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Soliton decay in a coupled system of scalar fields
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A system of coupled scalar fields is introduced which possesses a spectrum of massive single-soliton
solutions. Some of these solutions are unstable and decay into lower mass stable solitons. Some properties of
the solutions are obtained using general principles including conservation of energy and topological charges.
Rest energies are calculated via a variational scheme, and the dynamics of the coupled fields are obtained by
solving the field equations numerically.
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I. INTRODUCTION ferent rest energies exists which are stable, unstable, or meta-
stable, depending on their energies and boundary conditions.
Relativistic solitons, including those of the conventional Some of the more massive solitons decay spontaneously into
sine-Gordon(SG) equation, exhibit remarkable similarities Stable ones which subsequently leave the interaction area.
with classical particles. They exert short range forces on eachote that the term “soliton” is used throughout this paper for
other and collide, without losing their identitigs]. They are  localized solutions. The problem of integrability of the
localized objects and do not disperse while propagating irnodel is not addressed here. Such nondispersive solutions
the medium. Because of their wave nature, they do tunnel are called “lumps” by Colemari7] to avoid confusion with
barrier in certain cases, although this tunneling is differentrue solitons of integrable models. However, it has now be-
from the well-known quantum versidi2]. Topological soli- come popular to use the term soliton in its general sense.
tons are stable, due to the boundary conditions at spatial Pogosiar{8] investigated kink solutions in bidimensional
infinity. Their existence, therefore, is essentially dependenBU(N)XZ, models. He found that heavier kinks tend to
on the presence of degenerate vaglla break up into lighter ones. Comparing our results with those
Topology provides an elegant way of classifying solitonsreported by Pogosian, it is interesting to note that fairly simi-
in various sectors according to the mappings between thir phenomena are observed in quite different systems. In an
degenerate vacua of the field and the points at spatial infinityearlier paper, Pogosian and Vachasp#] reported N
For the sine-Gordon system int-1 dimensions, these map- +1)/2 distinct classes of kink solutions in an 3Y(x<Z,
pings are betweep=2nm, neZ, andx= =+, which cor- field theory.
respond to kinks and antikinks of the SG system. More com- The organization of the paper is as follows. In Sec. Il, we
plicated mappings occur in solitons in higher dimensionsintroduce the Lagrangian density, dynamical equations, and
For example, in cosmic strings, the vacuunBisand topo-  conserved currents of the proposed model. In Sec. Ill, some
logical sectors correspond to distinct mappings between thigxact solutions together with the corresponding charges and
S' and a large circle around the string. This leads to theenergies are derived. The necessary nomenclature and gen-
homotopy groupr*(St)=7. eral behavior of the solutions due to the boundary conditions
Coupled systems of scalar fields have been investigate@re also introduced in this section. Numerical solutions cor-
by many author§4—6]. Bazeiaet al.[4] considered a system responding to different boundary conditions are presented,
of two coupled real scalar fields with a particular self-and properties of these solutions like their charges, masses,
interaction potential such that the static solutions are derivand stability status are addressed in this section. In order to
able from first order coupled differential equations. Riaziinvestigate the stability of the numerical solutions, their evo-
et al. [5] employed the same method to investigate the stalution is worked out numerically. The dynamical evolution of
bility of the single-soliton solutions of a particular system of the unstable solutions is investigated further in Sec. IV. Our
this type. Inspired by the well-known properties of the sine-final conclusion and a summary of the results is given in the
Gordon equation, we introduce a coupled system of two redpst section.
scalar fields which shows a considerably richer structure and
dynamics. The present system is not of the form investigated  !l- DYNAMICAL EQUATIONS AND CONSERVED
in [4] and[5] and static solutions are not derivable from first CURRENTS

order differential equations. _ __Our choice of the Lagrangian density reads
In our proposed system, a spectrum of solitons with dif-
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in which a; , ande, , are positive constants, amf , are two 1. 1.. 1
real scalar fields. The background space-time is assumed to H:nggd’?r §¢§+§¢12
have the metriqy,,=diag(1-1) in 1+1 dimensions and
c=1 has been used throughout this paper. Recall that the

1
sine-Gordon Lagrangian density + §¢22+V(¢1,¢2), (8)

L= }3u¢aﬂ¢_ a(1—cose) (2)  Where the overdot and prime denote time and space deriva-
2 tives, respectively. It is seen from Ed.) that the potential is
leads to single-soliton solutions V(by,by) = ay(b2+e)(1—cosdy)
’ - 2
— =1 a
¢=2nm=4 tan et @ +ay($i+e)(1-cospy). (9

2:: h?l\gmc%rrﬁ; ?Poer:]glt?]sé&i di'eglé:( %?xﬁgsisvéasgg:&?z;gs?ﬁ This potential is shown in Fig. 1, as a height diagram over
y . 9 o the (¢1,¢,) plane. In this figure and any numerical calcula-
such a way that the discrete vacua @&t=2nw, ¢, : : :
~ } . . . . tion throughout this paper, we fix the parameters ags
=2m (m,ne Z) survive, while the rest energies of solitons _ = _ _ ;
: =0.3, @,=1, ¢,=0.5, ande,=0.07 for the sake of being
for each field(say ¢,) are affected by the value of the other | .~ : . o
(¢,), and vice versa. It will be seen later that this idea lead definite. The classical vacua consist of points in i ($,)
tcg)b'shé appearance of. nondegenerate solitons with distinct t lane at which the conditiol(¢;,¢5) =0 holds. Since the
olo icaﬁpchar es 9 otential consists of two non-negative terms, it vanishes if
polog ges. . : . and only if the two terms vanish simultaneously. This leads
The corresponding equations of motion are easily ob-,[0 the vacuum set of points in theb{,b,) space:
tained by applying the variational principl [ £d?x)=0 to P P2) Space.
the Lagrangian densitgl): V={(d,,b,)|d1=2mm and ¢,=2nm mneZ.

Ohs= as($3+e)singy+2a,6,(1-c0sg;) () (10
and It can be shown that the following topological currents can
be defined, which are conserved independently, and lead to

O¢o= a2+ e)sindy+ 2a1d5(1—cosgy).  (5)  duantized charges:

Since the Lagrangian densitjl) is Lorentz invariant, the = Ompe™"d, 12
corresponding energy-momentum tengbo]
JE= O™V, o 12T 11
T‘”=(9“¢>1(9”¢1+ ﬂ“(ﬁg(?”qﬁz*g”vﬁ (6) mV mqe V¢2 ™ ( )
satisfies the conservation law In thesg equationsr_l is an integer, and the integepsandq
are defined according to
a3, TH"=0. (7) )
p= integer part of (¢,/27)+ 1,

The Hamiltonian density is obtained from E&) according

to g= integer part of (¢,/27)+ 1.
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FIG. 2. Nomenclature of horizontédH) and vertical(V) solu-

tions according to boundary conditions. The three lightest solution
H?, V3, and H} are stable, whilev} and V} are unstable. The
corresponding rest energies and charges are shown in Table | for o

choice of parameters.

The subscriptd/ andH denote “vertical” and “horizontal”
which will be explained later. The currend,,, are con-
served, independent of each other:

(9MJ#1H= 0,
3,3t,=0. (12)

The corresponding topological charges are given by

Qmu= Jt;JEanX: 5mp[¢1(+°°)_ b1 (—»)]12m,

Q= | It s ol +2)= o~ ) V2
3
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following exact single-soliton solutions:

HY, 1t ¢r=4tam Texd a(x—Xo)]+2pm
and ¢,=0 (14)
with
QmH=Omp,  Qmv=0,
and
Vit g,=4tan Yexd £b(x—xo)]+2qm
and ¢;=0, (15
with

Qmu=0, Qmv= 5mqa

where p and q are integers. Note that Eqél4) and (15)
Jatisfy Eqs(4) and(5) in the static ¢/dt=0) case. In these
eguations,a= Vai€1, b=+ ase,, andx, is the kink posi-
fion. Apart from these exact solutions, we will introduce
other static solutions which are obtained numerically later.
Despite the similarity of the special solutiofis4) and (15)

to those of the sine-Gordon equation, there are profound dif-
ferences between the general static solutions of the present
system and of the SG equation, including nondegenerate
soliton masses and instability of some of the static solutions.
The rest energies of thd- andV-type solitons are obtained
by integrating the corresponding Hamiltonian densitiesh

¢1= ¢,=0) over thex space. The rest energies are approxi-
mately given by

H type: Mu=8\a;(47°n’+¢;), (16)
and
V type: My=8\ay(47°n’+¢,), (17

wheren is an integer. We have written programs in tier-
LAB environment that calculate static solutions and dynami-

These charges quantify the mappings between the vacu@! evolutions from prespecified initial conditions. The static

¢1(*=*) eV and the points at spatial infinity.

IIl. SINGLE-SOLITON SOLUTIONS

solutions are obtained by minimizing the energy functional

E= f Hdx (18)

Static solutions which correspond to transitions between o o ) )
adjacent vacua are symbolically shown in Fig. 2. Accord-Where =T is the energy(Hamiltonian density, using a

ingly, we call the static solutionll (horizonta) andV (ver-

variational procedure. The program is asked to terminate as

tical) types. We have called them “horizontal” and “verti- Soon as the energy converges up to a’lccuracy. Inspired

cal” simply because of their orientation in thep{, ¢,)

by the exact solution&l4) and(15), the initial guesses were

plane. Initial guesses for these solutions are obtained usirigken to be of the form of sine-Gordon solitons. These initial
the known properties of the conventional sine-Gordon equaguesses were deformed toward the lowest energy solutions
tion [6]. Note that the exact solutions are not strictly hori- by the variational calculation. This deformation is caused by
zontal or vertical lines in thed, , ¢,) plane. Rather, they are the slope of the potential function as depicted in Fig. 1.
bent curves joining two neighboring vacuum points due toSample solutions are shown in Fig. 3. Static solutidffs

the coupling between the two scalar fields. Any finite energyH$, Hi, and V] as projected on thed;, ¢,) plane are
solution should start and end at one of the vacuum pointshown in Fig. 4. A sample classification is shown in Table |
belonging toV [Eq. (10)]. Equations(4) and(5) possess the for a particular choice of the parameters. Antisolitons exist
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with the same massesest energigsas solitons but with masses of thél-type solitons are better approximated by Eq.
opposite charges. The antisoliton solutions are obtained b§l6) than those given by Eql17). This difference can be

simply exchanging the boundary conditionsxat + into
those atx=—o0. For example,

attributed to the fact that the horizontal solitons deviate less
from the sine-Gordon solitonsee Fig. 4.

HO'{ o) =0, dulee)=2m, (19) IV. SOLITON DECAY
Yl pa(=2)=0, ¢y(+2)=0, '
_ The time-dependent solutions of the dynamical equations
while (4) and(5) were obtained numerically, by transforming these
partial differential equationgPDES into finite difference
go[ ¢1(—2)=2m, $1(+2)=0, 20 equations, and calculating the fielgs(x,t) and ¢,(x,t) in
Yl po(—2)=0,  ¢o(+x)=0. successive time steps. Most of the static solutions obtained

did not undergo appreciable variations when inserted into our
It is clear from the definition of topological chargésl) that ~ dynamical program as initial conditions. This is a numerical
solitons and antisolitons have opposite charges. The approxidication of the stability of the corresponding static solu-
mate formulag16) and(17) may be compared with the nu- tions. However, not all the static solutions obtained by the
merical results depicted in Table I. It can be seen that theariational method explained in the last section were found

2n

&N
<

0

H

1
V1

0

-
-

i

¢

2n

FIG. 4. The static solutiong3, H?, H}, andV} as projected on

the (¢1,¢-,) plane.

to be stable. For the given choice of paramete@., for
example, is unstable and decays spontaneousljseia Figs.
5(a) and 5b)]

VioHY+Vi+Hi (21)

Here,HY is the antisoliton oHY. Figure Fa) shows theg,

and ¢, fields after several time steps. The decay product
solitons can be identified at positions where the fields jump
from one vacuum to an adjacent vacuum. Figure 3 helps in
recognizing these decay products. Figure 4 shows the stable
solutionsH], V3, andH? and the unstable solutiof on the
(¢1,¢2) plane. Numerical calculations show that the decay
of V} starts with the trajectory shown for this solution and

evolves gradually to thei? (H? in the reverse direction
V3, andH] trajectories in this figure. Figure(ly shows the
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TABLE |. A sample classification of the lowest energy solitons tef=0.3, a,=1, €,=0.5, €,

=0.07.
Symbol Mass Q1n Qv Qzn Qav Qan Stability
Vi 2.09 0 +1 0 0 0 stable
% 2.09 0 0 0 +1 0 stable

HY 3.09 +1 0 0 0 0 stable

HY 3.09 0 0 +1 0 0 stable

HY 3.09 0 0 0 0 +1 stable

Hi 26.7 +1 0 0 0 0 stable

H3 27.5 0 0 +1 0 0 stable
H3 27.6 0 0 0 0 +1 stable

Vi 42.9 0 +1 0 0 0 VI HOVIHE
V2 48.4 0 0 0 +1 0 stable
H2 53.6 +1 0 0 0 0 stable

H3 54.6 0 0 +1 0 0 stable
vl 89.6 0 +1 0 0 0 V3—HIHVGH H3
V3 95.5 0 0 0 +1 0 stable
V3 129 0 +1 0 0 0 metastable

corresponding energy density for various time steps. Indienergies of the decay productsds,q,;M = 62.47. The dif-

vidual solitons as decay products are more apparent in thigsrence goes to the kinetic energies of the decay products.

figure. The total energy and all topological charges are conserved.
The balance of andV charges is of course respected in |n order to demonstrate the conservation of topological

the decay(21), which can be easily demonstrated by com-charges, let us write down the charges of individual solitons:

puting Qv and Qny for Vi, H?, Vi, andHI. From the

conservation of energy point of viewl (V})=42.9, while

M(HY) +M (V3 +M(H})=31.88, which shows that the de-  V3: Quy=+1, H3: Quu=—1, HY: Qu=—1,

cay is allowed, and the excess energy is transferred to the

kinetic energies of the solitons. As Fig(bh shows, no ap-

Iperti(.:lable energy is radiated away as small amplitude wave Vé: Qu=+1, Hii Quu=+1, H%: Q= +1,
Numerical results show that; is also unstable and de-

cays via all other charges being zero. We thus ha@e, (LHS)=
1 40, 50 4\ /1 1 1 +1 andQ,y (RHS)=+1, and all other charges are equal to
Ve HatHi+ Vot HitHz. (22 zero for both sides.

Figure 6 illustrates the decay bE. It can be seen from Fig. ~ SurPrisingly enough, although the decay\df via

6(b) that anH2VAH1 compound(i.e., V}) is produced first.
This compound subsequently decays into its components in a

- 1 40, 50, 30, /1 1 1 1
short time. Note thaM (V3)=89.6 and the sum of the rest V3—H3+H;+H;+ Vot Hi+Hy+Hj3 (23)
i 1
ﬁ: Vu ’:’J
~ ._.?'.'
0, 0, " I FIG. 5. The decay o¥i. () ¢; and¢, as a
g function of x after the decay oi/i. (b) The en-
g ergy density as a function of for various time
= steps. The dotted line forj is added in order to
- clarify the trajectory of this decay product.
0 2§
0 50 x 100 0 50 X 100
(@) (b)
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2 FIG. 6. The decay o¥/3. () ¢, and ¢, as a
2n N ﬁ function of x after the decay ot/%. (b) The en-
2 E ergy density as a function of for various time
steps.
0
0 50 X 100 0 50 X 100
@ (b)
n
is allowed by conservation of energy and charge, such a de- Mc2=2 yim;c? (24
cay is not observed. We thus conclude tigis a metastable =t
soliton, and its fission needs some external trigger.
V. CONCLUSION and
Although the sine-Gordon equation is an integrable sys-
tem, even minor modifications of the equation usually ex-
ploit its integrability. We described in this paper and else- "
where[2,1]] interesting and rich behavior that may result |=21 yimiv;=0 (25
from suitable modifications of the sine-Gordon equation ir-
respective of whether it is integrable or not. Removal of
mass degeneracy, soliton confinement, and soliton decay af@ the decay
among such properties.
For the system introduced in this paper, we presented a
class of exact, single-soliton solutions in the particular case S—StSpt -ty (26)

where the system reduced to the sine-Gordon equatign (

=0 or ¢,=0). Other classes of static solutions were com- , )

puted numerically using a variational algorithm. These statid" Eds-(24) and(25), M is the mass of th& soliton, m; are
solutions were then fed into a numerical program whichth® masses of tmzsolltlons,vi are the corresponding veloci-
computed the dynamical evolution of the solution. We foundfies, andy;=(1—v{) ~*% The system of equatiori@4) and

that most of the static solutions were stable, while a few(25 has a unique solution fas;, if n=2. Forn>2, we
underwent decay into lower energy solitons. Topologicalhave only two equations fam unknowns and the equations
charges where conserved throughout these dynamical prélo not have a unique solution. However, the decay pattern
cesses, in addition to the conservation of energy and linea@nd the distribution of velocities among the decay products
momentum which results from the invariance of Lagrangiars€em to be predetermined in our numerical reditsnpare
under space and time translation. In the particular dégay  the decay pattern of7 in Figs. 5 and & If we note that the
two interesting effects were observed: First, the decay diglecay to the daughter solitons does not happen in a single
not start promptly. RatheN% decayed intoﬁ%ViH% first, ~ Stage, but rather' pr_oce_eds in successive stages, it becomes
and Vi decayed via Eq(21) in a later stage. Second, the clear why the distribution of velocities among the decay

— =0 . . _ éroducts follow a unique pattern. In each stage, an unstable
(H1,H2) pair apparently remained as a bound system in theqjiton decays intawo decay products, which is actually

decay ofV3. In order to check whethet andH3 do form  observed numerically. The velocities of the two decay prod-
a bound system, we did numerical calculatighsth varia-  ucts are unique, according to E¢g4) and(25). One of the
tional and dynamicalfor this system. It turned out that the decay products, in turn, decays into two solitons in a later
system split intoH} andH) which moved away from each stage, and so on.

other. We conclude thatYH9 do not form a bound system.

Finally, let us discuss briefly the kinematics of solitons in
the decay process. Since our system is relativistic, principles
of conservation of energy and momentum should be appli-
cable in their relativistic form. Ignoring the energy and mo-  The support of the Research Council of Shiraz University
mentum radiated away in the form of small amplitude wave-{grant 79-SC-1379-C129nd IPM is gratefully acknowl-
lets, we may write edged.
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