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Isoperimetric inequality for higher-dimensional black holes
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The initial data sets for the five-dimensional Einstein equation have been examined. The system is designed
such that the black hole (.S3) or the black ring (.S23S1) can be found. We have found that the typical
length of the horizon can become arbitrarily large but the area of characteristic closed two-dimensional
submanifold of the horizon is bounded above by the typical mass scale. We conjecture that the isoperimetric
inequality for black holes inn-dimensional space is given byVn22&GM, whereVn22 denotes the volume of
a typical closed (n22)-section of the horizon andM is typical mass scale, rather thanC&(GM)1/(n22) in
terms of the hoop lengthC, which holds only whenn53.
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I. INTRODUCTION

There is much interest in higher dimensional space-tim
in the context of the unified theory of elementary particles
is exciting if the existence of extra dimensions is confirm
in high energy experiments. In this aspect, the notion of
brane world@1# is an attractive idea. This phenomelogic
model provides us with a new way of thinking about o
universe, in which a size of the extra dimensions can be la
because the standard model particles and gauge interac
are confined to the boundary of the higher-dimensio
space-time. According to this scenario, the gravitational
teraction at the short distance determined by the size of
extra dimensions is modified effectively on the brane, so t
we might be able to see the extra dimensions by the grav
tional experiments below 1 mm. If the extra dimensions
large, the higher dimensional Planck scale may be given
rather low energy. The possibility of TeV gravity, in whic
the fundamental Planck scale is set around TeV, has b
much disscussed.

It is suggested that small black holes might be produce
the CERN Large Hadron Collider~LHC! @2–4#. This argu-
ment follows from the hoop conjecture@5#; a black hole with
horizon forms if and only if the typical length~hoop length!
C and the massM satisfiesC&4pGM. Note that this state-
ment might be valid only for four space-time dimension
The property of the higher-dimensional black holes has
so far been fully explored, though there is much attention
this issue@6–10#. We need reliable knowledge about su
black holes to predict phenomelogical results. We here c
sider black holes with small size compared with the ex
dimensions, such that they are well described by the asy
totically flat black hole solutions~treatment of Planck size
black holes is beyond the scope of this paper!. The purpose
of this paper is to consider the higher-dimensional gener
zation of the hoop conjecture.

In four dimensions, the hoop conjecture is believed to
valid. Though it is loosely formulated, it seems to have
least the following three meanings:~i! If the massive object
is compactified into a small region, there must be a bla
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hole; ~ii ! a black hole is small; and~iii ! a highly deformed
black hole does not form. The first one~i! has been proved
by Schoen and Yau@11# ~see also Ref.@12#!, which can be
regarded as the if part of the hoop conjecture. A prec
statement concerning the second proposition~ii ! is, for ex-
ample, given by the Penrose inequality@13–15#, which states
that the square-root of the area of the apparent horizonA is
bounded above by the@Arnowitt-Deser-Misner ~ADM !#
mass:AA<4pGMADM . Thus the Penrose inequality ma
serve as a part of the only if part of the hoop conjecture.
the last statement~iii !, which is also the only if part of the
conjecture, we rely on the numerical works~e.g., Refs.@16–
18#!. There is also a problem concerning the precise form
lation of the conjecture@19#, such as the definition of the
hoop lengthC.

At first glance, the hoop conjecture is not valid for highe
dimensional space-times, since there is black string s
tions. In four dimensions, the length scale of the horiz
cannot be so much larger than the Schwarzschild rad
while this is not the case in higher dimensions. The simp
example is the four-dimensional Schwarzschild space-t
times the real line, which is the five-dimensional vacuu
solution representing the gravitational field of the infinite
long S23R black hole.

Nevertheless, we expect that higher dimensional bl
holes are also governed by some isoperimetric inequality
what follows, we investigate initial data set for the fiv
dimensional Einstein equation and estimate the size of
black holes. Then we show the existence of such an isop
metric inequality and give its physical reasoning.

II. MOMENTARILY STATIC INITIAL DATA SET
FOR THE FIVE-DIMENSIONAL EINSTEIN EQUATION

Let us consider the initial data set (gmn ,Kmn) on a four-
dimensional Cauchy surfaceS4, wheregmn is the induced
metric onS4 andKmn5gm

l5¹lnn (nn denotes the unit nor-
mal toS4) is the extrinsic curvature ofS4. The Hamiltonian
and the momentum constraints are given by

R2KmnKmn1K2516pG% ~1!
©2002 The American Physical Society26-1
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and

¹n~Kmn2Kgmn!58pGJm, ~2!

respectively, where%ª

5G(n,n) denotes the energy densi
and Jm

ªgmn5Gn(n) is the energy flux. Let us consider th
momentarily static initial data set

Kmn50 ~3!

and assume the conformally flat metric

g5 f 2dmndxmdxn. ~4!

Then the momentum constraint~2! is solved withJm50 and
the Hamiltonian constraint~1! becomes

¹0
2f 52

8pG

3
f 3%, ~5!

where ¹0 denotes the flat connection. We consider t
vacuum case%50 so that an initial data is described by
harmonic functionf on E4.

We are interested in the possibility of the formation
highly nonspherical black holes in higher dimensions.
typical cases in five dimensions, we shall consider the ini
data sets for spindle, disk and ring shaped black holes.

A. Spherical black holes

A spherically symmetric black hole gives reference valu
of the volume, area and circumference of the horizon to
other cases discussed below. We consider the metric
spherical symmetry of the form

g5 f 2~r !@dr21r 2dx21r 2 sin2 x~dq21sin2 q2dw2!#, ~6!

and consider a point source at the origin,

f 3%5
MADM

2p2r 2
d~r !, ~7!

where MADM is the ADM mass, that is, total gravitationa
mass of the system. Then the solution of Eq.~5! becomes

f 511
2GMADM

3pr 2
. ~8!

This gives just an initial data for the Schwarzschild spa
time.

The location of the black hole in the sense of the appa
horizon is given by the minimal surface for the momentar
static initial data set (Kmn50). A spherical minimal surface
centered at the origin satisfies

~r f ! ,r50. ~9!

The solution of the above equation is given by

r 5r sªS 2GMADM

3p D 1/2

. ~10!
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The volume of the minimal surfaceHs, area of itsS2-section
Ss and the length of the circumferenceCs of S are given by

Vol~Hs!52p2@r sf ~r s!#
352p2S 8GMADM

3p D 3/2

, ~11!

Area~Ss!54p@r sf ~r s!#
25

32GMADM

3
, ~12!

Length~Cs!52pr sf ~r s!52pS 8GMADM

3p D 1/2

, ~13!

respectively.

B. Spindle black holes

Let us consider the metric with axial and spherical sy
metry of the form

g5 f 2~r,z!@dz21dr21r2~dq21sin2 q2dw2!#, ~14!

and consider the uniform line source of the lengthL located
at z-axis,

f 3%5
MADM

4pLr2
d~r!u~L/22uzu!, ~15!

whereu is the Heaviside’s step function.
The solution of the Hamiltonian constraint~5! is given by

f 511
2GMADM

3pL E
2L/2

L/2 dz8

r21~z82z!2

511
2GMADM

3pLr S arctan
z1L/2

r
2arctan

z2L/2

r D . ~16!

Note that this massive segment corresponds to ano
asymptotic end rather than the singularity. One may anyw
fill up the segment with some spatially extended gravi
tional source.

Due to the geometric symmetry imposed, we have only
consider the minimal surface equation for the three-surfa
r5r (j)sinj, z5r (j)cosj, given by

r ,jj24
~r ,j!

2

r
23r 1

~r ,j!
21r 2

r F r ,j

r
cotj23~r ,j sinj

1r cosj!
f ,z

f
13~r ,j cosj2r sinj!

f ,r

f G50, ~17!

with the boundary condition,r ,j50 (j50,p/2), required
from the regularity of the surface. The results are shown
Fig. 1.

We shall look at the various geometric quantities char
terizing the horizon. The volume of the horizonH is given by
6-2
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Vol~H !58pE
0

p/2

f 3A~r j!
21r 2r 2 sin2 jdj. ~18!

Typical area scales are that of the (u5p/2)-sectionS1

Area~S1!54pE
0

p/2

f 2A~r j!
21r 2r sinjdj, ~19!

and that of the largest sphereS2 among (j5const)-sections

Area~S2!5max$4p f 2r 2 sin2 j;jP@0,p/2#%. ~20!

The length scalesC1 and C2 are defined by the circumfer
ences ofS1 andS2, respectively;

Length~C1!54E
0

p/2

fA~r j!
21r 2dj, ~21!

Length~C2!5max$2p f r sinj;jP@0,p/2#%. ~22!

The result is shown in Figs. 2 and 3.
It seems that there always forms a black hole, howe

long the massive segment is. WhenL is sufficiently large, the
conformal factor near the origin behaves as that of the i
nite line source,

f ;11
2GMADM

3Lr
. ~23!

In the region where the conformal factor behaves as
above, the horizon is almost cylindrically symmetric a
then is determined by

Fr2S 11
2GMADM

3Lr D 3G
,r

50. ~24!

The root of the above equation is given by

r5rcª
GMADM

3L
. ~25!

FIG. 1. Horizons forL50, 3r s, 5r s and 7r s are depicted in
(z,r)-plane. The coordinate values are normalized by the radiur s

of the minimal surface of the spherical caseL50. We will obtain
minimal surfaces forL.7r s if we wish.
06402
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We shall pay attention to the portion of the black stri
within the finite interval2L/2,z,L/2. The volume of this
part is given by

Vol~Hc!5E
2L/2

L/2

dzE
0

p

dqE
0

2p

dw f 3r2 sinqur5rc

5
27pr s

16L
Vol~Hs!. ~26!

We shall consider the spheresSc1 at q5p/2 and Sc2 at z
5const. Each area becomes

FIG. 2. The volume and typical area of a horizon are plotted
a function of the lengthL/r s. These are normalized by those in th
spherical caseL50: Vol(Hs) and Area(Ss), respectively. The vol-
ume of the horizonH is depicted by circles, and each area of t
S2-section ofH is depicted by crosses@Area(S1)# and by squares
@Area(S1)#. The corresponding quantities for the black string w
the coordinate lengthL, Vol(Hc) ~solid line!, Area(Sc1) ~dashed
line! and Area(Sc2) are also plotted as a function ofL/r s. This
figure shows that the area is bounded above.

FIG. 3. The typical length scales Length(C1) ~circles! and
Length(C2) ~squares! of a horizon are plotted as a function of th
length of the sourceL/r s. All quantities are normalized by those i
the spherical caseL50. The corresponding length scale
Length(Cc1) ~solid line! and Length(Cc2) ~dashed line! of a black
string with the coordinate lengthL are also plotted as a function o
L/r s. This figure shows that the length scale of the black hole
unbounded.
6-3
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Area~Sc1!5E
2L/2

L/2

dzE
0

2p

dw f 2rU
r5rc

5
9p

16
Area~Ss!, ~27!

Area~Sc2!5E
0

p

dqE
0

2p

dw f 2r2 sinqU
r5rc

5
9p2r s

2

16L2
Area~Ss!. ~28!

The length scales of circumferencesCc1 of Sc1 and Cc2 of
Sc2 are determined by

Length~Cc1!5
3L

2pr s
Length~Cs!, ~29!

Length~Cc2!5
3pr s

4L
Length~Cs!, ~30!

respectively. These quantities are also depicted in Figs. 2
3. From these figures, we can see that length scale, area
the volume of a spindle black hole approach to correspo
ing black string values in the limit ofL→`.

The area of theS2-section S of the horizon is always
bounded above by the total mass:

Area~S!

32GMADM/3
,O~1!. ~31!

C. Disk black holes

The result of the previous section shows that a horizon
arbitrarily large linear size can form in five dimensions. W
here consider the possibility of disk shaped black holes.
following metric is appropriate for this problem.

g5 f 2~x,y!~dx21dy21x2dc21y2dw2!. ~32!

This admits two orthogonal commuting Killing vector field
]c , ]w andc;c12p, w;w12p are regarded as the co
ordinates onT2.

We consider a uniform massive disk as a source,

f 3%5
MADM

2p2D2y
d~y!u~D2x!. ~33!

The gravitational field outside the above source is given
06402
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f 511
2GMADM

3p2D2 E
0

D

x8dx8E
0

2p

dc8

3
1

~x2x8cosc8!21x82 sin2 c81y2

511
2GMADM

3pD2
lnU 1

2y2
@D22x21y2

1A~x21y2!222D2~x22y2!1D4#U . ~34!

Let us search for the apparent horizon of the formx
5r (j)cosj, y5r (j)sinj, determined by the differentia
equation

r ,jj24
~r ,j!

2

r
23r 1

~r ,j!
21r 2

r F2
r ,j

r
cot~2j!23~r ,j sinj

1r cosj!
f ,x

f
13~r ,j cosj2r sinj!

f ,y

f G50, ~35!

FIG. 4. Horizons of D50 and 1.34r s are depicted in the
(x,y)-plane. The coordinate values are normalized by the radiur s

of the horizon in the spherical caseD50. We could not find a
horizon forD.1.34r s.

FIG. 5. The typical length scales Length(C1) ~squares!,
Length(C2) ~crosses! and Length(C3) ~circles! of a horizon are
plotted as a function of the radiusD/r s. All quantities are normal-
ized by those in the spherical caseD50.
6-4
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subject to the boundary condition:r ,j50 (j50,p/2).
The results are shown in Figs. 4–7. We evaluate typ

hoop length scales

Length~C1!54E
0

p/2

fA~r ,j!
21r 2dj, ~36!

Length~C2!5max$2p f r cosj;jP@0,p/2#%, ~37!

Length~C3!5max$2p f r sinj;jP@0,p/2#%, ~38!

typical area scales

Area~S1!54pE
0

p/2

f 2A~r j!
21r 2r sinjdj, ~39!

Area~S2!54pE
0

p/2

f 2A~r j!
21r 2r cosjdj, ~40!

Area~T!5max$4p2f 2r 2sinj cosj;jP@0,p/2#%, ~41!

and the volume of the horizon

FIG. 6. The typical area scales Area(S1) ~crosses!, Area(S2)
~squares! and Area(T) ~circles! of a horizon are plotted as a func
tion of the disk radiusD/r s.

FIG. 7. The volume of a horizon is plotted as a function of t
radiusD/r s. The values are normalized by those in the spher
caseD50.
06402
l Vol~H !52p2E
0

p/2

r 2f 3A~r ,j!
21r 2sin 2jdj. ~42!

It can be seen that the inequality~31! still holds in this
case. Remarkably, a horizon does not form for large dis
we have not found a minimal surface forD.1.34r s.

D. Black rings

In five-dimensional space-time, a black hole may ha
nontrivial topology@20#, while in four dimensions, the ap
parent horizon must be homeomorphic to sphere@21#. In
particular, black rings homeomorphic toS23S1 are possible;
Emparan and Reall have found explicitly a stationary bla
ring solution@8#. We here show the validity of the inequalit
~31! for this black ring case. The metric used here is t
same as the disk case Eq.~32!. The black ring will form if
we put simply a uniform massive circle,

f 3%5
MADM

4p2Cy
d~x2C!d~y!. ~43!

The conformal factor is then given by

f 511
GMADM

3p2

3E
0

2p dc8

~x2C cosc8!21C2 sin2 c81y2
~44!

511
2GMADM

3pA~x1C!21y2A~x2C!21y2
.

Let us search for the apparent horizon in the form:x5C
1r (j)cosj, y5r (j)sinj. This surface is governed by th
differential equation

FIG. 8. Black rings forC50.8r s, 1.5r s, 2.0r s, 2.5r s are de-
picted in (x,y)-plane. The coordinate values are normalized byr s.
A black ring can be found forC50.79r s, but not forC50.78r s.

l

6-5
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r ,jj23
~r ,j!

2

r
22r 2

~r ,j!
21r 2

r F r ,j sinj1r cosj

r cosj1C
2

r ,j

r
cotj

13~r ,j sinj1r cosj!
f ,x

f
23~r ,j cosj2r sinj!

f ,y

f G
50, ~45!

subject to the boundary conditionr ,j50 (j50,p).
The results are shown in Figs. 8, 9 and 10. We evalu

the typical hoop length scales

Length~C1!52E
0

p

fA~r ,j!
21r 2dj, ~46!

Length~C2!5max$2p f r cosj;jP@0,p#%, ~47!

Length~C3!5max$2p f r sinj;jP@0,p#%, ~48!

typical area scales

FIG. 9. Typical length scales Length(C1) ~squares!, Length(C2)
~crosses! and Length(C3) ~circles! of black rings are plotted as
function of the circle radiusC/r s. All quantities are normalized by
those in the spherical caseC50.

FIG. 10. The typical area scales Area(S) ~crosses!, Area(T)
~squares! and the volume Vol(H) ~circles! of a horizon are plotted
as a function of the circle radiusC/r s.
06402
te

Area~S!52pE
0

p

f 2A~r j!
21r 2r sinjdj, ~49!

Area~T!5max$4p2f 2r 2 sinj cosj;jP@0,p#%, ~50!

and the volume of the black ring

Vol~H !54p2E
0

p

f 3A~r ,j!
21r 2r sinj~r cosj1C!dj.

~51!
For large radius of the massive circle, there always ex

a black ring. This can be expected from the result for
spindle case, since the local geometry around a large c
resembles that around a line source. On the other han
small circle makes a black hole homeomorphic toS3 ~see
Figs. 11, 12, 13 and 14!. A new aspect found here is that bo
a black hole and a black ring form for a cirtain range of t

FIG. 11. Both a black hole and a black ring can be found
0.79r s<C<0.90r s. These horizons are depicted forC50.9r s. A
black hole withC50.91r s cannot be found for a circle source.

FIG. 12. The typical length scales Length(C1) ~squares!,
Length(C2) ~crosses! and Length(C3) ~circles! of a horizon are
plotted as a function of the radiusC/r s. The definitions of these
quantities are same as the disk case. All quantities are norma
by those in the spherical caseC50.
6-6
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ISOPERIMETRIC INEQUALITY FOR HIGHER- . . . PHYSICAL REVIEW D 66, 064026 ~2002!
radius of the circle. The inequality~31! is anyway satisfied,
where the two-section of the horizon can be characteri
sphere or torus.

III. CONCLUSION

We have investigated the momentarily static, conforma
flat initial data sets for the five-dimensional Einstein equ
tion. We consider various configurations of the gravitatio
source and search for the apparent horizons.

For the line source of the Euclidean lengthL, a black hole
can be found for arbitraryL, which can be contrasted wit
the corresponding four-dimensional situations. In four
mensions, a black hole does not form whenL is much larger
than the Schwarzschild radius. The result here shows tha
hoop length is not a good indicator of the horizon formati
in higher dimensions. This can be interpreted as follows.
the line source of the massM and the length L
@(GM)1/(n22) in n-dimensional space, the effective gravit
tional field at the symmetric hyperplane will hav
(n21)-dimensional nature. For the line source in four
mensional space-time, the effective gravity on the hyp

FIG. 13. The typical area scales Area(S1) ~crosses!, Area(S2)
~squares! and Area(T) ~circles! of a horizon are plotted as a func
tion of the circle radiusC/r s. The definitions of these quantities a
same as the disk case.

FIG. 14. The volume of a horizon is plotted as a function of t
radiusC/r s. The values are normalized by those in the spher
caseC50.
06402
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plane will be that of the (211) dimensions, so that ther
does not form a black hole@22,23#. In (n11)-dimensional
space-time, there will be a black hole of the radiusR
;(GM/L)1/(n23).

From the above considerations, one can expect that
condition of horizon formation is determined by the effecti
number of codimensions of the gravitational source. The
rizon will not form if the effective number of codimension
is less than three. We have confirmed this expectation
studying the horizon formation due to the disk source. Sin
the effective gravity produced by the disk with the radi
D@(GM)1/2 is that of (211)-gravity, the horizon will not
form for large disk sources. In fact, the apparent horizon
be found only whenD is less than or of the order of th
Schwarzschild radius. We found that the good indicator
the horizon formation is the typical area scale of the syste
In five-dimensional space-time, the condition for the horiz
formation will be given by the inequality

Area&GM, ~52!

which can be regarded as the generalization of hoop con
ture for four-dimensional space-times. In other words,
scale of typical codimension-two submanifold of the horiz
should be less than or of the order of the scale determine
the mass scale. This argument is independent of the sp
time dimensions. The corresponding isoperimetric inequa
for black holes in (n11)-dimensional space-times will be

Vn22&GM, ~53!

where Vn22 is the volume scale of the characterist
codimension-two submanifold of the horizon.

An interesting feature of higher-dimensional black ho
is that the horizon can have nontrivial topology. In fiv
dimensional space-times, the horizon can be a black h
(.S3), a black ring (.S23S1) or their connected sum
@20#. For this reason, we have also investigated the condi
for the black ring formation due to the circle source. T
inequality ~52! still holds in this case. For large~small!
circles, they form a black ring~hole!. However, for appropri-
ate ranges of the circle radius, both the black ring and
black hole can be found such that the black hole encloses
black ring. Thus we can expect that at the final stage of
gravitational collapse of the black ring, a new spherical bla
hole formes outside the black ring.

For large circle sources, the effective local gravity arou
the source will be that of (311) dimensions. This is the
physical reasoning of the possibility of the black ring in (
11) dimensions. While in (411)-dimensions, the torus ho
rizon (.T3) is forbidden. If all radii ofS1 of a torus source
are large, then the effective gravity will b
(211)-dimensional, while if one ofS1 is small, then the
horizon will not be the torus anymore even if it form
Though there is no topology theorem for six or highe
dimensional black holes, the torus topology might be forb
den.

For all examples studied here, the volume of the horiz
is less than the spherical value:
l

6-7
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Vol~H !<Vol~Hs!52p2S 8GMADM

3p D 3/2

. ~54!

This inequality resembles the Penrose inequality for bl
holes in (311) dimensions. Though the higher-dimension
generalization of the Penrose inequality is not known, sim
inequality might exist.

According to the brane-world scenario, the matter fie
are confined to the brane, so that the gravitational colla
within our universe likely forms the black hole. If there are
least two extra dimensions, then even gravitational colla
tt

et

06402
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of a disk-shaped massive object will not result in the nak
singularity. Thus the cosmic censorship might work well
the higher-dimensional brane universe.
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