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Gauge-fixing dependence ofF-derivable approximations

A. Arrizabalaga and J. Smit
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
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We examine the problem of gauge dependence of the two-particle irreducible~2PI! effective action and its
F-derivable approximations in gauge theories. The dependence on the gauge-fixing condition is obtained. The
result shows thatF-derivable approximations, defined as truncations of the 2PI effective action at a certain
order, have a controlled gauge dependence, i.e. the gauge dependent terms appear at higher order than the
truncation order. Furthermore, using the stationary point obtained for the approximation to evaluate the com-
plete 2PI effective action boosts the order at which the gauge dependent terms appear to twice the order of
truncation. We also comment on the significance of this controlled gauge dependence.

DOI: 10.1103/PhysRevD.66.065014 PACS number~s!: 11.10.Wx, 11.15.Tk
n
ea
e
u
an
f
.
ith
th
u
tio
lf

ar
ar
ro
nc
.
ed
er

rn

m
on
ie

n
th

is
e
he
en

d
a

n
o
e

ch

n of

the
in

m
xi-
ht
itial
ve

es
till
hat
n in

siuk-
-

xi-
the

den-
n-
m
licit

nce

of
be

ies
tion
sult
nt at
ef-

ive
ions
ge-
c. V
e

I. INTRODUCTION

Perturbative approaches to the study of equilibrium a
nonequilibrium properties of hot and dense media may l
to inconsistencies and are often plagued with infrared div
gences. These problems are linked to the fact that calc
tions in terms of the bare quantities of the underlying qu
tum field theory~and perturbative approximations thereo!
fail to describe the collective phenomena in the medium
strategy to tackle this handicap of the theory is to work w
dressed quantities, in which the most relevant effects of
interacting ensemble are accounted for. These dressed q
tities are obtained by means of nonperturbative resumma
schemes, which usually involve solving a set of se
consistent equations.

An arbitrary resummation scheme will however not gu
antee that the conservation laws of the original theory
preserved by the dressed quantities. A way to solve this p
lem is by formulating the scheme in terms of an action fu
tional that respects the symmetries of the original theory
particular kind of such action functionals was first introduc
in the study of nonrelativistic Fermi systems by Lutting
and Ward@1#, De Dominicis and Martin@2#, and Baym@3#
and later generalized to relativistic field theories by Co
wall, Jackiw, and Toumboulis@4#. These functionals, which
are derived from the so-called two-particle irreducible~2PI!
effective action, involve a diagrammatic expansion in ter
of 2PI skeleton graphs. A particular choice for an acti
functional is obtained by truncating this diagrammatic ser
in this way defining what is called aF-derivable approxima-
tion. A variational principle applied to the resulting actio
leads to a set of self-consistent equations from which
dressed quantities are obtained.

A manifest advantage of such a functional formulation
that global symmetries of the original theory are preserv
Additionally, the variational principle used to determine t
dressed quantities guarantees thermodynamic consist
@3#. All these useful properties makeF-derivable approxima-
tions a very attractive mathematical framework for the stu
of properties of high-energy plasmas. In particular, they m
prove useful for QCD plasmas, whose interest has grow
recent years due to the possibility of creating quark-glu
plasma in heavy-ion collision experiments at Brookhav
0556-2821/2002/66~6!/065014~8!/$20.00 66 0650
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and CERN. Calculations of thermodynamical quantities su
as the entropy@5# and free energy@6# have been achieved
using these methods. In those calculations a resummatio
the physics encoded in the hard thermal loops~HTL! was
performed. It is important to mention the fact that, due to
remarkable symmetry properties of the HTL, the results
Refs. @5,6# are manifestly gauge invariant. Nonequilibriu
properties can also be formally studied within these appro
mation schemes@7#. They could be used to shed some lig
on important issues such as thermalization and loss of in
correlations. Very interesting results in this direction ha
been obtained@8# with scalar models.

However, an extension of these approximation schem
beyond the HTL regime in the study of QCD plasmas is s
lacking. There are two main problems involved. One is t
renormalization seems to be a nontrivial issue, as show
explicit calculations for scalar theories@9#. To deal with this
obstacle, a recent approach based on Bogolubov-Para
Hepp-Zimmermann~BPHZ! renormalization has been pro
posed by van Hees and Knoll@10#. The other main problem
is the fact that gauge invariance may be lost in the appro
mations. This is because, in general, the solutions for
dressed propagators and/or vertices do not satisfy Ward i
tities. In particular this implies that thermodynamical qua
tities computed within these approximations will suffer fro
gauge dependence. This pathology shows up as an exp
dependence on the choice of gauge-condition.

In this paper we study the problem of gauge depende
of the 2PI effective action and itsF-derivable approxima-
tions. In Sec. II we review the general formalism
F-derivable approximations and introduce the notation to
used. In Sec. III we apply the formalism to gauge theor
and determine the dependence of the 2PI effective ac
under a change of the gauge-fixing condition. From the re
one sees that the 2PI effective action is gauge independe
its stationary point. This was already shown for the 1PI
fective action and expected from general arguments@11#. In
Sec. IV we apply the result of Sec. III to theF-derivable
approximations that result from truncating the 2PI effect
action at a certain order. We show that these approximat
have a controlled gauge-fixing dependence, i.e. the gau
dependent terms appear at higher order. We discuss in Se
that the use ofF-derivable approximations restricts th
©2002 The American Physical Society14-1



b
th
rg
co

b

an
n

n

d

s.

e

e
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choices of gauge fixing available, if they are indeed to
good approximations to the exact theory. This prevents
high-order gauge-dependent terms to take arbitrarily la
values, such that the gauge dependence will be indeed
trolled.

II. 2PI EFFECTIVE ACTION AND F-DERIVABLE
APPROXIMATIONS

The generating functional for correlation functions can
written as

Z@J,K#5E Dwei $S[w] 1Jiw
i11/2w iKi j w

j %, ~1!

whereS@w# is the action,w represents the fields and theJ
and K are auxiliary external sources. We use a shorth
notation where Latin indices stand for all field and curre
attributes@i.e. w(x)→w i ] and summation and/or integratio
over repeated indices is understood, i.e.Jiw

i

5*d4xJ(x)w(x).1 The generating functional of connecte
diagramsW is defined fromZ as

W@J,K#52 i log~Z@J,K# !. ~2!

The expectation value of a functionalO@w# is given by

^O@w#&[
E DwO@w#ei $S[w] 1Jiw

i11/2w iKi j w
j %

E Dwei $S[w] 1Jiw
i11/2w iKi j w

j %

5 iOF d

d~ iJ !GW.

~3!

Mean fieldsf i and connected correlation functionsGi jk •••

can then be obtained by functional differentiations ofW@J#
as
rm

lso
i

hi
ill
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dW

d~ iJ i !
5f i , i

d2W

d~ iJ i !d~ iJ j !
5Gi j ,

~4!

i
dNW

d~ iJ i !d~ iJ j !d~ iJk!•••
5Gi jk •••.

Functional differentiations ofW@J,K# with respect to the
bilocal currentsK may generate also disconnected diagram
For example, differentiating once with respect toK leads to

i
dW@J,K#

d~ iK i j !
5

1

2
~f if j1Gi j !. ~5!

A functional Legendre transform in the mean fieldf i and the
two-point functionGi j leads to the so-called 2PI effectiv
action

G@f,G#5W@J,K#2Jif
i2

1

2
Ki j ~f if j1Gi j !. ~6!

From its definition one can derive the relations

dG@f,G#

df i
52Ji2Ki j f

j ,

dG@f,G#

dGi j
52

1

2
Ki j . ~7!

With the help of Eq.~7! one can write the expression for th
expectation value of a functionalO@w# in terms of the 2PI
effective action as
^O@w#&5e2 iG[f,G]E Dw O@w#ei $S[w] 2$dG[f,G]/df i %(w2f) i2$dG[f,G]/dGi j %[(w2f) i (w2f) j 2Gi j ] %. ~8!
. In
rgy

are

y
he
ove
The 2PI effective action can be cast into the convenient fo
@1–4,7#

G@f,G#5S0@f#1 ic Tr$ log~G21!1G~G0
212G21!%

2 iF@f,G#. ~9!

whereS0 is the free part of action,G0 is the bare two-point
function (2 id2S0@w#/dwdw)21 andc is a constant equal to

1The time integration involved in this functional product can a
run along a contourC in the complex plane such as the ones used
the real and imaginary time formalisms of thermal field theory. T
detail will however not be important in our calculations, so we w
omit the subscriptC in the integrations.
1/2 for bosons and21 for fermions. The functionalF@f,G#
consists on the sum of all two-particle-irreducible~2PI! skel-
eton diagramswith bare vertices and dressed propagators
this context skeleton diagrams are those without self-ene
insertions. Non-2PI diagrams with mean field insertions
also included in the definition ofF.2 For example, in the
case of a theory with quartic interactions~such aslf4), the
above expression can be written graphically as

n
s

2In the literature@4# F is usually defined in such a way that it onl
contains strict 2PI diagrams. This involves a redefinition of t
action to include mean fields and tadpoles. We prefer to the ab
notation where all interaction parts are placed inF. Of course, both
definitions agree whenf50.
4-2
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where the thick lines aredressedpropagators, the small lol
lipops are the mean fields and the cross-hatched blob is
one-particle irreducible self-energyP, defined from the
dressed propagator via the usual Dyson equationG21

5G0
211 iP.

In practice one has to restrict to an approximated vers
of the 2PI effective action that results from considering o
a certain subset of diagrams in the functionalF. This defines
a F-derivable approximation. One typically considers t
loop expansion of skeleton diagrams as pictured in Eq.~10!
~and refered to as theskeleton-loop expansionin the follow-
ing!, and truncates it at a given order. In this way the 2
effective actionG is split into two pieces: the truncated pa
G0, and the higher order partG1. Then one takesG0 as the
approximated effective action. This action definesapproxi-
mate mean fields and two-point functionsfap and Gap,
which result from the stationarity condition, i.e. from th
implicit functional equation~7! for vanishing sourcesJ and
K, as

dG0@f,G#

df U
fap,Gap

50 and
dG0@f,G#

dG U
fap,Gap

50.

~11!

Theseapproximatemean fields and two-point functions de
fined from the truncated actionG0 differ from theexactones,
which are obtained from the stationary point of the compl
2PI effective action as

dG@f,G#

df
5

d~G01G1!

df U
fex ,Gex

50

and
dG@f,G#

dG
5

d~G01G1!

dG U
fex ,Gex

50. ~12!

We end this section by noting that one could also const
more general effective actions by including higher-point e
ternal sourcesJi ,Ki j , Li jk , . . . into the functionalW
5W@Ji ,Ki j ,Li jk , . . . # and performing a Legendre tran
form as follows

G@f i ,Gi j ,Gi jk , . . . #

5W@Ji ,Ki j ,Li jk , . . . #2Jif
i2

1

2
Ki j ~f if j1Gi j !

2
1

6
Li jk~Gi jk13Gi j fk1f if jfk!2•••. ~13!

This form of the effective action can be rewritten as a d
grammatic series in terms of skeleton diagrams of then-point
vertex functions @12# and can be used for generalize
F-derivable approximations.
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III. GAUGE-FIXING DEPENDENCE OF THE 2PI
EFFECTIVE ACTION

We consider now the case of a pure Yang-Mills theo
with gauge groupG. Its action is given by

SY M52E d4x
1

4
Fmn

a ~x!Fa
mn~x!, ~14!

where Fmn[Fmn
a Ta5]mAn2]nAm2g@Am ,An# is the field-

strength tensor of the gauge fieldAm5Am
a Ta , g is the ~un-

renormalized! coupling constant andTa are the generators o
the Lie algebra of the gauge groupG.

The action is invariant under gauge transformatio
U(x)PG of the gauge potentialAm :

Am→UAm~x!5U~x!Am~x!U21~x!2
i

g
@]mU~x!#U21~x!.

~15!

This invariance implies that the functional integrals ov
gauge field configurations are ill-defined. One gets arou
this difficulty by the Faddeev-Popov gauge-fixing procedu
which introduces a gauge-breaking termSGF into the action.
In the context of Becchi-Rouet-Stora~BRS! quantization this
term is realized in a useful manner by introducing some a
iliary fields: the Faddeev-Popov fermionic ghost fieldsca

and c̄a and the bosonic Lautrup-Nakanishi fieldsBa. The
gauge-fixing is implemented through the conditionCa@A#
50, where a typical choice is the covariant gaugeCa@A#
5]mAm

a . The gauge-fixed action then reads

S5SY M1SGF

5E d4xH 2
1

4
Fmn

a ~x!Fa
mn~x!2 c̄a~x!

dCa@A#

dAbm
„Dmc~x!…b

1Ba~x!Ca@A#2
1

2
jBa~x!Ba~x!J , ~16!

whereDm[]m2 igTaAa is the covariant derivative andj is
the gauge-fixing parameter.

The action obtained by adding this gauge-fixing term
no longer invariant under local gauge transformations~15!.
However, it is invariant under BRS transformations, whi
are defined as

dBRSAm
a 5e~Dmc!a,

dBRSc
a5 i egc2,

~17!
dBRSc̄

a52eBa,

dBRSB
a50,

wheree is an infinitesimal global anticommuting paramet
4-3
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A. ARRIZABALAGA AND J. SMIT PHYSICAL REVIEW D 66, 065014 ~2002!
and c2 is a short-hand notation for (Taca)(Tbcb)
51/2@Ta,Tb#cacb. The Lautrup-Nakanishi fieldB has been
introduced to ensure the nilpotency of the BRS cha
QBRS, defined asdBRS5eQBRS. It allows for a convenient
rewriting of the gauge-breaking term as a complete B
variation

SGF5QBRSE d4xH 1

2
j c̄a~x!Ba~x!2 c̄a~x!Ca@A#J

[QBRSC. ~18!

Using the notation of Sec. II the generating function
Z@J,K# for this gauge theory can be compactly written as

Z@J,K#5NjE Dwei $SY M1QBRSC1Jiw
i11/2w iKi j w

j %

5ei $G[f,G] 1Jif
i11/2Ki j (f

if j 1Gi j )%, ~19!

where w denotes collectively all fields$Am
a (x),ca(x),

c̄a(x),Ba(x)%, J and K denote all their associated curren
$JA ,Jc ,Jc̄ ,JB ,KAA ,Kcc̄ ,KBB%, and Latin indices stand fo
both space-time and group indices, i.e.Am

a (x)→Ai . This no-
tation is used to allow one to write formulas in a compa
way, though one should bear in mind that the ghost fieldc

and c̄ and their associated local currentsJc andJc̄ are anti-
commuting variables.Nj is a j-dependent infinite constan
generated during the Faddeev-Popov gauge-fixing proced
Its gauge parameter dependence can be seen already
free theory and can be absorbed into the action by resca
the ghost fields byj21/4. Hence this constant will not play
role in the following.
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Having set up the notation we turn now to study the gau
dependence of the 2PI effective action. We study how
transforms both under a change of the gauge-fixing condi
Ca@A#→Ca@A#1DCa@A# and gauge parameterj→j1Dj,
or more generally, under a changeC→C1DC. Under this
shift of gauge condition, the effective action, the mean fi
and the two-point function, respectively, change as

G→G85G1DG,

f→f85f1Df, ~20!

G→G85G1DG.

The currentsJi and Ki j are taken to be gauge independe
since they are external. This fact allows us to calculate
mediately from Eq.~7! how much the first functional deriva
tives of the effective action vary under the gauge-fixi
change, obtaining

DS dG

dGi j
D50,

~21!

DS dG

df i
D52Df j

dG

dGi j
.

The first functional derivatives ofG are used to find the
stationary point by setting them to zero as done in Eq.~12!.
From Eq.~21! one notices that the stationarity condition
self is only gauge invariant if it is realizedsimultaneouslyfor
both argumentsf andG.

To compute the variation of the effective actionG itself
one can use the relations~7! to cast Eq.~19! into the conve-
nient form
tesimal
eiGC[f,G]5E Dwei $SY M1QBRSC2(w2f) i [dG/df i ] 2[(w i2f i )(w j 2f j )2Gi j ]dG/dGi j %. ~22!

For simplicity and later convenience we denote the field combinations (w2f) i and@(w2f) i(w2f) j2Gi j # that appear in the
exponent of Eq.~22! asw̃ i andG̃i j , respectively. These have the property that their expectation values^w̃ i& and^G̃i j & vanish.

After a change of gauge conditionC→C85C1DC Eq. ~22! becomes

eiG85ei (G1DG)

5E Dw$ei $SY M1QBRSC2w̃ i [dG/df i ] 2G̃i j [dG/~dGi j !] %

3ei $QBRSDC1Df i [dG/df i ] 1DGi j [dG/dGi j ] 1Df iDf j [dG/dGi j ] %%, ~23!

which using the notation of Eq.~3! leads to

eiDG5^ei $QBRSDC1Df i [dG/df i ] 1DGi j [dG/dGi j ] 1Df iDf j [dG/dGi j ] %&. ~24!

This result is valid for any finite change in the gauge-fixing conditions. To proceed further we restrict ourselves to infini
variationsDC. Then one can expand both sides of Eq.~24! to obtain

DG5^QBRSDC&1Df i

dG

df i
1DGi j

dG

dGi j
1O~D2! ~25!
4-4
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where we used the fact thatDf andDG are of orderO(DC). This can be easily checked. Indeed, following the same s
as to obtain Eq.~24! one gets for the mean field

f85f1Df5e2 iDG^w ei $QBRSDC1Df i [dG/df i ] 1DGi j [dG/dGi j ] 1Df iDf j [dG/dGi j ] %&, ~26!
c-
i.e.
ge-

ick
ng
which using Eq.~24! reduces to

f1Df5
^weiQBRSDC&

^eiQBRSDC&
, ~27!

and expanding inDC yields

Df i5 i ^w̃ iQBRSDC&1O~D2!. ~28!

Similarly one computes the variation of the two-point fun
tion obtaining

DGi j 5 i ^G̃i j QBRSDC&1O~D2!, ~29!

which verifies our statement above. Moreover, Eqs.~28! and
~29! can be used to write Eq.~25! as
p

d

q

ve

06501
DG5^QBRSDC&1 i ^w̃ iQBRSDC&
dG

df i

1 i ^G̃i j QBRSDC&
dG

dGi j
1O~D2!. ~30!

One expects the stationary point of the effective action,
when its functional derivatives are set to zero, to be gau
independent. That is still not obvious from Eq.~30! since it
appears that the first term in the right-hand side~RHS! would
not vanish. For that, one can make use of the following tr
@13#. Consider the expectation value of the gauge-fixi
changeDC, namely
the
hand side
^DC&5e2 iGE DwDCei $SY M1QBRSC2w̃ i [dG/df i ] 2G̃i j [dG/dGi j ] %. ~31!

One can do a BRS transformationw→w1eQBRSw on the field variables in the path-integral. This transformation leaves
measure invariant and only amounts to a shift of the integration variable, so the equation remains the same. The left-
can be however rewritten so that

^DC&5e2 iGE Dw~DC1eQBRSDC!ei $SY M1QBRSC2w̃ i [dG/df i ] 2G̃i j [dG/dGi j ] 2eQBRSw̃ i [dG/df i ] 2eQBRSG̃i j [dG/dGi j ] %, ~32!
tion

tive
-

where we have used the fact thatDC@w1eQBRSw#5DC
1eQBRSDC, which follows from the definition~18!. The
BRS chargeQBRS appearing in this expression does not o
erate on the mean fieldsf and two-point functionsG that are
part of w̃ andG̃, but only on the fields to be path-integrate
over. Expanding the rhs of Eq.~32! in the anticommuting
parametere leads to

^QBRSDC&52 i K DC QBRSS w̃ i

dG

df i
D L

2 i K DC QBRSS G̃i j

dG

dGi j
D L , ~33!

where the quantities have been reorganized so that the e
tion is valid for all fields, both commuting (Am andB) and
anticommuting (c̄ and c). Combinations likew̃ dG/df or
G̃ dG/dG are always commuting so it is preferable to ha
them in this form.
-

ua-

The same procedure can be applied also to the expecta
values^w̃aDC& and ^G̃abDC& to obtain

^w̃aQBRSDC&5^DCQBRSw̃a&2 i K w̃aDCQBRSS w̃ j

dG

df j
D L

2 i K w̃aDC QBRSS G̃jk

dG

dGjk
D L , ~34!

^G̃abQBRSDC&5^DCQBRSG̃ab&

2 i K G̃abDCQBRSS w̃ j

dG

df j
D L

2 i K G̃abDCQBRSS G̃jk

dG

dGjk
D L .

~35!

These results enable us to write the change in the effec
actionDG only in terms proportional to its functional deriva
tives simply by substituting Eqs.~33!–~35! into Eq. ~30!.
4-5
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One notices that the first terms coming from the rhs of E
~34! and ~35! cancel exactly those that come from Eq.~33!
when both are substituted into Eq.~30!. In this way terms
with a single functional derivative do not appear inDG.
After some rearrangements one is then left with

DG5
1

2 K DCQBRSS w̃ i

dG

df i
w̃ j

dG

df j
D L

1 K DCQBRSS w̃ i

dG

df i
G̃ jk

dG

dGjk
D L

1
1

2 K DC QBRSS G̃i j

dG

dGi j
G̃kl

dG

dGkl
D L 1O~D2!,

~36!

which can be cast into the compact result

DG@f,G#5
1

2 K DCQBRSS w̃ i

dG

df i
1G̃jk

dG

dGjk
D 2L 1O~D2!,

~37!

where the average andQBRS only apply to the fieldsw con-
tained inw̃ andG̃.

Equation~37! gives the variation of the 2PI effective ac
tion caused by a change in the gauge condition and is
main result of this paper. One sees that when the functio
derivatives ofG are set to zero this variation vanishes, a
then the effective action is gauge-fixing independent. T
situation occurs precisely at the stationary point, i.e. at
exactmean fieldsfex and two-point functionsGex.

However, the quantitiesfex andGex are not gauge-fixing
independent themselves. Indeed, one can explicitly com
their gauge dependence by applying the condition~12! to
Eqs.~28! and ~29!, obtaining in this manner

Dfex
i 5 i ^DCQBRS~ w̃ex!

i&, ~38!

DGex
i j 5 i ^DCQBRS~G̃ex!

i j &. ~39!

For the case of the effective actionG@f i ,Gi j ,Gi jk , . . . # in-
cluding higher-point correlation functions, the same pro
dure leads to the generalized result

DG52
1

2 K DCQBRSS w̃ i

dG

df i
1G̃i j

dG

dGi j

1G̃i jk •••

dG

dGi jk •••
1••• D 2L 1O~D2!, ~40!

where the quantitiesG̃i jk . . . are given by

G̃i5f̃ i5w i2f i , ~41a!

G̃i j 5~w2f! i~w2f! j2Gi j , ~41b!

G̃i jk5~w2f! i~w2f! j~w2f!k2Gi jk2Gi j ~w2f!k

2Gjk~w2f! i2Gki~w2f! j , ~41c!
06501
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G̃i jkl 5~w2f! i~w2f! j~w2f!k~w2f! l2Gi jk~w2f! l

2Gjkl~w2f! i2Gkli~w2f! j2Gli j ~w2f!k

2Gi j Gkl2GikGjl 2Gil Gk j

2$Gi j @~w2f!k~w2f! l2Gkl#15 permutations%

2Gi jkl , ~41d!

etc.

IV. GAUGE-FIXING DEPENDENCE OF F-DERIVABLE
APPROXIMATIONS

Our main interest is to study the gauge dependence
F-derivable approximations. As previously mentioned, th
are obtained after one truncates theskeleton-loop expansion
of the 2PI effective action at a certain order. For definiten
let us consider a truncation atL loops, which translates into a
truncation atO(g2L22) for the coupling constantg. ThenG
is split into two pieces

G@f,G#5G0@f,G#„of O~g2L22!…1G1@f,G#„of O~g2L!…,
~42!

where the truncated partG0 is used to generateapproximate
mean fieldsfap and two-point functionsGap from the sta-
tionarity condition~11!.

The separation of the effective actionG into G0 and G1
can be performed directly on the result~37! for the variation
DG. Evaluated at the approximate mean fieldsfap and two-
point functionsGap yields

D~G01G1!@fap,Gap#52
1

2 K DCQBRSS dG1

df i
U

fap,Gap

w̃ i ,ap

1
dG1

dGjk
U

fap,Gap

G̃jk,apD 2L 1O~D2!,

~43!

where we used the fact thatfap and Gap correspond to the
stationary point ofG0.3

On one hand, Eq.~43! implies that thetruncatedeffective
actionG0 evaluated at its corresponding physical mean fie
fap and propagatorsGap is gauge independent up to the ord
of truncation, i.e.O(g2L22). This is so sinceG1 is of order
O(g2L) and the rhs of Eq.~43! is of orderO(G1

2), so to first
orderDG0'2DG1'O(g2L).

On the other hand, Eq.~43! tells us that thecomplete
actionG evaluated at theapproximatemean fields and propa

3Since one works at the stationary point ofG0 instead of the exact
one obtained fromG this implies immediately from Eq.~7! that
expectation valueŝ•••& are here evaluated at the values of t
currents given by J852dG1 /df12f dG1 /dG and K85
22 dG1 /dG. However, sinceG1;O(g2L), the expectation values
are in first approximation equal to those obtained with vanish
currents.
4-6
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gators obtained fromG0 is gauge-fixing independent up t
order O(g4L), i.e. twice the order ofG1. This is a conse-
quence of having the square of the functional derivatives
G1 in the rhs of Eq.~43! and can be understood with
diagrammatic argument. To see that, first note4 that the dia-
grams in the loop expansion of the 2PI effective actionG are
skeletondiagrams, so without any self-energy insertions. T
approximate propagatorGap obtained from truncating the
skeleton series ofG to G0 at L loops@or atO(g2L22)] is the
solution of the variational condition~12!, which can be in-
terpreted as a dressing of the bare propagator with all
self-energy contributions that come from cutting one line
the 2PI diagrams ofG0. Evaluating the effective actionG at
Gap entails substituting this propagator in the diagrams of
skeleton-loop expansion. The outcome can be expanded p
turbatively to compare directly with the usualperturbative
loop expansionof the 1PI effective action. One can chec
that both expansions match perfectly up to 2L loops, or
O(g4L22). They differ at 2L11 loops because, by constru
tion, diagrams that would result from dressing skeleton d
grams ofG1 with self-energy contributions toGap coming
also of G1, do not appear in the expansion of the skele
series considered. However, they are present in the pertu
tive loop expansion. The importance of the fact that b
expansions match up to 2L loops is that, since the perturba
tive loop expansion is gauge-invariant at every loop ord
one can immediately conclude that so must be the skele
loop expansion ofG@Gap# up to 2L loops, or, in other words
up to O(g4L).

In this manner, Eq.~43! shows thatF-derivable approxi-
mations, as truncations to the 2PI effective action, hav
controlled gauge-fixing dependence, in the sense that ga
dependent terms appear at higher orders.

V. CHOICE OF GAUGE CONDITION

A large body of experience with gauge theory has led
the common view that one should not tamper with gau
invariance. Yet, we explore here the possibility of accept
a controlled amount of gauge dependence in the computa
of physical quantities. The question is then, what is a go
choice of gauge fixing? To be specific, consider the clas
covariant gauges described byCa5]mAm

a . Then we have to
decide on a reasonable choice for the gauge parametej.
Evidently, j should be such that it does not upset the
sumption thatG1 may be neglected compared toG0.

That such upset can happen is easier to see in the m
familiar perturbative case. There we have the loop expan
in terms of bare propagators. Consider for simplicity d
grams without ghosts. The gauge propagators have a lo
tudinal part proportional toj, so in a given diagram withI
internal lines we would have the factorj I . In terms of the
number of three- and four-point verticesV3 andV4 and the
number of loopsL it can be written asj2L221V3/2. Together
with the powersg2L22 in the bare coupling constantg, the
diagram has an overall factor (gj)2L22jV3/2. Taking j big

4We takef50 for simplicity.
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enough, sayuju.1/g, various terms belonging to differen
orders ofg in the perturbation expansion would be shuffle
This will evidently upset our ordering principle.

In a F-derivable approximation, however, we consid
the loop expansion in terms of dressed propagators wh
their j-dependence is not cleara priori. For that one needs to
find the stationary point ofG0, and this is done after assum
ing thatG1 may be neglected compared toG0. Provided we
had the explicit form of the dressed propagator, an argum
similar to the one above would give the range ofj that is
allowed without upsetting this assumption. Unfortunate
finding the dressed propagators is in general a formida
task. We nevertheless venture the following argument th
good choice forj is in the interval (0,2).

Assume that theF-derivable approximation gives indee
an approximation to the path integral

Z5E DADcDc̄ expF2 i

g2 E d4xH 1

4
Fg51

2 1 c̄]m~]m2 iAm!c

1
1

2j
~]mAm!2J G , ~44!

where we have integrated out theB field and rescaledA
→A/g, (c,c̄)→(c/Ag,c̄/Ag). Theng2 in the above action is
also the ordering parameter in the skeleton-loop expansio
F. If we do not want to upset this power counting,j should
be treated of order one asg2→0. For finiteg2 it seems best
to choose 1/2j of the same magnitude as the other numeri
coefficients in the action, which are 1/4 and 1/2 forF2, and
1 for the ghost terms. So this suggests the choicej in the
range 1–2. Saddle point arguments forg2→0 are not upset
by letting alsoj→0, so it is reasonable to allow also value
of j→0. On the other hand,j@1 would upset the longitu-
dinal parts of the saddle point regions in functional space~as
for the perturbative case above!. To allow a continuation of
the path integral to imaginary time,j has to be positive. All
these arguments lead us to conclude thatj is best taken in
the range 0–2.

VI. CONCLUSIONS AND COMMENTS

In this paper, the gauge dependence of the 2PI effec
action that defines aF-derivable approximation of a gaug
theory has been determined. To obtain it we used its de
tion as a Legendre transform of a generating functional w
bilocal sources and the BRS symmetry of the underly
Yang-Mills action. As expected on general grounds, the
sult shows that the 2PI effective action is gauge independ
at its stationary point. Furthermore, the result has been
plied to study the gauge dependence ofF-derivable approxi-
mations, defined as truncations of the 2PI effective action
a certain loop order. Even though correlation functions
rived within these approximation schemes are known no
fulfill the Ward identities required by the gauge symmetry
has been shown that the truncated effective action define
its stationary point has a controlled gauge-fixing dependen
i.e. the explicit gauge dependent terms appear at highe
4-7
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der. Furthermore, if one uses the stationary quantities of
truncated action to evaluate thecomplete2PI effective ac-
tion, the gauge dependence appears then at twice the ord
truncation.

These features might be interesting for the computation
thermodynamical quantities derived from the 2PI effect
action in gauge theories, such as the pressure and ent
The authors of@5# have calculated the entropy of the quar
gluon plasma with an approximateF-derivable approxima-
tion, but in order to achieve gauge independence, they ha
sacrifice the self-consistency guaranteed by working at
stationary point, hence the word approximate. Their
proach was nevertheless strongly motivated from a quasi
ticle picture of the quark-gluon plasma, which can be us
@14# to describe the lattice results@15#. In any case, our con
siderations suggest thatF-derivable approximations may a
low a systematic method for computing thermodynam
functions without having to sacrifice its remarkable prop
ties. Gauge-fixing dependent artifacts would appear at h
orders, thus making the approximation controllable.

It might seem unsatisfactory that the gauge dependen
not completely removed inF-derivable approximations. Yet
we propose here to accept a controlled amount of gauge
pendence in physical quantities. We argued thatF-derivable
approximations, provided they are indeed an approxima
to the exact gauge theory, implicitly restrict the choices
gauges available. This prevents the high-order gauge artif
from taking arbitrary values that could render any compu
quantity physically meaningless. Both the fact that gau
dependent terms appear at higher orders and that they
constrained by this restriction makes the error introduced
breaking gauge invariance controllable and indicate t
F-derivable approximations may indeed give reasonable
swers to physical quantities. A detailed examination to qu
.
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tify those gauge dependent terms would involve solving
F-derivable approximation for gauge theories. So far,
complete solutions for QED and pure glue QCD even
lowest order~2-loop! have not appeared in the literature.

We would like to note that in the derivation presented
this paper we did not discuss aspects related to regulariza
and renormalization. This makes the calculations heuristi
some respects. We compared the path integral with a s
eton expansion of the effective action, neither of which h
been clearly defined. To make the path integral well defin
a regularization is needed, preferably nonperturbative,
this should be compatible with the BRS invariance us
With a lattice regularization this is nontrivial@16#. Another
point is that the regularization dependence needs to be
moved, or at least shown to be negligible~in the case of
QED ‘‘triviality’’ is expected to occur!. Renormalization is a
nontrivial issue inF-derivable approximations@9#. A general
renormalization procedure, such as the one recently propo
by van Hees and Knoll@10#, would be needed in order to
have a well defined path-integral. A detailed study of the
issues inF-derivable approximations of gauge theories co
stitutes the subject of further investigations.
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