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From on-shell to off-shell open gauge theories
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We present an alternative quantization for irreducible open gauge theories. The method relies on the possi-
bility of modifying the classical Becchi-Rouet-Stora-TyutiBRST) operator and the gauge-fixing action
written as in Yang-Mills type theories in order to obtain an on-shell invariant quantum action by using
equations characterizing the full gauge algebra. From this then follows the construction of an off-shell version
of the theory. We show how it is possible to build off-shell BRST algebra together with an invariant extension
of the classical action. This is realized via a systematic prescription for the introduction of auxiliary fields.
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[. INTRODUCTION possible to introduce a set of auxiliary fields to build the full
off-shell quantum action and the associated off-shell BRST
It is well known that an on-shell quantization of general symmetry for the case of irreducible open gauge theories of
gauge theories, i.e., gauge theories which are reducibleype (2,2). The invariant extension of the classical action is
and/or whose classical gauge algebra is closed only on shélso given. In the next section, a complete generalization is
(for a review see Ref1]), can be successfully realized in the given. In Sec. IV the specific problem of the construction of
Lagrangian approach by the Batalin-VilkoviskgV) formal-  the minimal set of auxiliary fields for any given irreducible
ism[2]. theory is analyzed. Section V is devoted to concluding re-
In this framework, the field content of the theory is marks.
doubled by the introduction of the so-called antifields. The
procedure consists, through the elimination of the antifields [l. ON-SHELL QUANTIZATION
via a gauge-fixing fermion of ghost numbet (), in the
construction of the quantum theory in which the effective
Becchi-Rouet-Stora-TyutifiBRST) transformations are nil-
potent on shell. AS=0 1)
Let us note that the BV approach is not the only alterna- '
tive to quantize reducible and/or open gauge theories. Inwith
deed, the introduction of a set of auxiliary fields, as in super- _ o
symmetric theorie$3] or in BF theories[4], may close the AD'=(—)""R,e“, 2
gauge algebra, and then gives the possibility of using the . _ ) ]
standard BRST formalism in the context of the FaddeevWhere{®'i=1,... N} describes the set of classical fields of
Popov procedurgs]. the theory and the operatoRs, are acting on the parameters
However, no systematic prescription exists in order to in{e“,a=1,...d} of the d symmetries ofS andi(«) is the
troduce these auxiliary fields so that an approach that will b@arity of ®'(“). The invariance conditionl) leads to No-
able to realize the on-shell as well as the off-shell quantizaether’s identity
tion of general gauge theories in a systematic way will ap-
pear to be superior to all other available schemes. Ri ﬁ
Recently[ 6] we have shown for the case of simple super- “ SO
gravity, how an on-shell quantization approach of the theory
can lead us, via a convenient procedure, to find out the stru®ealing with irreducible symmetrigdd ], we also have
ture of auxiliary fields as well as the full BRST operator that .
realizes off-shell quantization of the theory. The aim of the VXa: RXi=0=X3=0, 4
present paper is to extend the analysis developed in[BEf. . oo
in order to discuss general irreducible open gauge theorie¥/NereA represents an arbitrary set of indices.
irrespective of the underlying classical action. The condition(3) allows one to define thel operators
The paper is organized as follows: In Sec. Il we performAa:
on-shell quantization for a general irreducible open gauge

Let us consider an arbitrary gauge theory whose classical
actionS(d') possesses local gauge symmetries,

=0. (3

1 _ pl
theory by using the structure of the gauge algebra. This is a A.P=R,, ®)
new more natural quantization procedure, in the sense th@\'}hich satisfy
we will not be relying on any set of extra fields. Section Ill is
divided into two sections. In the first one we show how it is A,S=0. (6)

The graded commutator of two transformations is then given
*Email address: ndjeghloul@univ-oran.dz by
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= SR This means thaR} 6°c* vanishes on shell and becaugg
[Aa,AB]QD':R{Y—?—(—)“BR'B ‘Jl (7)  describes irreducible transformations, théfc* also van-
oP oP ishes on shell and can be cast in the form

Considering that the set of théia is complete, i.e., all the 2o vai
symmetries oSare known, one can easily find that the most 67 ct=243;, (14
general form of the gauge algebra reatlb

where the new nonclosure functio@$! satisfy Eq.(13.
- i . 0S This characteristic equation represents the fact Afatare
_ T\ I y - e
[Aa,Apl®'=T,sR\+Vag SPi ®) not completely independent from!. It can also be derived
by actingé on Eq.(11) and written as

Therefore the properties of the gauge algebra will depend on
the nature of the structure functiofig; and the nonclosure  {5Vii —[(—)il+k+Dyki( sdi)  + ()it Dza(51)
functions V'! ., which depend in general on the classical

a3 ij+1 1 —1 —
fields and are graded antisymmetric with respectt@) and ()= )1}S;=0, (15
(ij)-

In view of Eq. (8), the generalized graded Jacobi identity where “,o” means a variation with respect &?. One can
can be put in the form remark that the above equation is of the third order in ghost,

and indicates the possibility of existence of a new character-

k i a o i Ky /il istic functionV'I* defined b
2) {RaTg'y,le)\_(_) (B+7)Tﬁ'yT}c\raRl)x+{Ran'y,k y

(aBy.
i\ /i i ii i ik oi i/ \i(i+k+1)y\/kj i _Nila+)7aj i
_(_)a(3+7)[(_)alvg(yRJ(1,k+(_)”+1(_)ajvg(lea,k oV [( ) V (5(13 ),k+( ) A ),a
+Tg Vi 1S =0, 9) +H(=)I =)=V, (16)
whereX,z3,) means a cyclic sum ovet, B, y and “,k”  whereV' are restricted by the total graded antisymmetry,
means a variation with respect do. Vilk= (=)l 1yiik = (_yki+1yikj

However, the standard BRST approach consists of the re- \We can also introduce a functic®l from the ghost non-
placement of the local gauge invariance by a global one. Thig|osure functiorz®' by actings on Eq.(14) and then find the
symmetry is encoded in an operatérdefined via the re- following characteristic equation:
placement of the gauge parametefsby the ghost fieldg“

with parity (e¢+1) and ghost number«{1), we have 52“‘—(—)“”‘*B*l)zﬁi(ﬁc“)'ﬁ—(—)i(“*k)vki(ﬁc“)'k

i—(_1\i(e+l)pi ~a .
od ( 1) RaC ) (10) +(_)a+1zak(5q)|)’k
which maintains the classical action invariant. =zs;, (17)
It is easy to show that the action 6fon @' is nilpotent on

shell, so that wherezii = (—)ii+1zaii,

SDi—Viis. (11) It is worth noting that another application éfon Eq.(16)

e [Eq. (17)] leads to an equation which allows us to introduce

where another function of typ&'i' (z4"), and so on for all orders

of application ofs. The general characteristic functions pro-
1 duced in this way are all related by equations derived in the
Vil =2 (—)Alar)(— )(”“(”B)VEBC“CB, same way as Eq$16) and(17). We denote the characteristic
2 functions defined from an equation of ordem application

] ) o of § by Vinl'”in and Zﬁil'”i"‘l. They are graded antisym-
provided that the transformation of the ghost is given by

metric with respect to the indicas (I=1,... n—1,n). At
1 an order 0+1) we find the following characteristic equa-
Sch=— E(—)ﬁ(‘”l)(—))‘("‘Jrﬂ)TZﬁC“CB, (12) tions:

. . . . n
which is also nilpotent on shell. Indeed, by using the graded 5Vinl...in_mzz (_)m{vﬁn,mz...in(vil...in,mﬂ)’k

Jacobi identity, we obtain n—m+1
Ri}\ﬁZC)\:(_)i()\+l){5vij _[(_ )i+j()\+l)vikR;\’kC)\ _Z$n7m+2' . ‘in(VLl;-n;lifIerl)‘a}:Vinljr']:iwrlsyin_*_l,
+(=)ITH=))S; . (13 (18)
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SoC%= 8¢, (233

n
SZy = B (=) MZp e ez e

1 o
. X X . a_ — (_N(at+tl)nta,7al1 lnggy .
—Z:i:‘llln.Im_zk(v:jnl_n]i;iln_l)yk 5nC nl ( ) nZn+1 '\I"lll . '\Ir,ln'
+VKnmmer s iney zel ey n=1,...9-1, (23b)
=zt s, (19  wherea,=3"_,i, Si_3(is+1) gives to ()W .- W

the same graded symmetry properties Vi%{l”i” and

where graded antisymmetrization over all independent coms,4i. . . .i = .
g Y b Z%'1'n_ For the other fields® andb® the action of thes,

binations related to the indices,( ... ,,) must be carried “n+1 —

out. Note that the function®/, and Z, have parity {;  Operators is taken to be trivial, i.egoc“=0oc”, Job*
+.--+ip+tnmod? and (@+iy+---+i,_+nmodd and =sb?* andgs,c*=5,b*=0 for n>0. We are now able to
ghost numbergn) and (h+ 1), respectively. define the effective BRST operat@,

The existence of these characteristic functidipjsandZ,
permits a classification for irreducible open gauge theories. i ! : N al "
We will say that a theory is of typep(q) in the case where QP =n§0 @', Qc :nZO nC*, (243
V,=0(Z,=0) for n>p(n>q). For example, global super-
symmetric theories as well as super-Yang-Mills theories are
of type (2,1) while simple supergravity is of type (2,2).

In what follows we turn to discuss how to construct thewhich leaves invariant the following full quantum actigg;
guantum theory of a classical open gauge theory of type
(p,q). It is obvious that aj-exact form of the gauge fixing -1 4
action cannot be suitable to build the full invariant quantum Sy=S+ E —— 5.V, (25)
action because of the on-shell nilpotency of the BRST opera- n=oN+1
tor 8. To this end, we generalize the prescription discussed in , - i
Ref.[6] for the case of simple supergravity by simply modi- Thep_ﬂlrst term (=0) of the gauge-fixing actionSy
fying the classical BRST operata@. As a consequence the — >n-0l/M+ 16,V leads to the standard result of the Yang-
gauge-fixing action written as in Yang-Mills theories must beMills type theories while the other terms describe higher
also modified so that the complete quantum action become#0st couplings which characterize open gauge theories. To
invariant. We first introduce the gauge fermidin of ghost ~ Prove the invariance of the quantum actib) under the
number (1) to implement the gauge constraifts=0 as- effective BRST symmetry defined by Eq24a and (24b)

sociated to all the invariances of the classical acmve We take advantage of the characteristic equatid® and
have (19 together with the on-shell nilpotenditl) and (14) of

the classical BRST operatd.
W= ctF (20) Furthermore, using again the characteristic E8) and
«’ (19), we find that the effective BRST operatQris nilpotent
on shell at the quantum level, i.e. with respect to the quan-
tum equations of motion derived from the quantum action
(25). Indeed, we have

Qc=5,c%, Qb= 8eb*, (24b)

wherec*(a=1,...d) represent the antighosts with parity
(a+1) and ghost number<1), which allow us as usual to
define the Stueckelberg auxiliary field§ through the action

of the transformatiord, so that QP! =A”‘Sq’k+ B“iSq,a, (263

5c*=b?, &b*=0. (21) Q%*c*=B'"Sy,, (26

Let us note that the gauge-fixing functiofRs, depend only

- 2n0— V2ha—
on the classical field$b', since the gauge symmetries are Q7 =Q"=0, (269
considered as irreducible. where
At the quantum level we have to define a modified BRST
operatorQ. This will be done by introducing a set of opera- p-1 (—)n-t I
i ik _— i+k _angiKige o

tors &, given by Al _nzl (=T (_)(I+ Y(n+1)+a, 1Vn+11 1
So®'= 8D/, (229 XWi W, (273
S.Di= 1 in+anvii1"'in\p W =1 1 gq-1 _)a(n+1)

n _m(_) ni1 i Wi n=1,...p—1, Bai:_z (—(_)i(n+a)+an_120‘”1'"in—l

(22 n-1 (n—1)! n+i

for the classical fields, and X\P'il. ' .\If'in—l’ (27b
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q-1 o which satisfies the orthonormality condition

B'ai:E (_)(a+i)(n+l)+an,1za”1'"'n—l
&= (n—1)! n+1 tr(FATB) =d 5B, (31)
XW -y (279 where the trace operation is considered as the scalar product

) o o on the matrix space. One may also define the inverse basis of
It is remarkable that the used prescription, which simply con q. (30) {FA}A:1 ..... 4 satisfying

sists of the modification of the classical BRST operator an
of the gauge-fixing action written as in Yang-Mills theories, TA "B _1ATB _
€ gaug 9 as | 9 _ Lo s=Ta T =885, (32)
provides a natural on-shell quantization scheme for open ir-
reducible gauge theories in the sense that it does not need to Fyrthermore, each matrid belonging toC may be also

rely on any set of extra fieldsuch as antifields decomposed into a symmetric matrix and an antisymmetric
one, i.e., M,s=M(,pz+Mpz where M z=3[M,z
IIl. OFF-SHELL QUANTIZATION +Myg,] and Mp,5=3[M,z—Mg,]. In other terms this

. : . means thatC can be decomposed into two subspaces, i.e.,
We are now going to discuss how we can introduce aux- _ . .
- ) S .C=Cy® C, whereCy is the subspace of the symmetric ma-
iliary fields, as a generalization of the approach developed ir. . . )

. trices of dimensiord(d+ 1)/2 andC, is the subspace of the
Ref. [6], so that we end up with an off-shell structure for ntisymmetric matrices of dimensiai(d—1)/2. From all
open gauge theories. To this end, and for the sake of th e yoss'ble basis of. we will choose the ohe hich is
procedure, we perform first the generalization for classica[P iltpfr mlth b Ii C Wndvg in order to hav which i
open gauge theories of type (2,2), then a complete general UITETro € Dasis ok a 1, In orderto have

zation will be straightforwardly given. (TAT =(—)ATA, (33)

A. Open gauge theories of type2,2) whereA=0(=1) for the ' belonging toCy(C,). Let us

In this case the theory is only characterized by the funcl'OW show that the infroduction of such a basis @is of

tions V!l andZ% and all the remaining characteristic func- great help in the introduction of auxiliary fields and then in
tions V,, andZ,, for n>2 vanish. Also for simplicity and to performing the off-shell quantization of the theory. To this
n no Lo e .__.._end, one can put the full quantum action of the the@) in
present computations leading to insight in the generahzatlonh
o . the form
of the analysis in Ref{6] to open gauge theories, we con-

sider an open gauge algebra of type (2,2) in which the clas- 1 . o

sical degrees of freedoni() as well as the different param- Sy=S+ ZV'D{ﬁFp'iF(,'jc“cﬁc”c"Jr Qv, (39
eters of the classical symmetrgq) are taken to have odd

parity. whereF , ;= 6F ,/8®'. We will focus on the second part of

For this considered theory the characteristic equations aspe right-hand side of Eq34),
sociated to the gauge algehi¥8),(19) become

. ~ 1 . _
o (8D S(5DT) Sx=7 VagFpiFocicicre”. (35)
SV —S(ij)| =V —+Z 5 =0, (289
CC(
: By notingF, iF, ;=F,,j, we can perform a kind of Fierz-
SVl SVl ing [3] on EQ.(35). This is based on the observation that the
S(ijk)| =V ——+Z2%—+io]| =0, term V},F ,,.ij can be viewed for fixedr and o as adxd
oP oc ] matrix which can be expanded into the complete seff
(28D we have
a a i ij —C~A TA
szei_| S(é8c )+Vki 8(5c )_Zak5(5q)') o ViasF poii =Caol 5y (36)
k k !
ac” od 6" | (299 where all theC%, are completely determined by E@1),
; (=)™
SO Y.l Coor=—g Vel \oF s - (37)
J - B = 1
5ch 5P

(29b) Doing the same operation once again %E\AFM” in EqQ.
(37), the action(35) can be cast in the form
whereS(- - -) means that a symmetrization over the indices

in brackets is carried out. < _(_)B B \/ii T7A TarA B\ mpTB Ao

Let us now introduce the spacof the (dx d) invertible Sh= 442 Foil Vil P (€T agC)(CT0C%).
matrices. One can define @ (of dimensiond?) a basis of (39
d? matrices,

We are now able to make the following identifications for the
MY a1, 2 (30 auxiliary fields:
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PA=(cTA 5CP). (39)  Letus remark that these two conditions lead\t® asw®
to the same symmetry property.
These fields have even parity and ghosts number zero. The Now, one can show that the acti@= S+ WABPAPB is
action (38) will then take the form invariant under the action of the operatbrdefined by
S, = WBAPAPE, (40) AD'=R! c*+ K'O'?C“PA, (463
where APAzLLj\c“5—5.+E§Bc“PB,
(—)B LOX
WBA=— " F T'BVITAF . | (41) (46b)
4d? !
where
By a direct calculation one finds:F I'BVITAF ;= 1
(=) PR IAVITBF |, so thatWP*=W"®, and then no KA[®]=——Vi TAF, (473
symmetrization is required in E¢40). “ 2d " apT A
Since no ghost terms are explicitly occurring in the action
(40) obtained for thed? fields P#, it can also be considered LA[d]= — EWABKiB (47b
at the classical level in the way that classically, we can put “ 2 @’
S ABpApB B
S=S+WABPAPE, 42 EQB[cb]z—%WACg;/g 3 @79

which will represent the classical extension of the classical

actionSof the theory. Before investigating the symmetries ofone may note that the explicit form 6fA[ D] (478 which

this action, an important remark must be pointed out in ordegyends the classical symmetry in Ed69 can be simply
to show that the field®” totally play the role of auxiliary  gerived by performing rearrangement of ty(®6) in the on-

fields of the theory. The fact that the classical exten$#) ¢ o) BRST transformatio®' on the termv'] F, : viewed
is algebraic inP” (it contains no derivative terms iR*) for fixed a. af’ Ml

allows us to see that they are nonpropagatimgndynami- The rest of our task is basically twofold. On the one hand

ca)) fields. They must also not introduce any new degrees ofye haye to check tha invariance of the full quantum action
freedom to the classical theory, i.e., their equations of motion

derived from Eq.(42) must be completely solved. This is S — S+ WABPAPB L AW (48)
simply guaranteed by the implicit functions theor€mj. In- a '
deed, at the dynamical level, the equations of motion of thevhich contains the gauge-fixing terms. On the other hand,

d? fields P* read one has to show that the defined BRST operatds nilpo-
tent off shell in order to achieve the proof that the above-
5S(d,P) introduced fieldsP” are the desired auxiliary fields. How-
W:Q (43 ever, one can remark that in view of E@8) together with

the A invariance ofS, theA invariance 01~3q simply requires

and the above-mentioned theorem affirms that the conditiofhat A*¥'=0 which is equivalent to showing the off-shell
nilpotency ofA on the classical field®', and this is because

573(d,P) of the exclusive dependence dn of the gauge-fixing func-
et— : 5 (44)  tions (20) for irreducible open gauge theories. To this end,
oP"6P one has to add to the definition af [Egs. (468 and (46b)

) ] and Egs(47a and(470)] its action on the ghost fields
ensures that the system of thé equations defined by Eq.

(43) possesses a unique system d3f solutions Py(®g), NN ‘A A
where®}, are the solutions of thal equations of motion of Ach=—STag cPHHyje cPPA, (493
the classical field®', i.e., (5§(<D,P)/5(I>i)¢i0=0. The con-
dition (44) must be viewed as crucial to check if any given
classical theory can admit a structure of auxiliary fields.

where

1 .
In view of Eq. (42), for any open gauge theory of type HAA[®]= EZ%YF%FM , (49b)
(2,2), the conditior{44) leads to the fact that/*® must have
an inverseW"® such that where the functiong2;, acting on the ghosis*cAc” realize

e me e the nonclosure functiongM defined in Eq.(14), i.e., ZM
WABWEC= 54, (458 — 5Z))5,ccPc?. This leads to the invariance ofSg:
WABWBC= 5AC, (45b) AS,=0. (50)
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We note, in particular, that to prove this we have used bewhich, in view of Eqs.(56), (58), and(46a implies
sides the characteristic Eq®8a and (28b) the trivial but _
very helpful identity A?PAK =0, (60)

WAB= — %F,i(FA)TK‘B. (51)  then, by the application drgﬁF,M , Whi(& is nondegenerate
in view of Eq.(53) and the existence di*, it follows that

We turn now to show the off-shell nilpotency of the BRST AB A 2OA
operatorA. On the classical field®' it is simply derived W?HA“PR=0. (61)
from Eq. (50) which impliesA?¥ =0, and then
_ Using the fact that an inverse fo¥® must exist, we get
A2D'F, ;=0. (52)
A?PA=0, 62
On this ground, a particular observation on the gauge-fixing 62
functions can be done. These functidghg ® | must not pos- which ends up with the proof that the BRST operator

sess any invariance whatever the transformatiobgni.e., . - .
. Ui given by the above prescription applied for open gauge theo-
for any set of transformations ,®'=X [®], we must have ries of type (2,2) is nilpotent off shell.

A F,=0=X =0, (53)
B. Open gauge theories of typ&p,q)

where “w” labels the set of transformations @b'. This

clearly leads to Although the general case of open gauge theories of type

(p,q) contains more characteristic gauge functions as well as
v X [<I>]:Xi F, i:O:>Xi —0. (54) more associated characteristic equatid, (19), almost all
¢ @b ¢ of the general features leading to build up the off-shell ver-
This condition on the gauge fixing functions allows us fromsion of an on-shell open gauge theory are expressed in the
Eq. (52) to prove the off-shell nilpotency af on the classi- case of theories of type (2,2). Indeed, the typical rearrange-
cal fields®'. That condition remains essential if we under- ment introduced in Eq(36) together with the field redefini-
take to show this off-shell nilpotency by a direct computationtion (39) which allow us to identify the auxiliary fields of the
of A2d'. Indeed, it permits us to obtain theory and the crucial conditig@4) remains unchanged and
sufficient to formally find out the off-shell BRST operator
(55) and the classical extension for any given open gauge theory
of gauge fieldsd' enriched with the set of auxiliary fields.
which is necessary to the direct proof of We then only concentrate on particular remarks that stand
A2Di—0 (56) out in the general case, all other results will be directly
- given. These remarks are basically twofold. The first one
. : - affects the general form of the action obtained for the on-
Let us be precise that in denvm% ECE? Yge h:ive used the shell quantum theory(25). This action clearly contains
other trivial but useful identity K ,"'W™K "=V, Ts,F i higher order ghost-antighost couplings and could be recast in
=0 together with the conditiof63) and the inverse basis of ihe form
the ' matrices.

K‘jv_\/ABKJB vgﬁ,

We have now to show the off-shell nilpotency®dfon the p-1
ghost fieldsc®. To this end, besides the characteristic Egs. Sy=S+Q¥ - 2 7oY. (63
(293 and(29b) we use
Z?;Jﬁy_ _ Hﬁ’gLiA, (57)  WwhereQis the on-shell BRST operator defined by E@sta

_ and(24b). Expressing each term af°~in/n+16,¥ occur-
which is easily proven from the identity[ZZJﬁy ring in the above expression by using EB2b) one obtains
+HMLUAEE FL =0 in the same way that we have done for

Eq. (55). Therefore we find n (—)"n el
n+1 5n\P: (n+ 1)' (_)an+lvnl+1 +1\I"il- ' ‘\I,'in+1’

A%c*=0. (58) 64

Finally, the off-shell nilpotency ofA on the auxiliary ) T _ .
fields PA can be simply deduced from Eq&6) and (58). Qevelgplng then th&/ " functions mlterms of the ghost
Indeed, the evaluation a¥3®' =A(A2d')=A%(Ad') leads fields in the same way we have done in £tf),
to

S(AD! S(AD! S(AD e e
n
2k 280D 2o PBP) | opa AP n
SPK sce SPA
(59

XVE T [@]em e, (65)
n
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and also expressing the gauge ferminin the function  the fermionic auxiliary fields, i_ePAE(pA"‘)a:1 ..... 4 Where

of the antighost fields, using’ =F g[®]cP, we find that  every auxiliary fieldPA" is introduced by the field redefini-
for any order " in Eq. (63) a term of type tion PA"=(cI'*"c). Thed? fields PA" and thed? fields PA"

are bosonic while thd; < dy, fields PA* and thed, X< d; fields

Vil"'in+l
PA* are fermionic. All of them are of ghost number zero.

... F ’ C”‘l...canJrlEBl...EBnJrl
agaggq By Bn+1vin+1

contributes to the quantum action. They are of even order ir-‘|_hef1l the ~ action (GZ) Wf/liCh formally  reads Sy

ghost-antighost pairs whatever the integer” is. By per- = Sh_1Wit, A1 @]PAL.. PAr1, will be practically writ-

forming the Fierz-like rearrangemefisee Eq.(36)] n+1  ten as

times on each coefficient of these terms using the orthonor- -1 4

mality property of the basisl'},_ 31) we show that ~ 4. pln+ nt
Yy property S a1, . 4 (3D 8, = z E W:«lu An+1[q)]PAi1_ ”PAi 1

they can be put in the form N=1ay - ans=1 o

(69

Vi inen CL.F ,
ap-ag g Brig Bnt1in+1 8
where the functionwl:h” n+1[P] are completely derived
_ 1 i i CE . AL TP upon thel'* dependence dt\/:}r'l”A”*l[CD], see Eq(66) and
dntloerParn T netlnat Py Pn+1%n+1 the definition of theP”".
A A In what follows we pursue only with the formal notation
PG DT (66) A . . S .
Bia; Brs1¥ni1’ P” for the auxiliary fields, but keeping in mind that fo! prac-
. ) tical applications we have to go back to the fiel8 in
where a sum overAy, ... Ansy) is underlaid. Thus the orger to obtain the correct representation of the auxiliary
higher order terms in the quantum actiB) acquire the fg|ds.
form Let us now introduce the classical extens®(b,P) of
p—1 the classical action of the theoB(®d),
~. LA — —
Sﬁgl WAL At (el Aae) - - - (cTAneic),  (67)

p—1
S(@,P)=S(D)+ X, WiL, Al @]PAL .. PAnsL,
where all the coefficientwl:il”A”“[CI)] are completely de- i (70)
fined by Eqs.(64), (65), and(66). We are now able to per-
form the same identifications as in the previous section foand by applying the same procedure as for the (2,2)-type
the auxiliary fields(39), i.e., PAE(EFAC)_ To step forward OP€n gauge theories, one e>_<pands in ghost—antighost pairs the
we have to make another remark which can be crucial for th@n-shell BRST operatd@ acting on the gauge fieldB' [Eq.
practical application of our prescription. In the general casd248] in order to obtain the off-shell BRST symmetry of the
the d? fields PA constructed in this way have no defined classical action(70). Each term ofQ, i.e., 5,®'=1/n!
Grassmannian parity. Indeed, since the ghost and antighobt-1)"" "2V, 1 "™ ; ...¥ ; clearly contains h” pairs

fields (c%,c”) associated with the classical symmetry param-c¢,c”), then by performing h” times the Fierz-like rear-
eters €“) have various Grassmannian parities, any bilinearangement and also making the suitable identification for the
combination of them will not have any defined parity. For auxiliary fields PA we obtain the following BRST transfor-
that reason this redefinition is taken to be purely formal. Foimation on®"';

practical application we have to split the formal set of fields

PA into sets having well defined parities. This can be easily ) Pl Ar A A A

done in the following way. The general set of thé"“sym- Ad'= 5‘I"+§l Ko [®Jc*P™--- P, (71)
metries can be divided into the set of thd,” bosonic sym-

metries and the set of thed;” fermionic ones, such thad where § is the standard BRST operator.
=dp+d¢. Then, eacH'™” of the d” elements of the basis of | order to consider the fieldB* as auxiliary fields we

thed X d matrix spaceC can take the following block matrix still impose the general condition d&ZFS(CI) P)/ 5PAS5PB

form: #0. To this purpose it is convenient to put the act{@f) in
Al A2 the form
A dyxdy, d¢xdy ~ ~
TA, = > | (68) S(d,P)=S+WA"E[®,P]PAPB, (72)
dyxd;  +dexdy
where

which can be condensed in the notatiod” A
=(I'""a-1 4 where each value ofd” denotes one of WAB[ D, P]=W,"[ D]

. . o . p—L\ABC1 - -Chp Ci...pCn_
viewed as a supermultiplet containing the bosonic as well as +En=3W/: "A@]PrL. P2,
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then the conditior44) will just imply that WAB[®,P] must ~ Once we get the off-shell nilpotency df, the gauge fix-
have an inverséVAB[®,P] such thatWABWBC= 5AC and ing action occurring in the full quantum action of the theory

nv nv . . -~
WABWEC= 5AC  |n the same way the BRST transformation €@" € put in the usual-exact form, i.e.S,=S+AW.

(71) could be cast in the form
IV. MINIMAL AND NONMINIMAL SET OF
Aq)i:5q)i+kiA[q) P]CaPA (73 AUXILIARY FIELDS

We are now going to investigate one of the most typical

where features of theories that contain auxiliary fields. For those
e ) ) theories we remark that the number of auxiliary fields is not
K'f[<I>,P]=K'ﬂ[<b]+2ﬁléKﬂAl'"A”’l[CD]PAl- - PAn-1, unique, but in all cases we may find a minimal set of these

fields (for a review see Ref$3] and[8]). In this section we
Then by defining the action & on the auxiliary fields will see how this statement can be analyzed and reproduced
in the general framework of the ideas suggested in this paper.
We first deal with theories of type (2,2) then we briefly dis-
cuss the general cas@,()) which does not bring anything
new to the spirit of the approach.
a tedious but straightforward calculation leads to thén- In the above sections we showed how we can start with an
on-shell open gauge theory to end up with the corresponding
off-shell version. The procedure is essentially based on the
identification(39) for the auxiliary fields, i.e.,

Lo BB e G AC
APA=— SWPK oS — WiHCSWAE, (74)

2 nv inv

variance of the classical extensi&i®,P).

The last step will consist of showing the off-shell nilpo-
tency of the BRST operatak. To this purpose we supple-
ment the definition ofA with its application on the ghost A_ TapA B
fieldsc® in the same spirit as in the case of the gauge fields PA=(cT",5C"), (78)
@', First we begin to expand in ghost-antighost pairs the on- - 12n
shell BRST operato® acting onc® [Eq. (248, this involves which are clearly of numberd<.” The set of the ‘d“” ma-

. A . -
functions of the typer'l“;\'“ which realize the character- trices{I’ }A:.l ----- g2 can bAe always split into the two sets of
1 Mng2 the symmetric matrice§l'g} of numberd(d+1)/2 and the

istic functions of typez, ', "' [see Eq.(230)] by acting on  antisymmetric matriceS™} of numberd(d— 1)/2. This fact
the (n+2)th order termc*- - .c*n+2 as well as the gauge together with the identificatiofi’8) permit us to split the set

fixing termsFp ; ---Fg i  related with thenth order  of auxiliary fields noted\, into two parts. The first ond )

term in antighost fieldg?- - .cBn+1. Thus each term in the containsd(d+ 1)/2 auxiliary fieIdsPQ defined by
definition of the on-shell BRST operat@contributes with a o

term of order ‘n” in ghost-antighost pairsq®,c?), then per- Po=c"T§,4C", (793
forming “n” times the Fierz-like rearrangemer{B6) and

also applying the prescribed identification for the auxiliaryand the second pa_tftrlj containsd(d—1)/2 auxiliary fields
fields P we obtain the following form for the BRST trans- P4 defined by

formation onc® [for best insight, one may return to Egs.

(493 and(49b)] PP=cT%, 5c”. (79b)

Act= 50a+qzl H Our task consists now in showing that we could eliminate
=1 one of the two above representations of auxiliary fields with-
out affecting the other one. To this aim one can remark that

which can be easily put in the more convenient expressionthe auxiliary fieldsP” appear in the off-shell version of the
theory at two levels: in the classical extension of the classical

Ac¥= 5Ca+|:|aA[(I),P]CpCO'PA, (76) action(42) and in the _off-shell_ BRST (_)p_eratatr. In l_aoth of

P them they are associated with coefficients that involve the
[®]+ $a-1pahr 'An—l[q)] qhgracteris_tic funct.ions of the theory and the diff_erent_gauge
n=2""npo fixing functions. It is the last dependence that will be inves-

XCPCURAL L Then we can show by a last tedious tigated. We first introduce from the gauge fixing functions
calculation that the obtained BRST operatbrdefined by ¢ [®] a set of functions*[®] defined by

Eqgs.(73), (74), and(75) is nilpotent off shell, i.e.,

A A lePcoPAL. . . PAY (75)

npo

" A __pgaA
where Hp”[db,P]—Hlp(r

A _TA
AZX:O, (77) Fa[q)]_raﬁlzﬁ[q)]- (80)

whereX describes all the fields of the theory. However, let usSUCh a d(.afLr/lmon 's guaranteed by the existence of the in
note that in addition to the characteristic equatipii® and ~ Verse basid™™. Thus we have

(19)] the proof of the off-shell nilpotency of requires the _

condition (53) be imposed on the gauge fixing functions. F[®]=Th,F[®]. (82)
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We can observe that the inverse bdsfscan also be decom-

posed into symmetric and antisymmetric paffsandT'’ in
the way that using Eq.32) we obtain

FoL®1=T0,F ol @1+ T4 6] (82
Upon this decomposition, the classical extensié®) reads

S=S+WoEPoPe+WiEPIPE+ WiSPLPS

+W5EPLPE, (83
with
1,
Woo = —Fo'VIFg!, (84a
4d
1,
Wir= —FVIFD, (84b)
4d
WiB= iF’fiV” Fo, (840
44?2
1,
WoP= EFQ'V" F2. (840

Note thatW,, andW,, are symmetric inA andB, and W,
=WE;*. We are now able to choose between the eliminatio
of the fieldsP5 or P7. This will be simply done by taking

PHYSICAL REVIEW @5, 065010 (2002

KAL1=— o VI, (872
HY 1= 5122, FA, 67
LA @]= - WK, 79
EAB[ = — ;W’ff . qjﬁB o (87d

whereW,, is the inverse ofV,; .

Thus the conditior{85) is sufficient to the elimination of
the auxiliary fieldsP; . Moreover, one can note that if in-
stead of Eq(85) we have chosen the gauge fixing functions
such thatF7;=0, then the fieldP? will be eliminated. So
we have defined two possible configurations for the auxiliary
fields. For a given open gauge theory, the choice of the gauge
fixing functions such thalFéKfO leads to the set ; of the
d(d—1)/2 auxiliary fieldsP7 . This will be namedhe mini-
mal set of auxiliary fieldsThe other choice of the gauge
fixing functions such thalE},=0 which leads to the set,
of thed(d+1)/2 auxiliary fieldsPQ will be namedthe non-
minimal set of auxiliary fields

Since the keystone for the determination of the minimal
(or nonminima) set of auxiliary fields is the choice of the
gauge fixing functions via the decompositi@8?2), no par-

Micular generalization is needed in the case of theory of type

(p.q). The conditionFg,=0(F},=0) remains sufficient to

advantage of the freedom in the manner that we choose th§hiain the minimalnonminima) set of auxiliary fields for
gauge fixing functions. If we want, for example, to ellmlnategenera| open gauge theories. Nevertheless, one can recall

the fieldsPé it is sufficient to choose the gauge fixing func-
tions such that in Eq82) we have
Fos=0. (85)

From this and from Eqg843a and(84d), the only coefficient
that remains in Eq(83) is Wy, and only the auxiliary fields

P take part in the classical extension of the action. In orde

to completely eliminate th@é it is necessary to show that
they do not appear in the BRST operatbr Indeed, from
Egs. (469 and(46b) and(49) we find

Qd'=R,c+KcPY, (863
~ 1
QCM= = S Tyge el + HigecPPY, (86h)
- 85,

A_ A a_"Y AB.apB
QPf=Liicr— & +ELicPL, (860)
QP§=0, (860)

with

that for a practical applicatiotwhere both bosonic and fer-
mionic symmetries are responsible for the opening of the

classical algebpawe have to deal with the seP(‘a)a=1 _____ a

of the genuine auxiliary fields with well defined parities ob-
tained from the formal setR®) as it is shown in Sec. Il B.
In order to understand what will occur to the minimal and
nonminimal configurations of auxiliary fields, we must no-
tice that the 62=(d,+ d;)2” matricesI'* expressed such as
in Eq. (68) lead to the[d,(d,—1)/2+d(ds—1)/2+dyds]
antisymmetric matrices of the base 6f and the[d,(dy
+1)/2+d(ds+1)/2+dpds] symmetric matrices of the base
of Cy. Therefore the minimal seAé will contain [d,(dy
—1)/2+d¢(d;—1)/2] bosonic and q,d;) fermionic auxil-
iary fields, while the nonminimal sef\g will contain
[dp(dp+21)/2+ds(d;+1)/2] bosonic and d,d;) fermionic
auxiliary fields.

To end this section, we will briefly discuss the particular
case of simple supergravifp=4 and N=1) to show how
the procedure developed in this paper can be practically ap-
plied. In this theory[ 3] the classical dynamical gauge fields
are the vierbeirei and the gravitinod;ﬁ with a=1,...,4
labeling the flat Minkowski spacey=1, . .. ,4labeling the
curved Riemannian space, aAd=1, . .. 4 isrelated to the
N=1 supersymmety. One recalls that the theory admits a
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vanishing torsion leading to a nonpropagating spin connec- 1 0 0
tion wf‘}’. The symmetries of the theory are the diffeomor-
phism, the Lorenz and the supersymmetry transformations.
Their associated ghost fields ac&, ¢®, andc”, respec- 0 0 9.

tively. The classical BRST operator associated to the classi-

cal symmetries of the theory have the following on-shellwhich arises from the particular property of the characteristic

Wy=-50 -1 0 (91

w| o

property[3] Enction V,,, that for any arbitrary spinokr we have
58 Cyvvlﬂplyf’gofol. This Qirectly leads, from Eq83), to the
sual classical extension
52¢M:VMVTy (886) usu | X |
o,
~ e
S=S,— 5(82— P2+ A,A?). (92
2 ~ab ab S
5 Ca =ZV i (88b)
oY, One can also easily derive the associated BRST symmetry

which is nilpotent off shell from the general equatiq8§a
and (86d) and (87a and (87d) and find the standard results
(see Refs[3] and[6]).

8°X=0 for all others fields
(880

with = szC, whereC is the charge conjugation matrix,
and the supersymmetric index is omitted for simplicity. This V. CONCLUDING REMARKS
on-shell structure follows easily from the open structure of

the superalgebra of the simple supergravity. The characteri%
tic functionsVv,, ande}b are given by

In this paper we have presented a prescription leading to
e construction of an off-shell BRST quantization scheme
for irreducible open gauge theories. We first obtained the on-

1= a1 L r b shell BRST full quantum action together with its associated
Vo= 5CY°C(3 940 Ya™ 2 €8 ,40p 0 Y5Y") on-shell BRST symmetries. This is realized upon taking ad-
b vantage of the characteristic functions related to correspond-
ing equations that characterize general open gauge algebras.
From this follows the construction of the off-shell version of
the theory. To this aim, we used a suitable field redefinition
ab_ 1= . _ab — which permits us to find out the necessary set of auxiliary
Z, =5CYa€,0° y5CCys, (90)  fields which leads to the classical extension of the classical
a a .. action of the theory as well as to the off-shell BRST operator

where e=det(e,,) and g,,=€,€,,. These characteristic gq that the quantization can be done in the standard way, i.e.,
functions are related upon characteristic equatjéhsf t_ype as in Yang-Mills type theories. Let us note that we first apply
(289 and (28h) and (293 and (29b) and show that simple oyr prescription to theories described by a gauge algebra
supergravity is of type (2,2). Since the only symmetry that isyjth vanishing higher-order gauge functions, i.e., theories of
responsible for the opening of the classical algebra IS SUPefype (2,2) which contain all the subtleties required to the
symmetry, and following the procedure presented in this pamsight of the procedure. Then a direct generalization is given
per, the complete set of auxiliary fields will contadA=4> ¢, any open gauge theory of typa,(), with, however,
=16 bosonic fields. To step forward and find out the com-particular technical remarks that stand out in the general
plete representation of the auxiliary fields we need to defingase. In the last chapter we study the particular problem of
a convenient basis for thexd4 matrix. Such a basis is given the minimal set of auxiliary fields for any given open gauge
by the 16 matrix {I'"}a_y 15(C,.C¥%2Co™,  theory. Then we end up with a quick formulation of the
Cysy*,Cys), where »* are the Dirac matrix, o*”  procedure for simple supergravity and reproduce the stan-
=3[7*7"], andys=y1727374. By taking advantage of the dard results.
properties of the Dirac matrices one can show that this set of To quantize gauge systems, the exposed prescription
matrices split into the set of the six antisymmetric matricesshould be compared to the BV approach. The latter is not the
(C,Cys,Cy57%) and the ten symmetric one€¢?,2Co®).  unique way to quantize closed and irreducible gauge theories
According to this basis the 16 bosonic degrees of freedomyut became impossible to circumvent for open and/or reduc-
expected for the auxiliary fields will be distributed with re- jple theories for the reason that no systematic procedure for
spect to the following multiplet representation the introduction of auxiliary fields was to date available. At
[S(scalar), P(pseudoscalgr Af(pseudovectgf  for the first sight, the comparison clearly stops at the on-shell level
minimal set and[A%(vecto),E3°(2ndrank antisymmetric for the reason that in the BV procedure, the nilpotency of the
tensop] for the nonminimal one. These are the standard reBRST operator is guaranteed only on shell after the elimina-
sults occurring in simple supergravity. Let us note that onceion of the antifields. It is worth noting that at this level both
we choose the standard gauge fixing function for supergravprocedures lead to the same higher-order ghost coupling
ity, i.e., F=ey”4,, we can see that the only coefficient terms in the on-shell full quantum action. However, to step
WP [Eq. (84b)] that remains in the minimal representation forward and really quantize the theory, one may remark that
of auxiliary fields acquires the following simple form: a systematic procedure for the introduction of auxiliary fields

1 asb, 1 1
+ §C0-abc(e,uey+ 2 g,uvo-a 2 es,quTeg’yS

- % es,u,vprepaeTb 75)1 (89)
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closes the classical algebra and makes the quantum theofis clearly compromises the possibility of considering these
much simpler, since in this case the transformation laws aréelds at the classical level and thus jeopardizes the construc-
lineart and lead to an off-shell BRST operator together withtion of a classical extension of the theory. The second remark
a complete off-shell invariant action containing all the gaugeis related to the particular constraints taken by the authors on
fixing conditions. One can then easily derive the so-calledhe gauge functions of the gauge algebra. These constraints
Ward identities which are necessary in many aspects of thimposed for internal consistency reduce considerably the
quantized theory, for instance, gauge independence of thegical simplicity of the theory and potential generalizations
partition function as well as perturbational proofs of unitarity (see in particular Ref.12]). The last remark affects the rep-
and renormalizability are heavily based on these identitiesesentationiand then the numbgpf the auxiliary fields. In-

[9]. Then, to determine the quantum theory completely onealeed, in their approach we see that these fields are inevitably
has to add an extra symmetry, i.e., the so-called shift symin the same number that of the gauge fields with nonvanish-
metry upon introducing the set of collective fields in order toing ghost number and opposite statistic. This can raise the
obtain the quantum equations of motion, i.e., the Schwingerproblem of the definition of the minimal set of auxiliary
Dyson equation$10] (see also Refi11]) as Ward identities  fields. Nevertheless, in Refl4] the authors present a clever
of the complete theory and end up with a physical quantunyyay to bypass this difficulty for the specific case of simple
theory, in the sense that all the phySical degrees of freedo%pergravity, but they take too much advantage of the par-
are fixed, together with an off-shell structure of the symme-jcularities of the theory to envisage a smooth generalization
tries. This cannot be realized in the BV quantization SChequ genera| open gauge theories. As a quick Comparison’ our
In this approach, in order to obtain a theory with all the fixedprescription gives rise to auxiliary fields with vanishing
degrees of freedom, one has to require the elimination of thghost-numbers and their representation is only related, upon
antifields for the benefit of the gauge fixing functions troughthe field-redefinition39), to the symmetries of the classical
the gauge fixing fermion and this leads inevitably to an on-theory. This permits us in Sec. IV to analyze the question of
shell structure of the symmetries. But if we want to quantizethe minimal representation in a general framework. The con-
the theory effectively and derive the Ward identities one hastraints used in this section are twofold. The first and more
to reintroduce the antifields and take advantage of the Oﬁ'rmportant ond Eq. (44)] is a very general condition related
shell structure pl‘OVided by this reintroduction. One can therio the nature Of any set Of auxi”ary f|e|ds that impose to
clearly see that in the BV formalism, a physical quantumthem that they must not introduce any new degrees of free-
theory cannot be obtained together with an off-shell structurgjom to the classical theory and this condition finds its theo-
contrary to what can be done via the introduction of auxiliaryretical meaning in the very general explicit function theorem
fields that realizes the off-shell nilpotency and allows at thqﬂ_ The second conditiofb3) is related to the gauge fixing
same time the introduction of all the gauge fixing functionsfynctions that are taken to not have any kind of invariance,
without introducing any new physical degrees of freedom inyhich is not a strong restriction in virtue of the freedom in
the sense that they are nonpropagating fields. Let us al§ging the gauge.

remark that besides the fact that auxiliary fields simplify Finally, one should mention that in order to study all fur-
greatly the quantization of open gauge theories, they are gher possible advantages of the auxiliary fields structure, it
particular interest in many specific cases. For example, ongould be interesting to reinvestigate the prescription pre-
can cite globally supersymmetric models such as the WeSsgnted in this paper in a more formal viand also to find
ZuminO m0de|, for Wh|Ch |t iS Only W|th auxi”ary fleldS that out how to make a genera“zation to reducible gauge theo-
one can obtain a tensor calcullg. One can also mention ries. Furthermore, to develop and consolidate our approach,
the case of BF theories which represent models of reduciblg \would be also interesting to apply it for several specific
theories but have, however, an on-shell structure, and fofhegries. In particular, we plan to use it to give a complete
which the introduction of aUXiIiary fields realizes the metric off-shell formulation of the 11_dimensioné]_1D) supergrav-
independence of the BRST operator and allows one to simty for which the complete structure of the auxiliary fields is
plify the proof of the metric independence of the partition ynknown. Let us note that 11D supergravity recently became
function of such theoriep4]. interesting because of its return in the so-called M thefary

However, one should mention that an interesting idea exy review see Ref.15]) and only a partial off-shell formula-
ists in order to extend the BV method to inVeStigate a pOS‘tion has been a“'eady proposed in H:&'B]

sible realization of a complete off-shell quantization proce-

dure. In their approacksee Refs[12-14]) the authors are

led to identify the auxiliary fields through the variation of the ACKNOWLEDGMENTS

gauge fixing fermion with respect to the gauge fields of the
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'One can check from Eq$73) and (74) that upon replacing the  °The essential motivation of the present paper was to show how
ghost fields by gauge parameters one can easily see that the ditre introduction of auxiliary fields can be practically realized for
tained transformations are linear. irreducible open gauge theories.
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