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New nonlocal effective action
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We suggest a new method for the calculation of the nonlocal part of the effective action. It is based on the
resummation of the perturbation series for the heat kernel and its functional trace at large values of the proper
time parameter. We derive a new, essentially nonperturbative, nonlocal contribution to the effective action in
spacetimes with dimensionsd.2.
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I. INTRODUCTION

The effective action is among the fundamental ideas
modern quantum field theory. Calculated analytically fo
given background field, it gives information about the i
duced energy-momentum tensor of quantum fields and q
tum corrections to the classical equations of motion. T
nonlocal part of the effective action should contain, for
stance, particle creation effects. For black holes it should
able to account simultaneously for vacuum polarization a
asymptotic Hawking radiation. Various important applic
tions of the effective action can also be found in fundamen
string theory. The Lorentzian effective action, which we a
tually need, can be obtained from the Euclidean oneG@f#
via analytic continuation. In turn,G@f# can be defined by the
following path integral:

exp~2G@f~x!# !5E Dw expS 2S@w#1~w2f!
dG@f#

df D ,

~1.1!

wheref(x) is a given mean field, and the functional int
gration over quantum fieldsw(x) is assumed. The genera
semiclassical expansion ofG@f# begins with the one-loop
contribution, which is given by the Gaussian path integra

exp$2G@f~x!#%5E Dw expS 2
1

2E dxAgw~x!

3F̂„¹,f~x!…w~x! D . ~1.2!

The operatorF̂„¹,f(x)… here determines the propagation
small field disturbancesw(x) on the background off(x) and
in the bosonic case can generically be written down as

F̂52h1V~x!, ~1.3!
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where h5¹2[gmn¹m¹n is the Laplacian in the Euclidea
field theory, which becomes the d’Alembertian when analy
cally continued to the Lorentzian sector, andV(x) is the
potential term. Note that, for some fields, the one-loop c
tribution is exact, for instance, for the scalar field witho
self-coupling. For a properly defined measure the Gaus
integral ~1.2! can be formally calculated as

G5
1

2
lnS)

l
l D 5

1

2 (
l

ln l5
1

2
Tr ln F̂, ~1.4!

wherel are the eigenvalues of the operatorF̂ corresponding
to appropriately normalized eigenfunctionsfl(x),
*dxAgfl(x)fl8(x)5dll8 . Here the functional trace T
does not depend on a particular basis in the functional sp
of disturbancesw and, therefore, in an appropriate represe
tation it reduces to the integral over spatial coordinatesx of
the diagonal element of the operator kernel.

The effective action~1.4! is, of course, ultraviolet diver-
gent and should be regularized, with the subsequent inter
tation of explicitly isolated divergences in terms of infini
renormalizations of the coupling constants of the theo
These divergences are well understood and it is unlikely
anything new can be added here. Therefore, we concen
on more interesting finite, and generally nonlocal, contrib
tions to the one-loop effective action. These contributio
depend on infrared properties of the theory and contain n
trivial information about real physical effects. Analytical ca
culational schemes forG are usually based on the followin
integral representation of the functional trace ofF̂:

Tr ln F̂52E
0

`ds

s
Tr e2sF̂, ~1.5!

where all local divergences can be easily isolated with
aid of dimensional regularization. The kernel

K~sux,y![exp~2sF̂!d (d)~x,y!, ~1.6!

whered is spacetime dimensionality, obviously satisfies t
heat kernel equation
©2002 The American Physical Society07-1
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]

]s
K~sux,y!52F̂K~sux,y!

[@h2V~x!#K~sux,y!, ~1.7!

with the initial condition

K~0ux,y!5d (d)~x,y! ~1.8!

at s50. The auxiliary parameters is usually called the
proper time. Thus, calculating the effective action can
reduced to the solution of the Cauchy problem forK(sux,y).
In fact, what we actually need is the coincidence limit of th
function, since, in the representation we used, the functio
trace of the operatore2sF̂ corresponds to the integration o
the diagonal elements ofK over the spacetime coordinatesx,
so that

G52
1

2E dxS E
0

`ds

s
K~sux,x! D . ~1.9!

It is clear that the success of the calculation mainly
pends on our ability to find an analytical solution of the he
kernel equation and carry out the integration over the pro
time in Eq. ~1.9!. The integral is obviously divergent ass
→0. As we have already mentioned above, this diverge
can be easily isolated and interpreted in terms of the lo
ultraviolet properties of the theory. On the other hand,
behavior of the integral at infinity,s→`, determines infrared
properties of the theory and carries the physical informati
e.g., particle creation. If the field has a big positive mass
proper time integral is convergent ats→`. However, in the
case of massless fields, the situation is much less trivial.
infrared convergence here depends on the approxima
scheme used to calculateK(sux,y). Then, it is often even
unclear to what extent the obtained effective action refle
the physical properties of the theory rather than the featu
of the approximation scheme used.

Below, we discuss the known calculational techniqu
namely, the local Schwinger-DeWitt expansion@1,2#, nonlo-
cal covariant perturbation theory@3–5#, and the modified
gradient expansion@6#, and point out why all of them fail
when applied to interesting physical problems. Instead
them, we suggest a new method based on resummatio
perturbation series and calculate new, essentially nonpe
bative terms in the effective action. This method becom
indispensable in low-dimensional models (d<2) where all
previously known techniques are inapplicable. In this pap
we demonstrate how our method works in flat space of
mensiond.2, while the generalization to the curved spa
and low-dimensional case will be considered in@7#.

One of the main results of this paper is an exact~nonper-
turbative in V) late-time asymptotics for the heat kern
which in a spacetime of dimensiond.2 for the coincidence
limit takes the following form:

K~sux,x!5
1

~4ps!d/2 S 11
1

h2V
V~x! D 2

, s→`.

~1.10!
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This asymptotics can also be found when the argument
K(sux,y) are different—see Sec. IV for details. Another im
portant result is the~nonperturbative in the potential! expres-
sion

Tr K~s!5
1

~4ps!d/2E dxH 12sS V~x!1V
1

h2V
V~x! D J ,

s→`, ~1.11!

for the functional trace ofK(s).1

To avoid excessive use of integration signs we emp
here and throughout the paper the following shorthand n
tion:

1

h2V
J~x![E dyG~x,y!J~y!, ~1.12!

where G(x,y) is the Green’s function of the operator2F̂
5h2V with zero boundary conditions at spacetime infini
that is,

~h2V!G~x,y!5d (d)~x,y!, G~x,y!→0, uxu→`,
~1.13!

andJ(x) can be any function of various field quantities lik
powers of the potential, its derivatives, etc. We always p
sume that the spacetime has a positive definite~Euclidean!
signature, so that the Laplacianh is negative definite assum
ing zero boundary conditions at infinity. Moreover, we co
sider only non-negative potentialsV(x)>0, so that the
whole operatorF̂52h1V is positive definite. Therefore
the Green’s function~1.13! is uniquely defined and guaran
tees that the nonlocal expression~1.12! makes sense ford
.2.

As we shall see, the asymptotics~1.10! and~1.11! are the
cornerstone of the technique we develop for the calcula
of nonlocal contributions to the effective action. In particul
they lead to essentially nonperturbative terms which can
explicitly calculated for two broad classes of potentials w
compact support, namely, for those that are, respectiv
very small or very big in units of the inverse size of the
support. For small potentials we get the terms whichreplace
the conventional Coleman-Weinberg contribution to the
fective action. In four dimensions, for instance, these ter
read

1Note that this expression for TrK(s) cannot be obtained directly
by integrating the asymptotics~1.10! over the whole spacetime be
cause for a givens this asymptotics fails atuxu2.s. Its derivation is
given in Sec. IV and Appendix B, where we show that the expr
sions~1.10! and ~1.11! are in complete agreement with each oth
7-2
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DG5
1

64p2E d4xV2~x!lnS E d4yV2~y! D
2

1

64p2E d4xV2~x!lnS E d4yV
m2

V2h
V~y! D ,

~1.14!

where the mass parameterm2 reflects the usual ultraviole
renormalization ambiguity. On the contrary, in the case
big potentials the Coleman-Weinberg action issupplemented
by a nonlocal term of the form

DG5
1

64p2Euxu<R
d4xK V1V

1

h2V
VL 2

. ~1.15!

Here R is the size of the compact support ofV(x), that is,
V(x)50 at uxu.R, and^•••& denotes the spacetime avera
ing of the corresponding quantity over this compact doma
The expressions obtained are both nonlocal and nonana
in the potentialV(x).

The paper is organized as follows. In Sec. II we consi
the known approximation schemes and discuss their app
bility in the infrared region. Section III is devoted to th
nonlocal and nonlinear resummation of the Schwing
DeWitt perturbation series, corresponding to the so-ca
connected graph expansion of the heat kernel. In Sec. IV
an extension of this resummation, we derive the asympto
~1.10! and discuss its relation to the functional trace~1.11! of
the heat kernel. The nonperturbative, nonlocal contributi
to the effective action are obtained in Sec. V with the aid
the new technique based on a piecewise smooth approx
tion for the heat kernel. In two appendixes we give details
the resummation technique and derive from the covar
perturbation theory the asymptotics of the heat kernel tr
~1.11! up to the first subleading order in 1/s inclusive.

II. APPROXIMATION SCHEMES AND INFRARED
PROPERTIES OF THE EFFECTIVE ACTION

In flat space, which we consider in this paper, the solut
of the heat kernel equation can be easily found if the pot
tial vanishes. For an arbitrary spatially dependent poten
the analytical expressions are, of course, available only
certain approximations. In the general case, it is conven
to factorize the ‘‘zero potential’’ part of the solution explic
itly and use the following ansatz forK(sux,y):

K~sux,y!5
1

~4ps!d/2
expF2

ux2yu2

4s GV~sux,y!, ~2.1!

where the factor singular ins guarantees that the initial con
dition ~1.8! is satisfied, provided thatV is analytic ins at s
50 andV(0ux,y)51. If V50, thenV[1, and hence all
nontrivial information about the potential is encoded in t
deviation ofV from unity.

The most well-known approximation used for the calc
lation of K(sux,y) is the so-called local Schwinger-DeWi
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expansion, whereV is written down as a series in growin
powers of the proper times. This expansion is a very pow
erful tool for revealing local ultraviolet properties of th
theory. However, when applied in the infrared region,
gives a finite result only for massive fields. If the potent
V(x) has a large positive constant part, that is,

V~x!5m21v~x!, ~2.2!

wherem2 is the squared mass of the field, then the funct
V(sux,y) contains an overall exponential factore2sm2

and
the part independent of mass is expanded in powers ofs:

V~sux,y!5e2sm2

(
n50

`

an~x,y!sn. ~2.3!

Here an(x,y) are the two-point Schwinger-DeWitt coeffi
cients, whose coincidence limits (x→y) are explicitly calcu-
lable in general field theories, including gravity. Substituti
Eq. ~2.3! into Eq. ~2.1! and then the obtained expression
x5y into Eq. ~1.9!, one gets

G52
1

2~4p!d/2E dx(
n50

` S E
0

`

dssn2d/221e2sm2D an~x,x!.

~2.4!

It is important that the exponente2sm2
is not expanded

here in powers ofs. Therefore, in the proper time integral
provides a cutoff at the upper limit, so that the powers ofs in
this expansion get effectively replaced by powers of 1/m2.
The first (d/211) integrals in Eq.~2.4! diverge ats→0 and
should be regularized. To do that, we apply the dimensio
regularization method; namely, by replacing the dimensi
ality d by 2v, we calculate the integrals in the domain
their convergence and then analytically continue the resu
v→d/2. In spaces with even number of dimensions, wh
we mainly consider in what follows, this gives rise to th
contribution Gdiv, log containing the pole atv5d/2 and the
term logarithmic inm2:

Gdiv,log 5
1

2~4p!d/2E dx(
n50

d/2
~2m2!d/22n

~d/22n!!

3F 1

v2d/2
2G8S d

2
2n11D1 ln

m2

4pm2Gan~x,x!,

~2.5!

wherev→d/2. The pole corresponds to an infinite ultravi
let renormalization of the terms proportional toa0 , . . . ,ad/2
in the original Lagrangian. Other terms in the expans
~2.4! are finite and give the infrared contribution to the to
action

G5Gdiv,ln 2
1

2 S m2

4p D d/2E dx (
n5d/211

`
G~n2d/2!

~m2!n
an~x,x!.

~2.6!
7-3
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The Schwinger-DeWitt coefficientsan(x,x) are the homoge-
neous polynomials of dimensionality 2n in the units of in-
verse length, which are built ofv(x) and its multiple deriva-
tives. Therefore, on dimensional grounds, they can
symbolically written down as

an~x,x!;vk~x!~¹ iv j !~x!,

wherei denotes an overall number of derivatives acting in
possible ways onj factors ofv(x), andk powers ofv(x) stay
undifferentiated. The positive integers (k, j ,i ) are related ton
as 2(k1 j )1 i 52n. It is clear that the infinite series in Eq
~2.6! represents the expansion in growing powers of the
lowing dimensionless quantities:

v~x!

m2
!1,

¹ iv~x!

m21 i
!1, ~2.7!

which obviously should be much smaller than unity. Only
this case are the first few terms in the asymptotic series~2.6!
reliable.

Thus, the Schwinger-DeWitt expansion is applicable o
in theories withsmall and slowly varying fieldsas compared
to a big mass parameter. This expansion contains only l
terms. This is not surprising because all nonlocal effe
e.g., particle creation, are very small for heavy particles i
weak external field and cannot be handled by this meth
The Schwinger-DeWitt technique can be easily extended
curved spacetime and to theories with covariant derivati
built with respect to an arbitrary fiber-bundle connection.
this case, the perturbation potentialv(x) will also depend on
the spacetime curvature tensor and fiber-bundle curvat
~commutator of covariant derivatives!. The smallness of
fields and their derivatives includes the requirement of
smallness of these curvatures and their derivatives as w
Despite its universality, the Schwinger-DeWitt expansion
comes inefficient when the ratios in Eq.~2.7! become of the
order of unity, and completely fails for massless fields. In
last case all integrals over the proper time integral are in
red divergent. This divergence has, of course, no phys
meaning and is an artifact of the approximation techniq
used.

There are two known ways to proceed with massl
fields. One possibility is the resummation of all terms th
contain the undifferentiated potentialV(x) in the local
Schwinger-DeWitt series~2.3!. They are summed up to form
an exponent similar toe2sm2

:

V~sux,x!5e2sV(x) (
n50

`

ãn~x,x!sn. ~2.8!

This method was suggested in@6#, where a regular techniqu
for the calculation of the modified Schwinger-DeWitt coef
cientsãn(x,y) was also presented. The proper time integ
in Eq. ~1.9! now has an infrared cutoff ats;1/V(x) and in
this case the effective action is similar to Eqs.~2.5!,~2.6!,
wherem2 is replaced byV(x) andan(x,x) by ãn(x,x). It is
convenient to write this action as a sum of three terms
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G5Gdiv1GCW1Gfin , ~2.9!

where the divergent part is equal to

Gdiv5
1

2~4p!d/2E dx(
n50

d/2
~2V!d/22n

~d/22n!!

3F 1

v2d/2
2G8S d

2
2n11D2 ln 4pG ãn~x,x!.

~2.10!

The pole part of this action coincides with that of Eq.~2.5! if
we take them2→0 limit of Eq. ~2.5!. Actually, in this case,
only the term proportional toad/2 survives inGdiv, log and by
virtue of the relation between twiddled and untwiddled co
ficients, namely,

ad/2~x,x!5 (
n50

d/2
~2V!d/22n

~d/22n!!
ãn~x,x!, ~2.11!

the pole parts of Eqs.~2.5! and ~2.10! are the same. The
terms proportional toG8(d/22n11) perform finite renor-
malization of the local termsVd/22nãn . The logarithmic
terms of Eq.~2.5! are replaced in the modified action~2.9!
by

GCW5
1

2~4p!d/2E dx(
n50

d/2
~2V!d/22n

~d/22n!!
ln

V

m2
ãn

5
1

2~4p!d/2E dx ln
V

m2
ad/2 . ~2.12!

This is nothing but the spacetime integral of the Colem
Weinberg effective potential. For instance, in four dime
sions the leading term is the original Coleman-Weinberg
fective potentialV2 ln(V/m2)/64p2, while the rest represent
corrections due to the derivatives ofV(x). Similarly to Eq.
~2.6!, the finite partGfin is an infinite series

Gfin52
1

2E dxS V~x!

4p D d/2

(
n5d/211

`

G~n2d/2!
ãn~x,x!

Vn~x!
.

~2.13!

The modified Schwinger-DeWitt coefficients do not conta
the undifferentiated potential and the typical structure of
terms enteringãn(x,x) is ¹mVj (x), wherem12 j 52n. Ev-
ery V here should be differentiated at least once and there
m> j . Thus the coefficientsãn can be symbolically written
down as

ãn~x,x!; (
j 51

[2n/3]

¹2n22 jVj , ~2.14!

where the upper value ofj is the integer part of 2n/3.
This perturbation theory is efficient as long as the pot

tial is slowly varying or bounded from below by a larg
positive constant, so that
7-4
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¹2V~x!

V2~x!
!1,

@¹V~x!#2

V3~x!
!1, . . . . ~2.15!

The case of bounded potentials reproduces the orig
Schwinger-DeWitt expansion for nonvanishing mass. The
fore, let us consider the potentials which vanish at spacet
infinity ( uxu→`); namely, we assume the case of a pow
like falloff

V~x!;
1

uxup
, ¹mV~x!;

1

uxup1m
, uxu→` ~2.16!

for some positivep. For such a potential terms of the pertu
bation series~2.13! behave as

ãn

Vn
; (

j 51

[2n/3]

uxu(p22)(n2 j ) ~2.17!

and thus decrease with increasingn only if p,2. For p
>2, the modified gradient expansion completely brea
down. It makes sense only for slowly decreasing potent
of the form~2.16! with p,2. In this case the potentialV(x)
is not integrable over the whole spacetime@*dxV(x)5`#
and moreover even the operation (1/h)V(x) is not well
defined.2 Therefore the above restriction is too strong to a
count for many interesting physical problems. In additio
similarly to Eq. ~2.6!, the asymptotic expansion~2.13! is
completely local. It does not allow us to capture nonlo
effects, which are exponentially small for potentials satis
ing Eq. ~2.15!.

The way to overcome this difficulty and to take into a
count nonlocal effects was suggested in the form of covar
perturbation theory~CPT! @3–5#. In this theory the full po-
tential V(x) is treated as a perturbation and the solution
the heat equation is found as a series in its powers. From
viewpoint of the Schwinger-DeWitt expansion it correspon
to an infinite resummation of all terms with a given power
the potential and arbitrary number of derivatives. The res
reads as

Tr K~s![E dxK~sux,x!5 (
n50

`

Tr Kn~s!, ~2.18!

where

Tr Kn~s!5E dx1dx2•••dxnFn~sux1 ,x2 , . . . ,xn!

3V~x1!V~x2!•••V~xn!, ~2.19!

and the nonlocal form factorsFn(sux1 ,x2 , . . . ,xn) were ex-
plicitly obtained in @3–5#. It was shown that ats→` the
terms in this expansion behave as

2For the convergence of the integral in (1/h)V the potentialV(x)
should fall off at least as 1/uxu3 in any spacetime dimension@4#.
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Tr Kn~s!5OS 1

sd/221D , n>1, ~2.20!

and therefore in spacetime dimensiond>3 the integrals in
Eq. ~1.9! are infrared convergent:

E`ds

s
OS 1

sd/221D ,`. ~2.21!

In one and two dimensions this expansion forG does not
exist except for the special case of the massless theor
curved two-dimensional spacetime, when it reproduces
so-called Polyakov action@9,8,4#.3 CPT should always be
applicable wheneverd>3 and the potentialV is sufficiently
small,4 so that its effective action explicitly features analy
icity in the potential atV50. Therefore, its serious disad
vantage is that this theory does not allow one to overstep
limits of perturbation scheme and, in particular, discov
nonanalytic structures in the action if they exist.

All this implies the necessity of a new approximatio
technique that would allow us to overcome disadvantage
the above methods. In the rest of this paper we develop s
a technique, involving further resummation of the perturb
tion series. We develop an infrared improved perturbat
theory for the heat kernel and reveal new nonlocal a
nonanalytical structures in the effective action.

III. RESUMMATION OF PROPER TIME SERIES

We use the exponential ansatz for the functionV(sux,y)
defined by Eq.~2.1!:

V~sux,y!5exp@2W~sux,y!#.

Our goal is to develop an approximation technique forW
similar to CPT, which is an alternative to the expansion ins.
By virtue of Eqs.~1.7! and ~1.8! the functionW(sux,y) sat-
isfies the equation

]W

]s
1

~x2y!m

s
¹mW2hW5V2~¹W!2, ~3.1!

with the initial condition

W~s50ux,y!50. ~3.2!

This equation is nonlinear inW and we solve it by iteration,
considering (¹W)2 as a perturbation. For this purpose it
convenient to rewrite Eqs.~3.1!,~3.2! as an integral equation
In Appendix A, it is shown that this integral equation tak
the following form:

3This action can be obtained by integrating the conform
anomaly@9,8#.

4The conditions of the smallness of the potential are exactly
posite to those of Eq.~2.15!, e.g.,V2/¹2V!1. However, this is true
only as a rather rough estimate, because CPT is a nonlocal pe
bation theory and its actual smallness ‘‘parameters’’ are some n
local functionals of the potential.
7-5
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W~sux,y!5sE
0

1

daesa(12a)h
2

$V~ x̄!2@¹W~saux̄,y!#2%,

~3.3!

where the operatorh̄ acts on the argumentx̄[ x̄(aux,y)
5ax1(12a)y. Equation ~3.3! can be easily solved i
(¹W)2!V. As we will see later, this condition is satisfie
for a broad class of potentialsV. The lowest-order approxi
mation forW is obtained by omitting (¹W)2 in Eq. ~3.3!:

W0~sux,y!5sE
0

1

daesa(12a)h
2

V~ x̄!u x̄5ax1(12a)y .

~3.4!

This is a linear but essentially nonlocal functional of t
potential. Further terms of the perturbation theoryWn
5O@(¹W0)n# can be graphically represented by connec
tree graphs with two derivatives in the vertices, internal lin
associated with the nonlocal operator

f ~2sh !5E
0

1

daesa(12a)h, ~3.5!

and external lines given by Eq.~3.4!.5 Note that this con-
nected graph structure arises in the exponential and w
expanded gives rise to the disconnected graphs. In conte
the heat kernel expansion this property was observed in@10#.
Resummation of the perturbation series inV explicitly fea-
tures exponentiation of the quantities containing only c
nected graphs. Here we showed how this exponentiated
of connected graphs directly arises from the solution of
simple nonlinear equation~3.1!. The ‘‘propagator’’~3.5! was
worked out within the covariant perturbation theory in@3–5#
and was also obtained in@6# by direct summation of gradien
series.

At this stage the efficiency of the connected graph exp
sion is not yet obvious. Crudely, it runs in powers of t
dimensionless quantity@s f(2sh)¹#2V(x) which, at least
naively, should be small for slowly varying or/and small p
tentials. Apart from this, infrared properties of the effecti
action strongly depend on the lowest-order approximat
for W Eq. ~3.4!. The effective action involves only diagona
elements of the two-point functionW(sux,y), which look
much simpler than Eq.~3.4!:

W0~sux,x!5sE
0

1

daesa(12a)hV~x!. ~3.6!

Note that, at smalls, the functionW0 can be expanded a
W05sV1O(s2). The only term with undifferentiated poten
tial enteringW0 is linear ins, while all other terms contain
derivatives of the potentialV. The same is also true for th
exact W, which differs from W0 by higher powers of the

5This graphical interpretation should not be taken too litera
because integration overa parameter~s! also involves the argumen

x̄[ x̄(aux,y) of the potential.
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differentiated potential. This completely agrees with t
modified gradient expansion discussed in Sec. II. Howe
the expression~3.6! directly involves the nonlocal operato
and its late-time behavior is very different from that naive
expected in the modified gradient expansion and in CPT

To show that, let us first find the coordinate representat
of the operator~3.5!, that is, the kernelf (2sh)d (d)(x,y).
Using a well-known result for the exponentiatedh operator

esa(12a)hd (d)~x,y!5
1

@4psa~12a!#d/2

3expS 2
ux2yu2

4sa~12a! D , ~3.7!

one can write

E
0

1

daesa(12a)hd (d)~x,y!5
e2ux2yu2/2s

~4ps!d/2 E0

`

db
~11b!d22

bd/2

3expF2
ux2yu2

4s S 1

b
1b D G ,

~3.8!

where we have changed the integration variable,a5b/(1
1b), 0<b,`. For d>3, the integral can be easily calcu
lated and the result is expressed as a sum of McDonald fu
tions of the argumentux2yu2/2s:

f ~2sh !d (d)~x,y!5
2e2ux2yu2/2s

~4ps!d/2 (
k51

d21

Ck21
d22Kk2d/2

3~ ux2yu2/2s!, ~3.9!

whereCk21
d22 are the binomial coefficients. For very larges,

the argument ofKk2d/2(z) is small. Using the asymptotic
Kn(z).G(unu)(2/z) unu/2, z→0, we find that at larges the
form factor is dominated by the following term:

f ~2sh !d (d)~x,y!5
1

2s

G~d/221!

pd/2ux2yud22
1OS 1

s2D .

~3.10!

Taking into account the fact that

1

h
d (d)~x,y!52

G~d/221!

4pd/2ux2yud22
, ~3.11!

we finally obtain

W0~sux,x!5s f~2sh !V52
2

h
V~x!1OS 1

sD .

~3.12!

This behavior agrees with the formal asymptotics found
the Laplace method in@4#. Therefore, ats→`, the function
7-6
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W0 approaches a constant. The nonlocal functional~3.12! is
well defined ford>3 only if the potentialV vanishes fast
enough atuxu→`.

For split arguments the asymptotics ofW0(sux,y) is more
intricate. In this case the form factor~3.5! no longer arises as
a whole because the integration parametera appears in Eq.
~3.4! also in the argumentx̄5ax1(12a)y of the potential
V( x̄). Applying the Laplace method, one can show that
integral ~3.4! is dominated by the contribution of the en
pointsa50 anda51. These contributions are different b
causex̄(a50)5y and x̄(a51)5x, whence

W0~sux,y!52
1

h
V~x!2

1

h
V~y!1OS 1

sD . ~3.13!

Substituting this expression in Eq.~3.3! and solving the in-
tegral equation by iterations one can find the late-time
ymptoticsW`(x,y) for the exactW(sux,y)

W~sux,y!5W`~x,y!1OS 1

sD ~3.14!

as a nonlocal gradient series

W`~x,y!52
1

h
V~x!1

1

h
S 1

h
¹V~x! D 2

1•••1~x↔y!.

~3.15!

It is remarkable, however, that this series can be ‘‘summ
up’’ and the nonlocal expression forW`(x,y) can be found
exactly in terms of the Green’s function of the original o
eratorF̂52h1V.

IV. LATE-TIME ASYMPTOTICS OF THE HEAT KERNEL

By substituting the late time ansatz~3.14! in Eq. ~3.1!, it
is easy to see that the first two terms in its left-hand s
vanish ats→`, while the rest reduce to the equation f
W`(x,y):

~h2V!e2W`(x,y)50. ~4.1!

Despite the positivity of the operator2h1V with Dirichlet
boundary conditions atuxu→`, this equation admits non
trivial solutions. In fact,e2W`(x,y) does not have to go to
zero at infinity.6 In view of the iterative solution~3.15! it
should tend to some unknown function ofy,

e2W`(x,y)→C~y!, uxu→`. ~4.2!

Equation~4.1! with this boundary condition is then solved b

e2W`(x,y)5C~y!F~x!, ~4.3!

if the new functionF(x) satisfies the equation

6The boundary conditionK(sux,y)→0 at uxu→` is enforced by
the Gaussian factor in Eq.~2.1!, even for nonvanishing finite
V(sux,y)5exp(2W(sux,y).
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~h2V!F~x!50, ~4.4!

and F(x)→1 at uxu→`. The solution of this problem for
F(x) is uniquely determined in terms of the Green’s fun
tion ~1.13!:

F~x!511
1

h2V
V~x!. ~4.5!

This function of x is a nonlocal and essentially nonline
functional of the potential, and it will play a very importan
role in what follows.

The heat kernel is symmetric in its argumentsx,y and,
therefore, the unknown functionC(y) should coincide with
F(y). Thus, finally we obtain the following exact late-tim
asymptotics:

e2W`(x,y)5F~x!F~y!. ~4.6!

ExpandingW`(x,y) in powers of the potentialV one gets

W`~x,y!52 ln F~x!2 ln F~y!

52
1

h
V~x!2

1

h
V

1

h
V~x!

1
1

2 S 1

h
V~x! D 2

1•••1~x↔y!. ~4.7!

The first term here is in agreement with the perturbative
ymptotics ~3.15!. However, beyond that, the iterative solu
tion ~3.15! seems to be in contradiction with Eq.~4.7!. The
series~3.15! runs in powers of the differentiated potentia
while the expansion~4.7! contains only the undifferentiate
potential. However, integration by parts in the second term
Eq. ~3.15! exactly reproduces the second and third terms
Eq. ~4.7!. Thus, both expansions are equivalent, but the fi
one reveals more explicitly the gradient of the potential a
small parameter, while in Eq.~4.7! the smallness is a resu
of nontrivial cancellations between different terms.

Finally we write down the exact late-time asymptotics f
the heat kernel, advocated in the Introduction,

K~sux,y!5
1

~4ps!d/2
F~x!F~y!, s→`. ~4.8!

Its heuristic interpretation is rather transparent. The heat
nel can be decomposed in the series

K~sux,y!5(
l

e2lsFl~x!Fl~y!, ~4.9!

wherel andFl are, respectively, the eigenvalues and eig
functions of the operatorF̂52h1V(x). SinceF̂ is a posi-
tive semidefinite operator, only the lowest eigenmode w
l50 survives in this expression in the limits→`. The ap-
propriate eigenfunction satisfies the equationF̂Fl5050,
which coincides with Eq.~4.4! and thereforeFl50(x)
5F(x). The spectrum of the operator is continuous and
eigenmodes are not square integrable@F0(x)→1 at
7-7
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A. O. BARVINSKY AND V. F. MUKHANOV PHYSICAL REVIEW D 66, 065007 ~2002!
uxu→`]. This is why the integral over the spectrum, denot
above by(l , yields within the steepest decent approxim
tion the powerlike asymptotics 1/sd/2, rather than the expo
nential one. Of course, these arguments are not very ri
ous. The zero modeF(x) with unit boundary condition a
infinity does not even belong to the continuous spectrum
modes normalized to the delta function. Nevertheless, as
have seen, this particular mode gives the leading contribu
to the late-time asymptotics of the heat kernel.

If we want to calculate the contribution to the effectiv
action due to the late-time behavior of the heat kernel
need its functional trace—the spacetime integral of the co
cidence limitK(sux,x). Unfortunately, the expression~4.8!
cannot be used directly to calculate TrK(s) for a givens.
The point is that this asymptotic expression taken at a fi
larges is applicable only foruxu2,s and fails atuxu2@s.7 At
the same time, when calculating the trace we have to i
grate over the whole spacetime up touxu→` and therefore
need the heat kernel behavior foruxu2@s. The attempt to
disregard this subtlety and integrate the coincidence limi
Eq. ~4.8! over x results in a poorly defined quantity—th
spacetime integral is strongly divergent at infinity. Neverth
less, one can use the expression~4.8! to find TrK(s) with the
aid of the following somewhat subtler procedure.

First let us write the variational relation

d Tr K~s!52s Tr @dVK~s!#52sE dxdV~x!K~sux,x!,

~4.10!

where, of course,K(s)5exp@s(h2V)#. Then it follows that

d Tr K~s!

dV~x!
52sK~sux,x!. ~4.11!

SubstitutingK(sux,x) from Eq. ~4.8! in the right-hand side
of this relation we obtain the following functional differentia
equation:

d Tr K~s!

dV~x!
52

s

~4ps!d/2
F2~x!. ~4.12!

This equation satisfies the integrability condition, beca
the variational derivative

dF2~x!

dV~y!
52F~x!F~y!

1

h2V
d~x,y! ~4.13!

is symmetric inx and y. Therefore Eq.~4.12! can be inte-
grated to determine TrK(s). The solution subject to the ob
vious boundary conditions atV50 reads

Tr K~s!5
1

~4ps!d/2E dx~12sVF!, s→`. ~4.14!

7This follows from the derivation of Eq.~4.8! above, which is
based on discarding the second term of Eq.~3.1! linearly growing in
(x2y)/s.
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One can easily check that this expression satisfies Eq.~4.12!.
It is remarkable that in the covariant perturbation theo

the leading and next subleading~in s) terms of the heat ker-
nel trace can be explicitly calculated fors→` in every order
of expansion in powers ofV. The corresponding infinite se
ries can be explicitly summed up to yield essentially non
cal and nonlinear inV(x) expression for TrK(s). This is
done in Appendix B to the first subleading order inclusiv
The following very simple and concise result reads as:

Tr K~s!5
1

~4ps!d/2E dxH 12sVF22¹mF
1

h2V
¹mF

1OS 1

sD J ~4.15!

in terms of the functionF(x) and its derivatives. As we see
it exactly reproduces the leading order term of Eq.~4.14!,
O(s/sd/2), and also gives a nontrivialO(1/sd/2) correction.
Below we use this asymptotics for obtaining new types
nonlocal effective action.

V. EFFECTIVE ACTION

The functional trace of the heat kernel is everything
need for the calculation of the effective action. Unfort
nately, only its asymptotics are known; namely, at smas
one can use the modified gradient expansion~2.1!, ~2.8! and
at larges the nonlocal and nonlinear expression~4.15!. The
goal of this section is to unify both of these approximatio
to get the expression for the effective action which wou
incorporate both the ultraviolet and infrared properties of
theory. The calculation will be explicitly done in the fou
dimensional case. The generalization to other dimensiond
.2 is straightforward.

The key idea is to replace TrK(s) in Eq. ~1.9! by some
approximate function TrK̄(s) such that the integral overs,

Ḡ52
1

2E ds

s
Tr K̄~s!, ~5.1!

becomes explicitly calculable. The difference TrK(s)
2K̄(s) can then be treated as a perturbation. Certainly,
efficiency of this procedure very much depends on the s
cessful choice ofK̄(s). Here we exploit the simples
possibility—namely, let us take two simple function
Tr K̄,(s) and TrK̄.(s), which coincide with the leading as
ymptotics of TrK(s) at s→0 and s→` and use them to
approximate TrK(s) at, respectively, 0<s<s* and s* <s
,`. In turn, the value ofs* will be determined from the
requirement that these two functions match ats* . This will

guarantee the stationarity ofḠ with respect to the choice o

s* , ]Ḡ/]s* 50. We will discuss the justification of this pro
cedure a little later, while now let us proceed with the calc

lation of Ḡ.
At small s we use the lowest-order term of the modifie

gradient expansion
7-8
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Tr K,~s!5
1

~4ps!2E dx exp~2Vs!, s,s* , ~5.2!

and disregard all terms containing derivatives of the poten
V. The rest of the asymptotic series~2.8!, containingãn , will
be treated by perturbations. Correspondingly, at larges.s*
we use the late-time asymptotics~4.14!:

Tr K.~s!5
1

~4ps!2E dx~12sVF!, s.s* . ~5.3!

The requirement of stationarity ofḠ with respect tos*
leads to the equation

E dx exp~2Vs* !5E dx~12s* VF!, ~5.4!

which determines the value ofs* as some nontrivial func-
tional of the potential,s* 5s* @V(x)#. Unfortunately this
functional is not calculable explicitly in general, but neve
theless, as we will see below, it can be obtained for t
rather broad classes of potentials. The action~5.1! can be
written down as a sum of two contributions:

Ḡ5G,1G.

52
1

2E0

`ds

s
Tr K,~s!2

1

2Es
*

` ds

s
@Tr K.~s!2Tr K,~s!#.

~5.5!

The first integral here has already been calculated an
given by the sum of the expressions~2.10! and ~2.12! with
ã051 andãn50, n>1, which in our particular case give
rise to

G,5Gdiv1GCW

[
1

64p2E dxF S 2
1

22v
12C232 ln 4p DV21V2 ln

V

m2G ,

v→2, ~5.6!

whereC50.577 . . . is Euler’s constant. The first term her
is responsible for the renormalization of the original acti
and the second one is just the Coleman-Weinberg poten
The second integral in Eq.~5.5! can also be calculated ex
actly. Integrating by parts and taking into account Eq.~5.4!,
we obtain

G.[2
1

2Es
*

` ds

s
@Tr K.~s!2Tr K,~s!#

5
1

64p2E dxFVF

s*
2

Ve2s
*

V

s*
1V2G~0,s* V!G ,

~5.7!
06500
al
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where G(0,x) is an incomplete gamma function,G(0,x)
5*x

`dtt21e2t, with the following asymptotics:

G~0,x!;H ln
1

x
2C, x!1,

1

x
e2x, x@1.

~5.8!

Further steps strongly depend on the class of potential
which the consistency of the piecewise approximat
~5.2!,~5.3! should be carefully analyzed.

A. Small potential

The approximation~5.2!,~5.3! is efficient only if the
ranges of the validity of the two asymptotic expansions~re-
spectively, for small and bigs) overlap with each other and
the points* belongs to this overlap. In this case the corre
tions due to the deviation of TrK̄(s) from the exact TrK(s)
are uniformly bounded everywhere and one can expect
Eq. ~5.1! will give a good zeroth order approximation to a
exact result. Below we show that this necessary requirem
can be satisfied at least for two rather wide classes of po
tial V(x).

The modified gradient expansion is well applicable in t
overlap range of the parameters if

s¹¹V!V ~5.9!

@cf. Eq. ~2.15! with s replaced by effective cutoffs51/V]
and the applicability of the larges expansion in the same
domain reads as

sE dxVF@E dx¹mF
1

V2h
¹mF, ~5.10!

which means that the subleading term~quadratic in¹mF) of
the late time expansion~4.15! is much smaller than the lead
ing second term.

To implement these requirements, let us make some s
plifying assumptions. Instead of the power law falloff, a
sume thatV(x) has a compact support of finite sizeR,

V~x!50, uxu>R. ~5.11!

Let us also assume that the potential is sufficiently smo
inside its support and the characteristic magnitude ofV(x) is
given by V0. Then the derivatives of the potential a
bounded and satisfy the following obvious estimate:

¹¹V;
V0

R2
, ~5.12!

so that Eq.~5.9! reads assV0 /R2!V0, or

s!R2. ~5.13!

To find out what the criterion~5.10! means let us make a
further assumption, namely, that the potentialV is small. In
7-9
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this case it can be disregarded in the Green’s functions
1/(h2V) can be replaced by 1/h. Therefore the following
estimates hold:

1

h2V
V~x!;E

uyu<R
dy

1

ux2yud22
V~y!

;
1

Rd22
RdV0;V0R2,

E dxVF;V0Rd,

E dx¹mF
1

V2h
¹mF.V0

2Rd14. ~5.14!

Roughly, every Green’s function gives the factorR2, every
derivative 1/R, integration gives the volume of compact su
port Rd, etc. Applying these estimates to Eq.~5.10! we get
sV0Rd@V0

2Rd14, whence

s@V0R4. ~5.15!

Combining this with Eq.~5.13! one gets the following range
of overlap of our asymptotic expansions:

R2@s@V0R4. ~5.16!

It immediately follows from here that this overlap domain
not empty only if

V0R2!1. ~5.17!

Moreover, the assumption of disregarding the potential in
Green’s function is also justified in this case sinceV;V0
!1/R2;h. In other words this bound means that the pote
tial is small in units of the inverse size of its compact su
port.

Now let us check whethers* introduced above belongs t
the overlap domain~5.16!. Note that if it is really so then
s* V in Eq. ~5.4! is much smaller than unity because in t
overlap range one hassV;sV0!R2V0!1. Hence the expo-
nent in the left-hand side of Eq.~5.4! can be expanded in
powers ofs* V, and the resulting equation fors* becomes8

E dxS 12s* V1
s
*
2

2
V21O@~s* V!3# D 5E dx~12s* VF!.

~5.18!

Its solution has the following form:

8Note that the quadratic term should be retained in the expan
of e2s

*
V if we want to get a nontrivial solution fors* .
06500
nd
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s* .2
E dxV~12F!

E dxV2

52
E dxV@1/~V2h !#V

E dxV2

.

~5.19!

Taking into account the estimates~5.14! we see that the poin
s* ;R2 belongs to the upper edge of the interval~5.16!. The
late-time expansion is fairly well satisfied here, but the sm
s expansion is on the verge of breakdown. At this level
generality it is hard to overstep the uncertainty of this e
mate. There is a hope that numerical coefficients in m
precise estimates~with concrete potentials! can be large
enough to shifts* to the interior of the interval~5.16! and
thus make our approximation completely reliable.

Bearing in mind all these reservations let us proceed w
the calculation of the effective action. Using the smallx as-
ymptotics~5.8! in the expression~5.7! we get

G..
1

64p2E d4xF2V
12F

s*
1V2S ln

1

s* V
2C11D G .

~5.20!

It is interesting to note that in the whole actionḠ5G,

1G. the Coleman-Weinberg term disappears and the fi
answer reads

Ḡ.
1

64p2 S 2
1

22v
1C222 ln 4p D E d4xV2

1
1

64p2E d4xV2 lnS E dxV2D
2

1

64p2E d4xV2 lnS E dxV
m2

V2h
VD . ~5.21!

The first term here differs fromGdiv in Eq. ~5.6! by a finite
renormalization of the localV2 term, while the two other
terms have the entirely new nonlinear and nonlocal struc
~1.14! advocated in the Introduction. The ultraviolet reno
malization mass parameterm2 makes the argument of th
second logarithm dimensionless—it plays the same role
for the Coleman-Weinberg potential, but now it enters t
new essentially nonlocal structure.

It is natural that the original Coleman-Weinberg term f
the case of small potentials~5.17! gets replaced by the othe
qualitatively new nonlocal structure. Potentials that are sm
in units of the inverse size of their support are qualitative
very different from nearly constant potentials for which t
Coleman-Weinberg action was originally derived. In the ca
of small potentials the spacetime gradients dominate o
their magnitude and, therefore, one should not expect tha
Coleman-Weinberg term would survive the inclusion of no
local structures.

on
7-10
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B. Big potential

Remarkably, the case of the small potentials~5.17! is not
the only one when one can find a nonempty domain of ov
lap where both asymptotics for TrK(s) are applicable;
namely, the opposite case of big potentials~in units of the
inverse size of their support!

V0R2@1 ~5.22!

is equally good. The key observation here is that in this c
the kernel of the Green’s function 1/(h2V) can be replaced
within the compact support ofV by 21/V(h;1/R2!V0
;V) and correspondingly

1

h2V
V~x!;2

1

V
V521, ~5.23!

E dx¹mF
1

V2h
¹mF.

R4

V0R2
. ~5.24!

Therefore, the criterion of applicability of the late-time e
pansion~5.10! becomess@1/V0

2R2. Together with Eq.~5.13!
it yields the new overlap range

R2@s@
1

V0
2R2

~5.25!

which is obviously not empty if the potential satisfies E
~5.22!.

To find s* in this case we have to solve Eq.~5.4! for the
case whens* V is no longer a small quantity. SinceV is big,
the exponent in Eq.~5.4! can be replaced by zero inside th
compact support, exp@2s*V(x)#;0, uxu<R, and by 1 out-
side it where the potential vanishes, exp@2s*V(x)#;1, uxu
.R. Rewriting the integrals in both sides of Eq.~5.4! as a
sum of contributions ofuxu<R and uxu.R, we see that the
contribution of the noncompact domain gets canceled
the equation becomes

s* Euxu<R
dxVF.E

uxu<R
dx. ~5.26!

Then it follows thats* is approximately given by the invers
of the functionVF(x) averagedover the compact support o
the potential:

s* .
1

^VF&
, ~5.27!

^VF&[

E
uxu<R

dxVF

E
uxu<R

dx

. ~5.28!

A qualitative estimate of,VF.;V0 implies that s*
;1/V0 and it belongs to the middle of the interval~5.25!.
This makes the case of big potentials fairly consistent.
the other hand, the value ofF(x) is close to zero inside the
06500
r-

e

.

d

n

potential support@see Eq.~5.23!#, so most likely the estimate
for ,VF. is smaller by at least one power of the quant
1/V0R2, which is the basic dimensionless small paramete
this case. Therefore the magnitude ofs* becomes bigger by
one power ofV0R2, s* .R2, which is again near the uppe
boundary of the overlap interval~5.25!. Similarly to the
small potential case, a more rigorous analysis is nee
~maybe for more concretely specified potentials! to account
for subtle edge effects at the boundary of the compact s
port, which might shift the value ofs* to a safe region inside
Eq. ~5.25!.

With the above estimate fors* ;R2 the magnitude ofs* V
in the expression for the infrared part of the effective act
~5.7! becomes big,s* V;s* V0;V0R2@1, and we use the
big x asymptotics in Eq.~5.8! to get the contribution

G..
1

64p2s*
E d4xVF5

1

64p2Euxu<R
dx^VF&2.

~5.29!

In this case the Coleman-Weinberg term is not canceled
complete agreement with what we would expect for big p
tentials, and the final result reads

Ḡ5Gdiv1GCW1
1

64p2Euxu<R
d4x^VF&2. ~5.30!

VI. COMMENTS

We developed a new technique for the calculation of la
time asymptotics of the heat kernel and its functional tra
Using these asymptotics we found previously unknown
sentially nonlocal and nonperturbative contributions to
effective action for two large classes of potentials with co
pact supports. Therefore, the generalization of these res
to potentials with power-law falloff, which would imply sub
tler analysis, deserves further studies.

Our results in their present form are applicable only
higher dimensionsd>3. One can easily check that the e
pression (1/h)V is not well defined in low dimensions (d
<2). Note that the logarithmic kernel of the Green’s fun
tion of the massless field is defined ind52 only up to an
additive constant. Moreover, the convolution of the Gree
function with the potential makes sense ind52 only if the
latter is the total derivative of some other function@4#, such
as, for instance, the two-dimensional curvature scalar in
Polyakov action@8#. Thus, the extension of our results
low-dimensional models, where other calculational schem
completely fail, is especially important. This will be done
a forthcoming paper@7#.

Another possibility is the generalization of our techniq
to potentials with isolated zeros in the interior of spacetim
Even more interesting is the situation when the potential
comes negativeV(x),0 in some spacetime domains. In th
case there is a tachyon instability, and it is worth derivi
quantitative criteria describing this instability in terms of th
properties ofV(x).

Finally, it is important to generalize our results to curv
7-11



ia

d
le

fo
ef
rti

.
cs
is
b
N

a

e

n

.
s

-
-

ion
r-
is

al
rs
t
e
r
-
cal

st

A. O. BARVINSKY AND V. F. MUKHANOV PHYSICAL REVIEW D 66, 065007 ~2002!
spacetimes and in addition to consider fields with nontriv
spin-tensor structure. All these issues are addressed in@7#.
The nonlocal effective action can then be applied to stu
interesting physical problems, like quantum black ho
evaporation@6#, quantum cosmology, etc.

It is worth mentioning that the developed technique
late-time asymptotics of the heat kernel could also be us
in statistical physics for calculating low-temperature pa
tion functions.
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APPENDIX A: INTEGRAL EQUATION FOR W

In this appendix we derive the integral form of the equ
tion

]W~sux,y!

]s
1

~x2y!m

s
¹mW~sux,y!2hW~sux,y!5 f ~sux,y!,

~A1!

where

f ~sux,y![V~x!2@¹W~sux,y!#2, ~A2!

and W(s50ux,y)50. With this purpose we first introduc
the new functionW̃,

W~sux,y!5e2shW̃~sux,y!. ~A3!

Using the relation

esh~x2y!me2sh5~x2y!m12s¹m ~A4!

one finds that this function satisfies the following equatio

]W̃

]s
1

~x2y!m

s
¹mW̃5esh f , ~A5!

which no longer contains theh term on the left-hand side
To write down the formal solution of this equation in term
of the ‘‘source’’ term f 5 f (sux,y), let us introduce the char
acteristic curvex̄m(t) of Eq. ~A5!, which satisfies the equa
tion

dx̄m~ t !

dt
5

~ x̄~ t !2y!m

t
, ~A6!

with the boundary conditions

x̄m~ t50!5ym, x̄m~ t5s!5xm. ~A7!

The solution of Eq.~A6! is
06500
l

y

r
ul
-

y
o.

-

:

x̄m~ t !5ym1
~x2y!m

s
t. ~A8!

The total derivative ofW̃„tux̄(t),y… with respect tot along
this characteristic curve is then equal to

d

dt
W̃„tux̄~ t !,y…5F ]

]t
1

~x2y!m

t

]

] x̄mGW̃~ tux̄,y!

5eth
2

f „tux̄~ t !,y…, ~A9!

whereh̄[]2/] x̄m] x̄m . Integrating this equation from 0 tos
with the initial conditionW̃50 at t50 and taking into ac-
count the boundary conditions~A7! for x̄(t), one gets

W̃~sux,y!5E
0

s

dteth
2

f „tux̄~ t !,y…. ~A10!

Returning to the originalW which is related toW̃ via Eq.

~A3! and taking into account thath5(t/s)2h̄ we finally
obtain

W~sux,y!5sE
0

1

daesa(12a)h
2

f ~saux̄,y!u x̄5ax1(12a)y ,

~A11!

where instead oft the new integration variablea5t/s was
introduced. This is exactly the integral form~3.3! of Eq. ~A1!
that we used in Sec. III.

APPENDIX B: COVARIANT PERTURBATION THEORY
AND LATE-TIME BEHAVIOR OF THE FUNCTIONAL

TRACE OF THE HEAT KERNEL

Here we consider the nonlocal covariant perturbat
theory of@3–5#. In CPT the functional trace of the heat ke
nel for the covariant second order differential operator
expanded as a nonlocal series in powers of the potentiV
with explicitly calculable coefficients—nonlocal form facto
Fn(sux1 ,x2 , . . . ,xn). Their leading asymptotic behavior a
larges was obtained in@4#. Here we calculate them up to th
first subleading order in 1/s inclusive for a simple operato
F̂5h2V. Then we explicitly perform an infinite summa
tion of the power series in the potential to obtain the nonlo
and nonlinear expression~4.15! for the late-time behavior of
Tr K(s).

According to@4# the heat kernel trace is local in the fir
two orders of the perturbation theory in the potential~2.18!:

Tr K0~s!5
1

~4ps!d/2E dx, ~B1!

Tr K1~s!52
s

~4ps!d/2E dxV~x!,

~B2!
7-12
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and in higher orders it reads

Tr Kn~s!5
~2s!n

~4ps!d/2n
E dx^esVn&V~x1!

3V~x2!•••V~xn!ux15•••5xn5x , n>2.

~B3!

HereVn is a differential operator acting on the product ofn
potentials

Vn5 (
i 51

n21

¹ i 11
2 12(

i 52

n21

(
k51

i 21

b i~12bk!¹i 11¹k11 , ~B4!

expressed in terms of the partial derivatives labeled by
indicesi implying that¹i acts onV(xi). It is assumed in Eq
~B3! that after the action of all derivatives on the respect
terms all xi are set equal tox. It is also assumed that th
spacetime indices of all derivatives¹5¹m are contracted in
their bilinear combinations¹i¹k[¹ i

m¹mk . The differential
operator~B4! depends on the parametersb i , i 51, . . . ,n
21, which are defined in terms of the parametersa i , i
51, . . . ,n, as

b i5a i 111a i 121•••1an ,

and the angular brackets in̂esVn& imply that this operator
exponent is integrated over compact domain in the spac
a parameters:

^esVn&[E
a i>0

dnadS (
i 51

n

a i21D exp~sVn!.

The late-time behavior of TrKn(s) is thus determined by
the asymptotic behavior of this integral ats→`, which can
be calculated using the Laplace method. To apply t
method, let us note thatVn is anegativesemidefinite opera-
tor ~this is shown in Appendix B of@4#! which degenerates to
zero at n points of the integration domain (0, . . . ,0,a i
51,0, . . . ,0), i 51, . . . ,n. Therefore the asymptotic expan
sion of this integral is given by the contribution of the co
respondingn maxima of the integrand at these points. T
integration by parts in Eq.~B3! is justified by the formal
identity ¹11¹21•••1¹n50. Using it one can show that th
contributions of all these maxima are equal, so that it
sufficient to calculate only the contribution of the pointa1
51, a i50, i 52, . . . ,n. In the vicinity of this point it is
06500
e

e

of

is

s

convenient to rewrite the expression forVn in terms of the
independent (n21) variablesa2 ,a2 , . . . ,an , the remain-
ing a1512( i 52

n a i ,

Vn5(
i 52

n

a iDi
22 (

m,k52

n

amakDmDk , ~B5!

where the operatorDm is defined as

Dm5¹21¹31•••1¹m , m52, . . . ,n. ~B6!

Substituting this expression forVn in Eq. ~B3! and ex-
panding in powers of the term bilinear ina parameters one
gets

Tr Kn~s!5
~2s!n

~4ps!d/2E dxE
0

`

dn21a expS s(
i 52

n

a iDi
2D

3S 12s (
m,k52

n

amakDmDk1••• DV1V2•••Vn .

~B7!

Here the 1/n factor disappeared due to the contribution ofn
equal terms and the range of integration ov
a2 , . . . ,an , ( i 52

n a i<1, was extended to all positive va
ues ofa i . This is justified since the error we make by e
tending the integration range is smaller by the fac
O(1/sd/2) than the leading term of Eq.~B7!.9 Since d>3
everywhere throughout the paper, this does not affect the
subleading in the 1/s term of Eq.~B7!.

The second term in parentheses of Eq.~B7! can be rewrit-
ten in terms of the derivatives with respect toDm

2 acting on
the exponential, so that

Tr Kn~s!5
~2s!n

~4ps!d/2E dxS 12
1

s (
m,k52

n

DmDk

]

]Dm
2

]

]Dk
2

1••• D E
0

`

dn21a expS s(
i 52

n

a iDi
2DV1V2•••Vn .

~B8!

In this form it is obvious that further terms of the expansi
in powers of the part ofVn quadratic ina bring higher-order
corrections of the 1/s series. Doing the integral overa here
and performing differentiations one obtains
Tr Kn~s!5
1

~4ps!d/2E dxF2s
1

D2
2
•••Dn

2
12 (

m52

n
1

D2
2
•••Dm21

2

1

~Dm
2 !2

1

Dm11
2

•••Dn
2

12 (
m52

n21

(
k5m11

n
1

D2
2
•••Dm21

2

Dm
m

~Dm
2 !2

1

Dm11
2

•••Dk21
2

Dkm

~Dk
2!2

1

Dk11
2

•••Dn
2

1OS 1

sD GV1V2•••Vn . ~B9!

9Naively, the error induced by such an extension of the integration range is exponentially small ins→`, esh, h,0, with theh acting
on some group of factors inV1•••Vn . But in view of the operator nature ofh the error bound decreases at larges by a powerlike law
esh(V•••V);1/sd/2. We are grateful to B. L. Voronov for this observation.
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The first term in the square brackets gives the lead
order term of the late-time expansion. It can be furth
transformed by taking into account that any opera
Dm defined by Eq.~B6! acts as a partial derivative onl
on the group of factorsV2V3•••Vm21Vm in the full
product V1•••Vn , DmV1•••Vn5VnVn21•••Vm11¹
3(VmVm21•••V2)V1. Therefore all the operators unde
stood asacting to the rightcan be ordered in such a way

Tr Kn~s!52
s

~4ps!d/2E dx V1

1

Dn
2

Vn

1

Dn21
2

3Vn21•••
1

D2
2

V21OS 1

sd/2D
that the labels of theDm

2 ’s can be omitted and allDm
2 can be

identified with boxes also acting to the right:

~B10!

Infinite summation of this series is not difficult to perfor
because this is the geometric progression in powers of
nonlocal operatorV(1/h) and

Tr K~s!5Tr K0~s!2
s

~4ps!d/2

3E dx(
n50

` S V
1

h
D n

V~x!1OS 1

sd/2D ,

or

Tr K~s!5
1

~4ps!d/2E dxS 12sh
1

h2V
V~x!1O~s0! D .

~B11!

The second term here looks like a total derivative. Howev
it does not vanish because this is a derivative of the nonlo
expression and the corresponding surface term does not
ish at infinity in view of the Green’s function asymptotic
This term can be rewritten as

h
1

h2V
V~x!5V~x!1V

1

h2V
V~x!5VF~x!,

~B12!

and, therefore,
06500
g
r
r

e

r,
al
n-

Tr K~s!5
1

~4ps!d/2E dx@12sVF~x!1O~s0!#,

~B13!

whereO(s0) denotes the terms subleading ins which depend
on the potential in a nontrivial way. They are given by in
nite resummation overn of the second and third terms i
square brackets of Eq.~B9!. Remarkably, this summation ca
again be done explicitly. In this case one has to sum mult
geometric progressions.

Indeed, the second term of Eq.~B9! gives rise to the se-
ries

~B14!

By summing the two geometric progressions with resp
to independent summation indices 0<n2m,` and
0<m22,`, one finds that this series reduces to

2

~4ps!d/2E dxV
1

~h2V!2
V~x!, ~B15!

which after the integration by parts amounts to

2

~4ps!d/2E dxS 1

h2V
V~x! D 2

5
2

~4ps!d/2E dx@12F~x!#2.

~B16!

Similarly, the third term of Eq.~B9! gives rise to a tripli-
cate geometric progression which after summation and i
gration by parts reduces to

2

~4ps!d/2E dxV(
i 50

` S 1

h
VD i 1

h
¹m

1

h

3(
j 50

` S V
1

h
D j 1

h
¹m

1

h (
l 50

` S V
1

h
D l

V~x!

52
2

~4ps!d/2E dx@¹mF~x!#
1

h2V
V

1

h
¹mF~x!.

~B17!

Taking into account here that

1

h2V
V

1

h
5

1

h2V
2

1

h
~B18!

one finds that the sum of Eqs.~B16! and ~B17! is equal to
7-14
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2

~4ps!d/2E dxS ~12F!22¹mF
1

h2V
¹mF1¹mF

1

h
¹mF D

52
2

~4ps!d/2E dx ¹mF
1

h2V
¹mF, ~B19!

where the cancellation of the first and third terms takes pl
after rewriting¹mF in the third term as¹m(F21) and inte-
.

-

06500
e

grating it by parts.10 Together with Eq.~B13! the contribu-
tion ~B19! forms the nonlinear and nonlocal late time expre
sion for the heat kernel trace~4.15! up to the first subleading
order in 1/s inclusive.

10Straightforward integration by parts in¹mF(1/h)¹mF is im-
possible becauseF(x) does not vanish atuxu→`, while F(x)21
does.
um
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