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We suggest a new method for the calculation of the nonlocal part of the effective action. It is based on the
resummation of the perturbation series for the heat kernel and its functional trace at large values of the proper
time parameter. We derive a new, essentially nonperturbative, nonlocal contribution to the effective action in
spacetimes with dimensiors>2.
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[. INTRODUCTION wheremzvzzg"”VMVV is the Laplacian in the Euclidean
field theory, which becomes the d’Alembertian when analyti-
The effective action is among the fundamental ideas ofally continued to the Lorentzian sector, aN@x) is the

modern quantum field theory. Calculated analytically for apotential term. Note that, for some fields, the one-loop con-
given background field, it gives information about the in-tribution is exact, for instance, for the scalar field without
duced energy-momentum tensor of quantum fields and quarself-coupling. For a properly defined measure the Gaussian
tum corrections to the classical equations of motion. Thentegral(1.2) can be formally calculated as
nonlocal part of the effective action should contain, for in-
stance, particle creation effects. For black holes it should be 1
able to account simultaneously for vacuum polarization and I'= 5'”( I
asymptotic Hawking radiation. Various important applica- »
tions of the effective action can also be found in fundamental .
string theory. The Lorentzian effective action, which we ac-where\ are the eigenvalues of the operakocorresponding
tually need, can be obtained from the Euclidean bfe¢] t0 appropriately normalized eigenfunctionsg,(x),
via analytic continuation. In tur;[ 4] can be defined by the JdX\Q,(X)$,(X)=8,,,. Here the functional trace Tr

—1§:IA—1TIﬁ 1.4
—Ekn—zrn, (1.9

following path integral: does not depend on a particular basis in the functional space
of disturbancesy and, therefore, in an appropriate represen-
ST ] tation it reduces to the integral over spatial coordinate$
exp(—l“[cﬁ(x)])zf D¢ exp( —Selt+(e— d))v , the diagonal element of the operator kernel. .
The effective action(1.4) is, of course, ultraviolet diver-

(1.9 gent and should be regularized, with the subsequent interpre-
tation of explicitly isolated divergences in terms of infinite
where ¢(x) is a given mean field, and the functional inte- renormalizations of the coupling constants of the theory.
gration over quantum fieldg(x) is assumed. The general These divergences are well understood and it is unlikely that
semiclassical expansion &f ¢] begins with the one-loop anything new can be added here. Therefore, we concentrate
contribution, which is given by the Gaussian path integral on more interesting finite, and generally nonlocal, contribu-
tions to the one-loop effective action. These contributions
1 depend on infrared properties of the theory and contain non-
exp{—T[o(x)]}= f De exp< - EJ dxvge(x) trivial information about real physical effects. Analytical cal-
culational schemes fdr are usually based on the following

integral representation of the functional tracefof

><IA:(V,¢>(X))<P(X))- (1.2

. _ _ TrinF= —f d—STre*SF, (1.5
The operatoF (V, ¢(x)) here determines the propagation of oS
small field disturbanceg(x) on the background ap(x) and
in the bosonic case can generically be written down as  where all local divergences can be easily isolated with the
aid of dimensional regularization. The kernel
F=—-0+V(x), 1.3 A
K(s|x,y)=exp —sF) 8 9(x,y), (1.6)

*Email address: barvin@td.lpi.ac.ru whered is spacetime dimensionality, obviously satisfies the
TEmail address: mukhanov@theorie.physik.uni-muenchen.de  heat kernel equation
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9 R This asymptotics can also be found when the arguments of
EK(S|X-Y)= —FK(s|x,y) K(s|x,y) are different—see Sec. IV for details. Another im-
portant result is thénonperturbative in the potentjagxpres-
=[0-V(X)]K(s|x,y), (1.7  sion

with the initial condition

1 1
K(0[x,y)= 8D (x,y) (1.9 TrK(s)=(4W—S)d/2f dx{l—s(V(x)+VD_VV(x))},

at s=0. The auxiliary parametes is usually called the
proper time. Thus, calculating the effective action can be
reduced to the solution of the Cauchy problemHKds|x,y).

In fact, what we actually need is the coincidence limit of this
function, since, in the representation we used, the functiona{P
trace of the operatoe™ SF corresponds to the integration of he
the diagonal elements &f over the spacetime coordinates
so that

S—®©

) (1.11

r the functional trace oK(s).!

To avoid excessive use of integration signs we employ
re and throughout the paper the following shorthand nota-
tion:

1 =ds
=—_ — 1
r--5] dx( |5 K(Slx,x)). 1.9 ——900= [ aysxyay), @12

It is clear that the success of the calculation mainly de-
pends on our ability to find an analytical solution of the heat . , . .
kernel equation and carry out the integration over the propefn€re G(x,y) is the Green's function of the operaterF
time in Eq.(1.9. The integral is obviously divergent as =D_—V with zero boundary conditions at spacetime infinity,
—0. As we have already mentioned above, this divergencg1at 1S,
can be easily isolated and interpreted in terms of the local
ultraviolet properties of the theory. On the other hand, the
behavior of the integral at infinitg— o, determines infrared (O=VIG(xy)=89(xy), G(xy)—0, |X|_’°c1' 1
properties of the theory and carries the physical information, (1.13
e.g., particle creation. If the field has a big positive mass the

proper time mtegra_l IS convergent.sacta_oo. However, In Fhe andJ(x) can be any function of various field quantities like
case of massless fields, the situation is much less trivial. Th

al. 1Nowers of the potential, its derivatives, etc. We always pre-
Ofime that the spacetime has a positive defi(tieclidean

scheme used to calculaté(s|x,y). Then, It is oftgn even signature, so that the Laplaciahis negative definite assum-
unclear to what extent the obtained effective action reﬂect1°,ng zero boundary conditions at infinity. Moreover, we con-

the physical properties of the theory rather than the featuregder only non-negative potentiad(x)=0, so that the

of the approximation scheme used. A . N .
bp whole operator-=—[1+V is positive definite. Therefore,

Below, we discuss the known calculational techniquesth s f . . iquelv defined and
namely, the local Schwinger-DeWitt expansidn2], nonlo- e Green's function1.13 is uniquely defined and guaran-
tees that the nonlocal expressi@hl12 makes sense fod

cal covariant perturbation theofy83—5], and the modified -5

gradient expansiof6], and point out why all of them fail )
when applied to interesting physical problems. Instead of AS We shall see, the asymptotits10 and(1.11) are the

them, we suggest a new method based on resummation gprnerstone of the technique we develop for the calculation
perturbation series and calculate new, essentially nonpertuP—f nonlocal contrlbu'_uons to the effect|ye action. In partlcular,
bative terms in the effective action. This method becomedh€Y lead to essentially nonperturbative terms which can be
indispensable in low-dimensional models<(2) where all explicitly calculated for two broad classes of potentials with

previously known techniques are inapplicable. In this paper(,:omp""ct support, namely, for those that are, respectively,

we demonstrate how our method works in flat space of divery small or very big in units of the inverse size of their

mensiond>2, while the generalization to the curved spaceSUPPOrt. For small potentials we get the terms wihighlace
and low-dimensional case will be considered i, the conventional Coleman-Weinberg contribution to the ef-

One of the main results of this paper is an exacinper- fective action. In four dimensions, for instance, these terms

turbative inV) late-time asymptotics for the heat kernel read
which in a spacetime of dimensiah>2 for the coincidence

limit takes the following form: . ) ) ] )
Note that this expression for Kr(s) cannot be obtained directly

2 by integrating the asymptotidd.10 over the whole spacetime be-
S—00, cause for a gives this asymptotics fails d«|?>s. Its derivation is
given in Sec. IV and Appendix B, where we show that the expres-
(1.10 sions(1.10 and(1.11) are in complete agreement with each other.

| |
K(s|x,x
( 1) (
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expansion, wheré€) is written down as a series in growing
f d4yV2(y)) powers of the proper time. This expansion is a very pow-
erful tool for revealing local ultraviolet properties of the

ATl'=

=
d*xV4(x)In
642 (x)

theory. However, when applied in the infrared region, it
V(y)) gives a finite result only for massive fields. If the potential
' V(x) has a large positive constant part, that is,

2

1 M
d*xV2(x In(jd4 \Y;
64772f (x) y V-

(1.14 V(x)=m?+uv(X), 2.2

where the mass parametgr reflects the usual ultraviolet

o A ; herem? is the squared mass of the field, then the function
renormalization ambiguity. On the contrary, in the case o

s

big potentials the Coleman-Weinberg actiorsigoplemented  }(S[X,y) contains an overall exponential facter *™ and
by a nonlocal term of the form the part independent of mass is expanded in powess of
1 1 2 S n
r= f d4x<v+v v> .2 Q(slxy)=e " > a(x,y)s". (2.3
64 [x|<R -V (1.19 n=0

HereR is the size of the compact support ¥{x), that is, Here an,(x,y) are the two-point Schwinger-DeWitt coeffi-
V(X)=0 at|x|>R, and(- - -} denotes the spacetime averag- C/€Nts, whose coincidence limitg{-y) are explicitly calcu-
ing of the corresponding quantity over this compact domain!@ble in general field theories, including gravity. Substituting
The expressions obtained are both nonlocal and nonanalytfed- (2.3) into Eq. (2.1) and then the obtained expression at
in the potentiaV(x). x=Yy into Eq.(1.9), one gets

The paper is organized as follows. In Sec. Il we consider

the known approximation schemes and discuss their applica-_, 1 - * Cd2—1 - —sn?
bility in the infrared region. Section Il is devoted to the ~ — 2(4)92 dxnzo o dss’ € An(X,X).
nonlocal and nonlinear resummation of the Schwinger- (2.4)

DeWitt perturbation series, corresponding to the so-called
connected graph expansion of the heat kernel. In Sec. IV, as
an extension of this resummation, we derive the asymptoti0ﬁe
(1.10 and discuss its relation to the functional tragell) of r
the heat kernel. The nonperturbative, nonlocal contribution%1
to the effective action are obtained in Sec. V with the aid ofT

the new technique based on a piecewise smooth approximgp, i pe regularized. To do that, we apply the dimensional
tion for the heqt kernel. In two append_lxes we give deta|I§ oregularization method; namely, by replacing the dimension-
the resummation technique and derive from the Cova”anélity d by 20, we calculate the integrals in the domain of

?f rlt;J)rbantontkt]hef(_)ryt theblasydmptotlc(:js OT 2‘;1 hleaF kernel trac‘ﬁweir convergence and then analytically continue the result to
-+ Up fo the first subleading order InSunclusive. w—d/2. In spaces with even number of dimensions, which
we mainly consider in what follows, this gives rise to the

Il. APPROXIMATION SCHEMES AND INFRARED contribution T g, 104 CONtaining the pole at»=d/2 and the

It is important that the exponereat*sz is not expanded
re in powers 08. Therefore, in the proper time integral it
ovides a cutoff at the upper limit, so that the powers iof

is expansion get effectively replaced by powers @h?/
he first d/2+ 1) integrals in Eq(2.4) diverge ats—0 and

In flat space, which we consider in this paper, the solution
of the heat kernel equation can be easily found if the poten- ..~ _ 1 dxz (
tial vanishes. For an arbitrary spatially dependent potential d"’v'°9_2(4w)d/2 = (d/2—n)!
the analytical expressions are, of course, available only in

dr2 _
—m2)diz-n

certain approximations. In the general case, it is convenient 1 d m?
to factorize the “zero potential” part of the solution explic- X ——dlz_F’ §—n+1 +In 5 @n(X,%),
. - . o Ao
ity and use the following ansatz fa¢(s|x,y):
(2.5
x—y|? . .
K(slx,y)= AN T s Q(sx,y), (2.1  wherew—d/2. The pole corresponds to an infinite ultravio-
(4s) let renormalization of the terms proportionaldg, . . . ,aq;

in the original Lagrangian. Other terms in the expansion
(2.4) are finite and give the infrared contribution to the total
action

where the factor singular imguarantees that the initial con-
dition (1.9) is satisfied, provided thd® is analytic ins ats

=0 andQ(0|x,y)=1. If V=0, thenQ=1, and hence all
nontrivial information about the potential is encoded in the

2\ d2 i _

deviation ofQ} from unity. L=Tgymn — }(m_) f dx M (X,X)
The most well-known approximation used for the calcu- w2\ 4 n=am+1  (mA)" "

lation of K(s|x,y) is the so-called local Schwinger-DeWitt (2.6)
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The Schwinger-DeWitt coefficients,(x,x) are the homoge- I'=Tg,+Tcwt i, (2.9
neous polynomials of dimensionalityn2in the units of in-

verse length, which are built @f(x) and its multiple deriva- where the divergent part is equal to

tives. Therefore, on dimensional grounds, they can be

symbolically written down as P 1 dEIZ (—V)¥&n
. e 2(47r)d’2f X2 (ai—n)
an (X, %)~ (x) (Vo)) (x),
wherei denotes an overall number of derivatives acting in all X ﬁ—r(% —n+1|—Indm En(x,x).
possible ways opfactors ofv (x), andk powers ofv (x) stay
undifferentiated. The positive integets,|,i) are related tm (2.10

as 2k+j)+i=2n. Itis clear that the infinite series in Eq.

(2.6) represents the expansion in growing powers of the fol-1N€ Pole part of this action coincides with that of E2.5) if
lowing dimensionless quantities: we take them“—0 limit of Eq. (2.5). Actually, in this case,

only the term proportional tay, survives inl" g, 1oy and by

() ) Viv(x) . virtue of the relation between twiddled and untwiddled coef-

-~ S 1, (2.70  ficients, namely,
dr2 (_V)d/Z—n~
which obviously should be much smaller than unity. Only in ag(X,X)= 2 T an(Xx), (2.11)
this case are the first few terms in the asymptotic se¢Bes i=o (d/2=n)!

reliable.
Thus, the Schwinger-DeWitt expansion is applicable OnIy:gtramr;oIr?m%%rrt;oggllft?ﬁigza_n: WE21;L %e?]tgrrt: ii;?g] fe'n-(l;rr]_e
in theories withsmall and slowly varying fieldas compared lizati f the local terma/%2-"a.  The | ithmi

to a big mass parameter. This expansion contains only locd|'a'Zalion of the local terms/== “a,. The logarthmic
terms. This is not surprising because all nonlocal effectste'™Ms Of Eq.(2.5) are replaced in the modified actidB.9)

e.g., particle creation, are very small for heavy particles in

weak external field and cannot be handled by this method. dr2 dlo—n

The Schwinger-DeWitt technique can be easily extended to Tew= 1 f de (—V) |nl"é

curved spacetime and to theories with covariant derivatives 2(4m¥2) "o (d/2—n)t 72"

built with respect to an arbitrary fiber-bundle connection. In

this case, the perturbation potentigl) will also depend on 1 \

the spacetime curvature tensor and fiber-bundle curvatures :2(47T)d/2J 'n_zad/Z' (2.12

(commutator of covariant derivativesThe smallness of

fields and their derivatives includes the requirement of therh|s is nothing but the Spacetime integra| of the Coleman-
smallness of these curvatures and their derivatives as welpeinberg effective potential. For instance, in four dimen-
Despite its universality, the Schwinger-DeWitt expansion besjons the leading term is the original Coleman-Weinberg ef-
comes inefficient when the ratios in EQ.7) become of the  fective potentiaV?2 In(V/x?)/64x2, while the rest represents

order of unity_, and completely fails for mass]ess fields. In thecorrections due to the derivatives ¥{x). Similarly to Eq.
last case all integrals over the proper time integral are mfraﬁz_ﬁ)’ the finite partl’y, is an infinite series

red divergent. This divergence has, of course, no physica

meaning and is an artifact of the approximation technique 1 V(x)\92 an(x,x)

used. Cfn=— Ef 4—> >, T(n—d)———.
There are two known ways to proceed with massless ™ n=di2+1 Vi(x)

fields. One possibility is the resummation of all terms that (213

contain the undifferentiated potentidf(x) in the local

. ; i The modified Schwinger-DeWitt coefficients do not contain
Schwinger-DeWitt serie€.3). They are summed up to form

the undifferentiated potential and the typical structure of the

T —snP. ~ .
an exponent similar te™>"" terms entering,,(x,x) is V"V/(x), wherem+2j=2n. Ev-
- eryV here should be differentiated at least once and therefore
Q(Slx,x):e*SV(X)E a,(X,X)s". (2.8 ~mM=j. Thus the coefficients,, can be symbolically written
n=0 down as

This method was suggested[i], where a regular technique 5 [2n/3] o

for the calculation of the modified Schwinger-DeWitt coeffi- an(X,X) ~ _Zl VAV, (2.14
cientsa,(x,y) was also presented. The proper time integral :

in Eq. (1.9 now has an infrared cutoff a&~1/N/(x) and in  where the upper value ¢fis the integer part of &/3.

this case the effective action is similar to E¢8.5),(2.6), This perturbation theory is efficient as long as the poten-
wherem? is replaced by/(x) anda,(x,x) by a,(x,x). Itis  tial is slowly varying or bounded from below by a large
convenient to write this action as a sum of three terms positive constant, so that
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V2V(x) [VV(x)]?
<1, <
V2(x) V3(x)

1,.... (2.15 TrK,(s)zO(%), n=1, (2.20
S

The case of bounded potentials reproduces the origing@ind therefore in spacetime dimenside3 the integrals in

Schwinger-DeWitt expansion for nonvanishing mass. ThereEq. (1.9) are infrared convergent:

fore, let us consider the potentials which vanish at spacetime

infinity (|x|—<); namely, we assume the case of a power- f“d_so 1 - 2.21)

like falloff s | gd2-1 '

In one and two dimensions this expansion fordoes not
, IX[=e (216 exist except for the special case of the massless theory in
curved two-dimensional spacetime, when it reproduces the
so-called Polyakov actiofi9,8,4.> CPT should always be
applicable wheneved=3 and the potentiaV is sufficiently
small? so that its effective action explicitly features analyt-

1
V(X)~——, V™V (x)~
GO e VYT e

for some positivep. For such a potential terms of the pertur-
bation serieg2.13 behave as

~ 203 icity in the potential atv=0. Therefore, its serious disad-
Sn 2 |x|(P=2)n=1) (2.17) vantage is that thig theory does not aI.Iow one to overstep the
Vvho= limits of perturbation scheme and, in particular, discover
nonanalytic structures in the action if they exist.
and thus decrease with increasingonly if p<2. For p All this implies the necessity of a new approximation

=2, the modified gradient expansion completely breakgechnique that would allow us to overcome disadvantages of
down. It makes sense only for slowly decreasing potential$he above methods. In the rest of this paper we develop such
of the form(2.16) with p<2. In this case the potenti®l(x) a technique, involving further resummation of the perturba-
is not integrable over the whole spacetifndxV(x) =] tion series. We develop an infrared improved perturbation
and moreover even the operation [(AV/(x) is not well theory for the heat kernel and reveal new nonlocal and
defined? Therefore the above restriction is too strong to ac-Nonanalytical structures in the effective action.
count for many interesting physical problems. In addition,
similarly to Eq. (2.6), the asymptotic expansio(2.13 is Ill. RESUMMATION OF PROPER TIME SERIES
completely local. It does not allow us to capture nonlocal .
effects, which are exponentially small for potentials satisfy- d f\_Ne dufoe ge(gxlr)).onentlal ansatz for the functid(s|x.y)
ing Eq.(2.15. elined by £qle.b-

The way to overcome this difficulty and to take into ac- Q(s|x,y) =exg —W(s|x,y)].
count nonlocal effects was suggested in the form of covariant
perturbation theoryCPT) [3-5]. In this theory the full po- Our goal is to develop an approximation technique for
tential V(x) is treated as a perturbation and the solution ofsimilar to CPT, which is an alternative to the expansios.in
the heat equation is found as a series in its powers. From th@y virtue of Eqgs.(1.7) and(1.8) the functionW(s|x,y) sat-
viewpoint of the Schwinger-DeWitt expansion it correspondsisfies the equation
to an infinite resummation of all terms with a given power of

the potential and arbitrary number of derivatives. The result AW (x—y)H _ v 2
reads as E-i- V.W—-OW=V—(VW), (3.1
* with the initial condition
TrK(s)Ef dxK(s|x,x)= >, TrK,(s), (2.18
&0 W(s=0|x,y)=0. (3.2
where This equation is nonlinear iWw and we solve it by iteration,

considering YW)? as a perturbation. For this purpose it is
convenient to rewrite Eq$3.1),(3.2) as an integral equation.

TrK”(S):f dxgdXp- - dXaFn(S[X1, Xz, - - - Xn) In Appendix A, it is shown that this integral equation takes
the following form:

XV(X)V(X2) - - - V(Xn), (2.19
ar_‘d_ the nonllocallform faCto'Eﬂ(slxl’XZ' ..+ Xp) Were ex- 3This action can be obtained by integrating the conformal
plicitly obtained in[3-5]. It was shown that as—x the  3n0maly[9,g].
terms in this expansion behave as “The conditions of the smallness of the potential are exactly op-

posite to those of Eq2.15), e.g.,V2/V2V<1. However, this is true
only as a rather rough estimate, because CPT is a nonlocal pertur-
2For the convergence of the integral in [I)V the potentiaV(x) bation theory and its actual smallness “parameters” are some non-
should fall off at least as [i|® in any spacetime dimensid#]. local functionals of the potential.
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1 _ differentiated potential. This completely agrees with the
W(s|x,y)=sf daes*= 990 V(x) — [ VW(sa|x,y) 1%}, modified gradient expansion discussed in Sec. |l. However,
0 the expression3.6) directly involves the nonlocal operator
(3.3 and its late-time behavior is very different from that naively
— — — expected in the modified gradient expansion and in CPT.
where the operatof] acts on the argument=x(«a|x,y) To show that, let us first find the coordinate representation
=ax+(1-a)y. Equation (3.3 can be easily solved if of the operator3.5), that is, the kernef(—s)5@(x,y).

(YW)?<V. As we will see later, this condition is satisfied ysing a well-known result for the exponentiatetdoperator
for a broad class of potentialé. The lowest-order approxi-

mation forW is obtained by omitting YW)? in Eq. (3.3): 1
eSa(l*a)Dé(d)(X,y):

1 - [477'Sa(1—a)]d/2
W0(5|Xa)’):5jo daesa(l_a)[‘v(x)|;:ax+(l—a)y .

x—yl[?
(3.4 ><exp( - m) , (3.7

This is a linear but essentially nonlocal functional of the
potential. Further terms of the perturbation thedw,
=0[(VWy)"] can be graphically represented by connected _x—y[2i2s 4
tree graphs with two derivatives in the vertices, internal lines fldaesa(l‘“)m 5(x,y)= € f“‘ (1+P)
associated with the nonlocal operator 0 ' (41rs)92 P

0 ﬁd/Z
_yl2
f(—sD)=foldaeS“(1‘“)D, (3.5 xex;{— |x4sy| (%+B”

one can write

and external lines given by Eq3.4).° Note that this con- 38

nected graph structure arises in the exponential and whe\&
expanded gives rise to the disconnected graphs. In context gr[),)’ 0= <. Ford=3, the integral can be easily calcu-

g‘g;?r;l;?igfIoi)iﬂznsg?utgztgsZ‘gﬁél\@;;ﬁfga\'ég lated and the result is expressed as a sum of McDonald func-
b plcttly tions of the argumenix—y|?%/2s:

tures exponentiation of the quantities containing only con-
nected graphs. Here we showed how this exponentiated set

o_f connecte_d graphs d_irectly arises from the solution of the f(—s00)8D(x,y)=
simple nonlinear equatiof8.1). The “propagator”(3.5) was

worked out within the covariant perturbation theory 8-5] 5
and was also obtained 6] by direct summation of gradient X (|x—yl|*/2s), (3.9
series.

At this stage the efficiency of the connected graph expanwhere C{_7 are the binomial coefficients. For very large
sion is not yet obvious. Crudely, it runs in powers of thethe argument oKy _4,(2) is small. Using the asymptotics
dimensionless quantitys f(—sC1)V]2V(x) which, at least K.(2)=T(|])(2/2)"/2, z—0, we find that at larges the
naively, should be small for slowly varying or/and small po- form factor is dominated by the following term:
tentials. Apart from this, infrared properties of the effective

here we have changed the integration variable, 8/(1

e_lx_)"zlzs d-1

d-2
s gl Ck-1Kk-ar

action strongly depend on the lowest-order approximation @ 1 TI'(dl2—-1) 1
for W Eq. (3.4). The effective action involves only diagonal f(=s0) &7 (xy)=5-—3 2O 3|

. . : 2s 792|x—y| s
elements of the two-point functiokV(s|x,y), which look (3.10

much simpler than Eq3.4):
Taking into account the fact that

1
Wo(s x,x)=sj daes“-0y(x), (3.6)
0 1 I'(d/2—1)
=5 Dxy)=— —————, (3.11)
Note that, at smalk, the functionW, can be expanded as O] A2 x—y|d-2
W,y=sV+0(s?). The only term with undifferentiated poten-
tial enteringW, is linear ins, while all other terms contain we finally obtain
derivatives of the potential. The same is also true for the
exact W, which differs fromW, by higher powers of the 2 1
Wy(s|x,x)=sf(—sO)V=— EV(X) + O(§> :
(3.12

SThis graphical interpretation should not be taken too literally
because integration over parametd(s) also involves the argument  This behavior agrees with the formal asymptotics found by
x=x(a|x,y) of the potential. the Laplace method if4]. Therefore, as— o, the function
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W, approaches a constant. The nonlocal functi¢@al?) is (O-V)®(x)=0, (4.9
well defined ford=3 only if the potentialV vanishes fast
enough afx|—. and ®(x)—1 at|x|—c. The solution of this problem for

For split arguments the asymptotics\W(s|x,y) is more ~ ®(x) is uniquely determined in terms of the Green’s func-
intricate. In this case the form fact(8.5) no longer arises as tion (1.13:
a whole because the integration parameteppears in Eq.
(3.4) also in the argument= ax+ (1— «)y of the potential d(x)=1+
V(x). Applying the Laplace method, one can show that the
integral (3.4) is dominated by the contribution of the end Thjs function ofx is a nonlocal and essentially nonlinear
pointsa=0 anda=1. These contributions are different be- fynctional of the potential, and it will play a very important
causex(a=0)=y andx(a=1)=Xx, whence role in what follows.

The heat kernel is symmetric in its argumerty and,
l) (3.13 therefore, the unknown functio@(y) should coincide with
S ' ®(y). Thus, finally we obtain the following exact late-time
asymptotics:

D_VV(x). (4.5

1 1
Wo(slx,y)=~ SV(x) = 5V(y)+0

Substituting this expression in E(3.3) and solving the in-
tegral equation by iterations one can find the late-time as- e WUV =P(x)D(y). (4.6)

ymptoticsW.,(x,y) for the exactW(s|x,y) i ) i
ExpandingW..(x,y) in powers of the potentiaV one gets

W(s|x,y)=W.(x,y)+O %) (3.149 W, (X,Y)=—Ind(x)—InD(y)

) ) 1 1
as a nonlocal gradient series =— EV(X)— EVEV(X)

2

2
+ . (X)), +- F+(Xe2y). (4D
(3.1

It is remarkable, however, that this series can be “summe
up” and the nonlocal expression fa¥..(x,y) can be found
exactly in terms of the Green'’s function of the original op-

1 1/1
W..(X,y)=— EV(X)+E(EVV(X)

1
EV(X)

2

he first term here is in agreement with the perturbative as-

mptotics (3.15. However, beyond that, the iterative solu-
tion (3.15 seems to be in contradiction with E@L.7). The
series(3.15 runs in powers of the differentiated potential,

eratorkF=—01+V. while the expansiorti4.7) contains only the undifferentiated
potential. However, integration by parts in the second term of
IV. LATE-TIME ASYMPTOTICS OF THE HEAT KERNEL Eqg. (3.15 exactly reproduces the second and third terms of

Eqg. (4.7). Thus, both expansions are equivalent, but the first

is eBgssuttZJStgggnt%a:'??hlst?irgtmt(\e/vgntz&r(ﬁm.sl?nIril[sEI%ffﬁgr,]clit i deone reveals more explicitly the gradient of the potential as a
asy . ) small parameter, while in Ed4.7) the smallness is a result
vanish ats—o, while the rest reduce to the equation for

W (X V) of nontrivial cancellations between different terms.
(%.Y): Finally we write down the exact late-time asymptotics for
(O—V)e W09 =0, (4.1) the heat kernel, advocated in the Introduction,

Despite the positivity of the operater]+ V with Dirichlet
boundary conditions afx|—, this equation admits non-
trivial solutions. In fact,e™"W=(¥) does not have to go to
zero at infinity’ In view of the iterative solutior(3.15 it Its heuristic interpretation is rather transparent. The heat ker-
should tend to some unknown function wf nel can be decomposed in the series

1
K(s|x,y)=mﬂ—s)w2d>(x)<b(y), s—w., (4.8

e Wt C(y), |x|—ee. 4.2 K(s|x,y)=2, e 50, (x)®,(y), (4.9
A

Equation(4.1) with this boundary condition is then solved by
where\ and®, are, respectively, the eigenvalues and eigen-

functions of the operatdf = — [+ V(x). SinceF is a posi-
tive semidefinite operator, only the lowest eigenmode with
A =0 survives in this expression in the lingt-c. The ap-
propriate eigenfunction satisfies the equatie, _,=0,
5The boundary conditiof(s|x,y)—0 at|x|— is enforced by which coincides with Eq.(4.4) and therefore®, _q(x)

the Gaussian factor in Eq2.1), even for nonvanishing finite =®(X). The spectrum of the operator is continuous and the
Q(s|x,y) =exp(—W(sx,y). eigenmodes are not square integraljl®y(x)—1 at

e W=t =C(y)d(x), (4.3

if the new functiond®(x) satisfies the equation
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|x|—ce]. This is why the integral over the spectrum, denotedOne can easily check that this expression satisfie$£E#2).
above byX, , yields within the steepest decent approxima- It is remarkable that in the covariant perturbation theory
tion the powerlike asymptotics €/2, rather than the expo- the leading and next subleadifig s) terms of the heat ker-
nential one. Of course, these arguments are not very rigonel trace can be explicitly calculated fer- in every order
ous. The zero modé (x) with unit boundary condition at of expansion in powers df. The corresponding infinite se-
infinity does not even belong to the continuous spectrum ofies can be explicitly summed up to yield essentially nonlo-
modes normalized to the delta function. Nevertheless, as weal and nonlinear irV(x) expression for TK(s). This is
have seen, this particular mode gives the leading contributiodone in Appendix B to the first subleading order inclusive.
to the late-time asymptotics of the heat kernel. The following very simple and concise result reads as:

If we want to calculate the contribution to the effective
action due to the late-time behavior of the heat kernel we 1 1
need its functional trace—the spacetime integral of the coin- TrK(s)= —wzJ dX| 1=sVO -2V, 5 V¥
cidence limitK(s|x,x). Unfortunately, the expressio@.9) (4ms)
cannot be used directly to calculateKIfs) for a givens.
The point is that this asymptotic expression taken at a fixed +0
larges is applicable only fofx|?<s and fails afx|?>s.” At

the same time, when calculating the trace we have to intey, terms of the functionb(x) and its derivatives. As we see,
grate over the whole spacetime Up|2t¢_’°° and therefore it exactly reproduces the leading order term of E414),
need the heat kernel behavior fpg“>s. The attempt to 0(s/s?), and also gives a nontriviad(1/s%?) correction.

disregard this subtlety and integrate the coincidence limit ofggjow we use this asymptotics for obtaining new types of
Eq. (4.8) over x results in a poorly defined quantity—the ,oniocal effective action.

spacetime integral is strongly divergent at infinity. Neverthe-
less, one can use the expresdié®) to find TrK(s) with the
aid of the following somewhat subtler procedure.

g
S ] (4.15

V. EFFECTIVE ACTION

First let us write the variational relation The functional trace of the heat kernel is everything we
need for the calculation of the effective action. Unfortu-

STrK(s)=—sTr[6VK(s)]= _Sf dxaV(x)K(s|x,x), nately, only its asymptotics are known; namely, at snsall
one can use the modified gradient expansibi), (2.8) and

(4.10 at larges the nonlocal and nonlinear expressi@nhl5. The
_ _ . goal of this section is to unify both of these approximations
where, of coursei (s)=exS(—V)]. Then it follows that to get the expression for the effective action which would
STrK(s) incorporate both the ultraviolet and infrared properties of the
T(X)z—sK(s|x,x). (4.1  theory. The calculation will be explicitly done in the four-
dimensional case. The generalization to other dimensibns

SubstitutingK (s|x,x) from Eq. (4.8) in the right-hand side 2 IS straightforward. _
of this relation we obtain the following functional differential ~ 1he key idea is to replace K(s) in Eq. (1.9 by some
equation: approximate function TK(s) such that the integral ovex

STrK(s) s _:_E d_s -
8V(X) :_(4Ws)d/z¢2(x)' (4.12 2J S TTK(s), (5.1

This equation satisfies the integrability condition, becausé&ecomes explicitly calculable. The difference Kiis)
the variational derivative —K(s) can then be treated as a perturbation. Certainly, the
5 efficiency of this procedure very much depends on the suc-
MZZQ(X@(WL 8(X,y) (4.13  cessful choice ofK(s). Here we exploit the simplest
ov(y) O-v ' possibility—namely, let us take two simple functions
TrK_(s) and TrK~(s), which coincide with the leading as-
ymptotics of TrK(s) at s—0 ands—o and use them to
approximate TK(s) at, respectively, &s<s, ands,<s
<o, In turn, the value ofs, will be determined from the
requirement that these two functions matctsat This will

1
TrK(s)= mj dx(1-sVd), s—x=. (414  guarantee the stationarity &f with respect to the choice of
T = I S .
s, , dI'lds, =0. We will discuss the justification of this pro-
cedure a little later, while now let us proceed with the calcu-

"This follows from the derivation of Eq(4.8) above, which is lation of I'. 3
based on discarding the second term of Bdl) linearly growing in At small s we use the lowest-order term of the modified

(x—y)/s. gradient expansion

is symmetric inx andy. Therefore Eq(4.12) can be inte-
grated to determine K(s). The solution subject to the ob-
vious boundary conditions at=0 reads
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where I'(0,x) is an incomplete gamma functiod;(0x)

1
TrK_(s)= ” )zf dxexp —Vs), s<s,, (5.2 =f;°dtt‘1e“, with the following asymptotics:
7S
and disregard all terms containing derivatives of the potential |ﬂ; -C, x<1,
V. The rest of the asymptotic seri€x8), containinga,,, will I'(ox)~ 1 (5.8
be treated by perturbations. C_orrespondingly, at largs, e X, x>1.
we use the late-time asymptoti¢$.14): X
1 Further steps strongly depend on the class of potential, for
TrK.(s)= f dx(1-sVd), s>s,. (5.3 which the consistency of the piecewise approximation
(4ms)? (5.2),(5.3 should be carefully analyzed.
The requirement of stationarity dt with respect tos, A. Small potential

leads to the equation The approximation(5.2),(5.3) is efficient only if the

ranges of the validity of the two asymptotic expansifres
f dxexp(—Vs*)zf dx(1—s, VD), (5.4)  spectively, for small and big) overlap with each other and
the points, belongs to this overlap. In this case the correc-
which determines the value &f, as some nontrivial func- tions d_ue to the deviation of K(s) from the exact TK(s)
tional of the potential,s, =s, [V(x)]. Unfortunately this are unn‘ormly pounded everywhere and one can gxpect that
functional is not calcul,algle e*xplicitly.in general, but never- Eq. (5.1) will give a good zeroth order approximation to an
: exact result. Below we show that this necessary requirement

theless, as we will see below, it can be obtained for two e .
’ . n isfi | for rather wi | f n-
rather broad classes of potentials. The actibri) can be can be satisfied at least for two rather wide classes of pote

written down as a sum of two contributions: tial V(x).
' The modified gradient expansion is well applicable in the

. overlap range of the parametgif
=L+
sVVV<V (5.9

=ds =ds
- Efo ?TrK<(s)— EL ?[TrK>(s)—TrK<(s)]. [cf. Eq. (2.19 with s replaced by effective cutofé=1/V]
* and the applicability of the large expansion in the same
(5.5  domain reads as

The first integral here has already been calculated and is
given by the sum of the expressio(&10 and(2.12 with sf de<I>>f
a,=1 anda,=0, n=1, which in our particular case gives
rise to which means that the subleading tefguadratic inv,®) of

the late time expansiof.15 is much smaller than the lead-
IF=Tgv+tTcw ing second term.
To implement these requirements, let us make some sim-

1
m
dxV,e -5V, (510

_ 1 f dxl | — 1 +2C—3—In477)V2+V2In1 plifying assumptions. Instead of the power law falloff, as-
6472 2—w w? ' sume thatv(x) has a compact support of finite siRe
w—2, (5.6 V(x)=0, |x|=R. (5.11
whereC=0.577 ... isEuler’s constant. The first term here Let us also assume that the potential is sufficiently smooth

is responsible for the renormalization of the original actioninside its support and the characteristic magnitud¥©d) is
and the second one is just the Coleman-Weinberg potentiafliven by V. Then the derivatives of the potential are
The second integral in Eq5.5 can also be calculated ex- bounded and satisfy the following obvious estimate:

actly. Integrating by parts and taking into account Exj4),

we obtain Vo
vV 2 (5.12

_ 1 (=ds
>:—EL*?[TrK>(s)—TrK<(S)]

1 f q
= X
6472

so that Eq(5.9) reads asV,/R?><V,, or

\YZii) Veis*v+v2r(o V) s<R?. (5.13
,S* 1

s s
* * To find out what the criterio{5.10 means let us make a

(5.7  further assumption, namely, that the potentfals small. In
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this case it can be disregarded in the Green’s functions and
1/(0—V) can be replaced by 0. Therefore the following J dxV(1-®) J dxV1(V-0)]V
estimates hold: S, =2 =2

f dx\2 J dx\2

1 1 (5.19
5=y V) ,y,sty|x_y|d—2V(y>
Taking into account the estimatés 14 we see that the point
- R4V~ VR2 Sy ~R2 belongs to th_e upper edge o_f t_he interé&l16). The
Rd-2 ’ late-time expansion is fairly well satisfied here, but the small

s expansion is on the verge of breakdown. At this level of
generality it is hard to overstep the uncertainty of this esti-
f dxVd ~VoRY, mate. There is a hope that numerical coefficients in more
precise estimategwith concrete potentialscan be large
enough to shifts, to the interior of the interva(5.16 and
1 2dia thus make our approximation completely reliable.
f dxV,® 7 V#Oe=VoR™ (5.14 Bearing in mind all these reservations let us proceed with
the calculation of the effective action. Using the smadls-
ymptotics(5.8) in the expressioin5.7) we get

Roughly, every Green’s function gives the fac®f, every
derivative 1R, integration gives the volume of compact sup-

port RY, etc. Applying these estimates to EH.10 we get 1 4 - 5
ds\/2pd+4 = - _
sVoRY> VR4, whence r. 64772f d*x| -V y +V Ins*V C+1]|.
(5.20
s>V R4 (5.15

It is interesting to note that in the whole actid71=F<
+I'< the Coleman-Weinberg term disappears and the final
answer reads

Combining this with Eq(5.13 one gets the following range
of overlap of our asymptotic expansions:

R?> s>V R%. (5.16

— 1 1
~ - —_2_ 4\ /2
It immediately follows from here that this overlap domain is = 64772< 2-w +C-2-In 477) J dxv

not empty only if

+ ! d*xV2In| | dxV?
VoR?<1. (5.17 64772
. . . L 2
Moreover, the assumption of disregarding the potential in the _ 1 A2 2
Green’s function is also justified in this case sin¢e V 642 d™Viin dXVV—DV - 62

<1/R?~[. In other words this bound means that the poten-

tial is small in units of the inverse size of its compact sup-

port. The first term here differs fronh' g, in Eq. (5.6) by a finite
Now let us check Whetha‘* introduced above be|0ngs to renormalization of the |OC3.V2 term, while the two other

the overlap domair(5.16). Note that if it is really so then terms have the entirely new nonlinear and nonlocal structure

s,V in Eq. (5.4) is much smaller than unity because in the (1.14) advocated in the Introduction. The ultraviolet renor-

overlap range one had/~sV,<R?V,<1. Hence the expo- Malization mass parameter’ makes the argument of the

nent in the left-hand side of Eq5.4) can be expanded in second logarithm dimensionless—it plays the same role as

powers ofs, V, and the resulting equation fef, become%  for the Cole_zman-Weinberg potential, but now it enters the
new essentially nonlocal structure.

&2 It is natural that the original Coleman-Weinberg term for
j dx( 1-s,V+ 7*V2+O[(s* V)3]> :f dx(1—s,Vvd).  the case of small potential§.17) gets replaced by the other
qualitatively new nonlocal structure. Potentials that are small
(5.18 in units of the inverse size of their support are qualitatively
very different from nearly constant potentials for which the
Its solution has the following form: Coleman-Weinberg action was originally derived. In the case
of small potentials the spacetime gradients dominate over
their magnitude and, therefore, one should not expect that the
8Note that the quadratic term should be retained in the expansio@oleman-Weinberg term would survive the inclusion of non-
of eV if we want to get a nontrivial solution fs, . local structures.
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B. Big potential potential supporfsee Eq(5.23], so most likely the estimate

Remarkably, the case of the small potenti@sl7) is not for <V®> is smaller by at least one power of the quantity
the only one when one can find a nonempty domain of Over_lNoRz, which is the basic dimensionless small parameter in
lap where both asymptotics for K(s) are applicable: this case. Therefore the magnitudesgf becomes bigger by

namely, the opposite case of big potentiéifs units of the = ON€ power oloR? s, =R?, which is again near the upper
inverse size of their support boundary of the overlap intervgb.25. Similarly to the

small potential case, a more rigorous analysis is needed
VoR?>1 (5.22 (maybe for more concretely specified potenjidts account
for subtle edge effects at the boundary of the compact sup-

is equally good. The key observation here is that in this casgort, which might shift the value o, to a safe region inside
the kernel of the Green’s function 1)(—V) can be replaced Eq. (5.25).

within the compact support of by —1/NV(O~1/R*<V, With the above estimate fag, ~R? the magnitude of, V
~V) and correspondingly in the expression for the infrared part of the effective action
(5.7) becomes bigs, V~s, Vo~V R?>>1, and we use the
1 1 big x asymptotics in Eq(5.8) to get the contribution
mV(X)N—vVI—l, (523’) 9 ymp qto. g
1 R4 .= f d*xVd = f dx(Vd)2.
J dxv,® ViD= : (5.24 " 64a’s, 647 ) x|<R

vV-0O VoR? (5.29

Therefore, the criterion of agpl;cability of the late-time ex- | this case the Coleman-Weinberg term is not canceled, in
pansion(5.10 becomes>1/VgR*. Together with Eq(5.13  complete agreement with what we would expect for big po-
it yields the new overlap range tentials, and the final result reads

R?> s>

1
R2 (5.29 F=Tgy+Tewt

4 2
2 fstd x(V®)s.  (5.30

64>
which is obviously not empty if the potential satisfies Eq.
(5.22. VI. COMMENTS
To find s, in this case we have to solve E¢.4) for the
case whers, V is no longer a small quantity. Sin&géis big,
the exponent in Eq(5.4) can be replaced by zero inside the
compact support, exps,V(X)]~0, |x|<R, and by 1 out-
side it where the potential vanishes, Bxs, V(X)]~1, |X|
>R. Rewriting the integrals in both sides of E®.4) as a
sum of contributions ofx|<R and|x|>R, we see that the
contribution of the noncompact domain gets canceled an
the equation becomes

We developed a new technique for the calculation of late-
time asymptotics of the heat kernel and its functional trace.
Using these asymptotics we found previously unknown es-
sentially nonlocal and nonperturbative contributions to the
effective action for two large classes of potentials with com-
pact supports. Therefore, the generalization of these results

potentials with power-law falloff, which would imply sub-

er analysis, deserves further studies.

Our results in their present form are applicable only in

higher dimensionsl=3. One can easily check that the ex-
S*J dXV@ZJ dx. (5.26  pression (10)V is not well defined in low dimensionsd(
<R <R <2). Note that the logarithmic kernel of the Green’s func-

Then it follows thats, is approximately given by the inverse tion of the massless field is defined av=2 only up to an
of the functionVd (x) averagedover the compact support of additive constant. Moreover, the convolution of the Green’s

the potential: function with the potential makes sensedr-2 only if the
latter is the total derivative of some other functiet], such
1 as, for instance, the two-dimensional curvature scalar in the
S*:_<V¢>>’ (5.27) Polyakov action[8]. Thus, the extension of our results to

low-dimensional models, where other calculational schemes

completely fail, is especially important. This will be done in
f dxVd a forthcoming papef7].
(V)= IXI<R _ (5.29 Another possibility is the generalization of our technique
J dx to potentials with isolated zeros in the interior of spacetime.
IX|<R Even more interesting is the situation when the potential be-

comes negativ®/(x) <0 in some spacetime domains. In this
A qualitative estimate of<V®d>~V, implies that s, case there is a tachyon instability, and it is worth deriving
~1N, and it belongs to the middle of the intervd.25.  quantitative criteria describing this instability in terms of the
This makes the case of big potentials fairly consistent. Orproperties ofV(x).
the other hand, the value df(x) is close to zero inside the Finally, it is important to generalize our results to curved
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spacetimes and in addition to consider fields with nontrivial _ (X—y)H
spin-tensor structure. All these issues are addressé¢d].in XE(t)=yH+
The nonlocal effective action can then be applied to study
interesting physical problems, like quantum black hole
evaporatior{ 6], quantum cosmology, etc.

It is worth mentioning that the developed technique for
late-time asymptotics of the heat kernel could also be useful
in statistical physics for calculating low-temperature parti- —\7V(t|7(t),y)=
tion functions. dt

t. (A8)

The total derivative 01\7V(t|;(t),y) with respect tot along
this characteristic curve is then equal to

(X=y)* @

—+ \A '«
AT | VXY
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W(S|x,y)=f dtef(t[x(t),y). (A10)
APPENDIX A: INTEGRAL EQUATION FOR W 0

In this appendix we derive the integral form of the equa-Returning to the originaW which is related to/V via Eq.

tion (A3) and taking into account thdfl=(t/s)20] we finally
obtain
IW(s|X, X—y)*
S09) | O Wistxy) - EWeslxy) = (5.,
1 - _
(A1) W(S|x,y)=3f dae>* ™ (salX,Y) 3= axs (1-a)y »
0
where (Al11)
f(s|x,y)=V(x)—[VW(s|x,y)]?, (A2)  where instead of the new integration variable=t/s was

introduced. This is exactly the integral for®.3) of Eq. (A1)
and W(s=0]|x,y)=0. With this purpose we first introduce that we used in Sec. Ill.
the new functioriw,
APPENDIX B: COVARIANT PERTURBATION THEORY
W(s|x,y)=e " S"W(s|x,y). (A3) AND LATE-TIME BEHAVIOR OF THE FUNCTIONAL

TRACE OF THE HEAT KERNEL
Using the relation ] . i
Here we consider the nonlocal covariant perturbation

eSH(x—y)He SH=(x—y)*+2sV+ (A4)  theory of[3-5]. In CPT the functional trace of the heat ker-
nel for the covariant second order differential operator is
one finds that this function satisfies the following equation: expanded as a nonlocal series in powers of the potevitial
with explicitly calculable coefficients—nonlocal form factors
Fn(s|Xq1,X2, ... X,). Their leading asymptotic behavior at
larges was obtained if4]. Here we calculate them up to the
first subleading order in &/inclusive for a simple operator
which no longer contains th&l term on the left-hand side. E=[-V. Then we explicitly perform an infinite summa-
To write down the formal solution of this equation in terms tion of the power series in the potential to obtain the nonlocal
of the “source"_termf=f(SIX.y), let us introduce the char- and nonlinear expressidd.15 for the late-time behavior of
acteristic curvex(t) of Eg. (A5), which satisfies the equa- TrK(s).
tion According to[4] the heat kernel trace is local in the first
two orders of the perturbation theory in the potentall8:

AW (x—y)H
—+
Js S

v, W=ef, (A5)

dx(t)  (x()—y)*

dt t ' (A6) TrKo(s) ! j d (B1)
rKo(s)=———— | dx,
. N 0 (47TS)d/2
with the boundary conditions
— — s
XH(t=0)=y*, x¥(t=s)=x". (A7) TrK,(s)=— —J dxV(x),
(4ms)9
The solution of Eq(A6) is (B2)
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and in higher orders it reads convenient to rewrite the expression far, in terms of the
(—s)" independentri{—1) variablesa,,as,, ... ,«,, the remain-
H _ n
TrKy(s)= mf dx(e>*nV(xy) Ing a;=1-2i_,a;,
n n
XV(Xg)- - V(X xmxr N=2. Q=23 aDf~ X amaDnDx, (B5)
i= mk=2
(B3)

) . ) ) where the operatdD , is defined as
Here(}, is a differential operator acting on the productrof

potentials Dp=Vo+Vs+---+V,, m=2,...n. (B6)
n—-1 n-1i-1
anz Vi2+1+22 2 Bi(1-B)Vis1Vir1, (B4 Su.bstlltutlng this expression f(@n in _Eq. (B3) and ex-
i=1 i=2 k=1 panding in powers of the term bilinear i parameters one

ets
expressed in terms of the partial derivatives labeled by thg N ‘ n
indicesi implying that_Vi acts onV(xQ. I.t is assumed in Eq.. TrK(s)= (—s) f dxf d" 1q ex 52 aiDi2
(B3) that after the action of all derivatives on the respective (47s)d? 0 i=2
terms allx; are set equal tx. It is also assumed that the .
spacetime indices of all derivativ8s=V* are contracted in

their bilinear combinationsy,V,=V*V,, . The differential X 1_Sm%2 Am@ADmDict - - [VaVa: - Vi
operator(B4) depends on the parametegs, i=1,...n
—1, which are defined in terms of the parametets i (B7)
=1,...n, as Here the it factor disappeared due to the contributionnof
Bi= a1t ajiot - tay, equal terms and the range of integration over
@y, ...,an, 2,a;<1, was extended to all positive val-

and the angular brackets {fe>?n) imply that this operator yes of ;. This is justified since the error we make by ex-
exponent is integrated over compact domain in the space qgndmg the integration range is smaller by the factor

a parameters: 0(1/s%?) than the leading term of EqB7).° Sinced=3
« . " everywhere throughout the paper, this does not affect the first
(eim= _>Od ad 21 ai—1]exp(s()y). subleading in the $/term of Eq.(B7).

The second term in parentheses of Bj/) can be rewrit-

The late-time behavior of () is thus determined by ten in terms of the derivatives with respectd, acting on
the asymptotic behavior of this integral s, which can  the exponential, so that
be calculated using the Laplace method. To apply this —g)n 1 0
) ) d. 10 (—s) J 4
method, let us note th& , is anegativesemidefinite opera- TrK,(s)=——| dx{ 1— = > DD

dr2 - k"2 .~2
tor (this is shown in Appendix B df4]) which degenerates to (4ms) S mk=2 9Dy, dDj

zero atn points of the integration domain (O..,0g; . n
=1,0,...,0), i=1,...n. Therefore the asymptotic expan- + .. ) J d" g exp( s>, aD?|V,V,---V,.
sion of this integral is given by the contribution of the cor- 0 i=2
respondingn maxima of the integrand at these points. The (B8)

integration by parts in Eq(B3) is justified by the formal
identity V; + V,+ - - - +V,=0. Using it one can show that the In this form it is obvious that further terms of the expansion
contributions of all these maxima are equal, so that it isin powers of the part of),, quadratic ina bring higher-order
sufficient to calculate only the contribution of the pomf  corrections of the ¥ series. Doing the integral over here

=1, a;=0, i=2,...n. In the vicinity of this point it is and performing differentiations one obtains
|
TrKy(8)= — f d { Ly ! ! !
rKy(s)=———| dx| ~s—5——
" (47rs)92 D2...D2 "m=2D2...D2_, (D%)?2D?,, - D2

n—-1 n

1 D# 1 D 1
+2> m kit

+0
m=2 k=m+1 D3..-D%_; (D3)?Di., - Df_ 4 (DH)?DE,,- - D

ViVo - V,.  (B9)

g

Naively, the error induced by such an extension of the integration range is exponentially ssalicin e”, <0, with thed acting
on some group of factors iN;- - -V, . But in view of the operator nature & the error bound decreases at laggey a powerlike law
eS(V---V)~1/s%2 We are grateful to B. L. Voronov for this observation.
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The first term in the square brackets gives the leading

order term of the late-time expansion. It can be further TrK(s)— d/2f dX[1—sVd(x)+0(s?)],
transformed by taking into account that any operator

D,, defined by Eq.(B6) acts as a partial derivative only (B13)
on the group of factorsV,Vj---Vy,_ 1V, in the full

product  Vj---V,, DpVi Vo=V Vy_1- VitV whereO(s?) denotes the terms subleadingsiwhich depend

X (Vi Vi1 - V2)V1 Therefore aII the operators under- on the potential in a nontrivial way. They are given by infi-

stood asacting to the rightcan be ordered in such a way  Nite resummation oven of the second and third terms in
square brackets of EB9). Remarkably, this summation can
again be done explicitly. In this case one has to sum multiple

S 1 1 i i
_ = geometric progressions.
TrKa(s) (4 s)d/ZJ dxleﬁv ﬁfl Indeed, the second term of E@9) gives rise to the se-
ries
1 1 2 1 1
XVy_1- —=5Vo,+ 0| — —V—
n-1 D% 2 Sd/Z) (47TS)d/2 nEZ mEZ V V.. D VDZ
—,_/
that the labels of th®2's can be omitted and albZ, can be ! !
identified with boxes also acting to the right: XV—...V=V(x).
O
—_— (B14)
TrK  (s)= — — fd vivl. vly "
T "(S)__(47Ts)d/2 x Vg Vg (x) . . - -
By summing the two geometric progressions with respect
n—1 to independent summation indicess=d—m<®~ and

0=m—2<=, one finds that this series reduces to

(B10 fd V- V(x) (B15
— | dXV——=V(X),

(4ms)92 (O-V)?

Infinite summation of this series is not difficult to perform

because this is the geometric progression in powers of thghich after the integration by parts amounts to
nonlocal operatoW(1/1) and

2 fd( ! V<>)2 © | o100
s X X)| =——= | dX[1-®(x)]".
TrK(s)=TrKo(s) - —— (4rs)9"2 b-v (47rs)972
47s)92 (B16)
J' dxz ( ) V(x)+0 1 Similarly, the third term of Eq(B9) gives rise to a tripli-
d/2 ’ cate geometric progression which after summation and inte-
gration by parts reduces to
or B _
1 \'1 1
1 , (4ws)d/2f u—Zo (D ) b o
TrK s)=—fdx(1—sD V(x)+0O(s )
( (4ms)¥? SR S YR T B A B
—| — VM — J—
(B11) ijo(vD) =V D.ZO(VD V(X)
The second term here looks like a total derivative. However, 2
it does not vanish because this is a derivative of the nonlocal = —d,zf dx[V, P (x)] V= V’@( ).
; . (47s) o-v 0O
expression and the corresponding surface term does not van-
ish at infinity in view of the Green’s function asymptotics. (B17)
This term can be rewritten as
Taking into account here that
1
DﬂV(X):V(X)‘FVD VV(X):V(D(X), 1 v 1 B 1 1 B1g
(B12) Oo-v'o O-v O (B18)
and, therefore, one finds that the sum of EqB16) and(B17) is equal to
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1 grating it by parts? Together with Eq(B13) the contribu-
VED +V, D ivﬂcp tion (B19) forms the nonlinear and nonlocal late time expres-
sion for the heat kernel tra¢d.15 up to the first subleading
order in 15 inclusive.

2 fd 1-®)2-V ® !
@mse) POy

= M
(47rs d/2f dxVv, <I> VV D, (B19)

OStraightforward integration by parts ¥,®(1/0)V+d is im-
where the cancellation of the first and third terms takes plac@ossible becaus®(x) does not vanish dix|—o, while ®(x)—1

after rewritingV,® in the third term as/,(®—1) and inte-  does.
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