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Unified description of interactions in terms of composite fiber bundles
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We claim that a composite fiber bundle satisfactorily serves as the geometrical structure underlying gauge
theories of spacetime groups, such as the Poirgauge theory. A trivial extension of the approach to include
internal symmetries also provides a unique mathematical scheme in which gravitation and the remaining forces
are put together and treated in a common fiber bundle language. The result is a homogeneous characterization
of interactions, gravity included, exclusively by means of connections.
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[. INTRODUCTION tetrads, the so calledierbeins necessary to make possible
the coupling of gravitational fields to fundamental spinor
Gauge theories constitute the commonly accepted apmatter. Tetrads are mixed objects possessing both a coordi-
proach to the description of fundamental forces. In the founnate index and a Lorentz index, thus providing a bridge or
dational Yang-Mills papef1], the gauge treatment was ap- solderingbetween the dynamical base space and the locally
plied to internal symmetries. But soon afterward a series oMinkowskian tangent space attached to each point. The stan-
proposals appearef2] extending the gauge principle to dard bundle approach to gravit9—14] supplies an interpre-
spacetime symmetries. In several papers by Hldl. [3]  tation of tetrads as local sections of an orthonormal frame
the Poincargauge theoryPGT), as a gauge theory of grav- bundle. Briefly, given a manifoldM, the bundleL(M) of
ity, reached the standard form we will have in mind in thelinear frames of the tangent spatéM) constitutes a prin-
following. Independently of gauge theories in phydiés a  cipal bundle with structure grougL(4,R), T(M) being its
parallel mathematical development took place concerning fiassociated vector bundle. M admits a Riemannian metric,
ber bundled5,6]. The formal identity between gauge theo- then the bundle of linear frames can be reduced to a bundle
ries and the geometry of bundles has been recognized sincé orthonormal frames with the Lorentz group as structure
the 19609 7,8]. Nowadays, it is the standard point of view group. If the frame bundl& (M) is originally endowed with
that at least nongravitational interactions are suitably dea linear connection, the reduction process transforms the lat-
scribed in terms of gauge potentials, the latter being interter into a Lorentz connection.
preted as local connections in a principal fiber bundle. A Tetrads and connections are different kinds of gravita-
single mathematical scheme thus gives an account of almosbnal fields. We note this duplicity since it constitutes a main
all fundamental interactions. Only the gauge status of gravityifficulty for the inclusion of gravity in a unified gauge the-
still remains problematic. Actually, its bundle structure is re-oretical scheme together with the remaining forces. Actually
vealed to be not exactly that of an ordinary Yang-Mills most of the current gauge theories of gravitatidb,16),
theory, and until now there is no unique answer to the queseontrary to ordinary gauge theories, distinguish two types of
tion of whether or not gravitation has to be considered agravitational variables, namely, the gauge potentials identi-
essentially different from the other forces. fied with connectiongreduced Lorentz connections, Ash-
Let us briefly articulate the main kinds of mathematicaltekar variables and simultaneously metric or tetrad fields.
approaches to gravity found in the literature. As the first oneNotice that gravitational potentials of such different classes
we must mention the metric tensor approach, correspondingre as different from each other as connections and sections
to Einstein’s original formulation. In this standard form, gen- are.
eral relativity (GR) is conceived as the field theory of the  Ivanenko and Sardanashvi\L5] proposed a somewhat
metric tensor fixing the geometrical structure of spacetimedifferent approach. They considered gravity to be a sponta-
That makes a big contrast with the nongravitational forcesneously brokerGL(4,R) gauge theory. The tetrads, playing
Indeed, expressed in fiber bundle language, GR seems the role of Goldstone-like—although nonremovable—fields,
manifest itself as the dynamical theory of the underlyingresult from the contraction, induced by the equivalence prin-
base space, gravitational interactions being mediated by theple, of the tangent bundle structure group from the general
metric as the gravitational potential, while the remaininglinear to the Lorentz group. Tetrads are identified as global
forces are characterized in terms of bundle connectionsections of the bundle with fibes/H, whereG=GL(4,R)
(gauge potentia)s If that were the correct scheme, one andH is the Lorentz group.
should accept the existence of forces of two absolutely dif- In contrast to all the previously mentioned interpretations
ferent natures. of gravitational potentials, either as metric tensors, or as sec-
A different view is supplied by the tangent space ap-tions of a frame bundle, as Goldstone fields, etc., to be con-
proach. It originates in the extension of GR by means ofidered in addition to Yang-Mills potentials, the gauge ap-
proach developed by Hebt al.[3] admits only a single kind
of potential, namely, gauge potential§he seeming devia-
*Email address: ceef310@imaff.cfmac.csic.es tion of this rule represented by the metric of metric-affine
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gravity (MAG) [17] does not affect the present discussion,scribe all forces in a homogeneous way. In the present paper,
centered on PGT. The subject was treated in Hdf3.] In  we pay attention only to the geometridaredynamical as-
particular, this approach regards tetrads as translational copects of interactions, that is, merely to the building blocks
nections, that is, as true gauge potentials of the Yang-Millgor the construction of suitable actions.
type. The gauge theories of spacetime groups defended by The paper is organized as follows. We begin, in Sec. II,
Hehl et al. (PGT, MAG) constitute in fact the treatment of With a review of the main concepts of fiber bundles, as con-
gravity lying closest to ordinary gauge theories. Certainly, inStituting the mathematical structure underlying ordinary
principle a serious difficulty exists in reconciling the gauge9auge theories of internal groups. Next, in Sec. lil, we dis-
transformations of ordinary connections with those of tet-CUss the standard characterization of gauge transformations
rads, which must transform as covectors. However, the ob@n ordinary bundles as vertical bundle automorphisms; ex-
stacle can be overcome in different wdyi$,19. It is pre-  tending a suggestion due to Lof@4,25, we propose a
cisely the main task of the present paper to support th@jodlflcatmn of_ the standard view in order for .transfolrma-
correctness of one of the answers proposed to this questioons of spacetime groups to be included. Section IV is de-
namely, the one based on nonlinear realizatioN&R’s) voted to explicitly showing th_e incapability pf the ordinary
[19—21). Our aim is to find the bundle structure underlying bundle structure, when applied to the Poincgreup, to
PGT, allowing us in particular to derive the right gaugeyleld the nght gauge_transformanons reproducmg th_ose of
transformations of vierbeins when considered as translationdlGT- Consistently with this fact, our characterization of
connections. Indeed, while ordinary gauge transformation§auge transformations does not make sense in the framework
are well defined on standard principal fiber bundles, wePf ordinary bundles; it needs to be realized on a different
claim that nonlinear realizations rest on a different geometriStructure, namely, a composite fiber bundle, as introduced in
cal framework, namely, that of composite fiber bundles. The>€C- V. Sections VI and VI are devoted to the gauge trans-
recognition of this fact completes the foundation of NLR’s asformations in such composite bundles, concerning, respec-
developed inf19]. t|\_/ely, bundle sections and connections. In Sec. VIIl we dea_l
Previous attempts were made to equip such theories in thaith the gauge transformations mducgd on matter fields. Fi-
manner of Hehl with a fiber bundle interpretati2,23. of ~ nally, in Sec. IX, we apply the composite bundle treatment to
particular interest is that due to Lof@4,25, who proposed the Poincaregroup, showing the identity of our bundle ap-
an approach based on a bun®éG/H,H), as suggested by proach to gravity with PGT. In the Final Re_marks, we point
Ne’eman and Regg6]. This bundle structure was thought out the_way to incorporate th.e gauge theone; of the remain-
to replace the standard description of interactions, namelynd ordinary forces into a single scheme with our bundle
that in terms of the principal bundle structu?éM,G), with description of spacetime.
the role of spacetime played by the base manifdidOur
own proposal retains Lord’s suggestion of considering the; reviEw OF ORDINARY PRINCIPAL FIBER BUNDLES
bundle manifold split into two sectors, but instead of exploit-
ing the structureG(G/H,H), with G/H as the spacetime We will briefly review the foundations of the standard
manifold, we propose to construct a composite fiber bundlepundle approach to ordinary gauge theofiés14] in order
as will be developed in the following. to fix a necessary reference, to be compared with the modi-
The present approach gives an answer to the criticismfed bundle structure we are going to propose later for gauge
enunciated in Ref[15], pp. 29-30, on the presumed failure theories of spacetime groups in the manner of Hehl.
of PGT to provide a well behaved tetrad with the status of a Fiber bundles appear as a further step in the successive
gauge potential of the Poincateanslations. Actually, the introduction of sets endowed with increasing degree of struc-
bundle structure proposed in the present paper supplies tare (topological spaces, differentiable manifolds, gtoec-
geometrical basis for gauge transformations derived othessary to formalize the concepts of continuity, smoothness,
wise from NLR’s, so that the correct transformation proper-etc. Bundles are locally isomorphic to the Cartesian product
ties of the tetrads are obtained. Furthermore, the commut#f two manifolds. According to the definition of a principal
tion relations of the translational generatds, are not fiber bundleP(M,G) over the base spadd, with structure
violated [3,15]. Although we will concentrate on PG[B],  groupG and canonical projectiomr:P—M (see[6, p. 50),
our results should be applicable to gravity theories based o@very pointxe M has a neighborhood such thatz~*(U)
other spacetime groups. is isomorphic withU X G. On the other hand, a local section
In summary, the aim of the present paper is to develop & a smooth map sUCM—P satisfying mes=(id)y . It
fiber bundle description of forces, including gravity, in a uni- assigns to eacke M a single values(x) in the fiberm = 1(x)
fied scheme. It is inspired by the revision of the concept ofover x.
gauge transformations when spacetime groups are consid- A principal fiber bundleP constitutes a particular kind of
ered. In fact, the new bundle structure is necessary if onenanifold[6—14). Its tangent space, denoted®&$>), may be
wants to reconcile the standard characterization of gaugsplit into the direct sum of a vertical subspa¢éP) plus a
transformations with Lord’s view on spacetime gauge transhorizontal subspackl(P), the vertical subspace consisting
formations. The resulting formalism admits the inclusion ofof the vectors tangent to the fibers, called the fundamental
additional forces, with the tetradthat is, with gravity uni-  vector fields. In order to construct the latter, regard local
versally coupled to them. Thus, a single mathematical strucfibers as orbits of the right action of the structure gr@ipn
ture (namely, a composite fiber bundleill suffice to de- P, that is, 7~ (x)=ug, throughue P, with §, € G. Then,
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every Lie algebra elemeitf\3) induced[in analogy with Eq.  such thatE;jw =0, with L , given by Eq.(A10), as a basis of

(A6)] a tangent vector to the fiber atgiven by the horizontal tangent subspaldéP).
# af(u'g)\)
GA[f(u)]:: x , (2.1 I1l. DISCUSSION OF THE EXTENSION OF GAUGE
I\ A=0 TRANSFORMATIONS TO SPACETIME GROUPS
for f a differentiable function. The vector compone@s, , Gauge transformations are a key concept for gauge theo-

ries. In the present section we perform a critical examination
of their commonly acceptefil2] bundle-adapted definition
due to Atiyah, Hitchin, and Sing¢27], and of the proposal

of Lord and Goswam|25] to modify the gauge transforma-
tion concept in order to extend it to spacetime groups. Our
own approach will be developed in the next sections. We will
show that the latter allows us to reconcile both the standard
and Lord’s points of view.

According to the standard definitiofl0,12,25,27, we
characterize a gauge transformation on a principal fiber
bundleP(M,G) as a bundle automorphistmP— P satisfy-
ing two conditions. On the one hanal,is required to com-
Gt lw=Gpe G 2.2 mute with the right action 06,

tangent to the fiber throughe P, are the fundamental vec-
tor fields atu, constitutingV(P). The mapping of the Lie
algebra basis elemefit, € G into G#A|u is an isomorphism of
the Lie algebraj of G into the corresponding Lie algebra of
vector fields onP. On each fiber, we can identify E¢R.1)
with Eq. (A6), or with its explicit form Eq.(A7).

On the other hand, the definition of horizontality TiiP)
requires the introduction of the concept of connection
[6—14]. We define the Ehresmann connection faoo be a
one-form on the cotangent spa€&(P) of P with values in
the Lie algebraj of G, satisfying the conditions

and NeRy(u) =RgeA(u), (3.1

so that fibers are mapped to fibers. With only E8.1) at
hand, in generak induces a diffeomorphism:M—M on

whereG, e G in Eq. (2.2 is the Lie algebra element isomor- the base space, given by 7(u) = me\(u). The goal of the
phic to the fundamental vector fie@; defined by Eq(2.1),  Second defining condition is to avoid this possibility. Stan-
and | denotes the inner product, Whufdgflw,zgflwg in dard gauge transformationsare required to satisfy

Eqg. (2.3) means the adjoint representation®fn G. In terms
of w, the horizontal subspadé(P) is defined to consist of

all those vectorX of T(P), with nonvanishing projection, g that they become vertical automorphisms, where both
such thatX|w=0. and\ (u) belong to the same fiber. No action is allowed to be
Let us introduce an explicit realization of the Ehresmanninduced on the base spalge Vertical bundle automorphisms
connection form. We knowW13] that any sectiors:M—P )\ are the standard gauge transformations, adapted to the
with local trivialization (,§) can be decomposed in terms of principal bundle structure®(M,G) describing all forces
a zero sectiorg(x) with local trivialization (x,ec), as the  other than gravity.
product However, things are less simple in the case of gauge theo-
_ _ ries of spacetime groups. Here the group action on spacetime
s(x)=0(x)-3. (24 coordinates cannot be ignored. This reason moved Lord
) ] [24,25 to relax the verticality conditioli3.2), by restricting
So, at the bundle point=s(x) as given by Eq(2.4), we can s validity to internal groups only, whereas spacetime groups
take and their corresponding gauge theories had to be handled in
ey . a different way. Regarding spacetime groups, Lord admitted
=g (d+ 7 A)g. (2.5 the existence of nonvertical gauge transformations, inducing
diffeomorphisms orM. Following Ne’eman and Regd&6],
he suggested the principal bun@€G/H,H) as the possible
fiber bundle structure of gauge theories of gravitation. Suit-
ably choosingG, for instance, as the Poincaggoup, and
HCG as the Lorentz group, the base sp&#H becomes
identical with the parameter space of translations, playing the
role of spacetime.
Our main criticism of Lord’s view consists in that, since
the translational manifolds/H is not referred to a further

Ryw=adg-10, V geG, (2.3

ok (u)=m(u), (3.2

In view of the decompositio2.4), § are the bundle coordi-
nates, and the quantity

A=F*w (2.6)

coincides with the usual definition of a local potential
=AAGA=dxiAiAGA as the pullbackby means, in particular,
of the zero sectiorr) of the Ehresmann connection form.
One can provesee|[13], p. 333), that the proposed realiza- 556 space, translational connections are not pregentt-

tion (2.5) of w satisfies the defining axiom@.2), (2.3 of ally, Lord's tetrads orG/H are not connectionsWe remark
connection forms. Then we can choose the horizontal VeCtorﬁ]at only by postulating such an additional base spaaill

_ A it become possible to introduce the translational connection
Ei==0,di—AiLa, 2.7 form constituting the unavoidable requirement for tetrads to
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become interpretable @sonlineaj local connections, as we with condition(2.3) used in the last step. Since E&.7) is
will see below. The auxiliary base space introduced bjass valid for arbitrary YeT(P), we conclude, recallingh

in ordinary principal bundle®(M,G)] is the main differ- =L, that
ence between Lord’s approach and ours. In Secs. V-IX we . . . . .
will show how both verticality as defined by E¢.2) and Lyjo=N"0o=Rjo+t7*0=7""(d+w)y. (3.9

induced spacetime transformations are compatible in the ion(3
context of the bundle structure provided by composite fibeEauation(3.

tion form.
bundles. [ _
Consider now the pullback* w of the connection forn,

. . s: M—P being a local section on an ordinary principal fiber
Gauge transformations of local potentials: bundleP(M,G). In order to find the gauge transformations
The case of principal fiber bundies of such general local potentidl$2], we applys* to Eq.(3.9)
Let us derive forA the consequences of Eq8.1) and as
(3.2. A theorem[24,25 establishes that a diffeomorphism
(the gauge transformatianin our cas¢ commutes with ev-
ery right translation if and only if it is a left translation.
Actually, let us reexpress E@3.1) asA(ug)=\(u)g, with .
the caret added t§ epG in or(;qer to avoid confusion in what (9°0*=f*g”, f*(allB)=f*alf* 5, valid for any func-
follows. Since A(ug)(ug) *=r(u)u"?, one finds g(x) tion ¢ and differential formsy, B8, we introduce the notgtlon
=\(u)u! to be the same for different points, ug S 7" =(7°)*={*, so that Eq.(3.9 transforms into
e = L(x) arbitrarily chosen along a given fiber. Thus, trivi- S* (A" @) =R} (s* ) +{*©, or equivalently

ally we get
ywes (AoS)* w=R*(S*w)+ {* O = H(d+5* ).
A(U)=g(x)u=:Lgnu. (3.3 (3.10
) ) Particularizings to the zero sectiofir(x) in Eq. (2.4), we

From Eq.(3.3) we recognize the gauge transformation to befjn g

identical with the left actiom =Ly, , with the group ele-

mentg(x) € G being local in the sense that it depends on {(X)=75(T(x))= 7/(U)|§=eG:9(X) (3.11

points of the base space. Let us now calculate the gauge

transformations induced by E¢3.3) on the bundle tangent [see Eqs(2.4) and(3.4)], so that Eq(3.10, with the usual

space. For later computational convenience, we reexpresgplacement\=L,, becomes the ordinary transformation
Eqg. (3.3 in terms of the notation formula

8) is the gauge transformation law of a connec-

S*()\*w)=S*Rf7w+S* 7* 0. (3.9

Recalling the properties of pullbacks, namely,o= pof,

Au)=un(u), n(u)=utg(x)u, (3.9 (Lged)* 0=g(x) " H(d+7* 0)g(x). (3.12

where 5(u) formally behaves as & element acting o INfinitesimally, using the notatiorg(x)~I +_6A(X)GA::|
eP by right multiplication [12]. The differential map T ¢ and recalling Eq(2.6), Eq.(3.12 gives rise to
N ‘Th((P)—Ty(P) induced by A on T(P) is found k1 omak
[10,12,13 by deriving\ in Eq. (3.4), yielding IA=7" 0= (Ly?0)" 0~ —(deF[Ae]). (313
. ) We recognize the ordinary infinitesimal gauge transforma-
N Y=RY+[Y](n "Odn)]", (3.5  tions of a gauge potential. Explicity foA=A”G,, e
=e"G,, Eq. (3.13 reads sA=—(de*+ 5 rABEC)G,,
with Y e T,(P), and with the last term in E43.5) being the  where we made use of E¢AL).
fundamental vector field generated by|(% 0d7)
e To(G)=G at\(up) (see[13, pps. 330, 33} Making use  |v. FAILURE OF THE STANDARD PRINCIPAL BUNDLE

of Eg. (3.5), one can easily derive the corresponding induced APPROACH TO THE POINCARE GAUGE THEORY
gauge transformation of connection forms as follows. The

inner product of Eq(3.5) with an Ehresmann connectian The result(3.13 is responsible for ordinary principal fiber
yields bundles being unable to describe the underlying geometrical
structure of gravitational theories of the PGT type. Certainly,
()\*Y)Jw:(RW*Y)JwJFYJ(n—lmdm, (3.6) the standard®(M,G) bundle formulation is known to illu-

minate the geometrical background of gauge theories of in-
ternal groups. So, in principle, one could be tempted to ex-
tend this general scheme to any Lie group in order to
construct the corresponding gauge theory. However, we will

where condition(2.2) has been used. Then we find

YV o=Y|R, o+ Y( 7 '0d7) show explicitly, by directly applying the standard recipe to a
spacetime group, that gravitational gauge theories cannot be
=Y|(p ton)+Y|(» 10Ody), obtained in this way. We will consider the Poincareup, in

(3.7 order to display the main difficulty of this naive procedure,

064025-4



UNIFIED DESCRIPTION OF INTERACTIONS IN . .. PHYSICAL REVIEW 6, 064025 (2002

consisting, as it is well known, in its failure in providing a V. DEFINING MAPS OF COMPOSITE BUNDLES
gauge theoretical derivation of well behaved tetrads.

Let us construct the connection forf®.5), takingg to be
a Poincaregroup elementB2), and

As discussed in Sec. lll, for gravitational gauge theories
Lord proposed a fiber bundle structus$G/H,H) with the
base spac&/H, taken to be the parameter space of transla-
(M tions, playing the role of spacetime. We criticized this ap-
A=—idx(T i“PM+F$BAaﬁ). 4.2 proach, pointing out that no true connections can be ascribed
to the translations in the absence of an additional base space
The explicit form of the resulting» will be shown in Egs. allowing one to build up the bundle for translations them-
(9.2, (9.3 below. The inadequateness of the ordinary bundleselves. In fact, only with reference to such an underlying
approach becomes apparent merely by finding the gaudease manifold would it become possible to treat translations
transformatior(3.13), of Eq. (4.1 induced byL,, withgan  as local symmetries. Accordingly, we claim the necessity of

infinitesimal Poincargroup element, introduing a base spadé in addition to the group manifold
G, as in ordinary fiber bundles.
g:eifapaeiﬁaﬁ/\aﬁ~|+i(EaPa+BaﬁAaﬁ)_ 4.2 However, we saw in the previous section that, if one
merely constructs the principal bund®M,G), with G for
From Eqg.(4.2) we identify instance the Poincagroup, then we have translational con-
nections instead of tetrads. This makes it difficult to find a
e=i(e"Pa+,8“BAaB). (4.3 geometrical interpretation of the resulting formalism. Cer-

tainly, one can restore the right tetrad transformation rules by
Replacing Egs(4.1) and(4.3) into Eq.(3.13, making use of means of auxiliary field§18]. More satisfactorily, nonlinear

the notation realizations provide a deductive way to obtain tetrads as non-
- - linear translational connectioh9]. Here we will derive tet-

; ; rads of the nonlinear type from a bundle structure, proposed
[ H=dXiT#, TF=dXT P, (4.4 7P iy

by us as the general framework underlying gauge theories,
among them those of spacetime groups.

Roughly speaking, our leading idea is that of attaching to
each point of the base space a fiber with the bundle structure
G(G/H,H). We do it by bending each fiber &#(M,G),
diffeomorphic to the structure group, asG(G/H,H). Ac-
cordingly, P(M,G) becomes locally isomorphic to
MXG(G/H,H), which is locally homeomorphic to

(T ) M X G/HXH. Thus we are interested in describing a bundle
oI'*=—-T1"B,*+De", (4.6)  whose fibers are locally isomorphic XxXH, with %=
M X G/H (locally). We expect, in this way, the bundle struc-
with D standing for the ordinary exterior covariant deriva- ture to become split into two sectors, both with fibered struc-
tive. From Eq.(4.6), due to the presence of the inhomoge-ture, namelyP—3, andX— M, respectively. The manifold
neous term, we clearly see that the translational connectiol =M X G/H, called from now on the plateau, plays an in-
cannot be identified with the tetrad, which should transformtermediary role. On the one hand, it is the base space of a
as a covector. Obviously, ordinary principal fiber bundlesbundle P(X,H) with typical fiber H; on the other hand, it
P(M,G) do not reflect the internal structure of PGT. Indeed,possesses a fibered structure itself, let us 3éyl,G/H).

. . (D o Spaces of the kind discussed here are found in the literature

neither the geometrical meaning bf* as a vierbein, nor the as composite fibered spack28]. In our proposal, physical

un_lversal courlJImgt_of grat\;]lty tto tge Jepaljnlmg forceshre- acetime results from the pullback b of quantities de-
Celves an explanation In the standard bundle approach. ed on the plateall, as we will discuss later.

know such problems to be absent from the frame bundle ") ot s he more explicit. Instead of the ordinary bundle

treatment of gravity, where tetrads are sections rather thaQtructureP(M G), locally isomorphic toM X G, with pro-
connections. The price one has to pay when adh'?””g to th ction mpy : I’D—;M we will consider a Comr;osite fibered
view is that one must accept gravitational potentials of tw stru cturePM '

kinds, the tetrad potentialsection$ being different in math-

ematical nature from those of the other interactit@mnec- Tspemps (P35 M, (5.1)
tions), such tetrads having nothing to do with the translations

included in the Poincargroup. So, if we still want to supply ith the partial projections

a fiber bundle interpretation of gauge theories of spacetime

groups, and in particular of PGT, with the tetrad as the trans- mps (P—3Y, wsyi2—M, (5.2
lational gauge potential, then either we have to introduce

auxiliary fields restoring the right transformation law ex- respectively[28], whose composition gives rise to the total
pected for a tetrad18], or we have to look for a modified bundle projection

bundle structure. In the spirit of the latter view, our proposal

consists in introducing a composite fibered space. TpM= TsM° TPy - (5.3

and taking into account the Poincazemmutation relations
(B1), we get

sT*A=Dp gk (4.5

and
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Partial fiberSTrg,a(x) of the plateal®, —M are parametrized Now we proceed as follows. By identifying the argument
as (x,£), with base space coordinates M and group mani-  of oxp(X,£) in Eq. (5.9 with the coordinatizatiorix, &) of
fold coordinatest corresponding t@/H. The fibered mani- sys(x) in Eq. (5.8), we introduce
fold P—3 is supposed to be a bundle; the fiber branches
wgzl(x,f) of P—2, attached to points of the platedi 0{(X) =05 poSys (X) = osp(X,&). (5.11)
locally isomorphic to MXG/H, are parametrized as
(x,&,a), with a the coordinates of elements of the subgroup,
HCG.

Associated with the projectiongps and msy in Eq.
(5.2), one introduces the corresponding local sections define

Equation(5.11) establishes the coincidence of the images of

two different sections, namely;;:M—P andosp:2—P,

[r;gspectively. In the following, we will exploit the formal cor-
spondencé5.11) using og(x) for osp(x,£) as a conve-

as maps. nient notation, only distinguishing the two maps from each
‘UCM “liuye 5.4 other when _stnctly necessary. On the other hand, makmg use
Smz (Ve 64 of the previous assumptions, from the second equality in
and (5.11), with Egs.(5.8 and(5.10, we find
sypVCI—mpi(V)CP, (5.5 Tsp(X,&)=0oyp(X)-b, b=b(£)eG/H, (5.12
respectively(with UCM and VCZX trivializing neighbor- . . .
hoods, such thatmsyesys =(id)y and mpsessp=(id)y.  @n equation which will be useful later. The relevance of the
We suppose the decomposition composite bundle structure for spacetime gauge theories be-
comes apparent when we study the particular form of the
SMP=Ssp°Smy (5.6 action of gauge transformations on it.
to hold, sy,p being a section of the composite manifdhl
see the corresponding theorem in Re#8]. Sections(5.4), VI. GAUGE TRANSFORMATIONS IN COMPOSITE
(5.5 together with projection$5.2) define the structure of BUNDLES
the composite fibered space. _ , The picture of a composite bundle, as resulting from the
As we know[compare Eq(2.4)],1r11 an ordinary bundle  gefinitions of Sec. V, involves a bundle sec®r-3, with
P(M,G), given a sectiorsy p(X) € mpyy(X) with local trivi-  H_diffeomorphic fibers. Considering the particular ones
alization (,g), the decomposition ey (X,€) and mpa(x,£'), it is relevant to notice that they

_ = Po ~ can be seen either as fibers attached to different points of the
Smp(X)=0owp(X)-9=Rgooup(X), GG,  (5.7) plateaus, or alternatively as, say, branches of a single total

. 71 .
is always possible in terms of the zero sectiongo(x) lo-  fiber mpy(x) over xe M. Indeed, such total fibers on
cally trivializing as ,eg). In the composite fibered space, P(M,G) consist of theH branches together with a second
we proceed in the same way, decomposing, on the one hangortion identical with the homogeneous spa@éH con-

sws(X) e w5 (x) from Eq. (5.4), with local coordinates tained in the platead =M xG/H.
(x,&), as Accordingly, gauge transformations present two aspects.

In the first place, when regarded as acting on the total
sus(X)=oys(X)-b=Rypeoys(X), beG/H, (5.9 bundle, they are defined satisfying E§.1) as much as Eq.
(3.2 with respect to the base spabk On the other hand,
b=b(¢) e G/H having the parameter$ as its group mani- when seen asl-branch transformations in the bundle sector
fold coordinates, andryy(x) being the zero section with P—3, Eq. (3.2 does not hold with respect to the interme-
local trivialization (X,eg;y). Analogously, ssp(X,&) diate base spack, since the latter'st coordinates are af-
ETI';EJ'(X,g) from Eg. (5.5 with coordinates X,&,a) also  fected.(That is, a transformation is induced &) So the

can be decomposed as maintenance of both defining conditiof3.1) and (3.2) of
standard gauge transformations is compatible with Lord’s re-

Syp(X,&) =0sp(X,€)-a=Ryo0sp(X,§), laxation of Eq.(3.2 in the sectorP—3. Briefly, in our

scheme, spacetime gauge transformations affect tbeor-

aeH, (5.9  dinates of the homogeneous sp&@#H included in3, while

. . . xeM remains unchanged as in ordinary gauge theories of
with the zero sectionosp(x,§) locally trivializing as  jnternal groups.

(x,€,ey). We require the sections to be related in such away Now we will study the effect of a gauge transformation on

that their images coincide, that B;p(X,§) =sup(x), andin 5 composite fiber bundle making use of a decomposition of
parallel to Eq.(5.6), we also demand the zero sections 045 sections analogous to EG.4). Invoking the previously

satisfy postulated equalityss p(X,£) =syp(x) with Eq. (5.9, we
_ write any arbitrary element on a total sectionPhs
OMp=Osp°0Oyps - (51@
This holds ifg=b-a andRy-1°0sp°Ry=05p . U=Syp(X)=Reeasp(X,§). (6.2
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From Sec. Ill, we know that a gauge transformatioratis-  mainly since, finally, we will be interested in the pullback of
fying Eqgs.(3.1) and (3.2) can be identified with the gauged all expressions to the base spade

left action L, of elementsg(x) e G depending on base

space coordinatese M. Since Eq.(6.1) is the general form VIl. CONNECTIONS AND THEIR GAUGE

of points on a total section, we represent the corresponding TRANSFORMATIONS IN COMPOSITE BUNDLES

gauge transformed ones as S _
In terms of the zero sections introduced in EGs7) and

Mu)=Lgu=Ryeosp(X,&"). (6.2 (5.9), respectively, one can pull back the Ehresmann connec-
_ _ tion either to the base spabkor to the plateal. Let us use
Comparing Eq(6.1) with Eqg. (6.2), we get the notation
LgoRaoo'Ep(X,f)ZRaroazp(x,f'). (6.3 Ap=olpweTH(M) (7.

Since left and right translations commute, one only has t%nd
join the action ofH elements in Eq(6.3) as

Ra°Rar=Ry, h=a'a’?, (6.4 F=As=otpweT(2). 7.3
in order to f|na”y bring Eq(63) into the form The former is identical with Eq26), that iS, with the ordi-
nary local connection on a principal bundlé(M,G),
Lgeosp(X,§) =Ryeosp(X,€'). (6.5 whereas Eq(7.2) is a local form on the intermediate base

space>, regarding the bundle sect®?—32,. Taking Eg.

Equation(6.5) fixes the gauge action of=L4 on sections (510 into account, one can alternatively consider tHg,
osp(x,§), transforming them into sections placed at differ- pyjpack (7.1) of w as

ent points &,&') of the intermediate base spage being
simultaneously *“vertically” displaced along thél fiber Ayi=as 0 pw=0afsT, (7.3
branches by means &, .

Comparison of Eq(6.5) with the definition of nonlinear  that is, as ther},s pullback of Eq.(7.2) to T*(M).
transformationg 20,25 shows their identity. So our deriva- The gauge transformations of E(.2) are deduced fol-
tion from the composite bundle structure provides a bundlqeowing steps formally analogous to those of ordinary
interpretation of such transformations. It coincides with thatbundles, as exposed in Sec. l(Here we will deduce them

of Lord and Goswam[25], as far as the bundle sect®  pyjled back toM.) Let us depart from Eq(6.6) rewritten as
—2, is concerned P— G/H in their view); however, in the

approach proposed here, gauge transformations are at the Mo e(X)=0(x)-h, (7.4
same time standard ones, obeying Egsl) and(3.2) in the

framework of the composite bundle considered as a wholeyith \ = Lgy. In view of the analogy between Eqg.4) and
Actually, when referred t&— M, gauge transformations are (3.4), it is straightforward to find

vertical bundle automorphisms not affecting the base space

M. Expressed more formally, the validity of E@.2) for the AN Yo =Rp, Yo, Y, I(h~10dh)]% (7.5
total projectionmpy meansmpyely=mpy. In particular, ¢ ¢ ¢

mpmeLgeosp(X,€) = mppmeosp(X,€) =X, easily checkable in parallel to Eq.(3.5). Observe, however, that thévectors
with the help of Eq.(5.3). For the projectionmpy of the  in each member of Eq7.5) are evaluated at different points
sectorP—X instead, we find by applying it to Ed6.5,  of the plateau, namelys,(x) anda:(x), respectively. Mak-
mpseLgeosp(X, €)= mpseRyeosp(X,§')=(X,§"), whereas ing use of Eq.(6.6), we write

mpseosp(X,§)=(X,§), so thatmpsel # mps . In this case,

a gauge transformation is induced on the plateau, allowing (rg,(x)=RgloLgocr§(x) =Dogy(X). (7.6
one to transformH fibers into differentH fibers (that is,

permitting the kind of transformation one expects from periving Eq.(7.6) we find

spacetime groups in which translations are preseéfqua-

tion (9.14) below significantly shows the explicit form of the doy 9P doy;
spacetime gauge transformations inducedooy the Poin- dt  do.dt’ (7.7)
caregroup. £
Notice that, in view of Eq(5.11), one could replace Eq. so that
(6.5 by
Lo 0e(X)=Rpoorgr (X), 6.6 You = PuYop (7.8

an expression which, strictly speaking, is not equivalent tdReplacing Eq(7.8) in Eq. (7.9, and introducing a connec-
Eq. (6.5), since it refers to the base spadeinstead of tos,, ~ tion form as in Eqs(3.6), (3.7), we finally obtain

as discussed above. However, the formal analogy td€5).

makes Eq.(6.6) useful for the following considerations, N o=0*(Rfw+h*@)=0*[h~Y(d+w)h]. (7.9
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That is the formula analogous to E@.8). Notice that, in-
stead ofn(u), the elemenhe HCG defined in Eq.(6.4)
appears in Eq(7.9). Proceeding as in Ed3.9), we get

U’é()\*m)=0'§(1>*(Rﬁw+h*®). (7.10
In view of Eq.(7.6), we recognize in Eq(7.10
O'Z:‘(I)*Z(CDO(J'g)*Za';, ) (7.1)
Thus, Eq.(7.10 transforms into
Uz(L;w)=Rﬁ§,(Uz,w)+h§,®
=h, (d+ o} whg,
(7.12
with
hg:r::hoa'gr(x):hoa'zp(x,él)
=(0o%ph)(x,&").
(7.13

The infinitesimal form of Eq(7.12) is easily found. Let us
takeh,, =e#" (EHax | + yA(E)HA=1+ u, with H the gen-
erators of the subgroud CG. Then we find

5F::0‘;,w—(Lg°0'§)*w~_(dM+[F!M]); (714>

compare with Eq(3.13. Notice the crucial fact that, in con-

trast toe in Eq. (3.13, defined on the Lie algebra &, « in

Eq. (7.19 is defined on the Lie algebra of the subgroup

HCG, as is characteristic for nonlinear realizati¢©h9—21].

VIIl. TENSORIAL FORMS AND MATTER FIELDS
Let us complete the resulf.14) with the deduction of the

PHYSICAL REVIEW [®6, 064025 (2002

will deal with equivariant forms instead of with the more
cumbersome associated fiber bundles.

We are interested in deducing the gauge transformations
of tensorial fields in composite bundles. In order to do so, let
us put Eqs(7.5) and(7.8) together into the complete expres-
sion

Lox Yo, =Rux @Y, +[ @, Y, |(h~*0dh) ",

; 8.3

The last term in Eq(8.3) is a fundamental vector, so it is
purely vertical. Therefore, it vanishes when applied to a ten-
sorial forme, the latter being horizontal by definition, so that

Lg* Y0-§J(P: Rh*(D*Y(rgj(P- (8.9
From Eq.(8.4) we get
Yggnggo:Y%JdD* o, (8.5

a relation which holds for arbitrary vecto\rsrg, so that, tak-

ing into account the equivariance conditi®1), one con-
cludes that
Lye=d*p(h™He. (8.6

Equation(8.6) displays the gauge transformation of a tenso-
rial form. The pullback by} yields

oilse=0i®*p(h e, 8.7

or equivalently

(Lea* o=p(h, D) o% e, (8.8

with h,, given by Eq.(7.13. In terms ofu as used in Eq.
(7.14), we find the infinitesimal variations of local tensorial

corresponding gauge transformations of matter fields. Giveforms to be

the principal fiber bundld?(M,G), we suppose a vector

spaceV to exist, where a representatiprof the left action of

G is established. We defiri®] pseudotensorial forms of de-

greep on P of type (p,V) to beV-valuedp forms ¢ on P
such that they satisfy the equivariance condition

Rye=p(g He. (8.1)

Sofe=a, 90— (Leoy)* o=p(p)ofe. (8.9
In particular, fore the zero-formsj, one has
(0% ) (X) = P(a (X)) = (o (X,£)). (8.10

These(equivariant, horizontalfields will play the role of

[Notice that, in view of Eq(2.3), the connection form is a matter fields. Substituting EG8.10 into Eq. (8.9), we find

pseudotensorial one-form of typad,G), with p the adjoint
representation of, in V the Lie algebraj.] Tensorial forms

SY(a(x,£))=p(p) Y(a(x,)), (8.11

are pseudotensorial forms which in addition are required to

be horizontal, being horizontal forms™ defined by the con-

dition

XqJ - XpleH =X} X,

Mo, X eT(P),

(8.2

where X' are horizontal vectors. It follows
XaJ-+-Xple" =0 if and only if any one of the vectork; is

vertical. The space of equivariaxtvalued forms is isomor-

that

showing that they transform as representation fields of the
subgroupH under the action ot ;, with ge G. That is a
well known feature of nonlinear realizatiof0], indepen-
dently deduced here from the composite bundle structure.

Covariant differentials

Given an equivarianp-form ¢ on P, one define$10,12

phic [8,10] to the space of sections of the associated bundlés exterior covariant derivativ® ¢ to be a p+1)-form
with fiber V, usually taken to represent physical fields. So wedefined byD ¢:=(d¢)", that is, by the condition
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le'--XpJD¢=:X1J~--XpJ(dqo)H defined byG/H fibers. Then, in order to characterize hori-
zontality in the corresponding tangent spaces, a connection is
ZXTJ“‘XEJd‘Pv X; e T(P); required in each. Consequently, in a composite bundle one

(8.12 has to look for a modified connection form, decomposed into
two parts, defining horizontality ilP—2 and>—M, re-
compare with Eq(8.2). This definition does not requireto  spectively.
be horizontal, so it is applicable to tliequivariant connec- Let us abandon the general abstract exposition and con-
tion form w, giving rise to the curvature forfF:=Dw. Car-  centrate on the case & as the Poincargroup, withH the
tan’s structure equation establishes it to read explicitly Lorentz group; thus the group generators associated with
G/H are those of translations. Accordingly, in Ed5.8),
(5.9 we takea to be elements of the Lorentz group amtb

, . i i in*PA
Although constructed with the pseudotensorial foimthe b€ transla_tlgn group elements, parametrlzemase,' i
curvatureF is tensorial. Its pullback yields the local curva- andb=e '¢"Px, respectively. So the general Poincareup

F=Dow=dw+ owlw. (8.13

ture, or field strength two-form elementgg=b-a are exactly Eq(B2). Let us briefly return
to the bundle description of the Poincayeup disregarded
Fi=ofpF=dl'+I'Or. (8.14 by usin Sec. IV, in order to compare it in the following with
. ) the composite bundle approach. Fibers of ordinary principal
In view of Eq. (7.14), it transforms as bundles are diffeomorphic to the structure graifaken as a
SE=[u.F]. (8.15 whole. They allow only one kind of verticality to be present,

namely, that defined by vectors tangent to Gdibers. Ac-

[We invoke Eq.(5.11) as a guarantee of the formal analogy €Ordindly, the ordinary connection form Ed2.5 in a
betweeno¥p ando} pullbacks. See also E.22 below. P(M,G) bundle, that is,

On the other hand, the structure equation for tensorial forms
[12] provides an explicit form foD ¢ as

De=do+p(w)Ue, (8.19

where the same notatignis used for the representation @f
as forg in Eq. (8.1). The exterior covariant derivative of a

tensorial form is trivially horizontal, and easily checkable to,ith 3 as the Poincargroup element¢B2), defines a single

be equivariant, so it is also a tensorial form. The pullback thorizontal subspackl(P) of the tangent space. By making

ord

® =G Hd+mEuA)T,

(M
A=—idX (T #P,+T A ,p),
9.1

Eq. (8.16 by o, reads use of Eqs(B1)—(B4) and (B8), (B9), we find the explicit
. B % % * ord
0:De=d(o; @)+ p(0o; 0)D(o; ¢). (8.17 form of w to be

In particular for zero-form$see Eq.(8.10], we rewrite Eq.

ord o )
817 as © =i 94U, "P,—i (108 + mhydx T )
Dy=dy+p(I)y. (8.19 Xua'uuBVAMva 9.2
Making use of Egs(7.14) and(8.1)), it is easy to calculate h
the gauge transformations of E@.18, namely, where
, )
SDY=p(n)DY, (8.19 O gi=d g+ mhdX (D A€+ T#). (9.3

analogous to Eq8.11. The fundamental vectos;) andL{" of the bundle, given

by Eq. (B6), yield, respectively,
IX. COMPOSITE BUNDLE APPROACH TO THE

POINCARE GAUGE THEORY

ord ord

(A) — (P) — .
In ordinary principal fiber bundle®—M, verticality is Loglo =Aap, Ly lo=P,; 9.4

determined by the fibers, while it is the connection form that

defines horizontality. Composite fiber bundles require a revi-recalII Eq.(2.2). On the other hand, one can choose the basis

sion of these concepts, due to the fibers to be bent, so th¥Ctors of the horizontal tangent subspatP) as

two sectors exist, each one with its own vertical and horizon- T

tal tangent subspaces. Indeed, given the_ composi_te fibred E; ::UMP*&i+i(FiMU#P)+Fi‘1BUa%)) (9.5
spaceP— 2> —M, in the sectolP—2, locally isomorphic to

> XH, the vertical subspace of the tangent space is definefdompare with Eq(2.7)], satisfying the defining condition
along theH branch of fibers; analogously, in the plateau ord

sectory, —M locally isomorphic toM X G/H, verticality is  E;] w =0.
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In contrast with this standard decomposition of the tan-posite bundle approach to the Poincgreup. In particular,
gent space into one vertical and one horizontal subspace, ime will see that, instead of Eq4.6), we obtain a gauge
composite fiber bundles we have to give a formal charactertheoretical deduction of the correct transformation of tetrads.
ization of two different verticalities with their corresponding Transformations induced an are calculated from Ed6.5).
horizontalities. Two pieces of the connection will exist, ori- Taking Eqg. (5.12 into account, Eq.6.5 transforms into

ented along the Lie algebra basis G/H and H, respec-

tively. In our caseG/H involves the translational generators
and H those A,; of the Lorentz group. Let us pay

P
M 1
attention to the connection

w=a Yd+nEsaeT*(P) (9.6
on the platealicompare with Eq(2.5)], with I'=03pw in
T*(2) X G developed as

[=—i9¢P,—iT*A ;. 9.7

As required for composite bundles, we decompose(&®)
(P) (M)
into two parts asv= o + w, identifying, respectively,

(P) (P)
w=—ia Ymhy 9P, )a=—i w*P, (9.9
as the connection form of the secbr—M, and
(A) (A)
D) =a‘1(d—iw§2F“5Aaﬁ)a= —ilw "BAaB (9.9

as the connection form d?—3.. The components of Egs.

(9.8) and (9.9) read more explicitly

(P)
o =7y 95Uk,

(A)
o o 5 [e3
o “P=({0) + 75T 7)u,uf,

(9.10
in terms of Eq(B5); see Eqs(B4) and(B9). We postpone to

g(X)-opmp(X)-b=0cyp(X)-b’"-h, or equivalently

g(x)-b=b’-h. (9.13

We parametrizebe G/H as b=e '¢P«, and analogously
b’ =e ¥ Pu with &* = g#+ 5&*. The infinitesimal group
elementgy(x) andh are respectively taken as E@..2) and
h= e hPAapm | +iu*A 5. Then, from Eq.(9.13, making
use of Eq.(B1), we get

0E =~ ¢PBg — e, uP=p, (9.14

where we recognize the form of infinitesimal Poinctians-
formations, with the particularity that, instead of coordinates,
they affect the translational group parametéfs On the
other hand, regarding the local connecti®r?) on ., in Eq.
(7.14) we already deduced the corresponding gauge transfor-
mations. Directly applying this result to our case, wijth
=iu“PA,p andu*?=B*#, as proved in Eq(9.14), we find

sT*F=ppgep (9.15

and

095 =—9sB,% (9.1
compare with Egs(4.5), (4.6). Equation(9.16) shows that

0% transforms as a covector. This constitutes a highly rel-
evant result. Indeed, as we will see below, it is the pullback
of 9% to the base spadd that will become identifiable with
ordinary tetrads. In summary, as expected from a spacetime
group, spacetime gauge transformati¢@sl4) are found to

the next section the discussion on the inner structure i€ induced on the plateau, and, furthermore, the correct

T*(2) of the translational local connectiof& , and of the
Lorentz connectiod A,

In order for the splitting of the composite bundle into two

fibered sectors to be well defined, a vertickilndamental

vector E,u

S,—M such that

(P) (P)

EJo=P,, Elw=0, (9.11)

while in the sectoiP—3,, one must analogously have vec-

tors such that

(A) (A) (A)

Li¥lo=A.z, Eo=0 EJw=0(9.12

o

with ij‘ﬂ) vertical and botrfEM and E; horizontal. The two

kinds of horizontal vectors reflect the structure of the plateal

2., locally isomorphic to the Cartesian produdt< G/H.

Before looking for the possible explicit realizations of

these vectors, as well as @f¢ and I'*#, let us show the

and a horizontal on&; must exist in the sector

gauge transformation®.16) for tetrads(on ) are obtained.
Thus we have established a bundle foundation for PGT.

Proposals for the explicit structure of spacetime connections

Finally, let us look for a suitable explicit form fa9§ and
I'*# in Eq. (9.7). We will consider three different possibili-
ties. Taking Eq.2.5 as a model, first we postulate for Eq.
(9.7) the form

T=0%p0=b " Y(d+7EyA)b, (9.17

with A=o)sT. (We write T with a tilde in order to distin-
guish it from theI" we will introduce latey. Since T
=o%pw, making use of EQ.(5.10, we see thatA
=oys0spw=o0opypw, and in analogy to Eq(9.1) we take

lHhe local potentials to be

()

A=oypo=—idx(T*P,+T"A,p. (9.19

gauge transformations of the latter as derived from the comExpression(9.17) then reads explicitly
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f:_i(ﬁ§PM+W§deiri€’BAaﬁ), (9.19  Taking Eq.(9.29 into account, we begin looking for the
explicit form of the vertical and horizontal vecto(8.11),
where (9.12 in both sectors of the composite bundle. In the first
place, the condition$9.11) of the bundle sectok —M are
- (N satisfied by
9 =d i+ ms ydX (T 4 €7+ T#4); (9.20
~ by~ _
compare Eq.(9.3. The translational parametet¥, being B ozl Bi=osp®, (9.26

pseudocoordinate fields transforming as E314), may be

regarded as Goldstone-like fields absorbed into the definition

(9.20 of ¥4 . As a compatibility condition of Eqs9.14)— 5 )

(9.16), we find € :=UM2*O7i+|(FiMUMP)+FiaBUaC/)5’rb))

(M (M (T
5(7T§de' r»= —(77§de' r\mp +De* (9.2)) =oys«di—(I'; #&"+ l"i")(?g,h (9.2

as the infinitesimal transformation of the translational con-(Only the orbital part oL! A) appears irg, [see Eq(B11)],

nection; compare with Eq4.6). since the intrinsic part is ot defined &n) The vector(9.27)
Equation(9.20, as a part of Eq(9.17), is an object de- s such that

fined on the plateall, so it cannot be identified as an ordi-

nary tetrad until pulled back to the base spMteThus we g |08=0, (9.28
have to be careful in interpreting E¢.11) rigorously, as
giving rise to showing that the translational compon€i20 of Eq. (9.7)
behaves as a sort of connection form ®a-M (although
O; =Sys03p, (9.22  pulled back from the whole bundlewith & as the corre-

sponding horizontal vector. On the other hand, the conditions
that is, to a pullback in stepsoy :T*(P)—=T*(X)  (9.12 of the sectolP—3 are satisfied, respectively, )
—T*(M), first from T*(P) to T*(2) by o%p, and then in Eq. (B6) and by
from T*(X) to T*(M) by sys . Having performed the first
step onw, that is, the pullbackr?p:T*(P)—T*(3) [see E,=0sprdeuti(denTP)LYRY (9.29
Eq. (9.17)], now we proceed to complete the pullba@gw
to T*(M) as given by Eq(9.22. Recall that we already and
performed such pullbacks in Secs. VIl and VIII. When pulled wpy Ty
back toM by sy, the plateau quantity}4 reduces to the Ei=owmprdi+i(oysn T /)L ap (930

usual tetrad as o — .
We denoted the intrinsic part &f, ; as in Eq.(B11). Observe

Wy =ss 04 =dxeH, (9.23  that the vector defined as the combination

(T)

N . . . P .
with g# provided with an internal structure, namely, E=B — (I A+ TME,

(T (T)
eilu:=ai§’u+riulu§v+rip’:Di§M+Fi#! (924) :O'Ep*’éi"‘i(’éijra’g)ﬁalzt) (931)
expressed in terms of spacetime connections and of the (P) (A)

Goldstone-like fieldsé”. In contrast to the usual view of satisfies bottE; | @ =0 andE;| w =0, so that it is horizontal
tetrads as sections of a frame bundle, Ey24 supplies the in the total bundleP(M,G), in analogy to Eq(9.5 of the
necessary support of the gauge theoretical conception of tegrdinary case.
rads as(nonlineay translational connectiongl9]. For Iater Let us now return to E¢9.25. We look for a convenient
convenience, we introduce the formal inverseegf ase,, notation, making use of the identity
such thate,'e;"= 5, ande;“e, =4l

In splte of the convenlent features &%, we find the
complete form(9.19 of I' unsatisfactory due to the fact that =094®%,+ (73ydx — ke, ®%, (9.32

the local Lorentz connectiodxT*# is defined onT* (M)
rather than onT*(3), as a consequence of the particular With the right-hand sidéRHS) expressed in terms of the new

dg'u® (9§/J.+ WEMdXi(X)O'ME*(?i

vector
choice (9.19 we made forT. No reason exists to restrict
I'# in this way; rather one is induced to consider the general B, =0t eMi'éi = e;/,iSME*(?i (9.33
case in which, respecting the for(8.20 of 94, the spin
connectionl'*? is defined or® as such that
D= (dé*® dput miydX @ oys ) L. (9.25 B,0%=050; (9.39
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compare with Eq(9.28. The vector(9.33 possesses suit- satisfying®&; |I'=0. Observe that the vectors of the sedkr

able transformation properties, related to thosed§f, see
Eqg. (9.16). Actually
58, =B,"8,+€,(3;06"— 0,906 ) dp, (9.39
so that, in view of Eq.(9.14), for e€*=e*(¢(x)), B
= BP(&(x)), it reduces to
oe,=pB,"¢8,.

(9.39

With the help ofé,, in parallel to Eq.(9.31) we introduce

o

A

E,=E,+e,Ei=0sp®,+i(8,Il#LIY. (9.3

The two vectors(9.31), (9.37) may be taken instead of
(9.29, (9.30 as the basis of the horizontal subspace of the[

bundle sectorP—3,. Making use now of Eq(9.32 and
defining

FM‘IB::'é#JFa,B, (938)
we rewrite Eq.(9.29 as
IB= 94T ,*F+ (¥ ydX — 9%e,) (&0 *F). (9.39

We emphasize that, in the pullbacklof? by sy)s analogous

to Eq. (9.23, only the first term in the RHS of EJ9.39

gives a nonzero contribution, namely,
sysl*P=sys 04T ,*,

(9.40

so that® |I'*# does not play any role okl as a base-space

pulled-back object. Moreover, since the pullbackddf con-
sists of the ordinary tetrads dvi [see Eq.(9.23], then the
same pullback9.40 reduced *# to

sysl*P=dxe T ,*#, (9.41)
which equaldx'T;*, as in Eq.(9.19, since
[*F:=(syy ) T *P=e*T ,*F; (9.42

compare with Eqs(9.33 and(9.38.

Having stated tha® | *? does not contribute to the local

spin connection pulled back #d, let us finally consider the

—3, are affected by the verticality condition dhin such a
way that Eq.(9.37 retains its form while Eq(9.31) trans-

forms into éi =E;.

X. FINAL REMARKS

The bundle structure proposed by us provides a general
framework to deal with any possible interaction defined on
spacetime in the presence of gravity, with all forces, gravita-
tion included, described in terms of connections. Indeed, the
form (9.43 in which I'*? couples tod¥ is suitable for gen-
eralization to the coupling of¥§ (that is, of gravity to the
gauge potential of any force. Suppose the gauge theory of an
internal group in the presence of gravity is formulable in
terms of a composite bundle, with as the direct product of
he Poincaregroup times an internal group, say that of the
standard model, an®G/H as the parameter space of the
translations. By imposing on the local connectighsf the
internal group ork, the verticality conditiorg;JA=0, in view
of Eq. (9.32 we get the Yang-Mills potential

(10.7

to be added to Eq9.44. Equation(10.1) reflects the cou-
pling(gf the internal gauge potential to the spacetime connec-
tions[';# andl“i”ﬁ; see Eq(9.20. Actually Eq.(10.1) shows
how, in the present approach, gravignd thus spacetime
underlies the remaining forces. Composite fiber bundles de-
pict an interaction space generalizing the idea of spacetime,
including, in addition tod% andI"*#, the connection§10.1)
representingadiation. As an example, consider electrody-
namics. According to the standard general relativistic view,
the deflection of light by the sun is a consequence of the
metric structure of the space in which radiation is immersed.
In Eqg. (10.) instead, the Lorentzian componemts of the
electrodynamical potential appear multiplied by the gravita-
tional potentials(9.20, displaying the coupling of electro-
magnetism to gravity as the result of a composition of con-
nections. Certainly, seea posteriorj this is a quite natural
outcome in a pure gauge theoretical context, where only con-
nections are mediators of forces.

In standard gauge theories, physical fields on spacetime
are the pullbacks to the base space of equivariant field3 on
while spacetime itself, modelized by the base spllces

A=A,

particularly interesting case which follows from imposing fixed from the beginning to be a Minkowskian metric space.

the verticality of[*# on 3 —M, that is,&|*/=0. [Recall
that®; is horizontal on the plateau; compare E8,28.] As a
consequence, E@9.39 reduces to

Ief=94T P, (9.43

In the present approach instead, even the geometrical struc-
ture of physical spacetime results from the pullbackitof
plateau objects—namely, dynamical connections—defined
on the whole bundle spacgAccording to Eq.(9.22), any
pullback can be understood as performed in steps, first to the
plateaus and then taVl.] In particular, it is by pulling back

showing the nonminimal coupling of the translational con-the translational and spin connection fort8s20 and(9.43
nection to the spin connection. Such a composition of confrom the plateau that a definite spacetime structure becomes

nections is characteristic for composite fibered sp§28%

Replacing Eq(9.43 into Eq. (9.7), I' becomes the vertical

form

F=—i1‘}§(P#+FM“BAaB), (9.49

impressed on the base spabk Also, Eq. (10.1), when
pulled back toM, yields the spacetime immersed local po-
tential dx'e;“A, [see Eq.(9.23], whereA,,, with well de-
fined spin, appears coupled to gravitational fiedgs given
by Eq.(9.24). The scheme is completed by pulling backMo
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matter fields, as in Eq8.10. All these pulled back objects unification. On the other hand, the present bundle description
are to be seen as ordinary physical fields on the base spadmeing very close to that of ordinary fiber bundles formalizing
In particular, the pullback$9.23 and (9.41) represent, re- nongravitational forces, one expects that the mathematical
spectively, the usual tetrads and spin connections of PGT otechniques developed for the remaining interactions will be
M. Thus, we recognize such pullbacks—of quantities whoseapplicable to gravity.
gauge transformations we know how to calculate—as the
familiar building blocks commonly used to construct, in the ACKNOWLEDGMENTS
standard way, gauge invariant physical actions. _ _

Observe that, prior to the pullbach is a structureless The author is grateful to F. W. Hehl, E. W. Mielke, and A.
manifold. One can regard it as a screen waiting for the shadliemblo for encouragement.
ows of Plato’s cavern or, in a different Platonic image, as a
sort of amorphous prime matteio be stamped by certain APPENDIX A: GEOMETRY OF LIE GROUPS
bundle objects, mainly by connections. Accordingly, the con-
cept of interaction(associated with that of connections
e Bre e Lo soecelme Wi lling L,: GG, mduing s aferenal mapping.

| Ju(G)—Tyu(G). In terms of the latter, we define the Lie

may be recovered if desired, understood not as the Iorl'T"”U?;{Igebr61g to be the subset of all left invariant vector fields

dynamical object, but as constructed from the pullback of th = . : :
translational connection forms to the base space. That is, o&%g* Xu=Xgu) OnG. Géven{GA} as a basis fog, there exist
structure constantk,g~ such that

first obtains ordinary tetrad®.23, and then introduces

Let us consider a Lie grou@. The left action_ ju:=gu of
G on its own group manifold defines a differentiable map-

o [Ga,Gg]l=fAsGc, (A1)
%= 0,505 ® 9 =g;;dxXdx, iRl AR EE
the commutation relationA1) completely determining the
9i :=0aﬁeiaejﬂy (10.2 Lie group. We will parametrize any group elem@&n G as

~ AG
defining the GR line element. Thus, the metrized base space Gy =€t o (A2)

results as a sort of projectida pullback in fack of the whole with parameters\®, A=1,....dimg, which is compatible

b_undle structure. The same h_olds for_ other possible SPACEith the identification of the Lie algebra basis elements as
time structures, such as torsion, derived from the general

Lorentz connection, or nonmetricity in the context of MAG, N
etc. GA:W (A3)
In the limit of absence of gravity, that is, in the global A=0
(T

Poincarecase, the spacetime connectidhg andI'*# van-  belonging toT¢(G). From Eq.(A2), with the help of the
ish and Eq.(10.1) reduces toA=d¢*A, . In other words, Hausdorﬁ-CanlpbeII f~ormEIa, we find Fhe adjoint representa-
when gravitation is switched off, a residual tetr@d=dg#  tion ad-1G:=F "GaG=(Tr)a’Cs, With the matrix
remains on a Minkowskian manifold, with the translational - M

i i i (@) aP=[e POMW],B= 52— NCf P
group parameterg” playing the role of coordinates. This A
residual couplingdé“A,, can be understood as the form in 1
which Minkowskian spacetime underlies any other physical + E)\CfCA'\")\DfDMB—m , (A4)
field when gravity is absent. In this cas® trivializes asX ’

=MxG/H. The pullback ofd§=d¢* assys 9¢=dX'di&"  \here we used the representatipn(Gn)]S:=—fagC. In

[compare with Eq(9.24] reduces merely to a change from yomg of the same notation, the Cartan-Killing metric is de-
Minkowskian to general coordinates. Then, instead of takingj,oq as yagi=—2 tp(GAGg) = — 2 f oyt M. For matrix

as Sp"?‘ce“r.“e the puIIback_ of the pIateatMoone can di- groups, any elemente G can be coordinatized by a matrix
rectly identify G/H as physical spacetime, so that the bundleuAB taken as a shorthand for an expansion of the fo.
structureG(G/H,H) suffices to describe the gauge theory ofIn terms ofue G, parametrized following the pattefi2),

the internal group accompanying the global Poincargq gefine the left invariant Maurer-Cartan form of a matrix
group. G/H being the Minkowskian base space of the "€ 9roup G as

sidual bundleG(G/H,H) to which the composite bundle

reduces when the Poincacennections are set to zero, we 0:=u"ldu=0"G,,
claim that spacetime has a gauge theoretical origin, even in
the absence of gravitational forces.

The approach presented here could be advantageous in a
double sense. On the one hand, it provides a uniform treat-
ment of forces, where gravitational potentials are the pullthat is, as a Lie algebra valued one-form belonging to
backs of connections on a fiber bundle, in analogy with theT*(G). The left invariance of the Maurer-Cartan form
other interactions. Such a homogeneous characterization uﬁeansL’g‘®|gu=®|u. Taking the component®” of Eq.
forces may perhaps be useful on the way toward their finalA5) to constitute a left invariant one-form basis of the co-

Of:=— %(7_1)ABP(GB)MN(U_1)NLdULM- (A5)
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tangent space db, we introduce the dual basis of left invari- [Awp A un]=—=1(0auA 1= Opruhija),
ant vectord. , of T(G) induced byG e G as
) [AQB’PM]:iOM[aPﬁ]' (Bl)
f(ugy
Lalf(u)]:=
N \=0 [P.,Pgl=0
a(ug,) of with thg Minkowski metricpaﬁ==diag(_—+++). For IatEr
= , convenience, we parametrize an arbitrary group elergent
INT(UBl, 6 eG as

G=e 1&"PuePhap, B2
for f a differentiable function. Dealing with matrix groups, g : (B2)

we take in particular §g,) "\ =un"(@,).N, with @,).N

taken from Eq(A4). Then, Eq.(A6) gives sense to the vec- In terms of Eq.(B2), we calculate the left invariant Maurer-

Cartan form(A5) as

tor
Oc:=0 *dg=02{ A 5+ 0O/ P, (B3)
LA’:uMLp(GA)LNO—’ (A7) ]
Um with
belonging to the tangent spa¢€G). One can check the left @f‘f)::iu”d u,?, @(P);:_i déuy ¥, (B4)
invariance of Eq.(A7), namely, Lg«La|,=La|qu, and the
relations where we used the compact matrix notation
Lal®=Ga, [La,Lgl=fasLc, (A8) 1
uli=(eh) P=88+ N\ P+ STha"N RENE (B5)

showing the duality of the bas¢€a5) and (A7), and the Lie

algebra_ homomorphism induced B) e G on left invariant with (u™1),A=ub, . The left invariant vector¢A7) dual to
vector fields ofG.

In analogy to the former, one can alternatively define the (B4) read
right invariant bases of forms and vectors on the group mani-

fold G. The right invariant forms read LPlmjy? i
2 MagV'
0:=duut=0"G,, ; (B6)
(A),_
. 1 La,B - Iu)\[aauh y
OMi=— E(771)ABP(GB)MNdUNL(U71)LM- (A9)
such that
The basis vectors analogous (t&47) and dual to(A9) are L(P)J® -p
found to be p TG
(B7)
— L(A J®G aB!
LA‘:P(GA)MLULNO-,U N (A10)
M and satisfying commutation relations formally identical to
. Eqg. (B1). On the other hand, we introduce tl(&9) right
In parallel to Eq.(A8), they satisfy invariant forms
— — = e L o
LAl®=Ga,  [Lalgl=—fagLc. (AlD) Oci=01dG=0F A 5+ O/ P,,, (B8)

Observe the change in sign in the commutation relations iRyijth
Eqg. (All), as compared with Eq$A8) and (Al).

APPENDIX B: GEOMETRY OF THE POINCARE GROUP

Let us takeG to be the Poincargroup, with Lorentz Ofp)=—id(£uy")uk, = —id&* — O} €, . (B9)
generators A,; and translational generator®, («,8
=0,...,3) satisfying the usual commutation relations Their dual(A10) right invariant vectors are
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P, :,i
u GER
Uof}%) =u #Uﬁ +I§[a?
. N J J
=1| U W"‘g[a@ .
(B10)
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We recognize in Eq(B10) the linear momentum and the
angular momentum generators, respectiielg], with the

total angular momenturh _(A) decomposed into intrinsic and
orbital pieces as

UA):UInt)+UOrb)

70rb) _
ap ~Lap Thag s =1€(a 28

g (B11)

This completes the collection of formulas relevant for the
present paper.
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