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Gravitational instability in higher dimensions
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We explore a classical instability of spacetimes of dimendion4. First, we consider static solutions:
generalized black holes and brane world metrics. The dangerous mode is a tensor mode on an Einstein base
manifold of dimensionD—2. A criterion for instability is found for the generalized Schwarzschild, AdS-
Schwarzschild and topological black hole spacetimes in terms of the Lichnerowicz spectrum on the base
manifold. Secondly, we consider perturbations in time-dependent solutions: Generalized dS and AdS. Thirdly
we show that, subject to the usual limitations of a linear analysis, any Ricci flat spacetime may be stabilized by
embedding into a higher dimensional spacetime with cosmological constant. We apply our results to pure AdS
black strings. Finally, we study the stability of higher dimensional “bubbles of nothing.”
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. INTRODUCTION Rapg=e(d—1)7,4, 1)

Over the last few years solutions of the Einstein equationgvith e==+1 or e=0. This is the normalization o&?, for
in higher dimensions have come to play an important role agxample. Tildes denote tensors Bn
background metrics in various physical applications. These Some examples of such spacetimes are now in order.
range from theories of TeV gravity, where higher dimen-

sional black holes are predicted to be produced in the next A. Static solutions
generation of colliderfl,2], to the gravity-gauge theory cor- The spacetime i = (d+ 2)-dimensional and of the form
respondencéEs, 4.
Clearly the stability of such spacetimes is an important dr? ~,
issue. One feature of higher dimensional spacetimes is that ds’=—f(r)dt*+ f(_r)+r2dsd ()

they often satisfy boundary conditions which differ from
those encountered in four spacetime dimensions. This is b&gith
cause the two-sphere and two dimensional hyperbolic space
are, up to discrete quotients, the unique Einstein manifolds in )47t 5
two dimensions with positive and negative curvature respec- f(r)= 5_(7) —cre, ©)
tively. In higher dimensions there are more possibilities
[5,6]. These include metrics such as the Bohm meffids  4nq (s2 is the metric onB. The cosmological constant in
that exist on manifolds that are topologica8. d+2 dimensions is
In particular, we will consider the case in which the
higher dimensional spacetime includes-dimensional Ein- Rap=c(d+1)g,p- (4)

stein manifold{B,g}, which we call the base manifold, in a
common way. In these cases we shall show that part a

sometimes all of the stability problem may be reduced to th i N )
solution of an ordinary differential equation of Schilmger ~ Schwarzschid-Tangherlini black hol¢3] which are spa-

. . . d .
form. The modes we concentrate on are transverse trace-frdg |y asymptotically EuclidearAE). If BS" one obtains
generalized higher dimensional black hol&g which are

tensor harmonics on the base manifdll,g}. The differen-  gpagially asymptotically conicalAC). These are of course
tial equation determining stability O.f the spa'cetlme then dejot possible in four dimensions beca®is the only posi-
pends on the spectrum of the Lichnerowicz operator oRjye curvature Einstein manifold in two dimensions. Bf
transverse traceless symmetric tensor fields of the manifold s/ where TcSO(d+1) is discrete, then the spatial
B. These modes do not e>§ist in the stabi_lity analy_sis of,_ formetric will be asymptotically locally EuclideafALE). The
example, the Schwarzschild black hole in four dimensiongd+ 1)-dimensional Riemannan manifold with the metric
[8—11] because there are no suitable tensor harmonic¥’on

nd Consider first the vanishing cosmological constant,0
@and with e=1 in Eq. (1). When B=SY, these are the

[12]. Thus, the instabilities we discuss are inherently higher dp?+ p2ds3, (5)
dimensional.
Typically, the metricg on B will be such that is called the con€(B) with baseB. It is Ricci flat precisely

if g is Einstein with the Einstein constant of E@). If B

+S% there will typically be a singularity at the vertex of the
*Email address: G.W.Gibbons@damtp.cam.ac.uk cone, but in our case this will often be hidden inside an event
TEmail address: S.A.Hartnoll@damtp.cam.ac.uk horizon.
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In forming time dependent solutions below we will re- 1 B
place p? by sirfp or sintfp in Eqg. (5) to obtain ds?=—(dZ+ds)), 8
(d+1)-dimensional Einstein metrics of positive or negative 4
scalar curvature respectively. This will have two or one sin- o )
gular vertices respectively. In the latter case the Riemannia/ith €é=0, because the base is Ricci flat.Bfis the flat
metric will be asymptotically hyperbolitAH). Another way ~ Minkowski ~ metric then we have the metric of
to get an asymptotically hyperbolic Einstein metric with (d+1)-dimensional anti—de Sitter spacetimeBIfs a black
negative scalar curvature is to take-0 and replace? by ~ hole metric, then we have black strings in anti-de Sitter
e20 spacetime.

If ¢ is positve ande=1, one gets a generalized Another sityation .in which a Lorentzian base' arises is in
Schwarzschild—Tangherlini—de Sitter spacetime. The statiouPle analytic continuation of black hole metrics. The re-
region between a cosmological event horizon and a blacRulting solutions describe expanding “bubbles of nothing”
hole event horizon is nonsingular. & is negative ande 19 Double analytic continuation of the generalized
=1, one has generalized Schwarzschild—Tangherlini-Schwarzschild solution gives the metric
anti—de Sitter, without a cosmological horizon.

. . . . . d-1 2
Another interesting possibility with no cosmological ho- . (e 5 dr 2~ 0
rizon is to takec negative ande=—1 [14—-16. Now, if « ds’=|1 dy~+ a1t dsg. O
=0, the resulting metric will be singularity-free. B is a 1- T

hyperbolic manifoldB=HYT", with 'CSO(d,1) a suitable

discrete group, then we have an identification of anti—de Sit-

ter spacetime sometimes thought of as a topological blac%\/herew IS periodic andjhéé 's a Lorentzian metric obtained
P e 9 . 0polog ia analytic continuation of a Euclidean Einstein metric with
hole. However ifB is not a hyperbolic manifold then one

gets a singularity-free topological black hole which is not®_ *- 1 the Budidean g:sseitt'z*stg%ghe corresponding
locally isometric to anti—de Sitter spacetime. ! P '

) ; X . . In Sec. Il we relate the Lichnerowicz operator on certain
Also of this form are solutions with a negative cosmologi- . ; . . .
. ; ; ._modes in the spacetime with the Lichnerowicz operator on
cal constant of a sort which arises in brane world scenario

N o the base manifold. This will give us equations for the pertur-
[17,18. The metric is most familiar in the form bative modes. In Sec. lll we study the stability of generalized
static metrics by setting up a Sturm-Liouville problem. In
Sec. IV we look at perturbations in time dependent scenarios.
In Sec. V we recall the Lichnerowicz spectra on some mani-
folds that give explicit examples for the results of Sec. Ill.
Finally, Sec. VI contains the conclusions.

dsz=i2(dz2—dt2+d~s§), (6)
Z

with e=0. If Bis flat we obtain @ + 2)-dimensional anti—de
Sitter spacetime.
Il. LICHNEROWICZ OPERATOR ON A CLASS

B. Time-dependent solutions OF SPACETIMES

By suitably reinterpreting our formulas we can also dis- A. A Lichnerowicz mode

cuss the stability of some time-dependent solutions. For ex- Consider aD dimensional spacetime with metric
ample a generalized = (d+ 1)-dimensional de Sitter space-

time is given by dsi=—f(r)dt>+g(r)dr?+r2ds3, (10)
d<= — di2+ cosf?Ltdgz (7y \Where dsi is a Riemannian metric on a
L2 d d=(D —2)-dimensional manifold. The spacetime is taken
to be Einstein.
with e=1. This is singularity-free. Changing coh to The Lichnerowicz operator acting on a symmetric second

sinLt in Eq. (7) and lettinge=—1 will give a generalized 'ank tensoh is

anti—de Sitter spacetime which will have big bang and big B d

crunch singularities &t=0 andt= /L respectively unlesB (Ach)ap=2Rpdn e+ Reah®+ Reph®a = VoVehap. 11
is the hyperbolic metric ofl®. D

For transverse trace-free perturbations this gives the first or-
C. Ricci flat Lorentzian base and double analytic continuation  der change in the Ricci tensor under a small perturbation to

A simple generalization of this time dependent situationth® mMetric
arises if we takeB to be ad dimensional Lorentzian Ricci
flat manifold whose stability properties are known.

For example we could consider thd+1)-dimensional

Einstein manifold with a negative scalar curvature whose 1
metric is ? Rap—Rapt 5 (AL ap- (12)

Oab—Jap+hap, suchthat h?,=V2h,,=0
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The Lichnerowicz operator is compatible with the transverse, B. Gauge freedom
trace-free conditiof20].

We wish to study the stability of metrics of the forih0)
under certain metric perturbations. It will be useful to have

Diffeomorphism invariance of the Einstein equations im-
plies gauge invariance of the linear theory under

an expression for the Lichnerowicz operator on the space- hap—hap+ Vaép+ Voéa. (15)
time in terms of the Lichnerowicz operator on the base mani- _ _
fold B. We shall impose the conditions The invariance can be used to set

hea=h1a=0, (13 Vhap=V?(Nap— 39aph®) =0. (16)

This is the transverse gauge condition which may always be

where 0,1 are the,r coordinates. These conditions are of jynosed. The residual gauge freedom is given by vedfors
course not a gauge choice and mean that we are restrictingisfying

the modes we are looking at. More precisely, we are restrict-

ing attention to tensor modes on the base manifold and we Oé,+ Rab§b=0- (17)

are not considering scalar and vector modes. However, fol-

lowing [21] we argue in Appendix A that, at least for the Recall that the trace transforms B8,—h®,+2V?3¢,; we
manifolds in which the base is compact and Riemannian wittwould like to find a¢ satisfying Eq.(17) and such thah?,
e=1, the stability of the spacetime under scalar and vector-0.

perturbations is insensitive to the base manifold. Therefore, We show in Appendix B that if the background spacetime
for these modes one may consider the base to be the spheig,vacuum, possibly with a cosmological constant, then one
sY. But this leaves us with just the standard Schwarzschildmay impose the transverse trace-free condition for perturba-
Tangherlini (-AdS) spacetimes. These standard higher di-tions as a gauge choice. This is slightly more subtle than the
mensional black holes are expected, although to our knowlstandard argument in which the cosmological constant is
edge not proven, to be stable against vector and scal&ero.

perturbations. Therefore, we expect that it is only the tensor Therefore the transverse trace-free choice made in the
modes which probe the base manifold sufficiently to produceprevious subsection is merely a gauge choice if the back-
instabilities. Nonetheless, it would be nice to see this from arground spacetime is vaccum, with or without a cosmological
explicit perturbation analysis. The conditiofis3) and the constant. However, this will not fix all the gauge freedom
form of the metric(10) imply that the transverse trace-free and we need to check that any solutions we find are not pure
property ofh,,, (12) is inherited byh, ;. Here and through- gauge. A pure gauge solution would be of the form

out the indicesa,b, ... run from 0 .. D and the indices
a,B, ... will run from 2 ...D and are the coordinates hab=Valot Voéa- (18)
on B.

In Appendix C we show that none of the modes considered

A calculation then gives in this paper is a pure gauge.

1 . 1 d? 1 d?
(A h),s=—(A.h) o+~ —h ,—— —h Ill. APPLICATION TO STATIC METRICS
S re S dt® “ 9 dr? “ A. Sturm-Liouville
. problem
-f" g 4-d|d 4 In this section we consider static metrics which solve the
_ng +2_92+_gr ahaﬁ_ﬁhaﬁ! vacuum Einstein equations, possibly with a cosmological
constant
(19
Rap=C(d+1)gap- (19

where (A h), is the Lichnerowicz operator oB. All the  Thjs requiresg=1/f and the metric orB will be Einstein
other components ofX h),, are zero because of the trans- itn

verse trace-free property. This expression is the backbone of
all the calculations in this paper. ﬁaﬁz 6(d_1)§aﬂv (20)

It should be noted that E¢13) is strong conditions in low
dimensions. For the four dimensional Schwarzschild soluwith e=+1 or e=0. Tildes denote tensors d The cases
tion, for example, there are no perturbations of this forme= +1 correspond to having the same scalar curvatu@®as
becausé? does not admit any tensor harmonjid€]. We are  or HY. The functionf must be of the form
looking at a potentially unstable mode that is specific to

higher dimensional spacetimes. a1 5
Our strategy in applying this to static spacetimes in the f(r=e-{] —cr (21)
next section will be to calculate first a criterion for instability
in terms of the minimum Lichnerowicz eigenvalug,;,, on  We look for unstable modes of the form
the base manifol®. In a later section we will then find this o
minimum for several relevant manifolds. haﬁ(x)=haﬂ(x)r2go(r)e“’t, (22
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wherex are coordinates oB and normal n°=1/f¥? to be well-defined, independently of the
asymptotics of the background spacetif2d]
v [qdFD)qd+1y, — | __ (d) ydy
As discussed in the previous section and in Appendix A, we Eo{j N, &, Vg Hd T X j £ loovg™d xdr,
expect these tensor modes to be the dangerous modes. This is (29
similar to the situation encountered in recent studies of sta-
bility of AdS, XM, metrics[21-23. where tgo=G{@=R% — 1g,R?, the second order change

The pertubation must satishR,;=c(d+1)h,z and this  in the Einstein tensor under the perturbation. Now note that
gives an equation fop that may be cast in Sturm-Liouville the kinetic part of Eq(29) contains terms such as
form

rd
d ( dd(p) ( N 2f (2d—2)f f h*Paodoh.pNgPdxdr
- f JRERER |
dr dr 2 r r2 d
y oceZwtf Eaﬁ’ﬁaﬁ\/ﬁdﬁj p?=dr (30
—20(d+1))rd(p=—w27<p. (29
rd
. . . . - . OCf e —dr.
It is convenient to rewrite this as a Sclioger equation by f
changing variables to Regge-Wheeler type coordinates and
rescaling Thus requiring finite energy will recover the normalization
(298).
_dr T Besides normalization, we must also consider bounded-
dr, T b=r"%. (25 ness properties. The linear approximation to the equations of
motion requires thah?,<1. For black hole spacetimes with
Equation(24) now becomes event horizons, one should re-express solutions in Kruskal
coordinated9,25] near the horizon and check boundedness
d2d 5 there. This is because Kruskal coordinates are well-behaved
T3 V(I (r,)P=—-0"®=ED, (26)  at the horizon. Fortunately, the mode we are considering has
* not or r components and therefore is essentially unchanged
where the potential is in Kruskal coordinates. Thus it is sufficient to check bound-
edness irr in the original coordinates of Eq10). However,
, in Sec. IlIB2 we show explicitly boundedness in Kruskal
V(r)= A + d-4rf coordinates for completeness.
2 2 From Eq.(22), we see that boundedness requitgs)
=d(r)r ¥?<1. Asr— o the function®(r) must go as%?
d?—10d+8 f? ¢ or a lower power ofr. This is a weaker constraint than is
4 r—2—20(d+ 1. 27) imposed by finite energy28), with or without a cosmologi-

cal constant. As —0 we must haveb(r) going asr?? or a

Thus the stability problem reduces to the existence of boun#ligher power ofr. This will almost always be a stronger
states withE<0 of the Schidinger equation with potential Constraint than that required by finite ener@p). However,
V(r). If such a bound state of the Schiinger equation ex- N many (_)f the apphcah_ons in this section there will b(_a an
ists then the spacetim@0) is unstable to modes of the form €vent horizon at some finitg, wheref(ro)=0. The condi-
(22). That is to say, there will be an instability if the ground tion of boundedness will then simply be thdt(r) is
state eigenvalueE,, of Eq. (26) is negative. bounded at. The finite energy condition will be thak(r)

The normalization of wave functions must take into ac-9oes to zero on the horizon, because the zerd(of is
count the weight function of Eq24), but the usual normal- Simple. In the cases below, we need to impose the stronger

ization is recovered fofb: condition for each limit. However, in almost all cases we
encounter, the soutions either satisfy both or neither of the
rd dr criteria.
1=f QDZTdr:J'(I)ZT:f@ZdI‘*. (28)

B. Vanishing cosmological constant
This condition of normalizability that is necessary to set up
the Sturm-Liouville problem is just the condition of finite
energy of the gravitational perturbatiof22). The back- Set the cosmological constact=0. Asymptotically f
ground spacetime$l0) have a timelike Killing vectors®  —1 andr=r, . Alternatively, this is the massless case. We
=1, up to consideration of horizons. This allows the totalwill derive first a criterion for instability by solving the
energy of the perturbation on a spacelike hypersurface witasymptotic Schidinger equatior{26) with f=1, and hence

1. Asymptotic criterion for stability

064024-4



GRAVITATIONAL INSTABILITY IN HIGHER DIMENSIONS PHYSICAL REVIEW D 66, 064024 (2002

d?—10d+8+ 4\

Vo) =—— 5

o\ 41
, (31) f(r)=1—(7) : (35
The higher dimensional Regge-Wheeler tortoise coordinate

and requiring suitable behavior in the interior. Call the(25) may be given explicitly in this case &25]

asymptotic solutiond®,,. The range here is9r<«. The

argument of this subsection is in fact independent of the d-1 2min/(d-1)
interior form off. r,=r+> —————aln(r—e2™d-1y)  (36)
The asymptotic solution which decays at infinity is i-r o d-1
®.,(N=R4rV% (or)], There is an event horizon at «, and so the range of is

a<r. The potential becomes

v= ;J(s—d)2—4(4—>\), (32

o\ 4t
r

10d—8—4\ [a|\9 1d?
4 \r) a4y
whereK (wr) is the modified Bessel function that decays at (37)
infinity [26]. The behavior of Eq(32) for smallr and real,
positive v is ®..(r)~r "2 Three cases should be distin-
guished. Ify=1 the solution is divergent and not normaliz-
able according to Eq28). If 1>v>1/2, the solution is di-
vergent but normalizable. If 12v=0, the solution goes to
zero for smallr. Another possibility is that the index

V(r):VOC(r)jL—2
o

It follows thatV(«)=0, as was clear from the initial defini-
tion (27), and thatV(r)—0 asr—oo,

The potential(37) can be seen to be always positive for
a<r<w if d°—10d+8-+4X=0. This was the condition for
the asymptotic potential to be positive also and signalled the
nonexistence of finite energy solutiodsin this case. Thus,

=iv; is pure imaginary, in which case the Bessel function . .
. . 2 . . as expected, there are also no solutions to the full equations
oscillates in the interior as sip(nr) and the wave function in this case

& is then normalizable. We see that nondivergent normaliz- To establish the criterion for instabilit@4) we still need

22I§Jeat?\§);ut;r?2tsisoccur precisely when the potent@l) is to check that there are solutions when the asymptotic solu-
’ tion oscillates in the interior and that there are none for the
range 1/Zzv=0, where an asymptotic solution exists but
1 . ;
12— <0. (33) does not oscillate. These statements will be supported nu-
4 merically in the next section. The conclusion will be tlzat
generalized black hole is unstable if and only if the base
We have finite energy solutions for a continuous range ofnanifold has a Lichnerowicz spectrum satisfying Eq. (34)
®>0. The continuous spectrum of arbitrarily low energy is a
direct consequence of the asymptotic poten(&l) being 2. Numerical support for the asymptotic criterion

unbounded below. This will not be the case for the full po- The Schidinger equatior(26) with potential (37) has a
tenltlal ﬁ‘n? ttr:]e spectrurfnt;/]vnl becpme dlscrete.#q) _4  regular singular point at the event horizos «. Thus we
N all oT e cases ot he previous paragrapis 1 . may perform a Taylor expansion of the solution of the equa-
IS not p_qund at the origin and so none of these solutions 9V8on about this point. The leading order terms are found to be
instabilities of the masslesé=1, metric. However, follow- ®~(r—a)**/(d-1) 50 Jong as the exponent is noninteger
Ing [.27] we hote that 'n.thef oscillatory solutions with an Typically there is thus one divergent and one convergent
wn_agltnary mtdtex,bthe bc:er'lvatlvet thaliﬁs all Va“,:ef ano: ?.O OI:golution at the horizon. Further, the convergent solution van-
might expect to be able 1o match the asymptolic SOulion 1qqa5 on the horizon and therefore satisfies both the finite
an interior solution for whichf# 1, at least for certain dis- energy and boundedness requirements. We would like to see
crete values ob. Thus if ak exists such that is imaginary pether the solution that is well behaved at the horizon is
then the Schrdinger equation should have a bound state an Iso well behaved at infinity, giving a bound state
the metric is unstable. That is Before solving the equation we can check explicitly, fol-
lowing [28], that the well behaved solution remains well be-
; o haved at the horizon in Kruskal coordinates. Including the
< instability. 34 . . L
y 34 time dependence and using the limit of E86) asr — «, we
see that the modé&2) behaves near the horizon as
This is the criterion for instability of a massive black hole.

d?—10d+8+ 4\
4

(5—d)?
Amin<A=4-

We have also shown that the massless case is always stable. hop~ (r—a)/@ Dot
Concrete examples of Lichnerowicz spectra giving stable _ _
and unstable spacetimes are given in Sec. V. =gultralr=a)l(d=Dlf  —eot*rh, .. (38)

The vacuum solution fof is of course Eq(21) which is
now just the Schwarzschild-Tangherlifi3] black hole and The Kruskal coordinateR,T are given by
the asymptotically conicdlAC) variants considered ifb,6].
The radial function is R+ T~el (@ 02— gd=1)(ry =1)/2a (39)
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TABLE I. Lowest bound states for the=1,d=4 (D=6) gen- TABLE II. Lowest bound states for the=1,d=8 (D=10)
eralized Schwarzschild solution. generalized Schwarzschild solution.
Ne— A Lower bound forw,x Upper bound forw,, .y DN Lower bound forw,.x Upper bound forw,,,
0.5 3.63x10 2 3.654x 10 2 0.5 2.28<10 2 2.29x10 2
0.2 2.64<10°3 2.67x10°3 0.2 1.59<10 3 1.595< 10 3
0.1 1.41x10°*4 1.416x10* 0.1 8.391x 10 ° 8.399< 103
0.08 4.34K10°° 4.35<10°° 0.08 2.5810°° 2.59x10°°
0.05 2.2x10°° 2.28x10°8 0.05 1.3410°8 1.35x10°8
<0 No solutions found <0 No solutions found
Therefore the mode goes as that the Schrdinger equation is invariant under—ka, r

—kr, o— wl/k.
The results in Tables | and I, and other similar results for
o different values ofl, suggest that as approaches the critical
hap~(R+T)2/ (@R, (40)  value from below, the energy of the lowest bound state rises
and tends towards 0. This would provide a nice realization
of our expectation from the previous subsection that there
which is well behaved on the future horiz&+-T=0. Itis  should be no negative energy bound stata ¥#\.. Thus
not difficult to see that this expression will remain true for instability is according to the criterio(84).
other functionsf(r), such as that for the AdS black holes o )
studied below. In this cadeshould of course be evaluated at C. Finite cosmological constant
the horizon, which would no longer he. o 1. Topological black holes
To investigate the equation numerically we first find a )
; : i ; .« Let the cosmological constamt=—L? and let the base
series expansion about the horizon of the solution that is ~*% _ - o
regular at the horizon. We use this to set the initial conditiongnanifold E have negat|ve| cqrv?tl;]rez— - 1&;89. mhetnc IS
away from the horizon itself. By taking sufficient terms in S€€N t0 have no cosmological horizon. It has no
the series, this may be done to high accuracy. We theﬁ'r“-:]u""Irlty and an event horizon at=1/L. The§e are the
Lo . so-called topological black holéd4—16. Thusf is
choose gpositive value forw and the equation can be nu-
merically integrated. The solution will always diverge for
o : f(r)y=—1+L?r2 (41)
larger because it is extremely unlikely that tlae we have

specified corresponds precisely to a bound state. Howevef, g is a hyperbolic manifol®=H*/T, with T SO(k,1) a

by varyingw we may see that the solution diverges to posi-syjtable discrete group, then the metric is locally anti—de
tive infinity for some values o# and to negative infinity for  Sitter space.

others. Because the solutions of the differential equation de- The potential(27) is
pend continuously on the parameters of the equation, there

must be a bound state for some intermediate value.dfhe 2 2,42
) . N . - +8— +
solutions can be double checked by integrating in from in-  v/(r)= d°—10d+8—4a _ L*d Zd)](l_Lzrz)_
finity towards the horizon, although this is less accurate 4r? 4
whenw is small, as for the interesting cases. Tables | and Il (42

show values ofw betgveen which the lowest lying negative ag expected, the potential vanishes on the horizon. The po-
energy bound stateyy,,,= — Eo, is found for various small  tentjal is not necessarily positive outside the event horizon,
values ofd and\.—\, wherek is the critical value ol of  soa priori there exists the possibility of bound states with
Eq. (34). Without loss of generality we take=1. The de- negative energy if-d?>+ 10d—8-+4X<0. The Schrdinger
pendence of the eigenvalues anis determined on dimen- equation(26) may be solved exactly in this case. Two solu-
sional grounds to be«1/«a. Another way of seeing this is tions are

1-d*C  ® 3+d=C 2=C
— ot L7, (43)

(Di(r):r(liC)IZ(l_L2r2)7wl2L2Fl _Z+ 7 T 7 '

whereC=\/(d—5)?—4(4+\) and ,F,(a,b;c;x) is the hypergeometric function. These are generically linearly independent.
Because there is no cosmological horizon, the perturbation extends ¢ To consider the asymptotics of E@3), use
the following result for hypergeometric functions
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[26]: .
oFi(a,b;e;x)=ky(—x)"% 1+ brl x

a(a—c+1) 1 )

oF1(a,b;c;x) =k (—x) " %F,

1
a,a—c+l;a—b+l;;) b(b—c+1) 1
“b-a+l x )

+k2(—x)—b(1+
1
b,b—c+1,b—a+1,;), (46)

+ka(—x)"P5F;

In particular, the power law behavior at infinity is
(44) max(—Re(@),—Re(b)) H
X ’ . In both the solutions of Eq$43) we have
wheré —Re(@)>—Re(b), so thex 2 term is dominant ag—co. It
is then easy to check that the overall leading asymptotic term
I'(c)l(b—a) of both the solutionsb_.. at infinity is O(r%?). These solu-
1= tions are never normalizable in the sense of €§). How-
I'(c-a)'(b) ever, because infinity is a regular singular point of this
Schralinger equation, it is possible to take a linear combina-
_T'(e)l'(a—b) (45) tion of these two solutions that gives the other allowed
2 T'(c—b)'(a) power law asymptotics, in this cag@(r ~2*972) This is
precisely the linear combination @b in which thex 2
Using the series expansion of the hypergeometric functionerms of Eq.(44) cancel. The result is, using the symmetry
about the origin, this implies that as—x oF1i(a,b;c;x)= ,F(b,a;c;x),

® 3+d+C o 3+d-C 6+2d 1

(I)a(r):r*(2+d)/2+wlL(l_L2r2)7w/2L2F1 _Z+ 2 , IJF 2 a4 e
r

(47)

This solution has acceptable behaviorrase. We now need to check the behaviorras 1/L. To do this we use another
identity of hypergeometric functio26]

,Fi(a,b;c;x)=h;,Fi(a,b;a+b+1—c;1—x)+hy(1—x)° 2 P,F;(c—a,c—b;1+c—a—b;1—x), (48
|
where Cc-3-d
w=|—F—|L>0. (51)
3 I'(c)I'(c—a—h)

Y T(c—a)l(c—b)’ For this mode we have thdt;=0 andh,=1 in Eq. (48
because one of th€ functions in the denominator df,
diverges. Another way of seeing this is that the hypergeomet-
ric function is just a polynomial in this case. It then follows
from Eq.(48) that the mode now has a better behavior at the
Applying this to Eq.(47) we see that generically for the horizon, going aso[(1—L?r?)®/?]. In particular it is nor-
modes withw >0 that we are looking for, the leading term as malizable and bounded at the horizon. Therefore it gives an
r—1/L is O[(1—L?%r?)~“2-]. Inserting this and Eq(41) instability. Because the base manifold has negative curva-
into the normalization conditiof28) we see that the solution ture, the arguments of Appendix A do not apply in this case
is not square integrable at the horizon. Furthermore, the sand therefore we do not know about the effect of scalar and
lution does not satisfy the boundedness requirement becaugector modes. The statement we can make isifhhe base

®, and hencep, diverges at the horizon. However,@fis  of a massless topological black hole has a Lichnerowicz

B I'(c)T'(a+b—c)

"= T @rm) 49

real andC>3+d for some mode, which requires spectrum satisfying Eq. (50) then it is unstat$@me results
on the Lichnerowicz spectrum for negative scalar curvature
A min< —4d, (50 Einstein manifolds are collected in Sec. V.
then we may set 2. Brane world metric

Here f(r)=r?. The base manifold is Ricci flat because

There is a subtlety here which is thatdfis odd thena—b is a €=0. The metric is more familiar in terms af=1/r

negative integer and one of these gamma functions diverges. How- 1
ever, the solutiori47) that we obtain is the solution which decays at ds’=—(dZ—dt*+ds?). (52
infinity even in these cases. z?
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The r coordinate extends from the origin to infinity. This If A+ »?>0 then the integrand diverges exponentiallyzas
metric is of the general brane world form considered in—o. There was no chance of a solution in this case because
[17,18. More general such metrics will be studied in the the energy— w?, would have been lower than the minimum

section below on time dependent solutions. of the potential\. If X + »?><0 then the integrand oscillates
The potential(27) is with constant magnitude as—«. In either case, normaliz-
42+ 2d)r2 abili_ty cannot be enforced. Furthermoke= dr ~ 92 |s seen
V(N =\+ ( T (53) to diverge ag —0 and so the boundedness condition is not

4 ' satisfied. Therefore there are no finite energy solutions and

. . . the brane world metric (52) istableunder this perturbation,
The starred coordinat@5) is justr, = —z. The Schrdinger independent of the base manifold

equation(26) may be solved exactly in this case. The general

solution is
3. Schwarzschild Tangherlini—anti—de Sitter black holes

O(r)=Ar 12 VAt 0? Setc=—L? ande=+1. If «=0 then we have a gener-
B a2y alized anti—de Sitter space that describes the asymptotics of a
Schwarzschild—Tangherlini—anti—de Sitter black hole. The
A+ o function f(r) is
+Br YK 11 gy — | (54 ")
whereA,B are constants anld,,K, are the modified Bessel f(ry=1+L%r2 (56)

functions. We need to take the real or imaginary part depend-
ing on whether/\ + »? is real or imaginary. The term with
the |, function is always normalizabl€28) asr—o, going  There are no horizons. The potential is now
asO(r~?T972)  The term with theK, function diverges as
O(r%?) asr—o and hence is never normalizable because

d>1, althoughe is bounded. We must then check the Vor)= d’—10d+8+4N (d’+2d)L? L2241
solution asr—0. In terms ofz, the normalizability condi- =(1)= 4r2 ' 4 (L ).
tion, with an implied real or imaginary part being taken, is (57)
21 Z\+ w?)dz<. 55 - .
fo (ol «) ®9 Two exact solutions to the Schitimger equation are

—iw 1-d*C' —iw 3+d=C’' 2+C
oL T4 L T a2

CD+(r):r(l+C')/2(1+L2r2)iw/ZLZFl( ;_L2r2>, (58)

with C’'=/(d—5)?—4(4—\). This is fairly similar to the topological black hole case, but we now need to consider different
limits. By exactly the same arguments as for the topological black hole, the solution that is well behaved at infinity, going as
O(r_(2+d)/2), is

. : —iw 3+d+C’ —iw 3+d-C' 6+2d -1
_—(2+d)2+iwlL 2,2\ —iw/2L . .
Dy(r)=r (1+L°r?) 2Fl( T T g 'Lzrz)' (59
|
By using Eq.(44) again, we see that the behaviorras 0 is (5—d)?
Amin<4-— (60)

O(r=C¢Y%2) " This both converges and is normalizable if 4
d?—10d+8+4\ ;<O which is unsurprisingly also the

condition for the potential57) to be negative and indeed

unbounded below. There is a continuum of negative energshen the solution is oscillatory in the inner regions. The os-
bound states witlw>0 in this case. None of these solutions cillatory behavior suggests we can make a statement about
satisfies the boundedness condition becapsebr ~%? al- massive black holes also. The condition is clearly the same
ways diverges at the origin. Thus the massless case is stal®4) as we found before in the case of a vanishing cosmo-
against the perturbation. The phenomenon of the hypetogical constant. This is perhaps not surprising given that the
geoemtric series terminating for special valuesdb give a  potentials, Eqs(31) and (57), are the same near the origin.
well behaved mode does not occur here because of iithe The comments of Sec. IlIB should go through. However,
front of the w in Eq. (59). More interestingly, if there is now a second length scale in the probler, 1/
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TABLE Ill. Lowest bound states for the=\.—1,d=4 (D=6) generalized Schwarzschild-AdS solu-

tion.

L M=alL Lower bound forw,ax Upper bound forwy, 55
0 0 0.1331 0.1335
0.01 0.010008. .. 0.131 0.132
0.05 0.040@. .. 0.0591 0.00599
0.055 0.0558. .. 0.0264 0.0269
0.057 0.0576. .. 0.0005 0.00051
>0.058 0.0586. .. No solutions found

which could delay the onset of the oscillations until beyond=6) and with\ satisfying the instability criterion by =\
the event horizon, in which case there will be no solution and-1 we see that the unstable mode is stabilizedMif
no instability. >0.08... .
A few things may be said more concretely. In the massive This will be the generic behavioA given base space will
case, have a minimum Lichnerowicz eigenvalue, If this is less
than the critical value\ . then we can find a critical value for
a\d? 5 5 the dimensionless mass, Msuch that if M,.<M then the
fr)=1={+] +L7% (61 ynstable mode is stabilized. If M then the AdS black
hole is unstableAlternatively, we could think of the mass as

5. Schwarzschild Tangherlini—de Sitter black holes

a\ 9" 10d—8—4N—2dL?%r?
V(D) =Va(r+—|+ 7 Set c=L? and e=+1. This gives us a generalized
@ Schwarzschild—Tangherlini—de Sitter black hole. We have
a d—ld2 41
— | — N o
(r 4] 62 fu):1—<7> —L%r2, (64)

The potential has the expected property that it vanishes at thehere is a cosmological horizon at finite radius, and there-

horizon, wheref(r)=0. Furthermore, wherd®—10d +8 _ fore we cannot discuss an asymptotic solution to the Schro
+4\>0 it is everywhere positive, as was the asymptoticginger equation, because the mass term is not negligible near
(masslesgpotential(57). Thus there will be no instability in  the horizon. We have all the information necessary to tackle
these cases. We now need to see numerically when a solutiQis problem numerically, but various cases must be consid-
exists and what the role of the new length scale is. ered separately depending on the values @ndL. This is
somewhat out of the main line of development of this work

4. Numerical results for SchwarzschildTangherlini— and so it will not be considered here.

anti—de Sitter black holes

We wish to use the methods of Sec. 1l B 2 to examine the IV. TIME-DEPENDENT SOLUTIONS
effect of the new length scalell/ First note that the Schro
dinger equation is now invariant under the scaliag
—ka,r—kr,o— w/k,L—L/k. Previously, when there was The metric form(10) also covers a range of cosmological
no L we used this to set=1, which was the location of the solutions. For example, a generalized de Sitter metric may be
horizon. Again, we want to scale the horizon to 1. This will written

A. Generalized de Sitter space

now require scaling so that=(1+L%)Y4"1 There is a
scale-invariant dimensionless mass —dr? 0 =2
ds?=———+r dsg, (65
L?r?—1
M=al, (63

wherer is the time coordinate now aridis a constant. This
which allows us to talk about large and small black holesis of the form(10) with f=0. Note thatd would now be 3,
independently of the scaling used. We expect the criterion fonot 2, in the usual four dimensional case. Consider a pertur-
instability to be the same as for Schwarzschild black holegation, using the same notation as in E2p),
(34) when the AdS black hole is small—0. As we in-
creaseM we expect the black hole to be stabilized by the hap(X)=h,s(X)r2e(r), (66)
cosmological constant. This behavior indeed happens and is
illustrated in Table Ill. The numerics were done as in Secand impose the Einstein equatiofR,z=dL?h,z. There is
1B 2. For the cased=4 (hence spacetime dimensidh  now a cosmological term which is that of ordinary de Sitter
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space inD=d+1 dimensions. The equation for the pertur- d2e de L2
bation ¢ is most familiar in terms of the coordinates —— +dLcotLt——+ — (N+2d—-2)p=0. (75
dt? dt = sirPLt
coshLt=Lr, (67)

The general solution to this equation is

where the metric becomes (,o:A(sinLt)(lfd)’zP(d_1),20’2(cosLt)

+B(sinLt) " 2Q4_ 1), %(cosLt), (76)

ds3, (68)
where A,B are constants and as beforeC

= —5)2— “ “ )
and Eq.(14) becomes the equation for a scalar field on de,. V(d-5) .4(4+ A). P, ar_md Q. are 'Legendre func
Si tions of the first and second kind, respectively. These may be

itter space : . .

expressed in terms of hypergeometric functions as follows

2 L2 [30]2

deg de
F—l—stanth——F ()\+2—2d)g0:0.

dt  cosHLt

P (x) o (X2 = 1) M2k #

(69)
m—v p—r+l 1 l)

This provides a check on our expressidd) and also shows X 2Fs 2’ 2 2 V2

that at late times ais— o0 the leading term in each of the two

linearly independent solutions is Q,A(X) o (Xx2— 1)K~ v=n-1

o~A+Be It (70 vtu+l v+u+2 31

X oFy 5 o VTSl
with A,B constantsThus perturbations are frozen in, inde- X
pendent of the dimension and the form of the base Einstein (77)
manifold B This is just the behavior of such perturbations in _
standard four dimensional inﬂationary metr[@]_ In the present case= cosLt with O<t==/L. Thus we need
to check regularity properties & 0,7/2L,7/L, correspond-

ing tox=1,0-1.
) ) . o It is easy to check using E¢44) that both solutions are
Generalized anti—de Sitter space can be treated similarlyinite att= /2L, that isx=0. Further, it is clear from Egs.

B. Generalized anti-de Sitter space

Write the metric as (77) and(76) that behavior as— /L will be the same as for
) t—0, up to phases in front of each Legendre function. In
d<2= —dr +r2ds2 71) particular this means that regularity properties will be the

—L?%2%+1 d same at these points. Both solutions of Efp) diverge as

O(tt=979%2) a5t—0. Therefore they also diverge ds
where agairr is the time coordinate and a constant. The — /L. Howevert=0 is a regular singular point of E¢75)
base manifoldB must now have negative curvature andand therefore there will be a linear combination of these
would be HY for anti—de Sitter space itself. Consider the solutions that has the other allowed power law behavior as
perturbation t—0, namelyO(t&~9+9”2) " This will be oscillatory and

divergent ifC is pure imaginary. IC is real it will converge

haB(X):’ﬁaﬁ(;)rz(P(r)! (72) if C=d—1 and diverge otherwise. There is also the possi-
bility that well behaved modes will exist for special values of
and impose the Einstein equatiafR ;= _szhaﬁ' Thisis C where the hypergeometric function becomes a polynomial.
as for the de Sitter case considered previously but with a The main conculsion of the previous paragraph is that
negative cosmological constant. The familiar coordinates fothere are always modes that if excited at some finite time will
the space are diverge in the futureThus this AdS cosmology is unstable,
independent of the base manifold and the dimension.
sinLt=Lr. (73
C. Ricci flat Lorentzian base (brane world metrics 11)

The metric in these coordinates is . : . .
Let the baseB be ad-dimensional Ricci flat spacetime.

SirPLt Suppose we know the spectrum of Lichnerowicz modeB on
ds2. (74)  With eigenvalues. and such that the modes grow in time. In
L? particular, if this spectrum includes a zero mode, then the
spacetimeB is unstable.
These coordinates make explicit the big bang and big crunch The spacetime B may be embedded in a
singularities att=0 andt= /L, unless the spacetime is D=(d+1)-dimensional Einstein manifold with negative
anti—de Sitter. The equation for the perturbation becomes scalar curvature

ds’=—dt*+
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1 ~ dr? B For\>0 we see that the term with thg Bessel function
dszz—z(dzz+ ds3)= —2+r2ds§. (78  has an exponential divergenceras0 while the term with
z r the K, Bessel function goes to zero exponentially and hence
is normalizable at the origin. However, this term goes as
For example, ifB is a black hole metric we obtain a black O(ro) asr—oo and hence, a|though bounded’ is not normal-
string in AdS spacetime. The change of variables in(8)  izable at infinity becausd=2. Thus there are no normaliz-
is of courser =1/z. We would like to see whether this space- able solutions withh >0.

time is unstable under any of the growing mode®8irCon- For\<0, asr—o, the term with thev, Bessel function
sider the perturbation goes ag?(r%), and therefore is not normalizable at infinity.
o The term with theJ,, Bessel function goes as(r~% and
h.s(X) =12@(r)h,a(X), (790  therefore is normalizable. As—0, theJ, term oscillates as

O D2c04(—N)YYr)]) and hence is not normalizable
where, is a Lichnerowicz eigenmode on the base with(83) or bounded as —0. Thus there are no normalizable
eigenvalue\. From Eq.(14), ignoring the terms witli’s, the ~ modes of this type.

equation fore(r) coming fromA h,z=—2dh, is In conclusion, embedding a Ricci flat spacetiBiénto a
higher dimensional spacetime with a cosmological constant
d?¢ d+1de Ao as in Eq.(78) will stabilize at the linear level any unstable
—+ —————=0. (800  modes ofB. Furthermore, no other unstable modes of the

dr? rodr g form we consider appear. This should be contrasted with a

) ) ) ) similar embedding into a higher dimensional Ricci flat
The general solution to this equation for-0 is spacetime where the stability properties get worse due to
112 negative Lichnerowicz modes in the initial spacetif34],
+Br_d/2Kd/2(_)i (81) such as _the Gregory-Laflamme instability of nonextremal
r black strings[32,33,29. It was argued in[34] that a
Gregory-Laflamme instability existed also for black strings
whereA,B are constants and, ,K, are the modified Bessel jn AdS spacetime. However, the perturbed mode presented
functions. IfA<0 then the expression is most transparent ifthere, which agrees as a specia| case with the modes we have
we letA——\ and replacd , ,K,, by the Bessel functions just considered, did not have'; bounded as is required in a

1/2

A
@(r)=Ar~%2 dlz(T

J,.,Y, . Finally, if \=0 then the solution is linearized analysis. The phenomenon of perturbations to
4 brane world metrics diverging in the bulk has been observed
e(r)=A+Br % (82 pefore[35] and is related to the bad behavior of the curvature

o . at the horizon. Bounded modes, and hence the instability,
To see which, if any, of these solutions are acceptable wgqy|q reappear if one modifies the setup, such as by adding a
need to find the energy of the perturbations. AssumingBhat negative tension brane at finite position.
has a timelike Killing vector, this is similar to the argument e might worry that the instability of a very thin short
in Sec. IIIA black string should not be affected by immersion in an
anti—de Sitter spacetime with a large radius. This may well
Eocf tMvnﬂgv\/a(fﬁddx be true. However, if one assumes that the black string runs
all the way to the horizon there seems to be no way of avoid-
ing our conclusions, although there is already a singularity
= J t#7n,&,Ng @ Drd=2drdd-x near the horizon in the unperturbed mef86]. The methods
used here can say very little about what would happen for a

“cigar-like” black string configuration.
~f e2rd=3dr, (83
D. Double analytic continuation
where we used the metri€78) and noxr, &,r?, tog Higher dimensional versions of the Schwarzschild bubble

~o(r)2. Note thata(d—l) is the spatial metric oB. It is solution[19] have been considered recently in a search for

easy to see that the normalization condit{@8) is the same ~Well-behaved time dependent backgrounds in which to study
as norm of Eq(80) cast in Sturm-Liouville form. The eigen- String theory[37]. Ultimately the Kerr solutions turn out to
value of the Sturm-Liouville problem is now and the D& more appropriate, but the Schwarzschild case contains
weight function is seen to be'~3, consistent with Eq(83). many of the re_levant f_eatur_es. The solution, obtamed_ via
The boundedness condition in this context is simply thadouble analytic —continuation of the Schwarzschild-
o(r) remains finite in the range<r <. Tangherlini solution is

If there is ah =0 mode, thed dimensional spacetimg is d-1
unstable. However, from Eq82) it is clear that none of dszz[l_(f) }d¢2+
these solutions is normalizable in the+ 1)-dimensional
spacetime. Further, all except the constant solutions are not
bounded. Therefore the unstable mode does not carry over to
the full spacetime because it no longer has finite energy. +r2(—d7+cosirdQ]_,), (84)

I,2

o d-1
1_ _)

r
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wherer=a,  has period 4ra/(d—1) and dQﬁ,l is the  The Sturm-Liouville equation remain®4), but the eigen-
round metric onS®~!. The coordinatey=it is the Wick value associated with time evolution is no longer but
rotated time from the black hole solution arid=6 rather\, as was commented on for the case of the Lorentzian
— (w/2), whered was the usual angular parameter$rand  base. The weight function is thus seen torBe? rather than
7 is now the time ordS;. Recently, such “bubbles of noth- therd/f that we had for the black hole. This is in agreement
ing” have also been considered by analytically continuingwith Eq. (85). The condition for boundedness remains the
AdS-Schwarzschild black hol¢88,39. same:e must not diverge. We may now go through the re-

A classically stable background is needed for stringsults from the black hole spacetimes of Sec. Il again and
theory. Classical instabilities are manifested in the stringecheck for finite energy using E@85). We see that the
worldsheet theory as a renormalization group flow arisingexistence and nonexistence of finite energy solutions remain
from higher string loops with a fixed point that is not close tothe same in each case.
the original background in string units. If the Euclidean metric on the base manifdilof the

It was argued i37] that the classical stability of E¢84)  generalized black hole solutions, Eq$0) and (21), admits
follows from the classical stability of the corresponding an analytic continuation to a Lorentzian metric, then one
black hole solution. Any mode on the bubble must be peri-may construct a generalized “bubble of nothing” with metric
odic in they variable. Bute™'“¥=¢"!, so these correspond )
to growing modes of the black hole with certain frequencies -~ 2 2.2
o allowed by the periodicity ofs. Furthermore, the part of ds’=f(r)dy +m+r dsg, (86
the black hole mode that is a harmonic 6f becomes a
harmonic ondS; with the same eigenvalue. In the four di- with the notation of Eq(84) and noworsg is a Lorentzian
mensional case dB8-10 these modes are scalar and vectormetric.
harmonics, while in our case we are considering tensor har- Assuming that the tensor harmonics on the Lorentzian
monics[12]. The equation for the radial dependence is thebase manifold are growing modes in time, the argument for
same in the black hole and bubble cases and therefore thge S? above case goes through also in the generalized case.
criterion for the existence of solutions is the same. On thestapility is thus related to the stability of a generalized black
sphere, the harmonics are trigonometric functiong@nd  hole solution. We could also see this directly from the rela-
these become hyperbolic functionsmfwhich correspond to  tionship between the Lichnerowicz operator on the full mani-
growing and hence unstable modes on the bubble. fold and on the basél4): perturbations of Eq(86) that are

The conclusion of the previous paragraph is that any unperiodic iny will give the same radial equation as perturba-
stable mode on the black hole with appropriateignals an  tions of the generalized black hole metrics with exponential
unstable mode on the bubble. Conversely, any mode on thgrowth in t. Thus, for example, in the generalized
bubble signals an unstable mode on the black hole. Thus wschwarzschild-Tangherlini case, the criteri@d) will be the
have extended the stability arguments of the higher dimensame. However, there is an important caveat: the frequencies
sional Schwarzschild bubble i[87] to include the tensor that cause instabilities for the generalized black hole will

mode that is being considered throughout this paper. only cause an instability in the bubble spacetime if they re-
There is a subtlety, however. After doing the double anaspect the periodicity off, that is

lytic continuation, we must redo the calculations of energy

because the timelike Killing vector has changed, if indeed N(d—1)

there is still a timelike Killing vector at all. The calculation is w=—pb"—, Nei (87)
very similar to the Lorentzian base ca&&3). There will

typically be horizons on the base manifold across which then practice, this is unlikely to be true for any of the bound

Killing vector changes sign, as in the de Sitter base of Eqstates in the discrete spectrum. Therefore we expect that the

(84). In this case, the integration over a spacelike hypersurhypple spacetimes will generally be stable against the pertur-
face of the base should be restricted to the region inside thgation even when they violate the criteri¢3¥).

horizon. The integration overis not changed,

dr
r

V. SPECTRA OF THE LICHNEROWICZ OPERATOR

Eocf t'n,,&,/g@ Dd* 2x

This section collects and applies mostly known results
about the spectrum of the Lichnerowicz operator on various
NJ’ £%%, &, Fg(dfl)rdfldrdwddfl';( Einstein manifolds. In our considerations of the static metrics
above we found that in the case of Schwarzschild-
Tangherlini, Schwarzschild—Tangherlini—anti—de Sitter and
Nf <p2rd*2dr=J' 2r-2dr (85) topological black holes, stability of the spacetime against the
’ perturbation (12),(13) depends on the spectrum of the
Lichernowicz operator on the base manif@d34). The ob-
which is indeed different from the energy of the correspondiective of this section is to check that the cases we expect to
ing black hole perturbatiof29). As a check of this expres- be stable, i.e. round spheres, are stable and also to find ex-
sion, we can see that this is the same normalizability condiamples of spaces that are not stable, thus showing that the
tion that we get from the Sturm-Liouville problem far. criterion for instability is not vacuous. It would be nice to
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have more spectra at hand, in particular for Einstein mani
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for instability as was found in the context of generalized

folds that are topological spheres such as the Bohm metridsreund-Rubin compactifications to AdB, [21], where the

[7]. We discuss first Einstein manifolds of positive scalar

general dependence on the dimension is different.

curvature, relevant for the Schwarzschild and Schwarzschild-

AdS cases. We then discuss manifolds of negative scalar cur-

vature, which are relevant for the topological black holes.
In this section, tildes will be omitted from the metric per-
turbations on the base manifdiiand we will consider trans-
verse trace-free perturbations
h®,=V®h,z=0.

ga,8_>gaﬂ+haﬁ1 (88)

Define A by R,z=Ag,p-

A. Round spheres

When the base manifold is a unit sphere, asymptotically

conical (AC) just means asymptotically fldiAF). The unit
sphereB=S" has curvature

Raﬁy(?:gaygﬂé_gaégﬂy! (89)
and therefore the Lichnerowicz operator is
(ALh) 4= (=V?h)z+2dh,,. (90

However, the Laplacian on the sphere is a positive operator

and therefore\ ,;,=2d. In fact, the spectrum of transverse

trace-free tensor harmonics &, d=3, is known to bd40]
(=V?h) p=[k(k+d—1)—2]h,g. (91

But 2d is larger than the critical eigenvalue of E@4) for

all d, and therefore the spacetime is stable against this pe
turbation. In particular this means that the AF

C. Five and seven dimensional base

In five dimensions, one has the Einstein manifold¥!
which areU(1) bundles ovelS?x S?. See e.g[22] for the
metric and other details. We will not make their choice of
normalizationa=1 anda will appear as a parameter related
to the overall scale of the metric. Instead we require that
=4, as this is the normalization of the unit sphere in five
dimensions. We havig2]

q\? 1—8a?
o] (aa2 2 2’ (94)
p (4a°—1)(12a°—1)
which is seen to imply
1 o 1 9
g=a’<y. (95
The minimum Lichnerowicz eigenvalue is
1
Amin=[128°—\784a" — 2408°+20] .. (96)
a

The critical value in four dimension@4) is A\;=4. For the
range ofa? in Eq. (95), we see thak i<\, with equality
occurring for theT!! case wher@?=:. Thus theT*! black
hole is stable while all the oth&9 black holes are unstable.
iFhis is precisely the behavior that was observed in the con-
text of Freund-Rubin compactifications [ia2].

Schwarzschild-Tangherlini black holes are stable to the per- In seven dimensions, the Einstein manifod$9", which
turbation, as we should expect. The spectrum of quotients aire U(1) bundles overCP?x S?, and Q""2"s, which are
the sphere by a finite group has the same lower bound and ¢6(1) bundles overs?x S?x S?, have been studied in the

the resulting ALF spaces also give stable black holes.

B. Product metrics

Let the base be metrically a product of Einstein mani-
folds. It is well known[41,21] that there is a Lichnerowicz

transverse trace-free zero mode in which one component ex- pqr
. . ForM
pands and the other shrinks, keeping the total volume con-

stant. Specifically, if the metric decomposes as

dsi=ds?+dsi_,, (92)

then the mode

hop= (93

— €

d—n

9d-n
ap

context of Freund-Rubin compactificatiofé2,43. Again,
results will be quoted. Interestingly enough, in seven dimen-
sions the manifolds with the required normalizatiovs 6,

turn out to be stable precisely when the corresponding
Freund-Rubin supergravity compactifications are stable.
Thus the bounds we obtain are familiar.

, the stability depends op/q and A as follows:

4+ 4x—2(25— 48+ 32%?) 2
Nmin= ) (97
1+2x
wherex is defined by
2 2x—1
L o8
a/  x*3-2x)

This implies3<x<3. We are interested in the cade=6.
Given that the critical value in seven dimensions\js=3
(34), we have that the solution will be stable to this pertur-

is easily seen to be trace-free, transverse and with a zeiwation for

Lichnerowicz eigenvalue. Comparing with E&4), this im-

plies that the spactime is unstable with a product base for

d<9. Itis intriguing that this is the same critical dimension

9 39
—~0.64...<x<115...~ 4

14 34’ ®9
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and unstable fox outside this interval. Translated into an that the corresponding topological black holes are always

interval for p/q this becomes stable against the tensor perturbations.
The spectra of negative scalar curvature Einsteihi&a
76 p 17,/66 manifolds were studied if45] with the result that for these
7 ~0.63...< q <118...~—37- (100 manifolds the Lichnerowicz operator on transverse trace-free

tensors is bounded below by-2d. Therefore these mani-
Thus for this range op,q we have solutions that are stable folds always give black holes that are stable against such
against perturbations of the kind considered in this work, angberturbations.
therefore stable overall in the cases of Appendix A. This
means that the Schwarzschild-Tangherlini solution with the
sphere as base space is not the only classically stable solu- VI. CONCLUSIONS AND OPEN ISSUES
tion of the form(10), contrary perhaps to initial expectations. | et us summarize the results of this paper.

These spaces are not necessarily simply connected, having (g Spacetimes of the formil0) admit perturbations that

fundamental groufs, . are transverse trace-free tensors on the base Einstein mani-
The situation is more complicated f@"1"2"s. We have  fo|d. The stability of these spacetimes against such perturba-
Nmin= ¥YminAA, Whereyp;, is the smallest root of tions depends on the spectrum of the Lichnerowicz operator
3 2 _ on the base manifold.
V' =6y + 20 @yayt azast azay) y—S6ayaras=0, (b) Higher dimensional generalized Schwarzschild black

(101 holes are stable if and only if the Lichnerowicz spectrum on
the base manifold is bounded below by the critical value of

ith the «;’ fi
with the «'s defined by Eq. (34). This statement includes all perturbations to the

N2 ay(l+ay)? spacetime. The same criterion holds for Schwarzschild-AdS
_1) - ;jtcyclic black holes, although in this case large black holes become
nz ay(1+ay)? stabilized. Examples of base manifolds leading to stable and
unstable black holes are given in Sec. V.
ajtaxtaz=1. (102 (c) (Generalizeyitopological black holes have a criterion

) S _ ] _ for instability due to tensor modes on the ba&®). An
We will look at the simplified case in which;= a3, imply-  Einstein-Kaler base always gives a stable black hole, as do
ing n,=n3. Further, sef\ =6. The resulting range of stabil- quotients of hyperbolic space. The brane world metrics of

ity to this perturbation is found to bjet3] Sec. IIIC 2 are always stable against these tensor perturba-
tions. Time-dependent tensor pertubations in generalized de
3\/§~ Nz _ 17\/66 Sitter spacetime, considered as a cosmological spacetime, are
——~0.85...<|—|<1.18.. ~——. (103 . S ) ; ;
5 ng 177 always frozen in while in generalized anti—de Sitter space-

time they always include an unstable mode.
Again we have found a countable infinity of AC  (d) A spacetime with no cosmological constant may be
Schwarzschild-Tangherlini solutions that are stable to thiembedded in a higher dimensional spacetime with a negative
perturbation. The upper bound is the same as previously. Theosmological constant. Lichnerowicz zero modes which cor-
fundamental group i, wherek is the greatest common respond to instabilities of the initial spacetime become stabi-
divisor of ny,n,,ns. lized. At the linearized level, no new instabilities of the form
Finally, because the bound for stability on the Lichnerow-we consider are introduced. In particular this means that the
icz operator is the same for a seven dimensional base as tp@rturbative Gregory-Laflamme instability does not occur for
Freund-Rubin bound, all the manifolds that are supersymads black strings in five dimensions, contrary to previous
metric in the supergravity context give a stable spacetime. Alaims[34]. See the discussion in Sec. IV C.
list of such spaces can be found [#d]; examples are the  (e) Double analytic continuation of generalized black hole

squashed seven sphere &3(5)/SQ(3)nax- spacetimes, if admissible, produces a generalized “bubble of
nothing” spacetime. These spacetimes are generically more
D. Negative scalar curvature manifolds stable to the analytically continued tensor perturbation than

syt sac 2 o b s i SOTeEoin Hock ek, Hoverr, o nds o e
groups have curvature ay ged.

Some issues remain to be addressed. For the perturbation

= analysis, these include a numerical study of the stability of

Rapyo™~0uy8p0™ Gaslpy. (104 generalized de Sitter black holes, an explicit calculation of

and therefore the Lichnerowicz operator is the vector and scalar modes to confirm the arguments of
Appendix A and to extend them to cases where the base

(ALh)aﬁz(—Vzh)aﬁ—Zd Nag - (105 manifold has negative or zero curvature and an extension of

the arguments to nonvacuum solutions.
The rough Laplacian is a positive definite operator on nor- Regarding the Lichnerowicz spectrum, the spectrum is not
malizable modes and therefore the Lichnerowicz spectrum iknown for many interesting metrics, such as the Bohm met-
bounded below by-2d. Comparing with Eq(50) we see rics. It is possible that the methods of the present work may

064024-14
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TABLE IV. Available tensors on the base manifold.

Free base indices Tensors \ectors Scalars
Two h.p and (1), 3 ?(aﬁf) 3 ﬁ(ﬁﬁ)ﬁ a~nd§aﬂﬁ
One h, and Ayh), a,h
None h andAgh
be used to study aspects of this spectrum. )\EnnZ)\ﬁdm- (A2)

In other directions, it might be interesting to see whether
rotating black holes admit a similar generalization, and to see The equations for the various modes are found by expand-
whether these instabilities are useful in the context ofing the linearized equations
gravity-gauge theory dualities.

1 .
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We would like to thank Ruth Gregory and Harvey Reall into harmonics on the base manifold and considering each
for correspondence and Chris Pope for finding an error in afinearly independent term separately. The various compo-
earlier version. S.A.H. would like to thank James Lucietti, nents of Eq.(A3) may be classified by the number of free
Oisin MacConamhna and Toby Wiseman for discussions. indices on the base manifold: two, one or none. Each equa-
tion can then be written so that it is tensorial on the base
manifold. There are not many tensors available that are linear
in the perturbation, they are shown in Table IV.

We argue here that if the Einstein base manifélds Multiplying these tensors in each equation will be differ-
compact, Riemannian and witk=1, then the scalar and €ntial expressions involving functions ofandt, but thet
vector modes will not produce instabilities in the spacetimeglependence is just an exponential. The equations correspond-
under consideration. In particular, this covers the generalizetd to the terms along the diagonal of Table IV will be of the
Schwarzschild-TangherliriiAdS) cases in which we found a form
criterion for instability from the tensor modes. e ~

The argument has two steps. First, we will re¢all] that FLo7¢' 0 ¢' @' TAN+G[ 37 ¢',d,¢' 0 Th=0, (A4)
the scalar and vector second order differential operatoi on ) ) o
are bounded below by their minimum eigenvalue on thevhere F,G are functionals of the radial functiong'(r).
spherest. Secondly, we will show that the equations of mo- Here | indexes the scalar or vector _modes because Fhere is
tion for these modes depend on the base manifold onijoré than one mode of each type in the decomposition of

through these differential operators. We will tsandh, to ~ Nab- IN this equatiorh andA represent a harmonic mode on

denote generic scalar and vector modes on the base maifiit® Pase and the corresponding differential operator. But we
fold. have decomposed into harmonics of these differential opera-
tors, soAh=\h. This then gives a differential equation for

The second order differential operator on scalara éb | °
L =ae T o . . the ¢'(r) that only depends on the base manifold through the
=—-V*V, h. This is non-negative on compact manifolds eigenvaluex

without a boundary. There is always a zero mode corre-

APPENDIX A: SCALAR AND VECTOR MODES

sponding to a const?nt field. In particular, zero is the _mini- F[2¢' 0,¢0', @' IN+G[ 326 ,0,¢',¢']1=0.  (AB)
mum eigenvalue oi%" and also on any other such manifold
B. ] ) - Above the diagonal in Table IV we see that there is only
_ The second order differential operator on vectorifs 0 yossible term in each case, after noting et h does
(Avh) g=—=V*V,hg+(d—1)hs. By considering not arise from Eq(A3). Therefore the corresponding equa-
tions will be of the form
jB("v'aﬁmvﬂﬁaxvaﬁﬁwﬂﬁa);o, (A1) HL26) 0 o1 TR0, 6

. . . whereVh is one of the tensors from above the diagonal in
an integration by parts shows that for all eigenvalest — 1ap10 v But this simply implies the differential equation
Ay, we havex=2(d—1). We have used the fact that the H=0, with no dependence on the base manifold. Therefore
base manifold is Einstein with the same scalar curvature aghe equations for the perturbations only depend on the base
the unit sphere of appropriate dimension. The inequality isnanifold through the eigenvalues of the second order differ-
saturated by modes that are Killing vectors. It is well knownential operators on the base.
that the minimum eigenvalue df, on S° is precisely 2¢ As we saw for the tensor mode, instabilities are associated
—1) [12]. Therefore with the eigenvalue being less than some critical value. This
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is the generic situation and should be thought of as being due =—2c(d+1)[h?,+2V3E,]
to a sufficiently negative mass squared. However, in the first
part of this appendix we saw that the eigenvalues for the =—2c(d+1)f. (B4)

scalar and vector perturbations were bounded below by the
minimum eigenvalues on the sphere of the given dimensio . S PR
source term. This fact implies that the vanishing initial con-

and unit radiusS°. It is expected, but to our knowledge not =% T - )
proven, that the standard Schwarzschild-Tangherlini an&htlons forcef to vanish identically in the causal future of the
' itial hypersurface. Issues of global hyperbolicity of the ini-

Schwarzschild-AdS black holes are stable against these vell . .
tor and scalar perturbations and therefore these eigenvalugglI spacetime should not concern us as we are only inter-
must be larger than any critical value. This suggests that th sted in the future develqpment 9f the perturba}tlon. Thus we
vector and scalar modes do not contribute towards the insta!®V€ ;hown that there existaatisfying the reS|dgaI gauge
bility of the generalized Schwarzschild-Tangherlini and €duation(17) such that the trace of the perturbation may be

Schwarzschild-AdS black holes that we have been considef€t 10 0-

ing in this work. It would be nice, however, to check this
explicitly from a perturbation analysis. APPENDIX C: NO PURE GAUGE SOLUTIONS

e see that, perhaps unexpectedly, the equatiof lias no

We show here that the tensor perturbations considered in
APPENDIX B: TRANSVERSE TRACEFREE GAUGE this paper cannot be pure gauge. Suppose there were a pure
gauge modeh,,= Vaé,+ V€. For the perturbations we are

Here we show that one may impose the trace-free cond A ; ) e
considering about the metri¢l0), consider the vanishing

tion in addition to the transverse condition for vacuum space
times with a cosmological constant. This extends a familia€®MPONents
argument to the case of a nonzero cosmological constant.

Suppose the background spacetimalin2 dimensions sat- h; ;=2 0r§1—g—(r)§1) =0. (C1

isfies thevacuumfield equations, possibly with a cosmologi- 2g(r)

cal constant, Therefore, noting that the form of the perturbati¢2?)
Rap=C(d+1)gap, (B1) specifies the time dependence,

then considering perturbations that are transverse in the sense £1=9(r) %%, (x). (C2

of Eg. (16) one may take the trace of the perturbed equations ) .
Now consider the vanishing component

1
5(ALh)ap=c(d+1)hgy f'(r)
2 - =
hOO 2 ﬁtfo Zg(r)gl 0 (CS)
a a
=%+ 2c(d+1)h% Together with the form we found faj; this then implies that
Consider solving the residual gauge freedom equatihiis 0 2wg(r)Y? B
subject to the following initial conditions on the spacelike
hypersurfacet =t: Next consider the vanishing component
2(VOo+VMEy) =—h?y, f'(r)
" : No1= 11+ dr o~ £0=0. (CH

f(r
2[ = ViaV"é0+ VinVo€™—2¢(d+ 1) &1 = — Vph?,, "
(B3)  If we now substitute the expressions we havedgr¢; into

this equation, we obtain a differential equation éfr) and

wherem runs over the spatial indices. These equations ma : ; fofi ;
always be solved fog anddé/dt on the hypersurface. These 35\/(er)ut2eaé I?n n:rf:\iglf\?vs;:i.n_?:]iza?:rs]gﬁgsb)t/h%r;);ogz tzhg 'flﬁgxons
initial data then define a vector fielin the causal future of considering the vanishing components

the hypersurface using the residual gauge equdfign We
can show that this vector field gives a gauge transformation hoy= 0i&,+3,E0=0, (C6)
which sets the trace to zero. Defifie=h?,+2V?2&,. The

initial conditions (B3) and (17) are seen to imply thaf  we see that,=0 implies thaté,, is independent of. But if
=df/dt=0 att=t,. Now find the equation satisfied Hy &, is nonzero then it must depend base“! in order for the

using Eqs(B2) and (17): h,z term to have required time dependence. The conclusion
is thus that¢,=0 and therefore the perturbations we are
Of=0h+20V3, considering can never be pure gauge.
In the section on time dependent metrics we tdek0
=—2c(d+1)h%,+2V20E,—2c(d+1)VaE, and the metric had no components. The argument of the
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previous paragraph will not work in this case. The expression
for & (C2) is now justé&; =g(r)¥%,(X). We can substitute

this into the component
2
hla:arga—’_aafl_Ffa:O- (C7)

Solving for &, gives

Ea=

r 1/2 o o
—mez M%ﬁﬂ@fﬂﬂ%@ﬁ-@&

PHYSICAL REVIEW D 66, 064024 (2002

-~ -~ 2r -~
hop=Viépt Vﬁga—’_ﬁgaﬁ(x)gl

- o~ o~ 2r e -
=2K(r)Var9,g§1(X)+g(r—)l,29aB(X)§1(X)

=r2e(r)h,p(%). (C9)

For the last two lines to be equal, we must have either
K(r)er/g(r)¥2 or h,z0,zé1%V,d,&,. The former possi-
bility is not true for the functiongy(r) that we have been
considering while the latter is not consistent wih,=0.
Therefore there are no pure gauge solutions. We could have

Finally, substitute these results into the remaining, nonvanused this argument in the previous case also, but the argu-
ishing, component and recall the form of the perturbatiorment we gave instead did not use the trace-free property at

(66) and the definition oK(r) in Eq. (C8):

any point.
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