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Sphalerons, knots, and dynamical compactification in Yang-Mills-Chern-Simons theories
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Euclideand53 SU(2) Yang-Mills-Chern-Simons~YMCS! theory may have solitons in the presence of
appropriate mass terms, including Georgi-Glashow~GGCS! theory. For integral CS levelk and for solitons
carrying integral CS numberNCS, YMCS theory is gauge invariant and consistent, and the CS integral
describes the compact Hopf mapS3→S2. However, typical solitons include sphalerons and linked center
vortices (NCS51/2) as well as writhing center vortices with arbitrary realNCS, and compactness may be lost.
We study various forms of the non-compact theory in the dilute-gas approximation, includingk as an odd
integer or non-integral, treating the parameters of non-compact large gauge transformations as collective
coordinates. Among our conclusions are the following.~1! YMCS theory dynamically compactifies; a putative
non-compact YMCS theory has infinitely higher vacuum energy*d3xevac than compact YMCS theory.~2! For
sphalerons withNCS51/2 compactification arises through a domain-wall sphaleron, a pure-gauge configuration
lying on a closed surface carrying the right amount ofNCS to compactify.~3! We can interpret the domain-wall
sphaleron in terms of fictitious closed Abelian field lines, associated with an Abelian potential and magnetic
field derived from the non-Abelian CS term. In this language, sphalerons are under- and over-crossings of
knots in the field lines; a domain-wall sphaleron acts as a superconducting surface which confines these knots
to a compact domain.~4! Analogous results hold for the linking and writhing of center vortices and nexuses.
~5! If we induce a CS term with an odd number of fermion doublets, domain-wall sphalerons are related to
non-normalizable fermion zero modes of solitons.~6! The GGCS theory with monopoles is explicitly com-
pactified with center-vortex-like strings.

DOI: 10.1103/PhysRevD.66.065012 PACS number~s!: 11.15.Tk, 11.15.Kc
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I. INTRODUCTION

Compactification of the Euclidean spaceRd, such asRd

→Sd, famously leads to integral quantization of certain
pological charges, such as the usual four-dimensional to
logical charge commonly associated with instantons.
practically since instantons were invented there have b
indications of fractional topological charge@1–11#, whose
existence could interfere with compactification. The ba
issue we address in this paper is whether compactification
Euclideand53 SU(2) Yang-Mills-Chern-Simons~YMCS!
theory is a mathematical hypothesis, which could be ab
doned, or whether there are dynamical reasons for expec
it. If the theory has either a Chern-Simons~CS! level k less
than a critical valuekc.2 –3 @12#, or a fundamental Higgs
field, there can exist solitons with CS number of 1/2, such
sphalerons and distinct linked center vortices, or solito
with arbitrary real CS number, such as writhing center v
tices. A condensate of such solitons, taken naively, viola
compactness and, if it has an interpretation at all, requ
integrating over all non-compact gauge transformations
collective coordinates. We find that candidate vacua in
dilute-gas approximation have the lowest energy when
total NCS is integral andR3 is compactified toS3. We find an
interpretation for this dynamical compactification in terms
a domain-wall ‘‘sphaleron’’ supplying enough fractional C
number to compensate for the total CS number of the b
solitons.

*Email address: cornwall@physics.ucla.edu
†Email address: graham@physics.ucla.edu
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In other circumstances, such as for fractionald54 topo-
logical charge, dynamical compactification apparently o
curs, and sometimes through@13# the formation of a string
which joins enough fractional objects so that their to
charge is integral. Or compactness of center-vortex sh
may ensure@9–11# topological confinement ofd54 topo-
logical charge. Pisarski@14# claims that topological~TP!
monopoles in the Georgi-Glashow theory with a CS te
added~GGCS theory! are joined by strings. Any attempt t
separate out a half-integral set of topological charges joi
by strings requires the introduction of enough energy
stretch and ultimately break the string. This in turn suppl
new fractional topological charges which enforce compa
fication. Affleck et al. @15# argue that in CCGS theory th
long-range monopole fields already decompactify the sp
and allow an arbitrary CS number; summing over these
bitrary values leads to the suppression of TP monopoles.
the condensed-matter analogue, see Ref.@16#. @Reference
@17# challenges the conclusion of@15#, on different grounds
which are somewhat related to ours, and Ref.@18# observes
that for the GGCS theory with no gauge kinetic term, T
monopoles amount to instantons which lead to elec
charge conservation only mod(k).# More recent develop-
ments require modifications of the views of@14,15#. Several
authors@5,19,20# have pointed out that the TP monopole
actually like a nexus, with its magnetic flux confined in
tubes which are, for all practical purposes, the tubes of ce
vortices. These tubes, which join a monopole to an a
monopole, are the natural candidates for the strings Pisa
@14# claims to exist, although his claim is not based on fin
ing any stringlike object in the CCGS theory. We find n
evidence for strings joining sphalerons, and none is expe
©2002 The American Physical Society12-1
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JOHN M. CORNWALL AND NOAH GRAHAM PHYSICAL REVIEW D 66, 065012 ~2002!
since if everyd53 cross section ofd54 space had an eve
number of sphalerons, thed54 space would have to hav
topological charge which is an even integer. But there is
such restriction ind54.

In this paper we will be concerned with a YMCS theo
with extra mass terms which can either be due to quan
effects or explicit. For YMCS theory with no explicit mas
terms it has been argued@12# that if the CS levelk is less
than a critical valuekc , the CS-induced gauge-boson mass
not large enough to cure the infrared instability of the und
lying Yang-Mills ~YM ! theory. In this case a dynamical ma
~equal for all gauge bosons! is generated just as for the YM
theory with no CS term, and in the YM theory it is know
that quantum sphalerons of CS number 1/2 exist@21#, as well
as center vortices with various CS numbers. Reference@12#
estimateskc.260.7N for gauge groupSU(N). But for k
.kc , YMCS with no matter fields is essentially perturbativ
and in the same universality class as Witten’s topolog
gauge theory@22#, with only the CS term in the action; ther
are no solitons of finite action@23#. There are also sphaleron
@24# and center vortices for YM theory with an elementa
Higgs field in the fundamental representation; this theory
quite close in behavior to YM theory with no matter field
andk,kc .

A fundamental assumption of the present paper is tha
these isolated sphalerons or center vortices exist, a con
sate of them is allowed, and that we can learn someth
about this condensate through conventional dilute-gas a
ments. This assumption could fail if the sphalerons are so
how so strongly coupled that the dilute-gas approximation
qualitatively wrong, but it is not our purpose to investiga
this possibility. Certainly, lattice evidence for a center vort
condensate in QCD suggests that there is some sense t
dilute-gas approximation.

The sphaleron@21,24,25# is the prototypical example o
an isolated non-compact soliton ind53 gauge theory; it
nominally has Chern-Simons number (NCS) of 1/2, instead
of the integral value demanded by compactification. No
parent problems arise until one adds a CS term@26,27#, at
which point for the odd CS levelk an odd number of sphale
rons is detectable in the partition function and elsewhere
non-compact object, which seems to break gauge invaria
and in any event leads to peculiar signs for physical obje
In this hybrid theory with the integral and odd CS levelk we
do not admit arbitrary non-compact gauge transformatio
but we do admit a condensate of sphalerons, each withNCS
51/2. In sectors with an odd numberJ of sphalerons, the
total CS numberJ/2 is half-integral and non-compact. W
argue that it is energetically favorable to form a domain-w
‘‘sphaleron’’ which may live on the surface at infinity an
which also carries half-integral CS number. The total
number of the explicit sphalerons and the domain wal
now integral, its energy is lowered, and the theory is dyna
cally compactified.

Next we explore the consequences of admitting not o
non-compact solitons but also non-compact gauge trans
mations. Then the CS number of any isolatedd53 gauge-
theory soliton is essentially arbitrary, since it can be chan
by a large non-compact gauge transformation of the form
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U5exp@ ia~r !tW• r̂ /2#, a~`!Þ2pN. ~1!

This gauge transformation does not change the action
equations of motion of the soliton, and therefore correspo
to a collective coordinate. As we will see, integrating ov
a(`) as a collective coordinate does not automatically co
pactify the space; it simply gives it a higher vacuum ene
density~and infinitely higher energy for infinite volume! than
it would have if the solitons allowed compactification. Aga
we expect the energy of the vacuum to be lowered by
formation of a domain-wall sphaleron.

The sphaleron is not the only object in theSU(2) d53
YM or YMCS theories with a half-integral CS number. In th
center vortex-nexus view of gauge theories@28–33# d54
topological charge is carried~in part! by the linkage of center
vortices and nexuses@9–11#; the d53 projection of such
linkages is that center vortices, which are closed fat stri
of magnetic flux, carry the CS number through mutual lin
age as well as the self-linkage of twisting and writhin
@3,12,11,34–36# of these strings. In their simplest linke
configuration, which consists of two untwisted but linke
loops whose distance of closest approach is large comp
to the flux-tube thickness, they carry a mutual link numb
NLk which is an integer, and a CS number ofNLk/2, just like
a sphaleron. But there are isolated configurations that c
essentially any link or CS number@3,4#. These are individual
center vortices with writhe. An example is shown in Fig.
For mathematically idealized~Dirac-string! vortices, one can
apply Calugareanu’s theorem, which says that the ribb
framed self-linking numberNFLk is an integer and a topologi
cal invariant, although not uniquely defined, and thatNFLk
5NTw1NWr where the writhe Wr is the standard Gauss se
linking integral andNTw is the twist or torsion integral. Nei-
ther NTw nor NWr is a topological invariant, and neither i
restricted to take on integer values. As a result, even with
making general non-compact gauge transformations, one
the phenomenon of an essentially arbitrary CS number fo
isolated soliton. The effect of these center vortices is mu
the same as if we admit non-compact gauge transformati
One difference is that for spatially compact center vortic
the CS density is localized, while for non-compact gau
transformations the associated CS density always lies on
surface at infinity.

FIG. 1. A center vortex with writhe.
2-2
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For physical center vortices, where Dirac strings turn in
fat tubes of magnetic flux, the same picture holds, altho
for different reasons. For such fat tubes, the standard i
grals for NTw and NWr are modified, and there is no sha
distinction between twist and writhe@3#. The modified inte-
grals depend on the details of the mechanism which fat
the flux tubes~which may be thought of as the generation
a dynamical mass by quantum effects arising from infra
instability of the YM theory!. There is no reason for Tw o
Wr to be integers, or even fractions such as 1/2. In phy
language, this means thatNTw and NWr are dependent on
collective coordinates of the vortex. So the situation sho
be somewhat similar to that for sphalerons.

If CS numbers can take on arbitrary values, how can
d54 topological charge, which is the difference of CS nu
bers, be restricted to integral values? The answer, of cou
is d54 compactness, which is not related tod53 compact-
ness; a non-compactd54 space may have only compactd
53 cross sections. Compactness ind54 constrains the CS
numbers whose difference is topological charge so that
every pair ofd53 condensates of CS number can occur i
compactd54 space. We give some simple examples, ana
gous to the pairing of crossings~sphalerons! in a compact
d53 space, showing how these constraints arise. These
amples interpret the net change in CS number as arising f
a dynamic reconnection process, in which center vorti
change their link number; only certain kinds of dynamic
connection are allowed by compactness. The point of rec
nection, when two otherwise distinct vortices have a co
mon point, is simply the point of intersection of the cen
vortices in the previously studied picture of thed54 topo-
logical charge as an intersection number of closed vo
surfaces~plus linkages of these surfaces with nexus wo
lines! @9–11#; such intersection points come in pairs for com
pact vortex surfaces.

We summarize our results as follows:
~1! Even if compactification is not assumeda priori, and

solitons possess collective coordinates amounting to a
trary NCS for every soliton, the lowest-energy candida
vacuum state of a YMCS theory is one which is compa
The energetic favorability of compactification we descri
by dynamical compactification.

~2! There is no evidence for strings which locally bin
sphalerons into paired objects; instead, there is evidence
domain-wall ‘‘sphaleron’’ which carries a half-integral C
number if the bulk sphalerons also carry the half-integral
number.

~3! Sphalerons can be mapped onto over- and un
crossings of knots which occur in closed fictitious Abeli
field lines associated with the non-Abelian CS term. Ther
always an even number of crossings for compact knots,
so an odd number of crossings of closed knot compon
must be compensated by an odd number of crossings
where. The domain-wall sphaleron acts as a superconduc
wall which confines the closed fictitious field lines to a co
pact domain, where they must close and have an integra
number.
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~4! Fat self-linked center vortices can also carry arbitra
NCS associated with collective coordinates; we expect p
nomena similar to those found for sphalerons.

~5! For a compactd54 condensate of center vortices an
nexuses, living in the product of ad53 space and a~Euclid-
ean! ‘‘time’’ variable, a possible time-dependent reconne
tion of vortices which changes link numbers is constrain
by compactness to yield integral topological charge.

~6! If fermions are added, we show that the half-integ
fermion number and half-integral CS number go togeth
and identify an extra fermion number of 1/2 with a fermio
zero mode at infinity, which is a zero mode of the sphale
at infinity. This result generalizes to the case of the arbitr
CS number as well.

~7! In the GGCS model, strings exist which bind T
monopoles to TP anti-monopoles and restore compactifi
tion; these strings are essentially those of center vortic
while the TP monopoles are like nexuses.

II. SOLITONS IN YMCS THEORY

A. Spherically symmetric solitons of YMCS theory

In this section we establish notation, review the propert
of solitons with the usual sphericalansatzin YMCS theory
with a dynamical mass or mass coming from a fundame
Higgs field, and remark that every configuration in the fun
tional integral for YMCS theory has a conjugate related b
EuclideanCPT-like transformation.

The action of YMCS is complex, and its classical solito
can be complex too. Then the CS actionI CS of Eq. ~4! below
may be complex, and its real part is not interpretable
having to do with CS number, which we will always defin
as ImI CS52pkNCS as usual. Here the integerk is the CS
level. In general a large gauge transformation only chan
the imaginary part ofI CS, and so this identification make
sense. But one may also ask whether it makes sense at
discuss complex solitons as extrema of the action; certai
as Pisarski@14# points out, this is quite wrong in some ci
cumstances. The other possibility is to use only solitons
the real part of the action, and simply evaluate the CS term
these solitons. Of course, this works fine ind54, where the
theta term adds nothing to the equations of motion. Re
ence@12# argues that in YMCS there is a complex~but self-
conjugate! spherically symmetric soliton much like a sphal
ron; the particular case studied there had purely real
action and hence no CS number. We show here that
would-be sphaleron of Ref.@12# can easily be promoted to
sphaleron withNCS51/2.

One knows @37,38# that with no CS term,d53 YM
theory with no matter terms is infrared-unstable and n
perturbative, requiring the dynamical generation of a glu
massM of orderNg2 for gauge groupSU(N), whereg is the
gauge coupling. If this theory is extended to YMCS theory
appears~at least from one-loop calculations@12#! that the
Chern-Simons gauge-boson massm5kg2/4p is too small to
cure the infrared instability, and so generation of dynami
mass is still required. The estimates of the critical levelkc
are based on one-loop calculations of the gauge-invar
pinch-technique~PT! gauge-boson propagator@37–40# and
2-3
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may not be very accurate, but unpublished estimates of t
loop corrections by one of us~J.M.C.! suggest that the exis
tence of a finitekc is well established. The one-loop calc
lations give kc.260.7N. The generation of a dynamica
mass generally leads to confinement, via the creation
condensate of center vortices@28–31# and nexuses@5,8–
10,32,33#. The long-range effects essential for confinem
come from pure-gauge parts that disorder the Wilson lo
~i.e., give it an area law! by fluctuations in the Gauss linkin
number of vortices and the Wilson loop.

Define the usual anti-HermiteanSU(2) gauge-potentia
matrix with the gauge couplingg incorporated by

Aj~xW !5S g

2i D taAj
a~xW ! ~2!

where the component formAj
a(xW ) is the canonical gauge

potential. The Euclidean YM action is

I Y M5E d3x
21

2g2
Tr Gi j

2 . ~3!

To this can be added the Chern-Simons action

I CS5~2p ik !QCS,
~4!

QCS5
21

8p2E d3xe i jkTrFAi] jAk1
2

3
AiAjAkG .

The sumI Y M1I CS is the YMCS actionI Y MCS. Throughout
this paper we will define the CS numberNCS as thereal part
of the integral in Eq.~4!:

NCS[ReQCS5
Im I CS

2pk
. ~5!

It is only from this real part that phase or gauge-invarian
problems can arise. Gauge invariance under large~compact!
gauge transformations requires that the Chern-Simons levk
is an integer, so that the integrand exp2ICS of the partition
function is unchanged. At the classical level, all gau
bosons acquire a Chern-Simons massm[kg2/4p.

As mentioned in the Introduction, the CS mass may
be large enough to cure the infrared instabilities of YMC
with no matter fields, and a dynamical mass is genera
This mass is the same for all gauge bosons. The infra
effective action for this dynamical mass@37# is just a gauged
non-linear sigma model:

I M5
2m2

g2 E d3x Tr@U21DiU#2,

~6!
Di5] i1Ai , U5exp~ ivata/2!.

When the unitary matrixU and the gauge potential have th
following gauge-transformation laws, the actionI M is gauge
invariant:

U→VU, Ai→VAiV
211V] iV

21. ~7!
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The effective actionI e f f[I Y MCS1I M is usable in the infra-
red regime, but at large momentump or short distancex the
dynamical massm2 necessarily vanishes at a rate;p22 or
x2 ~modulo logarithms!. This dynamical-mass effective ac
tion is the same, for our purposes, as if one added a fun
mental Higgs field, as in the Weinberg electroweak actio

Because the action is complex, in general we must d
with complex values for the gauge potentials and ma
fields. However, the matrixU must always be anSU(2)
matrix; that is, in the component formU5exp(itava/2) the
fields va are always real.

B. Complex field configurations

With a complex action, there is no reason to restrict
path integral to real fields. There is an elementary theor
essentially a EuclideanCPT theorem, applicable to comple
YMCS gauge fields and any scalar fields, such as the fie
c(x) of the GG model discussed later. Given any configu
tion of gauge and scalar fields for which the actions eva
ated on this configuration have the valuesI Y M ,I CS,I M ,I GG ,
we define a conjugate configuration by

CPT: Ai~x!,Gi j ~x!,U~x!,c~x!

→A†~2x!,2Gi j
† ~2x!,U~2x!,6c~2x!† ~8!

@or in component languageAi
a(x)→2Ai

a(2x)* , va(x)
→va(2x), fa(x)→7fa(2x)* ]. Then the
CPT-transformed configuration has actionsI * ,I CS* ,I M* ,I GG* .
Note thatNCS changes sign under conjugation.

Below we will look for solitons of the YMCS action plus
matter terms. Generally these solitons, like the action its
will be complex. They can be divided into two types:~1!
those configurations@Ai(x),Gi j (x),U(x),c(x)# which trans-
form into themselves underCPT, which we call self-
conjugate, and~2! those which transform to another config
ration. Self-conjugate configurations havereal action,
including the CS term. It is easy to see that if any config
ration of type~2! satisfies the complex equations of motio
then so does itsCPT conjugate, and both are admissib
solitons if either is. Examples of type~1! solitons are given
in @12#, for the YMCS action with dynamical mass gener
tion. These solitons cannot be said to possess topolog
properties as expressed through the CS term, since the
number NCS vanishes. However, from this earlier sel
conjugate soliton it is easy to generate solitons which are
self-conjugate and which, in fact, have any desired CS nu
ber.

We review the sphaleron-like complex soliton@12# of the
action I Y MCS1I M @see Eqs.~3!,~6!#. Using the notation of
@12#, a spherical soliton is described by four functions ofr:

2iAi5e iaktax̂kS f1~r !21

r D2~t i2 x̂i x̂•tW !
f2~r !

r

1 x̂i x̂•tWH1~r !, ~9!
2-4
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U5expS ib~r !
tW• x̂

2
D . ~10!

The equations of motion, found by varying bothAi and U,
are

05~f182H1f2!81
1

r 2
f1~12f1

22f2
2!

1~ im2H1!~f281H1f1!2M2~f12cosb!, ~11!

05~f281H1f1!81
1

r 2
f2~12f i

22f2
2!

2~ im2H1!~f182H1f2!2M2~f21sinb!, ~12!

05f1f282f2f181H1~f1
21f2

2!1 im~12f1
22f2

2!

1
1

2
M2r 2~H12b8!, ~13!

05
1

r 2
@r 2~b82H1!#82

2

r 2
~f1sinb1f2cosb! ~14!

where

m5
kg2

4p
~15!

is the Chern-Simons mass at levelk and the prime signifies
differentiation with respect tor. These equations reduce
those of@12# at b5p. As in @12#, Eq. ~14!, which is the
variational equation forU, is not independent of the othe
three equations. It can be derived from them by simple m
nipulations because there is still an Abelian gauge degre
freedom:

f1~r !→f1~r !cosa~r !1f2~r !sina~r !,

f2~r !→f2~r !cosa~r !2f1~r !sina~r !,
~16!

b~r !→b~r !1a~r !,

H1~r !→H1~r !1a8~r !.

The boundary conditions are forr 50

f1~0!51, f2~0!5H1~0!5b~0!50, ~17a!

and for r 5`

f1~`!5cosb~`!, f2~`!52sinb~`!. ~17b!

First consider the caseb5p. Then@12# there is a solution
wheref1 is real andf2 and H1 are pure imaginary. This
corresponds to a self-conjugate soliton, so the CS actio
purely real@that is, the CS integralQCS in Eq. ~4! is pure
imaginary#. This is easily checked from the explicit form
06501
-
of

is

QCS5
1

8p2E d3x

r 2
@f1f282f2f182f282H1~12f1

22f2
2!#.

~18!

If any solution of the equations of motion is gauge tran
formed as in Eq.~16!, it remains a solution to these equatio
and all contributions to the action are unchanged except
course, for the CS part of the action. If we start with t
self-conjugate soliton above, and transform it with a functi
a(r ) such thata(0)52p, a(`)50 one sees that the sol
ton is no longer self-conjugate, and in general all three fu
tions f1,2, H1 are complex. This choice of boundary cond
tions for a removes an integrable singularity in the origin
self-conjugate sphaleron, but does not change the YM
mass parts of the action. The change in the CS integral,
cause it does not affect the equations of motion, is neces
ily a surface term:

dQCS5
1

2p Fa~r !2sina~r !G
0

`

5
1

2
. ~19!

The new sphaleron hasNCS51/2, as appropriate for a
sphaleron.

The immediate objection is that one could as well choo
any value fora(`), and change the sphaleron’s CS numb
to any desired value. Integration over this collective coor
nate might cause sphalerons to be confined in pairs~as ar-
gued in@15# for TP monopoles in the GGCS model!. How-
ever, it does not quite happen that way for sphalerons.
next show that integrating overa(`) for all sphalerons does
increase the free energy, but does not lead immediatel
confinement of sphalerons in pairs. In such a case, com
tification becomes the preferred state dynamically.

III. DYNAMICAL COMPACTIFICATION

As discussed in the Introduction, sphalerons~and center
vortices! present a challenge to the usual view of the co
pact YMCS theory, since these solitons in isolation viola
compactness and lead to problems with gauge invariance
this section we consider several cases, beginning with
internally inconsistent but instructive case in whichk is in-
tegral and only compact gauge transformations are allow
but there is a condensate of~non-compact! sphalerons. The
result is that for oddk the energy density of the vacuum
changed in sign from the case of evenk, which raises the
vacuum energy by an infinite amount. In the next case,k is
still an integer but we allow large gauge transformations
the form exp@itW•r̂a(r)/2# with arbitrarya(`). Since the ac-
tion of a sphaleron depends ona(r ) only through the CS
phase factor, this variable can be treated as a collective
ordinate and integrated over. We will see that this integ
again raises the free energy, suggesting that the compac
theory is preferred on energetic grounds. Finally, we cons
the case of generalk, including spatially variablek, and non-
compact gauge transformations and find, analogous to L¨s-
cher’s work @41# in d54, that if k takes on a non-integra
2-5
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value in a bounded domain and an integral value outsid
this domain or ‘‘bag’’ has a positive energy, scaling with t
bag volume, above the integral-k vacuum.

This last case gives us a clue to what actually causes
ostensibly non-compact theory to compactify. We find
evidence for strings that would join pairs of sphalerons
gether, nor do the collective coordinate integrations red
the theory to the zero-sphaleron sector. Instead, we argu
Sec. IV that among the collective coordinates for large ga
transformations with any value ofa(`), there is the possi-
bility of formation of a domain-wall sphaleron that places t
half-integral CS number on a closed surface surrounding
odd number of sphalerons, to add to the half-integral
number present from the sphalerons inside. This domain
itself has no energy, and is a pure-gauge object; it can
moved around, deformed, and so on, without changing
physics. It acts as a superconducting wall that causes
fictitious Abelian field lines associated with non-Abelian C
number to be confined to the interior of the domain wall
in other words, to be compact.

Our arguments are based on the assumption that a
densate of sphalerons in the YMCS theory can be treate
the dilute-gas approximation, that is, all solitons are ess
tially independent. When a CS term is present in the act
the partition functionZ is the usual expansion as a sum ov
sectors of a different sphaleron number:

Z~k!5(
J

ZJ , ZJ~k!5(
c.c.

1

J!
e2(I c1••• ~20!

where ZJ(k) is the partition function in the sector withJ
sphalerons; the subscriptc.c. indicates a sum over collectiv
coordinates of the sphalerons;I c is the action~including CS
action! of a sphaleron and the omitted terms indicate corr
tions to the dilute-gas approximation. To be more expli
we separate the sum over collective coordinates into k
matic coordinates such as spatial position and gauge co
tive coordinates. The former we represent in the stand
dilute-gas way and the latter we indicate as a functional
tegral over large gauge transformationsU:

Z~k!5E ~dU!(
1

J! S V

Vc
D J

3exp2$J ReI c12p ik@JNCS~Ac!1NCS~U !#%.

~21!

Here ReI c is the real part of the action,NCS(Ac) is the CS
number of each individual soliton of gauge potentialAc
~taken in some convenient gauge!, and NCS(U) is the CS
number of the large gauge transformation. As in Sec. II
chooseAc so thatNCS(Ac)50.

If we now restrict the large gauge transformationsU to be
compact, so thatNCS(U)5K, an integer, we recover th
standard@26# result thatZ(k) is non-zero only fork an inte-
ger:
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Z~k!

Z~0!
5

(
K52`

`

e2p ikK

(
K52`

`

1

~22!

which is unity whenk is an integer and zero otherwise.
Now retain the assumption that only compact gauge tra

formations are allowed and thatk is integral, but allow a
condensate of sphalerons. Sphalerons correspond to a lim
tion of a(a;`) to the two values6p. From Eqs.~24!,~25!
the sina term vanishes, and the collective-coordinate s
reduces to

Z5 (
J1 ,J2

1

J1!J2! S V

Vc
D J

exp2@J ReI c#e
ikp(J12J2)

5expH eipk2S V

Vc
Dexp2@ReI c#J , ~J5J11J2!.

~23!

If k is odd, this expression forZ has precisely the opposit
sign in the exponent to that of a normal dilute-gas cond
sate, which means that the free energy, which for a nor
dilute-gas condensate is negative, has turned positive
again non-compactification results in a higher free ene
than would be expected for a compactified theory.~It also
results in a number of other unphysical results in the dilu
gas approximation which we will not dwell on here.!

Now consider the non-compact case. Suppose that
sphalerons are of the form given in Sec. II, based on a ga
transformation as in Eq.~16! of a self-conjugate soliton
whose action is real and positive. Theath soliton is at posi-
tion rW2aW [rW(a). Denote bya(a;`) the asymptotic value of
the gauge variable for theath soliton. Since the total CS
number of allJ sphalerons comes from a surface contrib
tion, we can immediately write the phase factor in the act
by generalizing Eq.~19!:

Z~k!5(
J

1

J! S V

Vc
D J

exp2@J ReI c#expik@a2sina#

~24!

where

a5 (
a51

J

a~a;`!. ~25!

We are treating thea(a;`) as collective coordinates, s
we integrate over them:

Z~k!5(
J

ZRJ3H)
a
E

0

2pda~a;`!

2p J expik@a2sina# ~26!

whereZRJ indicates the explicitly real terms in the summa
of Eq. ~24!. This integral is reduced to a product by using t
familiar Bessel identity
2-6
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eiz sin u[(
2`

`

JN~z!eiNu ~27!

with the result, for integralk, @Jk(k)#J. So the dilute-gas
partition function is

Z~k!5(
J

1

J! S V

Vc
D J

expJ@2ReI c1 ln Jk~k!#

5expH V

Vc
e2Re I cJk~k!J . ~28!

Since 1>Jk(k).0 for all levelsk, we see that integrating
over the collective coordinates has increased the free en
~negative logarithm ofZ). This suggests that properly com
pactifying the sphalerons, so that the gauge behavior a
finity is under control, will lower the free energy, yieldin
something like the usual dilute-gas partition function@which
is Eq. ~28! without theJk(k) factor#.

Once one allows non-compact gauge transformations
might as well allow non-integralk. The results are analogou
to those found long ago by Lu¨scher@41# for d52 CPN mod-
els andd54 gauge theory with instantons and au angle. Of
course, the calculations for non-integralk only make sense in
the non-compact case. For non-integralk the functionJk(k)
of Eq. ~28! must be replaced by

F~k!5(
2`

`

JN~k!
sin@p~k2N!#

p~k2N!
. ~29!

This reduces toJk(k) for integralk.
We promotek to an axionic fieldk(x) and put it under the

integral sign in the CS action of Eq.~4!. Takek(x) to vanish
outside some closed surface and to have a constant
integral valuek inside ~except for some thin-wall transition
region!. To follow Lüscher, we consider the expectatio
value of expICS in a YM theory, which is the same a
Z(k)/Z(0) of YMCS theory. We already have this result
Eq. ~28! by replacingJk(k) by Fk(k) from Eq.~29!. Because
@26# the CS integral is a surface integral for the pure-gau
configurations over which we are integrating, we have

^e2p ikNCS&Y M5^e2p ikrSdSiVi& ~30!

as well as

^e2p ikNCS&Y M5
Z~k!

Z~0!
5expH VS

Vc
e2I c@F~k!21#J ~31!

whereVS is the volume enclosed by the surfaceSandVi is a
CS surface density@given explicitly for sphaleron-like con
figurations in Eq.~46!#. BecauseF(k)<1, there is an inter-
pretation similar to Lu¨scher’s: There is a bag, defined by th
surface wherek(x) changes, with an energy above th
vacuum by an amount proportional to the volume of the b
This bag is analogous to the domain-wall sphaleron d
cussed in the next section.
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Some qualitative information about the CS susceptibi
can be gleaned from the small-k limit of Eq. ~31!. In this
limit,

F~k!→12k2S 2p229

12 D[12gk2. ~32!

This form of the small-k limit allows us to interpret the dis-
tribution of NCS as Gaussian:

^e2p ikNCS&Y M→exp2$2p2k2^NCS
2 &%. ~33!

Because we expect̂NCS
2 &;V, the Gaussian expectatio

value vanishes in the infinite-volume limit. In fact, by com
paring Eqs.~31! and ~33! we find an approximate value fo
the CS susceptibility:

^NCS
2 &
V

5
g

2p2Vc

e2I c. ~34!

This expression, while presumably not quantitatively ac
rate, is of a form suggested earlier@4# in which the d53
topological susceptibility is of the form

^NCS
2 &
V

5j^Q& ~35!

where Q is the trace of the stress-energy tensor andj a
numerical constant. For a dilute gas condensate,

1

3
^Q&5

1

Vc
e2I c ~36!

andj5g/6p2 from Eq. ~34!.

IV. SPHALERONS AND HALF-INTEGRAL KNOTS

A sphaleron has a CS number 1/2. If sphalerons are di
they can be idealized to pure-gauge configurations, wh
can be associated with fictitious Abelian field lines throu
the Hopf fibrationS3→S2, with homotopyP3(S2).Z. The
integer classes of this homotopy come from an integral,
Hopf invariant, which is in fact the same as the original C
number~see, e.g.,@11,42,43#!. The Hopf invariantNH is both
a Gauss link number for the pre-images of any two disti
points in S2 in the Hopf fibration and an Abelian CS term
for a fictitious Abelian gauge potential and magnetic fie
Pre-images ofS2, necessarily closed curves, are just fie
lines of this fictitious magnetic field, and so the Hopf inva
ant expresses the linking of any two distinct closed fie
lines. @For idealized~Dirac-string! center vortices the CS
number can also be expressed equivalently as a Gauss
integral and as an Abelian CS term, but the normalization
different, and the CS number can be a half-integral in
simplest case.#

For the sphaleron the CS number is 1/2; how can this
reconciled with the link-number interpretation? The answ
is that in knot theory@44# presented as two-dimension
graphs with over- and under-crossings, each crossing c
tributes61/2 to the total link number, just as does an is
2-7
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JOHN M. CORNWALL AND NOAH GRAHAM PHYSICAL REVIEW D 66, 065012 ~2002!
lated sphaleron. In a certain sense, which we make exp
below, sphalerons can be mapped onto these crossings. C
pact knots must have an even number of crossings; o
knots stretching to~and thus closed at! infinity can have an
odd number of crossings in a region excluding infinity.
the sphaleron puzzle comes down to how one closes the
titious Abelian flux lines which flow through the sphalero
We show here how this can be done by introducing
domain-wall sphaleron which contains the other 1/2 nee
for the integral CS number, and hence the integral Hopf
variant. The domain wall can be, but is not required to be,
the sphere at infinity. If the domain wall is compact, then
fictitious Abelian field lines vanish identically outside th
domain wall, which acts as a superconducting wall for
fictitious field lines.

We give another interpretation of the field-line kno
which relates them to the formulation of thed54 topologi-
cal charge as the intersection of closed vortex and vor
nexus surfaces. The second interpretation maps these
section numbers ontod52 intersection numbers of close
lines ~vortices! in the two-plane, some of which must car
point nexuses and anti-nexuses. In a formal sense, the re
ing formulation of half-integral CS number becomes a tw
dimensional projection of earlier formulas@9,10# which ex-
press d54 SU(2) topological charge as composed
components of charge61/2, localized at the~assumed trans
verse! intersection points ofd54 vortices and vortex-nexu
combinations. The total~and integral! topological charge is
computed as an intersection integral with an extra wei
factor coming from traces over the Lie algebra matrices
vortices and nexuses. In both ways, it will be seen that
odd number of sphalerons requires sphaleron-like config
tions at infinity.

A. Sphalerons and link numbers of knots

The connection between the non-Abelian CS number
pure-gauge configurationU and the Abelian linking numbe
is found~for example, see@10,42,43#! by exploiting the Hopf
map S3→S2, with homotopyP3(S2).Z, in the form of a
map from theSU(2) group element to a unit vectorn̂:

Ut3U21[t•n̂. ~37!

This is, of course, a compact map. SinceU can be right-
multiplied by a factor exp(iat3/2) without changingn̂, each
n̂ corresponds to a cosetSU(2)/U(1). Thelinked curves in
question are the pre-images of pointsn̂ on the sphereS2.
This unit vector defines an Abelian gauge potential and fie
via

Ai5 i Tr~t3U] iU
21!, ~38!

Bi52 i e i jkTr~t3U] jU
21U]kU

21!

5
1

2
e i jkeabcn

a] jn
b]kn

c. ~39!
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Because of the properties of thee symbol and of group
traces, the non-Abelian CS integral of Eq.~5! can be written
in terms of the Abelian field and potential:

NCS5
1

16p2E d3xAiBi[NH , ~40!

whereNH is the Hopf invariant, an integer characterizing t
homotopy class of the map. The second equation in Eq.~39!
is only true if Dirac strings are omitted. For sphalerons
such strings occur@see Eq.~44!#.

The Hopf invariant is a link number of any two distinc
field lines of the fieldBi . As textbooks on knot theory dis
cuss @44#, these d53 knots can be expressed in
~quasi-!two-dimensional way, with graphs constructed fro
over- and under-crossings of components of knots, and to
logical invariance ind53 reduced to Reidemeister moves
d52. ~Another good example of thed52 nature ofd53
knots is Witten’s derivation@22# of Jones polynomials from
d52 conformal field theory.! By a quasi-two-dimensiona
description of knots we mean that knot components lie i
plane, except that they fail to intersect at an over- or und
crossing by a distancee which is vanishingly small. Of
course, ind53 linked knot components may be very fa
from touching one another, but in our case we are only
terested in this case of nearly-touching components, wh
localize Gauss link number contributions to these crossin
The globald53 topology is not affected by this assumptio
of near intersection. When this is the case, each crossin
distinct components of knots contributes an additive te
61/2 to the conventional Gauss linking integral, with n
contributions to this integral from portions of the knot com
ponents which are at large distances from one another c
pared toe. ~This contribution of61/2 also holds for self-
crossings of one component with itself, leading to an integ
framed link number, because each self-crossing is actua
double crossing.! There is no contribution away from th
crossings even if the knot components extend in an arbit
way ~as long as components do not cross each other! into all
three dimensions. For closed compact components the
always an even number of crossings and hence an inte
link number. Half-integral linking numbers occur natural
for non-compact knots, that is, knots with an odd number
crossings which can only occur, for closed knot compone
when the component curves are closed at infinity.

We give a specific example of these concepts. A pu
gauge sphaleron centered at the origin is described b
gauge functionU of the form:

U5exp@ ib~r !tW• r̂ /2#, b~0!50, b~`!5p. ~41!

One finds for the fictitious Abelian components

n̂5 r̂ cosu1 û sinu cosb1f̂ sinu sinb, ~42!

Ai5 r̂ ib8cosu1
f̂ i

r
~cosb21!sin2u2

û i

r
sinu sinb, ~43!
2-8
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Bi5
2r̂ i

r 2
cosu~cosb21!1

f̂ i

r
b8~12cosb!sinu

1
û i

r
b8sinu sinb. ~44!

These field lines have several important properties. F
the flux integrated over any sphere surrounding the origi
zero, so there is no monopole and no Dirac string for t
sphaleron. Second, by inspection of Eq.~44! one sees tha
there is one, and only one, way in which the field lines c
be terminated in a finite region. Ifb(r ) takes the value 2pN
at some radiusr 5a, whereN is an integer, and remains a
this value for largerr, the fieldBi identically vanishes forr
>a. Since the fictitious field lines are closed, this can o
happen if the field lines run along the surface of the sph
r 5a and at some point return to the vicinity of the sphaler
and close. Schematically, the field lines look like those
picted in Fig. 1. The bounding surfacer 5a acts as a super
conductor for the Abelian field lines.~Of course, this bound-
ing surface need not literally be a sphere, but it can be
surface with the topology ofS2 which encloses the sphale
ron.! Once the field lines are compactified in this way, the
is no problem interpreting the Hopf invariant in terms
linkages of two of this family of closed curves. On the oth
hand, ifb(r ) never reaches 2pN, it is easy to see from the
explicit form of Eq. ~44! that the field lines never return t
the vicinity of the sphaleron, but continue on to infinity.

For the sphaleronb(r ) approachesp asymptotically. We
can, analogous to the above, bring the radius at whichb
5p to any desired finite valuer 5b, as long asb is large
compared to all natural length scales, such asM 21. This
does not compactify it, because its Abelian field lines ke
on going pastr 5b. But we can compactify it with a domain
wall sphaleron atr 5a, a.b, by increasingb to 2p at r
5a. Then, as shown, the fictitious field lines close, and th
is an extra CS number of 1/2 on the domain-wall sphaler

The CS number for the sphaleron can be found explic
from the Hopf invariant integral Eq.~40!:

NCS52
1

2p
@b~`!2sinb~`!#52

1

2
~45!

and of course it has the same value as would be gotten f
the sphericalansatzform of Eq. ~18!. It can also be written
as a surface integral:

NCS5E d2SiVi , Vi52
r̂ i

8p2r 2
@b2sinb#. ~46!

Clearly, the contribution toNCS from the domain-wall
sphaleron can also be written as a surface integral over
domain wall.

So what does a link number of 1/2 mean for a sphaler
Recall @44# how link numbers can be written as a sum
terms, each of which is61/2. The knots are displayed wit
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suitable over- and under-crossings in two-dimensional p
tures. For each crossing pointp a factore(p)561 is defined
as shown in Fig. 2.

For two distinct curves the link numberNLk is then de-
fined as

NLk5
1

2 (
pPC

e~p! ~47!

whereC is the set of crossing points of one curve with t
other ~self-crossings will be discussed later!. This suggests
that in some sense a sphaleron is the topological equiva
of a single crossing, with~as one quickly checks! an even
number of crossings needed for describing the linkage
closed compact curves. Of course, since a sphaleron is lo
ized, one needs to interpret the crossings in Figs. 1 or 2
being infinitesimally separated. This in itself is not necess
for understanding the topology but it is necessary for int
preting the topology in terms of localized sphalerons.

We can express this in terms of the sort of integral occ
ring in the formula~55! for the link number. Consider the
two infinite straight lines

zi5~s cosa,s sina,0!, zi85~ t cosb,t sinb,e! ~48!

where 2`,s,t,` with ds,dt the elements of distanc
along the lines. Their distance of closest approach ise. For a
configuration of two infinite straight lines the value ofe does
not matter, but if the lines are part of a knot with curvatu
etc., e must be treated as infinitesimal. The integrals in t
formula

NLk5
1

4pE2`

`

dsE
2`

`

dte i jk żi żj8
~z2z8!k

uz2z8u3
~49!

are readily done, and yield

NLk5
1

2
sgn@e i jk żi żj8~z2z8!k#. ~50!

In the course of evaluating the integral of Eq.~49! in the
limit e→0, one encounters standard definitions of the Di
delta function which allow one to write this integral for th
link number as

NLk5
1

2 R dzi R dzj8e i j d~z2z8!sgne ~51!

FIG. 2. Over- and under-crossings and their values.
2-9
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where the function sgne refers to the sign of the distanc
shown in Eq.~48! by which the two components are sep
rated out of the plane at their crossing points, that is, whe
there is an overcrossing or an undercrossing.

As long as one presents the knots as being quasi-t
dimensional, which means that their components lie in o
plane except for infinitesimal displacements into the th
dimension for crossings, there are no other contribution
the integral forNLk , because the triple product in its defin
tion vanishes for curves lying in a plane. As a result, in
present interpretation of a link number, the link number c
be thought of as being localized, in units of 1/2, to poin
where the components of the knot appear to cross. Th
quite similar to the interpretation ind54 @9–11# of the
SU(2) topological charge as occurring in localized units
1/2. The localization is associated with the intersection
surfaces representing center vortices and vortex-nexus c
binations, with an analogue ind52 which we discuss below

In fact, it is easy to see that away from the infinitesima
close crossing points, the knots may be arbitrarily deform
into the third dimension as long as components do not c
each other, since the difference of the contribution toNLk
from a d52 component and one deformed intod53 is a
Gauss integral with no linkages. If, in this process of def
mation, knot components become infinitesimally near e
other, new contributions to the totalNLk of 61/2 will be
generated, but their sum will be zero.

B. Knots and dÄ2 intersection numbers

The form of Eq.~51! for the link number is very sugges
tive; aside from the sign function in the integrand and
factor of 1/2, it is the integral representation of the sign
sum of intersection numbers for curves lying in a plane. R
call that in d54 the usual topological charge~integral of
GG̃) for idealized pure-gaugeSU(2) center vortices and
nexuses is also represented by an intersection-number
gral, including a factor of61/2 coming from group trace
@9,10#. The sign of this group factor is governed by the pre
ence or absence of nexuses and anti-nexuses, each of w
reverses the direction of theSU(2) magnetic field lines lying
in the vortex surface. Ind54 center vortices are describe
by closed two-surfaces, and nexus-vortex combinations
described by such surfaces with a closed nexus world
lying in the vortex surface. For every nexus world line the
is an anti-nexus world line. The intersection-number fo
can be translated into a link-number form@10#, where the
link is between a center vortex with no nexus and a nexus~or
anti-nexus! world line.

Here we give some simple examples ofd53 knot link-
ages represented byd52 graphs which can be considered
the projection into two dimensions ofd54 vortex-nexus to-
pological charge. There is no need to distinguish over-
under-crossings; instead, the crossings are interpreted a
tersections of closed lines whose orientation changes w
ever a~point! nexus is crossed in the process of tracing ou
closed line. The link number is calculated by counting~with
signs! the linkages of closed curves and nexuses or a
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nexuses. In this case a curve and a point are linked if
point is inside the curve; otherwise they are unlinked.

The formal expression of this is thed52 CS integral,
completely analogous to thed54 expression for center vor
tices and nexuses@10#:

NCS5 (
crossings

R dzi R dzj8e i j d~z2z8!Tr~QQ8! ~52!

whereQ,Q8 take on the values6t3/2, the sign depending
on the orientation of segments of the closed curves. T
orientation must change every time a nexus or anti-nexu
crossed in the course of tracing out the curve. Figure 3 ill
trates this for a simple two-component knot represented b
as an over- and under-crossing link and as a vortex-ne
link. In the figure, a filled-in circle is a nexus and an op
circle is an anti-nexus; there must be as many of one a
the other on any closed vortex curve. A more detailed d
cussion of the correspondence~including twist and writhe!
between knots and vortex-nexus ideas will be given e
where.

In this way we connect topological charges in dimensio
two, three, and four. In all cases, forSU(2) the localized unit
of topological charge is61/2, but compactification of the
space under consideration yields a sort of topological c
finement of these fractional units to integral totals.

V. LINKED AND WRITHING CENTER VORTICES

The standard center vortex@29# is an Abelian configura-
tion, essentially a Nielsen-Olesen vortex. It contributes to
CS number through theA•B term, not through theA3 term,
and the techniques used above to generate an Abelian p
tial and field are irrelevant; in any case, the vortex itself
Abelian, and in its idealized pure-gauge version is descri
by a closed Dirac-string field line. These closed lines may
linked, including the self-linkages termed twist and writh
Such linkages generate the CS number, as expressed thr
the A•B integral. However, even integral link numbers giv
rise to CS numbers whose quantum is 1/2, and twist
writhe give rise to an arbitrary real CS number.

Generically, two distinct center vortices ind53 never
touch each other, whether or not they are linked. But to g
erate ad54 topological charge, which is a weighted inte
section integral of the points in which center vortices int
sect~possibly with the intervention of nexuses!, two vortex

FIG. 3. A simple knot presented as ad52 projection of a center
vortex and a center vortex with a nexus~filled circle! and anti-nexus
~open circle!.
2-10
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surfaces must have common points. If the intersection
transverse~the simplest case! these points are isolated. The
must be a corresponding notion of linked vortices touch
each other ind53 as well. This can be appreciated by thin
ing of vortices living as closed strings ind53, which evolve
in a Euclidean ‘‘time’’ variable~the fourth dimension!. Vor-
tices have points in common at the isolated instant in wh
they change their link number~reconnection! @3#. Of course,
changing the link number, equivalent to changing the
number, is necessary to generate topological charge, whi
the difference of two CS numbers. Also necessary in t
simple situation is the presence of at least one nexus, w
reverses the sign of the vortex magnetic fields. We disc
some elementary cases in which reconnection changes
CS number by61/2, and in which, if compactness ind
54 is demanded, the overall change in link number yie
integral topological charge. Note that compactness ind53
has nothing to do with compactness ind54 ~consider the
product S33R). Even for reconnection which changes t
writhe, which can be arbitrary, of a single vortex, it is po
sible to have changes in the CS number quantized in unit
1/2. The appearance of this unit of 1/2, plus the pairing
d54 intersection points of compact surfaces@9–11# is some-
what analogous to the pairing of over- and under-crossi
for compactd53 knots, discussed above.

In considering the evolution in time of various field co
figurations carrying topological charge, note that there
real differences between ad54 topological charge interpo
lated by sphalerons and by the reconnection of vortices
sphaleron is the~unstable! saddle point of aclassicalpath in
configuration space. One can extend the sphaleron ga
angleb(r ) to a functionb(r ,t) which passes throughp at
t50, such asb52 arctan(r/t) and which yields unit topo-
logical charge in the form„1/(2p)@b(r ,`)2b(r ,2`)#…
51. There is no need to pair the sphaleron with anot
sphaleron. A vortex, however, cannot evolve classically si
it must reconnect and overlap with itself or with anoth
vortex. The action penalty from overlap yields a tunneli
barrier. Reconnections with the half-integral CS numb
must be paired.

A. Linking of distinct vortices and the half-integral CS
number

For pure-gauge center vortices the interpretation ofNCS
as coming from a link number is straightforward, if two di
tinct vortices are linked, but more troublesome if self-linkin
~twist, writhe! is involved. For the straightforward case
linking of distinct vortices the CS number is half the lin
number and can therefore be half-integral. If it is ha
integral this is a non-compact configuration, in spite of t
fact that if the links composing the two vortices are spatia
compact. If these links have maximum spatial scaleL, the
gauge potential from the vortices behaves asL2/r 3 when r
@L, and so falls off sufficiently rapidly at large distanc
that no surface terms arise in various integrals of interes

The gauge parts of two distinct center vortices are
scribed by closed curvesG,G8, . . . ,
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A~x;G! i5S 2pt3

2i D e i jk] j R
G
dzkD~x2z!, ~53!

B~x;G8! i5S 2pt3

2i D R
G8

dzid~x2z! ~54!

whereD(x2z) is the free massless propagator ind53. The
CS number of the mutual linkage ofG,G8 is

NCS5E d3x Tr A~x;G! iB~x;G8! i

5S 21

2 DNLk~G,G8!, ~55!

NLk~G,G8![ R dzi R dzj8e i jk]kD~z2z8!. ~56!

If curvesG,G8 are linked, as in Fig. 4, the correspondin
CS number is 1/2, because of the factor 1/2 in front of
NLk integral in Eq.~55!.

B. Self-linking, writhe, and vortex collective coordinates

It would take another paper to discuss all the ramificatio
of vortex self-linkage, including the role of nexuses, and
new twisted nexus presented recently@11#. We restrict our-
selves here to a few simple examples, including a new A
lian twisted vortex, and some general conclusions. The m
point is that self-linking, whether considered for idealiz
Dirac-string vortices or for fat physical vortices, leads
contributions toNCS which can be essentially arbitrary re
numbers, although the self-linking is spatially localized.
for sphalerons, one can introduce a domain wall to carry
extra CS number which brings the total to an integer.

FIG. 4. A simple two-component knot with no twist or writhe.
2-11
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JOHN M. CORNWALL AND NOAH GRAHAM PHYSICAL REVIEW D 66, 065012 ~2002!
C. Self-linkage of Dirac-string vortices

Self-crossings of a single vortex Dirac string give rise
twist ~Tw! or writhe ~Wr!. With the usual sort of ribbon
framing @44# used to define self-crossings, neither twist n
writhe is a topological invariant and neither is restricted
integral values. Their sum, which is the framed link numb
~NFLk!, is an integer-valued topological invariant who
value depends on the framing. A simple ribbon framing
shown in Fig. 4. The CS number is not the integerNFLk;
instead, it is the writhe Wr, or self-link integral, of Eq.~59!
below.

Because the vortex is Abelian,NCS receives contributions
only from theAW •BW term @3,4#:

NCS5
21

8p2E d3x Tr AW •BW 5
1

4
NLk~G,G! ~57!

whereNLk(G,G)[NWr is the self-linking number or writhe
of Eq. ~59!. The writhe can be anything, depending on t
geometry of the vortex.

For Frenet-Serret framing~displacing the ribbon infini-
tesimally from the curveG along the principal normal vecto
ê2) the twist is

NTw5
1

2p R dsê2•
dê3

ds
~58!

where ê3 is the binormal vector. It too is a geometry
dependent number, but not restricted to be an intege
simple fraction.

A typical self-crossing is shown in Fig. 1, which was i
troduced to illustrate a center vortex. We now interpret t
figure as a picture of twisting but unwrithed fictitious Ab
lian field lines~the discussion is essentially the same if o
replaces ‘‘twist’’ by ‘‘writhe’’; the two are interconvertible!.
Even though this is a compact knot, it appears that ther
only one crossing. Actually there are two for the framed kn
of Fig. 5. For an untwisted curve the Gauss link number
the writhing curveG is equal to the writhe:

NFLk~G,G!5NWr5
1

4p R
G
dzi R

G
dzj8e i jk

~z2z8!k

uz2z8u3
.

~59!

As the contours are traced out the crossing point is enco
tered twice, so the value ofNFLk in Eq. ~59! is (1/2)
1(1/2)51. Or one may calculateNFLk by counting the
crossings of the link with its ribbon frame; again there a
two crossings.

Note that the same value of the writhe applies to the c
ter vortex of Fig. 1, but because of group traces the
number is, for gauge groupSU(2), half the writhe. We see
that topologically a unit of writhe in the fictitious Abelia
field lines corresponds to two sphalerons, but a unit of wri
in a center vortex corresponds to only one sphaleron.

We note that the self-linking number of a pure-gauge c
ter vortex, as described in Eq.~53!, is also the self-flux of the
corresponding Abelian potential of Eq.~38!:
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NLk~G,G!5NWr5
1

8p R
G
dziAi~z!. ~60!

The simplest case of dynamic reconnection of a cen
vortex begins with a configuration such as shown in Fig.
to which we assign some twistNTw and writheNWr , whose
sum is an integer, the framed link number. If~analogous to
the sphaleron case! we assume that the crossing lines sho
in Fig. 1 are infinitesimally separated, reconnection~chang-
ing the overcrossing shown in the figure to an undercross!
changes the framed link number by 2, not 1, as one
appreciate from a study of Fig. 5. At the same time, the tw
which is a purely geometric quantity, will change only b
O(e), where, as for the sphaleron,e is the separation of the
lines at crossing. The upshot is that the writhe changes b
and the CS number changes by 1/2, because of the fact
1/4 in Eq.~57!. So certain cases of writhe reconnection le
to a quantum of 1/2 forNCS, just as for simple mutual link-
ages. As discussed above, compactness ind54 requires
these acts of reconnection to be paired, leading to an inte
topological charge but quantized in units of 1/2.

Let us conclude this section with a new and simple spe
case of a twisting vortex with a half-integral CS numb
This vortex is Abelian, described by the gauge function

U5expH i t3

2
@f1g~z!#J ,

~61!

Ai5U] iU
215S t3

2i D F f̂ i

r
1 ẑig8~z!G .

FIG. 5. Ribbon framing of a single-component knot with o
unit of twist and two crossings.
2-12
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Heref,z are the usual cylindrical coordinates. The magne
field comes from the Dirac string in the vector potential:

Bi~x!5S 2pt3

2i D ẑid~x!d~y!. ~62!

Evidently this vortex lies along thez axis. In order to de-
scribe a vortex which is a closed loop of lengthL, we should
identify z50 with z5L. This requires that the gauge fun
tion U be the same at these two values ofz, or that

g~L !2g~0!54pN ~63!

for some integerN. The integral in Eq.~57! is trivial, and
yields

NCS5
1

8p
@g~L !2g~0!#5

N

2
. ~64!

So such a twist is equivalent toN sphalerons. Not unexpec
edly, one can get any desired value for the CS number
decompactifying; that simply removes the requirement in
~63! on the difference ofg at the end points.

D. Writhe and collective coordinates for fat vortices

We are interested here not in idealized Dirac-string vo
ces, but in physical vortices composed of flux tubes wh
thickness is essentiallyM 21. There is not only the YM vor-
tex described in@29#, but also in YMCS theory there is@12#
a self-conjugate center vortex. The example of@12# has no
twist or writhe, and it has a purely imaginary CS action a
therefore no CS number. But if this, or the YM vortex,
twisted it will yield a contribution to the CS number which
not constrained to be an integer or any simple fraction Thi
familiar in magnetohydrodynamics@45#, where the CS num-
ber becomes magnetic helicity, closely related to the
called rotational transform, or average angular displacem
of a magnetic field line per turn, in a plasma device such
a stellerator or tokamak; this too is unconstrained.

For a physical center vortex, it was shown some years
@3# that center vortices arising from the YM action with
dynamical mass term as in Eq.~6! lead to the replacement o
Eq. ~57! by

NCS5S 1

4D 1

4p R
G
dzi R

G
dzj8e i jk

~z2z8!k

uz2z8u3
F~R! ~65!

whereR5uz2z8u and

F~R!5
1

2E0

MR

dvv2e2v. ~66!

For MR→`, F(R)→1 and one recovers the usual writh
integral, but forMR→0, F(R).(MR)3/6. Because of this
benign short-distance behavior, ribbon-framing is irrelev
and there is no good distinction between twist and writ
Clearly, the simple dynamical mass term of Eq.~6! is at best
a drastic simplification of complicated quantum correctio
leading to a dynamical mass, and whatever the real form
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the trueNCS is, it will be a functional of various collective
coordinates describing the physical center vortex.

We can give a speculative and simplistic description
this collective coordinate. Whatever the true CS number o
vortex is, it can be reduced to an integer~or more generally
a rational fraction, such as 1/2 or 1/4) by a non-comp
gauge transformation. This gauge transformation is descr
in Eq. ~41!, and is characterized by an angleb(r ). The value
of b(`) for this gauge transformation is determined by t
original CS number of the vortex, and can be treated a
stand-in for the collective coordinates of this vortex. The
of values ofb(`) for the vortex condensate can then
integrated over, as we did for sphalerons, and with the sa
effect: Dynamical compactification and the CS number c
ried on domain walls.

VI. FERMIONS

One way to obtain a CS term ind53 starting from ordi-
nary YM theory is to integrate out a fermion doublet@46,47#.
Thus we expect that the same effects we have seen in YM
theory should also be visible as effects of fermions coup
to gauge fields. In this section we will make this connecti
concrete, and see how the effects of the CS term em
explicitly in terms of fermions.

It is well known that fermions or their solitonic equiva
lents skyrmions can have an exotic fermion numberF
@48,49#, and that interactions of fields with gauge fields
the presence of a CS term can lead to exotic statistics@50#. In
condensed-matter physics, half-integral spin leads to
half-integral CS level@51,52#, and the CS term turns boson
into fermions.

Fermion zero modes bound by solitons lead to puzz
about the apparent fractional fermion number and a violat
of supersymmetry@53,54#. For thed53 YMCS theory the
resolution of such puzzles will involve fermion zero mod
at infinity which converts the local fractional fermion num
ber to a global integer. This is the zero mode associated w
the sphaleron at infinity.

An SU(2) theory with an odd number of two-compone
fermions is inconsistent because of the non-perturbative W
ten anomaly ind54 @55#. In d53 an odd number of two-
component fermions leads to an odd CS levelk and dynami-
cal compactification.

A. Zero modes and fermion number 1Õ2

In 311 dimensions, the sphaleron sits halfway betwe
vacua differing by a unit CS number. A path between the
vacua correspondingly has a unit anomalous violation of
fermion number and therefore the sphaleron carries the
mion numberF51/2. In general, the fermion number of
soliton background can be calculated in terms of the as
metry of the fermion spectrum. The sphaleron is symme
under simultaneous rotations in physical space and iso
space, so that grand spinGW 5JW1 IW is conserved. We can thu
decompose the solutions to the Dirac equation into chan
labeled by grand spinG. In each channel withGÞ0, we
obtain an eight-component spinor~describing the spin and
2-13
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JOHN M. CORNWALL AND NOAH GRAHAM PHYSICAL REVIEW D 66, 065012 ~2002!
isospin!, describing four distinct degrees of freedom. InG
50, we have a four-component spinor, describing two d
tinct degrees of freedom. In both cases, these spinors
the usual degeneracy factor of 2G11, and we write the tota
fermion number as a sum over channels:F5((2G
11)FG .

In each channel, the density of states in the continuum
related to the total phase shiftdG(v) by @56,57#

rG~v!5
1

p

ddG~v!

dv
~67!

so that integrating over the energy and including the con
bution of the bound states, we have the fermion number

FG5
1

2p
@dG~m!2dG~`!2pnG

11pnG
2

2dG~2m!1dG~2`!# ~68!

wherenG
1 andnG

2 are the number of positive- and negativ
energy bound states, respectively. We can obtain arbit
fractional values@48# for the fermion number from the phas
shift at infinity, which is sensitive only to the topologica
properties of the background field. It appears from this f
mula that aCP-invariant configuration such as the sphaler
cannot carry the net fermion number, since the spectrum
symmetric inv→2v. But there is a loophole: the sphalero
has a single zero mode, which will produce a fermion nu
ber of61/2, with the sign depending on whether we inclu
the zero mode with the positive or negative energy spect
@58#. Just as we saw with the link number in Sec. IV, t
fermion number in Eq.~68! is generally an integer, but it is
really a sum of half-integral pieces, and the sphaleron re
sents an exceptional case in which one of these half-inte
is not paired. We will see that the extra zero mode lives
infinity, in agreement with the knot-theoretic picture.

We will want to focus on the zero mode solutions to t
Dirac equation, which will occur only in theG50 channel.
In this channel, the Dirac equation reduces to an effec
one-dimensional problem, so we start by reviewing the pr
erties of soliton zero modes in 111 dimensions.

B. Zero modes in 1¿1 dimensions

The simplest example of a soliton with fermion numb
1/2 is the kink in 111 dimensions@58#. The Dirac equation
is

g0S 2 ig1
d

dx
1mf1~x! Dc~x!5vc~x! ~69!

where we will work in the basisg05s2 , g15 is3 for the
two-component spinorc. In this section,m is the fermion
mass and not the CS mass. The scalar backgroundf1(x)
goes from21 at x52` to 11 at x51`, and we will
assume thatf1(x)52f1(2x). The detailed shape off1(x)
will not be important for this discussion. Just from the top
ogy, we see that we have a zero mode
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c0~x!5S e2m*0
xf1(x8)dx8

0
D . ~70!

All nonzero eigenvalues of Eq.~69! occur in complex-
conjugate pairs. From a spinorcv(x) with eigenvaluev, the
solution with the eigenvalue2v is c2v(x)5g5cv(2x)
where in our basis,g55s1. For the zero mode, however, w
obtain

c1~x!5S 0

em*0
xf1(x8)dx8D ~71!

which is non-normalizable. This mismatch, which does n
occur for the analogous bosonic problem, is responsible
the nonzero quantum correction to the mass of the supers
metric kink @53#. It is also the underlying reason for th
appearance of the half-integer fermion number, since all
other contributions to Eq.~68! cancel between positive an
negative energies. The result is a fermion number of61/2,
with the sign depending on whether we count the zero m
as a positive- or negative-energy bound state. To lift t
ambiguity, we could introduce a small constant pseudosc
field with interactionc̄ ig5f2c, which breaks the symmetry
of the spectrum. Forf2 small, the effect of this field is just to
change the energy of the zero mode slightly~with the direc-
tion depending on the sign off2), which fixes the sign pre-
cisely. We will discuss this case further below.

For later reference, we note that we can characterize
normalizable and non-normalizable solutions in a bas
independent way by

g1c0~x!5 ic0~x! ~72!

for the normalizable zero mode while

g1c1~x!52 ic1~x! ~73!

for the non-normalizable mode.~For an antisoliton, the situ-
ation is reversed.! So far we have just considered the loca
ized effects near a single kink, using scattering bound
conditions. But in a physical system, we also have to c
sider what is happening at the boundary@54,59#. We can
either place an antisoliton very far away, so that the bou
ary can be made periodic, or we can put the soliton in a b
Both have the same effect, which is to allow the other z
mode, Eq.~71!, to become a normalizable state living fa
away. In the former case, it is a zero mode localized at
antisoliton. For finite separation, both modes are displa
slightly from zero by equal and opposite amounts, giving
symmetric spectrum. In the latter case, the other zero m
lives at the walls; the condition in Eq.~73! becomes simply a
bag boundary condition at the walls.

C. Sphaleron zero modes

The d5311 sphaleron case is closely analogous to
111 case; indeed, the sphericalansatzof Eq. ~9!, with fer-
mions obeying Eq.~75! below, maps directly on tod51
11 fields. We use the same notation as in Eq.~9!, with a
2-14
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scalar fieldf1, a pseudoscalar fieldf2, and the space com
ponentH1 of an Abelian gauge potentialHm ~the time com-
ponent H0 is zero for static configurations!, and consider
only s-wave fermions. Coupling of the gauge potentials v
the CS term need not be accounted for in our analysis, so
consider only a sphaleron in YM theory with no CS ter
Following earlier work@13,24,60#, we consider a fermion
in the presence of a sphaleron background in the sphe
ansatz. In the grand spin channelGW 50, where GW 5LW

1(1/2)@sW 1tW # and fors-wavesLW 50, we have the fermion
wave function

cL~x!5@ f ~r ,t !1 ig~r ,t !#J ~74!

whereJ is a constant spinor with

~sW 1tW !J50 ~75!

and sW and tW are Pauli matrices corresponding to spin a
isospin, respectively. We normalizeJ so thatJ†J51. De-
fining

c~r ,t !5r S f ~r ,t !

g~r ,t ! D ~76!

we find that the two-component spinorc(r ) obeys the one-
dimensional Dirac equation

S igmDm1
1

r
@f1~r !1 ig5f2~r !# Dc~r ,t !50 ~77!

where m50,1 andDm5]m1 iH mg5/2 is the covariant de-
rivative for the 111 Abelian gauge potentialHm .

We can use theU(1) symmetry of the spherical ansatz
choose our gauge so thatH150 and, as stated above, for
stationary configuration we will haveH050 as well. Thus
we can takec(r ,t)5eivtc(r ). Since the sphaleron isCP

invariant, the Higgs fieldf̄1 that we obtain must be real, s
the phase angleb of Eq. ~9! must be an integral multiple o
p. For b5p the Dirac equation becomes

g0S 2 ig1
d

dr
2

f̄1

r
Dc~r !5vc~r ! ~78!

which has the normalizable solution

c0~r !5e1* r 0

r dr8[ f̄1(r 8)/r 8]c0~r 0! ~79!

where g1c0(r 0)5 ic0(r 0). The situation is now exactly
analogous to the case of the kink: we also have a corresp
ing non-normalizable mode, given by

c1~r !5e2* r 0

r dr8[ f̄1(r 8)/r 8]c1~r 0! ~80!

with g1c1(r 0)52 ic1(r 0). As with the kink, we can con-
struct a pair of sphalerons with an integer fermion num
and an even number of~near-!zero modes@13#.
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D. Level crossing and dynamical compactification

We found the sphaleron zero mode as a normalizable
lution to the time-independent Dirac equation in 311 di-
mensions with eigenvalue zero. We can then consider th
three dimensions by themselves as ad53 Euclidean space
time. The zero mode represents a level crossing in the ins
taneous eigenvalue of the 2-dimensional Dirac equa
evaluated as a function of thed53 Euclidean time variablet
@47#. We can use this level crossing picture to understand
dynamical action penalty for noncompact configurations.

Since the zero mode hasGW 50 @see Eq.~75!#, the level
that crosses zero must have equal and opposite spin and
pin. Reducing to ad53 theory, however, where we used
have a four-component Dirac equation for each isospin co
ponent, we can now consider just a two-component spi
since the spin up and down states can no longer be rot
into one another. Thus we can have, for example, a sphal
background in which a spin-up isospin-down state cros
from below to above, creating a fermion. The correspond
crossing in the other direction, which would create an an
fermion that could annihilate with this fermion throug
gauge-boson exchange, is not normalizable. Thus if
sphaleron is not paired with a compensating antisphale
we will pay an action penalty for this fermion proportional
the Euclidean time extent of the system.

E. Fermion number and Chern-Simons number

Although the CS term induced by fermions is just o
term in the derivative expansion of the fermion determina
it gives the entire contribution to the phase of the fermi
determinant. In the language of the three-dimensional D
equation, the CS term is simply the fermion number, wh
can be shown directly from the effective action@46#, where it
emerges as a result of the (111)-dimensional chiral
anomaly or by explicitly considering the contribution of ea
mode@22#. These works relate the Chern-Simons number
the ‘‘eta invariant’’

NCS5h[2
1

2
lim
s→0

(
i

sgnv i uv i u2s ~81!

which in the continuum becomes

h5F[(
G

~2G11!FG ~82!

whereFG is computed from Eq.~68! with appropriate regu-
larization @57#.

The first paper of Ref.@22# gives a particularly simple
explanantion for the emergence of the eta invariant as
phase of the determinant: for a bosonic theory, each mod
the determinant contributes

I j5E
2`

` dxj

Ap
eiv j xj

2
5 lim

e→0
E

2`

` dxj

Ap
eiv j xj

2
e2ex2

5
1

uAv j u
ei (p/4)sgnv j ~83!
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and correspondingly for fermions we have

I j5uAv j ue2 i ~p/4! sgnv j ~84!

leading to a total phase given by Eq.~81!.
We have seen above how the existence of the half-o

integral fermion number is intimately connected to t
boundary properties of the theory. If we allow backgrou
field configurations with more general boundary conditio
violating bothC and CP, we can obtain an arbitrary frac
tional fermion number, which still depends only on the top
logical properties of the background field at infinity@48#.
These fractions will enter the phase shift representation
the fermion number throughdG(6`).

Again, we will start by considering a one-dimension
example, which will carry over directly to theG50 channel
in three dimensions. We consider the Dirac equation

g0S 2 ig1
d

dx
1m@f1~x!1 ig5f2~x!# Dc5vc ~85!

where we have introduced the pseudoscalar fieldf2(x). For
concreteness, we will consider a definite background fi
configuration, though as before the results do not actu
depend on the details of the field configuration, only its
pology. We take the background that was considered in@61#

mf1~x!5m tanh
mx

2
~86!

mf2~x!5n

where m25n21m2. To simplify the calculation, we have
chosen a reflectionless background, but the results we ob
are generic. The Dirac equation is now

S n i S d

dx
2m tanh

mx

2 D
i S d

dx
1m tanh

mx

2 D 2n
D

3S h2~x!

cvh1~x!
D 5vS h2~x!

cvh1~x!
D ~87!

with cv5sgn (v)A(v2n)/(v1n). Squaring this equation
we find that the wave functions are solutions to the Sch¨-
dinger equation for potentials of the reflectionless Po¨schl-
Teller form ~see for example@53# and references therein!,

S 2
d2

dx2
2

m2

2
sech2

mx

2 D h1~x!5k2h1~x!

~88!

S 2
d2

dx2
2

3m2

2
sech2

mx

2 D h2~x!5k2h2~x!
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An incoming wave from the left is given by

c in~x!5S 1

l
D eikx ~89!

where l52(k1 im)/(v1n). Propagating this solution
through the potential, the transmitted wave is

cout~x!5S eid2(k)

leid1(k)eikxD ~90!

where

d1~k!52 arctan
m

2k
~91!

d2~k!5d1~k!12 arctan
m

k

are the phase shifts of the reflectionless Schro¨dinger equa-
tions in Eq. ~88!. To compute the fermion phase shift, w
comparecout to the spinorc rot obtained by performing the
chiral rotation onc in that rotates it from the vacuum on th
left to the vacuum on the right,

c rot~x!5eig5xc in~x!5S n im

im n
Dc in~x!

5S n1 iml

im1ln
D eikx ~92!

wherex5arctan(m/n). Then

cout~x!5eid(k)c rot~x! ~93!

and we obtain~up to an overall constant independent ofv,
which will cancel out of all our results!

d~k!5d1~k!1argS l

im1ln D
5d1~k!1arctan

m

k
1arctan

vm

kn
~94!

or equivalently

d~k!5d2~k!2arg~n1 iml!

5d2~k!1arctan
mk

vn1m2
. ~95!

We have bound states at energies

v56A3m2

4
1n2 and v5n ~96!
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where the last mode becomes the zero mode discussed e
when n50. There are also ‘‘threshold states’’ atv56m
@53,62#. Plugging these results into the formula for the fe
mion number,

F5
1

2p
@d~m!2d~`!2pn11pn22d~2m!1d~2`!#

~97!

we obtain for the fractional charge

F5
x

p
~98!

in agreement with the approach of@48#. We then obtain the
pure scalar result as

lim
n→06

F56
1

2
. ~99!

This result carries over directly to theG50 channel in
three dimensions. The fractional fermion number in Eq.~98!
now corresponds to the terma(`)/2p in Eq. ~19!. ~The
extra factor of 1/2 arises because the field now goes o
from 0 to ` instead of from2` to 1`.! The rest of the
fermion number,2sina(`)/2p, comes from summing ove
the channels withG.0 @49,57#. These generalized noncom
pact boundary conditions correspond to chiral bag bound
conditions

ieiaW (`)tW•n̂g5C5~gW •n̂!C ~100!

wheren̂ is the unit outward normal at the boundary. Impo
ing this condition at a finite radiusR, we find that the remain-
ing fermion number

F52
1

2p
@a~`!2sina~`!# ~101!

necessary to obtain an integer is precisely the fermion n
ber living outside the bag@49,57#.

F. Fermion number and Chern-Simons number

The identification of the fermion number with the C
number contains additional subtleties when we cons
arbitrary large gauge transformations. Equation~97! is
explicitly gauge invariant, since it is determined from t
phase shifts, which are related directly to the gauge-invar
change in the density of states byr(k)2r0(k)
5(1/p)(dd/dk). On the other hand, the gauge transform
tion in Eq. ~16!, which transformsc by

c~r !→eig5a(r )c~r ! ~102!

will make an arbitrary change in the CS number@this change
will be an integer if the gauge transformation can be co
pactified, that is, ifa(`) is 2p times an integer#. In the
scattering problem where the boundaries were different
the left and right, in order to extract a scalar phase shift,
06501
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compared the transmitted spinor to the result of the co
sponding chiral rotation on the incoming spinorin the same
gauge. This phase shift gives the fermion density of states
gauge transformation does not change this fermion num
because it introduces the same phase factor in both the tr
mitted spinor and the chiral rotation of the incoming spin
Thus, for any nontrivial background field configuration a
proaching a pure gauge at infinity, the fermion number
obtain is the fermion number of the nontrivial backgrou
minus the fermion number of a background that is pu
gauge everywhere and becomes equal to the nontrivial b
ground at infinity.

A similar situation will arise if we consider the phase
the path integral. Integrating out the fermion modes yields
effective action given by the determinant of the Dirac ope
tor, detD, which is a nonlocal functional of the backgroun
field. However, to make sense of this quantity, which is
divergent product over an infinite set of modes, we m
always compare it to the same determinant in the triv
background detD0. The full path integral is then obtained b
integrating detD/detD0 over the background fields with ap
propriate gauge fixing; thus physical results will always d
pend on this ratio of determinants, with both determina
calculated in the same gauge. Subtracting the free dete
nant will generally have a trivial effect on the dynamic
since the background is pure gauge, except that it can ca
the pure-gauge contributions to the Chern-Simons num
just as we saw in the fermion number calculation above.

VII. THE GEORGI-GLASHOW MODEL WITH A CS TERM

Polyakov@63# claimed that in thed53 Georgi-Glashow
~GG! model confinement arose through a condensate o
Hooft–Polyakov ~TP! monopoles, with the formation o
electric flux tubes dual to the magnetic flux tubes that arise
an ordinary superconductor because of the Meissner m
Affleck et al.argued that in GGCS theory the TP monopole
collective coordinates led to survival of only the sector w
zero monopole charge. Pisarski@14# argued that with a CS
term added~GGCS theory! and in the approximation of true
long-range fields for the TP monopoles, a monopole cond
sate could only form in a ‘‘molecular’’ phase, in whic
monopoles and antimonopoles were bound together, lo
both the long-range fields and confinement. He interprets
infinite-action TP monopole as requiring a string, but t
string itself was not exhibited; a literal interpretation of h
results is simply that the spherically symmetric action de
sity for a TP monopole in GGCS theory integrated in
sphere of radiusR diverges linearly at largeR. The diver-
gence arises because the TP monopole does not beco
pure-gauge configuration at larger. We point out here that
the TP monopole is, in fact, a nexus joined to center-vort
like flux tubes, and that these constitute the strings joinin
TP monopole to a TP anti-monopole.

The GG action is the sum ofI Y M and an adjoint-scala
field action for a fieldf. We introduce an anti-Hermitea
scalar matrixc and associated actionI GG :
2-17
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c~xW !5
1

2ig
tafa~xW !,

~103!

I GG5
1

g2E d3xH 2Tr@Di ,c#21
l

g2 FTr c21
g2v2

2 G J 2

.

The total GGCS action isI Y MCS1I CS.
Since the work of Polyakov@63#, Affleck et al. @15#, and

Pisarksi@14#, several other groups@8,19,20# have discussed
how the plain GG model with no CS term is actually in t
universality class of YM theory with dynamical mass ge
eration, center vortices, and nexuses. The point is, as
cussed by Polyakov, that there is always a Meissner mas
the otherwise long-range gauge fields, even if the VEVv of
the adjoint scalar is large compared to the gauge coupling
so that the Meissner mass is exponentially small inv/g. This
mass screens the long-range TP monopoles fields. If, h
ever,v.g ~and, in the GGCS model, when also the CS le
k is subcritical!, there is dynamical mass generation driv
by infrared instability because the charged gauge-boson m
;vg is too small. By the appropriate choice of the coef
cients in the GGCS model with a dynamical mass te
added by hand, we can always fit the Meissner mass an
the dynamical mass. This is so even if what we call dyna
cal mass generation, which would come from infrared ins
bility, is not present becausev/g is sufficiently large or be-
cause k is super-critical. When the extra mass term
considered, we claim that the TP monopoles of GGCS the
are deformed into nexuses; their would-be long-range fi
lines are confined into fat tubes. Monopoles are bound
antimonopoles~antinexuses! by these tubes, which are esse
tially center-vortex flux tubes. The long-range gauge pot
tials responsible for confinement come not from the origi
TP monopoles, which become screened and have no l
range fields, but from center vortices and nexuses. Whe
TP monopole becomes a nexus, which has no long-ra
fields, it becomes a long-range pure-gauge part@as described,
for example, in Eq.~53!# at great distances, quite differen
from the standard TP monopole which approaches the
Yang configuration.

There exists a deformation of this nexus-anti-nexus pai
GGCS theory as well. The reason is that, with all gau
potentials approaching pure-gauge configurations at infi
distance, all terms of the action (I Y M ,I M ,I GG ,I CS) are inte-
grable at large distance@8#. They are like TP monopoles in
that the flux carried through a large sphere containing on
nexus~no antinexus! and its flux tubes is the same as that
the TP monopole. They are unlike the TP monopole in t
the potential of a center vortex, lying on a closed comp
surface and decorated with a nexus and an antinexus,
proaches a pure gauge at infinity. Confinement comes a
by the usual@29# linking of fundamental Wilson loops with
the center vortices, with or without nexuses.

Whether a Meissner mass or a dynamical mass is invo
makes no real difference, so consider the case of dynam
mass generation (v;g). One must add the mass termI M
@Eq. ~6!# to the GGCS action. It is now not so simple to fin
a GG nexus, because one must find a configuration of ga
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and scalar fields such thatboth the dynamical mass action o
Eq. ~6! and the scalar action of Eq.~103! vanish at large
distance, along with the usual YM action and the CS acti
That the dynamical mass term vanishes requires the ve
potential to approach a pure gauge asr→`:

Ai→U] iU
21 ~104!

whereU is the unitary matrix of Eq.~6!. For GG theory with
no dynamical mass, the only requirement is that
covariant-derivative term in Eq.~103!, which is a commuta-
tor, vanish. This will be compatible with asymptotic vanis
ing of the scalar action only if the scalar fieldc obeys

c→Uc0U21 ~105!

for constantc0. The gaugeU is just that of a nexus. For the
special case when the nexus tubes lie along thez axis, this is

U5exp~ ift• x̂/2!. ~106!

By contrast, for a TP monopole there is no dynamic
mass action and thus no requirement that the potential
come pure gauge at infinity. This is what leads, in Pisars
analysis@14# of GGCS, to an action diverging in the infinite
volume limit.

Given that TP monopoles turn into nexuses in GG, w
happens to TP monopoles in GGCS theory? In simp
terms, nothing changes at infinity because the addition of
Chern-Simons term to the action, given a gauge poten
defined at infinity by the gauge functionU of Eq. ~106!,
leads to no large-volume divergences. In fact, the CS term
this U is zero. So as long as there is a dynamical mass,
is, as long as the CS levelk is less than the critical value, w
expect no qualitatively new behavior.

Is there still confinement in the GGCS theory for su
values ofk? The answer is yes, because~aside from nexuses!
there are also@12# plain center vortices in CCGS theory, wit
theZ2 holonomy necessary for confinement@29#. These vor-
tices smoothly vanish as the dynamical mass is turned
which happens whenk exceeds its critical value, and the
confinement is indeed lost.

VIII. SUMMARY AND CONCLUSIONS

Solitons of d53 YM or YMCS theory with dynamical
mass generation, such as sphalerons and center vortice
noncompact even in their simplest manifestation, where t
have CS number 1/2. In fact, these solitons can be given
arbitrary CS number with a non-compact gauge transform
tion. This gauge transformation changes only the CS ac
by a surface term, and does not affect the rest of the actio
the equations of motion. Consequently, the parameters
such gauge transformations are collective coordinates, w
are to be integrated over. This integration raises the free
ergy, showing that compactification, that is, the exclusion
these collective coordinates, is dynamically preferred.
2-18
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sphalerons of CS number 1/2 we show that an odd numbe
sphalerons in a finite region induces a domain-wall sphale
which changes the CS number to an integer and compac
the theory. This in turn lowers the free energy. We interp
the sphaleron CS number of 1/2 as representing a si
over- or under-crossing in the Reidemeister presentatio
knots in fictitious field lines, using the transcription of th
non-Abelian CS number to an Abelian Hopf invariant, whi
is a link number of closed and continuous Abelian gau
field lines. If there is an odd number of explicit crossings
any finite region, then compactification requires a doma
wall sphaleron which acts as a superconducting wall for
Abelian field lines, compactifying them, and induces an o
number of extra crossings so that the total number of cro
ings is even. Any compact knot possesses an even numb
crossings and hence an integral CS number. Similar con
erations hold for center vortices, except that in the case
self-linking ~writhe! there is no natural reason for vortices
have integral or half-integral writhe.

We present a new twisted vortex, which possesses
half-integral CS number by virtue of its twist.

We relate the non-compactness of a CS number of 1/
the puzzle of the fermion number of 1/2 generated by s
tons both in one and three spatial dimensions, where
puzzle has been solved by identifying a non-normaliza
fermion zero mode which carries another half-unit of fe
mion number. This may be interpreted as the normaliza
zero mode of a sphaleron at infinity.

We bring earlier work on the behavior of TP monopoles
GGCS theory up to date, by noting that whether there is a
e

s
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term or not added to the GG action, the screening of
monopole fields by the Meissner effect or by the generat
of dynamical mass leads to tubes of flux, essentially cen
vortex tubes, joining every monopole to an anti-monopo
The result is a compactified theory.

The general conclusion, then, is that compactificat
such asRd→Sd is dynamically preferred, and is not a ne
essary assumption. Either strings form between individua
non-compact solitons which bind them into compact co
figurations, or surface phenomena are induced which c
pactify the theory and result in lower energy density.

The generalization to gauge groupSU(N) is fairly
straightforward, and proceeds along the lines of@11# if one
ignores the problem of self-linking and writhe. Then th
quantum of localized topological charge ind54 is 1/N, and
linkage of vortex surfaces and nexus world lines topolo
cally confines these fractional lumps into global units of
pological charge. Ind53, the localized units of CS numbe
are 1/(2N), which is why forSU(2) the CS number is 1/4
times a linking number, as shown in Eq.~57!. Since there are
already mechanisms for compactifying such units, we did
discuss them in this paper; they will be treated in a la
publication.
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