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Teleparallel equivalent of non-Abelian Kaluza-Klein theory
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Based on the equivalence between a gauge theory for the translation group and general relativity, a telepar-
allel version of the non-Abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns
out to be higher dimensional, spacetime being kept always four dimensional. The resulting model is a gauge
theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast with the ordinary
Kaluza-Klein models, this theory defines a natural length scale for the compact submanifold of the fiber space,
which is shown to be of the order of the Planck length.
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[. INTRODUCTION the teleparallel Kaluza-Klein the geometithat is, gravita-
tion) is obtained from a generalized gauge model. By follow-

In ordinary Kaluza-Klein theoriegl], the geometrical ap- ing this approach, a teleparallel equivalent of the Abelian
proach of general relativity is adopted as the paradigm foKaluza-Klein theory has already been construgteq.
the description of all other interactions of nature. In the origi- By adopting the gauge description as the basic paradigm,
nal Kaluza-Klein theory, for example, gravitational and elec-the purpose of this paper will be to use the equivalence be-
tromagnetic fields are described by a Hilbert-Einstein Latween general relativity and teleparallel gravity to construct
grangian in a five-dimensional spacetime. In the case of ththe teleparallel equivalent of a non-Abelian Kaluza-Klein
non-Abelian gauge theory, the unification with gravitation, atheory. In other words, instead of extending spacetime to
possibility first raised in the 196(€], was achieved by ex- higher dimensions, it is the internéiber) space that will be
tending the usual four-dimensional spacetime to aextended to (4 D) dimensions, spacetime being kept al-
(4+ D)-dimensional spacetin{@—6], with D the dimension ways four dimensional. Similarly to the ordinary non-
of the compact part of spacetime. According to this construcAbelian Kaluza-Klein model, the gauge transformations will
tion, the isometries of theéD-dimensional compact sub- be obtained from the isometries of the fiber space. This con-
manifold yield the non-Abelian gauge transformations. struction will be achieved through the following steps. In

On the other hand, it is widely known that, at least mac-Sec. Il, from the analysis of the dynamics of a particle sub-
roscopically, general relativity is equivalent to a gaugemitted to both gravitational and Yang-Mills type fields, the
theory[7] for the translation groupp8], provided a specific unified gauge potentials and field strengths are defined. In
choice of parameters be maf®. In this theory, known as Sec. Il the corresponding gauge transformations are ob-
the teleparallel equivalent of general relativitghe funda- tained from the isometries of the fiber space, and in Sec. IV,
mental field is the Weitzenlo& connection, a connection the unified gauge Lagrangian is constructed. The coupling of
presenting torsion, but no curvature. Differently from generaimatter fields with the unified gauge potential is studied in
relativity, in which gravitation is attributed to curvature, Sec. V, where the explicit dependence of all dynamical vari-
teleparallel gravity attributes gravitation to torsion. Further-ables on the internal coordinates is examined. Finally, in Sec.
more, whereas in general relativity curvature is usegdo VI, the basic properties of the model are discussed. In par-
ometrizethe gravitational interaction, in teleparallel gravity ticular, it is pointed out that the teleparallel Kaluza-Klein
torsion plays the role of ayravitational force[10]. This model defines a natural length scale for the compact
agrees with the fact that, in any gauge theory, the classicdP-dimensional sub-manifold of the fiber space, which is
interaction is always described by a force equation. found to be of the order of the Planck length.

Now, the equivalence alluded to above opens new per-
spectives for the study of unified theories. In fact, instead of

. . L. . 1. PARTICLE DYNAMICS AND UNIFIED GAUGE
using the geometrical description of general relativity, we

. . . . POTENTIALS
can adopt the gauge description as the basic paradigm, and in
this way construct what we call thieleparallel equivalent of In what follows, the greek alphabetu,v,p, ...
Kaluza-Klein models. According to this approach, both =0,...,3 will be used to denote indices related to space-

gravitational and non-Abelian gauge fields turn out to betime. According to the gauge construction, at each point of
described by a gauge-type Lagrangian. This means that, irspacetime there is a fiber space, which in our case will be a
stead of obtaining the Yang-Mills construction from geom-(4+ D)-dimensional space given by the direct prodivt
etry, as is usually done in ordinary Kaluza-Klein models, in®BP, whereM* is the tangent Minkowski space, aB& is

the group manifold associated to a Yang-Mills symmetry.

The first part of the latin alphabetb,c, ...=0,...,3will
*Electronic address: analucia@ift.unesp.br be used to denote indices related to the Minkow(skiex-
"Electronic address: Ictorres@ift.unesp.br terna) part of the fiber, whereas the second part of the latin
*Electronic address: jpereira@ift.unesp.br alphabetm,n, ...=5,...,4+D will be used to denote in-
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dices related to the Yang-Miller interna) part of the fiber. is the gravitational field strengtlnl,s=(gw,dx“dx”)l’2 is the
The second part of the latin capital alphabet will be used tepacetime invariant interval)’=dx”/ds is the spacetime
denote the whole set of indices of the internal space, whiclfour-velocity, ande®,, is the tetrad field

runs through the values,N,...=0,...35,...4+D. )
The metric of the (4 D)-dimensional internal spac#* e?,=d,x3+c %A%, )
®BP is
We remark that, whereas the Minkowski indicg®,c, ...
Nap O are raised and lowered with the Minkowski mettjg,,, the
=l b (1)  spacetime indiceg:,v,p, ... are raised and lowered with
mn

the Riemannian metric

where 7, is the metric ofM*, which is chosen to bey,, = .02 @b (6)
=diag(+1,—-1,—1,—1), and yn, is the metric of the Yur™ Mab€ u€y,

- i D D . . o
D-dimensional spac&”. In general,B” is a (compact  \yhich is used to write the spacetime invariant interal

curved Riemannian space, Withy,= ymn(x"™) & function of Considering now that the gauge chargesatisfies the
the coordinates™ of BP. Wong equatior13]

As already said, gravitation will enter as a gauge theory
for the translation group, whose action will take place in the dg g .
Minkowski spaceM®. As the dimension of the translation I %fijkA],u.q u#=0, (7)
group is the same as that of the Minkowski space, the first
part of the latin alphabea,b,c, ... =0, ... ,3will also be  yjth f,, the structure constants of the gauge group, the equa-

used to denote the indices related to the translation grougion of motion (3) can be rewritten in the form
The intermediary latin alphabétj,k=5,...,4+1 will be

used to denote indices related to the Yang-Mills gauge group, du, 1 g _

with | denoting the number of generators of the associated eaﬂaz —ZFaWuau”Jr —F'.au’, (8
Lie algebra. The latin capital lettersA,B,C, ... c mc*
=0,...3,5,...,4+1 will be used to denote the whole set

of indices related to the group generators. Notice that th(\__(vhere

dimension 4+ D of the fiber does not need to coincide with 9

the dimension 4-1 of the gauge group. Fi,w=%Aiy—é’vAifrﬁ—fijkAjMAky (9)
We denote byA®, the gauge potential related to transla- ¢

tions, and byA', the Yang-Mills type gauge potentials. Ac-

cording to the gauge description of interactions, the actio

integral describing a particle of massand gauge chargg ,

under the influence of both a gravitational and a gauge fiel

is

is the gauge field strength. In the absence of Yang-Mills field,
The equation of motion{8) can be shown to reduce to the
é;eodesic equation of general relativitiO].

The gauge structure of teleparallel gravity allows the defi-
nition of aunifiedgauge potentialélA#, which is assumed to

b 1 _ have the same dimension of the gravitational poterifa].

S=f [—mcda—g(mAaﬂuaJr gA',q)dx*|, (2 Consequently, the internal gauge potenfia), must appear
a multiplied by an appropriate dimensional factor, which we

g1/ ; . . — write in the form
wheredo = (7,,dx?dx°) “< is the Minkowski invariant inter-

val, u,=dx,/do is the tangent space four-velocity, agdis .
the Noether charge related to the internal gauge transforma- AA“E(Aa,L A=
tion [12]. Notice that the mas® appears as the gravitational

coupling constant, whereas the gauge coupling constant {§here is a parameter to be determined later. Consequently,
denoted byg. Notice, furthermore, that we are assuming thej \ve define a generalized (#1) Noether chargep,
weak equivalence principle, and equating the inertial a”dzmcuA with
gravitational masses. '

The equation of motion following from the actid@) is

g

K

A%, =A (10)

~ K
UAE(ua!ui):(ua!aqi> (11)

du, g , .
o= "+ —(9,A",—d,A,)qu” _ , _ _
#ds 2 urtlal mCZ( WAV BN AU a generalized (4 1) “velocity,” the action (2) can be rewrit-

ten in the form

g ., dg
- —AL T, () b
“ds 1
mc S= Ja —mcda—gAAMpAdx” . (12
where
In the same way, we can define now a generalized field
Fo=d,A%—d,A%, (4)  strength,
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FAu=(Fou Fl)= F%%F‘W). (13

With these definitions, the equation of moti¢8) assumes
the form

(14

This is theunified—gravitational plus Yang-Mills—analog of
the electromagnetic Lorentz force. Its solution determines
the trajectory of the particle under the influence of both

gravitational and Yang-Mills fields.

Ill. GENERALIZED GAUGE TRANSFORMATIONS

A point in the (4+D)-dimensional internal spack!®
®BP will be denoted byxM=(xx™), where x? are the
coordinates oM*, andx™ the coordinates oBP. A local
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with 8¢"= 6a'K"; the transformation parameter in the Kill-
ing basis.

The generator& , obey the algebra

[Ka,Kgl=feKc, (23)

wheref”z¢ are the(dimensional structure constants, whose
components are

f%=0 for A,B,C=a,b,c,
fAac=1 : L (24)
flie=xfi for A,B,C=i,j,k.
The constant
c
X=K%, (25

was introduced for dimensional reasons, and in such a way to
yield correct forms for the field strengths and gauge transfor-

transformation of these coordinates, which leaves the metrimations. We have thus the following commutation relations:

ymn invariant, can be written in the form

M= 5a K yxM, (15

where Sa”=38a”(x*) are the infinitesimal parameters,

whose components are written in the form

Sa\(x*)=(a?, 5ai)=( M&% 5ai) , (16)
KC

and K, represent the generators of the transformations.

These generators have the form
17

where the coefficient&N, are the Killing vectorg14] asso-

Ka=KNadn,

[Ka,Kp]=0, (26)
and
[Ki Kj1=x XK. (27)

The generalized derivative, covariant under the transforma-
tion (15), is
D,=d,+c 2A" Ka. (29

In fact, as a simple computation shows, its commutator gives
rise to the generalized field strength,

[D,.D,]=c 2F", Ka, (29

ciated with the infinitesimal isometries of the internal SPacg here

M4®BP. They form a set of 4| linearly independent vec-

tors for this spac¢l], and are given by

P, 0
(Tl

0 K" (18

with 6°, the Killing vectors ofM*, andK", the Killing vec-
tors of BP. The generators are, consequently,

Ka=8°9p=Pa, (19
which are the isometry generators Mf*, and
Ki:Kni(yn, (20)

which are the isometry generators BP. The coordinate
transformations, therefore, are given by

3= 5a?, (21)

and

5X"=%5aiK”iEi

;06"
KC KC

(22

FRL=0, AR, =3, AR +c A0 AB AC, . (30)
Using the appropriate definitions, this expression is easily
seen to yield the correct expressions for the gravitational and
the Yang-Mills field strengths. We notice in passing that the
tetrad field is given by the covariant derivative xf, the
coordinates of the non-compact padt' of the fiber space:

a — a
e M—Dﬂx .

This means that this part of the fiber space presents the sol-
dering propertyf15].

Now, from the covariance oD, under the isometric
transformation(15), we obtain the gauge transformation of
the generalized potential:

SAR,=—c?D,Sal=—c?, 80 — g AR, 8aC. a

For A=a, the usual transformation law for th@belian)
gravitational gauge potential is obtained:

SA?, = —C?3, 6" (32)
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For A=i, it gives 1

SPHV=— (TPHY THPV — TVPH)

. . g 4

OAl,= =D ba'==0 60 = 1A 5d", (33 1

— 5 (@ T =g T ). (39

which is the usual non-Abelian gauge transformation. When

6a®=0, therefore, the coordinate transformatid®) leads  To obtain the correct form of the gauge Lagrangian, two

to a pure gauge transformation. conditions must be imposed on the second term of(B§).
The first one is tha6]

IV. GAUGE LAGRANGIAN AND FIELD EQUATIONS

2 2

, 9 g

K Zmza. (40)

Considering the generalized field strengﬂfﬁw, we can
write the unified Lagrangian density for the gauge field as

The constank, therefore, is simply the relation between the

e [1
L=16-5 Z]—"AW]-"ngg“"NABVP), (34  gauge coupling constarg and the gravitational coupling
constantg. The second condition concerns the relative signs
where e=det(e?,). The algebraic indice\,B,C are Detween the gravitational and the Yang-Mills Lagrangians. In
raised and lowered with the Cartan-Killing metric order to get the appropriate sign, it is necessary that
Nap O 7=~ Gij - (42)
TRl 0 gy 39 Therefore, the Cartan-Killing metri¢35) of the unified

gauge group becomes
whose components related to the translation group coincide

with the Lorentzian metricp,, of the Minkowski tangent ap O
space. The explicit form of the componentsNfg"* are MABT| o — &) (42)
Nab"”= Anapec €% + Besle," + Ce, ey’ (36)  with these conditions, we obtain
with A, B, C arbitrary parameterf9], which gives the La- cte e
grangian of the gravitational sector, and L=Let Lym=16-c " Tow— 7 F Wk (43
Nij "= mije."e, (37

As is well known, up to a divergence, the first term of this

which gives the Lagrangian of the gauge sector. The Oliﬁer_l_agranglan is the teleparallel equivalent of the Einstein-

ence in the form ofN,g”” for the different sectors of the Hilbert Lagrangian of g(_aneral relativity10]. The se_con_d

L term, on the other hand, is the usual gauge Lagrangian in the
theory is directly related to the fact that, due to the presenc f o
of a tetrad field in the gravitational sector, the algebraic an resence of gravitation. -

. - : : It is interesting to notice that, when the Cartan-Killing
spacetime indices of this sector are of the same type, anrcrll1etric related to théexternal translation grouf, is chosen
consequently there are additional ways of contracting the in: be 75, —diag(+1,-1,—1—1) thge co?responding

. . . - ab™— o 4T 4T l
dices. Since there are no tetrads relating the algebraic and t Artan-Killing metric related to theinterna) Yang-Mills

spacetime indices in the gauge sector, only the usual contrac-

L ) . group Gyy has necessarily the form;;=— ;. If we had
tion is present. For the specific choice of the parameters, chosen the other possible convention fag, . that is, 7.,
B C =diag(—1,+1,+1,+1), the consistency condition would
A=-=——-=1, require thatn;; =+ &;; . Therefore, the teleparallel Kaluza-

2 4 Klein construction imposes a constraint between the Cartan-

teleparallel gravity yields the so-called teleparallel equiva-KIIIIng metric convention adopted for the translation gauge

- ; . group, and consequently for the Minkowski tangent space—
lent of general relativity. In this case, the Lagrangi@d) see the comment just after B@5)—and that adopted for the

becomes .
Yang-Mills gauge group.
che K292 Performing a functional variation of in relation to the
= L I S O componentsA? ., and using the definition of the Weitzen-
E 167TG SJ Tp,uV lG’ﬂ'G 7’Ij|:4 F /.LVF 1 (38) - p 7 o g A . ) ‘
bock connectionl’”,,, we obtain the gravitational field
equation
where
_ 2 a _ 477G 47G
Tp,uv_c eapF MV_FPVM FP.U-V ag(es\ro')_ . etT)\: . e@f)\, (44)
c c
is the torsion of the Weitzenbk connectionI'?,,
=ef,d,e%,, andS"*” is the tensor where
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cle be performed, and consequently the field variables of the
27g L nSy =N Le (45 model cannot be represented by excitations. In fact, like in
any other gauge theory, the basic fields are represented by

stands for the teleparallel canonical energy-momentun§@uge potentials givea priori, which are the basic ingredi-
pseudo-tensor of the gravitational figli6]. The source of €nts for the construction of gauge theories. _

the field equatiori44) is the energy-momentum tensor of the  Now, comes the question on how the dynamical variables
Yang-Mills field in the presence of gravitation, which is de- Of the theory depend on the coordinate® of the fiber

etT)\:

fined by space. Concerning the coordinate’ of the non-compact
four-dimensional part\14) of the fiber, as this space is sol-
. Ly 8Ly c_iered to spacetime,_ and as aI_I dynamical variables are func-
e0=—c e ——=—e"\— (46)  tions of the spacetime coordinat&$, the dependence of
2 e these variables or? has necessarily to be through the argu-

ment of the dynamical variables. Concerning the coordinates
x™ of the compacD-dimensional partBP) of the fiber, as a

'change inx™ must correspond to a change, not in the argu-

_ ge . ment, but in the components of the field variable, the depen-
aﬂ(eF'W)—h—j'V:o, dence of any dynamical variable aff' will be analogous to

¢ the dependence on the gauge parameter in a gauge theory.

This is a direct consequence of the fact that the isometry
transformations oBP are ultimately equivalent to internal

jir=—fl Al Fkev gauge t_ransformations. Acc_ordingly, the depe_nden_ce of the
e matter field¥ on the coordinateg™ can be written in the

stands for thepseudd current of the Yang-Mills field17].  form
We mention in passing that the teleparallel field equation .
(44) is an equaticF))n writ?en in terms of Ft)he Weitzénha:gn- W (xT) = exilixfnx"14, (47
nection only. It can alternatively be written in terms of the where) is defined in Eq(25), and3, are parameters related
Levi-Civita connection, in which case it reduces to the genyg the geometry of the compact manif@®. In addition, as

eral relativity Einstein’s equation. The teleparallel field equa-, change inx™ is related to a gauge transformatigg), must

tion (44), however, has the advantage of presenting the samgecessarily assume values in the Lie algebra of the gauge

Finally, variation of £ with respect to the componen@éﬂ
yields the Yang-Mills equation in the presence of gravitation

where

formal structure of the Yang-Mills equation. group. In other wordsg,=B,/7;, with 7, a matrix repre-
sentation of the Lie algebra generators. In fact, according to
V. MATTER FIELDS Eq. (47), the action of the(derivative isometry generators

K" d, turns out to be equivalent to the action of tfmeulti-

e e o e etgblEaia mai generalorsy . This means that
P y P gaug ossible to relatéyK" 3, to another realization of the gen-

For example, in the teleparallel Kaluza-Klein theory, the . . O
non-compact four-dimensional part of the fiber, which iser%ticr);toighniggﬁgﬁcgero(;p&fé S %l L?iﬂétsmé?ri\f %?Jg'gty s

Siructure that is alays present independently of e presendTSOTaIONS are obtained as the isomerrieBf
ys p P y P Let us explore better this point. Under the coordinate

or not of a gravitational gauge field. The same is true of th : : .
D-dimensional compact part of the fiber in relation to theetransformatlor(15), a matter field¥” changes according to

corresponding Yang-Mills gauge field. It should be noticed
that the fiber space of teleparallel Kaluza-Klein theories cor- SV =8 K W= 5aaaaqr+i25ai|<ni,9an_ (48)
responds to the ground state spacetime of ordinary Kaluza- KC
Klein theories. In these theories, the transition from a higher- .
dimensional theory to the effective four-dimensional theoryBY USing Eq.(47), we see that
is made with the help of an harmonic expansion around the KC
ground state, whose excitations represent the field variables I =ixB¥Y=i—pB.¥, (49)
of the model. As a consequence, an infinite spectrum of par- h
ticles is obtained. In particular, the lowest order excitationsw
have vanishing mass, giving rise to the massless sector of tq
emerging gauge theory.

On the other hand, in the teleparallel Kaluza-Klein theo- ig
ries, all dynamical variables are functions of the four- oV = 5aaaa\P+E5a'K”i,8n\If. (50)
dimensional spacetime points. Furthermore, the action func-
tional and the field equations are written in the four-gn the other hand, we have already seen thatK"4,

dimensional spacetime, and not in the higher-dimensionalaisfy the commutation relatiorig7), that is
fiber space. This means that no dimensional reduction is nec-

essary, no harmonic expansion around the ground state has to [K"dn, K™ am]\Ifzxfkij K" .

here use has been made of E25). Substituting into the
Fansformatior(48), it becomes

064028-5



BARBOSA, GUILLEN, AND PEREIRA PHYSICAL REVIEW D66, 064028 (2002

As the Killing vectorsKk"; depend orx™ in the same manner type fields are described by a gauge theory, with the Yang-
asV does, it is an easy task to verify that Mills field strength appearing as extra gauge components of
torsion, the field strength of teleparallel gravity. This means

[IK" B iK™ Bin] ¥ = X iK "By 0. (5D that the gravitational and the Yang-Mills field strengths are

This means that different components of a unique tensor. Another interesting
point concerns the relation between geometry and gauge

T,=iK"B,=iK" 8,7 (520  theories. According to ordinary Kaluza-Klein models, gauge

) - o . theories emerge from higher-dimensional geometric theories
can be identified as another realization of thanti- 55 5 consequence of the dimensional reduction process. Ac-

Hermitian) Lie algebra generators. With this identification,

i . cording to the teleparallel Kaluza-Klein approach, however,
the transformatior{50) acquires the form

gauge theories are the natural structures to be introduced, the
g four-dimensional geometr{gravitation emerging from the
SV =5a?P, ¥+ %6a'Ti\P, (53)  non-compact sector of the fiber space. In fact, only this sec-
tor presents the soldering properf$5], and can conse-
which is in fact a gauge transformation of matter fields. ~ duently give rise to a tetrad field, which is the responsible for
The covariant derivative o¥ is defined by the geometrical structuréeither metric or teleparallglin-
duced in spacetime. Furthermore, as the gauge theories are
introduced in their original form—they do not come from

D,V= %‘I”‘AAMQ- (54 geometry—the unification, though not trivial, turns out to be
much more natural and easier to be performed.
Substituting the transformatici81), and using the appropri- An important characteristic of the ordinary non-Abelian
ate identifications, it becomes Kaluza-Klein model is that the metrid) is not a solution of

the higher-dimensional Einstein equations as these equations
cannot have solutions of the form*®BP. This is related to
the fact that theD-dimensional internal space is in general
o ) ] _ curved, leading then to difficulties for defining the ground
which is the usual expression of the gauge COV?”%m derivasiate(vacuum of the higher-dimensional gravitational field.
tive in the presence of gravitation. Definidg, =A',e%,, it These models, therefore, require an initial non-compact (4
can be rewritten in the form +D)-dimensional spacetime, and a subsequent compactifi-
D,¥=e",D,¥, (56) _cation. scheme for_ thB extra dimensions. One way of §olv—
ing this problem is to introduce extra matter fields in the
whereD,V is the gauge covariant derivative in Minkowski form of a higher-dimensional energy-momentum tensor, so
spacetime. that a spontaneous compactification of the extra dimensions
is achieved 18]. Another solution was that provided by Fre-
V1. EINAL REMARKS und and Rubirj[19] in eIeven—Qjme_nsionaI supergravity,
where not only is there compactification, but the space natu-
Replacing the general relativity paradigm by a gaugerally separates in (#7) dimensions. On the other hand,
paradigm, and making use of the teleparallel description oince in the teleparallel Kaluza-Klein model the gauge theo-
gravitation, which corresponds to a gauge theory for theies are not obtained from the geometry, but introduced in
translation group, we have succeeded in constructing ¢heir original forms, the fiber space of these theories can be
teleparallel version of the non-Abelian Kaluza-Klein theory.assumed to present a compact sub-maniti from the
In other words, we have succeeded in unifying, in thevery beginning. In other words, the compactification problem
Kaluza-Klein sense, teleparallel gravitation with Yang-Mills does not exist for these theories. In addition, as both the
type theories. The resulting model turns out to be a gaugaction and the field equations are always written in the four-
theory for the grouf ,® Gy , with the fiber space given by dimensional spacetime, and not in the higher-dimensional
M*®BP, where M* is the Minkowski tangent spacetime, fiber space, no dimensional reduction is necessary, and con-
andBP is the manifold associated with the Yang-Mills gauge sequently no expansion of the dynamical variables in terms
group Gy, . In this model, the translational gauge transfor-of the complete set of harmonics BP has to be performed.
mation arises as the isometries of the non-compact fourAs a consequence, the infinite spectrum of new particles is
dimensional part of the fiber, which is always a Minkowski absent, strongly reducing the redundancy present in ordinary
spacetimeM*, whereas the non-Abelian gauge transforma-Kaluza-Klein theories. A similar achievement has already
tions arise as the isometries of the compRetlimensional been obtained by a modified Kaluza-Klein theory in which
part of the fiber, which is the part related to the internalthe internal coordinates are replaced by generators of a non-
gauge symmetry. commutative algebr§20]. In this model, no truncation to
As in the Abelian casgll], the teleparallel equivalent of eliminate extraneous modes is necessary as only a finite
the non-Abelian Kaluza-Klein model turns out to be muchnumber of them is present.
more natural than the ordinary Kaluza-Klein model. In fact, Finally, as a last remark, let us take the internal coordinate
in the teleparallel model both gravitational and Yang-Mills transformatior(22), and substitute on it the value &f given

g .
D W =6%,0,0 2 ATV, (55)
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by Eq. (40). As BP is compact, this transformation can be ral length scale for the compact part of the fiber space, given
written in the form by the Planck length. In the specific case of the ordinary

Abelian Kaluza-Klein theory, the radius of the fifth dimen-

oX"=pase", (57 sion can only be inferred from the value of the elementary

electric charge. Since the teleparallel model yields a natural
length scale, we can reverse the argument and use this length

12 to calculatethe elementary electric charge. Furthermore, as

(2

where

(58)  is well known, a length of the order of the Planck length, like
the p above, through the application of the Bohr-Sommerfeld

) ] ) ) quantization rule to the periodic motion in the fifth dimen-
is the length scale associated with the compact internal sulg,on, gives the correct value for the elementary electric

manifold, and charge.
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