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Isoperimetric inequality for higher-dimensional black holes
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The initial data sets for the five-dimensional Einstein equation have been examined. The system is designed
such that the black holex{S®) or the black ring &S?XS') can be found. We have found that the typical
length of the horizon can become arbitrarily large but the area of characteristic closed two-dimensional
submanifold of the horizon is bounded above by the typical mass scale. We conjecture that the isoperimetric
inequality for black holes im-dimensional space is given b, ,<GM, whereV,_, denotes the volume of
a typical closed if—2)-section of the horizon anM is typical mass scale, rather th&h<(GM)¥("~2) in
terms of the hoop lengtl®, which holds only whem=3.
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I. INTRODUCTION hole; (ii) a black hole is small; andiii) a highly deformed
black hole does not form. The first oriie has been proved
There is much interest in higher dimensional space-time®y Schoen and Yaiil] (see also Ref{12]), which can be
in the context of the unified theory of elementary particles. ltregarded as the if part of the hoop conjecture. A precise
is exciting if the existence of extra dimensions is confirmedstatement concerning the second propositionis, for ex-
in high energy experiments. In this aspect, the notion of thémple, given by the Penrose inequality3—15, which states
brane world[1] is an attractive idea. This phenomelogical that the square-root of the area of the apparent horfzé
model provides us with a new way of thinking about ourbPounded above by th¢Arnowitt-Deser-Misner (ADM)]
universe, in which a size of the extra dimensions can be largg1ass: VA<47GMapy. Thus the Penrose inequality may
because the standard model particles and gauge interactiodgrve as a part of the only if part of the hoop conjecture. For
are confined to the boundary of the higher-dimensionathe last statemertii), which is also the only if part of the
space-time. According to this scenario, the gravitational inconjecture, we rely on the numerical worfesg., Refs[16-
teraction at the short distance determined by the size of thé8]). There is also a problem concerning the precise formu-
extra dimensions is modified effectively on the brane, so thatation of the conjecturg¢19], such as the definition of the
we might be able to see the extra dimensions by the gravitdoop lengthC.
tional experiments below 1 mm. If the extra dimensions are At first glance, the hoop conjecture is not valid for higher-
large, the higher dimensional Planck scale may be given bglimensional space-times, since there is black string solu-
rather low energy. The possibility of TeV gravity, in which tions. In four dimensions, the length scale of the horizon
the fundamental Planck scale is set around TeV, has begggnnot be so much larger than the Schwarzschild radius,
much disscussed. while this is not the case in higher dimensions. The simplest
It is suggested that small black holes might be produced s&xample is the four-dimensional Schwarzschild space-time
the CERN Large Hadron Collidgt.HC) [2—4]. This argu- times the real line, which is the five-dimensional vacuum
ment follows from the hoop conjectufB]; a black hole with ~ solution representing the gravitational field of the infinitely
horizon forms if and only if the typical lengtthoop length  long S?X R black hole.
C and the mas#/ satisfiesC<47GM. Note that this state- Nevertheless, we expect that higher dimensional black
ment might be valid only for four space-time dimensions.holes are also governed by some isoperimetric inequality. In
The property of the higher-dimensional black holes has nowvhat follows, we investigate initial data set for the five-
so far been fully explored, though there is much attention tgdimensional Einstein equation and estimate the size of the
this issue[6—10. We need reliable knowledge about such black holes. Then we show the existence of such an isoperi-
black holes to predict phenomelogical results. We here conetric inequality and give its physical reasoning.
sider black holes with small size compared with the extra
dimensions, such that they are well described by the asymp- !l MOMENTARILY STATIC INITIAL DATA SET
totically flat black hole solutiongtreatment of Planck size =~ FOR THE FIVE-DIMENSIONAL EINSTEIN EQUATION
black holes is beyond the scope of this pap&he purpose
of this paper is to consider the higher-dimensional generaliai

zation of the hoop conjecture. metric on>* and szgM“VAnV (n, denotes the unit nor-

In four dimensions, the hoop conjecture is believed to be,,, to>4) is the extrinsic curvature & *. The Hamiltonian
valid. Though it is loosely formulated, it seems to have at

least the following three meaning8) If the massive object and the momentum constraints are given by
is compactified into a small region, there must be a black R—K, K#+ K2=167Gp (1)

Let us consider the initial data seg(,,K,,) on a four-
mensional Cauchy surfacg?, whereg,,, is the induced
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and The volume of the minimal surfadd,, area of itsS?-section
S, and the length of the circumferen€x of S are given by
V,(K¥'—Kg+")=8mGJ*, (2
H . 8GM 3/2
respectively, where := °G(n,n) denotes the energy density V0|(HS):2W2[rSf(rs)]3:2,n-2(ﬂ) . (1D
and J*:=g#">G (n) is the energy flux. Let us consider the 37
momentarily static initial data set
32GM
K,,=0 (3) Area(ss):4w[rsf(rs)]2=%, (12)
and assume the conformally flat metric
5 ) 8GMppw |2
g=f<s,,dx*dx". (4) Lengt(Cy=2mnrf(rg=2m 3. | (13
Then the momentum constrai#) is solved withJ*=0 and
the Hamiltonian constrair(tl) becomes respectively.
2t 87C s indle black hol
Vof:_Tf 0, (5) B. Spindle black holes

Let us consider the metric with axial and spherical sym-
where V, denotes the flat connection. We consider themetry of the form
vacuum case@ =0 so that an initial data is described by a o 5 o an . _
harmonic functiorf on E*. g="1%(p,7)[dZ*+dp?+ p*(d0°+sir? 92de?)], (14

We are interested in the possibility of the formation of

highly nonspherical black holes in higher dimensions. Asand consider the uniform line source of the lenjtlocated
typical cases in five dimensions, we shall consider the initiapt z-axis,
data sets for spindle, disk and ring shaped black holes.

M apm
A. Spherical black holes flo= >
47lp

8(p)o(LI2—|z]), (15

A spherically symmetric black hole gives reference values
of the volume, area and circumference of the horizon to th
other cases discussed below. We consider the metric wit
spherical symmetry of the form

here 6 is the Heaviside’s step function.
The solution of the Hamiltonian constraif®) is given by

g=f2(r)[dr2+r2dy?+r? sir? y(d9?+sir? 9%de?)], (6) —— ZGMADMJL’Z dz'
- 2 ’ 2
and consider a point source at the origin, 3wk J-trp®+(z'~2)
2GM oy 2+ L/2 2-L/2
3. Mapm =1+ tan —arctanr——|. (16)
ffo= a(r), (7 3mlp p p

2mr?

Note that this massive segment corresponds to another

asymptotic end rather than the singularity. One may anyway

fill up the segment with some spatially extended gravita-

tional source.

(8) Due to the geometric symmetry imposed, we have only to
consider the minimal surface equation for the three-surface,

=r(&)sing, z=r(&)cosé, given b
This gives just an initial data for the Schwarzschild space—p (&) @ g Y

time. (1 )2
The location of the black hole in the sense of the apparent e 4 £
horizon is given by the minimal surface for the momentarily '

where M 5py is the ADM mass, that is, total gravitational
mass of the system. Then the solution of Es).becomes

2GMapwm

f=1+ :

3mr

ro2+r2[r
L r—’gcot§—3(r'§ sing

—3r+

static initial data setk ,,=0). A spherical minimal surface f f
centered at the origin satisfies +r cosé) TZ +3(r ¢ cosé—rsiné) Tp} =0, (17
(rf),=0. 9
_ o with the boundary conditiony ,=0 (¢£=0,7/2), required
The solution of the above equation is given by from the regularity of the surface. The results are shown in
Fig. 1.
Fefae 2GMapwm | (10) We shall look at the various geometric quantities charac-
s 3w terizing the horizon. The volume of the horizbinis given by
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FIG. 1. Horizons forL=0, 3rg, 5rg and & are depicted in
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Lirg

FIG. 2. The volume and typical area of a horizon are plotted as

(z,p)-plane. The coordinate values are normalized by the radius 5 function of the lengti./r. These are normalized by those in the
of the minimal surface of the spherical case-0. We will obtain  gpherical casé =0: Vol(HJ) and AreaB), respectively. The vol-
minimal surfaces fot.>7r if we wish. ume of the horizorH is depicted by circles, and each area of the
S?-section ofH is depicted by crossdsirea(S;)] and by squares
w2 [Area(S;)]. The corresponding quantities for the black string with
_ 3 [ 21 v2¢2 i 1
VOI(H)_SWJO FEN(rg“+rer sin? £dé. (18) the coordinate length, Vol(H.) (solid line), Area(S;;) (dashed
line) and AreaS;,) are also plotted as a function &firg. This

Typical area scales are that of the= 7/2)-sectionS, figure shows that the area is bounded above.

We shall pay attention to the portion of the black string

w2
Areﬁ(sl):‘“TJ f2J(ro?+rérsingdé, (19 within the finite interval— L/2<z<L/2. The volume of this
0 part is given by

and that of the largest sphe among ¢ = const)-sections

Ared S,)=maxX4mfr? sirf £;,¢6e[0,m/2]}.  (20)

L2 w 2m
VO|(HC):I dZJ' dﬂf d(Pf3P2 Sinlﬂpip
—L/2 0 0 ¢

The length scale€; and C, are defined by the circumfer- 27mr
ences ofS; andS,, respectively; T Vol(Hy). (26)
/2 .
Lengtt{Cl):4f fmd& (21) We shall consider the spher&g; at 9==/2 andS,, at z
0 =const. Each area becomes

LengthC,) =maxX2xfr sing;ée[0,7/2]}. (22

The result is shown in Figs. 2 and 3.

It seems that there always forms a black hole, however
long the massive segment is. Whers sufficiently large, the
conformal factor near the origin behaves as that of the infi-
nite line source,

2GM
n ADM

1 =0

(23

In the region where the conformal factor behaves as the
above, the horizon is almost cylindrically symmetric and
then is determined by

45

4t
35|
3t
25|
ot
15

1

05

Lirg

2GMapm 3 FIG. 3. The typical length scales Leng@y) (circles and
p2( 1+ 3L) =0. (24 Length(C,) (squaresof a horizon are plotted as a function of the
p P length of the sourcék/rg. All quantities are normalized by those in

o the spherical caseL=0. The corresponding length scales
The root of the above equation is given by Length(C,,) (solid line) and LengthC.,) (dashed lingof a black
string with the coordinate length are also plotted as a function of

G I\/lADM
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L/2 27
Area(Scl)=j dzJ def?p
~z2 Jo

pP=p
08

06

yirs

B 9
= 1—6Ar93(35), 27
04}

02

T 27
Aredscz)zf dﬁ‘f def?p? sinﬁ‘
0 0

P=pc 0 . . . . L L
0 02 04 06 08 1 12 14
xrs
97?r? ’
= ;Area(Ss). (28) FIG. 4. Horizons ofD=0 and 1.34; are depicted in the
16L (x,y)-plane. The coordinate values are normalized by the radius

of the horizon in the spherical cag®2=0. We could not find a

The length scales of circumferences, of S, andC,, of ~ norizon forb>1.34.

S., are determined by

2GM D 27
f=1+ %J x'dx’ dy'’
3L 37°D? Jo 0
LengtH C.y) = mLengtf{ Cy, (29 1
S
X
(x—x"cosy’ )2+ x'? sir? ¢’ +y?
37rg
Length(Ccp) = —Length(Cy), (30 1y 28Maom, | 1 (D752t y?
37D?  |2y?

respectively. These quantities are also depicted in Figs. 2 and
3. From these figures, we can see that length scale, area and +(x?+y?)2—2D?(x>—y?)+ D*]
the volume of a spindle black hole approach to correspond-
ing black string values in the limit df — .

The area of theS?-sectionS of the horizon is always
bounded above by the total mass:

. (39

Let us search for the apparent horizon of the foxm
=r(&)cos¢, y=r(&)sing, determined by the differential
equation

2 2 2
AreqS) el g LT {Z—r‘f cot2¢)—3(r , sing
- K33 €
326M, o3 O (31) r r r

fy ) fy}
+r cosé) — +3(r  cosé—r siné) —|=0, 35
C. Disk black holes €) ¢ 3(r ¢ cost 0% (39

The result of the previous section shows that a horizon of 22
arbitrarily large linear size can form in five dimensions. We 2t °
here consider the possibility of disk shaped black holes. The g | o
following metric is appropriate for this problem. 16l o
g="f2(x,y)(dx?+dy?+ x2d¢?+ y?d ?). (32 14} e
12} . o °
This admits two orthogonal commuting Killing vector fields 1¢ = » 8 § 3 o o =& @ ° @ ot
dy, d, and g~ +2m, ¢~ @+2m are regarded as the co- 08 | LI .
ordinates orir2. 06 | *
We consider a uniform massive disk as a source, 04 . ) ) . ) o
’ 02 04 06 08 1 12 14
M Dir,
3, ADM _
e 2772D2y o(y)0(D—x). (33 FIG. 5. The typical length scales Leng@y) (squarel

Length(C,) (crosses and LengthCs) (circles of a horizon are
plotted as a function of the radil®¥/rs. All quantities are normal-
The gravitational field outside the above source is given byized by those in the spherical caBe=0.
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0.9 e 06
08 ? a 04
. "o 0.2 C=LS5rs C=20r, C=2.5f
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FIG. 8. Black rings forC=0.8&4, 1.5, 2.0rg, 2.5 are de-
picted in (x,y)-plane. The coordinate values are normalized hy
A black ring can be found fo€=0.7%, but not forC=0.78&.

FIG. 6. The typical area scales Ar&j (crossey Area(S,)
(squaresand Area() (circles of a horizon are plotted as a func-
tion of the disk radiud/r.

subject to the boundary condition;;=0 ({=0,7/2). n o[ s
The results are shown in Figs. 4—7. We evaluate typical Vol(H) =2 0 PN ) +risin2¢ds. (42)

hoop length scales

/2 It can be seen that the inequalitgl) still holds in this
Lengﬂ’(cl):4J’ fV(r »2+r2dg, (36)  case. Remarkably, a horizon does not form for large disks;
0 ..
we have not found a minimal surface fbr>1.34 .

Length C,)=max2=fr cos¢; é[0,a/2]},  (37)
D. Black rings

Lengt Cs)=max2zfrsing ée[0m/2];, (38 In five-dimensional space-time, a black hole may have
nontrivial topology[20], while in four dimensions, the ap-
parent horizon must be homeomorphic to sphg#]. In
o particular, black rings homeomorphic 8% St are possible;
Afed51)=477f fZWr sin&dé, (399 Emparan and Reall have found explicitly a stationary black
0 ring solution[8]. We here show the validity of the inequality
(31) for this black ring case. The metric used here is the

typical area scales

2 same as the disk case E&2). The black ring will form if
Area(52)=47-rJ'O f2J(rg)?+r°r cos¢dg, (40 \e put simply a uniform massive circle,
Area T)=maxX4m*f%r?siné cosé; Ec[0,7/2]},  (41) f3p= M&X—C)é(y). (43)
47°Cy

and the volume of the horizon
The conformal factor is then given by

1.04 |
1.02 | .
c;'\/lADM
f=1+—221
1% @ @ ©o © @ g o . . E 37T2
0.98 | = ]
" X JZW - (44)
0.96 | o A
a 0 (x—Ccosy’)2+C? sir? ¢’ +y?
0.94 | o
0.92 | e
0.9 : : : : . : =1+ bl :
0 02 04 06 08 1 12 14 3my(x+C)?+y?\(x—C)?+y?
Dir,

FIG. 7. The volume of a horizon is plotted as a function of the Let us search for the apparent horizon in the form:C
radiusD/rg. The values are normalized by those in the spherical+ r(£)cosé, y=r(£)siné. This surface is governed by the
caseD=0. differential equation
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Cirs xirs
FIG. 9. Typical length scales LengtB() (squares LengthC,) FIG. 11. Both a black hole and a black ring can be found for

(crosses and LengthCs) (circles of black rings are plotted as a 0.79<C=0.90r;. These horizons are depicted fGr=0.%5. A
function of the circle radiu€/r. All quantities are normalized by black hole withC=0.91r cannot be found for a circle source.
those in the spherical case=0.

(re)? (r 92+r12[r ¢ sing+rcosé r AFGE(S)ZZWJWfZ\/ re)®+r°r singdg, (49)
ry§§—3 - _2r_ : : - *’Cotf 0
r r r cosé+C r
f f
+3(r g sing+r coSé)T'x —3(r ; cosé—r sing)T’y AreaT)=max{4m*f?r? sin¢ cos¢; £ [0,m]}, (50
=0, (45

and the volume of the black ring

subject to the boundary condition,=0 (£=0,7).

The results are shown in Figs. 8, 9 and 10. We evaluate Nk — .
the typical hoop length scales Vol(H) =4 fo f3J(r ¢)?+r°r sin&(r cosé+C)d¢.
(51
Lengtl‘(Cl)zszf J(r)Terg (46) For large radius of the massive circle, there always exists
0 & ’ a black ring. This can be expected from the result for the

spindle case, since the local geometry around a large circle
Length{C,)=max 27fr cosé: [0}, 4 resembles that around a line source. On the other hand, a
gtiCy) X2m &¢e[0ml} “7 small circle makes a black hole homeomorphicSb (see
Figs. 11, 12, 13 and 24A new aspect found here is that both

Length(C3) =max2xfr sing; £e[0,7]}, (48)  a black hole and a black ring form for a cirtain range of the
typical area scales 15
14t
18 F 5 8 o €08 0 80 8080 8050 13} x
161 1 12} .
147 1 14 f < "
12} . 14 ¢ § s o o o o =
14 i 09 | ° o
08 Lo ] 08 | ©
06} . g'z [ .
04f ° . il
* e 0.5 T
0.2 [ e 06 o o o . 7 0O o01 02 03 04 05 086 0.7 08 09
oL x x o 2 * * » — Cirs
1 2 3 4 5 6 7 8 9 10
Cir. FIG. 12. The typical length scales Length( (squarey

Length(C,) (crosseps and LengthC;) (circles of a horizon are
FIG. 10. The typical area scales Ar&((crossel Area(T) plotted as a function of the radius/rg. The definitions of these
(squaresand the volume Vold) (circles of a horizon are plotted quantities are same as the disk case. All quantities are normalized
as a function of the circle radius/r. by those in the spherical cagz=0.
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1.6 S T S S S— plane will be that of the (2 1) dimensions, so that there
15 does not form a black holg22,23. In (n+1)-dimensional
14 | space-time, there will be a black hole of the radiRs
13t ~(GM/L)Y("=3),
12} = From the above considerations, one can expect that the
111 . : condition of horizon formation is determined by the effective
b e e number of codimensions of the gravitational source. The ho-
09 | R rizon will not form if the effective number of codimensions

' o, is less than three. We have confirmed this expectation by
0.8 r x studying the horizon formation due to the disk source. Since
0771 the eﬁeCtil\,/f gravity produced by the disk with the radius
°~60 o1 02 03 04 05 06 07 08 09 D> (GM)¥? is that of (24 1)-gravity, the horizon will not

Cirg

form for large disk sources. In fact, the apparent horizon can
be found only wherD is less than or of the order of the
Schwarzschild radius. We found that the good indicator of

FIG. 13. The typical area scales Ar&g) (crosses Area(S,)
(squaresand Area{) (circles of a horizon are plotted as a func- the horizon formation is the typical area scale of the system.
tion of the circle radiu<C/r 5. The definitions of these quantities are In five-dimensional space-time, the condition for the horizon
same as the disk case. formation will be given by the inequality
radius of the circle. The inequalit{81) is anyway satisfied, AreasGM, (52
where the two-section of the horizon can be characteristic
sphere or torus. which can be regarded as the generalization of hoop conjec-
ture for four-dimensional space-times. In other words, the
scale of typical codimension-two submanifold of the horizon
should be less than or of the order of the scale determined by

We have investigated the momentarily static, conformallythe mass scale. This argument is independent of the space-
flat initial data sets for the five-dimensional Einstein equalime dimensions. The corresponding isoperimetric inequality
tion. We consider various configurations of the gravitationalfor black holes in (+ 1)-dimensional space-times will be
source and search for the apparent horizons.

For the line source of the Euclidean lendtha black hole
can be found for arbitrary, which can be contrasted with
the corresponding four-dimensional situations. In four di-where V,_, is the volume scale of the characteristic
mensions, a black hole does not form whers much larger  codimension-two submanifold of the horizon.
than the Schwarzschild radius. The result here shows that the An interesting feature of higher-dimensional black holes
hoop length is not a good indicator of the horizon formationis that the horizon can have nontrivial topology. In five-
in higher dimensions. This can be interpreted as follows. Fodimensional space-times, the horizon can be a black hole
the line source of the masdM and the lengthL (=S%), a black ring &S?XS!) or their connected sums
>(GM)¥("~2) in n-dimensional space, the effective gravita- [20]. For this reason, we have also investigated the condition
tional field at the symmetric hyperplane will have for the black ring formation due to the circle source. The
(n—1)-dimensional nature. For the line source in four di-inequality (52) still holds in this case. For largésmal)
mensional space-time, the effective gravity on the hypereircles, they form a black ringhole). However, for appropri-

ate ranges of the circle radius, both the black ring and the

IIl. CONCLUSION

V, ,=<GM, (53

black hole can be found such that the black hole encloses the
104 ¢ black ring. Thus we can expect that at the final stage of the
1.02 | gravitational collapse of the black ring, a new spherical black

hole formes outside the black ring.

1 -] B B a o . . .
o For large circle sources, the effective local gravity around

0.98 | ° . the source will be that of (31) dimensions. This is the
0.96 | physical reasoning of the possibility of the black ring in (4

+1) dimensions. While in (4 1)-dimensions, the torus ho-
0.94 1 rizon (=T?3) is forbidden. If all radii ofS of a torus source
092 | are large, then the effective gravity will be

(2+1)-dimensional, while if one oB! is small, then the
0-90 01 02 03 04 05 06 07 08 09 horizon will not be the torus anymore even if it forms.

Cirg

Though there is no topology theorem for six or higher-
dimensional black holes, the torus topology might be forbid-

FIG. 14. The volume of a horizon is plotted as a function of theden.

radiusC/rg. The values are normalized by those in the spherical

caseC=0.

For all examples studied here, the volume of the horizon
is less than the spherical value:

064026-7



DAISUKE IDA AND KEN-ICHI NAKAO PHYSICAL REVIEW D 66, 064026 (2002

37 (54 singularity. Thus the cosmic censorship might work well in
the higher-dimensional brane universe.

This inequality resembles the Penrose inequality for black

8GMapwm 312 of a disk-shaped massive object will not result in the naked
Vol(H)<Vol(Hg) =272
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