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We examine the problem of gauge dependence of the two-particle irred(2iti)eeffective action and its
d-derivable approximations in gauge theories. The dependence on the gauge-fixing condition is obtained. The
result shows thatb-derivable approximations, defined as truncations of the 2Pl effective action at a certain
order, have a controlled gauge dependence, i.e. the gauge dependent terms appear at higher order than the
truncation order. Furthermore, using the stationary point obtained for the approximation to evaluate the com-
plete 2Pl effective action boosts the order at which the gauge dependent terms appear to twice the order of
truncation. We also comment on the significance of this controlled gauge dependence.
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[. INTRODUCTION and CERN. Calculations of thermodynamical quantities such
as the entropy5] and free energy6] have been achieved
Perturbative approaches to the study of equilibrium andising these methods. In those calculations a resummation of
nonequilibrium properties of hot and dense media may leathe physics encoded in the hard thermal lodH3IL) was
to inconsistencies and are often plagued with infrared diverperformed. It is important to mention the fact that, due to the
gences. These problems are linked to the fact that calculaemarkable symmetry properties of the HTL, the results in
tions in terms of the bare quantities of the underlying quanRefs.[5,6] are manifestly gauge invariant. Nonequilibrium
tum field theory(and perturbative approximations thergof properties can also be formally studied within these approxi-
fail to describe the collective phenomena in the medium. Amation schemep7]. They could be used to shed some light
strategy to tackle this handicap of the theory is to work withon important issues such as thermalization and loss of initial
dressed quantities, in which the most relevant effects of theorrelations. Very interesting results in this direction have
interacting ensemble are accounted for. These dressed quareen obtainedl8] with scalar models.
tities are obtained by means of nonperturbative resummation However, an extension of these approximation schemes
schemes, which usually involve solving a set of self-beyond the HTL regime in the study of QCD plasmas is still
consistent equations. lacking. There are two main problems involved. One is that
An arbitrary resummation scheme will however not guar-renormalization seems to be a nontrivial issue, as shown in
antee that the conservation laws of the original theory arexplicit calculations for scalar theori¢8]. To deal with this
preserved by the dressed quantities. A way to solve this prolsbstacle, a recent approach based on Bogolubov-Parasiuk-
lem is by formulating the scheme in terms of an action func-Hepp-ZimmermannBPHZ2) renormalization has been pro-
tional that respects the symmetries of the original theory. Aposed by van Hees and Kn¢ll0]. The other main problem
particular kind of such action functionals was first introducedis the fact that gauge invariance may be lost in the approxi-
in the study of nonrelativistic Fermi systems by Luttinger mations. This is because, in general, the solutions for the
and Ward[1], De Dominicis and Martirf2], and Baym[3]  dressed propagators and/or vertices do not satisfy Ward iden-
and later generalized to relativistic field theories by Corn-tities. In particular this implies that thermodynamical quan-
wall, Jackiw, and Toumboulig4]. These functionals, which tities computed within these approximations will suffer from
are derived from the so-called two-particle irreducit2l) gauge dependence. This pathology shows up as an explicit
effective action, involve a diagrammatic expansion in termsdependence on the choice of gauge-condition.
of 2P| skeleton graphs. A particular choice for an action In this paper we study the problem of gauge dependence
functional is obtained by truncating this diagrammatic seriespf the 2PI effective action and it$-derivable approxima-
in this way defining what is called @-derivable approxima- tions. In Sec. Il we review the general formalism of
tion. A variational principle applied to the resulting action ®-derivable approximations and introduce the notation to be
leads to a set of self-consistent equations from which theised. In Sec. Il we apply the formalism to gauge theories
dressed quantities are obtained. and determine the dependence of the 2P| effective action
A manifest advantage of such a functional formulation isunder a change of the gauge-fixing condition. From the result
that global symmetries of the original theory are preservedone sees that the 2PI effective action is gauge independent at
Additionally, the variational principle used to determine theits stationary point. This was already shown for the 1PI ef-
dressed quantities guarantees thermodynamic consistenfsctive action and expected from general argumght$ In
[3]. All these useful properties makie-derivable approxima- Sec. IV we apply the result of Sec. Ill to thk-derivable
tions a very attractive mathematical framework for the studyapproximations that result from truncating the 2Pl effective
of properties of high-energy plasmas. In particular, they mayaction at a certain order. We show that these approximations
prove useful for QCD plasmas, whose interest has grown itmave a controlled gauge-fixing dependence, i.e. the gauge-
recent years due to the possibility of creating quark-gluordependent terms appear at higher order. We discuss in Sec. V
plasma in heavy-ion collision experiments at Brookhaverthat the use of®-derivable approximations restricts the
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choices of gauge fixing available, if they are indeed to be _SW o S°W .
good approximations to the exact theory. This prevents the i~——==¢', I 77=GY,

) o 8(id,) o(idy) 8(id;)
high-order gauge-dependent terms to take arbitrarily large 4
values, such that the gauge dependence will be indeed con- N (4)
trolled. W —giik

{5130 8(13,) 8(id) - -
Il. 2Pl EFFECTIVE ACTION AND ®-DERIVABLE
APPROXIMATIONS Functional differentiations ofV[ J,K] with respect to the

. . . . bilocal currentK may generate also disconnected diagrams.
The generating functional for correlation functions can beg, example, differentiating once with respectitdeads to
written as '

) ) ) J,K i .
2[3,K]= f DpeilSlel +3i¢ - 120K} (1) iS;/Z[T”)]ZE(w(ﬁJ"’G”)- ®)

whereS[¢] is the action,e represents the fields and te A functional Legendre transform in the mean fiettdand the

and K are auxiliary external sources. We use a shorthango-point functionG' leads to the so-called 2PI effective
notation where Latin indices stand for all field and currentaction

attributesfi.e. ¢(x) — ¢;] and summation and/or integration

over repeated indices is understood, i.eJ¢' 1 o

= [d*xJ(x) ¢(x).! The generating functional of connected F[¢,G]=W[J,K]—Ji¢'—EKij(¢'¢J+G'J). (6)
diagramsW is defined fromZ as

W[J,K]=—ilog(Z[J,K]). (2)  From its definition one can derive the relations
The expectation value of a function@l ¢] is given by ST[,G] j
s Toe UK
oren DpO[ el {Stel +Jie! + U26'K; o) -O[ 5 }W
el)= ———— =i . :
j DpeSlel + 3¢+ 1720k o1} (iJ) 5F[¢,G]: B EK-- o
Plell 2
()
Mean fields¢' and connected correlation functio@* With the help of Eq(7) one can write the expression for the
can then be obtained by functional differentiationsVgfJ] expectation value of a function&®[ ¢] in terms of the 2PI
as effective action as
(O[e])= e~ iG] f Do O[(p]ei{S[‘P]_{5F[¢xG]/§¢i}(‘P_¢)i_{5F[¢vG]/56ij}[(‘P_¢)i(‘P_¢)j_Gij]}_ (8)

The 2PI effective action can be cast into the convenient formi/2 for bosons and- 1 for fermions. The functionab[ ¢,G]

[1-4,7 consists on the sum of all two-particle-irreducilf®®1) skel-
B . 1 Z1 1 eton diagramswith bare vertices and dressed propagators. In
I'[¢,G]=S[#]+ic Tr{log(G™ )+ G(Go "~ G )} this context skeleton diagrams are those without self-energy
—iD[$,G]. (9) insertions. Non-2PI diagrams with mean field insertions are

also included in the definition of.2 For example, in the
whereS; is the free part of actiorG, is the bare two-point case of a theory with quartic interactiofmich as\ ¢%), the
function (—i6%Sy[ @]/ 8¢ d¢) ! andc is a constant equal to above expression can be written graphically as

The time integration involved in this functional product can also 2In the literaturg4] @ is usually defined in such a way that it only
run along a contou€ in the complex plane such as the ones used incontains strict 2Pl diagrams. This involves a redefinition of the
the real and imaginary time formalisms of thermal field theory. Thisaction to include mean fields and tadpoles. We prefer to the above
detail will however not be important in our calculations, so we will notation where all interaction parts are placed@inOf course, both
omit the subscript in the integrations. definitions agree whegp=0.
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F[¢,G]=so[¢1+ic{O+ SO IO tS LTS T Nt

where the thick lines ardressedpropagators, the small lol- ll. GAUGE-FIXING DEPENDENCE OF THE 2PI
lipops are the mean fields and the cross-hatched blob is the EFFECTIVE ACTION
one-particle irreducible self-energil, defined from the
dressed propagator via the usual Dyson equat@®n!

We consider now the case of a pure Yang-Mills theory
with gauge groupG. Its action is given by

=G M+ill.
In practice one has to restrict to an approximated version .
of the 2PI effective action that results from considering only f d XZ FoL(0FL"(x), (14)

a certain subset of diagrams in the functio®al This defines
a d-derivable approximation. One typically considers thewhereF =F2 T.=9 A,— —g[A,,A,] is the field-
loop expansion of skeleton diagrams as pictured m(Eq)
(and refered to as thekeleton-loop expansian the follow

ing), and truncates it at a given order. In this way the 2Pl
effective actionl” is split into two pieces: the truncated part
I'p, and the higher order palt;. Then one take$', as the
approximated effective action. This action defiraggoroxi-
mate mean fields and two-point functiong,, and G, i
which result from the stationarity condition, i.e. from the A HUAM(X) U(x)Aﬂ(x)U‘l(x)——[aMU(x)]U‘l(x).
implicit functional equation7) for vanishing sourced and 9

strength tensor of the gauge fie@zAZTa, g is the (un-
renormalizegl coupling constant andl, are the generators of
the Lie algebra of the gauge gro

The action is invariant under gauge transformations
U(x) € G of the gauge potentia,, :

K, as (15
This invariance implies that the functional integrals over
ol'o[ ¢,G] ~0 and ol'o[ ¢,G] o gauge field configurations are ill-defined. One gets around
5 6 .G oG 6. G ' this difficulty by the Faddeev-Popov gauge-fixing procedure,
ap’“ap ap’—ap

(11) which introduces a gauge-breaking te8g- into the action.
In the context of Becchi-Rouet-StofBRS) quantization this

Theseapproximatemean fields and two-point functions de- term is realized in a useful manner by introducing some aux-

fined from the truncated actidry, differ from theexactones, ~liary fields: the Faddeev-Popov fermionic ghost fielfs
which are obtained from the stationary point of the completeﬁlnd c® and the bosonic Lautrup-Nakanishi fiel@S. The

2P| effective action as gauge-fixing is implemented through the conditiGi[ A]
=0, where a typical choice is the covariant gaug# A]
ST[¢,G] _ 8(To+Ty) o =(9“A‘;. The gauge-fixed action then reads
1) S
¢ ¢ Pex-Cex S=Symt Ser
1 — 5Ca[A]
q oI'¢,G] _ d(T'ot Iy _0 (12 J d x{ - ZFZ,,(X)FQ”(X)—C&( v, —5— (D (X))
6G 5G| '
¢6X’GGX 1
B A A]— z€B,(x)B? 1
We end this section by noting that one could also construct a(X)CTA] 2§ (0B 1, (16

more general effective actions by including higher-point ex-

ternal sourcesJ,,K,,, Lijx, ... into the functionalw  WhereD,=d,—igT®A, is the covariant derivative andis
=W[J; .,Kjj ,Ljj, -..] and performing a Legendre trans- the gauge f|xmg parameter. . o _
form as follows The action obtained by adding this gauge-fixing term is
no longer invariant under local gauge transformati@ts).
Il #.Gij .G, - - -] However, it is invariant under BRS transformations, which
are defined as
=W[J; Kij Lijk, - .. 1= Ji¢' = —K|J(¢ ¢! +G') SprdA%=e€(D,0)%,
—}L Gik+ 3G ¢k+ b i HK) — 13 5BR§a:i€9C2,
5 Lk $Frgipg—--. (13 an
JprL?= — €BY,
This form of the effective action can be rewritten as a dia-
grammatic series in terms of skeleton diagrams oftpeint SgrP2=0,
vertex functions[12] and can be used for generalized
d-derivable approximations. wheree is an infinitesimal global anticommuting parameter
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and c¢® is a short-hand notation for TEc?)(T,cP) Having set up the notation we turn now to study the gauge
=1/2[T? TP]ccP. The Lautrup-Nakanishi fiel has been dependence of the 2PI effective action. We study how it
introduced to ensure the nilpotency of the BRS chargdransforms both under a change of the gauge-fixing condition
Qgrs, defined asdgrs= €Qprs. It allows for a convenient C* A]—C3A]+AC* A] and gauge parametér— £+ A¢,
rewriting of the gauge-breaking term as a complete BRSr more generally, under a change—W¥ + AW, Under this

variation shift of gauge condition, the effective action, the mean field
L and the two-point function, respectively, change as
SGF=QBRSJ d“x[Ef&x)Ba(x)—Q(x)ca[A] I—T'=T+AT,
=QgrsV. (18 p—od'=d+Ag, (20)
Using the notation of Sec. Il the generating functional G—G'=G+AG.

Z13.K] for this gauge theory can be compactly written as The currents]; andK;; are taken to be gauge independent

, . ik o since they are external. This fact allows us to calculate im-
Z[J,K]=N§f D! {Sym Qersl +ie +1/2¢ Kij o'} mediately from Eq(7) how much the first functional deriva-
_ S tives of the effective action vary under the gauge-fixing
= gi{l[6.Cl+3i¢'+ UXj(¢' ¢ + G} (19  change, obtaining
where ¢ denotes collectively all fields{AfL(x),ca(x), A( or ):O
c?(x),B%(x)}, J and K denote all their associated currents 6Gij
{Ja.dc. 35 I8 . Kan . Kee.Kgg}, and Latin indices stand for r ST (21
both space-time and group indices, ¥.(x)—A'. This no- — = C—
p group hE.(x)— A 5¢i) 2A ¢ 56,

tation is used to allow one to write formulas in a compact
way, though one should bear in mind that the ghost fields The first functional derivatives of are used to find the
andc and their associated local curredisand J; are anti-  stationary point by setting them to zero as done in @8).
commuting variablesV; is a &-dependent infinite constant From Eq.(21) one notices that the stationarity condition it-
generated during the Faddeev-Popov gauge-fixing procedurself is only gauge invariant if it is realizesimultaneouslyor

Its gauge parameter dependence can be seen already in theth argumentgp andG.

free theory and can be absorbed into the action by rescaling To compute the variation of the effective actibnitself
the ghost fields by~ . Hence this constant will not play a one can use the relatiotid) to cast Eq(19) into the conve-
role in the following. nient form

ell'wl¢.Gl = f Dpe!{Sru+Qers¥ ~ (o= @)l o101 ~[(¢i— i) (¢j~ ¢)) ~ Gy 61/ 3G} (22

For simplicity and later convenience we denote the field combinatiprse); and[ (¢ — ¢)i(¢— ¢);— G;; ] that appear in the

exponent of Eq(22) asg; andG;;, respectively. These have the property that their expectation vajypand(G;;) vanish.
After a change of gauge conditioh—W¥'=W¥+ AW Eq. (22) becomes

ol = g (T +AT)
:J Dep{e{Svm* Qara¥ il 115411 = Gyj [ 8T1(5G;))1}
X giQaRa\ ¥ +A B[ 3T/ 5] +AGy [5G 1+ AdiA i[85y 11 (23)
which using the notation of Ed3) leads to
e/ AT = (g {QeReA W +A KT/ 0] + AGy [T/ 3Gy 1+ AdiA [ aT1 G}y (24)

This result is valid for any finite change in the gauge-fixing conditions. To proceed further we restrict ourselves to infinitesimal
variationsAW¥. Then one can expand both sides of E2f}) to obtain

r
+0(A?) (25

ST 0
AF:(QBRSA\I’>+A¢i5_¢_+AGij 3G
i ij
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where we used the fact that¢p andAG are of orderO(AW). This can be easily checked. Indeed, following the same steps
as to obtain Eq(24) one gets for the mean field

G’ =+ Adp=e 13T QoY + A AT/54] + AG;[9T10Gij] + 8 4iAd[oT10Gi 1y (26)

which using Eq(24) reduces to s or
AF:(QBRSA‘I’>+|<€DiQBRsNI'>5T¢_
1

<(PeiQBRSAq'>
¢+Ap= m, (27 ST
Ti(GijQaraA W) 55—+ 0(A%).  (30)
and expanding il ¥ yields !
Ai=i(¢iQerAW)+0(A?). (28)

One expects the stationary point of the effective action, i.e.
when its functional derivatives are set to zero, to be gauge-
independent. That is still not obvious from E&O) since it

= 2 appears that the first term in the right-hand <idelS) would
AG;;=i(GijQeraA W)+ O(A%), @9 6t vanish. For that, one can make use of the following trick
which verifies our statement above. Moreover, E88) and  [13]. Consider the expectation value of the gauge-fixing
(29) can be used to write E¢25) as changeA¥, namely

Similarly one computes the variation of the two-point func-
tion obtaining

(AW)= e—iFf D@Aq/ei{SYM"'QBRSW_;’i[‘sr/&f’i] _éij[5F/5Gij]}_ (3D

One can do a BRS transformatign— ¢ + eQgrgp 0On the field variables in the path-integral. This transformation leaves the
measure invariant and only amounts to a shift of the integration variable, so the equation remains the same. The left-hand side
can be however rewritten so that

(AW)= e—iFJ Do(AVY + EQBRSA\II)ei{SYM"'QBRS\P_;i[‘sF/‘sqﬁi]_éij[5F/5Gij]_EQBRgPi[‘sF/‘S(?ﬁi]_EQBRéij[‘sF/‘SGij]}, (32

where we have used the fact thatV[ ¢+ eQprep | =AW The same procedure can be applied also to the expectation
+€eQgrA W, which follows from the definition(18). The  values(p,A¥) and(G,,AW¥) to obtain

BRS chargeQgrsappearing in this expression does not op-

erate on the mean fields and two-point function$s that are ~ ~ L~ ~ oI

part of ¢ andG, but only on the fields to be path-integrated (£aQerAW)=(AWQarspa) ~1| ¢aA¥ Qer ‘P"Fq

over. Expanding the rhs of Eq32) in the anticommuting

parametere leads to —i<'<} A QBRS(é'k or )> 34
a ] 5GJk 1
~ o - B -
(QgrA W)= —i < AV QBRS( @i 5—¢_) > (GapQerAY)=(AYQprGan)
' - ~ o
. ~ ol _i<GabA‘I’QBRs( (Pj%>>
_|<A\I’ QBR{GIJ EIJ)>, (33) J

where the quantities have been reorganized so that the equa-
tion is valid for all fields, both commutingA(, andB) and (35

anticommuting ¢ andc). Combinations likep 8T'/8¢ of  These results enable us to write the change in the effective
G oI'/ 6G are always commuting so it is preferable to haveactionAI' only in terms proportional to its functional deriva-
them in this form. tives simply by substituting Eq9433)—(35) into Eg. (30).
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One notices that the first terms coming from the rhs of Eqgs. - _
(34) and (35) cancel exactly those that come from E§3) Giw=(o=dh(e= (0= Dl o= )~ Gix(e— &)
when both are substituted into EO). In this way terms —Gju(e—@)i—Gui(e— ) —Gyij(¢— d)k
with a single functional derivative do not appear A".
After some rearrangements one is then left with ~GijGu—GikGji — Gi Gy
1 ST o —1{Gij[(¢— d)(@— @) — Gy ]+ 5 permutations
AF:§<A\I’QBR4 @i 5¢I(PJ 5¢J>> _Gijkl , (410)
A ~ ol & ol etc.
+ Qer ¢ 5 jkfjk
1 ST ST IV. GAUGE-FIXING DEPENDENCE OF ®-DERIVABLE
= = = 2 APPROXIMATIONS
+ 2<A"P QBRS( GIJ 5G|] Gk| 5Gk|)>+O(A )1

Our main interest is to study the gauge dependence of
(36)  d-derivable approximations. As previously mentioned, they
are obtained after one truncates gieleton-loop expansion
of the 2PI effective action at a certain order. For definiteness
2 let us consider a truncation btioops, which translates into a
>+O(A2), truncation atO(g2-~2) for the coupling constarg. ThenI’

is split into two pieces
(37) j i 2L-2 2L
where the average ar@zgsonly apply to the fieldsp con- I'l#.G]=Tol4,G](0f O(g N+Tl4,.GJ(of Olg (Qé)
tained inp andG.

Equation(37) gives the variation of the 2P| effective ac- where the truncated palt, is used to generat@pproximate
tion caused by a change in the gauge condition and is theean fields¢,, and two-point functionss,, from the sta-
main result of this paper. One sees that when the functiondlonarity condition(11).
derivatives ofl" are set to zero this variation vanishes, and The separation of the effective actidhinto I'y andI';
then the effective action is gauge-fixing independent. Thian be performed directly on the res(8%) for the variation
situation occurs precisely at the stationary point, i.e. at thé\I'. Evaluated at the approximate mean fiedblg and two-
exactmean fieldsg,., and two-point function$s,,. point functionsG,,, yields

However, the quantitieg., and G, are not gauge-fixing

independent themselves. Indeed, one can explicitly CompmpA(FoJrFl)[d) J=- }< AWQBRS(&
apr a

which can be cast into the compact result

1 or oI’
AF[¢1G]: E A‘;[,QBR ()DI 5¢ +ij 5Gk
J

their gauge dependence by applying the conditid®) to S 6o G Pi.ap
Egs.(28) and(29), obtaining in this manner apr-ap
. - oIy - 2 5
A ¢pey=i{AV Qgrd Pex)'), (38 + 5G|, Gik.ap >+O(A ),
ap’ ap
AGL=i(AVQprg Cen"). (39 (43
For the case of the effective actidti ¢; ,G;; ,Gjj, ...] in-  where we used the fact that,, and G, correspond to the
cluding higher-point correlation functions, the same proce-stationary point of.3
dure leads to the generalized result On one hand, Eq43) implies that theruncatedeffective
actionI’ evaluated at its corresponding physical mean fields
~ or _ or i i
AT=_ = A‘I’QBRs( PRI Y ¢apand propagator@g,itszgaug_e |r_1depen_dent up to the order
2 oo oG;; of truncation, i.eO(g*-~2). This is so sincd’; is of order
~ ST 2 0(g®") and the rhs of Eq43) is of orderO(I'?), so to first
+G|Jk—5G + .. >+O(A2), (40) Ol’del’AI‘()%—AFl%O(gZL)
ijk- -

On the other hand, Eq43) tells us that thecomplete

o~ ) actionI” evaluated at thapproximatemean fields and propa-
where the quantitie&;;, . = are given by

Ci=di=¢i— i, (413 3Since one works at the stationary pointlaf instead of the exact
one obtained fronT" this implies immediately from Eq(7) that
=(¢—9¢)i(e—¢);—Gjj, (41b) expectation valueg- --) are here evaluated at the values of the
currents given by J'=—-6I'1/8¢p+2¢ 6I'1/6G and K'=
”k =(o—)i(e—B);(¢— )k~ Gij—Gij(¢— b)i —26T';/6G. However, sincd’;~0(g?"), the expectation values
are in first approximation equal to those obtained with vanishing
—Gj(¢—¢)i—Gyi(e—¢);, (419  currents.
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gators obtained front’y is gauge-fixing independent up to enough, sayé|>1/g, various terms belonging to different
order O(g*), i.e. twice the order of’;. This is a conse- orders ofg in the perturbation expansion would be shuffled.
qguence of having the square of the functional derivatives off his will evidently upset our ordering principle.
I'; in the rhs of EqQ.(43) and can be understood with a In a ®-derivable approximation, however, we consider
diagrammatic argument. To see that, first Adtet the dia- the loop expansion in terms of dressed propagators where
grams in the loop expansion of the 2Pl effective aclioare  their £&-dependence is not clearpriori. For that one needs to
skeletordiagrams, so without any self-energy insertions. Thefind the stationary point ofF 3, and this is done after assum-
approximate propagatoG,, obtained from truncating the ing thatl’; may be neglected comparedlfg. Provided we
skeleton series df to I'y atL loops[or atO(g?-~?)] isthe  had the explicit form of the dressed propagator, an argument
solution of the variational conditiofil2), which can be in- similar to the one above would give the rangeéofthat is
terpreted as a dressing of the bare propagator with all thallowed without upsetting this assumption. Unfortunately,
self-energy contributions that come from cutting one line infinding the dressed propagators is in general a formidable
the 2PI diagrams of ;. Evaluating the effective actiohi at  task. We nevertheless venture the following argument that a
Gap entails substituting this propagator in the diagrams of thegood choice forg is in the interval (0,2).
skeleton-loop expansioithe outcome can be expanded per- Assume that th&b-derivable approximation gives indeed
turbatively to compare directly with the usupérturbative  an approximation to the path integral
loop expansiorof the 1PI effective action. One can check
that both expansions match perfectly up tb Bops, or _ —i 1 _
0(g*-~2). They differ at 2+ 1 loops because, by construc- Z:j DADcDc EXF{—ZJ d4X|ZFS=1+ co*(d,—iA,)C
tion, diagrams that would result from dressing skeleton dia- 9
grams ofI'; with self-energy contributions t&,, coming
also of I'y, do not appear in the expansion of the skeleton + _(WAM)ZH, (44)
series considered. However, they are present in the perturba- §
tive loop expansion. The importance of the fact that both
expansions match up td_2loops is that, since the perturba- Where we have integrated out tii field and rescaledh
tive loop expansion is gauge-invariant at every loop order—A/g, (c,c)—(c/\/g,c/\/g). Theng? in the above action is
one can immediately conclude that so must be the skeletoralso the ordering parameter in the skeleton-loop expansion of
loop expansion of [ G, up to 2 loops, or, in other words, &. If we do not want to upset this power countirggshould
up to O(g*h). be treated of order one @—0. For finiteg? it seems best

In this manner, Eq(43) shows thatb-derivable approxi- to choose 1/2 of the same magnitude as the other numerical
mations, as truncations to the 2Pl effective action, have aoefficients in the action, which are 1/4 and 1/2 kg, and
controlled gauge-fixing dependence, in the sense that gaugefor the ghost terms. So this suggests the chgide the

dependent terms appear at higher orders. range 1—2. Saddle point arguments §3r—0 are not upset
by letting alsoé— 0, so it is reasonable to allow also values
V. CHOICE OF GAUGE CONDITION of £—~0. On the other hand>1 would upset the longitu-

) ) dinal parts of the saddle point regions in functional sp@se
A large body of experience with gauge theory has led (g the perturbative case abovao allow a continuation of

the common view that one should not tamper with gauggpe path integral to imaginary timé,has to be positive. All

invariance. Yet, we explore here the possibility of acceptin'glhese arguments lead us to conclude thig best taken in
a controlled amount of gauge dependence in the computatigo range 0—2.

of physical quantities. The question is then, what is a good
choice of gauge fixing? To be specific, consider the class of
covariant gauges described ED?=(?“AZ. Then we have to

decide on a reasonable choice for the gauge parandeter  |n this paper, the gauge dependence of the 2Pl effective
Evidently, £ should be such that it does not upset the asaction that defines &-derivable approximation of a gauge
sumption thafi’y may be neglected compared Ifg. theory has been determined. To obtain it we used its defini-
That such upset can happen is easier to see in the mot@n as a Legendre transform of a generating functional with
familiar perturbative case. There we have the loop expansiopjlocal sources and the BRS symmetry of the underlying
in terms of bare propagators. Consider for simplicity dia-Yang-Mills action. As expected on general grounds, the re-
grams without ghosts. The gauge propagators have a longsult shows that the 2P| effective action is gauge independent
tudinal part proportional t@&, so in a given diagram with  at its stationary point. Furthermore, the result has been ap-
internal lines we would have the factgt. In terms of the plied to study the gauge dependencebatierivable approxi-
number of three- and four-point vertices andV, and the  mations, defined as truncations of the 2PI effective action at
number of loopd. it can be written ag?-~2*Vs2. Together  a certain loop order. Even though correlation functions de-
with the powersg?-~2 in the bare coupling constagf the  rived within these approximation schemes are known not to
diagram has an overall factogé)?- 232, Taking ¢ big  fulfill the Ward identities required by the gauge symmetry, it
has been shown that the truncated effective action defined at
its stationary point has a controlled gauge-fixing dependence,
“We takeg=0 for simplicity. i.e. the explicit gauge dependent terms appear at higher or-

VI. CONCLUSIONS AND COMMENTS
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der. Furthermore, if one uses the stationary quantities of théfy those gauge dependent terms would involve solving a
truncated action to evaluate tltemplete2PI effective ac- ®d-derivable approximation for gauge theories. So far, the
tion, the gauge dependence appears then at twice the orderadmplete solutions for QED and pure glue QCD even at
truncation. lowest order(2-loop) have not appeared in the literature.
These features might be interesting for the computation of We would like to note that in the derivation presented in
thermodynamical quantities derived from the 2P| effectivethis paper we did not discuss aspects related to regularization
action in gauge theories, such as the pressure and entro@nd renormalization. This makes the calculations heuristic in
The authors of5] have calculated the entropy of the quark- some respects. We compared the path integral with a skel-
gluon plasma with an approximatk-derivable approxima- eton expansion of the effective action, neither of which has
tion, but in order to achieve gauge independence, they had toeen clearly defined. To make the path integral well defined
sacrifice the self-consistency guaranteed by working at tha regularization is needed, preferably nonperturbative, and
stationary point, hence the word approximate. Their apthis should be compatible with the BRS invariance used.
proach was nevertheless strongly motivated from a quasipaWith a lattice regularization this is nontrivill6]. Another
ticle picture of the quark-gluon plasma, which can be usegoint is that the regularization dependence needs to be re-
[14] to describe the lattice resultg5]. In any case, our con- moved, or at least shown to be negligikie the case of
siderations suggest thét-derivable approximations may al- QED “triviality” is expected to occu). Renormalization is a
low a systematic method for computing thermodynamicnontrivial issue in®-derivable approximation®]. A general
functions without having to sacrifice its remarkable proper-renormalization procedure, such as the one recently proposed
ties. Gauge-fixing dependent artifacts would appear at higby van Hees and Knol[10], would be needed in order to
orders, thus making the approximation controllable. have a well defined path-integral. A detailed study of these
It might seem unsatisfactory that the gauge dependence issues in®-derivable approximations of gauge theories con-
not completely removed i-derivable approximations. Yet, stitutes the subject of further investigations.
we propose here to accept a controlled amount of gauge de-
pendence in physical quantities. We argued thaderivable
approximations, provided they are indeed an approximation
to the exact gauge theory, implicitly restrict the choices of The authors wish to thank J.P. Blaizot, U. Reinosa, J.
gauges available. This prevents the high-order gauge artifacBerges, H. van Hees, E. Mottola and C. van Weert for useful
from taking arbitrary values that could render any computedliscussions and comments. The authors would also like to
quantity physically meaningless. Both the fact that gaugehank the KITP in Santa Barbara for hospitality, and the or-
dependent terms appear at higher orders and that they aganizers of the worksho@CD and Gauge Dynamics in the
constrained by this restriction makes the error introduced byRHIC Erafor the opportunity to participate. Research at the
breaking gauge invariance controllable and indicate thaKITP was supported in part by the National Science Foun-
d-derivable approximations may indeed give reasonable ardation under Grant No. PHY99-07949. This research is also
swers to physical quantities. A detailed examination to quansupported by FOM.
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