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We study the multiplicity of BPS domain walls iV=1 super Yang-Mills theory, by passing to a weakly
coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two
specified vacuum states is then determined via the Witten index of the induced world volume theory, which is
invariant under the deformation to the Higgs phase. The world volume theory is a sigma model with a
Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall
solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and
Vafa in which the walls were realized as wrapg@d-branes in type IlA string theory.
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[. INTRODUCTION nishing for states in the sectdkn), corresponding to do-
main wall configurations interpolating between thig and
It is well known that N=1super Yang-Mills(SYM)  (k+n)th vacua:
theory with a gauge grou@ exhibitsh distinct vacua where
h, the dual Coxeter number of the group, is equal to the G
adjoint Casimir invarian 5. This vacuum structure results Zin=(kn| Z[knm)= §(<)‘2>k+”_<)‘2>”)' (3)
from the spontaneous breakdov.%aTGaZZ of the discrete
Za1,, remnant of the anomalous U(d yymmetry. As initially ~ The absolute value of, provides a lower bound for the

suggested by Wittefd], the relevant order parameter is the Mass per unit arede. the wall tensiohof |kn)-sector states.
gluino condensatéx2)=(0|TrA2|0), first demonstrated to This bound is saturated by BPS domain walls whose tension

be nonzero within the framework of the Veneziano- | [Making use of Eqstl), (3)]is given by

Yankielowicz effective Lagrangial2]. Subsequently, the ex-

act calculation of this condensdt®-5|] was performed via a Tv=| 2| = iTéA%inW_k' (4)
controlled deformation to weak coupling. The result takes Ag? Te
the form

which depends only ok. We will refer to these BPS walls as
k-walls. They preserve two of the four supercharges, and thus
form short 1/2-BPS multiplets containing one bosonic and
one fermionic state.

(1) In this paper, we address the problem of counting the

number of such BPS supermultiplets for domain walls inter-

where 7=4mi/g?+ 6/27 is the complex gauge coupling, polating between two given vacuaif=1 SYM theory, and
Mpy is the Pauli-Villars regulator scale, and the subsckipt we limit ourselves henceforth to gauge group Slfvhere
=0, ... Tg—1 marks thek-th vacuum. The second equality Tsyny=N. The number of BPS multiplets, is counted by
defines the renormalization group invariant dynamical scaléhe Cecotti-Fendley-Intriligator-VafeCFIV) index[9-11],

A. - o
The presence of discrete vacuum states implies the exis- n=Tr[F(=1)7], 5

tence of topologically stable domain walls interpolating be-whereF is the fermion number, and the tra¢guitably de-
tween them. Moreover, one expects Bogomolnyi-Prasadfined) runs over all states in tH&n) sector. The index counts
Sommerfield BPS saturated domain walls to exist since the ya|is as solitonic objects in-81D, and thus there is an im-
N=1supersymmetry algebra contains a central chage pjicit infrared regulator required to make the total wall mass
whose operator form ig6—8] finite.
An alternative way to view the CFIV index is that it
Tg a _, counts the number of supersymmetric vacua in@&e1)D
Z= gJ dz—_ A%, (2)  theory induced on the world volume of the wall. We can then
equivalently rewritev, as given by the Witten indeil] of
the world volume theory:

27Tik)

_ 3
3TcA ex;{ Ta

1672 2mi(7+k
(=g e 2T
g e

where z is the spatial coordinate perpendicular to the wall
plane. The expectation value of the central charge is nonva- ve=Tra[(—1)F]. (6)
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It is this alternative point of view which will be particularly modes of the gauge field. The number of vacuum sfates,
useful for us. given by the degeneracy of the lowest Landau 1¢2&|,28,

The status oy, as an index refers to its invariance underis N provided the theory has an infrared regulator on the
smoothD-term deformations, as shown i8], and it is this  world volume. Consequently, one concludes that the degen-
feature which makes it a valuable quantity in theories witheracy of 1-wall multiplets isN [23].
four supercharges, wher®-terms are generally uncon- This discussion was extendg2B] to k-walls by wrapping
strained. The index does, however, depend onRherms  k D4-branes around th&?. The simplest twisted theory aris-
but these are quantities over whigh= 1supersymmetry ex- ing at low energies is theA/=1 Chern-Simons Yang-Mills
ercises some control. (CSYM) theory in (2+1)D with gauge group W). The

For a strongly coupled system liké=1 SYM theory, the massless sector has now expanded to include a real scalar
invariance of the index under various deformations is cruciatransforming in the adjoint otl (k), whose eigenvalues we
for the counting problem to be tractable. It is clear that tonaturally associate with the positions of the constituent
make progress in evaluating E@), we should first deform  1-walls. All but one of these fields should gain a mass if the
the theory to a weak coupling regime where theéerms  configuration is to form a bound state, but the required
upon which the index depends—in this case the holomorphimechanism was not apparent in this construction. Nonethe-
superpotential—are calculable. Our strategy will then be tdess, it was argued that provided this lifting took place, vacua
determinew, in this regime, and then rely on holomorphy of would arise as in the corresponding=2 CSYM theory
the superpotential, and the independence vpf on the [30,31 at the origin of the moduli space, with the index
D-terms to return to pure SYM theory and deduce the corretaking the value
sponding wall spectrum. To this end, there are many possible
deformations one could consider. Before outlining the par-
ticular route we will follow, it is appropriate to consider Ny N
some other recent approaches to this problem, which in part Y kI(N—k)!"’ ®
motivated our work.

One particular deformation, in which there has been con-
siderable recent intereg20—24], involves a geometric real- which reduces tdN for k=1 as above. Once again an infra-
ization of /= 1gauge theories as the low energy decouplinged regulator on the world volume was a necessary condi-
limit of M theory on a 7-manifold ofG, holonomy. Making  tion.
use of a smooth geometric transition in the moduli of @e One may view the picture arising from this construction
manifold[22,24] (see alsd25,26]) leads to a tractable large not just as a quantitative prediction for the spectrum of BPS
volume regime which exhibits many of the features of thewalls (8), but also as an interesting conjecture about the
confining phase of SYM theo20,21]. For SUN), the dual  structure of the world volume theory, and it is interesting to
7-manifold is topologicallyR*x S%/Zy, and Acharya and contrast it with expectations from field theory. One unre-
Vafa[23] proposed that in this context BPS walls correspondsolved issue is the existence of additional moduli associated
to M5-branes wrapping the Lens spa8¥7y. Reducing to  with the constituent 1-wall positions in lawall system, as
type IIA string theory via the fiber of the Hopf map leads to noted above. Given the suggestions that the effective wall
D4-branes wrapping th&’ base, pierced byN units of  cutoff may scale wittN in SYM theory, one possible means
Ramond-Ramond flux. When th& is large, the low energy of reconciling these descriptions is to take the lakgkmit,
on the unwrapped2-+1)-dimensional part of thé@4-brane  where the binding energies are suppressed. This is indeed the
preserves two supercharges, with a field content consisting &xpected regime where the geometric transition is induced
a photon, a photino, a massless neutral scalar and anothé0]. Having this regime in mind, we will find a world vol-
spinor, where the gauge half-multiplet is given a topologicalume description within supersymmetric QGBQCD which
mass by the presence of a Chern-Simons term of lélvel matches surprisingly well with this construction.

[27,28. A second tractable deformation ¢gf=1 SYM theory,

In calculating the index, in this system one can identify which will also provide a useful reference point, involves
(and factor outthe massless fields with the expected transcompactification onR3x St [32,33. In this process, the
lational modes of the wall. The remaining massive gaugeSU(N) gauge symmetry can be broken to its maximal Abe-
modes can be dualized to massive scalars which decoupléan subgroup by a Wilson line¢?=[qdx'Af, a

with the caveat that the Chern-Simons term induces a rem=1, ... N—1, associated with the Cartan components of
nant set of quantum mechanical zero modes described bythe gauge fieldh?, along the compact direction. If the radius
Landau system, of the St is much smaller than\ ~*, and ¢~ 1, then we
arrive at a weakly coupled effective U(N)* gauge theory
S :f dtl =2 le--A-A- @) in (2+1)D. Furthermore, on this Coulomb branch the pho-
- 22 ' 8 VUYL tons can be dualized to periodic scalar® [34], and the

Here Aij=A(t) (i=1,2) are the spatially homogeneous ————
2As an aside, this domain wall system provides an interesting

viewpoint on the subtle vacuum structure of Maxwell-Chern-
For additional related work on domain walls §42—19. Simons theony|27,29.
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system is then described as AR=2 Kahler sigma model ber of meson moduli entering E¢L1) increases a&)(N?),
with target spac@?N~1)/S,_; parametrized by the complex and we will find that the BPS wall solutions exhibit a moduli
fields space coordinatized by Goldstone modes which arise from
broken flavor symmetries. It will be convenient to focus on
Vé=¢?+ 10 (9  the caseN;=N, where the full quantum flavor symmetry is
) ) o ) manifest, and the corresponding description of the Higgs
This moduli space is lifted by a nonperturbative superpotenpphase is discussed in more detail in the next section. We find
tial generated by 3D instantoi8PS monopole configura-  hat wall solutions break the flavor symmetries in such a way
tions) [32,33. Its general form for gauge group 8W) has  hat the world volume theory, after factoring out the transla-
been determined in various wa}?2,33,35—37and has the tional mode, is anV=1 Grassmannian sigma model (@

structure of a complexified affine-Toda potential +1)D. The vacuum states of this theory therefore count the

N_1 number of BPS wall supermultiplets, E@®).
V&, _2mir S VA We make significant use of the fact that the index is inde-
W azl € e e (10 pendent of variations in the Kéer potential. This and holo-

morphy of the superpotential are sufficient to ensure that the
This superpotential therefore leads as expected thirally  index is preserved under the flow back to pure SYM theory.
asymmetric vacua, and the corresponding condensates méye will explicitly show in this way thaw, is given precisely
be continued back t&3x R? as the complex structure mani- by Eq.(8) provideda suitable infrared regulator is in place in
fest in Eq.(10) was shown to be independent of the radius offull accord with [23], e.g. compactifying one spatial world
the circle[33]. In this system, the wall configurations al- volume dimension. However, when the external infrared
lowed by Eq.(10) may be counted individually as there are regulator is removed, the status of the wall multiplicity count
no additional moduli. Each wall forms a single multiplet, andis less clear.

in the|kn) sector one finds the same overall multiplicity The layout of the paper is as follows. In Sec. Il we discuss
[23,3§ as in Eq.(8), which is consistent given that we again the structure of the Higgs phase in SQCD winNgm= N. With
have an explicit infrared regulator. this background in hand, we turn to the calculation of the

With these approaches in mind, we will follow an alter- BPS wall moduli space in Sec. Ill, while the index calcula-
nate strategy, deforming/=1 SYM theory to weak cou- tion, and subtleties related to the need for an infrared regu-
pling. To this end we replace SYM theory by SQCD with lator, are discussed in Sec. IV. Some aspects of the Higgs
N;=N-1 massive fundamental flavors, a route also fol-phase system with fewer flavors are discussed in Sec. V, and
lowed for the exact calculation of the gluino condengéie = we conclude in Sec. VI with some additional comments on
When the tree-level mass terms are large compared to thbe world volume dynamics.
dynamical scale, we return to pure SYM theory in the infra-
red. However, taking the masses as small perturbations, we
pass to a Higgs phase where the gauge fields are heavy and Il. FROM SYM THEORY TO SQCD
the theory is well-defined in the infraref®,39]. The low A convenient tractable deformation 6f=1 SYM theory
energy dynamips of this system is in terms of meson quasiy gptained by adding\;=N chiral superfieldsQ; and 69
moduli M, and in the case d{=N—1 flavors one has the (¢ y_1  N.), transforming respectively in the funda-
standard 1-instanton induced Affleck-Dine-SeibéADS)  mental and anti-fundamental representations of the gauge

superpotentia[3] in addition to the mass terms, group(the gauge indices are suppressddhis matter content
(Ay_p)?N*1 is sufficient to fully break the gauge symmetry of the theory
ANCY (11y  through the Higgs mechanism in any vacuum in which the
detM matter fields have a nonzero vacuum expectation value. One

) . .. may then integrate out the gauge fields obtaining an effective
Note that with a diagonal ansatz for the meson moduli, th'sdescription of the meson moduli matris

superpotential formally coincides with E(LO), up to issues
related to the compactification of the target space. Indeed, —
the structure of this superpotential already allows us to infer M?=Q;QY, (12)
that the wall degeneracy will be nontrivial. As recalled in
more detail below, BPS domain walls describe straight linevhich involves a quantum constraint, first discussed by
trajectories in the)V plane. Thus, foN=2 with a single  Seiberg[39]. On the non-baryonic Higgs branch, which we
chiral meson field, we see from E@.1) that the wall trajec- can restrict our attention to here, this constraint takes the
tories will be given by the roots of a quadratic equation. Thisform
suggests a 2-fold wall degeneracy, consistent with (BY.
which was indeed observed in earlier investigations of this detM = (A )2 (13)
system[7]. NT

While the similarity with Eq.(10) is apparent, the Higgs ) ] . ] ) )
phase approach can now be seen as a Way Of b”dg'ng bomh|ch deflnes a man|f0|d Of Complex d|menS|M_l N
the above regimes, and thus testing some aspects of tifi&". Here Ay is the dynamical scale of SQCD witN;
M-theoretic construction. For gauge group SU( the num-  =N.

W=Tr(mM)+
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If we introduce a tree-level mass term the N-flavor perspective is that we can restore the maximal
SU(N) flavor symmetry of the superpotential, despite the
presence of the hierarchical mass maf(i8), by a holomor-

. o hic field rescaling. In practice it is convenient to introduce
wherem{ is the mass matrix in flavor space, then the effech ¢ . 9. pg
. . : the dimensionless fields?,
tive superpotential can be written as

Wiee= TH(MM), (14

W=Tr(mM)+\[detM — (A )], (15) X=mM(uAy) 2 (20)

where\ is a Lagrange multiplier. There aMechirally asym- |4 terms of X the superpotentiall5) is manifestly SUN)
metric vacua of the theory, which lie at symmetric,

Mye=m 1uA0l, k=0,...N-1, 16
(M) HANON (19 W= uAZ[TrX+\(deX — 1)]. (21)
wherewk,z exp(2mik/N) is anN-th root of unity and we have
defined Of course, this is at the expense of diminishing the symmetry
of the Kanler potential, which in terms oK becomesk
T Xm™tm~1X]Y2,

For the weak coupling Higgs regime to set in we require that, 1N€ crucial point, as emphasized above, is that the CFIV
for some of the meson field$M>>A2 . From Eq.(16) we index vy does not depend on nonsingular deformations of the
see that this is only possible wher,;l the mass matriss Kahler potential[9]. Thus it is convenient to choose a field
hierarchical. For example, we can choose the mass matrix iHascaIing that maximizes the symmetry of the superpotential,
block diagonal form with, the mass of theth flavor m\ as we can tﬂen deform the metric back to a more symmetric
much larger than aII,the others N form Ko Tr(XX) Y2 if so desired, for the purpose of analyz-
ing the BPS equations. Formally, this procedure is equivalent

w=(detm)N. (17)

Ao ... 0 to taking a symmetric mass matrix in Ed.5). However, we
N emphasize that our dynamical model is that of B and
0 the deformation described above is appropriate only for cal-
m= m' ’ culating an invariant quantity like,, .
0
Ill. MODULI SPACE OF BPS DOMAIN WALLS
mys>(m')¢, f.g=1,... N—1. (18

Having deformedAN=1 SYM theory to SQCD in the

We can then integrate out the heaviest flavor, which resolve'é|Iggs phase, we can again verify that the vacuum structure

o . , . and supersymmetry algebra still imply the existence of 1/2-
the constraint in Eq(15) with MN=A§N/detM (the fields BPS domain walls with tension determined by the central
MY and M vanish, leading to the ADS superpotentigd]

; _ . charge. However, the expression for the central charge op-
for the theory withNy=N—1 flavors, as introduced earlier erator jtself is modified8]. Ignoring total superderivatives,

in Eq. (1), and making use of the Konishi relatid#0], this operator

(Ay_q)2N*1 can be written in the fornp6,7,41]

W=Tr(m'M") + ——
detM’ 9 o
Z= f dZE{Z W}(9=01
(AN—l)zNH:mN(AN)ZN, (19

wherem’ andM’ refer to the reduced theory. If all remain-
ing entries in the mass matrim’ are much less than_; ,\ TG_Z T(Ry)
then theN vacua of the theory lie at weak coupling and one W=Wyee —————5 1" W2, (22)
can reliably calculate the index, by counting solutions of 16w

the classical BPS equations.

Thus, we conclude that to ensure the validity of weakwherez is again the transverse coordinate to the wall. The
coupling analysis the mass matrix should be of the hierarchifirst term is due to the tree level superpotential, while the
cal form (18) which diminishes the flavor symmetry. Recall second represents the anomalous contribution, given in pure
that the classical Kaer potential £ of the underlying SYM theory by Eq.(2). For N;=N flavors, which is our
N-flavor theory is UN) X U(N) symmetric, although only main focus here, the anomalous term vanishes sTiggy,
SU(N) X SU(N) X U(1) is realized canonically in terms of =N, andT(R;)=1.
the meson moduli, wherkE=Tr(MM)¥2, This symmetry is In the Higgs regime at weak coupling this expression re-
broken by the superpotentiél5) to at most SUK), when  duces in thekn) sector to the simple form
all masses are equal. The mass matt® breaks this further
to SUN—1). Nonetheless, the reason we have emphasized Zin=2[Wiin=Whl, (23

065015-4



COUNTING DOMAIN WALLS IN A/'=1 SUPER YANG-. .. PHYSICAL REVIEW D 66, 065015 (2002

whereW is now the effective superpotentiéll) depending vacua, crossing curves of marginal stability via changes in
on the moduliX while W is the value of this superpotential the mass parameters for example, can also be understood as

in the k" vacuum, the intersection numbers change in such a process according
" ) K to Picard-Lefschetz monodromigsl].
Xk=on- 1, W=NuAjoy, (24) This point of view will prove useful in analyzing the BPS

_ _ ) _ . equations below. However, one must bear in mind that this
wherel is the NX N unit matrix. qu reference, the explicit approach refers strictly t€l+1)D, and thus to a compacti-
expression for the central charge is given by fication of SQCD on a torud?. The stability of the index

Zen=|Z o€ under decompactification must also be addressed for any di-
kn™1=kn rect application of the results {8+1)D. Taking these ques-
tions in turn, for the remainder of this section we analyze the
' (25 space of wall solutions in SQCD, which we will demonstrate
includes continuous flavor moduli, and then move to a dis-
which leads to Eq(4) in pure SYM theory, via the decou- cussion ofyy itself in the following section.
pling relation 16r2uAZ—3NAS asu—o.

BPS walls in this system satisfy the first order differential _
equationg11,42,43, A. Broken symmetries and Goldstone modes

7k
=4iN,uA§sinWexy{

im(2n+k)
N

R As we will now demonstrate, the BPS wall solutions in
Jand X =€V W, (26)  this theory possess a nontrivial bosonic moduli sp&¢eln
fact, on the general grounds thatkawall spontaneously
Mffeaks translational invariance, we have the isometric de-
composition,

where we have chosen a convenient basis to expand the
son matrices, in which the Kéer metric is given bygz,

= d,0pKC, and the derivativeg, andd, are taken oveK and
X. Finally, y= v, is the phase of the central chargg , as M=RXM, (29)
defined in Eq.(25). An important consequence of the BPS
equations is that
where the factoR reflects the center of mass positiap,
while M denotes the reduced moduli space. The consistency
and thus the domain wall describes a straight line intie  of this decomposition with supersymmetry can be made ex-
plane connecting the two vac(ial,42,43. plicit if we lift M to the corresponding supermanifold which
In calculating the number of solutions to these equations@lso encodes the fermionic moduli. In particular, the two
with specified boundary conditions in th&n) sector, we fermionic moduli associated with, lift R to the supermani-
will need a more precise characterization of the dependendeld R, quantization of these moduli naturally explains the
of the CFIV index on variations of the superpotential itself. two state multiplet structure, described algebraically in Sec.
The structure of the BPS mass spectrum implies that changésfrom the semiclassical point of view. A final point to em-
can occur only if a marginal stability condition is satisfied— phasize is that, since only two supercharges are realized on
where three vacua align in the plane[42,43. This allows the moduli, M is a real manifold, not endowed with any
considerable freedortbeyond that of deforming the kéer ~ Kahler structure.
metric) in perturbing the system in order to verify the exis- The decompositior{29) implies that eactk-wall super-
tence or otherwise of BPS wall solutions. multiplet corresponds to a unique vacuum.bt Therefore,
We will make use of this freedom as follows, following provided we decouple moduli associated with the transla-
the construction of Cecotti and Vafdl]. First, since we tional zero mode, the problem of calculatingis reduced to
consider massive vacua, one can expand the superpotentialtigat of finding the Witten index of the world volume theory
quadratic order about each vacuum, and the set of all lineabn the wall. Consequently, we now turn to the problem of
ized solutions to Eq(26) forms a cycleA,; in field-space  geqycing the structure af1. Given that the low ener
diffeomorphic to a sphere. It then followisll] that the e ; ; ; gy
, X : , = description of SQCD outlined in Sec. Il is of Landau-
weighted soliton number, namely the indey, is given by Ginzpyrg form, it is natural to expect that this space is de-

the intersection number of the cycles associated with the twWgsmined purely by the flavor symmetries broken by the wall.
vacua[11] In the remainder of this subsection, we will present the basic

e=AneA k- (28)  symmetry argument which determinéd. In the following
subsection, we show how this arises from a more direct

This formulation of the index is manifestly topological, and analysis of the BPS equations.
provides a clear picture of how robust it is under deforma- As reviewed in the previous section, the superpotential
tions. In particular, it follows from Eq28) thatv, counts all  (21) exhibits a SUN) global symmetry which is preserved
trajectories in the puncturedy plane (with the vacua ex- by the vacua and is also supported by the deformekleta
cised which are homotopic to the straight line connectingmetric. This superpotential depends only on the eigenvalues
the vacua describing the exact wall solution. Moreover, thg 7;}, i=1, ... N of the dimensionless meson matdx In
change in the soliton spectrum as paths wrap around othéerms of these eigenvalues it takes the form

a,W=e"a,X||?, (27)
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To verify this, denote the trajectories with the windings
andw, by 7, and n,, respectively. IfN(w,) =1, the super-
potential (30) takes the form

W=uA3{m+(N=D o+ N[ 77y ' =11} (39)

The constraint imposed by the Lagrange multiplier ensures
that ;= 7, V""" The vacuum values of the fields then
requirek=nl with ne Z, and under the assumption that the
fields do not undergo multiple windings in the wall, as ar-
gued above, then we hake=1.

Consequently, since we have two sets of field configura-
tions in the wall with respectivel)k and N—k coinciding
eigenvalues, we find tha&twall trajectories preserve the fol-
lowing (continuou$ subgroup of the SW) flavor symme-

try:

FIG. 1. Possible winding trajectorieg; and 7, for the eigen-
values.

N N
w=uAdl S a1 m—l”. (30) SU(K) X SUN—K) X U(1). (35)

) . . Note that the rank of symmetry group is preserved, following
Now consider &-wall trajectory, choosing thik0) sector  om the fact that the constraints dm;} do not break the
for S|mpI|C|ty. The N elgenyalues are restricted to be the c4rtan torus of SW). Thus far, we have not kept track of
same o each vacuum, iey=1 at z——= and 7  the global structure of the symmetry groups. However, to
=e"m" N atz—+ foralli=1, ... N. The modulus of the  yetermine the precise coset associated with the broken sym-
field is unity in each vacuum and thus the only “pseudomeiry generators, and thus the Goldstone modes induced on
topological” means of characterizing the eigenvalue trajecyhe \wall world volume, it is sufficient to realize that, since
tory in the wall is via its winding number, our description involves only adjoint-valued meson fields,
the center of each S} symmetry group, fop=N,k or
N—k, acts trivially. Thus, the nonabelian symmetry groups
are strictly of the form SU§)/7Z, .
Therefore, taking this global structure into account, we
deduce that the reduced moduli spacekfovalls is the com-
plex Grassmannidn

1 d’l]l

zﬁ ro’ 3D

Wi

wherel" denotes the wall trajectory. Up to integer multiples
this is clearlyk/N for the k-wall, but we can also keep track
of the additional windings. In principle there are an infinite
number of possibilities, but its clear that energetically only ~ U(N)

two will occur in stable walls, namely, Mk:G(k’N)EU(k)X U(N—k) (36)

wy=k/N, wy=(k/N)-1 32 reflecting the Goldstone modes induced by the broken flavor

symmetries. For 1-walls3(1,N) =CPY~ 1. This result appar-
as exhibited in Fig. 1. ently depends on the number of flavors, but can nonetheless
The index is independent of the Klar potential and thus be used to determine the world volume Witten index as we
one can use the freedom to perform diffeomorphisms of thehall discuss in more detail below.
Kahler metric to set all fields characterized by the same One may note that the information on eigenvalue trajec-
winding numbers equal to each other. To see that this isories is actually sufficient to deduce the “classical” wall
possible note that two trajectorieg, and 7, in a given wall  degeneracy. It is given by the number of possible permuta-
with the same winding, say;, can be mapped into each tions of the eigenvalue@s discussed if88]), leading to the
other by an analytic mapping on a domain given by the comsesult for v, given in Eq.(8). However, this argument ne-
plex plane with the vacuum points deleted. In other wordgylects infrared effects on the wall, an understanding of which
from this point of view there are only two inequivalent tra- requires a more detailed analysis of the world volume dy-
jectories in the wall, up to permutation. namics. Before turning to this, we will present in the next
Now let us prove that fok-wall trajectories there are gyhsection a more explicit derivation d# following from
preciselyk eigenvalues that have winding; andN—k hav-  the BPS equations.
ing windingw,. Thus, ifN(w;) is the number of fields hav-
ing winding w; , then
3We thank A. Smilga for helpful discussions on the geometry of
N(w;) =Kk, N(w,y)=N-Kk. (33)  soliton moduli.
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B. Analysis of the BPS equation wherea=(0,A)=0, ...,3.This constraint yields a smooth

; 4
The BPS equationé26) depend not just on the form of complex submanifold ofC*, known as the deformed

. H 4
the superpotential, but also on théter metric, and it is the ~ conifold: _ _ _
latter dependence which, while irrelevant for obtaining The real section of the deformed conifald2) defines a

determines the precise wall profile. Therefore, it is useful to>-SPhere, and we see that the two vacua of the theory given
disentangle the crucial dependence on the moduli, arisingy Ed-(38) lie at antipodal points on thiS°. The geometry
from the superpotential, from the inessential details relatin®f e space becomes more transparent by defining a radial
to the actual profile of the wall. coordinater,
To this end, we first introduce a basis of Hermitian matri- .
ces{Ty,Tal, A=1,... N>—1, whereTo=1/N and{T,} r2=Tr(XX), (43
are orthonormal generators for the Lie algebra of IS)J(
satisfying Tr(TATg) = dag. Then we can expand the dimen- \where constant values ofdefine a foliation with sections
sionless meson matrix in this basis, having the generic form SU(2SU(2)/U(1), where the
, U(1) acts in such a way that this space is topologically
X=N(XTo+iX"T,), (37 $?x S%: see[44]. However, at the minimal radius=1 the
coset becomes SU(X)SU(2)/SU(2) andthese sections
collapse to arg® identifiable as the real section above. Thus,
0 ‘ A the manifold is conical for large while the apex of the cone
(X)=oy, (X)=0, (38 s rounded off to ars®.
Supersymmetry demands that we use &lgametric on
and on imposing the constraint obtained by integrating outhe deformed conifold. Such a metric preserving the
the Lagrange multipliex, the superpotential takes the form gy(2)x SU(2) action apparent from the# 1 sections will
be a function only ofr?. In terms of the Khler potential

where{X% X"} e C. In this basis, the vacua lie at

W= uA{XC. (B9  K=K(r?), and the meson matriX, the metric will take the
form
BPS wall profiles are then given formally by parametrizing
the constraint thavV, and thusX®, must follow a straight dsé=K’(r2)Tr(deX)+K”(rz)lTr(YdX)lz (44)

line connecting the two vacua, as follows from Eg87). In

other wordsany kwall trajectory, parametrized by a fiducial .. . . .
scalete[0,1], is given by the relation Kahler metrics on the deformed conifold, which are also

Ricci flat, were first obtained if44]. Supersymmetry does
not impose the latter constraint herbut in fact we will not
H 2
0/1) — —(1—1)+twk neeq to choose a precise form #(r <) away frorT_1 the apex.
XO=1O={1-+toy, (40 In this region, the symmetry we have imposed is sufficient to

with XA subject to the constraint ensure that the metri@4) takes the asymptotic forifd4,45

1
ds? ,=AZ dp?+d02+ = p2d02|, (45)
det[ XO(t) 1+ YNXAT 4] =1 (41) 1742 2

with the appropriate boundary conditions at the vacua. Thavherep=2(r—1) and dQ% represents a 2-surfaceopo-
existence, and the moduli space, of wall solutions then defogically S?) which shrinks ag— 0, while dQ3 is a round
volves on the analysis of this constraint. - S’—equivalent to the real section—which remains with fi-
In essence, we have simply shifted the nontrivial fieldnite volume at the apex. Thus, the metric reduces locally near
dependence from the superpotential to the metric. With @ =1 to R3x S8,
suitable coordinate choice the BPS equations will then pro- The crucial simplifying feature is that it is not just the
vide a nontrivial profile for a single coordinate, consistentyacua, but the entire wall trajectory which lies on the real
with Eq. (27), with the other coordinates either fixed or re- section. To see this we adopt a different viewpoint on the
maining constant and thus leading to moduli. We turn first todeformed conifold, first discussed by Stenf46,47. The

the simplest case with gauge group (8U manifold is symplectic, given by the co-tangent bundle
T*(S% over S°, and this is made manifest by introducing
1. Gauge group SU(2) real coordinatex® and momenta, via

We will study first the theory with gauge group 8,
and two flavors. In this case, the constrajdf) takes the

form “The singular conifold is recovered in the classical limit—0,
where Eq. (42) reduces to =3_((X%,69°=0 With Xass
3 =lim,_o(A?X).
2 (X¥)?2=1, (42) ®In contrastz_with/\/':z SUSY the Higgs branch metric is required
a=0 to be hyper-Kaler, which would imply Ricci flatness.
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sinh(y/
X2=cosh M)Xa-i—i h(vVppPp) 0., vacuumA
VPcPc

a,b,c=0,1,2,3. (46)

The defining constraint then takes the form

3 3
> (=1, X x*p,=0, (47)
a=0 a=0
which describes the canonical phase space of a dynamical wall trajectory
system with configuration spa&?, with momenta lying in _ )
the cotangent space. FIG. 2. Wall trajectory on the resolve8® at the tip of the

Now, from the condition that the superpotential lie along adeformed conifold.
real line connecting the two vacua, see E(®9),(40), we

deduce thap,(t)=0, and the superpotential reduceso In preparation for later analysis, we can compactify the
= uAZcosh(/papa)x°, where A=1,2,3. Since Spatial dimensions on a 2-torus of aled Then, at excita-

. - _l B .
cosh/papa) is strictly positive, and the vacua lie on the real tion energieE <L ~~, we are effectively reducing the system
section so thap,(0)=pa(1)=0, we can smoothly deform to one of the kinks i(1+1)D, where this reduction to quan-

the Kihler potential if necessary so thai(t)=0, A tum mechanical moduli makes sense. Integrating over the
=1,2,3, for allt. One can readily verify that this solves the wall prof_ile Ieads to the corresponding bosonic moduli space
constraints(47). The solution then corresponds to a zerol@drangian which takes the form
“energy” configuration of the analog system, whefe
=E§:0(pa)2/2, and remains entirely within the real section
SPatr=1.

By deformation, we have chosen thétdgr metric on the
field theory moduli space to respect the maximalnarem=T,12 is the kink mass, determined by the wall

SU(2)XSU(2) symmetry, and so the corresponding metrict : _ 2 g : -
. . “tensionT;=8u A3, while integrating over the wall profile
on S® will be the round one. Re-expressing the real coord|—Ieads to ; scgle 2 9 9 P

nates {x?}, a=0...3, onS® in terms of Euler angles
{6,¢,¢}, the metric takes the form

1. . .
Loose™ M+ 5MZg+ Ry (£2+si?é4?), (53

A2
- 1222
ds?_,=A3dQ3, Ru~L"~ (54)
2_d6%+si 24 g 2 . ~
d03=d6"+sin’ 9(dg™+ siredg?), (48) for the flavor moduli spaceM.
while the superpotential, restricted to the real section, is
given by 2. Gauge group SU(N)
) The general case can be understood by following a
Wiirajectory= 24A5€0S0. (49 slightly less direct approach. It will be convenient to describe

generick-walls as embedded sine-Gordon solitons, although
we emphasize that this simply reflects a particular choice of
the Kaler metric. In more detail, along the wall trajectory
we make the change of variables=sir?6/2 where 6
e[0,7]. The superpotentigB9),(40) can then be written as

The vacua lie at the poleg=0,7, and the BPS equations
reduce to

d,0=2using, 9,£=4d,¢=0, (50

which are solved by the sine-Gordon soliton,

2u(z- Weageoo=NiAZ6 ™M coser —isinsTcoss|. (55
6(z)=2arctam?*(2~20), (52 |wajectory= N A€ cosy —isingcose|. (59

This solution, schematically represented in Fig. 2, is charac- ; )

terized by three modulizy,&,, o). The angular modes are T We now choose a Kiler potential of the form

Euler angles on the 2-sphere, and so we recover the moduli o

space deduced earlier from symmetry considerations, K=A2[ 602+ Trf(XX)], (56)

MNZ2=RXCP, (52) , _ ,
wheref is any smooth function along the wall trajectory and

where sinceN=2, we have necessarily been consideringX=X— (1/N)(TrX)1 is the trace-free part of, then the BPS
minimal walls withk=1. equation fork-walls takes the form
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ke . k
d,0= N,usmWS|n 0, (57 yk=f(t)— Nl
which is again solved by the sine-Gordon soliton,

N—k
N ka y =10+ \ . (63)

6(z) = 2arctam?A(z- %), 7 — Susing. (58)

This profile is dependent entirely on the choice of the metricAn apparent phase ambiguity which is dropped in this tran-
(56), which natura"y genera”zes E(f]48) However, since sition is actually fake once the vacua are fixed. Then, elimi-
we are not concerned with its precise form the only point ofnating thex dependence we obtain

concern is whether it introduces additional singularities. To

check this, we need to compare it with the canonical metric W

at wga_k coupling, which is Fhe only regime_in which the 3”32"“2:Nf(t):kykaJr(N_k)yk, (64)
metric is known. One can verify that the mapping to Exf) AN
is nonsingular in the vicinity of the wall trajectory.

W'th thls_proflle_ in hand we can now investigate the.which we recognize as the constraint that the ADS superpo-
moduI|~of this solution. The corresponding reduced mOdu“tentiaI, evaluated within the ansa0), follows the straight
spaceM is determined by the space of smooth solutions t9jne wall trajectory. Note that another phase ambiguity has
the cqnstrain(41) with fixed boundary conditions at the ap- peen dropped to ensure the correct asymptotic vacua.
propriate vacua. ) _ ) ] Since the vacua are massive, and thus the second deriva-

Geometrically, the manifol@41) is a determinental vari- tjve of the superpotential is finite, there are at most two pos-
ety of complex dimensiolN®— 1, which is rather difficult to  sjple trajectories emanating from each vacuum point. How-
analyze directly, except in the $) case discussed above, ever, a perturbative analysis shows that only one of these can
and so we will adopt a different approach motivated by thenterpolate between both. Existence of this unique solution
discussion in Sec. Il A. First of all, note that although the c3n pe demonstratef®8] by taking the trial solutiony(t)
flavor symmetry of the theory is SN, the symmetry of the = g27it/N 54 showing that its image in the punctud@d]sa,
constraint(41) is its complexification SLY,C). This allows  pjane(with the vacua exciseds homotopic to a straight line,
us to diagonalize the meson matie VN(X°To+iXATa)  the latter describing the exact wall trajectory.
by the adjoint action of SU{,C), with X—diag{ 7;} as be- Thus, we have found precisely one solution for kaks-
fore, where now the eigenvalues are functions of a singlgociated with the ansat0) and the generatof). Conse-
complex variablex. Following the arguments of Sec. Il A, quently, following standard arguments, the moduli space of
to solve the constraint these solutions is given by the coadjoint orbitbfunder the
symmetry group, which in this case is U This is the

ﬁ mx(0)=1 (59) manifold swept out by the adjoint action of SN\ mod the
iz ' stability group of Q, which we see immediately is
SU(K) X SUN—k) X U(1) up to discrete factors. Thus, tak-
we must imposen;=»; for i,j=1,... k, andn=n for  ing into account the fact that the center of each nonabelian
k,I=k+1,... N. We can then represent the diagonalizationgroup acts trivially, we recover the result obtained earlier that
of X in the form the reduced moduli space,
X—f(t)1+xyNQ, (60)

M=G(k,N), (65)
where we have used E@0) and() is the following genera-

tor of the Cartan subalgebra is the complex Grassmannian loplanes inCN.

N—_k K Having factored out the transverse position modulus,
Q:diag{ — \/ Iy, \/ 1Nk}, (61) which is decoupled and not visible in the construction above,
Nk N(N—k) we find that the moduli associated with the broken flavor

symmetries induce a nontrivié2+1)D sigma model on the

wall world volume, the supersymmetric vacuum states of
which—to be identified with inequivalert-walls—we will

k K N—k count in the next section.
(f('[)— \[mX) =1. (62

IV. THE WORLD VOLUME WITTEN INDEX

with 1, the kXX k unit matrix.
The constraint{59) then reduces to

( IN—k
f(t)+ TX

The number of solutions(t) to this equation asymptoting to

the vacuax(0)=x(1)=0 can be obtained as follow88]. Having determined the structure of the bosonic moduli
Note first that the constraint is resolved by defining a newspace a® x M, the calculation ofy, simplifies in that the
variabley, massless field associated with the translational zero mode is
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factorized, and its associated multiplet decoupled. We thegescribed by an\=1 Grassmannian sigma model i
identify each inequivaleri-wall with a unique vacuum state +1)D. Such systems are well understood, the nontrivial in-
of the /=1 sigma model onV1,, and count then with the frared behavior of the1+1)D sigma model restores the
Witten index. The index is conveniently defined by imposingoriginal SUN) symmetry, allowing a dynamically generated
an infrared regulator on the spatial coordinates of the worldnass gap for the flavor moduli. Since the vacua are massive,
volume. In general, the result is insensitive to removal of thewe are guaranteed that on considering scales below the gap
regulator if the theory has a mass gap, an issue which rehe problem reduces to one of quantum mechanics as above.
quires some dynamical knowledge of the system in questionThus we can conclude that the number of discrete supersym-
In this section, we discuss the status of the index for themetric vacua, and therefore the spectrunkefalls in SYM
world volume sigma model o1, by systematically remov- theory compactified ofiR®x S*, is still given by Eq.(66).
ing the infrared regulators. This conclusion is clearly consistent with the results obtained
by direct compactification of SYM theor}23,38, as re-
viewed in Sec. I.

In concluding this subsection, we note that ie-1)D

We first consider a fully regularized system putting thesigma model provides another interesting point of view on
spatial part of the world volume on a torus. Then in thethe degeneracy66). In particular, theN-plet wall multiplet
low-energy limit, the world volume theory reduces to a quan-structure seems in this case rather closely tied to restoration
tum mechanical problem with the moduli dependent only orof the SUN) symmetry in the infrared.
time. In effect, we are now analyzing the quantum mechani-
cal moduli of kinks in(1+1)D, as discussed in detail [11]. C. Decompactification and an alternative regulator
Given that the flavor moduli parametrize the Grassmannian .
G(k,N), which is compact, the techniques for calculating the, O" decompactifying the second cycle of the torus, we

index and thus the number of quantum ground states Weljéave removed all infrared regulators and the status of the
described ir{1], and the result is given bjL1] index (66), in as far as it correctly describes the wall multi-

plicity, devolves on the infrared dynamics of the€=1
NI Grassmannian sigma model @+ 1)D. This system, specifi-
m, (66) cally the CPN~! model, has received less attention than the
| ' corresponding models ifl1+1)D. In perturbation theory
) o there is no evidence for infrared divergences, and this con-
where x(G(k,N)) is the Euler characteristic of the Grass- ¢|sjon extends to leading order in the laryeexpansion

mannian. The resulting spectrumlefvalls is consistent with [48,49. However, due to the fact that the flavor modes can
the results of 23]. Note that the result is independent of the b compined into complex chiral multiplets, there is no ob-
original SQCD Kaler metric, and depends only on the 10- o, symmetny[50] or anomaly constraini32] which for-
pology of the bosonic moduli space. This is a necessary corigs a mass term. Moreover, one must also bear in mind that
sistency check as we have relied on the independence of thge v divergences of the model are cut off physically at a

result under smooth deformations of the mefS¢. More-  gqaj6 given by the inverse width of the wall, which@$m)
over, the invariance of the index under small perturbations of,

. . X n SQCD, and this introduces an additional scale. Thus, with-
the superpotential, for which no vacua become aligiiéd, ¢ 3 more detailed understanding of the dynamics of this

is now transparent. Specifically, were we to perturb the meyy, regularized\'=1 G(k,N) sigma model, the status of the

son mass terms slightly, thus reducing the residual symmetry, o oy itiplicity count remains unclear after decompactifica-
of the wall, the spectrum would not change as this would,,

deform the metric orG(k,N) but clearly not its topology. In contrast, the index itself can be regulated in an alterna-
Let us note that in the context of kinks, the degeneracyjye manner via a perturbation of the theory which lifts the

(66) has an mEe_.{restlng interpretation. The moduli space fotygjtional flavor modulf. In practice, we require a perturba-

1-walls is CP""*, and the corresponding degeneracy fromyjon \hich lifts the off-diagonal elements of the meson ma-

Eq. (66) is N. It is natural to interpret this in terms of the ¢y 4 that the system reduces to a theory of the eigenvalues
walls forming anN-plet of SUN), which is the isometry 4 _, diag{ 7;} with

group of CPN~1 (see alsd38]). The degeneracy66) then

implies that composit&-walls fall into antisymmetric tensor

multiplets of SUN), namely thek-th fundamental represen- W= ,uAﬁ,
tation. This implies that 1-walls, when reduced to kinks in

(1+1)D, are “fermionic” in flavor, consistent with expecta-

tions for solitons in similar Landau-Ginzburg systems. as in £q.(30). One may then construct wall solutions which
possess no flavor moduli, and determine the multiplicity di-

rectly as in[23,38, finding the resul{8) once again.
There are several possible mechanisms for lifting the off-

A. Compactification on T?

N
vk=x(e<k,N>>=( k)z

f[l m—lﬂ (67)

N

B. Compactification on S*

We now decompactify one cycle of the torus. The index
obtained above will remain valid provided vacuum states—

cannot disappear to infinity in the process of decompactifi- ®we thank A. Losev for suggesting this approach and for related
cation. In this case, we are left with the moduli dynamicsdiscussions.
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diagonal modes and all have certain side effects. One camodes may “freeze” in this limit. Recall for the SB) case,
simply perturb the superpotentigV— )W+ W with nonlin-  that the Kéler class of thé2+1)D CP' sigma model scales
ear termss) which break the SWY) flavor symmetry, but as
this generically introduces new vacua, and care is needed in ) 5
discarding any spurious wall solutions which decouple as the M = oc & _ 3A
perturbation is removed. Alternatively, one may weakly M 8772,u2’
gauge the flavor symmetry, under which the meson marix
transforms in the adjoint. The decoupling limit for the gaugewhere A is the N\=1 SYM scale defined in Eq1) and u
modes then enforcesterm constraint, TM,M]?=0, en- _:(detm)l/N- Thus, as we begin to decouple the maitter
suring that the off-diagonal modes Wf are lifted, leading to ~ f€lds, the moduli space shrinks. In the absence of any mass
Eq. (67). This procedure does introduce an additional decougeneratlog, it is plausible that in the limit that—ce, the
pled set of light W1) fields, but has the merit of retaining the Manifold M shrinks to zero size, and the corresponding fla-
symmetry structure we expect to be important in the pure/0r modes are frozen, and consequently decouple. However,
SYM regime, as is apparent on comparison with the ap_thIS cqnclusmn requires a S|gn|f_|c§1nt a}ssumptmn about the
proach of compactifying oft3x S: see Eq(10). behavior of the SQCD Kaer metric in this regime. It would
Perturbing the original theory in this way indicates thatbe natural for the scalgsg) to have corrections oD(x/A)

the index is, as it should be, stable under different choices fo\f\’hICh may significantly change its form wher=A.
the regulator. However, its connection to the physical wall
multiplicity still rests on the question of stability under re-

moval of the regulator. As we noted above, this can be re- Thus far, we have purposefu”y chosen to work with
phrased as a dynamical question about the vacuum structuflgwvors, to make the multiplet structure of the walls under
of the world volume sigma model. On this issue, we will global symmetries quite explicit. This required us to make
limit ourselves here to a few comments describing the twaise of the invariance of the index und@rterm deforma-
possible scenarios. tions, so as to restore the maximal $UY(symmetry of the
The first is that a nonperturbative mechanism generates ld-flavor theory. Recall that in Sec. Il, for consistency, we
mass for the flavor modes, which implies that the index retequired that the mass matrix was hierarchical to ensure a
mains unchanged. In this regard, recall that supersymmetriweak coupling regime, which implies that the weak coupling
nonlinear sigma models are most conveniently studied bylavor symmetry of the underlying theory is at most SU(
embedding them in a corresponding gauged linear sigma-1).
model[51,57. For the CPN~1 model, this gauge theory is While this approach was convenient for obtaining the in-
Abelian and at first sight there are no obvious non-dex, it is also instructive to see how the explicit breaking of
perturbative effects which could generate a mass gap. Howlavor symmetries is manifest at the level of the flavor

ever, the presence of the UV cutoff complicates this issue, agoduli spaceM, in a regime where the direct relation to
the UV completion of the theory may allow nonperturbative Goldstone modes is lost. For ease of illustration, we focus on
mass generation. A classic example, although not direCtlyhe Simp|est case with gauge group(S]J In the ana|ysis of
relevant here, is the Polyakov mass for the phd8h34 in  sec. 111, as just described, we deformed thénka metric so

U(1) theories where, from the low energy perspective theas to restore the maximal $2) symmetry of the theory,
nonperturbative mechanism involves “singular” instantons,despite the hierarchical mass matrix of Eg8),

which are resolved above the cutoff scale.

With this in mind it is intriguing to note that, if we assume m=diag{m;,m,}, mi<my,<A,. (69
for a moment that a mass gap for the flavor modes were to )
arise via some mechanism, one could integrate them out the level of the Kaler potential, settingm;#m,
within the linear sigma model, which in effect corresponds tobreaks  the  symmetry  from  SU()SU(2)<U(1)
flowing back to pure SYM theory. This process is known to=SO(4)X SO(2) to SO(2X SO(2).
induce a standard kinetic term for the gauge fields, and in This reduction in symmetry can be traced through to the
(2+1)D will also lead to a Chern-Simons terd8,49. In metric structure of the wall moduli space as follows. Recall
the case of 1-walls, the resulting system would fe=1  that in the analysis of Sec. lll, the wall profile described a
Maxwell-Chern-Simons theory at levél (up to higher de- path between the poles of @’—the real section of the
rivative corrections remarkably consistent with the world deformed conifold—with theS® having the round S@)-
volume theory obtained by Acharya and VA28]. This con-  invariant metric. It is convenient to visualize 18 via ste-
nection can also be made, at a formal level, within the com¥eograhic projection a&3U{=}. The poles of theS® and
pactified system, where the light flavor fields have massethus the two vacua of the theory are projected to 0 @and
scaling inversely with the volume. and hence the wall trajectory is described by a line from the

The second scenario is that the flavor modes remain mass¥igin to infinity in R3. This line is parametrized by Euler
less at the quantum level, ardpriori there is no obvious angles on the sphere at fixed radius, and hence this construc-
inconsistency with this. More precisely, as we flow back totion realizes theé:P*=S? flavor moduli space as a submani-
N=1 SYM theory, these modes must disappear, but this cafold of R3. In Sec. lll, the S®4) symmetry of the original
occur without direct mass generation. In particular, the flavoKahler metric ensures an $8-invariant round metric on

(68)

V. BREAKING THE FLAVOR SYMMETRY AND N;=N-—1
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remaining mass matrix proportional to the identity. In this
system, the wall multiplet structure is less explicit, byt

must necessarily be the same. As explained above, f¢2)SU
£#0 £>>1 the agreement follows straightforwardly from the fact that

d although the additional flavor modes are frozen, this can hap-
pen in two possible ways, reproducing the two-wall spectrum
M obtained some time add].
The case of S(B) gauge group broken via the Higgs
(2) () (©) mechanism through the introduction of two flavors can be

FIG. 3. A schematic representation of the flavor moduli spaceunclerStOOd in a similar manner. This system been treated in

realized topologically aS?CR3, showing the dependence of the some S/le,tall 'g t::e flllterature. There :cs hnow a<2_ mm”
induced metric on the hierarchical structure of the magsegqual matrix » and the tlavor symmetry of the canonical

masses implying S@) isometry: (b) 0 implying SQA2) isom- potential is SU(2)< SU(2) p_rowd_ed the mass matrir’ is
etry; and(c) the decoupling limit wherés1. The overall scale has Chosen proportional to the identity. There are three vacuum
been chosen for convenience. The bold arrows indicate an exampfdates a{M ,>°Cw§12 (k=0,1,2), and this theory again pos-
of the dominant flavor mode profile in the wall. sesses only minimal 1-wall solutions.

In searching for classical BPS configurations, it is natural
the S?. However, with unequal masses, the metric inducedo first introduce a diagonansatz namely M')¢=M &7,
on theS? has only an SQ) isometry, which we can arrange (g,f=1,2). Such field configurations will not break the fla-
to generate rotations in the horizontal plane. Metrically, thevor SU2), and are flavor-symmetric domain walls. Conse-
S? moduli space is then an ellipsoid, with the ellipticity char- quently, there are no massless excitations on the wall world

acterized by the dimensionless parameter, volume, other than the translational modes. Numerical analy-
sis in [15-17,19 demonstrated the existence of a unique

m,—m flavor-symmetric solution. However, this is not the end of the

é= N (70 story as the symmetric ansatz should be relaxed to find all

m;m; the possible 1-wall solutions. If one demands simply that

(M")? is diagonal, with ¥1')}+(M’)3, then additional so-
lutions will arise in pairs by permutation of the fields. Per-
turbative analysis indicates that there are at most four trajec-
tories emanating from each vacuum, and an analysis along
; ) ) ' . the lines of[38] demonstrates that only two of these interpo-
soidal metric onS™ becomes singular. As shown schemati- |6 44 the second vacuum providing true wall configurations.

cglly in Fig. 3.’ the qorres_ponding modull are then *frozen” his conclusion is backed up by explicit numerical solutions
with two possible orientations, thus reproducing the expecte und in [17] which were confirmed i19]. More generally

result that there are two inequivalent 1-walls in this theorye o otain the dependence on the fulk2 meson matrix
and explaining why a direct aqaly5|§ of the (ShJ'theory' the flavor asymmetric ansatz will break the @Usymmetry
with 1 flavor would uncover two inequivalent solutions, with down to U1), inducing flavor moduli parametrizing @P"
no additional moduli. This latter result for the 1-flavor theory sigma model, on the world volume. When regulated in the
has been known for some tine]. infrared, the Witten index is equal to two, which is consistent

AL this point it is worth contrasting the decoupling sce- with the findings above. Thus, in total there are three in-

nario W'th our discussion in the previous sectlon._Flrst, nOteequivalent solutions in agreement with our earlier results. In
that the limitm,>m, serves as a partial alternative to ex-

TP - ; ) accord with our discussion above regarding freezing of the
plicitly I|ft|ng the additional flavor moduli by pert'urbmg moduli associated with decoupled fields, we see here that the
the theory withN¢=N flavors, and thus allows a direct cal- ¢, oy spaceCP? of the 3-flavor theory is reduced to
culation of the wall multiplicity. However, this freezing of

. CP! in the hi hical i h ion i
moduli within weak coupling SQCD is distinct from what in the hierarchical mass regime due to the reduction in

) . ) . flavor symmetry. Accounting correctly for the frozen modes
may happen on integrating out all the matter fields, which w y y 9 y

) . W&nsures that the result for the index in each case is, of course,
cannot do here, and returning to the strong coupling regimg o same

:.ntpl“.'tre.S\t(hM theory. I\INe see tha}t despite thlf w:c:ei‘smg el- This counting of minimal walls, using an unconstrained
Ipticity in this case, all mass scales are small relativa o parametrization of the moduli in thid—1 flavor theory, is

and 2the overall Kbler class of M which scales as easily extended. For gauge group SU( there is an K
O(A3/ymym,) remains large. _ —1)X(N—1) meson matrix and an explicit SN¢ 1) fla-
This picture of the hierarchical freezing of flavor modes,vor symmetry. Once again there is a unique flavor symmetric

as some subset of the matter fields are decoupled, allows wgall, while flavor asymmetric walls induce Goldstone modes
to make contact more generally with the picture of the wall

spectrum that emerges in SQCD with=N-—1 flavors. Re-
call that in the hierarchical regimél8), we could simply ~ 7These authors work instead with a Taylor-Veneziano-

integrate out thé\-th flavor, leading to the ADS superpoten- vankielowicz superpotential, but one can compare the results for
tial (19) which exhibits an SU{— 1) symmetry if we setthe smallm’.

This metric structure for the moduli space is exhibited in
Fig. 3.

In the process of decoupling the heavy flavog>m;,
the ellipticity parameteé~ \m,/m, diverges, and the ellip-
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parametrizing a_P"~2? sigma model via the broken flavor 2(RXCPN"H)—RXG(2N), (72)

symmetry. The corresponding Witten indexNs- 1, leading

again to I+ (N—1)=N possible 1-wall configurations. Thus

the N-plet observed in Sec. IV decomposes in this case awhich leads to a reduction in bosonic moduli. A remarkable

N—1+(N—-1). feature of the Grassmannian sigma model is that this reduc-

tion in moduli has a consistent interpretation in terms of an

VI. DISCUSSION enhanced gauge symmetry for the composite. More pre-

cisely, if we formulate the corresponding gauged linear

sigma models, the above transition corresponds directly to

ihe gauge symmetry enhancement W1)(1)—U(2), re-

Deforming SYM theory to SQCD in the Higgs phase has
allowed us to tune the symmetry structure so that classicall
there was a moduli space of BPS domain walls, enabling : . ; K . S
robust calculation of the wall multiplicity given a suitable cal!mg that the nonllmegr model is realized in the I|m|t.|n

which the gauge kinetic term decouples. In any regime

infrared regulator. Note that this genuine weak coupling APy bere these gaude modes become dvnamical. sav at 1-10o
proach is in contrast to others for which relevant fields fail to gaug y » Say P

remain weakly coupled throughout the wall trajectory. Thethls picture becomes quite consistent with the construction of

results we obtained are consistent with those deduced 23], and indeed more generally with any realization of

Acharya and Vafd23] using a string dual construction, and -V\'II?PLIS ::a]afgirr?1 Sb(gﬁé?/irgp i?[?ri]a. otential on the asymptotic
the world volume description has intriguing parallels with g P ymp

this work on which we will elaborate further below. :go?mug S;ﬁgi:f;g: jf' g]ae”zilr? dfnalcugggéiglazlg@ttgns& cb
In particular, we will finish with a few comments on the tgd'ed, ithin tﬁe context of the cgrfes ondik 1' auged
dynamics of the translational moduli, an issue that we hav udied with X P g . gaug

suppressed thus far. Specifically, while the center of masd €af sigma modell51,52, but we will defer discussiofb6]

modulus certainly decouples, one can also study the formf these features, and other details of the world volume dy-

tion of composite 2-walls from primary 1-walls with adja- namics. It is important to note that, while this analysis is

cent phase boundary conditions. We have emphasized that Ehactable for smalin in the SQCD regime, the lack of super-

this system the positions of the constituents are not moduffyMmmetric constraints on the SQCD Iar metric makes_
(in contrast to certaioh’=2 domain wall systemgs3]), but extrapolation to SYM theory at any more than a speculative

one can still set up an unstable configuratiéd] where the level fraught with difficulty. This is why the world volume

two constituents are well separated and observe the interai idex has a_privileged position as essentially th_e onl_y pro-
tions which will be sensitive to the SQCD spectrum. More- e_(_:ted Quantity that we are guaranteed can survive this tran-
over, one can arbitrarily suppress the binding energy in thg't'on‘

large N limit. The binding energy per unit volume follows

from the BPS formula,
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