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From on-shell to off-shell open gauge theories

N. Djeghloul* and M. Tahiri
Laboratoire de Physique The´orique, Universite´ d’Oran Es-Senia, 31100 Oran, Algeria
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We present an alternative quantization for irreducible open gauge theories. The method relies on the possi-
bility of modifying the classical Becchi-Rouet-Stora-Tyutin~BRST! operator and the gauge-fixing action
written as in Yang-Mills type theories in order to obtain an on-shell invariant quantum action by using
equations characterizing the full gauge algebra. From this then follows the construction of an off-shell version
of the theory. We show how it is possible to build off-shell BRST algebra together with an invariant extension
of the classical action. This is realized via a systematic prescription for the introduction of auxiliary fields.
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I. INTRODUCTION

It is well known that an on-shell quantization of gene
gauge theories, i.e., gauge theories which are reduc
and/or whose classical gauge algebra is closed only on s
~for a review see Ref.@1#!, can be successfully realized in th
Lagrangian approach by the Batalin-Vilkovisky~BV! formal-
ism @2#.

In this framework, the field content of the theory
doubled by the introduction of the so-called antifields. T
procedure consists, through the elimination of the antifie
via a gauge-fixing fermion of ghost number (21), in the
construction of the quantum theory in which the effecti
Becchi-Rouet-Stora-Tyutin~BRST! transformations are nil-
potent on shell.

Let us note that the BV approach is not the only alter
tive to quantize reducible and/or open gauge theories.
deed, the introduction of a set of auxiliary fields, as in sup
symmetric theories@3# or in BF theories@4#, may close the
gauge algebra, and then gives the possibility of using
standard BRST formalism in the context of the Fadde
Popov procedure@5#.

However, no systematic prescription exists in order to
troduce these auxiliary fields so that an approach that wil
able to realize the on-shell as well as the off-shell quant
tion of general gauge theories in a systematic way will
pear to be superior to all other available schemes.

Recently@6# we have shown for the case of simple sup
gravity, how an on-shell quantization approach of the the
can lead us, via a convenient procedure, to find out the st
ture of auxiliary fields as well as the full BRST operator th
realizes off-shell quantization of the theory. The aim of t
present paper is to extend the analysis developed in Ref@6#
in order to discuss general irreducible open gauge theo
irrespective of the underlying classical action.

The paper is organized as follows: In Sec. II we perfo
on-shell quantization for a general irreducible open ga
theory by using the structure of the gauge algebra. This
new more natural quantization procedure, in the sense
we will not be relying on any set of extra fields. Section III
divided into two sections. In the first one we show how it
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possible to introduce a set of auxiliary fields to build the f
off-shell quantum action and the associated off-shell BR
symmetry for the case of irreducible open gauge theorie
type ~2,2!. The invariant extension of the classical action
also given. In the next section, a complete generalizatio
given. In Sec. IV the specific problem of the construction
the minimal set of auxiliary fields for any given irreducib
theory is analyzed. Section V is devoted to concluding
marks.

II. ON-SHELL QUANTIZATION

Let us consider an arbitrary gauge theory whose class
actionS(F i) possesses local gauge symmetries,

DS50, ~1!

with

DF i5~2 ! iaRa
i «a, ~2!

where$F i ,i 51, . . . ,N% describes the set of classical fields
the theory and the operatorsRa

i are acting on the paramete
$«a,a51, . . . ,d% of the d symmetries ofS and i (a) is the
parity of F i(«a). The invariance condition~1! leads to No-
ether’s identity

Ra
i dS

dF i
50. ~3!

Dealing with irreducible symmetries@1#, we also have

;XA
a : Ra

i XA
a50⇒XA

a50, ~4!

whereA represents an arbitrary set of indices.
The condition~3! allows one to define thed operators

Da :

DaF i5Ra
i , ~5!

which satisfy

DaS50. ~6!

The graded commutator of two transformations is then giv
by
©2002 The American Physical Society10-1
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@Da ,Db#F i5Ra
j

dRb
i

dF j
2~2 !abRb

j
dRa

i

dF j
. ~7!

Considering that the set of theRa
i is complete, i.e., all the

symmetries ofSare known, one can easily find that the mo
general form of the gauge algebra reads@1#

@Da ,Db#F i5Tab
l Rl

i 1Vab
i j dS

dF j
. ~8!

Therefore the properties of the gauge algebra will depend
the nature of the structure functionsTab

l and the nonclosure
functions Vab

i j , which depend in general on the classic
fields and are graded antisymmetric with respect to (ab) and
( i j ).

In view of Eq. ~8!, the generalized graded Jacobi ident
can be put in the form

(
(abg)

$Ra
k Tbg,k

l Rl
i 2~2 !a(b1g)Tbg

s Tsa
l Rl

i 1$Ra
k Vbg,k

i j

2~2 !a(b1g)@~2 !a iVbg
ik Ra,k

j 1~2 ! i j 11~2 !a jVbg
jk Ra,k

i

1Tbg
s Vsa

i j #%S,i%50, ~9!

where ( (abg) means a cyclic sum overa, b, g and ‘‘,k’’
means a variation with respect toFk.

However, the standard BRST approach consists of the
placement of the local gauge invariance by a global one. T
symmetry is encoded in an operatord defined via the re-
placement of the gauge parameters«a by the ghost fieldsca

with parity (a11) and ghost number (11), we have

dF i5~21! i (a11)Ra
i ca, ~10!

which maintains the classical action invariant.
It is easy to show that the action ofd on F i is nilpotent on

shell, so that

d2F i5Vi j S, j , ~11!

where

Vi j 5
1

2
~2 !b(a11)~2 !( i 1 j )(a1b)Vab

i j cacb,

provided that the transformation of the ghost is given by

dcl52
1

2
~2 !b(a11)~2 !l(a1b)Tab

l cacb, ~12!

which is also nilpotent on shell. Indeed, by using the grad
Jacobi identity, we obtain

Rl
i d2cl5~2 ! i (l11)$dVi j 2@~2 ! i 1 j (l11)VikRl,k

j cl

1~2 ! i j 11~ i
 j !#%S, j . ~13!
06501
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This means thatRl
i d2cl vanishes on shell and becauseRl

i

describes irreducible transformations, thend2cl also van-
ishes on shell and can be cast in the form

d2ca5Za jS, j , ~14!

where the new nonclosure functionsZa j satisfy Eq. ~13!.
This characteristic equation represents the fact thatZa j are
not completely independent fromVi j . It can also be derived
by actingd on Eq.~11! and written as

$dVi j 2@~2 ! j ( i 1k11)Vk j~dF i ! ,k1~2 ! j (a11)Za j~dF i ! ,a

1~2 ! i j 11~ i
 j !#%S, j50, ~15!

where ‘‘,a ’’ means a variation with respect toca. One can
remark that the above equation is of the third order in gho
and indicates the possibility of existence of a new charac
istic functionVi jk defined by

dVi j 2@~2 ! j ( i 1k11)Vk j~dF i ! ,k1~2 ! j (a11)Za j~dF i ! ,a

1~2 ! i j 11~ i
 j !#5Vi jkS,k , ~16!

whereVi jk are restricted by the total graded antisymmet
Vi jk5(2) i j 11Vjik5(2)k j11Vik j .

We can also introduce a functionZa i j from the ghost non-
closure functionZa i by actingd on Eq.~14! and then find the
following characteristic equation:

dZa i2~2 ! i (a1b11)Zb i~dca! ,b2~2 ! i (a1k)Vki~dca! ,k

1~2 !a11Zak~dF i ! ,k

5Za i j S, j , ~17!

whereZa i j 5(2) i j 11Za j i .
It is worth noting that another application ofd on Eq.~16!

@Eq. ~17!# leads to an equation which allows us to introdu
another function of typeVi jkl (Za j i ), and so on for all orders
of application ofd. The general characteristic functions pr
duced in this way are all related by equations derived in
same way as Eqs.~16! and~17!. We denote the characteristi
functions defined from an equation of ordern in application
of d by Vn

i 1••• i n and Zn
a i 1••• i n21 . They are graded antisym

metric with respect to the indicesi l ( l 51, . . . ,n21,n). At
an order (n11) we find the following characteristic equa
tions:

dVn
i 1••• i n2 (

m52

n

~2 !m$Vm
kin2m12••• i n~Vn2m11

i 1••• i n2m11! ,k

2Zm
a i n2m12••• i n~Vn2m11

i 1••• i n2m11! ,a%5Vn11
i 1••• i n11S,i n11

,

~18!
0-2
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dZn
a i 1••• i n212 (

m52

n

~2 !m$Zm
b i n2m11••• i n21~Zn2m11

a i 1••• i n2m! ,b

2Zm
a i 1••• i m22k

~Vn2m11
i m21••• i n21! ,k

1Vm
kin2m11••• i n21~Zn2m11

a i 1••• i n2m! ,k%

5Zn11
a i 1••• i nS,i n

, ~19!

where graded antisymmetrization over all independent c
binations related to the indices (i 1 , . . . ,i n) must be carried
out. Note that the functionsVn and Zn have parity (i 1
1•••1 i n1n mod2! and (a1 i 11•••1 i n211n mod2! and
ghost numbers~n! and (n11), respectively.

The existence of these characteristic functionsVn andZn
permits a classification for irreducible open gauge theor
We will say that a theory is of type (p,q) in the case where
Vn50(Zn50) for n.p(n.q). For example, global super
symmetric theories as well as super-Yang-Mills theories
of type (2,1) while simple supergravity is of type (2,2).

In what follows we turn to discuss how to construct t
quantum theory of a classical open gauge theory of t
(p,q). It is obvious that ad-exact form of the gauge fixing
action cannot be suitable to build the full invariant quantu
action because of the on-shell nilpotency of the BRST ope
tor d. To this end, we generalize the prescription discusse
Ref. @6# for the case of simple supergravity by simply mod
fying the classical BRST operatord. As a consequence th
gauge-fixing action written as in Yang-Mills theories must
also modified so that the complete quantum action beco
invariant. We first introduce the gauge fermionC of ghost
number (21) to implement the gauge constraintsFa50 as-
sociated to all the invariances of the classical actionS, we
have

C5 c̄aFa , ~20!

where c̄a(a51, . . . ,d) represent the antighosts with pari
(a11) and ghost number (21), which allow us as usual to
define the Stueckelberg auxiliary fieldsba through the action
of the transformationd, so that

d c̄a5ba, dba50. ~21!

Let us note that the gauge-fixing functionsFa depend only
on the classical fieldsF i , since the gauge symmetries a
considered as irreducible.

At the quantum level we have to define a modified BR
operatorQ. This will be done by introducing a set of oper
tors dn given by

d0F i5dF i , ~22a!

dnF i5
1

n!
~2 ! in1anVn11

i i 1••• i nC ,i 1
•••C ,i n

, n51, . . . ,p21,

~22b!

for the classical fields, and
06501
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d0ca5dca, ~23a!

dnca5
1

n!
~2 !(a11)n1anZn11

a i 1••• i nC ,i 1
. . . C ,i n

,

n51, . . . ,q21, ~23b!

where an5( r 52
n i r(s51

r 21( i s11) gives to (2)anC ,i 1
•••C ,i n

the same graded symmetry properties asVn11
i i 1••• i n and

Zn11
a i 1••• i n. For the other fieldsc̄a andba the action of thedn

operators is taken to be trivial, i.e.,d0c̄a5d c̄a, d0ba

5dba, and dnc̄a5dnba50 for n.0. We are now able to
define the effective BRST operatorQ,

QF i5 (
n50

p21

dnF i , Qca5 (
n50

q21

dnca, ~24a!

Qc̄a5d0c̄a, Qba5d0ba, ~24b!

which leaves invariant the following full quantum actionSq ;

Sq5S1 (
n50

p21
1

n11
dnC. ~25!

The first term (n50) of the gauge-fixing action,Sg f

5(n50
p211/n11dnC, leads to the standard result of the Yan

Mills type theories while the other terms describe high
ghost couplings which characterize open gauge theories
prove the invariance of the quantum action~25! under the
effective BRST symmetry defined by Eqs.~24a! and ~24b!
we take advantage of the characteristic equations~18! and
~19! together with the on-shell nilpotency~11! and ~14! of
the classical BRST operatord.

Furthermore, using again the characteristic Eqs.~18! and
~19!, we find that the effective BRST operatorQ is nilpotent
on shell at the quantum level, i.e. with respect to the qu
tum equations of motion derived from the quantum act
~25!. Indeed, we have

Q2F i5AikSq,k1Ba iSq,a , ~26a!

Q2ca5B8a iSq,i , ~26b!

Q2c̄a5Q2ba50, ~26c!

where

Aik5 (
n51

p21
~2 !n21

~n21!!
~2 !( i 1k)(n11)1an21Vn11

iki 1••• i n21

3C ,i 1
•••C ,i n21

, ~27a!

Ba i52 (
n51

q21
~2 !a(n11)

~n21!!
~2 ! i (n1a)1an21Zn11

a i i 1••• i n21

3C ,i 1
•••C ,i n21

, ~27b!
0-3
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B8a i5 (
n51

q21
1

~n21!!
~2 !(a1 i )(n11)1an21Zn11

a i i 1••• i n21

3C ,i 1
•••C ,i n21

. ~27c!

It is remarkable that the used prescription, which simply c
sists of the modification of the classical BRST operator a
of the gauge-fixing action written as in Yang-Mills theorie
provides a natural on-shell quantization scheme for open
reducible gauge theories in the sense that it does not nee
rely on any set of extra fields~such as antifields!.

III. OFF-SHELL QUANTIZATION

We are now going to discuss how we can introduce a
iliary fields, as a generalization of the approach develope
Ref. @6#, so that we end up with an off-shell structure f
open gauge theories. To this end, and for the sake of
procedure, we perform first the generalization for class
open gauge theories of type (2,2), then a complete gene
zation will be straightforwardly given.

A. Open gauge theories of type„2,2…

In this case the theory is only characterized by the fu
tions Vi j and Za i and all the remaining characteristic fun
tions Vn andZn for n.2 vanish. Also for simplicity and to
present computations leading to insight in the generaliza
of the analysis in Ref.@6# to open gauge theories, we co
sider an open gauge algebra of type (2,2) in which the c
sical degrees of freedom (F i) as well as the different param
eters of the classical symmetry («a) are taken to have odd
parity.

For this considered theory the characteristic equations
sociated to the gauge algebra~18!,~19! become

dVi j 2S~ i j !F2Vk j
d~dF i !

dFk
1Za j

d~dF i !

dca G50, ~28a!

S~ i jk !F2Vlk
dVi j

dF l
1Zak

dVi j

dca
1 i↔ j G50,

~28b!

dZa i2F2
d~dca!

dcb
1Vki

d~dca!

dFk
2Zak

d~dF i !

dFk G50,

~29a!

S~ jk !F2Zb j
dZak

dcb
1Vi j

dZak

dF i G50,

~29b!

whereS(•••) means that a symmetrization over the indic
in brackets is carried out.

Let us now introduce the spaceC of the (d3d) invertible
matrices. One can define onC ~of dimensiond2) a basis of
d2 matrices,

$GA%A51, . . . ,d2, ~30!
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which satisfies the orthonormality condition

tr~GAGB!5ddAB, ~31!

where the trace operation is considered as the scalar pro
on the matrix space. One may also define the inverse bas
Eq. ~30! $ḠA%A51, . . . ,d2 satisfying

Ḡal
A Glb

B 5Gal
A Ḡlb

B 5dABdab . ~32!

Furthermore, each matrixM belonging toC may be also
decomposed into a symmetric matrix and an antisymme
one, i.e., Mab5M (ab)1M [ab] where M (ab)5

1
2 @Mab

1Mba# and M [ab]5
1
2 @Mab2Mba#. In other terms this

means thatC can be decomposed into two subspaces,
C5C0% C1 whereC0 is the subspace of the symmetric m
trices of dimensiond(d11)/2 andC1 is the subspace of the
antisymmetric matrices of dimensiond(d21)/2. From all
the possible basis onC, we will choose the one which is
built from the basis ofC0 andC1, in order to have

~GA!T 5~2 !AGA, ~33!

whereA50(51) for the GA belonging toC0(C1). Let us
now show that the introduction of such a basis forC is of
great help in the introduction of auxiliary fields and then
performing the off-shell quantization of the theory. To th
end, one can put the full quantum action of the theory~25! in
the form

Sq5S1
1

4
Vab

i j Fr,iFs, j c
acbc̄rc̄s1QC, ~34!

whereFr,i5dFr /dF i . We will focus on the second part o
the right-hand side of Eq.~34!,

S̃L5
1

4
Vab

i j Fr,iFs, j c
acbc̄rc̄s. ~35!

By notingFr,iFs, j5Frs,i j , we can perform a kind of Fierz
ing @3# on Eq.~35!. This is based on the observation that t
term Vab

i j Frs,i j can be viewed for fixeda ands as ad3d
matrix which can be expanded into the complete set ofGA,
we have

Vab
i j Frs,i j 5Cas

A Gbr
A , ~36!

where all theCas
A are completely determined by Eq.~31!,

Cas
A 5

~2 !A

d
Val

i j Gld
A Fds,i j . ~37!

Doing the same operation once again onVal
i j Fds,i j in Eq.

~37!, the action~35! can be cast in the form

S̃L5
~2 !B

4d2
Fd,iGdl

B Vlt
i j Gtg

A Fg, j~ c̄aGab
A cb!~ c̄rGrs

B cs!.

~38!

We are now able to make the following identifications for t
auxiliary fields:
0-4



T

ion
d
u

ica
o
de

s
tio
s

th

tio

.

n

e

nd

nd,

e-
-

ll

d,

FROM ON-SHELL TO OFF-SHELL OPEN GAUGE THEORIES PHYSICAL REVIEW D66, 065010 ~2002!
PA[~ c̄aGab
A cb!. ~39!

These fields have even parity and ghosts number zero.
action ~38! will then take the form

S̃L5WBAPAPB, ~40!

where

WBA5
~2 !B

4d2
F ,iG

BVi j GAF , j . ~41!

By a direct calculation one finds:F ,iG
BVi j GAF , j5

(2)A1BF ,iG
AVi j GBF , j , so that WBA5WAB, and then no

symmetrization is required in Eq.~40!.
Since no ghost terms are explicitly occurring in the act

~40! obtained for thed2 fields PA, it can also be considere
at the classical level in the way that classically, we can p

S̃5S1WABPAPB, ~42!

which will represent the classical extension of the class
actionSof the theory. Before investigating the symmetries
this action, an important remark must be pointed out in or
to show that the fieldsPA totally play the role of auxiliary
fields of the theory. The fact that the classical extension~42!
is algebraic inPA ~it contains no derivative terms inPA)
allows us to see that they are nonpropagating~nondynami-
cal! fields. They must also not introduce any new degree
freedom to the classical theory, i.e., their equations of mo
derived from Eq.~42! must be completely solved. This i
simply guaranteed by the implicit functions theorem@7#. In-
deed, at the dynamical level, the equations of motion of
d2 fields PA read

dS̃~F,P!

dPA
50, ~43!

and the above-mentioned theorem affirms that the condi

det
d2S̃~F,P!

dPAdPB
Þ0 ~44!

ensures that the system of thed2 equations defined by Eq
~43! possesses a unique system ofd2 solutions P0

A(F0
i ),

whereF0
i are the solutions of theN equations of motion of

the classical fieldsF i , i.e., (dS̃(F,P)/dF i)F
0
i 50. The con-

dition ~44! must be viewed as crucial to check if any give
classical theory can admit a structure of auxiliary fields.

In view of Eq. ~42!, for any open gauge theory of typ
(2,2), the condition~44! leads to the fact thatWAB must have
an inverseW̄AB such that

W̄ABWBC5dAC, ~45a!

WABW̄BC5dAC. ~45b!
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Let us remark that these two conditions lead forW̄AB asWAB

to the same symmetry property.
Now, one can show that the actionS̃5S1WABPAPB is

invariant under the action of the operatorD defined by

DF i5Ra
i ca1Ka

iAcaPA, ~46a!

DPA5La
iAca

dS̃

dF i
1Ea

ABcaPB,

~46b!

where

Ka
iA@F#52

1

2d
Vab

i j Gbl
A Fl, j , ~47a!

La
iA@F#52

1

2
W̄ABKa

iB , ~47b!

Ea
AB@F#52

1

2
W̄AC

dWCB

dF l
Ra

l . ~47c!

One may note that the explicit form ofKa
iA@F# ~47a! which

extends the classical symmetry in Eq.~46a! can be simply
derived by performing rearrangement of type~36! in the on-
shell BRST transformationQF i on the termVab

i j Fl, j viewed
for fixed a.

The rest of our task is basically twofold. On the one ha
we have to check theD invariance of the full quantum action

S̃q5S1WABPAPB1DC, ~48!

which contains the gauge-fixing terms. On the other ha
one has to show that the defined BRST operatorD is nilpo-
tent off shell in order to achieve the proof that the abov
introduced fieldsPA are the desired auxiliary fields. How
ever, one can remark that in view of Eq.~48! together with
theD invariance ofS̃, theD invariance ofS̃q simply requires
that D2C50 which is equivalent to showing the off-she
nilpotency ofD on the classical fieldsF i , and this is because
of the exclusive dependence onF i of the gauge-fixing func-
tions ~20! for irreducible open gauge theories. To this en
one has to add to the definition ofD @Eqs. ~46a! and ~46b!
and Eqs.~47a! and ~47c!# its action on the ghost fields

Dcl52
1

2
Tab

l cacb1Hab
lAcacbPA, ~49a!

where

Hab
lA@F#5

1

3d
Zabg

l j Ggd
A Fd, j , ~49b!

where the functionsZabg
l j acting on the ghostscacbcg realize

the nonclosure functionsZl j defined in Eq.~14!, i.e., Zl j

5 1
3 Zabg

l j cacbcg. This leads to theD invariance ofS̃q :

DS̃q50. ~50!
0-5
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We note, in particular, that to prove this we have used
sides the characteristic Eqs.~28a! and ~28b! the trivial but
very helpful identity

WAB52
1

2d
F, i~GA!TKiB. ~51!

We turn now to show the off-shell nilpotency of the BRS
operatorD. On the classical fieldsF i it is simply derived
from Eq. ~50! which impliesD2C50, and then

D2F iFl,i50. ~52!

On this ground, a particular observation on the gauge-fix
functions can be done. These functionsFl@F# must not pos-
sess any invariance whatever the transformation onF i , i.e.,
for any set of transformationsDvF i[Xv

i @F#, we must have

DvFl50⇒Xv
i 50, ~53!

where ‘‘v ’’ labels the set of transformations ofF i . This
clearly leads to

;Xv
i @F#:Xv

i Fl,i50⇒Xv
i 50. ~54!

This condition on the gauge fixing functions allows us fro
Eq. ~52! to prove the off-shell nilpotency ofD on the classi-
cal fieldsF i . That condition remains essential if we unde
take to show this off-shell nilpotency by a direct computati
of D2F i . Indeed, it permits us to obtain

Ka
iAW̄ABKb

jB5Vab
i j , ~55!

which is necessary to the direct proof of

D2F i50. ~56!

Let us be precise that in deriving Eq.~55! we have used the
other trivial but useful identity@Ka

iAW̄ABKb
jB2Vab

i j #Gbs
D Fs,i

50 together with the condition~53! and the inverse basis o
the GA matrices.

We have now to show the off-shell nilpotency ofD on the
ghost fieldsca. To this end, besides the characteristic E
~29a! and ~29b! we use

Zabg
l j 52Hab

lALg
jA , ~57!

which is easily proven from the identity@Zabg
l j

1Hab
lALg

jA#Grs
B Fs

j 50 in the same way that we have done f
Eq. ~55!. Therefore we find

D2ca50. ~58!

Finally, the off-shell nilpotency ofD on the auxiliary
fields PA can be simply deduced from Eqs.~56! and ~58!.
Indeed, the evaluation ofD3F i 5D(D2F i)5D2(DF i) leads
to

D2Fk
d~DF i !

dFk
1D2ca

d~DF i !

dca
1D2PA

d~DF i !

dPA
50,

~59!
06501
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which, in view of Eqs.~56!, ~58!, and~46a! implies

D2PAKa
iA50, ~60!

then, by the application ofGab
B Fb,i , which is nondegenerate

in view of Eq. ~53! and the existence ofḠA, it follows that

WABD2PA50. ~61!

Using the fact that an inverse forWAB must exist, we get

D2PA50, ~62!

which ends up with the proof that the BRST operatorD
given by the above prescription applied for open gauge th
ries of type (2,2) is nilpotent off shell.

B. Open gauge theories of type„p,q…

Although the general case of open gauge theories of t
(p,q) contains more characteristic gauge functions as wel
more associated characteristic equations~18!, ~19!, almost all
of the general features leading to build up the off-shell v
sion of an on-shell open gauge theory are expressed in
case of theories of type (2,2). Indeed, the typical rearran
ment introduced in Eq.~36! together with the field redefini-
tion ~39! which allow us to identify the auxiliary fields of the
theory and the crucial condition~44! remains unchanged an
sufficient to formally find out the off-shell BRST operato
and the classical extension for any given open gauge the
of gauge fieldsF i enriched with the set of auxiliary fields
We then only concentrate on particular remarks that st
out in the general case, all other results will be direc
given. These remarks are basically twofold. The first o
affects the general form of the action obtained for the o
shell quantum theory~25!. This action clearly contains
higher order ghost-antighost couplings and could be reca
the form

Sq5S1QC2 (
n51

p21
n

n11
dnC, ~63!

whereQ is the on-shell BRST operator defined by Eqs.~24a!
and~24b!. Expressing each term of(n51

p21n/n11dnC occur-
ring in the above expression by using Eq.~22b! one obtains

n

n11
dnC5

~2 !nn

~n11!!
~2 !an11Vn11

i 1••• i n11C ,i 1
•••C ,i n11

,

~64!

developing then theVn
i 1••• i n functions in terms of the ghos

fields in the same way we have done in Eq.~11!,

Vn
i 1••• i n5

1

n
~2 !(s51

n21(as11)(r 51
n ar~2 !(r ,s51

n ( i ras)

3Va1•••an

i 1••• i n @F#ca1
•••can, ~65!
0-6
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and also expressing the gauge fermionC in the function
of the antighost fields, usingC5Fb@F# c̄b, we find that
for any order ‘‘n’’ in Eq. ~63! a term of type

Va1•••an11

i 1••• i n11 Fb1 ,i 1
•••Fbn11 ,i n11

ca1
•••can11c̄b1

••• c̄bn11

contributes to the quantum action. They are of even orde
ghost-antighost pairs whatever the integer ‘‘n’’ is. By per-
forming the Fierz-like rearrangement@see Eq.~36!# n11
times on each coefficient of these terms using the ortho
mality property of the basis$GA%A51, . . . ,d ~31! we show that
they can be put in the form

Va1•••an11

i 1••• i n11 Fb1 ,i 1
•••Fbn11 ,i n11

5
1

dn11
Vr1•••rn11

i 1••• i n11 Fs1 ,i 1
•••Fsn11 ,i n11

Gr1s1

A1
•••Grn11sn11

An11

3Gb1a1

A1
•••Gbn11an11

An11 , ~66!

where a sum over (A1 , . . . ,An11) is underlaid. Thus the
higher order terms in the quantum action~63! acquire the
form

S̃L5 (
n51

p21

Wn11
A1•••An11@F#~ c̄GA1c!•••~ c̄GAn11c!, ~67!

where all the coefficientsWn11
A1•••An11@F# are completely de-

fined by Eqs.~64!, ~65!, and ~66!. We are now able to per
form the same identifications as in the previous section
the auxiliary fields~39!, i.e., PA[( c̄GAc). To step forward
we have to make another remark which can be crucial for
practical application of our prescription. In the general ca
the d2 fields PA constructed in this way have no define
Grassmannian parity. Indeed, since the ghost and antig
fields (c̄a,cb) associated with the classical symmetry para
eters («a) have various Grassmannian parities, any bilin
combination of them will not have any defined parity. F
that reason this redefinition is taken to be purely formal. F
practical application we have to split the formal set of fie
PA into sets having well defined parities. This can be ea
done in the following way. The general set of the ‘‘d’’ sym-
metries can be divided into the set of the ‘‘db’’ bosonic sym-
metries and the set of the ‘‘df ’’ fermionic ones, such thatd
5db1df . Then, eachGA of the d2 elements of the basis o
thed3d matrix spaceC can take the following block matrix
form:

Gd3d
A [F Gdb3db

A1
Gdf3db

A2

Gdb3df

A3
Gdf3df

A4 G , ~68!

which can be condensed in the notationGA

[(GAa
)a51, . . . ,4, where each value of ‘‘a’’ denotes one of

the four sectors ofGA. Then the set of the fieldsPA can be
viewed as a supermultiplet containing the bosonic as wel
06501
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the fermionic auxiliary fields, i.e.,PA[(PAa
)a51, . . . ,4, where

every auxiliary fieldPAa
is introduced by the field redefini

tion PAa
[( c̄GAa

c). Thedb
2 fields PA1

and thedf
2 fields PA4

are bosonic while thedf3db fieldsPA2
and thedb3df fields

PA3
are fermionic. All of them are of ghost number zer

Then the action ~67! which formally reads S̃L

5(n51
p21Wn11

A1•••An11@F#PA1•••PAn11, will be practically writ-
ten as

S̃L5 (
n51

p21

(
a1•••an1151

4

W
n11

A
1

a1
•••A

n11

an11

@F#PA
1

a1
•••PA

n11

an11
,

~69!

where the functionsW
n11

A
1

a1
•••A

n11

an11

@F# are completely derived

upon theGA dependence ofWn11
A1•••An11@F#, see Eq.~66! and

the definition of thePAa
.

In what follows we pursue only with the formal notatio
PA for the auxiliary fields, but keeping in mind that for pra
tical applications we have to go back to the fieldsPAa

in
order to obtain the correct representation of the auxili
fields.

Let us now introduce the classical extensionS̃(F,P) of
the classical action of the theoryS(F),

S̃~F,P!5S~F!1 (
n51

p21

Wn11
A1•••An11@F#PA1

•••PAn11,

~70!

and by applying the same procedure as for the (2,2)-t
open gauge theories, one expands in ghost-antighost pair
on-shell BRST operatorQ acting on the gauge fieldsF i @Eq.
~24a!# in order to obtain the off-shell BRST symmetry of th
classical action~70!. Each term of Q, i.e., dnF i51/n!
(21)in1anVn11

i i 1••• i nC ,i 1
•••C ,i n

clearly contains ‘‘n’’ pairs

( c̄a,cb), then by performing ‘‘n’’ times the Fierz-like rear-
rangement and also making the suitable identification for
auxiliary fieldsPA we obtain the following BRST transfor
mation onF i :

DF i5dF i1 (
n51

p21

Kna
iA1•••An@F#caPA1

•••PAn, ~71!

whered is the standard BRST operator.
In order to consider the fieldsPA as auxiliary fields we

still impose the general condition detd2S̃(F,P)/dPAdPB

Þ0. To this purpose it is convenient to put the action~70! in
the form

S̃~F,P!5S1ŴAB@F,P#PAPB, ~72!

where

ŴAB@F,P#5W2
AB@F#

1(n53
p21Wn

ABC1•••Cn22@F#PC1
•••PCn22,
0-7
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then the condition~44! will just imply that ŴAB@F,P# must
have an inverseŴinv

AB@F,P# such thatŴinv
ABŴBC5dAC and

ŴABŴinv
BC5dAC. In the same way the BRST transformatio

~71! could be cast in the form

DF i5dF i1K̂a
iA@F,P#caPA, ~73!

where

K̂a
iA@F,P#5K1a

iA @F#1(n52
p21Kna

iAA1•••An21@F#PA1
•••PAn21.

Then by defining the action ofD on the auxiliary fields

DPA52
1

2
Ŵinv

ABK̂a
iBcaS̃,i2Ŵinv

ACdŴAB, ~74!

a tedious but straightforward calculation leads to theD in-
variance of the classical extensionS̃(F,P).

The last step will consist of showing the off-shell nilp
tency of the BRST operatorD. To this purpose we supple
ment the definition ofD with its application on the ghos
fields ca in the same spirit as in the case of the gauge fie
F i . First we begin to expand in ghost-antighost pairs the
shell BRST operatorQ acting onca @Eq. ~24a!#, this involves
functions of the typeZl1•••ln12

a i 1••• i n which realize the character

istic functions of typeZn11
a i 1••• i n @see Eq.~23b!# by acting on

the (n12)th order termcl1
•••cln12 as well as the gauge

fixing termsFb1 ,i 1
•••Fbn11 ,i n11

related with thenth order

term in antighost fieldsc̄b1
••• c̄bn11. Thus each term in the

definition of the on-shell BRST operatorQ contributes with a
term of order ‘‘n’’ in ghost-antighost pairs (c̄a,cb), then per-
forming ‘‘n’’ times the Fierz-like rearrangement~36! and
also applying the prescribed identification for the auxilia
fields PA we obtain the following form for the BRST trans
formation onca @for best insight, one may return to Eq
~49a! and ~49b!#

Dca5dca1 (
n51

q21

Hnrs
aA1•••An@F#crcsPA1

•••PAn, ~75!

which can be easily put in the more convenient expressi

Dca5dca1Ĥrs
aA@F,P#crcsPA, ~76!

where Ĥrs
aA@F,P#5H1rs

aA @F#1(n52
q21Hnrs

aA1•••An21@F#
3crcsPA1

•••PAn21. Then we can show by a last tediou
calculation that the obtained BRST operatorD defined by
Eqs.~73!, ~74!, and~75! is nilpotent off shell, i.e.,

D2X50, ~77!

whereX describes all the fields of the theory. However, let
note that in addition to the characteristic equations@~18! and
~19!# the proof of the off-shell nilpotency ofD requires the
condition ~53! be imposed on the gauge fixing functions.
06501
s
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Once we get the off-shell nilpotency ofD, the gauge fix-
ing action occurring in the full quantum action of the theo
can be put in the usualD-exact form, i.e.,Sq5S̃1DC.

IV. MINIMAL AND NONMINIMAL SET OF
AUXILIARY FIELDS

We are now going to investigate one of the most typi
features of theories that contain auxiliary fields. For tho
theories we remark that the number of auxiliary fields is n
unique, but in all cases we may find a minimal set of the
fields ~for a review see Refs.@3# and@8#!. In this section we
will see how this statement can be analyzed and reprodu
in the general framework of the ideas suggested in this pa
We first deal with theories of type (2,2) then we briefly di
cuss the general case (p,q) which does not bring anything
new to the spirit of the approach.

In the above sections we showed how we can start with
on-shell open gauge theory to end up with the correspond
off-shell version. The procedure is essentially based on
identification~39! for the auxiliary fields, i.e.,

PA[~ c̄aGab
A cb!, ~78!

which are clearly of number ‘‘d2.’’ The set of the ‘‘d2’’ ma-
trices$GA%A51, . . . ,d2 can be always split into the two sets o
the symmetric matrices$G0

A% of numberd(d11)/2 and the
antisymmetric matrices$G1

A% of numberd(d21)/2. This fact
together with the identification~78! permit us to split the se
of auxiliary fields notedLp into two parts. The first oneLp

0

containsd(d11)/2 auxiliary fieldsP0
A defined by

P0
A[ c̄aG0ab

A cb, ~79a!

and the second partLp
1 containsd(d21)/2 auxiliary fields

P1
A defined by

P1
A[ c̄aG1ab

A cb. ~79b!

Our task consists now in showing that we could elimina
one of the two above representations of auxiliary fields wi
out affecting the other one. To this aim one can remark t
the auxiliary fieldsPA appear in the off-shell version of th
theory at two levels: in the classical extension of the class
action~42! and in the off-shell BRST operatorD. In both of
them they are associated with coefficients that involve
characteristic functions of the theory and the different gau
fixing functions. It is the last dependence that will be inve
tigated. We first introduce from the gauge fixing functio
Fa@F# a set of functionsFa

A@F# defined by

Fa
A@F#5Gab

A Fb@F#. ~80!

Such a definition is guaranteed by the existence of the
verse basisḠA. Thus we have

Fa@F#5Ḡab
A Fb

A@F#. ~81!
0-8
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We can observe that the inverse basisḠA can also be decom
posed into symmetric and antisymmetric partsḠ0

A andḠ1
A in

the way that using Eq.~32! we obtain

Fa@F#5Ḡ0ab
A F0b

A @F#1Ḡ1ab
A F1b

A @F#. ~82!

Upon this decomposition, the classical extension~42! reads

S̃5S1W00
ABP0

AP0
B1W11

ABP1
AP1

B1W10
ABP1

AP0
B

1W01
ABP0

AP1
B , ~83!

with

W00
AB5

1

4d2
F0

AiVi j F0
B j , ~84a!

W11
AB5

1

4d2
F1

AiVi j F1
B j , ~84b!

W10
AB5

1

4d2
F1

AiVi j F0
B j , ~84c!

W01
AB5

1

4d2
F0

AiVi j F1
B j . ~84d!

Note thatW00 andW11 are symmetric inA andB, andW10
AB

5W01
BA . We are now able to choose between the eliminat

of the fieldsP0
A or P1

A . This will be simply done by taking
advantage of the freedom in the manner that we choose
gauge fixing functions. If we want, for example, to elimina
the fieldsP0

A it is sufficient to choose the gauge fixing fun
tions such that in Eq.~82! we have

F0b
A 50. ~85!

From this and from Eqs.~84a! and~84d!, the only coefficient
that remains in Eq.~83! is W11 and only the auxiliary fields
P1

A take part in the classical extension of the action. In or
to completely eliminate theP0

A it is necessary to show tha
they do not appear in the BRST operatorD. Indeed, from
Eqs.~46a! and ~46b! and ~49! we find

Q̃F i5Ra
i ca1K1a

iA caP1
A , ~86a!

Q̃Cl52
1

2
Tab

l cacb1H1ab
lA cacbP1

A , ~86b!

Q̃P1
A5L1a

iA ca
dS̃0

dF i
1E1a

ABcaP1
B , ~86c!

Q̃P0
A50, ~86d!

with
06501
n
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K1a
iA @F#52

1

2d
Vab

i j F1b
A j , ~87a!

H1ab
lA @F#5

1

3!d
Zabg

l j F1g
A j , ~87b!

L1a
iA @F#52

1

2
W̄11

ABK1a
iB , ~87c!

E1a
AB@F#52

1

2
W̄11

AC
dW11

CB

dF l
Ra

l , ~87d!

whereW̄11 is the inverse ofW11.
Thus the condition~85! is sufficient to the elimination of

the auxiliary fieldsP0
A . Moreover, one can note that if in

stead of Eq.~85! we have chosen the gauge fixing functio
such thatF1b

A 50, then the fieldsP1
A will be eliminated. So

we have defined two possible configurations for the auxili
fields. For a given open gauge theory, the choice of the ga
fixing functions such thatF0b

A 50 leads to the setLp
1 of the

d(d21)/2 auxiliary fieldsP1
A . This will be namedthe mini-

mal set of auxiliary fields. The other choice of the gaug
fixing functions such thatF1b

A 50 which leads to the setLp
0

of the d(d11)/2 auxiliary fieldsP0
A will be namedthe non-

minimal set of auxiliary fields.
Since the keystone for the determination of the minim

~or nonminimal! set of auxiliary fields is the choice of th
gauge fixing functions via the decomposition~82!, no par-
ticular generalization is needed in the case of theory of t
(p,q). The conditionF0b

A 50(F1b
A 50) remains sufficient to

obtain the minimal~nonminimal! set of auxiliary fields for
general open gauge theories. Nevertheless, one can r
that for a practical application~where both bosonic and fer
mionic symmetries are responsible for the opening of
classical algebra!, we have to deal with the set (PAa

)a51, . . . ,4
of the genuine auxiliary fields with well defined parities o
tained from the formal set (PA) as it is shown in Sec. III B.
In order to understand what will occur to the minimal a
nonminimal configurations of auxiliary fields, we must n
tice that the ‘‘d25(db1df)

2’’ matricesGA expressed such a
in Eq. ~68! lead to the@db(db21)/21df(df21)/21dbdf #
antisymmetric matrices of the base ofC1 and the@db(db
11)/21df(df11)/21dbdf # symmetric matrices of the bas
of C0. Therefore the minimal setLp

1 will contain @db(db

21)/21df(df21)/2# bosonic and (dbdf) fermionic auxil-
iary fields, while the nonminimal setLp

0 will contain
@db(db11)/21df(df11)/2# bosonic and (dbdf) fermionic
auxiliary fields.

To end this section, we will briefly discuss the particul
case of simple supergravity~D54 and N51! to show how
the procedure developed in this paper can be practically
plied. In this theory@3# the classical dynamical gauge field
are the vierbeinem

a and the gravitinocm
A with a51, . . . ,4

labeling the flat Minkowski space,m51, . . . ,4 labeling the
curved Riemannian space, andA51, . . . ,4 isrelated to the
N51 supersymmety. One recalls that the theory admit
0-9
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vanishing torsion leading to a nonpropagating spin conn
tion vm

ab . The symmetries of the theory are the diffeomo
phism, the Lorenz and the supersymmetry transformatio
Their associated ghost fields arecm, cab, and cA, respec-
tively. The classical BRST operator associated to the cla
cal symmetries of the theory have the following on-sh
property@3#

d2cm5Vmn

dS

dc̄n

, ~88a!

d2cab5Zn
ab dS

dc̄n

, ~88b!

d2X50 for all others fields
~88c!

with c̄n5cn
TC, whereC is the charge conjugation matrix

and the supersymmetric index is omitted for simplicity. Th
on-shell structure follows easily from the open structure
the superalgebra of the simple supergravity. The charact
tic functionsVmn andZn

ab are given by

Vmn5 1
8 c̄gac~ 1

4 gmnga2 1
2 e«mnrteb

tg5gb!

1 1
8 c̄sabc~em

a en
b1 1

2 gmnsab2 1
2 e«mnrteb

tg5

2 1
2 e«mnrte

raetbg5!, ~89!

Zm
ab5 1

8 c̄gaem
a sabg5cc̄g5 , ~90!

where e5det(em
a ) and gmn5em

a eam . These characteristic
functions are related upon characteristic equations@6# of type
~28a! and ~28b! and ~29a! and ~29b! and show that simple
supergravity is of type (2,2). Since the only symmetry tha
responsible for the opening of the classical algebra is su
symmetry, and following the procedure presented in this
per, the complete set of auxiliary fields will containd2542

516 bosonic fields. To step forward and find out the co
plete representation of the auxiliary fields we need to de
a convenient basis for the 434 matrix. Such a basis is give
by the 16 matrix $GA%A51, . . . ,16[(C,Cga,2Csab,
Cg5ga,Cg5), where ga are the Dirac matrix, smn

5 1
4 @ga,gb#, andg55g1g2g3g4. By taking advantage of the

properties of the Dirac matrices one can show that this se
matrices split into the set of the six antisymmetric matric
(C,Cg5 ,Cg5ga) and the ten symmetric ones (Cga,2Csab).
According to this basis the 16 bosonic degrees of freed
expected for the auxiliary fields will be distributed with r
spect to the following multiplet representatio
@S(scalar),P(pseudoscalar),A5

a(pseudovector)# for the
minimal set and@Aa(vector),Eab(2nd-rank antisymmetric
tensor!# for the nonminimal one. These are the standard
sults occurring in simple supergravity. Let us note that on
we choose the standard gauge fixing function for superg
ity, i.e., F5egmcm , we can see that the only coefficie
W11

AB @Eq. ~84b!# that remains in the minimal representatio
of auxiliary fields acquires the following simple form:
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e

3 F 1 0 0

0 21 0

0 0 gmn

G , ~91!

which arises from the particular property of the characteris
function Vmn , that for any arbitrary spinorw we have
c̄gnVmrgrw50. This directly leads, from Eq.~83!, to the
usual classical extension

S̃5Scl2
e

3
~S22P21AaAa!. ~92!

One can also easily derive the associated BRST symm
which is nilpotent off shell from the general equations~86a!
and ~86d! and ~87a! and ~87d! and find the standard result
~see Refs.@3# and @6#!.

V. CONCLUDING REMARKS

In this paper we have presented a prescription leadin
the construction of an off-shell BRST quantization sche
for irreducible open gauge theories. We first obtained the
shell BRST full quantum action together with its associa
on-shell BRST symmetries. This is realized upon taking
vantage of the characteristic functions related to correspo
ing equations that characterize general open gauge alge
From this follows the construction of the off-shell version
the theory. To this aim, we used a suitable field redefinit
which permits us to find out the necessary set of auxili
fields which leads to the classical extension of the class
action of the theory as well as to the off-shell BRST opera
so that the quantization can be done in the standard way,
as in Yang-Mills type theories. Let us note that we first app
our prescription to theories described by a gauge alge
with vanishing higher-order gauge functions, i.e., theories
type (2,2) which contain all the subtleties required to t
insight of the procedure. Then a direct generalization is giv
for any open gauge theory of type (p,q), with, however,
particular technical remarks that stand out in the gene
case. In the last chapter we study the particular problem
the minimal set of auxiliary fields for any given open gau
theory. Then we end up with a quick formulation of th
procedure for simple supergravity and reproduce the s
dard results.

To quantize gauge systems, the exposed prescrip
should be compared to the BV approach. The latter is not
unique way to quantize closed and irreducible gauge theo
but became impossible to circumvent for open and/or red
ible theories for the reason that no systematic procedure
the introduction of auxiliary fields was to date available.
first sight, the comparison clearly stops at the on-shell le
for the reason that in the BV procedure, the nilpotency of
BRST operator is guaranteed only on shell after the elimi
tion of the antifields. It is worth noting that at this level bo
procedures lead to the same higher-order ghost coup
terms in the on-shell full quantum action. However, to st
forward and really quantize the theory, one may remark t
a systematic procedure for the introduction of auxiliary fie
0-10
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closes the classical algebra and makes the quantum th
much simpler, since in this case the transformation laws
linear1 and lead to an off-shell BRST operator together w
a complete off-shell invariant action containing all the gau
fixing conditions. One can then easily derive the so-cal
Ward identities which are necessary in many aspects of
quantized theory, for instance, gauge independence of
partition function as well as perturbational proofs of unitar
and renormalizability are heavily based on these identi
@9#. Then, to determine the quantum theory completely o
has to add an extra symmetry, i.e., the so-called shift s
metry upon introducing the set of collective fields in order
obtain the quantum equations of motion, i.e., the Schwing
Dyson equations@10# ~see also Ref.@11#! as Ward identities
of the complete theory and end up with a physical quant
theory, in the sense that all the physical degrees of freed
are fixed, together with an off-shell structure of the symm
tries. This cannot be realized in the BV quantization sche
In this approach, in order to obtain a theory with all the fix
degrees of freedom, one has to require the elimination of
antifields for the benefit of the gauge fixing functions trou
the gauge fixing fermion and this leads inevitably to an o
shell structure of the symmetries. But if we want to quant
the theory effectively and derive the Ward identities one
to reintroduce the antifields and take advantage of the
shell structure provided by this reintroduction. One can th
clearly see that in the BV formalism, a physical quantu
theory cannot be obtained together with an off-shell struct
contrary to what can be done via the introduction of auxilia
fields that realizes the off-shell nilpotency and allows at
same time the introduction of all the gauge fixing functio
without introducing any new physical degrees of freedom
the sense that they are nonpropagating fields. Let us
remark that besides the fact that auxiliary fields simpl
greatly the quantization of open gauge theories, they ar
particular interest in many specific cases. For example,
can cite globally supersymmetric models such as the W
Zumino model, for which it is only with auxiliary fields tha
one can obtain a tensor calculus@3#. One can also mention
the case of BF theories which represent models of reduc
theories but have, however, an on-shell structure, and
which the introduction of auxiliary fields realizes the met
independence of the BRST operator and allows one to s
plify the proof of the metric independence of the partiti
function of such theories@4#.

However, one should mention that an interesting idea
ists in order to extend the BV method to investigate a p
sible realization of a complete off-shell quantization proc
dure. In their approach~see Refs.@12–14#! the authors are
led to identify the auxiliary fields through the variation of th
gauge fixing fermion with respect to the gauge fields of
classical theories. This method leads at first sight to th
binding remarks. The first one concerns the nonvanish
ghost number of the auxiliary fields obtained in this wa

1One can check from Eqs.~73! and ~74! that upon replacing the
ghost fields by gauge parameters one can easily see that th
tained transformations are linear.
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This clearly compromises the possibility of considering the
fields at the classical level and thus jeopardizes the const
tion of a classical extension of the theory. The second rem
is related to the particular constraints taken by the authors
the gauge functions of the gauge algebra. These constr
imposed for internal consistency reduce considerably
logical simplicity of the theory and potential generalizatio
~see in particular Ref.@12#!. The last remark affects the rep
resentation~and then the number! of the auxiliary fields. In-
deed, in their approach we see that these fields are inevit
in the same number that of the gauge fields with nonvan
ing ghost number and opposite statistic. This can raise
problem of the definition of the minimal set of auxiliar
fields. Nevertheless, in Ref.@14# the authors present a cleve
way to bypass this difficulty for the specific case of simp
supergravity, but they take too much advantage of the p
ticularities of the theory to envisage a smooth generaliza
to general open gauge theories. As a quick comparison,
prescription gives rise to auxiliary fields with vanishin
ghost-numbers and their representation is only related, u
the field-redefinition~39!, to the symmetries of the classica
theory. This permits us in Sec. IV to analyze the question
the minimal representation in a general framework. The c
straints used in this section are twofold. The first and m
important one@Eq. ~44!# is a very general condition relate
to the nature of any set of auxiliary fields that impose
them that they must not introduce any new degrees of fr
dom to the classical theory and this condition finds its th
retical meaning in the very general explicit function theore
@7#. The second condition~53! is related to the gauge fixing
functions that are taken to not have any kind of invarian
which is not a strong restriction in virtue of the freedom
fixing the gauge.

Finally, one should mention that in order to study all fu
ther possible advantages of the auxiliary fields structure
would be interesting to reinvestigate the prescription p
sented in this paper in a more formal way2 and also to find
out how to make a generalization to reducible gauge th
ries. Furthermore, to develop and consolidate our appro
it would be also interesting to apply it for several speci
theories. In particular, we plan to use it to give a compl
off-shell formulation of the 11-dimensional~11D! supergrav-
ity for which the complete structure of the auxiliary fields
unknown. Let us note that 11D supergravity recently beca
interesting because of its return in the so-called M theory~for
a review see Ref.@15#! and only a partial off-shell formula-
tion has been already proposed in Ref.@16#.
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2The essential motivation of the present paper was to show
the introduction of auxiliary fields can be practically realized f
irreducible open gauge theories.
0-11



-
ey

k,

A

N. DJEGHLOUL AND M. TAHIRI PHYSICAL REVIEW D 66, 065010 ~2002!
@1# M. Henneaux and C. Teitelboim,Quantization of Gauge Sys
tems ~Princeton University Press, Princeton, New Jers
1992!.

@2# I.A. Batalin and G.A. Vilkovisky, Phys. Lett.102B, 27 ~1981!;
Phys. Rev. D28, 2567~1983!.

@3# P. Van Nieuwenhuizen, Phys. Rep.68, 189 ~1981!.
@4# M. Tahiri, Phys. Lett. B325, 71 ~1994!; Int. J. Mod. Phys. A

12, 3153~1997!.
@5# C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys.42,

127 ~1975!.
@6# N. Djeghloul and M. Tahiri, Mod. Phys. Lett. A15, 1307

~2000!.
@7# Y. Choquet-Bruhat, C. de Witt-Morette, and Dillard-Bleic

Analysis, Manifolds and Physics, revised edition ~North-
Holland, Amsterdam, 1982!.

@8# J. Wess and J. Bagger,Supersymmetry and Supergravity~Prin-
ceton University Press, Princeton, New Jersey, 1983!; P. P.
Srivastava,Supersymmetry, Superfields and Supergravity:
06501
,

n

Introduction ~Graduate Student Series in Physics! ~Adam
Hilger, Bristol, 1986!.

@9# S. Weinberg,The Quantum Theory of Fields~Cambridge Uni-
versity Press, New York, 1995!.

@10# F.J. Dyson, Phys. Rev.75, 1736 ~1949!; J. Schwinger, Proc.
Natl. Acad. Sci. U.S.A.37, 452 ~1951!.

@11# J. Alfaro and P.H. Damgaard, Nucl. Phys.B404, 751 ~1993!.
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M. Blagojević, B. Sazdovic´, and M. Vasilić, ibid. 236, 424
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