PHYSICAL REVIEW D 66, 065012 (2002

Sphalerons, knots, and dynamical compactification in Yang-Mills-Chern-Simons theories
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Euclideand=3 SU(2) Yang-Mills-Chern-SimongYMCS) theory may have solitons in the presence of
appropriate mass terms, including Georgi-Glashi@GCS theory. For integral CS leved and for solitons
carrying integral CS numbeN.g, YMCS theory is gauge invariant and consistent, and the CS integral
describes the compact Hopf m&— S?. However, typical solitons include sphalerons and linked center
vortices (Ncs= 1/2) as well as writhing center vortices with arbitrary rdils, and compactness may be lost.

We study various forms of the non-compact theory in the dilute-gas approximation, inclkdisgan odd

integer or non-integral, treating the parameters of non-compact large gauge transformations as collective
coordinates. Among our conclusions are the followifig.YMCS theory dynamically compactifies; a putative
non-compact YMCS theory has infinitely higher vacuum endidixe, . than compact YMCS theory2) For
sphalerons witiN-s= 1/2 compactification arises through a domain-wall sphaleron, a pure-gauge configuration
lying on a closed surface carrying the right amounigk to compactify.(3) We can interpret the domain-wall
sphaleron in terms of fictitious closed Abelian field lines, associated with an Abelian potential and magnetic
field derived from the non-Abelian CS term. In this language, sphalerons are under- and over-crossings of
knots in the field lines; a domain-wall sphaleron acts as a superconducting surface which confines these knots
to a compact domair(4) Analogous results hold for the linking and writhing of center vortices and nexuses.
(5) If we induce a CS term with an odd number of fermion doublets, domain-wall sphalerons are related to
non-normalizable fermion zero modes of solitof®. The GGCS theory with monopoles is explicitly com-
pactified with center-vortex-like strings.
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[. INTRODUCTION In other circumstances, such as for fractiodal 4 topo-
logical charge, dynamical compactification apparently oc-
Compactification of the Euclidean spaB&, such asR® curs, and sometimes throudih3] the formation of a string
— 9, famously leads to integral quantization of certain to-which joins enough fractional objects so that their total
pological charges, such as the usual four-dimensional topaharge is integral. Or compactness of center-vortex sheets
logical charge commonly associated with instantons. Yemay ensurg9—11] topological confinement ofl=4 topo-
practically since instantons were invented there have beelogical charge. Pisarskil4] claims that topologicalTP)
indications of fractional topological chardd—11], whose monopoles in the Georgi-Glashow theory with a CS term
existence could interfere with compactification. The basicadded(GGCS theory are joined by strings. Any attempt to
issue we address in this paper is whether compactification fageparate out a half-integral set of topological charges joined
Euclideand=3 SU(2) Yang-Mills-Chern-SimonsYMCS) by strings requires the introduction of enough energy to
theory is a mathematical hypothesis, which could be abanstretch and ultimately break the string. This in turn supplies
doned, or whether there are dynamical reasons for expectingew fractional topological charges which enforce compacti-
it. If the theory has either a Chern-Simof@S) level k less  fication. Affleck et al. [15] argue that in CCGS theory the
than a critical valuk,=2-3[12], or a fundamental Higgs long-range monopole fields already decompactify the space
field, there can exist solitons with CS number of 1/2, such agnd allow an arbitrary CS number; summing over these ar-
sphalerons and distinct linked center vortices, or solitonitrary values leads to the suppression of TP monopoles. For
with arbitrary real CS number, such as writhing center vorthe condensed-matter analogue, see REf]. [Reference
tices. A condensate of such solitons, taken naively, violategl7] challenges the conclusion f15], on different grounds
compactness and, if it has an interpretation at all, requiresshich are somewhat related to ours, and R&8] observes
integrating over all non-compact gauge transformations athat for the GGCS theory with no gauge kinetic term, TP
collective coordinates. We find that candidate vacua in thenonopoles amount to instantons which lead to electric
dilute-gas approximation have the lowest energy when theharge conservation only mdd(] More recent develop-
total Ncgis integral andR® is compactified t65®. We find an  ments require modifications of the views [d#4,15. Several
interpretation for this dynamical compactification in terms ofauthors[5,19,20 have pointed out that the TP monopole is
a domain-wall “sphaleron” supplying enough fractional CS actually like a nexus, with its magnetic flux confined into
number to compensate for the total CS number of the bulkubes which are, for all practical purposes, the tubes of center
solitons. vortices. These tubes, which join a monopole to an anti-
monopole, are the natural candidates for the strings Pisarski
[14] claims to exist, although his claim is not based on find-
*Email address: cornwall@physics.ucla.edu ing any stringlike object in the CCGS theory. We find no
"Email address: graham@physics.ucla.edu evidence for strings joining sphalerons, and none is expected
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since if everyd=3 cross section ofi=4 space had an even
number of sphalerons, thet=4 space would have to have
topological charge which is an even integer. But there is no
such restriction ird=4.

In this paper we will be concerned with a YMCS theory
with extra mass terms which can either be due to quantum
effects or explicit. For YMCS theory with no explicit mass
terms it has been argudd?] that if the CS levek is less
than a critical valué,, the CS-induced gauge-boson mass is
not large enough to cure the infrared instability of the under-
lying Yang-Mills (YM) theory. In this case a dynamical mass
(equal for all gauge bosonss generated just as for the YM
theory with no CS term, and in the YM theory it is known
that quantum sphalerons of CS number 1/2 §24t, as well

as center vortices with various CS numbers. Refer¢h2g FIG. 1. A center vortex with writhe.
estimatesk,=2=0.7N for gauge grouglSU(N). But for k
>Kk., YMCS with no matter fields is essentially perturbative, U=exdi a(r);- F/z], a(%°)#2mN. 1)

and in the same universality class as Witten’s topological
gauge theory22], with only the CS term in the action; there This gauge transformation does not change the action or
are no solitons of finite actiof23]. There are also sphalerons equations of motion of the soliton, and therefore corresponds
[24] and center vortices for YM theory with an elementaryto a collective coordinate. As we will see, integrating over
Higgs field in the fundamental representation; this theory isx(e°) as a collective coordinate does not automatically com-
quite close in behavior to YM theory with no matter fields pactify the space; it simply gives it a higher vacuum energy
andk<Kk,. density(and infinitely higher energy for infinite voluméhan

A fundamental assumption of the present paper is that ift would have if the solitons allowed compactification. Again
these isolated sphalerons or center vortices exist, a condemwe expect the energy of the vacuum to be lowered by the
sate of them is allowed, and that we can learn somethinfprmation of a domain-wall sphaleron.
about this condensate through conventional dilute-gas argu- The sphaleron is not the only object in tB&J(2) d=3
ments. This assumption could fail if the sphalerons are some¥M or YMCS theories with a half-integral CS number. In the
how so strongly coupled that the dilute-gas approximation icenter vortex-nexus view of gauge theor[@8—-33 d=4
qualitatively wrong, but it is not our purpose to investigatetopological charge is carrigéh part) by the linkage of center
this possibility. Certainly, lattice evidence for a center vortexvortices and nexuse®-11]; the d=3 projection of such
condensate in QCD suggests that there is some sense to tivekages is that center vortices, which are closed fat strings
dilute-gas approximation. of magnetic flux, carry the CS number through mutual link-

The sphalerori21,24,29 is the prototypical example of age as well as the self-linkage of twisting and writhing
an isolated non-compact soliton th=3 gauge theory; it [3,12,11,34-3p of these strings. In their simplest linked
nominally has Chern-Simons numbeM{s) of 1/2, instead configuration, which consists of two untwisted but linked
of the integral value demanded by compactification. No aploops whose distance of closest approach is large compared
parent problems arise until one adds a CS tg2®27, at  to the flux-tube thickness, they carry a mutual link number
which point for the odd CS leved an odd number of sphale- N, which is an integer, and a CS numberNf /2, just like
rons is detectable in the partition function and elsewhere as a sphaleron. But there are isolated configurations that carry
non-compact object, which seems to break gauge invariancessentially any link or CS numbg3,4]. These are individual
and in any event leads to peculiar signs for physical objectenter vortices with writhe. An example is shown in Fig. 1.
In this hybrid theory with the integral and odd CS lekebe = For mathematically idealize@®irac-string vortices, one can
do not admit arbitrary non-compact gauge transformationsapply Calugareanu’s theorem, which says that the ribbon-
but we do admit a condensate of sphalerons, eachMgth  framed self-linking numbeN g, is an integer and a topologi-
=1/2. In sectors with an odd numbérof sphalerons, the cal invariant, although not uniquely defined, and thg{
total CS numbeid/2 is half-integral and non-compact. We = Nq,+ Ny, where the writhe Wr is the standard Gauss self-
argue that it is energetically favorable to form a domain-walllinking integral andN+,, is the twist or torsion integral. Nei-
“sphaleron” which may live on the surface at infinity and ther N, nor Ny, is a topological invariant, and neither is
which also carries half-integral CS number. The total CSrestricted to take on integer values. As a result, even without
number of the explicit sphalerons and the domain wall ismaking general non-compact gauge transformations, one has
now integral, its energy is lowered, and the theory is dynamithe phenomenon of an essentially arbitrary CS number for an
cally compactified. isolated soliton. The effect of these center vortices is much

Next we explore the consequences of admitting not onlithe same as if we admit non-compact gauge transformations.
non-compact solitons but also non-compact gauge transfo@ne difference is that for spatially compact center vortices
mations. Then the CS number of any isolatkd 3 gauge- the CS density is localized, while for non-compact gauge
theory soliton is essentially arbitrary, since it can be changettansformations the associated CS density always lies on the
by a large non-compact gauge transformation of the form surface at infinity.
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For physical center vortices, where Dirac strings turn into  (4) Fat self-linked center vortices can also carry arbitrary
fat tubes of magnetic flux, the same picture holds, althougiNcs associated with collective coordinates; we expect phe-
for different reasons. For such fat tubes, the standard inteaomena similar to those found for sphalerons.
grals for Ny, and Ny, are modified, and there is no sharp  (5) For a compacti=4 condensate of center vortices and
distinction between twist and writi@]. The modified inte- nexuses, living in the product ofd=3 space and éEuclid-
grals depend on the details of the mechanism which fattengan “time” variable, a possible time-dependent reconnec-
the flux tubegwhich may be thought of as the generation oftion of vortices which chenges link numpers is constrained
a dynamical mass by quantum effects arising from infraredy compactness to yield integral topological charge.
instability of the YM theory. There is no reason for Tw or _ (6) If fermions are added, we show that the half-integral
Wr to be integers, or even fractions such as 1/2. In physicfermion number and half-integral CS number go together,
language, this means thaty, and Ny, are dependent on and identify an extra fermion number of 1/2 with a fermion

collective coordinates of the vortex. So the situation shouldzer0 m_ode aF infinity, which IS a zero mode of the spha!eron
be somewhat similar to that for sphalerons. at infinity. This result generalizes to the case of the arbitrary

. CS number as well.
If CS numbers can take on arbitrary values, how can the (7) In the GGCS model, strings exist which bind TP
d=4 topological charge, which is the difference of CS num-p,,nq50jes to TP anti-monopoles and restore compactifica-

bers, be restricted to integral values? The answer, of COUrSG, - these strings are essentially those of center vortices,
is d=4 compactness, which is not relatedde 3 compact-  \yhile the TP monopoles are like nexuses.

ness; a non-compact=4 space may have only compatt

=3 cross sect|one. Compaetnessdlﬁé} constrains the CS Il. SOLITONS IN YMCS THEORY
numbers whose difference is topological charge so that not _ _ _

every pair ofd=3 condensates of CS number can occurina A Spherically symmetric solitons of YMCS theory

compactd=4 space. We give some simple examples, analo- |n this section we establish notation, review the properties
gous to the pairing of crossingsphaleronsin a compact  of solitons with the usual sphericahsatzin YMCS theory
d=3 space, showing how these constraints arise. These ewith a dynamical mass or mass coming from a fundamental
amples interpret the net change in CS number as arising frofdiggs field, and remark that every configuration in the func-
a dynamic reconnection process, in which center vorticesional integral for YMCS theory has a conjugate related by a
change their link number; only certain kinds of dynamic re-EuclideanCP T-like transformation.

connection are allowed by compactness. The point of recon- The action of YMCS is complex, and its classical solitons
nection, when two otherwise distinct vortices have a com<can be complex too. Then the CS actiew of Eq. (4) below
mon point, is simply the point of intersection of the centermay be complex, and its real part is not interpretable as
vortices in the previously studied picture of tHe=4 topo- having to do with CS number, which we will always define
logical charge as an intersection number of closed vorteRS IMlcs=27kNcs as usual. Here the integéris the CS
surfaces(plus linkages of these surfaces with nexus world/€vel- In general a large gauge transformation only changes

lines) [9—11]; such intersection points come in pairs for com- th€ imaginary part ofcs, and so this identification makes
pact vortex surfaces. sense. But one may also ask whether it makes sense at all to

We summarize our results as follows: discuss complex solitons as extrema of the action; certainly,

(1) Even if compactification is not assumedpriori, and as Pisarsk[14] points out, this is quite wrong in some cir-

. . . . cumstances. The other possibility is to use only solitons of
solitons possess collective coordinates amounting to arb%—

) . he real part of th ion, and simply eval h rm
trary Ncg for every soliton, the lowest-energy candidate e real part of the action, and simply evaluate the CS term at

tate of a YMCS th . hich i these solitons. Of course, this works finedis 4, where the
vacuum state ot a eory Is one which Is Compactyeis term adds nothing to the equations of motion. Refer-

The energetic favorab.il_ity ef compactification we describeence[lz] argues that in YMCS there is a compléut self-
by dynamical compactification _ . ~conjugaté spherically symmetric soliton much like a sphale-
(2) There is no evidence for strings which locally bind yon; the particular case studied there had purely real CS
sphalerons into paired objects; instead, there is evidence forgtion and hence no CS number. We show here that the
domain-wall “sphaleron” which carries a half-integral CS \ould-be sphaleron of Ref12] can easily be promoted to a
number if the bulk sphalerons also carry the half-integral CSphaleron withiNcg= 1/2.
number. One knows[37,38 that with no CS termd=3 YM
(3) Sphalerons can be mapped onto over- and undetheory with no matter terms is infrared-unstable and non-
crossings of knots which occur in closed fictitious Abelianperturbative, requiring the dynamical generation of a gluon
field lines associated with the non-Abelian CS term. There isnassM of orderNg? for gauge grous U(N), whereg is the
always an even number of crossings for compact knots, angauge coupling. If this theory is extended to YMCS theory, it
so an odd number of crossings of closed knot component@ppears(at least from one-loop calculatioj42]) that the
must be compensated by an odd number of crossings els€hern-Simons gauge-boson mass kg?/4 is too small to
where. The domain-wall sphaleron acts as a superconductingure the infrared instability, and so generation of dynamical
wall which confines the closed fictitious field lines to a com-mass is still required. The estimates of the critical lekigl
pact domain, where they must close and have an integral C&e based on one-loop calculations of the gauge-invariant
number. pinch-technique(PT) gauge-boson propagatf87—4Q and
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may not be very accurate, but unpublished estimates of twoFhe effective actior osi=I|ypmcst 1y iS usable in the infra-
loop corrections by one of ug.M.C) suggest that the exis- red regime, but at large momentymor short distance the
tence of a finitek, is well established. The one-loop calcu- dynamical massn? necessarily vanishes at a ratgp 2
lations givek.=2+0.7N. The generation of a dynamical x? (modulo logarithms This dynamical-mass effective ac-
mass generally leads to confinement, via the creation of #don is the same, for our purposes, as if one added a funda-
condensate of center vorticg28—31 and nexuse$5,8—  mental Higgs field, as in the Weinberg electroweak action.
10,32,33. The long-range effects essential for confinement Because the action is complex, in general we must deal
come from pure-gauge parts that disorder the Wilson loopvith complex values for the gauge potentials and matter
(i.e., give it an area layby fluctuations in the Gauss linking fields. However, the matrixJ) must always be arsU(2)
number of vortices and the Wilson loop. matrix; that is, in the component fortd = exp(r,w,/2) the
Define the usual anti-Hermitea®U(2) gauge-potential fields w, are always real.
matrix with the gauge coupling incorporated by

B. Complex field configurations

A= 5 ) rAR) @ | _ _ |
With a complex action, there is no reason to restrict the

path integral to real fields. There is an elementary theorem,

essentially a Euclidea@ P T theorem, applicable to complex

YMCS gauge fields and any scalar fields, such as the fields

¥(x) of the GG model discussed later. Given any configura-

lyy= f d x—Tr62 3) tion of gauge and scalar fields for which the actions evalu-

ated on this configuration have the valueg;,lcs,Iv.lcc,

we define a conjugate configuration by

where the component form?(i) is the canonical gauge
potential. The Euclidean YM action is

To this can be added the Chern-Simons action

. CPT:  Ai(x),Gj(x),U(x),¥(x)
lcs=(2mikK)Qcs,

4) —AT(=x), =Gl (=x),U(=x), = (—=x)" (8

-1 2
QCSZFJ d3X€ijkTr[Ai(9jAk+ §A|A1Ak .
™ [or in component languaged?(x) — —AX(—X)*, wa(X)

The sumlyy+cs is the YMCS actionyycs. Throughout —— @a(=X), ¢a(X) =+ da(—X)*]. Then the
i ; i CPT-transformed configuration has actidrfs| & =
this paper we will define the CS numhigg s as thereal part 9 (o} GG-
of the integral in Eq(4): Note thatNcgs changes sign under conjugation.
Below we will look for solitons of the YMCS action plus
Imlcg matter terms. Generally these solitons, like the action itself,
Nes=ReQcs=— 1~ (5 will be complex. They can be divided into two typed)

those configurationisA;(x),Gj; (x),U(X), #(x)] which trans-

It is only from this real part that phase or gauge-invariancgorm into themselves unde€PT, which we call self-
problems can arise. Gauge invariance under lécgepact  conjugate, and2) those which transform to another configu-
gauge transformations requires that the Chern-Simons kevelration. Self-conjugate configurations haweal action,
is an integer, so that the integrand exps of the partition  including the CS term. It is easy to see that if any configu-
function is unchanged. At the classical level, all gaugeration of type(2) satisfies the complex equations of motion
bosons acquire a Chern-Simons mass kg?/4. then so does it<CPT conjugate, and both are admissible

As mentioned in the Introduction, the CS mass may nosolitons if either is. Examples of typd) solitons are given
be large enough to cure the infrared instabilities of YMCSIin [12], for the YMCS action with dynamical mass genera-
with no matter fields, and a dynamical mass is generatedion. These solitons cannot be said to possess topological
This mass is the same for all gauge bosons. The infraredProperties as expressed through the CS term, since the CS
effective action for this dynamical mag37] is just a gauged number N¢s vanishes. However, from this earlier self-

non-linear sigma model: conjugate soliton it is easy to generate solitons which are not
self-conjugate and which, in fact, have any desired CS num-
ber.
Im= x T U~*'D;U7?, We review the sphaleron-like complex solitpt2] of the

action lyycst 1y [see Egs(3),(6)]. Using the notation of

(6) . o / i
Di=d+ A, U=expliogr/2). [12], a spherical soliton is described by four functions of

When the unitary matrixJ and the gauge potential have the
following gauge-transformation laws, the actigp is gauge 2iA =
invariant:

6|ak7'axk — (71— XiX- 7)

(¢1(r) 1) s a = ()
r

U—VU, A—VAV l+vov 1 7) + XX 7H (1), 9
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U=ex;<iﬂ(r)7 . (10

The equations of motion, found by varying both and U,
are

_ r_ ’ i 42 42
0=(¢1—H1¢) +r2¢1(1 b1~ ¢3)

+(im—Hy)($5+His) —M2(hy—cosp), (1D)
0=<¢;+H1¢1>'+r32¢2<1—¢?—¢>§)

—(im—Hy)(h;—Hidp2) =M%y +sing), (12)
0=1¢bs— bop+H( T+ p3) +im(1— p7— ¢3)

+%M2r2(Hl—,8’), (13
0=riz[rz(ﬂ’—Hl)]’—rz—z(d)lsilﬂﬁ+ $,C0SB) (14)
where

mzi—g; (15)

is the Chern-Simons mass at lekeand the prime signifies

differentiation with respect to. These equations reduce to

those of[12] at B=m. As in [12], Eq. (14), which is the

PHYSICAL REVIEW D 66, 065012 (2002

1 d3X ’ ’ ’ 2 2
ch:_swzf Tz [$1d2— a1~ o~ Hi(1— 1~ 3)].
(18)

If any solution of the equations of motion is gauge trans-
formed as in Eq(16), it remains a solution to these equations
and all contributions to the action are unchanged except, of
course, for the CS part of the action. If we start with the
self-conjugate soliton above, and transform it with a function
a(r) such thate(0)= — 7, a()=0 one sees that the soli-
ton is no longer self-conjugate, and in general all three func-
tions ¢, ,, H, are complex. This choice of boundary condi-
tions for « removes an integrable singularity in the original
self-conjugate sphaleron, but does not change the YM and
mass parts of the action. The change in the CS integral, be-
cause it does not affect the equations of motion, is necessar-
ily a surface term:

o)

02.

1
5ch=§ a(r)—sina(r) (19

The new sphaleron hablcs=1/2, as appropriate for a
sphaleron.

The immediate objection is that one could as well choose
any value fora(«), and change the sphaleron’s CS number
to any desired value. Integration over this collective coordi-
nate might cause sphalerons to be confined in paissar-
gued in[15] for TP monopoles in the GGCS mogeHow-
ever, it does not quite happen that way for sphalerons. We
next show that integrating over(c°) for all sphalerons does
increase the free energy, but does not lead immediately to
confinement of sphalerons in pairs. In such a case, compac-

variational equation fot, is not independent of the other tjfication becomes the preferred state dynamically.
three equations. It can be derived from them by simple ma-

nipulations because there is still an Abelian gauge degree of

freedom:
¢1(r)— @y(r)cosa(r)+ ¢,(r)sina(r),
bo(r)— dy(r)cosa(r)— ¢y(r)sina(r),

(16)
B(r)—pB(r)+a(r),
Hi(r)—Hy(r)+a'(r).
The boundary conditions are for=0
$1(0)=1, ¢,(0)=H4(0)=p(0)=0, (17a
and forr=o
$1()=cosp(®), py(®)=—sinp(x®). (17b

First consider the case= . Then[12] there is a solution
where ¢, is real and¢, andH,; are pure imaginary. This

IIl. DYNAMICAL COMPACTIFICATION

As discussed in the Introduction, sphalergasd center
vorticeg present a challenge to the usual view of the com-
pact YMCS theory, since these solitons in isolation violate
compactness and lead to problems with gauge invariance. In
this section we consider several cases, beginning with the
internally inconsistent but instructive case in whiclis in-
tegral and only compact gauge transformations are allowed
but there is a condensate @fon-compadt sphalerons. The
result is that for oddk the energy density of the vacuum is
changed in sign from the case of evienwhich raises the
vacuum energy by an infinite amount. In the next c&sis,
still an integer but we allow large gauge transformations of

the form expi7ra(r)/2] with arbitrary a(). Since the ac-
tion of a sphaleron depends ar(r) only through the CS
phase factor, this variable can be treated as a collective co-
ordinate and integrated over. We will see that this integral
again raises the free energy, suggesting that the compactified
theory is preferred on energetic grounds. Finally, we consider

corresponds to a self-conjugate soliton, so the CS action ithe case of gener#l including spatially variabl&, and non-

purely real[that is, the CS integraQcs in Eq. (4) is pure
imaginary. This is easily checked from the explicit form

compact gauge transformations and find, analogous & Lu
cher's work[41] in d=4, that if k takes on a non-integral
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value in a bounded domain and an integral value outside it, *

this domain or “bag” has a positive energy, scaling with the 2 g2mkK

bag volume, above the integrialvacuum. Z(k) _k== 22)
This last case gives us a clue to what actually causes the Z(0) *

>

ostensibly non-compact theory to compactify. We find no e

evidence for strings that would join pairs of sphalerons to-
gether, nor do the collective coordinate integrations reduc
the theory to the zero-sphaleron sector. Instead, we argue
Sec. IV that among the collective coordinates for large gaug

er'?l_nsf(;rfmatior!s Witfh a:jny va}lue Qﬁ(w)ﬁ tlhere if] thel possi—h condensate of sphalerons. Sphalerons correspond to a limita-
ility of formation of a domain-wall sphaleron that places they, .\ o (a:) to the two valuest 7. From Eqs.(24),(25)

half-integral CS number on a closed surface sur_roundmg 3the sina term vanishes, and the collective-coordinate sum
odd number of sphalerons, to add to the half-integral C
Ieduces to

number present from the sphalerons inside. This domain wa
itself has no energy, and is a pure-gauge object; it can be 1
moved around, deformed, and so on, without changing the z= E 7
physics. It acts as a superconducting wall that causes the 353 J4 1t
fictitious Abelian field lines associated with non-Abelian CS p{

=exp € ™2

fhich is unity whenk is an integer and zero otherwise.
N Now retain the assumption that only compact gauge trans-
formations are allowed and thétis integral, but allow a

AS .
(—) exp—[J Rel ]e*™0+~3-)
Ve

number to be confined to the interior of the domain wall or, X) exp—[Re|C]], (J=J,.+J.).
in other words, to be compact. Ve

Our arguments are based on the assumption that a con- (23
densate of sphalerons in the YMCS theory can be treated in
the dilute-gas approximation, that is, all solitons are essenf k is odd, this expression faf has precisely the opposite
tially independent. When a CS term is present in the actionsign in the exponent to that of a normal dilute-gas conden-
the partition functiorZ is the usual expansion as a sum oversate, which means that the free energy, which for a normal
sectors of a different sphaleron number: dilute-gas condensate is negative, has turned positive. So

again non-compactification results in a higher free energy
than would be expected for a compactified thedhy.also
Z(k)=2 2y, Zy(k)= ie—z|c+ L (20) results in a'number of'other un'physical results in the dilute-
J ¢e. J! gas approximation which we will not dwell on here.

Now consider the non-compact case. Suppose that the
sphalerons are of the form given in Sec. Il, based on a gauge
transformation as in Eq(16) of a self-conjugate soliton,
whose action is real and positive. Thth soliton is at posi-

where Z;(k) is the partition function in the sector with
sphalerons; the subscriptc. indicates a sum over collective

coordinates of the sphaleroris;is the action(including CS HONT —a=r Denote b ) th o I f

action of a sphaleron and the omitted terms indicate correc;['hOn r a—r(a).. blen? € thycf[ﬁa' ?’t N a;ymp %'C ,:/"’: uIeCOS

tions to the dilute-gas approximation. To be more explicit, € gauge variable for thath soliton. since the lotal &
number of allJ sphalerons comes from a surface contribu-

we separate the sum over collective coordinates into kine- ) diatel ‘e the oh tactor in th i
matic coordinates such as spatial position and gauge colleg-on’ we can immediately write the phase factor in the action

tive coordinates. The former we represent in the standar y generalizing Eq(19):

dilute-gas way and the latter we indicate as a functional in- NEVAL
tegral over large gauge transformatidds Z(k)=; J_'<V_C) exp—[J Rel Jexpik[ a—sine]
1(v)’ 29
Z<k)=J du)X j(v—c) where
x exp—{J Rel .+ 2mik[INcs(As) + Neg(U) T} 3
21) azazl a(a;®). (25)
Here Rd. is the real part of the actiolNcg(A.) is the CS We are treating thex(a;e) as collective coordinates, so

number of each individual soliton of gauge potentlg W€ integrate over them:
(taken in some convenient gaygand N-gU) is the CS 2nda(a: )
number of the large gauge transformation. As in Sec. Il WeZ(k):E ZRJX{H f a(a; Jexpik[a—sina] 26)
chooseA, so thatNcg(Ac) =0. J a Jo 2w

If we now restrict the large gauge transformati®hto be
compact, so thaNcg(U)=K, an integer, we recover the whereZg;indicates the explicitly real terms in the summand
standard 26] result thatZ(k) is non-zero only fok an inte-  of Eq.(24). This integral is reduced to a product by using the
ger: familiar Bessel identity
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o * _ Some qualitative information about the CS susceptibility
ezsni="%" 73, (z)eN? (270 can be gleaned from the smélllimit of Eq. (31). In this
o limit,
with the result, for integrak, [Ji(k)]’. So the dilute-gas 5 272—9 5
partition function is Fk) =1k —5—|=1-k" (32)
1V’ This form of the smalk limit allows us to interpret the dis-
Z(k):%: J_I(V_C> expJ —Relc+1n Ji(k)] tribution of Ncg as Gaussian:

e?mkNes), | exp—{2m2k?(N29)}. 33
ZGX%VXER%(M]_ 8 ( )y exp-{2m2k3(NZ g} (33
¢ Because we expectNZo~V, the Gaussian expectation
value vanishes in the infinite-volume limit. In fact, by com-
ring Eqs.(31) and(33) we find an approximate value for
e CS susceptibility:

Since 1=J,(k)>0 for all levelsk, we see that integrating
over the collective coordinates has increased the free ener
(negative logarithm o). This suggests that properly com-

pactifying the sphalerons, so that the gauge behavior at in- <st>
finity is under control, will lower the free energy, yielding cs__ 7Y e le. (34)
something like the usual dilute-gas partition functfevhich \% 2wV,

is Eq. (28) without theJ, (k) factor]. . ] . o

Once one allows non-compact gauge transformations on&nis expression, while presumably not quantitatively accu-
might as well allow non-integral. The results are analogous ate, is of a form suggested earligt] in which thed=3
to those found long ago by lseher{41] for d=2 CPN mod- ~ topological susceptibility is of the form

els andd=4 gauge theory with instantons andangle. Of 2

. . . (Ngg
course, the calculations for non-integkadnly make sense in = 4(0) (35)
the non-compact case. For non-integtdahe functionJ, (k) \

of Eq. (28) must be replaced by where O is the trace of the stress-energy tensor @nd

si (k= N)] numerical constant. For a dilute gas condensate,

F =2 Ik — = (29 S N
3< >_ Vce ( )
This reduces td, (k) for integralk.

We promotek to an axionic fielck(x) and put it under the ~and = y/6x? from Eq. (34).
integral sign in the CS action of E¢4). Takek(x) to vanish
outside some closed surface and to have a constant non- V. SPHALERONS AND HALF-INTEGRAL KNOTS

integral valuek inside (except for some thin-wall transition )
region. To follow Liischer, we consider the expectation A sphaleron has a CS number 1/2. If sphalerons are dilute

value of exfcs in a YM theory, which is the same as they can be idealized to pure-gauge configurations, which

Z(K)/Z(0) of YMCS theory. We already have this result in 8" be associated with fictitious Abelian field lines through
(k)72(0) y y the Hopf fibrationS®— S?, with homotopyll;(S?)=Z. The

énteger classes of this homotopy come from an integral, the
Hopf invariant, which is in fact the same as the original CS
number(see, e.g.[11,42,43). The Hopf invarianfN, is both
. . a Gauss link number for the pre-images of any two distinct
(e2mkNes), = (e?mkIsIS Vi) (B0 points inS? in the Hopf fibration and an Abelian CS term,
for a fictitious Abelian gauge potential and magnetic field.
as well as Pre-images ofS?, necessarily closed curves, are just field
lines of this fictitious magnetic field, and so the Hopf invari-
<827TikNC5>YM=ik)ZEX[{V—SB_IC[F(k)—l]] (31) ant expresses t_he Iinking of_any two distin_ct closed field
Z(0) Ve lines. [For idealized(Dirac-string center vortices the CS
number can also be expressed equivalently as a Gauss link
whereVg is the volume enclosed by the surfagandV; isa  integral and as an Abelian CS term, but the normalization is
CS surface densitjgiven explicitly for sphaleron-like con- different, and the CS number can be a half-integral in the
figurations in Eq(46)]. BecauseF(k)<1, there is an inter- simplest casé.
pretation similar to Lacher’s: There is a bag, defined by the  For the sphaleron the CS number is 1/2; how can this be
surface wherek(x) changes, with an energy above the reconciled with the link-number interpretation? The answer
vacuum by an amount proportional to the volume of the bagis that in knot theory[44] presented as two-dimensional
This bag is analogous to the domain-wall sphaleron disgraphs with over- and under-crossings, each crossing con-
cussed in the next section. tributes +1/2 to the total link number, just as does an iso-

configurations over which we are integrating, we have
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lated sphaleron. In a certain sense, which we make explicBecause of the properties of the symbol and of group
below, sphalerons can be mapped onto these crossings. Cotraces, the non-Abelian CS integral of E§) can be written
pact knots must have an even number of crossings; onlin terms of the Abelian field and potential:

knots stretching tqand thus closed ainfinity can have an

odd number of crossings in a region excluding infinity. So 1
the sphaleron puzzle comes down to how one closes the fic- Ncs= zf d*x A B=Ny, (40
titious Abelian flux lines which flow through the sphaleron. 16m

We show here how this can be done by introducing a
domain-wall sphaleron which contains the other 1/2 neede#hereNy is the Hopf invariant, an integer characterizing the
for the integral CS number, and hence the integral Hopf inhomotopy class of the map. The second equation in(&9).
variant. The domain wall can be, but is not required to be, ors only true if Dirac strings are omitted. For sphalerons no
the sphere at infinity. If the domain wall is compact, then thesuch strings occursee Eq(44)].
fictitious Abelian field lines vanish identically outside the  The Hopf invariant is a link number of any two distinct
domain wall, which acts as a superconducting wall for thefield lines of the fields; . As textbooks on knot theory dis-
fictitious field lines. cuss [44], these d=3 knots can be expressed in a
We give another interpretation of the field-line knots, (quasijtwo-dimensional way, with graphs constructed from
which relates them to the formulation of the=4 topologi-  Over- and under-crossings of components of knots, and topo-
cal charge as the intersection of closed vortex and vortexogical invariance ird= 3 reduced to Reidemeister moves in
nexus surfaces. The second interpretation maps these intét=2. (Another good example of thé=2 nature ofd=3
section numbers ontd=2 intersection numbers of closed Knots is Witten's derivatioi22] of Jones polynomials from
lines (vortices in the two-plane, some of which must carry d=2 conformal field theory.By a quasi-two-dimensional
point nexuses and anti-nexuses. In a formal sense, the resuftescription of knots we mean that knot components lie in a
ing formulation of half-integral CS number becomes a two-plane, except that they fail to intersect at an over- or under-
dimensional projection of earlier formul&8,10] which ex- ~ crossing by a distance which is vanishingly small. Of
press d=4 SU(2) topological charge as composed of course, ind=3 linked knot components may be very far
components of charge 1/2, localized at théassumed trans- from touching one another, but in our case we are only in-
versg intersection points ofl=4 vortices and vortex-nexus terested in this case of nearly-touching components, which
combinations. The totaland integral topological charge is localize Gauss link number contributions to these crossings.
computed as an intersection integral with an extra weighirhe globald= 3 topology is not affected by this assumption
factor coming from traces over the Lie algebra matrices off near intersection. When this is the case, each crossing of
vortices and nexuses. In both ways, it will be seen that aslistinct components of knots contributes an additive term
odd number of sphalerons requires sphaleron-like configura= 1/2 to the conventional Gauss linking integral, with no
tions at infinity. contributions to this integral from portions of the knot com-
ponents which are at large distances from one another com-
pared toe. (This contribution of+1/2 also holds for self-
The connection between the non-Abelian CS number of @&rossings of one component with itself, leading to an integral
pure-gauge configuratiod and the Abelian linking number framed link number, because each self-crossing is actually a
is found(for example, sefl10,42,43) by exploiting the Hopf  double crossing. There is no contribution away from the
map S*— S?, with homotopyll;(S?)=Z, in the form of a  crossings even if the knot components extend in an arbitrary

A. Sphalerons and link numbers of knots

map from theSU(2) group element to a unit vector way (as long as components do not cross each pthey all
three dimensions. For closed compact components there is
UrU~l=r.n. (37)  always an even number of crossings and hence an integral

link number. Half-integral linking numbers occur naturally

for non-compact knots, that is, knots with an odd number of
This is, of course, a compact map. Sindecan be right-  crossings which can only occur, for closed knot components,
multiplied by a factor expgr/2) without changingn, each ~ When the component curves are closed at infinity.

n corresponds to a cos8tU(2)/U(1). Thelinked curves in We give a specific example of the.s.e C.OHCEPtS.' A pure-
. . A 2 gauge sphaleron centered at the origin is described by a
guestion are the pre-images of poimtson the spheres.. : )
) . X . . .. ,gauge functiorlJ of the form:
This unit vector defines an Abelian gauge potential and field;
via

U=exdiB(r)7r/2], B(0)=0, B(x)=m. (41)

Ai=i Tr(r3UgU™1), (380  One finds for the fictitious Abelian components
. N=r cos#+ #sin 6 cospB+ ¢ sinfsinpB, (42)
Biz —IeijkTr(T3U(9jUflUﬂkal)
1 b ~ glsi . ,éi . .
:Efijkfabcnaé’jn nC. (39 Aizriﬂ’cosa+?(cos,8—1)sm20—TsmasmB, (43
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2r; bi :
BiZFCOSG(COSﬁ_l)"‘Tﬂ’(l_COSﬁ)SInG / \
b,
+Tg's|nes|n,8. (44 / \

These field lines have several important properties. First, £ (o) = +1 e (p) =-1
the flux integrated over any sphere surrounding the origin is (p)=+

zero, so there is no monopole and no Dirac string for this
sphaleron. Second, by inspection of E44) one sees that
there is one, and only one, way in which the field lines cang itaple over-
be terminated in a finite region. B(r) takes the value 2N
at some radius =a, whereN is an integer, and remains at 55 shown in Fig. 2.

this value for largerr, the field 5; identically vanishes for For two distinct curves the link numbet,, is then de-
=a. Since the fictitious field lines are closed, this can onlysined as

happen if the field lines run along the surface of the sphere

r=a and at some point return to the vicinity of the sphaleron 1

and close. Schematically, the field lines look like those de- NLk=§ > ep) (47)
picted in Fig. 1. The bounding surface=a acts as a super- peC

conductor for the Abelian field line$Of course, this bound-

;nu%f:gg?/sﬁhnﬁ\zdtcr;Oz)Ilgeragézbv?/h?cipgr?cr:i;sggt tlraeczn rk])aeleefr%ther (self-crossings will be discussed IgteThis suggests
pology P that in some sense a sphaleron is the topological equivalent

ron.) Once the field lines are compactified in this way, there - : ; -
is no problem interpreting the Hopf invariant in terms of of a single crossing, witifas one quickly checksan even

linkages of wo of this familv of closed curves. On the Othernumber of crossings needed for describing the linkage of
kl1 dg " W ! h I);?_N i u \; : f th closed compact curves. Of course, since a sphaleron is local-
anl' ; %B(r) nfe\I/Eer Eji)ctﬁst th ’ :, |isde|§sy 0 see rcim te ized, one needs to interpret the crossings in Figs. 1 or 2 as
?hxep\I/(i:(lzin?c)r/rgfotheqs:phaler(?n bEt ::eonti:?uees onrf\tlgrir:feinlijtg/n 0 being infinitesimally separated. This in itself is not necessary
' . : for understanding the topology but it is necessary for inter-
For the sphalero(r) approachesr asymptotically. We 9 pology y

) : preting the topology in terms of localized sphalerons.
can, analogous. to the_ above, bring the radius .at wigich We can express this in terms of the sort of integral occur-
= to any desired finite value=b, as long as is large

) ring in the formula(55) for the link number. Consider the
compared to all natural length scales, suchMas®. This g 69

Y : ; _ . two infinite straight lines
does not compactify it, because its Abelian field lines keep g

on going past =b. But we can compactify it with a domain- z,=(scosa,ssina,0), z =(tcosp,tsinge) (48)

wall sphaleron at=a, a>b, by increasingB to 27 atr

=a. Then, as shown, the fictitious field lines close, and thergyhere —<s t<o~ with ds,dt the elements of distance

is an extra CS number of 1/2 on the domain-wall Sphaleronak)ng the |ines_ Their distance Of C|Osest approad‘] Eor a
The CS number for the sphaleron can be found explicitlyconfiguration of two infinite straight lines the value otioes

FIG. 2. Over- and under-crossings and their values.

and under-crossings in two-dimensional pic-
tures. For each crossing pojnt factore(p) = =1 is defined

whereC is the set of crossing points of one curve with the

from the Hopf invariant integral E¢(40): not matter, but if the lines are part of a knot with curvature,
etc., e must be treated as infinitesimal. The integrals in the
N 1 ) 1 45 formula
= — — ) — o0 = — —
cs 277[/3( )—sinp(=)] > (45

1 (= % (272
NLk:—J' dsf dteijkzizj,—IS (49)
and of course it has the same value as would be gotten from Am) ) |z—2'|
the sphericabnsatzform of Eq. (18). It can also be written

as a surface integral: are readily done, and yield

“ 1 ..
_ i [B—sing]. (46) NLkZESgdeiijiZ]‘,(z_Z,)k]- (50)
8m2r? .

Ncs:f sziVi- Vi=

In the course of evaluating the integral of E49) in the
Clearly, the contribution toNcg from the domain-wall limit e—0, one encounters standard definitions of the Dirac
sphaleron can also be written as a surface integral over théelta function which allow one to write this integral for the
domain wall. link number as
So what does a link number of 1/2 mean for a sphaleron? .
Recall [44] how link numbers can be written as a sum of / ,
terms, [eagh of which is= 1/2. The knots are displayed with Nuc=7 ﬁ; dz % dzj € o(z=2z")sgne (51)
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where the function sga refers to the sign of the distance
shown in Eq.(48) by which the two components are sepa-
rated out of the plane at their crossing points, that is, whethel
there is an overcrossing or an undercrossing.

As long as one presents the knots as being quasi-two
dimensional, which means that their components lie in one
plane except for infinitesimal displacements into the third
dimension for crossings, there are no other contributions tc
t_he integral forNyy, becau;e the triple product in its dgfini— FIG. 3. Asimple knot presented asla 2 projection of a center
tion vanl'shes for C.urves Iylng in a plane. AS_ a result, in thevortex and a center vortex with a nexiiled circle) and anti-nexus
present interpretation of a link number, the link number CaNgpen circld.
be thought of as being localized, in units of 1/2, to points

where the components of the knot appear to cross. This i§exuses. In this case a curve and a point are linked if the
quite similar to the interpretation inl=4 [9-11] of the  point is inside the curve; otherwise they are unlinked.
SU(2) topological charge as occurring in localized units of  The formal expression of this is thé=2 CS integral,

1/2. The localization is associated with the intersection ofcompletely analogous to thie=4 expression for center vor-
surfaces representing center vortices and vortex-nexus cofices and nexusg4.0]:

binations, with an analogue o= 2 which we discuss below.

In fact, it is easy to see that away from the infinitesimally , , ,
close crossing points, the knots may be arbitrarily deformed ~ Ncs™ Cn%ngs é dz 3€ dzje;6(z=2")TrH(QQ") (52
into the third dimension as long as components do not cross

each other, since the difference of the contributior\{q whereQ,Q’ take on the values: /2, the sign depending

from ad=2 component and one deformed inde=3 is a on the orientation of segments of the closed curves. The

Gauss integral with no linkages. If, in this process of defor-_ . . . : :
. PR orientation must change every time a nexus or anti-nexus is
mation, knot components become infinitesimally near each

other, new contributions to the total,, of +1/2 will be crossed in the course of tracing out the curve. Figure 3 illus-
) . trates this for a simple two-component knot represented both
generated, but their sum will be zero.

as an over- and under-crossing link and as a vortex-nexus
link. In the figure, a filled-in circle is a nexus and an open
circle is an anti-nexus; there must be as many of one as of
the other on any closed vortex curve. A more detailed dis-
The form of Eq.(51) for the link number is very sugges- cussion of the correspondengecluding twist and writhg
tive; aside from the sign function in the integrand and thepetween knots and vortex-nexus ideas will be given else-
factor of 1/2, it is the integral representation of the signedyhere.
sum of intersection numbers for curves lying in a plane. Re- |n this way we connect topological charges in dimensions
call that ind=4 the usual topological chargéntegral of  two, three, and four. In all cases, #6tJ(2) the localized unit
GG) for idealized pure-gaug&U(2) center vortices and of topological charge ist1/2, but compactification of the
nexuses is also represented by an intersection-number intepace under consideration yields a sort of topological con-
gral, including a factor of+ 1/2 coming from group traces finement of these fractional units to integral totals.
[9,10]. The sign of this group factor is governed by the pres-
ence or absence of nexuses and anti-nexuses, each of which
reverses the direction of tt&U(2) magnetic field lines lying
in the vortex surface. Inl=4 center vortices are described The standard center vort¢29] is an Abelian configura-
by closed two-surfaces, and nexus-vortex combinations arton, essentially a Nielsen-Olesen vortex. It contributes to the
described by such surfaces with a closed nexus world lin€S number through tha- B term, not through thé\3 term,
lying in the vortex surface. For every nexus world line thereand the techniques used above to generate an Abelian poten-
is an anti-nexus world line. The intersection-number formtial and field are irrelevant; in any case, the vortex itself is
can be translated into a link-number forfrh0], where the Abelian, and in its idealized pure-gauge version is described
link is between a center vortex with no nexus and a négus by a closed Dirac-string field line. These closed lines may be
anti-nexusg world line. linked, including the self-linkages termed twist and writhe.
Here we give some simple examples£3 knot link-  Such linkages generate the CS number, as expressed through
ages represented loy=2 graphs which can be considered asthe A- B integral. However, even integral link numbers give
the projection into two dimensions df=4 vortex-nexus to- rise to CS numbers whose quantum is 1/2, and twist and
pological charge. There is no need to distinguish over- andvrithe give rise to an arbitrary real CS number.
under-crossings; instead, the crossings are interpreted as in- Generically, two distinct center vortices ith=3 never
tersections of closed lines whose orientation changes wheneuch each other, whether or not they are linked. But to gen-
ever a(point) nexus is crossed in the process of tracing out aerate ad=4 topological charge, which is a weighted inter-
closed line. The link number is calculated by countimgth ~ section integral of the points in which center vortices inter-
signg the linkages of closed curves and nexuses or antisect(possibly with the intervention of nexuggswo vortex

B. Knots and d=2 intersection numbers

V. LINKED AND WRITHING CENTER VORTICES
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surfaces must have common points. If the intersection is
transversdthe simplest cagahese points are isolated. There
must be a corresponding notion of linked vortices touching
each other id=3 as well. This can be appreciated by think-
ing of vortices living as closed strings th= 3, which evolve

in a Euclidean “time” variable(the fourth dimension Vor-

tices have points in common at the isolated instant in which
they change their link numbéreconnection[3]. Of course,
changing the link number, equivalent to changing the CS
number, is necessary to generate topological charge, which is
the difference of two CS numbers. Also necessary in this
simple situation is the presence of at least one nexus, which
reverses the sign of the vortex magnetic fields. We discuss
some elementary cases in which reconnection changes the
CS number by=1/2, and in which, if compactness it

=4 is demanded, the overall change in link number yields
integral topological charge. Note that compactnesd 13

has nothing to do with compactnessdr=4 (consider the
productS®xX R). Even for reconnection which changes the )
writhe, which can be arbitrary, of a single vortex, it is pos- Ty | 2778

sible to have changes in the 2/:8 numbegr] quantized in uﬁits of ACGT)i= (2_) €ijk ] agdekA(X_z)’ (53
1/2. The appearance of this unit of 1/2, plus the pairing of
d=4 intersection points of compact surfa¢@s-11] is some-
what analogous to the pairing of over- and under-crossings
for compactd=3 knots, discussed above.

In considering the evolution in time of various field con-
figurations carrying topological charge, note that there are . .
real differences betweend=4 topological charge interpo- whereA(x—2) is the free maSS|ess pro/p_agatmdlﬁS. The
lated by sphalerons and by the reconnection of vortices. &S number of the mutual linkage &1.T"" is
sphaleron is théunstable saddle point of alassicalpath in
configuration space. One can extend the sphaleron gauge 3 )
angle 3(r) to a functionB(r,t) which passes through at NCSZJ d*x TrACGT)iBOGT);
t=0, such asB=2 arctan(/t) and which yields unit topo-
logical charge in the form(1/(2#7)[ B(r,»)—B(r,—>)])
=1. There is no need to pair the sphaleron with another
sphaleron. A vortex, however, cannot evolve classically since
it must reconnect and overlap with itself or with another
vortex. The action penalty from overlap yields a tunneling
barrier. Reconnections with the half-integral CS number N (T, T")
must be paired.

FIG. 4. A simple two-component knot with no twist or writhe.

27T,

B(x;F’)iz( o )Eﬁrrdzié(x—z) (59

-1
(T)NLK(F,M (55)

é dZ‘ é de,Gijké’kA(Z_Z,). (56)

If curvesI',I'" are linked, as in Fig. 4, the corresponding
CS number is 1/2, because of the factor 1/2 in front of the
N, integral in Eq.(55).

A. Linking of distinct vortices and the half-integral CS
number

For pure-gauge center vortices the interpretatiorNg
as coming from a link number is straightforward, if two dis-
tinct vortices are linked, but more troublesome if self-linking
(twist, writhe) is involved. For the straightforward case of It would take another paper to discuss all the ramifications
linking of distinct vortices the CS number is half the link of vortex self-linkage, including the role of nexuses, and the
number and can therefore be half-integral. If it is half- new twisted nexus presented recentlit]. We restrict our-
integral this is a non-compact configuration, in spite of theselves here to a few simple examples, including a new Abe-
fact that if the links composing the two vortices are spatiallylian twisted vortex, and some general conclusions. The main
compact. If these links have maximum spatial sdalédhe  point is that self-linking, whether considered for idealized
gauge potential from the vortices behavesLd& 3 whenr Dirac-string vortices or for fat physical vortices, leads to
>L, and so falls off sufficiently rapidly at large distances contributions toNcg which can be essentially arbitrary real
that no surface terms arise in various integrals of interest. numbers, although the self-linking is spatially localized. As

The gauge parts of two distinct center vortices are defor sphalerons, one can introduce a domain wall to carry an
scribed by closed curves,I'’, .. ., extra CS number which brings the total to an integer.

B. Self-linking, writhe, and vortex collective coordinates
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C. Self-linkage of Dirac-string vortices

Self-crossings of a single vortex Dirac string give rise to
twist (Tw) or writhe (Wr). With the usual sort of ribbon
framing [44] used to define self-crossings, neither twist nor
writhe is a topological invariant and neither is restricted to
integral values. Their sum, which is the framed link number
(New), is an integer-valued topological invariant whose
value depends on the framing. A simple ribbon framing is
shown in Fig. 4. The CS number is not the intedéy ;
instead, it is the writhe Wr, or self-link integral, of E9)
below.

Because the vortex is AbeliaNg receives contributions

only from theA- B term[3,4]:

\
1
1
1
|
I
1
!
1
!

-1 I
Ncszﬁf d3xTrA~B=ZNLk(F,F) (57)
whereN (I',I')=Ny, is the self-linking number or writhe
of Eqg. (59). The writhe can be anything, depending on the
geometry of the vortex.

For Frenet-Serret framingdisplacing the ribbon infini-
tesimally from the curvé™ along the principal normal vector

e,) the twist is

FIG. 5. Ribbon framing of a single-component knot with one

No — 1 %d - dé3 (58 unit of twist and two crossings.
W= 2m S& ds )
1
where e; is the binormal vector. It too is a geometry- Nu(I 1) =Nwr =5~ fﬁFdZaAi(Z)- (60)

dependent number, but not restricted to be an integer or
simple fraction. . . .

A typical self-crossing is shown in Fig. 1, which was in- "€ Simplest case of dynamic reconnection of a center
troduced to illustrate a center vortex. We now interpret thaf’orti)f t;]eglns with a configuration such ?ﬁ shown 'E Fig. 1,
figure as a picture of twisting but unwrithed fictitious Abe- (© Which we assign some twisty, and writheNy;, whose
lian field lines (the discussion is essentially the same if oneSUM IS an integer, the framed link number.(dhalogous to
replaces “twist” by “writhe”; the two are interconvertible f[he _sphaleron_ cg}?eve_ assume that the crossing lines shown
Even though this is a compact knot, it appears that there i Fig- 1 are infinitesimally separated, reconnectiohang-
only one crossing. Actually there are two for the framed knot"d the overcrossing shown in the figure to an undercrossing

of Fig. 5. For an untwisted curve the Gauss link number forchanges the framed link number by 2, not 1, as one can
the writhing curvel is equal to the writhe: appreciate from a study of Fig. 5. At the same time, the twist,

which is a purely geometric quantity, will change only by

(z—7')x O(e), where, as for the sphaleroa,s the separation of the

1
New(I, ) =Ny=—-—

g P— lines at crossing. The upshot is that the writhe changes by 2

113"
ol 59 and the CS number changes by 1/2, because of the factor of
(59) 1/4 in Eq.(57). So certain cases of writhe reconnection lead
As the contours are traced out the crossing point is encourf® & quantum of 1/2 foNcs, just as for simple mutual link-
tered twice, so the value oNg . in Eq. (59) is (1/2) 2ges. As discussed above, compactnessi=#¥ requires
+(1/2)=1. Or one may calculatdlq, by counting the these acts of reconnection to be paired, leading to an integral

crossings of the link with its ribbon frame; again there aretopological charge but quantized in units of 1/2. _
two crossings. Let us conclude this section with a new and simple special

Note that the same value of the writhe applies to the cenc@Se of a twisting vortex with a half-integral CS number.
ter vortex of Fig. 1, but because of group traces the cShis vortex is Abelian, described by the gauge function
number is, for gauge groupU(2), half the writhe. We see

that topologically a unit of writhe in the fictitious Abelian i3

field lines corresponds to two sphalerons, but a unit of writhe U= exp[7[¢+ 7’(2)]] ’

in a center vortex corresponds to only one sphaleron. (61)
We note that the self-linking number of a pure-gauge cen- -

ter vortex, as described in E(3), is also the self-flux of the A=UgU 1= (E ﬁ+2 '(2)

corresponding Abelian potential of E(8): ' : 2i/| p Y '
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Here ¢,z are the usual cylindrical coordinates. The magnetiche trueN¢g is, it will be a functional of various collective
field comes from the Dirac string in the vector potential:  coordinates describing the physical center vortex.

We can give a speculative and simplistic description of
this collective coordinate. Whatever the true CS number of a
vortex is, it can be reduced to an inteder more generally
a rational fraction, such as 1/2 or 1/4) by a non-compact
Evidently this vortex lies along the axis. In order to de- gauge transformation. This gauge transformation is described
scribe a vortex which is a closed loop of lengthwe should  in Eq. (41), and is characterized by an anglér). The value
identify z=0 with z=L. This requires that the gauge func- of g(«) for this gauge transformation is determined by the
tion U be the same at these two valueszpbr that original CS number of the vortex, and can be treated as a

stand-in for the collective coordinates of this vortex. The set
y(L)—y(0)=4=xN (63 of values of (=) for the vortex condensate can then be
integrated over, as we did for sphalerons, and with the same
effect: Dynamical compactification and the CS number car-
ried on domain walls.

2773\~
Bi(X)I(T) Z;6(x)o(y). (62

for some integeN. The integral in Eq(57) is trivial, and
yields

1 N
Nes=g—[7(L)=7(0)]=7. (64) VI. FERMIONS
So such a twist is equivalent to sphalerons. Not unexpect- ~ Oneé way to obtain a CS term h=3 starting from ordi-
edly, one can get any desired value for the CS number bgary M theory is to integrate out a fermion doutila6,47,

decompactifying; that simply removes the requirement in Eq .1 hus we expect that the same effects we have seen in YMCS
(63) on the difference ofy at the end points. theory should also be visible as effects of fermions coupled

to gauge fields. In this section we will make this connection
concrete, and see how the effects of the CS term emerge
explicitly in terms of fermions.

We are interested here not in idealized Dirac-string vorti- |t is well known that fermions or their solitonic equiva-
ces, but in physical vortices composed of flux tubes whosgents skyrmions can have an exotic fermion numiser
thickness is essentiallyl ~*. There is not only the YM vor-  [48,49, and that interactions of fields with gauge fields in
tex described ih29], but also in YMCS theory there [42]  the presence of a CS term can lead to exotic statighiagk In
a self-conjugate center vortex. The examplg 1] has no  condensed-matter physics, half-integral spin leads to the
twist or writhe, and it has a purely imaginary CS action andhalf-integral CS leve[51,57], and the CS term turns bosons
therefore no CS number. But if this, or the YM vortex, is into fermions.
twisted it will yield a contribution to the CS number whichis ~ Fermion zero modes bound by solitons lead to puzzles
not constrained to be an integer or any simple fraction This i&ibout the apparent fractional fermion number and a violation
familiar in magnetohydrodynami¢g45], where the CS num-  of supersymmetry53,54. For thed=3 YMCS theory the
ber becomes magnetic helicity, closely related to the soresolution of such puzzles will involve fermion zero modes
called rotational transform, or average angular displacemenit infinity which converts the local fractional fermion num-
of a magnetic field line per turn, in a plasma device such ager to a global integer. This is the zero mode associated with
a stellerator or tokamak; this too is unconstrained. the sphaleron at infinity.

For a physical center vortex, it was shown some years ago An SU(2) theory with an odd number of two-component
[3] that center vortices arising from the YM action with a fermions is inconsistent because of the non-perturbative Wit-
dynamical mass term as in E@) lead to the replacement of ten anomaly ind=4 [55]. In d=3 an odd number of two-
Eq. (57) by component fermions leads to an odd CS ldvahd dynami-
cal compactification.

D. Writhe and collective coordinates for fat vortices

1) 1 (z—2")y
mor r |z=2'] A. Zero modes and fermion number 12

whereR=|z—2'| and In 3+1 dimensions, the sphaleron sits halfway between
vacua differing by a unit CS number. A path between these
vacua correspondingly has a unit anomalous violation of the
fermion number and therefore the sphaleron carries the fer-
mion numberF=1/2. In general, the fermion number of a
For MR—, F(R)—1 and one recovers the usual writhe Soliton background can be calculated in terms of the asym-
integral, but forMR—0, F(R)=(MR)?%#6. Because of this metry of the fermion spectrum. The sphaleron is symmetric
benign short-distance behavior, ribbon-framing is irrelevantinder simultaneous rotations in physical space and isospin
and there is no good distinction between twist and writhespace, so that grand sp@=J+ 1 is conserved. We can thus
Clearly, the simple dynamical mass term of [E8).is at best decompose the solutions to the Dirac equation into channels
a drastic simplification of complicated quantum correctionslabeled by grand spiiG. In each channel wittG#0, we
leading to a dynamical mass, and whatever the real form obbtain an eight-component spin@escribing the spin and

F(R)ZEJMRdvvze”’ (66)
2J)o '
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isospin, describing four distinct degrees of freedom.@n oMb’
=0, we have a four-component spinor, describing two dis- Po(X) = . (70)
tinct degrees of freedom. In both cases, these spinors have 0
the usual degeneracy factor o&52- 1, and we write the total ) )
fermion number as a sum over channeB=3(2G All nonzero eigenvalues of Eq69) occur in complex-
+1)Fg. conjugate pairs. From a spingt,(x) with eigenvaluew, the
In each channel, the density of states in the continuum i§olution with the eigenvalue-w is ¢ ,(X) = ys/,(—X)
related to the total phase shifz(w) by [56,57] where in our basisys=o;. For the zero mode, however, we
' obtain
po(w)=——— (67) 0
lpl(x) - emfé¢l(xr)dxr (71)

so that integrating over the energy and including the contri-

bution of the bound states, we have the fermion number which is non-normalizable. This mismatch, which does not
occur for the analogous bosonic problem, is responsible for
the nonzero quantum correction to the mass of the supersym-

FGZZWG(”‘)_%(OO)_W”E”LW”& metric kink [53]. It is also the underlying reason for the
appearance of the half-integer fermion number, since all the
—0g(—m)+ 6g(—»)] (68) other contributions to Eq68) cancel between positive and

negative energies. The result is a fermion number-af2,
whereng andng are the number of positive- and negative- with the sign depending on whether we count the zero mode
energy bound states, respectively. We can obtain arbitrargs a positive- or negative-energy bound state. To lift this
fractional value$48] for the fermion number from the phase ambiguity, we could introduce a small constant pseudoscalar
shift at infinity, which is sensitive only to the topological field with interactioni ys¢,, which breaks the symmetry
properties of the background field. It appears from this for-of the spectrum. Fo, small, the effect of this field is just to
mula that aC P-invariant configuration such as the sphaleronchange the energy of the zero mode sligfti§th the direc-
cannot carry the net fermion number, since the spectrum igon depending on the sign af,), which fixes the sign pre-
symmetric ino— — w. But there is a loophole: the sphaleron cisely. We will discuss this case further below.
has a single zero mode, which will produce a fermion num-  For later reference, we note that we can characterize the
ber of + 1/2, with the sign depending on whether we includenormalizable and non-normalizable solutions in a basis-
the zero mode with the positive or negative energy spectrurindependent way by
[58]. Just as we saw with the link number in Sec. IV, the
fermion number in Eq(68) is generally an integer, but it is Y ho(X) =1 o(X) (72
really a sum of half-integral pieces, and the sphaleron repre- ) )
sents an exceptional case in which one of these half-integef8" the normalizable zero mode while
is not paired. We will see that the extra zero mode lives at 1 .
infinity, in agreement with the knot-theoretic picture. Y ()= =1 (X) (73

~We will want to focus on the zero mode solutions 10 thefy, the non-normalizable modéor an antisoliton, the situ-
Dirac equation, which will occur only in th€=0 channel.  4ion is reversedl.So far we have just considered the local-
In this channel, the Dirac equation reduces to an effective,oq effects near a single kink, using scattering boundary
one-dimensional problem, so we start by reviewing the propgongitions. But in a physical system, we also have to con-

erties of soliton zero modes int11 dimensions. sider what is happening at the bounddB#4,59. We can
either place an antisoliton very far away, so that the bound-
B. Zero modes in 141 dimensions ary can be made periodic, or we can put the soliton in a box.

Both have the same effect, which is to allow the other zero
mode, Eq.(71), to become a normalizable state living far
away. In the former case, it is a zero mode localized at the
antisoliton. For finite separation, both modes are displaced
d slightly from zero by equal and opposite amounts, giving a
¥° —iyld—+m¢1(x) P(X) = wip(X) (69 symmetric spectrum. In the latter case, the other zero mode
X ; ) R ;
lives at the walls; the condition in E¢73) becomes simply a
bag boundary condition at the walls.

The simplest example of a soliton with fermion number
1/2 is the kink in I+ 1 dimensiong58]. The Dirac equation
is

where we will work in the basig®=o,, y'=io; for the
two-component spinoty. In this sectionm is the fermion
mass and not the CS mass. The scalar backgraoby{a)
goes from—1 atx=—o to +1 atx=+o, and we will The d=3+1 sphaleron case is closely analogous to the
assume thap(x) = — ¢1(—x). The detailed shape @f;(x) 1+1 case; indeed, the spheriaisatzof Eq. (9), with fer-
will not be important for this discussion. Just from the topol- mions obeying Eq(75) below, maps directly on ta=1
ogy, we see that we have a zero mode +1 fields. We use the same notation as in E), with a

C. Sphaleron zero modes
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scalar fieldg,, a pseudoscalar fielg,, and the space com-
ponentH, of an Abelian gauge potentiad , (the time com-
ponentH, is zero for static configuratiohsand consider

PHYSICAL REVIEW D 66, 065012 (2002

D. Level crossing and dynamical compactification

We found the sphaleron zero mode as a normalizable so-
lution to the time-independent Dirac equation ir-3 di-

only swave fermions. Coupling of the gauge potentials viamensions with eigenvalue zero. We can then consider these
the CS term need not be accounted for in our analysis, SO W§ree dimensions by themselves ad-a3 Euclidean space-

consider only a sphaleron in YM theory with no CS term.

Following earlier work[13,24,6Q, we consider a fermion

time. The zero mode represents a level crossing in the instan-
taneous eigenvalue of the 2-dimensional Dirac equation

in the presence of a sphaleron background in the sphericglajyated as a function of thie=3 Euclidean time variable

ansatz. In the grand spin chann€l=0, where G=L

+(1/2)[ ¢+ 7] and forswavesL=0, we have the fermion
wave function

P (x)=[f(r,H)+ig(r,t)]= (74)
whereE is a constant spinor with
(c+7)E=0 (75)

[47]. We can use this level crossing picture to understand the
dynamical action penalty for noncompact configurations.

Since the zero mode h&@@=0 [see Eq.(75)], the level

that crosses zero must have equal and opposite spin and isos-
pin. Reducing to a=3 theory, however, where we used to
have a four-component Dirac equation for each isospin com-
ponent, we can now consider just a two-component spinor,
since the spin up and down states can no longer be rotated
into one another. Thus we can have, for example, a sphaleron
background in which a spin-up isospin-down state crosses

and o and 7 are Pauli matrices corresponding to spin andfrom below to above, creating a fermion. The corresponding

isospin, respectively. We normaliZ so thatZ'==1. De-
fining

f(r,t))
(76)

"’“’t):r(g(r,w

we find that the two-component sping{r) obeys the one-
dimensional Dirac equation

1
YDyt F[¢1(r)+iy5¢2(r)]) p(r,=0 (77

where ©=0,1 andD,=d,+iH ,ys/2 is the covariant de-
rivative for the 1+1 Abelian gauge potentiadd ,, .

We can use th&J(1) symmetry of the spherical ansatz to
choose our gauge so thdt, =0 and, as stated above, for a
stationary configuration we will havel,=0 as well. Thus
we can takey(r,t)=e''(r). Since the sphaleron i€P
invariant, the Higgs fieldp, that we obtain must be real, so
the phase anglg of Eq. (9) must be an integral multiple of
7. For 8= the Dirac equation becomes

o, d 9
yo(—wla—%) W)= wy(r) (79
which has the normalizable solution
Po(1) =T8T I ) (79

where ylyo(ro)=io(ro). The situation is now exactly

crossing in the other direction, which would create an anti-
fermion that could annihilate with this fermion through
gauge-boson exchange, is not normalizable. Thus if this
sphaleron is not paired with a compensating antisphaleron,
we will pay an action penalty for this fermion proportional to
the Euclidean time extent of the system.

E. Fermion number and Chern-Simons number

Although the CS term induced by fermions is just one
term in the derivative expansion of the fermion determinant,
it gives the entire contribution to the phase of the fermion
determinant. In the language of the three-dimensional Dirac
equation, the CS term is simply the fermion number, which
can be shown directly from the effective actiet6], where it
emerges as a result of the {1)-dimensional chiral
anomaly or by explicitly considering the contribution of each
mode[22]. These works relate the Chern-Simons number to
the “eta invariant”

1
Nes= 7= — =lim >, sgnw;|w;| (81)
23—>O i
which in the continuum becomes
n=F=> (2G+1)Fg (82)
G

whereF ¢ is computed from Eq(68) with appropriate regu-
larization[57].

The first paper of Ref[22] gives a particularly simple
explanantion for the emergence of the eta invariant as the

analogous to the case of the kink: we also have a correspon@hase of the determinant: for a bosonic theory, each mode in

ing non-normalizable mode, given by

Yo(r)=e Tr @ Iy, (o) (80)

with Yy (ro)=—igy(ro). As with the kink, we can con-

struct a pair of sphalerons with an integer fermion number

and an even number ¢hearjzero mode$13].

the determinant contributes

© dXi . 2 . dxi . > 2
Ij:j —eoX=lim | —Z2eviXe &

o0
700\/; E*?OJ\CD\/;

ei (ml4)sgn;

Vo

(83
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and correspondingly for fermions we have wherek= \w?—m?.
An incoming wave from the left is given by

lj: | \/Kj|efi (ml4) sgno; (84) .
— ikx
leading to a total phase given by E@1). Pin(X) = ( )\) e (89
We have seen above how the existence of the half-odd-
integral fermion number is intimately connected to thewhere N=—(k+iu)/(w+v). Propagating this solution
boundary properties of the theory. If we allow backgroundthrough the potential, the transmitted wave is
field configurations with more general boundary conditions,
violating bothC and CP, we can obtain an arbitrary frac-
tional fermion number, which still depends only on the topo- l,lfout(X):(
logical properties of the background field at infinii8].
These fractions will enter the phase shift representation of
the fermion number throughg (). w
Again, we will start by considering a one-dimensional
example, which will carry over directly to th@ =0 channel S1(K)=2 arctanzﬁ
in three dimensions. We consider the Dirac equation k

e 5200
) (90)

X i 810 gikx

here

(91)

»° —i71%+m[¢1(x)+i75¢2(x)] Jv=wi (85 52(k)=51(k)+2arctan|’f

where we have introduced the pseudoscalar figltk). For ~ are the phase shifts of the reflectionless Sdimger equa-
concreteness, we will consider a definite background fieldions in Eq.(88). To compute the fermion phase shift, we
configuration, though as before the results do not actuallfOMPareyo, to the spinory;y obtained by performing the
depend on the details of the field configuration, only its to-Chiral rotation ony;, that rotates it from the vacuum on the
pology. We take the background that was considerdé1h  left to the vacuum on the right,

i o0 =e0=| " ) g0
Map1(X)=pu tanh7 rot in in v in
(86) v+iuN o
Meo(X)=v = A e 92

where m?= 12+ 2. To simplify the calculation, we have where y=arctanfu/v). Then
chosen a reflectionless background, but the results we obtain
are generic. The Dirac equation is now Yol X) =€y () (93)

. i and we obtainup to an overall constant independentunf

d X
- wtantty

dx which will cancel out of all our resulis
(g mtantty)
i| =——+utan —v _
dx 2 o(k) 51(k)+ar4m+)\v
72(X) ) 72(X) )
X =w 8 _ M wu
(Caﬂh(x) c,171(X) (87) —al(k)+arctanE+arctanE (99

with ¢, =sgn (@) V(o —v)/(w+v). Squaring this equation, or equivalently

we find that the wave functions are solutions to the Schro

dinger equation for potentials of the reflectionlessdhd- S(k)=8,(k)—arg v+iu\)
Teller form (see for exampl§53] and references thergin

k
2 ) = 5,(k)+ arctan'u—z. (95
Y73 X 9 wr+m
T2 759“7 71(X) =K 71(X)
89) We have bound states at energies
d®  3u® ux 3
( A TseCH7 72(X) =K?775(X) w==* % +v2 and w=v (96)
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where the last mode becomes the zero mode discussed earl@mpared the transmitted spinor to the result of the corre-
when »=0. There are also “threshold states” at=*m  sponding chiral rotation on the incoming spiriorthe same
[53,62. Plugging these results into the formula for the fer-gauge This phase shift gives the fermion density of states. A

mion number, gauge transformation does not change this fermion number
1 because it introduces the same phase factor in both the trans-

F=——[8(m)— (%) —mn*+mn~— 8(—m)+ 8(— )] mitted spinor and th.e. chiral rotation of the incgming'spinor.
2m Thus, for any nontrivial background field configuration ap-

97) proaching a pure gauge at infinity, the fermion number we
obtain is the fermion number of the nontrivial background
minus the fermion number of a background that is pure

X gauge everywhere and becomes equal to the nontrivial back-

p (98)  ground at infinity.

A similar situation will arise if we consider the phase of
in agreement with the approach [@f8]. We then obtain the the path integral. Integrating out the fermion modes yields an
pure scalar result as effective action given by the determinant of the Dirac opera-

tor, detA, which is a nonlocal functional of the background

(99) field. However, to make sense of this quantity, which is a
divergent product over an infinite set of modes, we must
always compare it to the same determinant in the trivial

This result carries over directly to th8=0 channel in  background deh,. The full path integral is then obtained by
three dimensions. The fractional fermion number in ©§) integrating def\/detA over the background fields with ap-
now corresponds to the term(«)/27 in Eq. (19). (The propriate gauge fixing; thus physical results will always de-
extra factor of 1/2 arises because the field now goes onlpend on this ratio of determinants, with both determinants
from O to « instead of from—« to +«.) The rest of the calculated in the same gauge. Subtracting the free determi-
fermion number,— sina()/27, comes from summing over nant will generally have a trivial effect on the dynamics,
the channels witlG >0 [49,57). These generalized noncom- since the background is pure gauge, except that it can cancel
pact boundary conditions correspond to chiral bag boundanhe pure-gauge contributions to the Chern-Simons number,
conditions just as we saw in the fermion number calculation above.

we obtain for the fractional charge

F=

lim F==*

4
v—0—

N[ =

iei&(x)%ﬁysq,:(;,. n)w (100

AL . VII. THE GEORGI-GLASHOW MODEL WITH A CS TERM
wheren is the unit outward normal at the boundary. Impos-

ing this condition at a finite radiuR, we find that the remain- Polyakov[63] claimed that in thed=3 Georgi-Glashow
ing fermion number (GG) model confinement arose through a condensate of 't
Hooft—Polyakov (TP) monopoles, with the formation of
F=— i[a(oo)—sina(oo)] (101) electric_ flux tubes dual to the magnetic flux tubes _that arise in
2 an ordinary superconductor because of the Meissner mass.

) ) ) ] ) Affleck et al.argued that in GGCS theory the TP monopoles’
necessary to obtain an integer is precisely the fermion numeg|iective coordinates led to survival of only the sector with

ber living outside the baf#9,57. zero monopole charge. Pisar$li4] argued that with a CS
term added GGCS theory and in the approximation of true
F. Fermion number and Chern-Simons number long-range fields for the TP monopoles, a monopole conden-

The identification of the fermion number with the Ccs S&t€ could only form in a ‘molecular” phase, in which
number contains additional subtleties when we considef’onopoles and antimonopoles were bound together, losing
arbitrary large gauge transformations. Equatie®) is _bo_th.the ang-range fields and confmgment. He interprets his
explicitly gauge invariant, since it is determined from the INfinite-action TP monopole as requiring a string, but the
phase shifts, which are related directly to the gauge-invariantt'ind itself was not exhibited; a literal interpretation of his
change in the density of states by(k)— po(K) results is simply that the spherically symmetric action den-

— (1/m)(dsldk). On the other hand, the gauge transforma-SIy for & TP monopole in GGCS theory integrated in a
tion in Eq. (16), which transformsy by sphere of radiuk diverges linearly at larg&® The diver-

gence arises because the TP monopole does not become a

P(r)—e 759y (r) (102  pure-gauge configuration at largeWe point out here that

the TP monopole is, in fact, a nexus joined to center-vortex-

will make an arbitrary change in the CS numbthis change like flux tubes, and that these constitute the strings joining a
will be an integer if the gauge transformation can be com-TP monopole to a TP anti-monopole.
pactified, that is, ifa(e) is 27 times an integdr In the The GG action is the sum df,,, and an adjoint-scalar
scattering problem where the boundaries were different ofield action for a field¢. We introduce an anti-Hermitean
the left and right, in order to extract a scalar phase shift, wescalar matrixys and associated actidrg:
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. 1 R and scalar fields such thhbththe dynamical mass action of
P(X)= 5 Tada(X), Eqg. (6) and the scalar action of Eq103 vanish at large
9 (103 distance, along with the usual YM action and the CS action.
5 5 That the dynamical mass term vanishes requires the vector
Tr 2+ gv H _ potential to approach a pure gaugeras~:

— 1 3 2 A
IGG_E d=x —Tr[Di,lﬂ] +§ 2
A—UgU™?! (104

The total GGCS action ibyycstcs.
Since the work of Polyako{63], Affleck et al.[15], and

Pisarksi[14], several other groups,19,20 have discussed

how the plain GG model with no CS term is actually in the ¢, 4 jant_derivative term in Edq103), which is a commuta-

unlv_ersallty class O].t YM theory with dynam|call Mass 9€N-to vanish. This will be compatible with asymptotic vanish-
eration, center vortices, and nexuses. The point is, as dis:

cussed by Polyakov, that there is always a Meissner mass firgg of the scalar action only if the scalar fiefdobeys
the otherwise long-range gauge fields, even if the (EWf 4
the adjoint scalar is large compared to the gauge coupgling $—UyoU (109
so that the Meissner mass is exponentially smaidl/ig. This
mass screens the long-range TP monopoles fields. If, hovwfer constanty,. The gaugeJ is just that of a nexus. For the
ever,u=g (and, in the GGCS model, when also the CS levelspecial case when the nexus tubes lie alongzttes, this is
k is subcritical, there is dynamical mass generation driven
by infrared instability because the charged gauge-boson mass
~v(g is too small. By the appropriate choice of the coeffi-
cients in the GGCS model with a dynamical mass term . _
added by hand, we can always fit the Meissner mass and/or By contrast, for a TP monopole there is no dynamical
the dynamical mass. This is so even if what we call dynami/mass action and thus no requirement that the potential be-
cal mass generation, which would come from infrared instacOme pure gauge at infinity. This is what leads, in Pisarski's
causek is super-critical. When the extra mass term isVvolume limit. . .
considered, we claim that the TP monopoles of GGCS theory Given that TP monopoles turn into nexuses in GG, what
are deformed into nexuses; their would-be long-range field@ppens to TP monopoles in GGCS theory? In simplest
lines are confined into fat tubes. Monopoles are bound té€'ms, nothing changes at infinity because the addition of the
antimonopolegantinexusesby these tubes, which are essen- Chern-Simons term to the action, given a gauge potential
tially center-vortex flux tubes. The long-range gauge potendefined at infinity by the gauge functiod of Eq. (106),
tials responsible for confinement come not from the original€@ds to no large-volume divergences. In fact, the CS term of
TP monopoles, which become screened and have no |onéh|s U is zero. So as long as there is a dyngmlcal mass, that
range fields, but from center vortices and nexuses. When '&: as long as the CS levklis less than the critical value, we
TP monopole becomes a nexus, which has no long-rang@*Pect no qualitatively new behavior.
for example, in Eq(53)] at great distances, quite different values ofk? The answer is yes, becausside from nexuses
from the standard TP monopole which approaches the Withere are alspl2] plain center vortices in CCGS theory, with
Yang configuration. the Z, holonomy necessary for confinemg@g]. These vor-
There exists a deformation of this nexus-anti-nexus pair ifices smoothly vanish as the dynamical mass is turned off,
GGCS theory as well. The reason is that, with all gaugéNhich happens whek exceeds its critical value, and then
potentials approaching pure-gauge configurations at infinitéonfinement is indeed lost.
distance, all terms of the actiom(y,Iy,lcc.lcg are inte-
grable at large distand®]. They are like TP monopoles in
that the flux carried through a large sphere containing only a
nexus(no antinexusand its flux tubes is the same as that of  Solitons ofd=3 YM or YMCS theory with dynamical
the TP monopole. They are unlike the TP monopole in thamass generation, such as sphalerons and center vortices, are
the potential of a center vortex, lying on a closed compachoncompact even in their simplest manifestation, where they
surface and decorated with a nexus and an antinexus, apave CS number 1/2. In fact, these solitons can be given an
proaches a pure gauge at infinity. Confinement comes aboatbitrary CS number with a non-compact gauge transforma-
by the usua[29] linking of fundamental Wilson loops with tion. This gauge transformation changes only the CS action
the center vortices, with or without nexuses. by a surface term, and does not affect the rest of the action or
Whether a Meissner mass or a dynamical mass is invokethe equations of motion. Consequently, the parameters of
makes no real difference, so consider the case of dynamicalich gauge transformations are collective coordinates, which
mass generationv(~g). One must add the mass teiry are to be integrated over. This integration raises the free en-
[Eqg. (6)] to the GGCS action. It is now not so simple to find ergy, showing that compactification, that is, the exclusion of
a GG nexus, because one must find a configuration of gaughese collective coordinates, is dynamically preferred. For

whereU is the unitary matrix of Eq(6). For GG theory with
no dynamical mass, the only requirement is that the

U=expi¢r-X/2). (106)

VIIl. SUMMARY AND CONCLUSIONS
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sphalerons of CS number 1/2 we show that an odd number dérm or not added to the GG action, the screening of TP
sphalerons in a finite region induces a domain-wall sphaleromonopole fields by the Meissner effect or by the generation
which changes the CS number to an integer and compactifiesf dynamical mass leads to tubes of flux, essentially center
the theory. This in turn lowers the free energy. We interprewortex tubes, joining every monopole to an anti-monopole.
the sphaleron CS number of 1/2 as representing a singfehe result is a compactified theory.

over- or under-crossing in the Reidemeister presentation of The general conclusion, then, is that compactification
knots in fictitious field lines, using the transcription of the such asR?— S is dynamically preferred, and is not a nec-
non-Abelian CS number to an Abelian Hopf invariant, which essary assumption. Either strings form between individually
is a link number of closed and continuous Abelian gaugenon-compact solitons which bind them into compact con-
field lines. If there is an odd number of explicit crossings infigurations, or surface phenomena are induced which com-
any finite region, then compactification requires a domainpactify the theory and result in lower energy density.

wall sphaleron which acts as a superconducting wall for the The generalization to gauge groupU(N) is fairly
Abelian field lines, compactifying them, and induces an oddstraightforward, and proceeds along the linegdf if one
number of extra crossings so that the total number of crossgnores the problem of self-linking and writhe. Then the
ings is even. Any compact knot possesses an even number gfiantum of localized topological chargedns4 is 1N, and
crossings and hence an integral CS number. Similar consigmkage of vortex surfaces and nexus world lines topologi-
erations hold for center vortices, except that in the case ofally confines these fractional lumps into global units of to-
self-linking (writhe) there is no natural reason for vortices to pological charge. Imi=3, the localized units of CS number

have integral or half-integral writhe. . are 1/(N), which is why forSU(2) the CS number is 1/4
We present a new twisted vortex, which possesses thgmes a linking number, as shown in E§7). Since there are
half-integral CS number by virtue of its twist. already mechanisms for compactifying such units, we did not

We relate the non-compactness of a CS number of 1/2 t@iscuss them in this paper; they will be treated in a later
the puzzle of the fermion number of 1/2 generated by solipuplication.

tons both in one and three spatial dimensions, where the
puzzle has been solved by identifying a non-normalizable
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