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Unified description of interactions in terms of composite fiber bundles

Romualdo Tresguerres*

IMAFF, Consejo Superior de Investigaciones Cientı´ficas, Serrano 113 bis, Madrid 28006, Spain
~Received 31 May 2002; published 30 September 2002!

We claim that a composite fiber bundle satisfactorily serves as the geometrical structure underlying gauge
theories of spacetime groups, such as the Poincare´ gauge theory. A trivial extension of the approach to include
internal symmetries also provides a unique mathematical scheme in which gravitation and the remaining forces
are put together and treated in a common fiber bundle language. The result is a homogeneous characterization
of interactions, gravity included, exclusively by means of connections.
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I. INTRODUCTION

Gauge theories constitute the commonly accepted
proach to the description of fundamental forces. In the fo
dational Yang-Mills paper@1#, the gauge treatment was a
plied to internal symmetries. But soon afterward a series
proposals appeared@2# extending the gauge principle t
spacetime symmetries. In several papers by Hehlet al. @3#
the Poincare´ gauge theory~PGT!, as a gauge theory of grav
ity, reached the standard form we will have in mind in t
following. Independently of gauge theories in physics@4#, a
parallel mathematical development took place concerning
ber bundles@5,6#. The formal identity between gauge the
ries and the geometry of bundles has been recognized s
the 1960s@7,8#. Nowadays, it is the standard point of vie
that at least nongravitational interactions are suitably
scribed in terms of gauge potentials, the latter being in
preted as local connections in a principal fiber bundle
single mathematical scheme thus gives an account of alm
all fundamental interactions. Only the gauge status of gra
still remains problematic. Actually, its bundle structure is
vealed to be not exactly that of an ordinary Yang-Mi
theory, and until now there is no unique answer to the qu
tion of whether or not gravitation has to be considered
essentially different from the other forces.

Let us briefly articulate the main kinds of mathematic
approaches to gravity found in the literature. As the first o
we must mention the metric tensor approach, correspon
to Einstein’s original formulation. In this standard form, ge
eral relativity ~GR! is conceived as the field theory of th
metric tensor fixing the geometrical structure of spacetim
That makes a big contrast with the nongravitational forc
Indeed, expressed in fiber bundle language, GR seem
manifest itself as the dynamical theory of the underlyi
base space, gravitational interactions being mediated by
metric as the gravitational potential, while the remaini
forces are characterized in terms of bundle connecti
~gauge potentials!. If that were the correct scheme, on
should accept the existence of forces of two absolutely
ferent natures.

A different view is supplied by the tangent space a
proach. It originates in the extension of GR by means
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tetrads, the so calledvierbeins, necessary to make possib
the coupling of gravitational fields to fundamental spin
matter. Tetrads are mixed objects possessing both a co
nate index and a Lorentz index, thus providing a bridge
solderingbetween the dynamical base space and the loc
Minkowskian tangent space attached to each point. The s
dard bundle approach to gravity@9–14# supplies an interpre-
tation of tetrads as local sections of an orthonormal fra
bundle. Briefly, given a manifoldM, the bundleL(M ) of
linear frames of the tangent spaceT(M ) constitutes a prin-
cipal bundle with structure groupGL(4,R), T(M ) being its
associated vector bundle. IfM admits a Riemannian metric
then the bundle of linear frames can be reduced to a bu
of orthonormal frames with the Lorentz group as structu
group. If the frame bundleL(M ) is originally endowed with
a linear connection, the reduction process transforms the
ter into a Lorentz connection.

Tetrads and connections are different kinds of grav
tional fields. We note this duplicity since it constitutes a ma
difficulty for the inclusion of gravity in a unified gauge the
oretical scheme together with the remaining forces. Actua
most of the current gauge theories of gravitation@15,16#,
contrary to ordinary gauge theories, distinguish two types
gravitational variables, namely, the gauge potentials ide
fied with connections~reduced Lorentz connections, Ash
tekar variables!, and simultaneously metric or tetrad field
Notice that gravitational potentials of such different class
are as different from each other as connections and sec
are.

Ivanenko and Sardanashvily@15# proposed a somewha
different approach. They considered gravity to be a spon
neously brokenGL(4,R) gauge theory. The tetrads, playin
the role of Goldstone-like—although nonremovable—field
result from the contraction, induced by the equivalence p
ciple, of the tangent bundle structure group from the gene
linear to the Lorentz group. Tetrads are identified as glo
sections of the bundle with fiberG/H, whereG5GL(4,R)
andH is the Lorentz group.

In contrast to all the previously mentioned interpretatio
of gravitational potentials, either as metric tensors, or as s
tions of a frame bundle, as Goldstone fields, etc., to be c
sidered in addition to Yang-Mills potentials, the gauge a
proach developed by Hehlet al. @3# admits only a single kind
of potential, namely, gauge potentials.@The seeming devia-
tion of this rule represented by the metric of metric-affi
©2002 The American Physical Society25-1
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gravity ~MAG! @17# does not affect the present discussio
centered on PGT. The subject was treated in Refs.@19#.# In
particular, this approach regards tetrads as translational
nections, that is, as true gauge potentials of the Yang-M
type. The gauge theories of spacetime groups defende
Hehl et al. ~PGT, MAG! constitute in fact the treatment o
gravity lying closest to ordinary gauge theories. Certainly
principle a serious difficulty exists in reconciling the gau
transformations of ordinary connections with those of t
rads, which must transform as covectors. However, the
stacle can be overcome in different ways@18,19#. It is pre-
cisely the main task of the present paper to support
correctness of one of the answers proposed to this ques
namely, the one based on nonlinear realizations~NLR’s!
@19–21#. Our aim is to find the bundle structure underlyin
PGT, allowing us in particular to derive the right gau
transformations of vierbeins when considered as translati
connections. Indeed, while ordinary gauge transformati
are well defined on standard principal fiber bundles,
claim that nonlinear realizations rest on a different geome
cal framework, namely, that of composite fiber bundles. T
recognition of this fact completes the foundation of NLR’s
developed in@19#.

Previous attempts were made to equip such theories in
manner of Hehl with a fiber bundle interpretation@22,23#. Of
particular interest is that due to Lord@24,25#, who proposed
an approach based on a bundleG(G/H,H), as suggested by
Ne’eman and Regge@26#. This bundle structure was though
to replace the standard description of interactions, nam
that in terms of the principal bundle structureP(M ,G), with
the role of spacetime played by the base manifoldM. Our
own proposal retains Lord’s suggestion of considering
bundle manifold split into two sectors, but instead of explo
ing the structureG(G/H,H), with G/H as the spacetime
manifold, we propose to construct a composite fiber bun
as will be developed in the following.

The present approach gives an answer to the critici
enunciated in Ref.@@15#, pp. 29–30#, on the presumed failure
of PGT to provide a well behaved tetrad with the status o
gauge potential of the Poincare´ translations. Actually, the
bundle structure proposed in the present paper suppli
geometrical basis for gauge transformations derived ot
wise from NLR’s, so that the correct transformation prop
ties of the tetrads are obtained. Furthermore, the comm
tion relations of the translational generatorsPm are not
violated @3,15#. Although we will concentrate on PGT@3#,
our results should be applicable to gravity theories based
other spacetime groups.

In summary, the aim of the present paper is to develo
fiber bundle description of forces, including gravity, in a un
fied scheme. It is inspired by the revision of the concept
gauge transformations when spacetime groups are con
ered. In fact, the new bundle structure is necessary if
wants to reconcile the standard characterization of ga
transformations with Lord’s view on spacetime gauge tra
formations. The resulting formalism admits the inclusion
additional forces, with the tetrads~that is, with gravity! uni-
versally coupled to them. Thus, a single mathematical st
ture ~namely, a composite fiber bundle! will suffice to de-
06402
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scribe all forces in a homogeneous way. In the present pa
we pay attention only to the geometrical~predynamical! as-
pects of interactions, that is, merely to the building bloc
for the construction of suitable actions.

The paper is organized as follows. We begin, in Sec.
with a review of the main concepts of fiber bundles, as c
stituting the mathematical structure underlying ordina
gauge theories of internal groups. Next, in Sec. III, we d
cuss the standard characterization of gauge transforma
on ordinary bundles as vertical bundle automorphisms;
tending a suggestion due to Lord@24,25#, we propose a
modification of the standard view in order for transform
tions of spacetime groups to be included. Section IV is
voted to explicitly showing the incapability of the ordinar
bundle structure, when applied to the Poincare´ group, to
yield the right gauge transformations reproducing those
PGT. Consistently with this fact, our characterization
gauge transformations does not make sense in the frame
of ordinary bundles; it needs to be realized on a differ
structure, namely, a composite fiber bundle, as introduce
Sec. V. Sections VI and VII are devoted to the gauge tra
formations in such composite bundles, concerning, resp
tively, bundle sections and connections. In Sec. VIII we d
with the gauge transformations induced on matter fields.
nally, in Sec. IX, we apply the composite bundle treatmen
the Poincare´ group, showing the identity of our bundle ap
proach to gravity with PGT. In the Final Remarks, we po
out the way to incorporate the gauge theories of the rem
ing ordinary forces into a single scheme with our bund
description of spacetime.

II. REVIEW OF ORDINARY PRINCIPAL FIBER BUNDLES

We will briefly review the foundations of the standa
bundle approach to ordinary gauge theories@6–14# in order
to fix a necessary reference, to be compared with the m
fied bundle structure we are going to propose later for ga
theories of spacetime groups in the manner of Hehl.

Fiber bundles appear as a further step in the succes
introduction of sets endowed with increasing degree of str
ture ~topological spaces, differentiable manifolds, etc.!, nec-
essary to formalize the concepts of continuity, smoothne
etc. Bundles are locally isomorphic to the Cartesian prod
of two manifolds. According to the definition of a principa
fiber bundleP(M ,G) over the base spaceM, with structure
groupG and canonical projectionp:P→M ~see@6, p. 50#!,
every pointxPM has a neighborhoodU such thatp21(U)
is isomorphic withU3G. On the other hand, a local sectio
is a smooth map s:U,M→P satisfying p+s5( id)M . It
assigns to eachxPM a single values(x) in the fiberp21(x)
over x.

A principal fiber bundleP constitutes a particular kind o
manifold@6–14#. Its tangent space, denoted asT(P), may be
split into the direct sum of a vertical subspaceV(P) plus a
horizontal subspaceH(P), the vertical subspace consistin
of the vectors tangent to the fibers, called the fundame
vector fields. In order to construct the latter, regard lo
fibers as orbits of the right action of the structure groupG on
P, that is,p21(x)5ug̃l throughuPP, with g̃lPG. Then,
5-2
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UNIFIED DESCRIPTION OF INTERACTIONS IN . . . PHYSICAL REVIEW D66, 064025 ~2002!
every Lie algebra element~A3! induces@in analogy with Eq.
~A6!# a tangent vector to the fiber atu given by

GA
#@ f ~u!#ª

] f ~ug̃l!

]lA U
l50

, ~2.1!

for f a differentiable function. The vector componentsGA
# uu ,

tangent to the fiber throughuPP, are the fundamental vec
tor fields atu, constitutingV(P). The mapping of the Lie
algebra basis elementGAPG into GA

# uu is an isomorphism of
the Lie algebraG of G into the corresponding Lie algebra o
vector fields onP. On each fiber, we can identify Eq.~2.1!
with Eq. ~A6!, or with its explicit form Eq.~A7!.

On the other hand, the definition of horizontality inT(P)
requires the introduction of the concept of connect
@6–14#. We define the Ehresmann connection formv to be a
one-form on the cotangent spaceT* (P) of P with values in
the Lie algebraG of G, satisfying the conditions

GA
# cv5GAPG ~2.2!

and

Rg* v5adg21v, ; gPG, ~2.3!

whereGAPG in Eq. ~2.2! is the Lie algebra element isomo
phic to the fundamental vector fieldGA

# defined by Eq.~2.1!,
and c denotes the inner product, whileadg21vªg21vg in
Eq. ~2.3! means the adjoint representation ofG in G. In terms
of v, the horizontal subspaceH(P) is defined to consist o
all those vectorsX̃ of T(P), with nonvanishing projection
such thatX̃cv50.

Let us introduce an explicit realization of the Ehresma
connection form. We know@13# that any sections:M→P
with local trivialization (x,g̃) can be decomposed in terms
a zero sections̃(x) with local trivialization (x,eG), as the
product

s~x!5s̃~x!•g̃. ~2.4!

So, at the bundle pointu5s(x) as given by Eq.~2.4!, we can
take

v5g̃21~d1p* A!g̃. ~2.5!

In view of the decomposition~2.4!, g̃ are the bundle coordi
nates, and the quantity

A5s̃* v ~2.6!

coincides with the usual definition of a local potentialA
5AAGA5dxiAi

AGA as the pullback~by means, in particular
of the zero sections̃) of the Ehresmann connection form
One can prove~see@@13#, p. 333#!, that the proposed realiza
tion ~2.5! of v satisfies the defining axioms~2.2!, ~2.3! of
connection forms. Then we can choose the horizontal vec

Eiªs̃* ] i2Ai
AL̄A , ~2.7!
06402
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such thatEi cv50, with L̄A given by Eq.~A10!, as a basis of
the horizontal tangent subspaceH(P).

III. DISCUSSION OF THE EXTENSION OF GAUGE
TRANSFORMATIONS TO SPACETIME GROUPS

Gauge transformations are a key concept for gauge th
ries. In the present section we perform a critical examinat
of their commonly accepted@12# bundle-adapted definition
due to Atiyah, Hitchin, and Singer@27#, and of the proposa
of Lord and Goswami@25# to modify the gauge transforma
tion concept in order to extend it to spacetime groups. O
own approach will be developed in the next sections. We w
show that the latter allows us to reconcile both the stand
and Lord’s points of view.

According to the standard definition@10,12,25,27#, we
characterize a gauge transformation on a principal fi
bundleP(M ,G) as a bundle automorphisml:P→P satisfy-
ing two conditions. On the one hand,l is required to com-
mute with the right action ofG,

l+Rg~u!5Rg+l~u!, ~3.1!

so that fibers are mapped to fibers. With only Eq.~3.1! at
hand, in generall induces a diffeomorphisml̃:M→M on
the base space, given byl̃+p(u)5p+l(u). The goal of the
second defining condition is to avoid this possibility. Sta
dard gauge transformationsl are required to satisfy

p+l~u!5p~u!, ~3.2!

so that they become vertical automorphisms, where botu
andl(u) belong to the same fiber. No action is allowed to
induced on the base spaceM. Vertical bundle automorphism
l are the standard gauge transformations, adapted to
principal bundle structureP(M ,G) describing all forces
other than gravity.

However, things are less simple in the case of gauge th
ries of spacetime groups. Here the group action on space
coordinates cannot be ignored. This reason moved L
@24,25# to relax the verticality condition~3.2!, by restricting
its validity to internal groups only, whereas spacetime grou
and their corresponding gauge theories had to be handle
a different way. Regarding spacetime groups, Lord admit
the existence of nonvertical gauge transformations, induc
diffeomorphisms onM. Following Ne’eman and Regge@26#,
he suggested the principal bundleG(G/H,H) as the possible
fiber bundle structure of gauge theories of gravitation. S
ably choosingG, for instance, as the Poincare´ group, and
H,G as the Lorentz group, the base spaceG/H becomes
identical with the parameter space of translations, playing
role of spacetime.

Our main criticism of Lord’s view consists in that, sinc
the translational manifoldG/H is not referred to a further
base space, translational connections are not present.~Actu-
ally, Lord’s tetrads onG/H are not connections.! We remark
that only by postulating such an additional base spaceM will
it become possible to introduce the translational connec
form constituting the unavoidable requirement for tetrads
5-3
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become interpretable as~nonlinear! local connections, as we
will see below. The auxiliary base space introduced by us@as
in ordinary principal bundlesP(M ,G)] is the main differ-
ence between Lord’s approach and ours. In Secs. V–IX
will show how both verticality as defined by Eq.~3.2! and
induced spacetime transformations are compatible in
context of the bundle structure provided by composite fi
bundles.

Gauge transformations of local potentials:
The case of principal fiber bundles

Let us derive forl the consequences of Eqs.~3.1! and
~3.2!. A theorem@24,25# establishes that a diffeomorphis
~the gauge transformationl in our case! commutes with ev-
ery right translation if and only if it is a left translation
Actually, let us reexpress Eq.~3.1! as l(uĝ)5l(u)ĝ, with
the caret added toĝPG in order to avoid confusion in wha
follows. Since l(uĝ)(uĝ)215l(u)u21, one finds g(x)
ªl(u)u21 to be the same for different pointsu, uĝ
Pp21(x) arbitrarily chosen along a given fiber. Thus, triv
ally we get

l~u!5g~x!u5..Lg~x!u. ~3.3!

From Eq.~3.3! we recognize the gauge transformation to
identical with the left actionl5Lg(x) , with the group ele-
ment g(x)PG being local in the sense that it depends
points of the base space. Let us now calculate the ga
transformations induced by Eq.~3.3! on the bundle tangen
space. For later computational convenience, we reexp
Eq. ~3.3! in terms of the notation

l~u!5uh~u!, h~u!ªu21g~x!u, ~3.4!

where h(u) formally behaves as aG element acting onu
PP by right multiplication @12#. The differential map
l* :Tl(u)(P)→Tu(P) induced by l on T(P) is found
@10,12,13# by derivingl in Eq. ~3.4!, yielding

l* Y5Rh* Y1@Yc~h21∧dh!##, ~3.5!

with YPTu(P), and with the last term in Eq.~3.5! being the
fundamental vector field generated byYc(h21∧dh)
PTe(G).G at l(u0) ~see@13, pps. 330, 334#!. Making use
of Eq. ~3.5!, one can easily derive the corresponding induc
gauge transformation of connection forms as follows. T
inner product of Eq.~3.5! with an Ehresmann connectionv
yields

~l* Y!cv5~Rh* Y!cv1Yc~h21∧dh!, ~3.6!

where condition~2.2! has been used. Then we find

Ycl* v5YcRh* v1Yc~h21∧dh!

5Yc~h21vh!1Yc~h21∧dh!,
~3.7!
06402
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with condition ~2.3! used in the last step. Since Eq.~3.7! is
valid for arbitrary YPT(P), we conclude, recallingl
5Lg , that

Lg* v5l* v5Rh* v1h* Q5h21~d1v!h. ~3.8!

Equation~3.8! is the gauge transformation law of a conne
tion form.

Consider now the pullbacks* v of the connection formv,
s: M→P being a local section on an ordinary principal fib
bundleP(M ,G). In order to find the gauge transformation
of such general local potentials@12#, we applys* to Eq.~3.8!
as

s* ~l* v!5s* Rh* v1s* h* Q. ~3.9!

Recalling the properties of pullbacks, namely,f * w5w+ f ,
(g+ f )* 5 f * g* , f * (a∧b)5 f * a∧ f * b, valid for any func-
tion w and differential formsa, b, we introduce the notation
s* h* 5(h+s)* 5..z* , so that Eq. ~3.9! transforms into
s* (l* v)5Rz* (s* v)1z* Q, or equivalently

~l+s!* v5Rz* ~s* v!1z* Q5z21~d1s* v!z.
~3.10!

Particularizings to the zero sections̃(x) in Eq. ~2.4!, we
find

z~x!ªh„s̃~x!…5h~u!u g̃5eG
5g~x! ~3.11!

@see Eqs.~2.4! and ~3.4!#, so that Eq.~3.10!, with the usual
replacementl5Lg , becomes the ordinary transformatio
formula

~Lg+s̃ !* v5g~x!21~d1s̃* v!g~x!. ~3.12!

Infinitesimally, using the notationg(x)'I 1eA(x)GA5..I
1e, and recalling Eq.~2.6!, Eq. ~3.12! gives rise to

dAªs̃* v2~Lg+s̃ !* v'2~de1@A,e#!. ~3.13!

We recognize the ordinary infinitesimal gauge transform
tions of a gauge potential. Explicitly forA5AAGA , e
5eAGA , Eq. ~3.13! reads dA52(deA1 f BC

AABeC)GA ,
where we made use of Eq.~A1!.

IV. FAILURE OF THE STANDARD PRINCIPAL BUNDLE
APPROACH TO THE POINCARÉ GAUGE THEORY

The result~3.13! is responsible for ordinary principal fibe
bundles being unable to describe the underlying geometr
structure of gravitational theories of the PGT type. Certain
the standardP(M ,G) bundle formulation is known to illu-
minate the geometrical background of gauge theories of
ternal groups. So, in principle, one could be tempted to
tend this general scheme to any Lie group in order
construct the corresponding gauge theory. However, we
show explicitly, by directly applying the standard recipe to
spacetime group, that gravitational gauge theories canno
obtained in this way. We will consider the Poincare´ group, in
order to display the main difficulty of this naive procedur
5-4
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UNIFIED DESCRIPTION OF INTERACTIONS IN . . . PHYSICAL REVIEW D66, 064025 ~2002!
consisting, as it is well known, in its failure in providing
gauge theoretical derivation of well behaved tetrads.

Let us construct the connection form~2.5!, taking g̃ to be
a Poincare´ group element~B2!, and

A52 i dxi~ G
~T!

i
mPm1G i

abLab!. ~4.1!

The explicit form of the resultingv will be shown in Eqs.
~9.2!, ~9.3! below. The inadequateness of the ordinary bun
approach becomes apparent merely by finding the ga
transformation~3.13! of Eq. ~4.1! induced byLg , with g an
infinitesimal Poincare´ group element,

g5ei eaPaeibabLab'I 1 i ~eaPa1babLab!. ~4.2!

From Eq.~4.2! we identify

e5 i ~eaPa1babLab!. ~4.3!

Replacing Eqs.~4.1! and~4.3! into Eq.~3.13!, making use of
the notation

G
~T!

m
ªdxi G

~T!

i
m, Gab

ªdxiG i
ab , ~4.4!

and taking into account the Poincare´ commutation relations
~B1!, we get

dGab5Dbab ~4.5!

and

d G
~T!

m52 G
~T!

nbn
m1Dem, ~4.6!

with D standing for the ordinary exterior covariant deriv
tive. From Eq.~4.6!, due to the presence of the inhomog
neous term, we clearly see that the translational connec
cannot be identified with the tetrad, which should transfo
as a covector. Obviously, ordinary principal fiber bund
P(M ,G) do not reflect the internal structure of PGT. Indee

neither the geometrical meaning ofG
(T)

m as a vierbein, nor the
universal coupling of gravity to the remaining forces r
ceives an explanation in the standard bundle approach.
know such problems to be absent from the frame bun
treatment of gravity, where tetrads are sections rather t
connections. The price one has to pay when adhering to
view is that one must accept gravitational potentials of t
kinds, the tetrad potentials~sections! being different in math-
ematical nature from those of the other interactions~connec-
tions!, such tetrads having nothing to do with the translatio
included in the Poincare´ group. So, if we still want to supply
a fiber bundle interpretation of gauge theories of spacet
groups, and in particular of PGT, with the tetrad as the tra
lational gauge potential, then either we have to introdu
auxiliary fields restoring the right transformation law e
pected for a tetrad@18#, or we have to look for a modified
bundle structure. In the spirit of the latter view, our propo
consists in introducing a composite fibered space.
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V. DEFINING MAPS OF COMPOSITE BUNDLES

As discussed in Sec. III, for gravitational gauge theor
Lord proposed a fiber bundle structureG(G/H,H) with the
base spaceG/H, taken to be the parameter space of trans
tions, playing the role of spacetime. We criticized this a
proach, pointing out that no true connections can be ascr
to the translations in the absence of an additional base s
allowing one to build up the bundle for translations the
selves. In fact, only with reference to such an underly
base manifold would it become possible to treat translati
as local symmetries. Accordingly, we claim the necessity
introduing a base spaceM in addition to the group manifold
G, as in ordinary fiber bundles.

However, we saw in the previous section that, if o
merely constructs the principal bundleP(M ,G), with G for
instance the Poincare´ group, then we have translational co
nections instead of tetrads. This makes it difficult to find
geometrical interpretation of the resulting formalism. C
tainly, one can restore the right tetrad transformation rules
means of auxiliary fields@18#. More satisfactorily, nonlinear
realizations provide a deductive way to obtain tetrads as n
linear translational connections@19#. Here we will derive tet-
rads of the nonlinear type from a bundle structure, propo
by us as the general framework underlying gauge theor
among them those of spacetime groups.

Roughly speaking, our leading idea is that of attaching
each point of the base space a fiber with the bundle struc
G(G/H,H). We do it by bending each fiber ofP(M ,G),
diffeomorphic to the structure groupG, asG(G/H,H). Ac-
cordingly, P(M ,G) becomes locally isomorphic to
M3G(G/H,H), which is locally homeomorphic to
M3G/H3H. Thus we are interested in describing a bund
whose fibers are locally isomorphic toS3H, with S.
M3G/H ~locally!. We expect, in this way, the bundle stru
ture to become split into two sectors, both with fibered str
ture, namely,P→S andS→M , respectively. The manifold
S.M3G/H, called from now on the plateau, plays an i
termediary role. On the one hand, it is the base space
bundle P(S,H) with typical fiber H; on the other hand, it
possesses a fibered structure itself, let us sayS(M ,G/H).
Spaces of the kind discussed here are found in the litera
as composite fibered spaces@28#. In our proposal, physica
spacetime results from the pullback toM of quantities de-
fined on the plateauS, as we will discuss later.

Let us be more explicit. Instead of the ordinary bund
structureP(M ,G), locally isomorphic toM3G, with pro-
jection pPM : P→M , we will consider a composite fibere
structure

pSM+pPS :P→S→M , ~5.1!

with the partial projections

pPS :P→S, pSM :S→M , ~5.2!

respectively@28#, whose composition gives rise to the tot
bundle projection

pPM5pSM+pPS . ~5.3!
5-5
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Partial fiberspSM
21 (x) of the plateauS→M are parametrized

as (x,j), with base space coordinatesxPM and group mani-
fold coordinatesj corresponding toG/H. The fibered mani-
fold P→S is supposed to be a bundle; the fiber branc
pPS

21(x,j) of P→S, attached to points of the plateauS,
locally isomorphic to M3G/H, are parametrized a
(x,j,a), with a the coordinates of elements of the subgro
H,G.

Associated with the projectionspPS and pSM in Eq.
~5.2!, one introduces the corresponding local sections defi
as maps:

sMS :U,M→pSM
21 ~U !,S ~5.4!

and

sSP :V,S→pPS
21~V!,P, ~5.5!

respectively~with U,M and V,S trivializing neighbor-
hoods!, such thatpSM+sMS5( id)M and pPS+sSP5( id)S .
We suppose the decomposition

sM P5sSP+sMS ~5.6!

to hold, sM P being a section of the composite manifoldP;
see the corresponding theorem in Ref.@28#. Sections~5.4!,
~5.5! together with projections~5.2! define the structure o
the composite fibered space.

As we know @compare Eq.~2.4!#, in an ordinary bundle
P(M ,G), given a sectionsM P(x)PpPM

21 (x) with local trivi-
alization (x,g̃), the decomposition

sM P~x!5sM P~x!•g̃5Rg̃ +sM P~x!, g̃PG, ~5.7!

is always possible in terms of the zero sectionssM P(x) lo-
cally trivializing as (x,eG). In the composite fibered spac
we proceed in the same way, decomposing, on the one h
sMS(x)PpSM

21 (x) from Eq. ~5.4!, with local coordinates
(x,j), as

sMS~x!5sMS~x!•b5Rb+sMS~x!, bPG/H, ~5.8!

b5b(j)PG/H having the parametersj as its group mani-
fold coordinates, andsMS(x) being the zero section with
local trivialization (x,eG/H). Analogously, sSP(x,j)
PpPS

21(x,j) from Eq. ~5.5! with coordinates (x,j,a) also
can be decomposed as

sSP~x,j!5sSP~x,j!•a5Ra+sSP~x,j!,

aPH, ~5.9!

with the zero sectionsSP(x,j) locally trivializing as
(x,j,eH). We require the sections to be related in such a w
that their images coincide, that is,sSP(x,j)5sM P(x), and in
parallel to Eq.~5.6!, we also demand the zero sections
satisfy

sM P5sSP+sMS . ~5.10!

This holds if g̃5b•a andRb21+sSP+Rb5sSP .
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s

d

nd,

y

Now we proceed as follows. By identifying the argume
of sSP(x,j) in Eq. ~5.9! with the coordinatization~x, j! of
sMS(x) in Eq. ~5.8!, we introduce

sj~x!ªsSP+sMS~x!5sSP~x,j!. ~5.11!

Equation~5.11! establishes the coincidence of the images
two different sections, namely,sj :M→P and sSP :S→P,
respectively. In the following, we will exploit the formal cor
respondence~5.11! using sj(x) for sSP(x,j) as a conve-
nient notation, only distinguishing the two maps from ea
other when strictly necessary. On the other hand, making
of the previous assumptions, from the second equality
~5.11!, with Eqs.~5.8! and ~5.10!, we find

sSP~x,j!5sM P~x!•b, b5b~j!PG/H, ~5.12!

an equation which will be useful later. The relevance of t
composite bundle structure for spacetime gauge theories
comes apparent when we study the particular form of
action of gauge transformations on it.

VI. GAUGE TRANSFORMATIONS IN COMPOSITE
BUNDLES

The picture of a composite bundle, as resulting from
definitions of Sec. V, involves a bundle sectorP→S with
H-diffeomorphic fibers. Considering the particular on
pPS

21(x,j) and pPS
21(x,j8), it is relevant to notice that they

can be seen either as fibers attached to different points o
plateauS, or alternatively as, say, branches of a single to
fiber pPM

21 (x) over xPM . Indeed, such total fibers o
P(M ,G) consist of theH branches together with a secon
portion identical with the homogeneous spaceG/H con-
tained in the plateauS.M3G/H.

Accordingly, gauge transformations present two aspe
In the first place, when regarded as acting on the to
bundle, they are defined satisfying Eq.~3.1! as much as Eq.
~3.2! with respect to the base spaceM. On the other hand
when seen asH-branch transformations in the bundle sec
P→S, Eq. ~3.2! does not hold with respect to the interm
diate base spaceS, since the latter’sj coordinates are af-
fected. ~That is, a transformation is induced onS.! So the
maintenance of both defining conditions~3.1! and ~3.2! of
standard gauge transformations is compatible with Lord’s
laxation of Eq. ~3.2! in the sectorP→S. Briefly, in our
scheme, spacetime gauge transformations affect thej coor-
dinates of the homogeneous spaceG/H included inS, while
xPM remains unchanged as in ordinary gauge theories
internal groups.

Now we will study the effect of a gauge transformation
a composite fiber bundle making use of a decomposition
total sections analogous to Eq.~2.4!. Invoking the previously
postulated equalitysSP(x,j)5sM P(x) with Eq. ~5.9!, we
write any arbitrary element on a total section ofP as

u5sM P~x!5Ra+sSP~x,j!. ~6.1!
5-6
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From Sec. III, we know that a gauge transformationl satis-
fying Eqs.~3.1! and ~3.2! can be identified with the gauge
left action Lg(x) of elementsg(x)PG depending on base
space coordinatesxPM . Since Eq.~6.1! is the general form
of points on a total section, we represent the correspond
gauge transformed ones as

l~u!5Lgu5Ra8+sSP~x,j8!. ~6.2!

Comparing Eq.~6.1! with Eq. ~6.2!, we get

Lg+Ra+sSP~x,j!5Ra8+sSP~x,j8!. ~6.3!

Since left and right translations commute, one only has
join the action ofH elements in Eq.~6.3! as

Ra21+Ra85Rh , hªa8a21, ~6.4!

in order to finally bring Eq.~6.3! into the form

Lg+sSP~x,j!5Rh+sSP~x,j8!. ~6.5!

Equation~6.5! fixes the gauge action ofl5Lg on sections
sSP(x,j), transforming them into sections placed at diffe
ent points (x,j8) of the intermediate base spaceS, being
simultaneously ‘‘vertically’’ displaced along theH fiber
branches by means ofRh .

Comparison of Eq.~6.5! with the definition of nonlinear
transformations@20,25# shows their identity. So our deriva
tion from the composite bundle structure provides a bun
interpretation of such transformations. It coincides with th
of Lord and Goswami@25#, as far as the bundle sectorP
→S is concerned (P→G/H in their view!; however, in the
approach proposed here, gauge transformations are a
same time standard ones, obeying Eqs.~3.1! and~3.2! in the
framework of the composite bundle considered as a wh
Actually, when referred toP→M , gauge transformations ar
vertical bundle automorphisms not affecting the base sp
M. Expressed more formally, the validity of Eq.~3.2! for the
total projectionpPM meanspPM+Lg5pPM . In particular,
pPM+Lg+sSP(x,j)5pPM+sSP(x,j)5x, easily checkable
with the help of Eq.~5.3!. For the projectionpPS of the
sector P→S instead, we find by applying it to Eq.~6.5!,
pPS+Lg+sSP(x,j)5pPS+Rh+sSP(x,j8)5(x,j8), whereas
pPS+sSP(x,j)5(x,j), so thatpPS+LgÞpPS . In this case,
a gauge transformation is induced on the plateau, allow
one to transformH fibers into differentH fibers ~that is,
permitting the kind of transformation one expects fro
spacetime groups in which translations are present!. Equa-
tion ~9.14! below significantly shows the explicit form of th
spacetime gauge transformations induced onS by the Poin-
carégroup.

Notice that, in view of Eq.~5.11!, one could replace Eq
~6.5! by

Lg+sj~x!5Rh+sj8~x!, ~6.6!

an expression which, strictly speaking, is not equivalen
Eq. ~6.5!, since it refers to the base spaceM instead of toS,
as discussed above. However, the formal analogy to Eq.~6.5!
makes Eq.~6.6! useful for the following considerations
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mainly since, finally, we will be interested in the pullback
all expressions to the base spaceM.

VII. CONNECTIONS AND THEIR GAUGE
TRANSFORMATIONS IN COMPOSITE BUNDLES

In terms of the zero sections introduced in Eqs.~5.7! and
~5.9!, respectively, one can pull back the Ehresmann conn
tion either to the base spaceM or to the plateauS. Let us use
the notation

AM5sM P* vPT* ~M ! ~7.1!

and

GªAS5sSP* vPT* ~S!. ~7.2!

The former is identical with Eq.~2.6!, that is, with the ordi-
nary local connection on a principal bundleP(M ,G),
whereas Eq.~7.2! is a local form on the intermediate bas
spaceS, regarding the bundle sectorP→S. Taking Eq.
~5.10! into account, one can alternatively consider thesM P*
pullback ~7.1! of v as

AMªsMS* sSP* v5sMS* G, ~7.3!

that is, as thesMS* pullback of Eq.~7.2! to T* (M ).
The gauge transformations of Eq.~7.2! are deduced fol-

lowing steps formally analogous to those of ordina
bundles, as exposed in Sec. III.~Here we will deduce them
pulled back toM.! Let us depart from Eq.~6.6! rewritten as

l„sj~x!…5sj8~x!•h, ~7.4!

with l5Lg . In view of the analogy between Eqs.~7.4! and
~3.4!, it is straightforward to find

l* Ysj
5Rh* Ysj8

1@Ysj8
c~h21∧dh!##, ~7.5!

in parallel to Eq.~3.5!. Observe, however, that theY vectors
in each member of Eq.~7.5! are evaluated at different point
of the plateau, namely,sj(x) andsj8(x), respectively. Mak-
ing use of Eq.~6.6!, we write

sj8~x!5Rh
21+Lg+sj~x!5..F+sj~x!. ~7.6!

Deriving Eq.~7.6! we find

dsj8
dt

5
]F

]sj

dsj

dt
, ~7.7!

so that

Ysj8
5F* Ysj

. ~7.8!

Replacing Eq.~7.8! in Eq. ~7.5!, and introducing a connec
tion form as in Eqs.~3.6!, ~3.7!, we finally obtain

l* v5F* ~Rh* v1h* Q!5F* @h21~d1v!h#. ~7.9!
5-7
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That is the formula analogous to Eq.~3.8!. Notice that, in-
stead ofh(u), the elementhPH,G defined in Eq.~6.4!
appears in Eq.~7.9!. Proceeding as in Eq.~3.9!, we get

sj* ~l* v!5sj* F* ~Rh* v1h* Q!. ~7.10!

In view of Eq. ~7.6!, we recognize in Eq.~7.10!

sj* F* 5~F+sj!* 5sj8
* . ~7.11!

Thus, Eq.~7.10! transforms into

sj* ~Lg* v!5Rhj8
* ~sj8

* v!1hj8
* Q

5hj8
21

~d1sj8
* v!hj8 ,

~7.12!

with

hj8ªh+sj8~x!5h+sSP~x,j8!

5~sSP* h!~x,j8!.
~7.13!

The infinitesimal form of Eq.~7.12! is easily found. Let us
takehj85emA(j8)HA'I 1mA(j)HA5..I 1m, with HA the gen-
erators of the subgroupH,G. Then we find

dGªsj8
* v2~Lg+sj!* v'2~dm1@G,m#!; ~7.14!

compare with Eq.~3.13!. Notice the crucial fact that, in con
trast toe in Eq. ~3.13!, defined on the Lie algebra ofG, m in
Eq. ~7.14! is defined on the Lie algebra of the subgro
H,G, as is characteristic for nonlinear realizations@19–21#.

VIII. TENSORIAL FORMS AND MATTER FIELDS

Let us complete the result~7.14! with the deduction of the
corresponding gauge transformations of matter fields. Gi
the principal fiber bundleP(M ,G), we suppose a vecto
spaceV to exist, where a representationr of the left action of
G is established. We define@6# pseudotensorial forms of de
greep on P of type (r,V) to be V-valuedp forms w on P
such that they satisfy the equivariance condition

Rg* w5r~g21!w. ~8.1!

@Notice that, in view of Eq.~2.3!, the connection form is a
pseudotensorial one-form of type (ad,G), with r the adjoint
representation ofG, in V the Lie algebraG.# Tensorial forms
are pseudotensorial forms which in addition are required
be horizontal, being horizontal formswH defined by the con-
dition

X1c¯XpcwH5X1
Hc¯Xp

Hcw, XiPT~P!, ~8.2!

where Xi
H are horizontal vectors. It follows tha

X1c¯XpcwH50 if and only if any one of the vectorsXi is
vertical. The space of equivariantV-valued forms is isomor-
phic @8,10# to the space of sections of the associated bun
with fiberV, usually taken to represent physical fields. So
06402
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will deal with equivariant forms instead of with the mor
cumbersome associated fiber bundles.

We are interested in deducing the gauge transformat
of tensorial fields in composite bundles. In order to do so,
us put Eqs.~7.5! and~7.8! together into the complete expre
sion

Lg* Ysj
5Rh* F* Ysj

1@F* Ysj
c~h21∧dh!##. ~8.3!

The last term in Eq.~8.3! is a fundamental vector, so it i
purely vertical. Therefore, it vanishes when applied to a t
sorial formw, the latter being horizontal by definition, so th

Lg* Ysj
cw5Rh* F* Ysj

cw. ~8.4!

From Eq.~8.4! we get

Ysj
cLg* w5Ysj

cF* Rh* w, ~8.5!

a relation which holds for arbitrary vectorsYsj
, so that, tak-

ing into account the equivariance condition~8.1!, one con-
cludes that

Lg* w5F* r~h21!w. ~8.6!

Equation~8.6! displays the gauge transformation of a tens
rial form. The pullback bysj* yields

sj* Lg* w5sj* F* r~h21!w, ~8.7!

or equivalently

~Lg+sj!* w5r~hj8
21

!sj8
* w, ~8.8!

with hj8 given by Eq.~7.13!. In terms ofm as used in Eq.
~7.14!, we find the infinitesimal variations of local tensori
forms to be

dsj* wªsj8
* w2~Lg+sj!* w'r~m!sj* w. ~8.9!

In particular, forw the zero-formsc, one has

~sj* c!~x!5c„sj~x!…5c„s~x,j!…. ~8.10!

These~equivariant, horizontal! fields will play the role of
matter fields. Substituting Eq.~8.10! into Eq. ~8.9!, we find

dc„s~x,j!…'r~m!c„s~x,j!…, ~8.11!

showing that they transform as representation fields of
subgroupH under the action ofLg , with gPG. That is a
well known feature of nonlinear realizations@20#, indepen-
dently deduced here from the composite bundle structure

Covariant differentials

Given an equivariantp-form w on P, one defines@10,12#
its exterior covariant derivativeDw to be a (p11)-form
defined byDwª(dw)H, that is, by the condition
5-8
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X1c¯XpcDwªX1c¯Xpc~dw!H

5X1
Hc¯Xp

Hcdw, XiPT~P!;
~8.12!

compare with Eq.~8.2!. This definition does not requirew to
be horizontal, so it is applicable to the~equivariant! connec-
tion form v, giving rise to the curvature formFªDv. Car-
tan’s structure equation establishes it to read explicitly

FªDv5dv1v∧v. ~8.13!

Although constructed with the pseudotensorial formv, the
curvatureF is tensorial. Its pullback yields the local curva
ture, or field strength two-form

FªsSP* F5dG1G∧G. ~8.14!

In view of Eq. ~7.14!, it transforms as

dF5@m,F#. ~8.15!

@We invoke Eq.~5.11! as a guarantee of the formal analo
betweensSP* andsj* pullbacks. See also Eq.~9.22! below#.
On the other hand, the structure equation for tensorial fo
@12# provides an explicit form forDw as

Dw5dw1r~v!∧w, ~8.16!

where the same notationr is used for the representation ofG
as for g in Eq. ~8.1!. The exterior covariant derivative of
tensorial form is trivially horizontal, and easily checkable
be equivariant, so it is also a tensorial form. The pullback
Eq. ~8.16! by sj reads

sj* Dw5d~sj* w!1r~sj* v!∧~sj* w!. ~8.17!

In particular for zero-forms@see Eq.~8.10!#, we rewrite Eq.
~8.17! as

Dc5dc1r~G!c. ~8.18!

Making use of Eqs.~7.14! and ~8.11!, it is easy to calculate
the gauge transformations of Eq.~8.18!, namely,

dDc5r~m!Dc, ~8.19!

analogous to Eq.~8.11!.

IX. COMPOSITE BUNDLE APPROACH TO THE
POINCARÉ GAUGE THEORY

In ordinary principal fiber bundlesP→M , verticality is
determined by the fibers, while it is the connection form th
defines horizontality. Composite fiber bundles require a re
sion of these concepts, due to the fibers to be bent, so
two sectors exist, each one with its own vertical and horiz
tal tangent subspaces. Indeed, given the composite fi
spaceP→S→M , in the sectorP→S locally isomorphic to
S3H, the vertical subspace of the tangent space is defi
along theH branch of fibers; analogously, in the plate
sectorS→M locally isomorphic toM3G/H, verticality is
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defined byG/H fibers. Then, in order to characterize ho
zontality in the corresponding tangent spaces, a connectio
required in each. Consequently, in a composite bundle
has to look for a modified connection form, decomposed i
two parts, defining horizontality inP→S and S→M , re-
spectively.

Let us abandon the general abstract exposition and c
centrate on the case ofG as the Poincare´ group, withH the
Lorentz group; thus the group generators associated
G/H are those of translations. Accordingly, in Eqs.~5.8!,
~5.9! we takea to be elements of the Lorentz group andb to
be translation group elements, parametrized asa5eilabLab

andb5e2 i jmPm, respectively. So the general Poincare´ group
elementsg̃5b•a are exactly Eq.~B2!. Let us briefly return
to the bundle description of the Poincare´ group disregarded
by us in Sec. IV, in order to compare it in the following wit
the composite bundle approach. Fibers of ordinary princi
bundles are diffeomorphic to the structure groupG taken as a
whole. They allow only one kind of verticality to be presen
namely, that defined by vectors tangent to theG fibers. Ac-
cordingly, the ordinary connection form Eq.~2.5! in a
P(M ,G) bundle, that is,

v
ord

5g̃21~d1pPM* A!g̃,

Aª2 i dxi~ G
~T!

i
mPm1G i

abLab!,
~9.1!

with g̃ as the Poincare´ group elements~B2!, defines a single
horizontal subspaceH(P) of the tangent space. By makin
use of Eqs.~B1!–~B4! and ~B8!, ~B9!, we find the explicit

form of v
ord

to be

v
ord

52 iqord
m um

nPn2 i ~ i Q̄~L!
ab 1pPM* dxiG i

ab!

3ua
mub

nLmn , ~9.2!

where

qord
m

ªdjm1pPM* dxi~G in
mjn1 G

~T!

i
m!. ~9.3!

The fundamental vectorsLab
(L) andLm

(P) of the bundle, given
by Eq. ~B6!, yield, respectively,

Lab
~L!c v

ord

5Lab , Lm
~P!c v

ord

5Pm ; ~9.4!

recall Eq.~2.2!. On the other hand, one can choose the ba
vectors of the horizontal tangent subspaceH(P) as

EiªsM P* ] i1 i ~ G
~T!

i
mL̄m

~P!1G i
abL̄ab

~L!! ~9.5!

@compare with Eq.~2.7!#, satisfying the defining condition

Ei c v
ord

50.
5-9
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In contrast with this standard decomposition of the ta
gent space into one vertical and one horizontal subspac
composite fiber bundles we have to give a formal charac
ization of two different verticalities with their correspondin
horizontalities. Two pieces of the connection will exist, o
ented along the Lie algebra basis ofG/H and H, respec-
tively. In our case,G/H involves the translational generato
Pm , and H those Lab of the Lorentz group. Let us pa
attention to the connection

v5a21~d1pPS* G!aPT* ~P! ~9.6!

on the plateau@compare with Eq.~2.5!#, with G5sSP* v in
T* (S)3G developed as

G52 iqS
mPm2 iGabLab . ~9.7!

As required for composite bundles, we decompose Eq.~9.6!

into two parts asv5 v
(P)

1 v
(L)

, identifying, respectively,

v
~P!

52 ia21~pPS* qS
mPm!a52 i v

~P!
mPm ~9.8!

as the connection form of the sectorS→M , and

v
~L!

5a21~d2 ipPS* GabLab!a52 i v
~L!

abLab ~9.9!

as the connection form ofP→S. The components of Eqs
~9.8! and ~9.9! read more explicitly

v
~P!

m5pPS* qS
n un

m,

v
~L!

ab5~ i Q̄~L!
gd 1pPS* Ggd!ug

aud
b,

~9.10!

in terms of Eq.~B5!; see Eqs.~B4! and~B9!. We postpone to
the next section the discussion on the inner structure
T* (S) of the translational local connectionqS

m , and of the
Lorentz connectionGab.

In order for the splitting of the composite bundle into tw
fibered sectors to be well defined, a vertical~fundamental!
vector Ẽm and a horizontal oneẼi must exist in the secto
S→M such that

Ẽmc v
~P!

5Pm , Ẽi c v
~P!

50, ~9.11!

while in the sectorP→S, one must analogously have ve
tors such that

Lab
~L!c v

~L!

5Lab , Êmc v
~L!

50, Êi c v
~L!

50, ~9.12!

with Lab
(L) vertical and bothÊm and Êi horizontal. The two

kinds of horizontal vectors reflect the structure of the plate
S, locally isomorphic to the Cartesian productM3G/H.

Before looking for the possible explicit realizations
these vectors, as well as ofqS

m and Gab, let us show the
gauge transformations of the latter as derived from the c
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posite bundle approach to the Poincare´ group. In particular,
we will see that, instead of Eq.~4.6!, we obtain a gauge
theoretical deduction of the correct transformation of tetra
Transformations induced onS are calculated from Eq.~6.5!.
Taking Eq. ~5.12! into account, Eq.~6.5! transforms into
g(x)•sM P(x)•b5sM P(x)•b8•h, or equivalently

g~x!•b5b8•h. ~9.13!

We parametrizebPG/H as b5e2 i jmPm, and analogously

b85e2 i jm8Pm, with jm85jm1djm. The infinitesimal group
elementsg(x) andh are respectively taken as Eq.~4.2! and
h5eimabLab'I 1 imabLab . Then, from Eq.~9.13!, making
use of Eq.~B1!, we get

dja52jbbb
a2ea, mab5bab, ~9.14!

where we recognize the form of infinitesimal Poincare´ trans-
formations, with the particularity that, instead of coordinat
they affect the translational group parametersja. On the
other hand, regarding the local connection~9.7! on S, in Eq.
~7.14! we already deduced the corresponding gauge trans
mations. Directly applying this result to our case, withm
5 imabLab andmab5bab, as proved in Eq.~9.14!, we find

dGab5Dbab ~9.15!

and

dqS
m52qS

n bn
m; ~9.16!

compare with Eqs.~4.5!, ~4.6!. Equation~9.16! shows that
qS

m transforms as a covector. This constitutes a highly r
evant result. Indeed, as we will see below, it is the pullba
of qS

m to the base spaceM that will become identifiable with
ordinary tetrads. In summary, as expected from a space
group, spacetime gauge transformations~9.14! are found to
be induced on the plateau, and, furthermore, the cor
gauge transformations~9.16! for tetrads~on S! are obtained.
Thus we have established a bundle foundation for PGT.

Proposals for the explicit structure of spacetime connections

Finally, let us look for a suitable explicit form forqS
m and

Gab in Eq. ~9.7!. We will consider three different possibili
ties. Taking Eq.~2.5! as a model, first we postulate for Eq
~9.7! the form

G̃5sSP* v5b21~d1pSM* A!b, ~9.17!

with A5sMS* G̃. ~We write G̃ with a tilde in order to distin-

guish it from the G we will introduce later.! Since G̃
5sSP* v, making use of Eq. ~5.10!, we see that A
5sMS* sSP* v5sM P* v, and in analogy to Eq.~9.1! we take
the local potentials to be

A5sM P* v52 i dxi~ G
~T!

i
mPm1G i

abLab!. ~9.18!

Expression~9.17! then reads explicitly
5-10
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G̃52 i ~qS
mPm1pSM* dxiG i

abLab!, ~9.19!

where

qS
m
ªdjm1pSM* dxi~G in

mjn1G i
m

~T!

!; ~9.20!

compare Eq.~9.3!. The translational parametersjm, being
pseudocoordinate fields transforming as Eq.~9.14!, may be
regarded as Goldstone-like fields absorbed into the defini
~9.20! of qS

m . As a compatibility condition of Eqs.~9.14!–
~9.16!, we find

d~pSM* dxi G
~T!

i
m!52~pSM* dxi G i

n
~T!

!bn
m1Dem ~9.21!

as the infinitesimal transformation of the translational co
nection; compare with Eq.~4.6!.

Equation~9.20!, as a part of Eq.~9.17!, is an object de-
fined on the plateauS, so it cannot be identified as an ord
nary tetrad until pulled back to the base spaceM. Thus we
have to be careful in interpreting Eq.~5.11! rigorously, as
giving rise to

sj* 5sMS* sSP* , ~9.22!

that is, to a pullback in stepssj* :T* (P)→T* (S)
→T* (M ), first from T* (P) to T* (S) by sSP* , and then
from T* (S) to T* (M ) by sMS* . Having performed the firs
step onv, that is, the pullbacksSP* :T* (P)→T* (S) @see
Eq. ~9.17!#, now we proceed to complete the pullbacksj* v
to T* (M ) as given by Eq.~9.22!. Recall that we already
performed such pullbacks in Secs. VII and VIII. When pull
back toM by sMS* , the plateau quantityqS

m reduces to the
usual tetrad as

qM
m 5sMS* qS

m
ªdxiei

m. ~9.23!

with ei
m provided with an internal structure, namely,

ei
m
ª] ij

m1G in
mjn1G i

m
~T!

5Dij
m1G i

m
~T!

, ~9.24!

expressed in terms of spacetime connections and of
Goldstone-like fieldsjm. In contrast to the usual view o
tetrads as sections of a frame bundle, Eq.~9.24! supplies the
necessary support of the gauge theoretical conception of
rads as~nonlinear! translational connections@19#. For later
convenience, we introduce the formal inverse ofei

m as em
i

such thatem
iei

n5dm
n andei

mem
j5d i

j .
In spite of the convenient features ofqS

m , we find the

complete form~9.19! of G̃ unsatisfactory due to the fact tha
the local Lorentz connectiondxiG i

ab is defined onT* (M )
rather than onT* (S), as a consequence of the particu

choice ~9.19! we made forG̃. No reason exists to restric
Gab in this way; rather one is induced to consider the gene
case in which, respecting the form~9.20! of qS

m , the spin
connectionGab is defined onS as

Gab5~djm
^ ]jm1pSM* dxi

^ sMS* ] i !cGab. ~9.25!
06402
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Taking Eq. ~9.25! into account, we begin looking for the
explicit form of the vertical and horizontal vectors~9.11!,
~9.12! in both sectors of the composite bundle. In the fi
place, the conditions~9.11! of the bundle sectorS→M are
satisfied by

ẼmªsSP* Lm
~P! , Ẽi5sSP* ẽi , ~9.26!

with

ẽiªsMS* ] i1 i ~G i
m

~T!

L̄m
~P!1G i

abL̄ab
~Orb!!

5sMS* ] i2~G in
mjn1G i

m
~T!

!]jm. ~9.27!

„Only the orbital part ofL̄ab
(L) appears inẽi @see Eq.~B11!#,

since the intrinsic part is not defined onS.… The vector~9.27!
is such that

ẽi cqS
m50, ~9.28!

showing that the translational component~9.20! of Eq. ~9.7!
behaves as a sort of connection form onS→M ~although
pulled back from the whole bundle!, with ẽi as the corre-
sponding horizontal vector. On the other hand, the conditi
~9.12! of the sectorP→S are satisfied, respectively, byLab

(L)

in Eq. ~B6! and by

Êm5sSP* ]jm1 i ~]jmcGab!L̄ab
~ Int ! ~9.29!

and

Êi5sM P* ] i1 i ~sMS* ] i cGab!L̄ab
~ Int ! . ~9.30!

We denoted the intrinsic part ofL̄ab as in Eq.~B11!. Observe
that the vector defined as the combination

E9 iªÊi2~G in
mjn1G i

m
~T!

!Êm

5sSP* ẽi1 i ~ ẽi cGab!L̄ab
~ Int ! ~9.31!

satisfies bothE9 i c v
(P)

50 andE9 i c v
(L)

50, so that it is horizontal
in the total bundleP(M ,G), in analogy to Eq.~9.5! of the
ordinary case.

Let us now return to Eq.~9.25!. We look for a convenient
notation, making use of the identity

djm
^ ]jm1pSMdxi

^ sMS* ] i

[qS
m

^ ẽm1~pSM* dxi2qS
mem

i ! ^ ẽi , ~9.32!

with the right-hand side~RHS! expressed in terms of the ne
vector

ẽmª]jm1em
i ẽi5em

isMS* ] i ~9.33!

such that

ẽmcqS
n 5dm

n ; ~9.34!
5-11
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ROMUALDO TRESGUERRES PHYSICAL REVIEW D66, 064025 ~2002!
compare with Eq.~9.28!. The vector~9.33! possesses suit
able transformation properties, related to those ofqS

m ; see
Eq. ~9.16!. Actually

dẽm5bm
nẽn1em

i~] idjl2] ij
n]jndjl!]jl, ~9.35!

so that, in view of Eq.~9.14!, for ea5ea
„j(x)…, bab

5bab
„j(x)…, it reduces to

dẽm5bm
nẽn . ~9.36!

With the help ofẽm , in parallel to Eq.~9.31! we introduce

E9 mªÊm1em
iE9 i5sSP* ẽm1 i ~ ẽmcGab!L̄ab

~ Int ! . ~9.37!

The two vectors~9.31!, ~9.37! may be taken instead o
~9.29!, ~9.30! as the basis of the horizontal subspace of
bundle sectorP→S. Making use now of Eq.~9.32! and
defining

Gm
ab
ªẽmcGab, ~9.38!

we rewrite Eq.~9.25! as

Gab5qS
mGm

ab1~pSM* dxi2qS
mem

i !~ ẽi cGab!. ~9.39!

We emphasize that, in the pullback ofGab by sMS* analogous
to Eq. ~9.23!, only the first term in the RHS of Eq.~9.39!
gives a nonzero contribution, namely,

sMS* Gab5sMS* qS
mGm

ab, ~9.40!

so thatẽi cGab does not play any role onM as a base-spac
pulled-back object. Moreover, since the pullback ofqS

m con-
sists of the ordinary tetrads onM @see Eq.~9.23!#, then the
same pullback~9.40! reducesGab to

sMS* Gab5dxiei
mGm

ab, ~9.41!

which equalsdxiG i
ab, as in Eq.~9.19!, since

G i
ab
ª~sMS* ] i !cGab5ei

mGm
ab; ~9.42!

compare with Eqs.~9.33! and ~9.38!.
Having stated thatẽi cGab does not contribute to the loca

spin connection pulled back toM, let us finally consider the
particularly interesting case which follows from imposin
the verticality ofGab on S→M , that is,ẽi cGab50. @Recall
that ẽi is horizontal on the plateau; compare Eq.~9.28!.# As a
consequence, Eq.~9.39! reduces to

Gab5qS
mGm

ab, ~9.43!

showing the nonminimal coupling of the translational co
nection to the spin connection. Such a composition of c
nections is characteristic for composite fibered spaces@28#.
Replacing Eq.~9.43! into Eq. ~9.7!, G becomes the vertica
form

G52 iqS
m~Pm1Gm

abLab!, ~9.44!
06402
e

-
-

satisfyingẽi cG50. Observe that the vectors of the sectorP
→S are affected by the verticality condition onG in such a
way that Eq.~9.37! retains its form while Eq.~9.31! trans-
forms intoE9 i5Ẽi .

X. FINAL REMARKS

The bundle structure proposed by us provides a gen
framework to deal with any possible interaction defined
spacetime in the presence of gravity, with all forces, grav
tion included, described in terms of connections. Indeed,
form ~9.43! in which Gab couples toqS

m is suitable for gen-
eralization to the coupling ofqS

m ~that is, of gravity! to the
gauge potential of any force. Suppose the gauge theory o
internal group in the presence of gravity is formulable
terms of a composite bundle, withG as the direct product o
the Poincare´ group times an internal group, say that of th
standard model, andG/H as the parameter space of th
translations. By imposing on the local connectionsA of the
internal group onS the verticality conditionẽi cA50, in view
of Eq. ~9.32! we get the Yang-Mills potential

A5qS
mAm , ~10.1!

to be added to Eq.~9.44!. Equation~10.1! reflects the cou-
pling of the internal gauge potential to the spacetime conn

tions
(T)

G i
m andG i

ab ; see Eq.~9.20!. Actually Eq.~10.1! shows
how, in the present approach, gravity~and thus spacetime!
underlies the remaining forces. Composite fiber bundles
pict an interaction space generalizing the idea of spaceti
including, in addition toqS

m andGab, the connections~10.1!
representingradiation. As an example, consider electrod
namics. According to the standard general relativistic vie
the deflection of light by the sun is a consequence of
metric structure of the space in which radiation is immers
In Eq. ~10.1! instead, the Lorentzian componentsAm of the
electrodynamical potential appear multiplied by the gravi
tional potentials~9.20!, displaying the coupling of electro
magnetism to gravity as the result of a composition of co
nections. Certainly, seena posteriori, this is a quite natural
outcome in a pure gauge theoretical context, where only c
nections are mediators of forces.

In standard gauge theories, physical fields on spacet
are the pullbacks to the base space of equivariant fields oP,
while spacetime itself, modelized by the base spaceM, is
fixed from the beginning to be a Minkowskian metric spac
In the present approach instead, even the geometrical s
ture of physical spacetime results from the pullback toM of
plateau objects—namely, dynamical connections—defi
on the whole bundle space.@According to Eq.~9.22!, any
pullback can be understood as performed in steps, first to
plateauS and then toM.# In particular, it is by pulling back
the translational and spin connection forms~9.20! and~9.43!
from the plateau that a definite spacetime structure beco
impressed on the base spaceM. Also, Eq. ~10.1!, when
pulled back toM, yields the spacetime immersed local p
tential dxiei

mAm @see Eq.~9.23!#, whereAm , with well de-
fined spin, appears coupled to gravitational fieldsei

m given
by Eq.~9.24!. The scheme is completed by pulling back toM
5-12
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UNIFIED DESCRIPTION OF INTERACTIONS IN . . . PHYSICAL REVIEW D66, 064025 ~2002!
matter fields, as in Eq.~8.10!. All these pulled back objects
are to be seen as ordinary physical fields on the base sp
In particular, the pullbacks~9.23! and ~9.41! represent, re-
spectively, the usual tetrads and spin connections of PGT
M. Thus, we recognize such pullbacks—of quantities wh
gauge transformations we know how to calculate—as
familiar building blocks commonly used to construct, in t
standard way, gauge invariant physical actions.

Observe that, prior to the pullback,M is a structureless
manifold. One can regard it as a screen waiting for the sh
ows of Plato’s cavern or, in a different Platonic image, a
sort of amorphous prime matterto be stamped by certai
bundle objects, mainly by connections. Accordingly, the co
cept of interaction~associated with that of connection!
manifests itself as logically previous to spacetime with w
defined geometrical properties. OnM, a base space metri
may be recovered if desired, understood not as the prim
dynamical object, but as constructed from the pullback of
translational connection forms to the base space. That is,
first obtains ordinary tetrads~9.23!, and then introduces

ds25oabqM
a

^ qM
b 5gi j dxidxj ,

gi jªoabei
aej

b, ~10.2!

defining the GR line element. Thus, the metrized base sp
results as a sort of projection~a pullback in fact! of the whole
bundle structure. The same holds for other possible sp
time structures, such as torsion, derived from the gen
Lorentz connection, or nonmetricity in the context of MAG
etc.

In the limit of absence of gravity, that is, in the glob

Poincare´ case, the spacetime connectionsG i
m

(T)

andG i
ab van-

ish and Eq.~10.1! reduces toA5djmAm . In other words,
when gravitation is switched off, a residual tetradqS

m5djm

remains on a Minkowskian manifold, with the translation
group parametersjm playing the role of coordinates. Thi
residual couplingdjmAm can be understood as the form
which Minkowskian spacetime underlies any other physi
field when gravity is absent. In this case,S trivializes asS
5M3G/H. The pullback ofqS

m5djm assMS* qS
m5dxi] ij

m

@compare with Eq.~9.24!# reduces merely to a change fro
Minkowskian to general coordinates. Then, instead of tak
as spacetime the pullback of the plateau toM, one can di-
rectly identifyG/H as physical spacetime, so that the bun
structureG(G/H,H) suffices to describe the gauge theory
the internal group accompanying the global Poinc´
group. G/H being the Minkowskian base space of the
sidual bundleG(G/H,H) to which the composite bundl
reduces when the Poincare´ connections are set to zero, w
claim that spacetime has a gauge theoretical origin, eve
the absence of gravitational forces.

The approach presented here could be advantageous
double sense. On the one hand, it provides a uniform tr
ment of forces, where gravitational potentials are the p
backs of connections on a fiber bundle, in analogy with
other interactions. Such a homogeneous characterizatio
forces may perhaps be useful on the way toward their fi
06402
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unification. On the other hand, the present bundle descrip
being very close to that of ordinary fiber bundles formalizi
nongravitational forces, one expects that the mathema
techniques developed for the remaining interactions will
applicable to gravity.
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APPENDIX A: GEOMETRY OF LIE GROUPS

Let us consider a Lie groupG. The left actionLguªgu of
G on its own group manifold defines a differentiable ma
ping Lg : G→G, inducing a differential mappingLg* :
Tu(G)→Tgu(G). In terms of the latter, we define the Li
algebraG to be the subset of all left invariant vector field
(Lg* Xu5Xgu) on G. Given$GA% as a basis forG, there exist
structure constantsf AB

C such that

@GA ,GB#5 f AB
CGC , ~A1!

the commutation relations~A1! completely determining the
Lie group. We will parametrize any group elementg̃PG as

g̃lªelAGA ~A2!

with parameterslA, A51,...,dim_G, which is compatible
with the identification of the Lie algebra basis elements a

GAª
]g̃l

]lAU
l50

~A3!

belonging toTe(G). From Eq. ~A2!, with the help of the
Hausdorff-Campbell formula, we find the adjoint represen
tion adg̃21GAªg̃21GAg̃5(g̃l)A

BGB , with the matrix

~ g̃l!A
B
ª@elMr~GM !#A

B5dA
B2lCf CA

B

1
1

2!
lCf CA

MlDf DM
B2¯ , ~A4!

where we used the representation@r(GA)#B
C
ª2 f AB

C. In
terms of the same notation, the Cartan-Killing metric is d
fined asgABª22 trr(GAGB)522 f AM

L f BL
M. For matrix

groups, any elementuPG can be coordinatized by a matri
uA

B, taken as a shorthand for an expansion of the form~A4!.
In terms ofuPG, parametrized following the pattern~A2!,
we define the left invariant Maurer-Cartan form of a mat
groupG as

Qªu21du5QAGA ,

QA
ª2

1

2
~g21!ABr~GB!M

N~u21!N
LduL

M, ~A5!

that is, as a Lie algebra valued one-form belonging
T* (G). The left invariance of the Maurer-Cartan form
meansLg* Qugu5Quu . Taking the componentsQA of Eq.
~A5! to constitute a left invariant one-form basis of the c
5-13
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tangent space ofG, we introduce the dual basis of left invar
ant vectorsLA of T(G) induced byGAPG as

LA@ f ~u!#ª
] f ~ug̃l!

]lA U
l50

5
]~ug̃l!

]lA

] f

]~ug̃l!
U

l50

,

~A6!

for f a differentiable function. Dealing with matrix group
we take in particular (ug̃l)M

N5uM
L(g̃l)L

N, with (g̃l)L
N

taken from Eq.~A4!. Then, Eq.~A6! gives sense to the vec
tor

LAªuM
Lr~GA!L

N
]

]uM
N ~A7!

belonging to the tangent spaceT(G). One can check the lef
invariance of Eq.~A7!, namely,Lg* LAuu5LAugu , and the
relations

LAcQ5GA , @LA ,LB#5 f AB
CLC , ~A8!

showing the duality of the bases~A5! and~A7!, and the Lie
algebra homomorphism induced byGAPG on left invariant
vector fields ofG.

In analogy to the former, one can alternatively define
right invariant bases of forms and vectors on the group m
fold G. The right invariant forms read

Q̄ªdu u215Q̄AGA ,

Q̄A
ª2

1

2
~g21!ABr~GB!M

NduN
L~u21!L

M. ~A9!

The basis vectors analogous to~A7! and dual to~A9! are
found to be

L̄Aªr~GA!M
LuL

N
]

]uM
N . ~A10!

In parallel to Eq.~A8!, they satisfy

L̄AcQ̄5GA , @ L̄A ,L̄B#52 f AB
CL̄C . ~A11!

Observe the change in sign in the commutation relation
Eq. ~A11!, as compared with Eqs.~A8! and ~A1!.

APPENDIX B: GEOMETRY OF THE POINCARE´ GROUP

Let us takeG to be the Poincare´ group, with Lorentz
generators Lab and translational generatorsPa (a,b
50,...,3) satisfying the usual commutation relations
06402
e
i-

in

@Lab ,Lmn#52 i ~oa@mLn]b2ob@mLn]a!,

@Lab ,Pm#5 iom@aPb] , ~B1!

@Pa ,Pb#50

with the Minkowski metricoabªdiag(2111). For later
convenience, we parametrize an arbitrary group elemeng̃
PG as

g̃5e2 i jmPmeilabLab. ~B2!

In terms of Eq.~B2!, we calculate the left invariant Maurer
Cartan form~A5! as

QGªg̃21dg̃5Q~L!
ab Lab1Q~P!

m Pm , ~B3!

with

Q~L!
ab

ª iuladul
b, Q~P!

m
ª2 i djlul

m, ~B4!

where we used the compact matrix notation

ua
b
ª~el!a

b
ªda

b1la
b1

1

2!
la

glg
b1¯ , ~B5!

with (u21)a
b5ub

a . The left invariant vectors~A7! dual to
~B4! read

Lm
~P!

ª iun
m

]

]jn ,

~B6!

Lab
~L!

ª2 iul@a

]

]ul
b] ,

such that

Lm
~P!cQG5Pm ,

~B7!

Lab
~L!cQG5Lab ,

and satisfying commutation relations formally identical
Eq. ~B1!. On the other hand, we introduce the~A9! right
invariant forms

Q̄Gªg̃21dg̃5Q̄~L!
ab Lab1Q̄~P!

m Pm , ~B8!

with

Q̄~L!
ab

ª idualub
l ,

Q̄~P!
m

ª2 id~jlul
n!um

n52 idjm2Q̄~L!
nm jn . ~B9!

Their dual~A10! right invariant vectors are
5-14
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L̄m
~P!

ª i
]

]jm ,

L̄ab
~L!

ªua
mub

nLmn
~L!1 i j@a

]

]jb]

5 i S u@a
l

]

]ub]l 1j@a

]

]jb] D .

~B10!
,

er
t.
e
on
.

b
,

d

.

s

ts

-

06402
We recognize in Eq.~B10! the linear momentum and th
angular momentum generators, respectively@26#, with the
total angular momentumL̄ab

(L) decomposed into intrinsic an
orbital pieces as

L̄ab
~L!5L̄ab

~ Int !1L̄ab
~Orb! , L̄ab

~Orb!
ª i j@a

]

]jb] . ~B11!

This completes the collection of formulas relevant for t
present paper.
n,

tiv-

p.

an-

an-
,

o,
y

h-

c.

r

@1# C. N. Yang and R. L. Mills, Phys. Rev.96, 191 ~1954!.
@2# R. Utiyama, Phys. Rev.101, 1597~1956!; T. W. B. Kibble, J.

Math. Phys.2, 212~1961!; D. W. Sciama, Rev. Mod. Phys.36,
463 ~1964!; 36, 1103 ~1964!; A. G. Agnese and P. Calvini
Phys. Rev. D12, 3800~1975!; 12, 3804~1975!; E. A. Ivanov
and J. Niederle,ibid. 25, 976 ~1982!; 25, 988 ~1982!; K. Ha-
yashi and T. Shirafuji, Prog. Theor. Phys.80, 711 ~1988!.

@3# F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nest
Rev. Mod. Phys.48, 393~1976!; P. von der Heyde, Phys. Let
58A, 141~1976!; F. W. Hehl, inProceedings of the 6th Cours
of the School of Cosmology and Gravitation on Spin, Torsi
Rotation, and Supergravity, Erice, Italy, 1979, edited by P. G
Bergmann and V. de Sabbata~Plenum, New York, 1980!, p. 5.

@4# Historical views on the beginning of gauge theories can
found in the Introduction to the book by E. W. Mielke
Geometrodynamics of Gauge Fields~Akademie-Verlag, Berlin,
1987!, and in L. O’ Raifeartaigh and N. Straumann, Rev. Mo
Phys.72, 1 ~2000!.

@5# N. Steenrod,The Topology of Fibre Bundles~Princeton Uni-
versity Press, Princeton, NJ, 1951!.

@6# S. Kobayashi and K. Nomizu,Foundations of Differential Ge-
ometry~Inter-science Publishers, New York, 1963!, Vol. 1.

@7# E. Lubkin, Ann. Phys.~N.Y.! 23, 233 ~1963!; A. Trautman,
Rep. Math. Phys.1, 29 ~1970!; T. T. Wu and C. N. Yang, Phys
Rev. D12, 3845~1975!.

@8# M. Daniel and C. M. Viallet, Rev. Mod. Phys.52, 175 ~1980!.
@9# T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep.66, 213

~1980!.
@10# D. Bleecker, Gauge Theory and Variational Principle

~Addison-Wesley, Reading, MA, 1981!.
@11# C. Nash and S. Sen,Topology and Geometry for Physicis

~Academic, London, 1983!.
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