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Soliton decay in a coupled system of scalar fields
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A system of coupled scalar fields is introduced which possesses a spectrum of massive single-soliton
solutions. Some of these solutions are unstable and decay into lower mass stable solitons. Some properties of
the solutions are obtained using general principles including conservation of energy and topological charges.
Rest energies are calculated via a variational scheme, and the dynamics of the coupled fields are obtained by
solving the field equations numerically.
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I. INTRODUCTION

Relativistic solitons, including those of the convention
sine-Gordon~SG! equation, exhibit remarkable similaritie
with classical particles. They exert short range forces on e
other and collide, without losing their identities@1#. They are
localized objects and do not disperse while propagating
the medium. Because of their wave nature, they do tunn
barrier in certain cases, although this tunneling is differ
from the well-known quantum version@2#. Topological soli-
tons are stable, due to the boundary conditions at sp
infinity. Their existence, therefore, is essentially depend
on the presence of degenerate vacua@3#.

Topology provides an elegant way of classifying solito
in various sectors according to the mappings between
degenerate vacua of the field and the points at spatial infi
For the sine-Gordon system in 111 dimensions, these map
pings are betweenf52np, nPZ, andx56`, which cor-
respond to kinks and antikinks of the SG system. More co
plicated mappings occur in solitons in higher dimensio
For example, in cosmic strings, the vacuum isS1 and topo-
logical sectors correspond to distinct mappings between
S1 and a large circle around the string. This leads to
homotopy groupp1(S1)5Z.

Coupled systems of scalar fields have been investig
by many authors@4–6#. Bazeiaet al. @4# considered a system
of two coupled real scalar fields with a particular se
interaction potential such that the static solutions are de
able from first order coupled differential equations. Ria
et al. @5# employed the same method to investigate the
bility of the single-soliton solutions of a particular system
this type. Inspired by the well-known properties of the sin
Gordon equation, we introduce a coupled system of two
scalar fields which shows a considerably richer structure
dynamics. The present system is not of the form investiga
in @4# and@5# and static solutions are not derivable from fir
order differential equations.

In our proposed system, a spectrum of solitons with d
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ferent rest energies exists which are stable, unstable, or m
stable, depending on their energies and boundary conditi
Some of the more massive solitons decay spontaneously
stable ones which subsequently leave the interaction a
Note that the term ‘‘soliton’’ is used throughout this paper f
localized solutions. The problem of integrability of th
model is not addressed here. Such nondispersive solut
are called ‘‘lumps’’ by Coleman@7# to avoid confusion with
true solitons of integrable models. However, it has now
come popular to use the term soliton in its general sense

Pogosian@8# investigated kink solutions in bidimensiona
SU(N)3Z2 models. He found that heavier kinks tend
break up into lighter ones. Comparing our results with tho
reported by Pogosian, it is interesting to note that fairly sim
lar phenomena are observed in quite different systems. In
earlier paper, Pogosian and Vachaspati@9# reported (N
11)/2 distinct classes of kink solutions in an SU(N)3Z2
field theory.

The organization of the paper is as follows. In Sec. II, w
introduce the Lagrangian density, dynamical equations,
conserved currents of the proposed model. In Sec. III, so
exact solutions together with the corresponding charges
energies are derived. The necessary nomenclature and
eral behavior of the solutions due to the boundary conditi
are also introduced in this section. Numerical solutions c
responding to different boundary conditions are presen
and properties of these solutions like their charges, mas
and stability status are addressed in this section. In orde
investigate the stability of the numerical solutions, their ev
lution is worked out numerically. The dynamical evolution
the unstable solutions is investigated further in Sec. IV. O
final conclusion and a summary of the results is given in
last section.

II. DYNAMICAL EQUATIONS AND CONSERVED
CURRENTS

Our choice of the Lagrangian density reads

L5
1

2
]mf1]mf12a1~f2

21e1!~12cosf1!

1
1

2
]mf2]mf22a2~f1

21e2!~12cosf2! ~1!
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FIG. 1. The self-interaction potential is show
as a height diagram over the (f1 ,f2) plane.
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in which a1,2 ande1,2 are positive constants, andf1,2 are two
real scalar fields. The background space-time is assume
have the metricgmn5diag(1,21) in 111 dimensions and
c51 has been used throughout this paper. Recall that
sine-Gordon Lagrangian density

L5
1

2
]mf]mf2a~12cosf! ~2!

leads to single-soliton solutions

f52np64 tan21eAax ~3!

all having rest energies 8Aa. Our proposed Lagrangian den
sity ~1! comes from the idea of mixing two scalar fields
such a way that the discrete vacua atf152np, f2
52mp (m,nPZ) survive, while the rest energies of soliton
for each field~sayf1) are affected by the value of the oth
(f2), and vice versa. It will be seen later that this idea lea
to the appearance of nondegenerate solitons with distinc
pological charges.

The corresponding equations of motion are easily
tained by applying the variational principled(*Ld2x)50 to
the Lagrangian density~1!:

hf15a1~f2
21e1!sinf112a2f1~12cosf2! ~4!

and

hf25a2~f1
21e2!sinf212a1f2~12cosf1!. ~5!

Since the Lagrangian density~1! is Lorentz invariant, the
corresponding energy-momentum tensor@10#

Tmn5]mf1]nf11]mf2]nf22gmnL ~6!

satisfies the conservation law

]mTmn50. ~7!

The Hamiltonian density is obtained from Eq.~6! according
to
06500
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H5T0
05

1

2
ḟ1

21
1

2
ḟ2

21
1

2
f18

2

1
1

2
f28

21V~f1 ,f2!, ~8!

where the overdot and prime denote time and space de
tives, respectively. It is seen from Eq.~1! that the potential is

V~f1 ,f2!5a1~f2
21e1!~12cosf1!

1a2~f1
21e2!~12cosf2!. ~9!

This potential is shown in Fig. 1, as a height diagram o
the (f1 ,f2) plane. In this figure and any numerical calcul
tion throughout this paper, we fix the parameters asa1
50.3, a251, e150.5, ande250.07 for the sake of being
definite. The classical vacua consist of points in the (f1 ,f2)
plane at which the conditionV(f1 ,f2)50 holds. Since the
potential consists of two non-negative terms, it vanishe
and only if the two terms vanish simultaneously. This lea
to the vacuum set of points in the (f1 ,f2) space:

V5$~f1 ,f2!uf152mp and f252np; m,nPZ%.
~10!

It can be shown that the following topological currents c
be defined, which are conserved independently, and lea
quantized charges:

JmH
m 5dmpe

mn]nf1/2p

JmV
m 5dmqe

mn]nf2 /2p. ~11!

In these equations,m is an integer, and the integersp andq
are defined according to

p5 integer part of ~f1/2p!11,

q5 integer part of ~f2/2p!11.
3-2
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The subscriptsV andH denote ‘‘vertical’’ and ‘‘horizontal’’
which will be explained later. The currentsJmH,V

m are con-
served, independent of each other:

]mJmH
m 50,

]mJmV
m 50. ~12!

The corresponding topological charges are given by

QmH5E
2`

`

JmH
0 dx5dmp@f1~1`!2f1~2`!#/2p,

QmV5E
2`

`

JmV
0 dx5dmq@f2~1`!2f2~2`!#/2p.

~13!

These charges quantify the mappings between the va
f1,2(6`)PV and the points at spatial infinity.

III. SINGLE-SOLITON SOLUTIONS

Static solutions which correspond to transitions betwe
adjacent vacua are symbolically shown in Fig. 2. Acco
ingly, we call the static solutionsH ~horizontal! andV ~ver-
tical! types. We have called them ‘‘horizontal’’ and ‘‘verti
cal’’ simply because of their orientation in the (f1 ,f2)
plane. Initial guesses for these solutions are obtained u
the known properties of the conventional sine-Gordon eq
tion @6#. Note that the exact solutions are not strictly ho
zontal or vertical lines in the (f1 ,f2) plane. Rather, they ar
bent curves joining two neighboring vacuum points due
the coupling between the two scalar fields. Any finite ene
solution should start and end at one of the vacuum po
belonging toV @Eq. ~10!#. Equations~4! and ~5! possess the

FIG. 2. Nomenclature of horizontal~H! and vertical~V! solu-
tions according to boundary conditions. The three lightest soluti
H1

0, V0
1, and H1

1 are stable, whileV1
1 and V2

1 are unstable. The
corresponding rest energies and charges are shown in Table I fo
choice of parameters.
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following exact single-soliton solutions:

Hp11
0 : f154 tan21 exp@6a~x2x0!#12pp

and f250 ~14!

with

QmH5dmp , QmV50,

and

V0
q11 : f254 tan21 exp@6b~x2x0!#12qp

and f150, ~15!

with

QmH50, QmV5dmq ,

where p and q are integers. Note that Eqs.~14! and ~15!
satisfy Eqs.~4! and~5! in the static (]/]t50) case. In these
equations,a5Aa1e1, b5Aa2e2, and x0 is the kink posi-
tion. Apart from these exact solutions, we will introduc
other static solutions which are obtained numerically la
Despite the similarity of the special solutions~14! and ~15!
to those of the sine-Gordon equation, there are profound
ferences between the general static solutions of the pre
system and of the SG equation, including nondegene
soliton masses and instability of some of the static solutio
The rest energies of theH- andV-type solitons are obtained
by integrating the corresponding Hamiltonian densities~with
ḟ15ḟ250) over thex space. The rest energies are appro
mately given by

H type: MH.8Aa1~4p2n21e1!, ~16!

and

V type: MV.8Aa2~4p2n21e2!, ~17!

wheren is an integer. We have written programs in theMAT-

LAB environment that calculate static solutions and dyna
cal evolutions from prespecified initial conditions. The sta
solutions are obtained by minimizing the energy function

E5E Hdx ~18!

whereH5T0
0 is the energy~Hamiltonian! density, using a

variational procedure. The program is asked to terminate
soon as the energy converges up to a 1026 accuracy. Inspired
by the exact solutions~14! and~15!, the initial guesses were
taken to be of the form of sine-Gordon solitons. These ini
guesses were deformed toward the lowest energy solut
by the variational calculation. This deformation is caused
the slope of the potential function as depicted in Fig.
Sample solutions are shown in Fig. 3. Static solutionsV0

1,
H1

0, H1
1, and V1

1 as projected on the (f1 , f2) plane are
shown in Fig. 4. A sample classification is shown in Tabl
for a particular choice of the parameters. Antisolitons ex

s

ur
3-3
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FIG. 3. Examples of static solutions.
ro
-
th

q.

ess

ons
se

ned
our
al

lu-
the
nd

uct
mp
s in
able

ay
d

with the same masses~rest energies! as solitons but with
opposite charges. The antisoliton solutions are obtained
simply exchanging the boundary conditions atx51` into
those atx52`. For example,

H1
0 :H f1~2`!50, f1~1`!52p,

f2~2`!50, f2~1`!50,
~19!

while

H̄1
0 :H f1~2`!52p, f1~1`!50,

f2~2`!50, f2~1`!50.
~20!

It is clear from the definition of topological charges~11! that
solitons and antisolitons have opposite charges. The app
mate formulas~16! and ~17! may be compared with the nu
merical results depicted in Table I. It can be seen that

FIG. 4. The static solutionsV0
1, H1

0, H1
1, andV1

1 as projected on
the (f1 ,f2) plane.
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masses of theH-type solitons are better approximated by E
~16! than those given by Eq.~17!. This difference can be
attributed to the fact that the horizontal solitons deviate l
from the sine-Gordon solitons~see Fig. 4!.

IV. SOLITON DECAY

The time-dependent solutions of the dynamical equati
~4! and~5! were obtained numerically, by transforming the
partial differential equations~PDEs! into finite difference
equations, and calculating the fieldsf1(x,t) andf2(x,t) in
successive time steps. Most of the static solutions obtai
did not undergo appreciable variations when inserted into
dynamical program as initial conditions. This is a numeric
indication of the stability of the corresponding static so
tions. However, not all the static solutions obtained by
variational method explained in the last section were fou
to be stable. For the given choice of parameters,V1

1, for
example, is unstable and decays spontaneously via@see Figs.
5~a! and 5~b!#

V1
1→H̄1

01V0
11H1

1 . ~21!

Here,H̄1
0 is the antisoliton ofH1

0. Figure 5~a! shows thef1

and f2 fields after several time steps. The decay prod
solitons can be identified at positions where the fields ju
from one vacuum to an adjacent vacuum. Figure 3 help
recognizing these decay products. Figure 4 shows the st
solutionsH1

1, V0
1, andH1

0 and the unstable solutionV1
1 on the

(f1 ,f2) plane. Numerical calculations show that the dec
of V1

1 starts with the trajectory shown for this solution an

evolves gradually to theH̄1
0 (H1

0 in the reverse direction!,
V0

1, andH1
1 trajectories in this figure. Figure 5~b! shows the
3-4



SOLITON DECAY IN A COUPLED SYSTEM OF SCALAR . . . PHYSICAL REVIEW D66, 065003 ~2002!
TABLE I. A sample classification of the lowest energy solitons fora150.3, a251, e150.5, e2

50.07.

Symbol Mass Q1H Q1V Q2H Q2V Q3H Stability

V0
1 2.09 0 11 0 0 0 stable

V0
2 2.09 0 0 0 11 0 stable

H1
0 3.09 11 0 0 0 0 stable

H2
0 3.09 0 0 11 0 0 stable

H3
0 3.09 0 0 0 0 11 stable

H1
1 26.7 11 0 0 0 0 stable

H2
1 27.5 0 0 11 0 0 stable

H3
1 27.6 0 0 0 0 11 stable

V1
1 42.9 0 11 0 0 0 V1

1→H̄1
0V0

1H1
1

V1
2 48.4 0 0 0 11 0 stable

H1
2 53.6 11 0 0 0 0 stable

H2
2 54.6 0 0 11 0 0 stable

V2
1 89.6 0 11 0 0 0 V2

1→H̄2
0H̄1

0V0
1H1

1H2
1

V2
2 95.5 0 0 0 11 0 stable

V3
1 129 0 11 0 0 0 metastable
d
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corresponding energy density for various time steps. In
vidual solitons as decay products are more apparent in
figure.

The balance ofH andV charges is of course respected
the decay~21!, which can be easily demonstrated by co
puting QmV and QmH for V1

1, H̄1
0, V0

1, and H1
1. From the

conservation of energy point of view,M (V1
1)542.9, while

M (H̄1
0)1M (V0

1)1M (H1
1)531.88, which shows that the de

cay is allowed, and the excess energy is transferred to
kinetic energies of the solitons. As Fig. 5~b! shows, no ap-
preciable energy is radiated away as small amplitude wa
lets.

Numerical results show thatV2
1 is also unstable and de

cays via

V2
1→H̄2

01H̄1
01V0

11H1
11H2

1 . ~22!

Figure 6 illustrates the decay ofV2
1. It can be seen from Fig

6~b! that anH̄1
0V0

1H1
1 compound~i.e., V1

1) is produced first.
This compound subsequently decays into its components
short time. Note thatM (V2

1)589.6 and the sum of the res
06500
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energies of the decay products is(productM562.47. The dif-
ference goes to the kinetic energies of the decay produ
The total energy and all topological charges are conserv
In order to demonstrate the conservation of topologi
charges, let us write down the charges of individual solito

V2
1 : Q1V511, H̄2

0 : Q2H521, H̄1
0 : Q1H521,

V0
1 : Q1V511, H1

1 : Q1H511, H2
1 : Q2H511,

all other charges being zero. We thus haveQ1V (LHS)5
11 andQ1V (RHS)511, and all other charges are equal
zero for both sides.

Surprisingly enough, although the decay ofV3
1 via

V3
1→H̄3

01H̄2
01H̄1

01V0
11H1

11H2
11H3

1 ~23!
FIG. 5. The decay ofV1
1. ~a! f1 andf2 as a

function of x after the decay ofV1
1. ~b! The en-

ergy density as a function ofx for various time
steps. The dotted line forV0

1 is added in order to
clarify the trajectory of this decay product.
3-5
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FIG. 6. The decay ofV2
1. ~a! f1 andf2 as a

function of x after the decay ofV2
1. ~b! The en-

ergy density as a function ofx for various time
steps.
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is allowed by conservation of energy and charge, such a
cay is not observed. We thus conclude thatV3

1 is a metastable
soliton, and its fission needs some external trigger.

V. CONCLUSION

Although the sine-Gordon equation is an integrable s
tem, even minor modifications of the equation usually e
ploit its integrability. We described in this paper and els
where @2,11# interesting and rich behavior that may res
from suitable modifications of the sine-Gordon equation
respective of whether it is integrable or not. Removal
mass degeneracy, soliton confinement, and soliton decay
among such properties.

For the system introduced in this paper, we presente
class of exact, single-soliton solutions in the particular c
where the system reduced to the sine-Gordon equationf1
50 or f250). Other classes of static solutions were co
puted numerically using a variational algorithm. These sta
solutions were then fed into a numerical program wh
computed the dynamical evolution of the solution. We fou
that most of the static solutions were stable, while a f
underwent decay into lower energy solitons. Topologi
charges where conserved throughout these dynamical
cesses, in addition to the conservation of energy and lin
momentum which results from the invariance of Lagrang
under space and time translation. In the particular decay~22!,
two interesting effects were observed: First, the decay
not start promptly. Rather,V2

1 decayed intoH̄2
0V1

1H2
1 first,

and V1
1 decayed via Eq.~21! in a later stage. Second, th

(H̄1
0 ,H̄2

0) pair apparently remained as a bound system in

decay ofV2
1. In order to check whetherH̄1

0 andH̄2
0 do form

a bound system, we did numerical calculations~both varia-
tional and dynamical! for this system. It turned out that th
system split intoH̄1

0 and H̄2
0 which moved away from each

other. We conclude thatH̄1
0H̄2

0 do not form a bound system
Finally, let us discuss briefly the kinematics of solitons

the decay process. Since our system is relativistic, princi
of conservation of energy and momentum should be ap
cable in their relativistic form. Ignoring the energy and m
mentum radiated away in the form of small amplitude wa
lets, we may write
06500
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Mc25(
i 51

n

g imic
2 ~24!

and

(
i 51

n

g imiv i50 ~25!

for the decay

S→s11s21•••1sn . ~26!

In Eqs.~24! and~25!, M is the mass of theS soliton,mi are
the masses of thesi solitons,v i are the corresponding veloc
ties, andg i5(12v i

2)21/2. The system of equations~24! and
~25! has a unique solution forv i , if n52. For n.2, we
have only two equations forn unknowns and the equation
do not have a unique solution. However, the decay pat
and the distribution of velocities among the decay produ
seem to be predetermined in our numerical results~compare
the decay pattern ofV1

1 in Figs. 5 and 6!. If we note that the
decay to the daughter solitons does not happen in a si
stage, but rather proceeds in successive stages, it bec
clear why the distribution of velocities among the dec
products follow a unique pattern. In each stage, an unst
soliton decays intotwo decay products, which is actuall
observed numerically. The velocities of the two decay pro
ucts are unique, according to Eqs.~24! and ~25!. One of the
decay products, in turn, decays into two solitons in a la
stage, and so on.
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