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SU(1,1) thermal group of bosonic strings andD-branes
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All possible Bogoliubov operators that generate the thermal transformations in thermo field dynamics form
anSU(1,1) group. We discuss this construction in the bosonic string theory. In particular, the transformation
of the Fock space and string operators generated by the most g&té{rbll) unitary Bogoliubov transfor-
mation and the entropy of the corresponding thermal string are computed. Also, we construct the thermal
D-brane generated by tifeU(1,1) transformation in a constant Kalb-Ramond field and compute its entropy.
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[. INTRODUCTION As discussed 47,48, it is possible to define various
Bogoliubov operators for any theory. They form an oscillator
The physical and geometrical propertiedbranes have representation of th8U(1,1) group for bosons an8U(2)
been under intense investigation for some time. In particularfor fermions. If all these operators are taken into account, the
the statistics ofD-branes has attracted certain attentionthermal transformation is generated by a linear combination
mainly when formulated in the low energy limit of string of generators o5U(1,1). The coefficients of the generators
theory[1-12]. Progress has been made in understanding thdetermine if the transformation is unitary or not and if the
thermodynamics of black holes and string gagE3—31. generator satisfies the basic requirements of TFD, like the
Since in this limit theD-branes are solitons ¢supeygravity, tilde invariance of the most general thermal generator and of
the statistics oD-branes has been naturally formulated in thevacuum[47,48. The aim of this paper is to investigate this
Matsubara approach to quantum fields at finite temperaturgroup in the case of the closed bosonic string and bosonic
However, despite the success achieved at low energies, up B>brane. This represents a part of the construction of a TFD-
now there has been little progress in understanding the mbased formulation of thermal bosonic vacuum of string
croscopic description and the statistical properties otheory and thermaD-branes.
D-branes in the perturbative limit of string theory where the The outline of the paper is as follows. In Sec. Il we dis-
D-branes are described by coherent states in the Fock spacess theSU(1,1) group for the case of the bosonic string and
of the closed string sector. Because of this interpretation, it isonstruct the most gener8lU(1,1) thermal transformation.
natural to seek a construction of thermal branes in the frameFhe choice of the parameters in the general Bogoliubov gen-
work of thermo field dynamics in which the statistical me- erator is taken such that the thermal transformation will be
chanics is implemented by a thermal Bogoliubov operatownitary. With this choice we compute the entropy of the
acting on the Fock space and on the operators. Along thistring. In Sec. Il we give the boundary conditions and the
line of thought, a new approach to thermatbranes has D-brane state under the general unitary thermal transforma-
been proposed i132—-35 by using the basic concepts of tion and compute the entropy of tiebrane. In Sec. IV we
thermo field dynamicgTFD) [36] (which is known to be discuss the results and the main problems raised by imple-
equivalent to the Matsubara formalism at thermodynamicaimenting theSU(1,1) thermal group.
equilibrium). The construction fronmi32—353 has the advan-
tage of maintaining explicitly the interpretation Dfbranes
as coherent boundary states in the Fock space of the closed!l. THERMAL SU(1,1) GROUP FOR CLOSED STRING
bosonic sector. The very interpretation is used to define the
D-branes at finite temperatuf87—4§.
One of the crucial ingredients of TFD is the thermal Bo-

Let us consider a closed bosonic string in the Minkowski
space-time and in the light-cone gaug®+ X?°. The most

goliubov transformation that maps the theory from zero t general solution of the equations of motion with the periodic

7 . oundary conditions<*(7,0)=X*(7,7) has a Fourier ex-
finite temperature. In pamcular, one can co_ns.tru.ct a thermapansion. Upon the quantization, the Fourier coefficients are
vacuum|0(By))) annihilated by thermal annihilation opera- interpreted as operators on the Fock space of the closed
tors and one can EXpress the average value of any.ob Servat%'t?ing. They must obey the canonical commutation relations
Q as the expectation value in the thermal vacuum:

Z7 poTip Q1 = (0(BDIQOMBDY., () [l al]=Ko" 8 o, )

wherep is the distribution function; = (kgT) %, andkg

is the Boltzmann’s constant. In order to fulfill the above re-where « denotes the operators for the right-hand moving
quirement, the vacuum should belong to the direct producimodes. Similar commutation relations hold for the left-hand
space between the original Fock space by an identical copmoving modesB, and the right modes and left modes are
of it denoted by a tildésee below, which justifies the nota- independenf49]. It is useful to introduce the oscillator op-
tion used for vectors. erators
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1 1 In order to construct a finite temperature model of string,
A= —af, AT=—a*, one has to act on zero temperature Fock space and oscillator
vk Vk operators with the Bogoliubov operators which produce a
thermal noisd47].
1
— T
Bi = ﬁﬁff' Bk _T “« ¥V k>0 A. Thermal Bogoliubov transformation

(3 The first step in constructing the string theory at finite

. . ~ temperature is to provide a thermal vacuum. This can be
Following the TFD construction, we construct the directoptained by acting on the extended system vac(@inwith
product between the Fock space of the string and an |dent|c%llny operator that(i) mixes the operatoraf*, 'A;kﬁr for the

fit. Th titi f to th ndph ~ .
copy ol € quantities referring to the secdodphysica) ight modes and{*, B/ for the left modesfii) commutes

f st denoted by a tilde. Thus the extended
gggzeois zlr\llr;gr;] S;e enoted by a tide. Thus the exten ewith the Hamiltonian(8) and (iii ) takes the form of a Bogo-

liubov transformation[47]. The right/left transformations
T=He T @) should be independent from the algeli@. The general
B ' form of the Bogoliubov transformation that fixes the form of

- . . _ the generator is given by the following relatip#7,48:
The vectors ofH are constructed by acting with the string

operators on the vacuum state A’ AN A
el
- — A
0))=10))al0)}5=(10)al 0)a) (10}l 0))
=(10)4l0)p)(10)4[ 0)), (5) (AT -A)=(AT-R)B, ©

where the vacua of the right-left Fock spaces are given by where[3 is a 2x2 complex unitary matrix

— u
0))4=10)45T0),= 10,0, B:<v* u) uP-loP=1 o

[0)) g= |0)B®’|7)33= 10,004, (6) andG is the generator of the transformation, caltbeé Bo-
goliubov operator The operators that satisfy the relatid®
the original string and its copy with each other. Therefore theand (10) have the following forn{48]:
operator algebra of the extended system is given by the fol-

lowing relations: 9 = 01, (A At AL A,
[AL ART=[AL ART]= Scmm™”s =6, (By-By+B]-B)),
[AL AT =[ AL AT =[AL, Bm]—...:o_(7) ggk:igzk(Ak.ﬂk_"Al.Ab,
The Hamiltonian of the extended system is constructed by g'gk:iazk(Bk'Ek—Ei'Bb, (13)

demanding that the thermal vacuum, which will be con-
struqted Igter, be ir_1variant undef time tra.nsla'tion. This can be 9% = 05 (AE~Ak+'~°~l~Z~k+ St 1Y),
obtained if we define the following Hamiltonian operator:

H = H-H 95~ 03, (Bi- B+ BL- B+ dtr ),
where the indexy refers to the right-moving modes aydto
o the left-moving modes, respectively, and t#is are real pa-
_ E n(AT A, +B‘r B, AT A, - BT B). (8 rameters depending on the temperature which, for conve-
n>0 " nience, have been included in the operators. We assume that

they are monotonous increasing functionsTorit is easy to
The relation(8) shows that, if the new vacuum state is time verify that the generatoréll) satisfy theSU(1,1) algebra
invariant, then the copy of the string is nonphysical. Indeed,

adding the second Fock space corresponds to furnishing new[95%,95%1= =10 1,057, [95.7.05.1=10 507",
thermal degrees of freedom rather than dynamical degrees of _

freedom, necessary for discussing the statistics. Conse- (957,01, 1=1035195", (12
qguently, the physical observables are defined by operators

without a tilde. where we have defined
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0; 6, and thep sector, respectively. Consider the right-hand ther-
O =2 KK (13  mal vacuum. By applying the disentanglement theorem for
O, SU(1,1) [50,51], one can write the thermal vacuum under

the following form:
As we can see from Eq11), the most general thermal trans-

formation takes the following form oy b g
— 1 (A A @lod(Tz) ) (A - At Ay At Sidr 77
10(6)) el'1, Ak AW glog(3 )( 1Y)
k
G=2, (G¢+GP), (14) 3
k x el2,(Ax-AK) (20)

where the right/left generators are given by the relations . P
% el'1,(Bk Bl glod('3 ) (By - B+ By Byt Sdr )

Glil:)\lkﬁAl'Al_)\ZkAk'hA‘k

x el2(Bi B0 oY), (21)
+ Nz (AL AFAL A+ Str 7). (15)
ST T TR Tk where the coefficients of various generators are given by the
~ ~ relations
GE=\1,Bl-B{—Np BBy
o~ —\q, Sinh(iAy)
+)\3k(BIBk+ BlBk‘f‘ 5kktr 7]MV), (16) Fl k

< Ay COSHiA ) +Ng SINMIAY)’
and the coefficients represent complex linear combinations

of #'s Ag, sinh(i Ay)
: x Lo = R CosRiAY + Ny SNMiAL)’ (22)
)\lk: ﬁlk— | sz, )\Zk: - )\1k, )\3k: 03k' (17) k k 3k k
The operatol14) generates the thermal transformation. The Ay
dependence on temperature is contained in the complex pa- I's = A, COSHIAL T ha SINMIAL)’ 23
rameters\. K
There is some arbitrariness in choosing the parameéters d
This freedom can be used to fix the type of transformation2"
There are two conditions that are imposed on a general ther- 9 2
mal transformation:(i) unitarity and(ii) invariance under A z()‘3k+)‘1k)‘2k)' (24)
tilde transformation that acts on any arbitrary operator as
follows: Since the vacuum at zero temeprature is annihilated\py
and A/, the only contribution to the thermal vacuum is

(AB)NZA'B, (aA)Nza*’A, (18 given by

wherea is a complex number and the asterisk is the complex _ _
conjugation. The invariance under tilde operation guarantees |0( ) )= H (rsk)wkktrn“”eflk(Al'Abeflk(Bl'Bb|o>>_

the invariance of the thermal vacuum under the same opera- k

tion. However, working with the therma&U(1,1) implies (25

choosing one type of transformation. The unitarity and the ) )
tilde invariance are not always simultaneously compatible! N€ thermal vacuum of the left-moving modes is constructed

[47,48. In general, the two conditions will select only the N the same way. The total vacuum at finite temperature is the

generatog,, from the three generators above and reduce thdirect product between the and 8 vacua. The string opera-
problem to the TFD with one generator. In what follows Wetors are mapped to finite temperature by the corresponding

will stick to the unitarity condition as being the most natural Bogoliubov generators,
one for the system at hand, i.e., string theory. The other u G A G - iGY R G
choice will be commented on in the final section. AL(0)=e kA, Al(8)=e PrAek,

B. Thermal vacuum and thermal string operators Bi( 0):e*iG€B{jein, B( 9)=e*‘Gf~B{(‘ein,

The thermal vacuum of the system at finite temperature is (26)

obtained by acting on the vacuum at zero temperatGye

with the operatoX14) [36] Similar relations hold for the creation operators. One can

easily show that the thermal operators satisfy the same ca-
|o(9)>>:e*iG|o>>, (19 nonical commutation relations as the operators at zero tem-
perature. Alternatively, one can organize the operators in
Since the left/right-moving terms commute among them-thermal doublet$47,48 and obtain the thermal operators by
selves, there are two distinct contributions from theector  acting on the doublet witl8 matrix
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AL(6) Al . Nho,
A1 (0) =By Rpt)’ (27) KP= —EK B! -Bylog| g ¥ sinkP(iAy)
where the explicit form of5, operators is given by the fol- ER.PY
lowing relation: — By Bllog 1+g A2 sintP(iAy) | |. (33
k
i i |)\3 |)\1
B=coshiA )1+ M e ) , (28)  With this definition of the entropy operator one recovers the
(A \iNy  —ikg entropy of[33] in the case when there is a single transfor-

mation generated bgzk, that is When01k= 05 =0. Also,
where is the identity matrix. With all these elements at yis choice gives the operator {36] whengza. One ob-

hand, one can construct a solution of the string equations qhjns the entropy of the bosonic closed string as the average
motion with periodic boundary conditions at finite tempera- ¢ Eq. (31) in the thermal vacuum

ture. This reduces to replacing the string operators by ther-

mal string operators. Since the later satisfy the usual canoni- s=k_((0(6)|K|0(6)))
cal commutations, the equations of motion and its solution

satisfy the Virasoro algebra with the following thermal gen-

erators =2ks§k: [(g+nlog(1+ny) —nlog(ng) ], (34)
N 1
Li(0)=5 2 a0 an(0), where
ke Z
SMY:
1 = < Xsink(i A 3

LAO)=5 3 B-OBrn(0), (29 " g[ az SR 39
which guarantees that we are working with thermal string€2nd
(32,33, o I

9= (0[Ax- A]0)=(O[By- B, |0} (36)

C. Entropy of thermal strin . .
by g Note that the entropy operator for the bosonic closed string

The entropy operator is defined such that its average valugas been constructed as the sum between the right- and the
is proportional to the entropy of the bosonic field at thermalieft-moving modes treated as two independent subsystems of
equilibrium divided by the Boltzmann’s constd@6]. From  the string. Thus the entropy operator obeys the extensivity
Eq. (1), the entropy of the bosonic field can be computed asgroperty of the physical quantity. Also, from E@4), we see
the expectation value of the entropy operator in the thermahat entropy of the bosonic closed string goes to zero when

vacuum the system is in equilibrium, that is
1 —(kaT) Lo
PRGINEE)) oS0 a7
B K e eD To
- zk: [(1+n)log(1+ny) —nlog(n ], and take the limiff—0. This guarantees that third principle
of the Thermodynamics is satisfi¢82].
(30)
wheren, is the density of particles. Consequently, one de- IIil. BOUNDARY STATES UNDER SU(1,1)
fines the entropy operator for the bosonic string as TRANSFORMATION
= 1 I - i a --
K=K+ KA, (31) At T=0, a rigid Dp-brane is located along tHe<?} di

rections in the target space=1,2, . .. p at{X'=y'}, where
i=p+1,...,24 in thepresence of the constant Kalb-
Ramond field=,,. TheDp-brane is described by a superpo-
sition of coherent boundary states in the Fock space defined
by the boundary conditions in the closed string sector. In

where the entropies of the right- and left-moving modes ar
given by the following relations:

ANy ! .
o + K2 o order to find the thermaD p-brane, one has to write down
K __; Ax-Adog| g A2 sint? (i Ay) the boundary conditions at finite temperature. This can be
“ achieved by interpreting the string coordinates and their de-
N Ao rivatives as operators and then by acting on them with the
—A-Allog| 1+g kz “sinff(iA,) ||, (32  Bogoliubov transformation. In the case when one considers
k just a single Bogoliubov generat$B2,33, the boundary
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conditions at finite temperature admit solution. In this sectiorthe one of the tilde system and identical to the normalization
we are going to investigate the case when the thermal trangonstant aff =0 [33]
formation is generated by the gene®dll(1,1) generator, i.e.,

by the Bogoliubov operatoil4). Np(F,8)=Ny(F)= J—de(8+2ma’F). (45)

A. Thermal boundary conditions and boundary states Note that EC](45) corresponds to the first solution found in
[33]. We interpret this solution as describing a thermal
Dp-brane and postpone to Sec. IV the discussion of the de-
generacy of thermal brane in this case.

The boundary conditions in the closed string sector at
=0 are given by the following relations:

(07Xa(7,0')+|:ba(90.xb( Tio-))|7'20201 (38)
B. The entropy of thermal D-branes

X(1,0)=y'|=0=0. (39 The thermalD-brane given by Eq(43) represents a su-

One can obtain the corresponding relations for the Seconeerpos?tion of coherent states in the Fock space of the ther-
copy of the string from Eq(39) by replacing the string co- _mal string. Therefore ca_llculatmg the entropy of thérane
ordinates by the coordinates of the tilde string. In order tdS €duivalent to computing the average value of the entropy

find the boundary conditions at finite temperature, one Subgperator(31) in the state(43). One way Of. doing that is by
stitutes the general solution of the equations of motion in EqEXPressing all the operators and states in terms of operators
(39) and applies the general Bogoliubi): and states aT #0. To this end we need the inverse of the

Bogoliubov matrix(28) which has the following form

X“(9)=e 1CxXHel®, (40) _ .
. , sinh(iAy) [ s Ay
The thermal boundary conditions in terms of string operators By “=cosiiA)I—————| . : . (49
.. g (|Ak) |)\2 _|)\3
at finite temperature represent a set of constraints on the k k

Fock space of the extended system of the following form ) _ _
[32,33: By using Eq.(46), we can write the entropy operatir* in

. . terms of the thermal operators
[(I+P)5A(0) + 1+ )BT (0)]]B(8) )=0,

R R “_ , sinh(iAy) "
[(1+ T)3AS (0)+ (1+ T)3BY 0)11B(0)) =0, A= | costi A= Aa AlO)
i _pit — sinh(i A ~
[An(6) =By (0)][B(6))=0, _ *ik <\ LAE0),
[AL(6)—Br(8)][B())=0,
(41) o _ sinh(iA) ot
for anyn>0. The coordinates of the center of mass and their Al =| costtiA) = Ay Nak | AL (0)
conjugate momenta do not transform under the Bogoliubov o
transformation, neither does the constant Kalb-Ramond field _sm}‘(lAk) Mo RE(O) 47
[32,33. Then, we have to add to the ddtl) the following Ay 2k A
relations:
aa Al Then, the entropy in the right-moving sector has the follow-
p |B(0)>>:[q -y ]|B( 0)»:0- (42 ing form:
Similar boundary conditions should be imposed for the tilde Ny
string and the thermdd p-brane| B( 6) )) must satisfy the two (o(o)IK[0(O))=— Ek: [1+2n]Adog| 7~ ~

of them. It is easy to see that a general solution of the equa-
tions (41) and(42) has the following form
+nylog(ny) — (g+nylog(1+ny)

IB(6)),=N2(F,0)6€)(G-y) 1) Q)

- . (48)
_ T oo S At Bt where
xe~ 2, ANOMBI(Dg- 2 A MBI o g)), "~
1 . .
43) ne=g AL sinFP(iAy), (49)
where as in Eq.(35), and

1-i\® 24
Mé=|| —| ;=4 (44) Ak=<<B(0) > NE(O) B(0)>>. (50)

I+F b n=1

andNy(F,6) is the thermal normalization constant equal to In order to calculate the action of the thermal number opera-
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tor, we expand the exponentials in the coherent state. Sinaaitary trasformation in order to preserve the structure of the

all the operators are at nonzero temperature, we ignoré the Hilbert space at zero temperature and the usual interpretation
symbol in the notation. For example, by expanding the nonef quantum mechanics. However, the tilde invariance of the
tilde part of the coherent state we obtain the following ex-thermal vacuum of the theory is lost with this choice, which
pression for the4, : is an undesirable feature in TFD. The solution is to construct
the thermal vacuum as the direct product between the origi-

. "y nal thermal vacuum, i.e., the vacuum obtained by acting with

It % - the Bogoliubov transformation on the vacuum at zero tem-
e® eSH H 2 T(A#M#VB;)l perature and its conjugate under the tilde operation. In this

case, the thermal vacuum factorizes in a tilde and a nontilde

0(0)>> part as does the vacuum at zero temperature. By using a

n=1p v =0

BZE2<< 0(6)

IRINIP> L apm, e

s=0 S

X|Np, nonunitary transformation, one would have lost states from
the Fock space and the isomorphism between the Fock space
(51 and its dual conjugate. The normalization constant of the

D-brane state would have changed and we would have ex-

Whereé represents the exponential operator for the thermalpected that different bra coherent states satisfied the bound-
tilde part of the brane state aid=N_(F,0) 5%)(q—y). By ary conditions. With two nonisomorphic bra and ket states it
expanding the products in E1), f)ne' is left with the ex- would not have been possible to take the average of the

pression ofA4,, in terms of states that describe the number Ofentrolpybopertator ]',n on@t.-branﬁl séate.'Notlte that thle ger_lteral
excitations of string in each direction of space-time and fopogo Iubov' transtormation will be simuttaneously unrtary
each oscillation mode. These states are orthogonal and d generated by a tilde invariant Bogoliubov operator, im-

unit norm and after some short but tedious algebra one ¢ ying that two generators dBU(1,1) do not appear in it.
show that Eq(50) has the following form: herefore we might conclude that unless the thermal vacuum

is the product of the original thermal vacuum with its tilde
conjugate, there is n8U(1,1) thermal group whose general

~ 2(24:24 transformation will be compatible with the unitarity of quan-
BB’ 11224 ot 11224 242 > (M2g29 * - tum mechanics and the tilde invariance of TFD.
et s s, We have obtained the entropy of the closed string in Eq.
PREI 962424 PREI (34) and the entropy of the bosonB-brane as twice the
X(My) " (Mag29 " ---(M11) "sp”. (52 entropy of the right-mode&8). An analysis of this expres-
sion in various temperature limits should be performed in an
Here, sf*"=0,1,..., i=12,--,n, n—w, and p,c  approximation or a numerical scheme for thie. However,
=1,...,24represent the indices for all excitatiaof all if one supposes that thgs are monotonous functions at least

frequenciesn and in all space-time directions. The expres-at low temperatures, then, by taking,~ € for i=1,2,3, we
sion (52) is not normalized. It contains the full dependencesee that ag— 0 the entropy goes as
on the Kalb-Ramond field in the entro#8). The tempera-
ture dependence of entropy is contained only inrthérms,
more exactly in\’'s. However, it is not always possible to > (Am+ SmmTr8Y),
write down the explicit form of\’s as functions of tempera- m
ture even in the case of a single generatdhe relation
leading to this function is obtained by equating the corre-which in a normalized theory should be a finite constant.
sponding coefficient in the Bogoliubov transformation to theThjs represents an improved entropy at low temperatures
statistical distribution in the thermal vacuuf@6].) In this  compared with the entropy given [84] which is divergent
case, approximation or numerical methods should be usegh that limit.
The total entropy of th®-brane is obtained as twice the Eq. Note that the methods used for computing hérane
(48) since the left modes contribute with the same amoungntropy in[34] and in the present paper are slightly different
to It. from the standard TFD. Indeed, since féranes are states
in the Fock space of the bosonic string vacuum different
IV. FINAL DISCUSSIONS AND CONCLUSIONS from the vacuum state (_)f the_ _confor_mal field theory, the en-
tropy of D-brane was identified with the entropy of the
To conclude, we have analyzed tl#&U(1,1) thermal closed string in this coherent boundary state. A standard TFD
group formed by all possible unitary thermal Bogoliubov would require one to identify the verp-brane with some
generators in the case of the bosonic string Brgtane. The  vacuum state in a field theory, but no such approach to
reason for this analysis is that we have constructed the theD-branes is known at present. Also, as noted38], our
mal brane and string in the framework of TFD where approach to thermal strings is different from the one in lit-
SU(1,1) represents the most general structure underlying therature in which understanding the ideal case of the bosonic
Bogoliubov transformations. By choosing a certain type ofstrings and the string field theory were the main motivations
parametersd the most general Bogoliubov transformation to implement TFD in ensembles of strings and in string field
can be fixed to be unitary or nonunitary. We have chosen ¢heory [53-58, much as was done for the standard field
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theory. In our approach, due to the interpretation of branetion. If we impose the tilde invariance as is done in TFD, the

the TFD has been applied to the bosonic vacuum of stringlegeneracy obD-brane solutions should be removed.

theory, i.e., to the two-dimensional conformal field theory

describing it, rather than to ensembles of strings or string ACKNOWLEDGMENTS
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