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SU„1,1… thermal group of bosonic strings andD-branes

M. C. B. Abdalla, A. L. Gadelha, and I. V. Vancea
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All possible Bogoliubov operators that generate the thermal transformations in thermo field dynamics form
an SU(1,1) group. We discuss this construction in the bosonic string theory. In particular, the transformation
of the Fock space and string operators generated by the most generalSU(1,1) unitary Bogoliubov transfor-
mation and the entropy of the corresponding thermal string are computed. Also, we construct the thermal
D-brane generated by theSU(1,1) transformation in a constant Kalb-Ramond field and compute its entropy.
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I. INTRODUCTION

The physical and geometrical properties ofD-branes have
been under intense investigation for some time. In particu
the statistics ofD-branes has attracted certain attenti
mainly when formulated in the low energy limit of strin
theory@1–12#. Progress has been made in understanding
thermodynamics of black holes and string gases@13–31#.
Since in this limit theD-branes are solitons of~super!gravity,
the statistics ofD-branes has been naturally formulated in t
Matsubara approach to quantum fields at finite temperat
However, despite the success achieved at low energies,
now there has been little progress in understanding the
croscopic description and the statistical properties
D-branes in the perturbative limit of string theory where t
D-branes are described by coherent states in the Fock s
of the closed string sector. Because of this interpretation,
natural to seek a construction of thermal branes in the fra
work of thermo field dynamics in which the statistical m
chanics is implemented by a thermal Bogoliubov opera
acting on the Fock space and on the operators. Along
line of thought, a new approach to thermalD-branes has
been proposed in@32–35# by using the basic concepts o
thermo field dynamics~TFD! @36# ~which is known to be
equivalent to the Matsubara formalism at thermodynam
equilibrium!. The construction from@32–35# has the advan-
tage of maintaining explicitly the interpretation ofD-branes
as coherent boundary states in the Fock space of the cl
bosonic sector. The very interpretation is used to define
D-branes at finite temperature@37–46#.

One of the crucial ingredients of TFD is the thermal B
goliubov transformation that maps the theory from zero
finite temperature. In particular, one can construct a ther
vacuumu0(bT)&& annihilated by thermal annihilation opera
tors and one can express the average value of any obser
Q as the expectation value in the thermal vacuum:

Z21~bT!Tr@r Q# 5 ^̂ 0~bT!uQu0~bT!&&, ~1!

wherer is the distribution function,bT 5 (kBT)21, andkB
is the Boltzmann’s constant. In order to fulfill the above r
quirement, the vacuum should belong to the direct prod
space between the original Fock space by an identical c
of it denoted by a tilde~see below!, which justifies the nota-
tion used for vectors.
0556-2821/2002/66~6!/065005~7!/$20.00 66 0650
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As discussed in@47,48#, it is possible to define various
Bogoliubov operators for any theory. They form an oscilla
representation of theSU(1,1) group for bosons andSU(2)
for fermions. If all these operators are taken into account,
thermal transformation is generated by a linear combina
of generators ofSU(1,1). The coefficients of the generato
determine if the transformation is unitary or not and if t
generator satisfies the basic requirements of TFD, like
tilde invariance of the most general thermal generator an
vacuum@47,48#. The aim of this paper is to investigate th
group in the case of the closed bosonic string and boso
D-brane. This represents a part of the construction of a TF
based formulation of thermal bosonic vacuum of stri
theory and thermalD-branes.

The outline of the paper is as follows. In Sec. II we d
cuss theSU(1,1) group for the case of the bosonic string a
construct the most generalSU(1,1) thermal transformation
The choice of the parameters in the general Bogoliubov g
erator is taken such that the thermal transformation will
unitary. With this choice we compute the entropy of t
string. In Sec. III we give the boundary conditions and t
D-brane state under the general unitary thermal transfor
tion and compute the entropy of theD-brane. In Sec. IV we
discuss the results and the main problems raised by im
menting theSU(1,1) thermal group.

II. THERMAL SU„1,1… GROUP FOR CLOSED STRING

Let us consider a closed bosonic string in the Minkow
space-time and in the light-cone gaugeX06X25. The most
general solution of the equations of motion with the perio
boundary conditionsXm(t,0)5Xm(t,p) has a Fourier ex-
pansion. Upon the quantization, the Fourier coefficients
interpreted as operators on the Fock space of the clo
string. They must obey the canonical commutation relatio

@ak
m ,a l

n#5kdmndk1 l ,0 , ~2!

where ak denotes the operators for the right-hand movi
modes. Similar commutation relations hold for the left-ha
moving modesbk and the right modes and left modes a
independent@49#. It is useful to introduce the oscillator op
erators
©2002 The American Physical Society05-1
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Ak
m5

1

Ak
ak

m , Ak
m†5

1

Ak
a2k

m ,

Bk
m5

1

Ak
bk

m , Bk
m†5

1

Ak
b2k

m ; k.0.

~3!

Following the TFD construction, we construct the dire
product between the Fock space of the string and an iden
copy of it. The quantities referring to the second~unphysical!
copy of string are denoted by a tilde. Thus the extend
space is given by

Ĥ5H^ H̃. ~4!

The vectors ofĤ are constructed by acting with the strin
operators on the vacuum state

u0&&5u0&&au0&&b5~ u0&au 0&̃a)~ u0&bu 0&̃b)

5~ u0&au0&b)~ u0&au 0&̃b), ~5!

where the vacua of the right-left Fock spaces are given

u0&&a5u0&a ^ u 0&̃a5u0,0&a ,

u0&&b5u0&b ^ u 0&̃b5u0,0&b , ~6!

the original string and its copy with each other. Therefore
operator algebra of the extended system is given by the
lowing relations:

@Ak
m ,Am

n†#5@Ãk
m ,Ãm

n†#5dkmhmn,

@Ak
m ,Ãm

n #5@Ak
m ,Ãm

n†#5@Ak
m ,B̃m

n #5•••50.
~7!

The Hamiltonian of the extended system is constructed
demanding that the thermal vacuum, which will be co
structed later, be invariant under time translation. This can
obtained if we define the following Hamiltonian operator:

Ĥ 5 H2H̃

5 (
n.0

`

n~An
†
•An1Bn

†
•Bn2Ãn

†
•Ãn2B̃n

†
•B̃n!. ~8!

The relation~8! shows that, if the new vacuum state is tim
invariant, then the copy of the string is nonphysical. Inde
adding the second Fock space corresponds to furnishing
thermal degrees of freedom rather than dynamical degree
freedom, necessary for discussing the statistics. Co
quently, the physical observables are defined by opera
without a tilde.
06500
t
al

d

e
l-

y
-
e

,
ew
of
e-
rs

In order to construct a finite temperature model of strin
one has to act on zero temperature Fock space and osci
operators with the Bogoliubov operators which produce
thermal noise@47#.

A. Thermal Bogoliubov transformation

The first step in constructing the string theory at fin
temperature is to provide a thermal vacuum. This can
obtained by acting on the extended system vacuum~5! with
any operator that:~i! mixes the operatorsAk

m , Ãk
m† for the

right modes andBk
m , B̃k

m† for the left modes;~ii ! commutes
with the Hamiltonian~8! and~iii ! takes the form of a Bogo-
liubov transformation@47#. The right/left transformations
should be independent from the algebra~7!. The general
form of the Bogoliubov transformation that fixes the form
the generator is given by the following relation@47,48#:

S A8

Ã†8D 5e2 iGS A

Ã†D eiG5BS A

Ã†D ,

~A†82Ã8!5~A†2Ã!B 21, ~9!

whereB is a 232 complex unitary matrix

B5S u v

v* u* D , uuu22uvu251, ~10!

andG is the generator of the transformation, calledthe Bo-
goliubov operator. The operators that satisfy the relations~9!
and ~10! have the following form@48#:

g1k

a 5u1k
~Ak•Ãk1Ãk

†
•Ak

†!,

g1k

b 5u1k
~Bk•B̃k1B̃k

†
•Bk

†!,

g2k

a 5 iu2k
~Ak•Ãk2Ãk

†
•Ak

†!,

g2k

b 5 iu2k
~Bk•B̃k2B̃k

†
•Bk

†!, ~11!

g3k

a 5u3k
~Ak

†
•Ak1Ãk

†
•Ãk1dkktrhmn!,

g3k

b 5u3k
~Bk

†
•Bk1B̃k

†
•B̃k1dkktrhmn!,

where the indexa refers to the right-moving modes andb to
the left-moving modes, respectively, and theu ’s are real pa-
rameters depending on the temperature which, for con
nience, have been included in the operators. We assume
they are monotonous increasing functions onT. It is easy to
verify that the generators~11! satisfy theSU(1,1) algebra

@g1k

a,b ,g2k

a,b#52 iQ123g3k

a,b , @g2k

a,b ,g3k

a,b#5 iQ231g1k

a,b ,

@g3k

a,b ,g1k

a,b#5 iQ312g2k

a,b , ~12!

where we have defined
5-2
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Q i jk[2
u i k

u j k

ukk

. ~13!

As we can see from Eq.~11!, the most general thermal tran
formation takes the following form

G5(
k

~Gk
a1Gk

b!, ~14!

where the right/left generators are given by the relations

Gk
a5l1k

Ãk
†
•Ak

†2l2k
Ak•Ãk

1l3k
~Ak

†
•Ak1Ãk

†
•Ãk1dkktrhmn!, ~15!

Gk
b5l1k

B̃k
†
•Bk

†2l2k
Bk•B̃k

1l3k
~Bk

†
•Bk1B̃k

†
•B̃k1dkktrhmn!, ~16!

and the coefficients represent complex linear combinati
of u ’s

l1k
5u1k

2 iu2k
, l2k

52l1k
* , l3k

5u3k
. ~17!

The operator~14! generates the thermal transformation. T
dependence on temperature is contained in the complex
rametersl.

There is some arbitrariness in choosing the parameteru.
This freedom can be used to fix the type of transformati
There are two conditions that are imposed on a general t
mal transformation:~i! unitarity and ~ii ! invariance under
tilde transformation that acts on any arbitrary operator
follows:

~AB!;5ÃB̃, ~aA!;5a* Ã, ~18!

wherea is a complex number and the asterisk is the comp
conjugation. The invariance under tilde operation guaran
the invariance of the thermal vacuum under the same op
tion. However, working with the thermalSU(1,1) implies
choosing one type of transformation. The unitarity and
tilde invariance are not always simultaneously compati
@47,48#. In general, the two conditions will select only th
generatorg2k

from the three generators above and reduce
problem to the TFD with one generator. In what follows, w
will stick to the unitarity condition as being the most natu
one for the system at hand, i.e., string theory. The ot
choice will be commented on in the final section.

B. Thermal vacuum and thermal string operators

The thermal vacuum of the system at finite temperatur
obtained by acting on the vacuum at zero temperature~5!
with the operator~14! @36#

u0~u!&&5e2 iGu0&&. ~19!

Since the left/right-moving terms commute among the
selves, there are two distinct contributions from thea sector
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and theb sector, respectively. Consider the right-hand th
mal vacuum. By applying the disentanglement theorem
SU(1,1) @50,51#, one can write the thermal vacuum und
the following form:

u0~u!&&5)
k

eG1k
(Ãk

†
•Ak

†)elog(G3k
)(Ak

†
•Ak1Ãk

†
•Ãk1dkktrhmn)

3eG2k
(Ak•Ãk) ~20!

3eG1k
(B̃k

†
•Bk

†)elog(G3k
)(Bk

†
•Bk1B̃k

†
•B̃k1dkktrhmn)

3eG2k
(Bk•B̃k)u0&&, ~21!

where the coefficients of various generators are given by
relations

G1k
5

2l1k
sinh~ iLk!

Lk cosh~ iLk!1l3k
sinh~ iLk!

,

G2k
5

l2k
sinh~ iLk!

Lk cosh~ iLk!1l3k
sinh~ iLk!

, ~22!

G3k
5

Lk

Lk cosh~ iLk!1l3k
sinh~ iLk!

, ~23!

and

Lk
2[~l3k

2 1l1k
l2k

!. ~24!

Since the vacuum at zero temeprature is annihilated byAk
m

and Ãk
m , the only contribution to the thermal vacuum

given by

u0~u!&&5)
k

~G3k
!2dkktrhmn

eG1k
(Ãk

†
•Ak

†)eG1k
(B̃k

†
•Bk

†)u0&&.

~25!

The thermal vacuum of the left-moving modes is construc
in the same way. The total vacuum at finite temperature is
direct product between thea andb vacua. The string opera
tors are mapped to finite temperature by the correspond
Bogoliubov generators,

Ak
m~u!5e2 iGk

a
Ak

meiGk
a
, Ãk

m~u!5e2 iGk
a
Ãk

meiGk
a
,

Bk
m~u!5e2 iGk

b
Bk

meiGk
b
, B̃k

m~u!5e2 iGk
b
B̃k

meiGk
b
.

~26!

Similar relations hold for the creation operators. One c
easily show that the thermal operators satisfy the same
nonical commutation relations as the operators at zero t
perature. Alternatively, one can organize the operators
thermal doublets@47,48# and obtain the thermal operators b
acting on the doublet withB matrix
5-3
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S Ak
m~u!

Ãk
m†~u!

D 5BkS Ak
m

Ãk
m†D , ~27!

where the explicit form ofBk operators is given by the fol
lowing relation:

Bk5cosh~ iLk!I1
sinh~ iLk!

~ iLk!
S il3k

il1k

il2k
2 il3k

D , ~28!

where I is the identity matrix. With all these elements
hand, one can construct a solution of the string equation
motion with periodic boundary conditions at finite tempe
ture. This reduces to replacing the string operators by t
mal string operators. Since the later satisfy the usual can
cal commutations, the equations of motion and its solut
satisfy the Virasoro algebra with the following thermal ge
erators

Lm
a ~u!5

1

2 (
kPZ

a2k~u!ak1m~u!,

Lm
b ~u!5

1

2 (
kPZ

b2k~u!bk1m~u!, ~29!

which guarantees that we are working with thermal strin
@32,33#.

C. Entropy of thermal string

The entropy operator is defined such that its average v
is proportional to the entropy of the bosonic field at therm
equilibrium divided by the Boltzmann’s constant@36#. From
Eq. ~1!, the entropy of the bosonic field can be computed
the expectation value of the entropy operator in the ther
vacuum

1

kB
^̂ 0~u!uKu0~u!&&

5H(
k

@~11nk!log~11nk!2nklog~nk!#J ,

~30!

wherenk is the density of particles. Consequently, one d
fines the entropy operator for the bosonic string as

K5Ka1Kb, ~31!

where the entropies of the right- and left-moving modes
given by the following relations:

Ka52(
k

FAk
†
•AklogS g

l1k
l2k

Lk
2

sinh2~ iLk!D
2Ak•Ak

†logS 11g
l1k

l2k

Lk
2

sinh2~ iLk!D G , ~32!
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k

FBk
†
•BklogS g

l1k
l2k

Lk
2

sinh2~ iLk!D
2Bk•Bk

†logS 11g
l1k

l2k

Lk
2

sinh2~ iLk!D G . ~33!

With this definition of the entropy operator one recovers
entropy of @33# in the case when there is a single transfo
mation generated byg2k

, that is whenu1k
5u3k

50. Also,

this choice gives the operator of@36# when g51. One ob-
tains the entropy of the bosonic closed string as the ave
of Eq. ~31! in the thermal vacuum,

S5kB^^0~u!uKu0~u!&&

52kB(
k

@~g1nk!log~11nk!2nklog~nk!#, ~34!

where

nk5gFl1k
l2k

Lk
2

sinh2~ iLk!G , ~35!

and

g5 ^̂ 0uÃk•Ãk
†u0&&5 ^̂ 0uB̃k•B̃k

†u0&&. ~36!

Note that the entropy operator for the bosonic closed str
has been constructed as the sum between the right- and
left-moving modes treated as two independent subsystem
the string. Thus the entropy operator obeys the extensi
property of the physical quantity. Also, from Eq.~34!, we see
that entropy of the bosonic closed string goes to zero w
the system is in equilibrium, that is

nk5
e2(kBT)21v

12e2(kBT)21v
, ~37!

and take the limitT→0. This guarantees that third principl
of the Thermodynamics is satisfied@52#.

III. BOUNDARY STATES UNDER SU„1,1…
TRANSFORMATION

At T50, a rigid Dp-brane is located along the$Xa% di-
rections in the target space,a51,2, . . . ,p at $Xi5yi%, where
i 5p11, . . . ,24 in the presence of the constant Kalb
Ramond fieldFab . TheDp-brane is described by a superp
sition of coherent boundary states in the Fock space defi
by the boundary conditions in the closed string sector.
order to find the thermalDp-brane, one has to write dow
the boundary conditions at finite temperature. This can
achieved by interpreting the string coordinates and their
rivatives as operators and then by acting on them with
Bogoliubov transformation. In the case when one consid
just a single Bogoliubov generator@32,33#, the boundary
5-4
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conditions at finite temperature admit solution. In this sect
we are going to investigate the case when the thermal tr
formation is generated by the generalSU(1,1) generator, i.e.
by the Bogoliubov operator~14!.

A. Thermal boundary conditions and boundary states

The boundary conditions in the closed string sector aT
50 are given by the following relations:

~]tXa~t,s!1Fba]sXb~t,s!!ut5050, ~38!

Xi~t,s!2yi ut5050. ~39!

One can obtain the corresponding relations for the sec
copy of the string from Eq.~39! by replacing the string co
ordinates by the coordinates of the tilde string. In order
find the boundary conditions at finite temperature, one s
stitutes the general solution of the equations of motion in
~39! and applies the general Bogoliubov~14!:

Xm~u!5e2 iGXmeiG. ~40!

The thermal boundary conditions in terms of string operat
at finite temperature represent a set of constraints on
Fock space of the extended system of the following fo
@32,33#:

@~I1F̂!b
aAn

b~u!1~I1F̂!b
aBn

b†~u!#uB~u!&&50,

@~I1F̂!b
aAn

b†~u!1~I1F̂!b
aBn

b~u!#uB~u!&&50,

@An
i ~u!2Bn

i†~u!#uB~u!&&50,

@An
i†~u!2Bn

i ~u!#uB~u!&&50,
~41!

for anyn.0. The coordinates of the center of mass and th
conjugate momenta do not transform under the Bogoliu
transformation, neither does the constant Kalb-Ramond fi
@32,33#. Then, we have to add to the set~41! the following
relations:

p̂auB~u!&&5@ q̂i2yi #uB~u!&&50. ~42!

Similar boundary conditions should be imposed for the ti
string and the thermalDp-braneuB(u)&& must satisfy the two
of them. It is easy to see that a general solution of the eq
tions ~41! and ~42! has the following form

uB~u!&&15Np
2~F,u!d (d')~ q̂2y!d (d')~ q̃̂2 ỹ!

3e2(
n51

`

An
†(u)•M•Bn

†(u)e2(
n51

`

Ãn
†(u)•M•B̃n

†(u)u0~u!&&,

~43!

where

M n
m5F S I2F̂

I1F̂
D

b

a

;2d j
i G ~44!

andNp(F,u) is the thermal normalization constant equal
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the one of the tilde system and identical to the normalizat
constant atT50 @33#

Np~F,u!5Np~F !5A2det~d12pa8F !. ~45!

Note that Eq.~45! corresponds to the first solution found
@33#. We interpret this solution as describing a therm
Dp-brane and postpone to Sec. IV the discussion of the
generacy of thermal brane in this case.

B. The entropy of thermal D-branes

The thermalD-brane given by Eq.~43! represents a su
perposition of coherent states in the Fock space of the t
mal string. Therefore calculating the entropy of theD-brane
is equivalent to computing the average value of the entr
operator~31! in the state~43!. One way of doing that is by
expressing all the operators and states in terms of opera
and states atTÞ0. To this end we need the inverse of th
Bogoliubov matrix~28! which has the following form

B k
215cosh~ iLk!I2

sinh~ iLk!

~ iLk!
S il3k

il1k

il2k
2 il3k

D . ~46!

By using Eq.~46!, we can write the entropy operatorKa in
terms of the thermal operators

Ak
m5Fcosh~ iLk!2

sinh~ iLk!

Lk
l3kGAk

m~u!

2
sinh~ iLk!

Lk
l1kÃk

m†~u!,

Ak
m†5Fcosh~ iLk!2

sinh~ iLk!

Lk
l3kGAk

m†~u!

2
sinh~ iLk!

Lk
l2kÃk

m~u!. ~47!

Then, the entropy in the right-moving sector has the follo
ing form:

^̂ 0~u!uKu0~u!&&52(
k

H @112nk#AklogS nk

11nk
D

1nklog~nk!2~g1nk!log~11nk!J ,

~48!
where

nk5g
l1kl2k

Lk
sinh2~ iLk!, ~49!

as in Eq.~35!, and

Ak5K K B~u!U (
m51

24

Nk
m~u!UB~u!L L . ~50!

In order to calculate the action of the thermal number ope
5-5
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tor, we expand the exponentials in the coherent state. S
all the operators are at nonzero temperature, we ignore tu
symbol in the notation. For example, by expanding the n
tilde part of the coherent state we obtain the following e
pression for theAk :

B2B̃2KK 0~u!UeS̃†
eS̃)

n51

`

)
m

)
n

(
l 50

`
~2 ! l

l !
~An

mMmnBn
n! l

3UNm
aU)

k

`

)
r

)
s

(
s50

`
~2 !s

s!
~Ak

r†M rsBk
s†!sU0~u!LL ,

~51!

whereS̃ represents the exponential operator for the ther
tilde part of the brane state andB5Np(F,u)d (d')(q̂2y). By
expanding the products in Eq.~51!, one is left with the ex-
pression ofAm in terms of states that describe the number
excitations of string in each direction of space-time and
each oscillation mode. These states are orthogonal an
unit norm and after some short but tedious algebra one
show that Eq.~50! has the following form:

B2B̃2 (
t1
1,1

•••tn
24,24

(
s1
1,1

•••sn
24,24

(
r

(
s

~M24,24!
2t1

24,24

•••

3~M1,1!
2tn

1,1

~M24,24!
2s1

24,24

•••~M1,1!
2sn

1,1

sm
r,s . ~52!

Here, si
r,s50,1, . . . ,̀ , i 51,2,•••,n, n→`, and r,s

51, . . . ,24represent the indices for all excitations of all
frequenciesn and in all space-time directions. The expre
sion ~52! is not normalized. It contains the full dependen
on the Kalb-Ramond field in the entropy~48!. The tempera-
ture dependence of entropy is contained only in thenk terms,
more exactly inl ’s. However, it is not always possible t
write down the explicit form ofl ’s as functions of tempera
ture even in the case of a single generator.~The relation
leading to this function is obtained by equating the cor
sponding coefficient in the Bogoliubov transformation to t
statistical distribution in the thermal vacuum@36#.! In this
case, approximation or numerical methods should be u
The total entropy of theD-brane is obtained as twice the E
~48! since the left modes contribute with the same amo
to it.

IV. FINAL DISCUSSIONS AND CONCLUSIONS

To conclude, we have analyzed theSU(1,1) thermal
group formed by all possible unitary thermal Bogoliub
generators in the case of the bosonic string andD-brane. The
reason for this analysis is that we have constructed the t
mal brane and string in the framework of TFD whe
SU(1,1) represents the most general structure underlying
Bogoliubov transformations. By choosing a certain type
parametersu the most general Bogoliubov transformatio
can be fixed to be unitary or nonunitary. We have chose
06500
ce

-
-

al

f
r
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an

-
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t

r-

he
f

a

unitary trasformation in order to preserve the structure of
Hilbert space at zero temperature and the usual interpreta
of quantum mechanics. However, the tilde invariance of
thermal vacuum of the theory is lost with this choice, whi
is an undesirable feature in TFD. The solution is to constr
the thermal vacuum as the direct product between the o
nal thermal vacuum, i.e., the vacuum obtained by acting w
the Bogoliubov transformation on the vacuum at zero te
perature and its conjugate under the tilde operation. In
case, the thermal vacuum factorizes in a tilde and a nont
part as does the vacuum at zero temperature. By usin
nonunitary transformation, one would have lost states fr
the Fock space and the isomorphism between the Fock s
and its dual conjugate. The normalization constant of
D-brane state would have changed and we would have
pected that different bra coherent states satisfied the bo
ary conditions. With two nonisomorphic bra and ket state
would not have been possible to take the average of
entropy operator in oneD-brane state. Note that the gener
Bogoliubov transformation will be simultaneously unita
and generated by a tilde invariant Bogoliubov operator, i
plying that two generators ofSU(1,1) do not appear in it.
Therefore we might conclude that unless the thermal vacu
is the product of the original thermal vacuum with its tild
conjugate, there is noSU(1,1) thermal group whose gener
transformation will be compatible with the unitarity of qua
tum mechanics and the tilde invariance of TFD.

We have obtained the entropy of the closed string in E
~34! and the entropy of the bosonicD-brane as twice the
entropy of the right-modes~48!. An analysis of this expres
sion in various temperature limits should be performed in
approximation or a numerical scheme for theu ’s. However,
if one supposes that theu ’s are monotonous functions at lea
at low temperatures, then, by takingl ik;e for i 51,2,3, we
see that ase→0 the entropy goes as

(
m

~Am1dmmTrdmn!,

which in a normalized theory should be a finite consta
This represents an improved entropy at low temperatu
compared with the entropy given in@34# which is divergent
in that limit.

Note that the methods used for computing theD-brane
entropy in@34# and in the present paper are slightly differe
from the standard TFD. Indeed, since theD-branes are state
in the Fock space of the bosonic string vacuum differ
from the vacuum state of the conformal field theory, the e
tropy of D-brane was identified with the entropy of th
closed string in this coherent boundary state. A standard T
would require one to identify the veryD-brane with some
vacuum state in a field theory, but no such approach
D-branes is known at present. Also, as noted in@35#, our
approach to thermal strings is different from the one in
erature in which understanding the ideal case of the bos
strings and the string field theory were the main motivatio
to implement TFD in ensembles of strings and in string fie
theory @53–58#, much as was done for the standard fie
5-6
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theory. In our approach, due to the interpretation of bra
the TFD has been applied to the bosonic vacuum of st
theory, i.e., to the two-dimensional conformal field theo
describing it, rather than to ensembles of strings or str
fields. Therefore we have been working with the therm
bosonic vacuum and its thermal fluctuations some of wh
are thermalD-branes.

Let us end by observing that we have considered ju
single solution ofD-brane type and not all solutions obtaine
in @32,34#. The reason for that is that the other solutio
appear when the vacuum is not invariant under tilde ope
J.

y

. A

bo

, J

ys

uc

06500
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g
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h
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a-

tion. If we impose the tilde invariance as is done in TFD, t
degeneracy ofD-brane solutions should be removed.
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