D49, 6857~1994!.
@40# K. Konishi, Phys. Lett.135B, 439 ~1984!.
@41# M.A. Shifman and A.I. Vainshtein, inITEP Lectures in Par-

ticle Physics and Field Theory,edited by M. Shifman~World
Scientific, Singapore, 1999!, Vol. 2, p. 485, hep-th/9902018.

@42# P. Fendley, S.D. Mathur, C. Vafa, and N.P. Warner, Phys. L
B 243, 257 ~1990!.

@43# E.R. Abraham and P.K. Townsend, Nucl. Phys.B351, 313
~1991!.

@44# P. Candelas and X.C. de la Ossa, Nucl. Phys.B342, 246
~1990!.

@45# R. Minasian and D. Tsimpis, Nucl. Phys.B572, 499~2000!; K.
Ohta and T. Yokono, J. High Energy Phys.02, 023 ~2000!.

@46# M.B. Stenzel, Manuscr. Math.80, 151 ~1993!.
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