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Gravitational instability in higher dimensions
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We explore a classical instability of spacetimes of dimensionD.4. First, we consider static solutions:
generalized black holes and brane world metrics. The dangerous mode is a tensor mode on an Einstein base
manifold of dimensionD22. A criterion for instability is found for the generalized Schwarzschild, AdS-
Schwarzschild and topological black hole spacetimes in terms of the Lichnerowicz spectrum on the base
manifold. Secondly, we consider perturbations in time-dependent solutions: Generalized dS and AdS. Thirdly
we show that, subject to the usual limitations of a linear analysis, any Ricci flat spacetime may be stabilized by
embedding into a higher dimensional spacetime with cosmological constant. We apply our results to pure AdS
black strings. Finally, we study the stability of higher dimensional ‘‘bubbles of nothing.’’

DOI: 10.1103/PhysRevD.66.064024 PACS number~s!: 04.50.1h, 04.20.2q, 04.70.2s
on
a

es
n
e
-

an
th
m
b
a
s
e

ie

e

a
a
th

-f

de
o

ifo
fo
n

n
he

l

e
ent
I. INTRODUCTION

Over the last few years solutions of the Einstein equati
in higher dimensions have come to play an important role
background metrics in various physical applications. Th
range from theories of TeV gravity, where higher dime
sional black holes are predicted to be produced in the n
generation of colliders@1,2#, to the gravity-gauge theory cor
respondence@3,4#.

Clearly the stability of such spacetimes is an import
issue. One feature of higher dimensional spacetimes is
they often satisfy boundary conditions which differ fro
those encountered in four spacetime dimensions. This is
cause the two-sphere and two dimensional hyperbolic sp
are, up to discrete quotients, the unique Einstein manifold
two dimensions with positive and negative curvature resp
tively. In higher dimensions there are more possibilit
@5,6#. These include metrics such as the Bohm metrics@7#
that exist on manifolds that are topologicallySd.

In particular, we will consider the case in which th
higher dimensional spacetime includes ad-dimensional Ein-

stein manifold,$B,g̃%, which we call the base manifold, in
common way. In these cases we shall show that part
sometimes all of the stability problem may be reduced to
solution of an ordinary differential equation of Schro¨dinger
form. The modes we concentrate on are transverse trace

tensor harmonics on the base manifold,$B,g̃%. The differen-
tial equation determining stability of the spacetime then
pends on the spectrum of the Lichnerowicz operator
transverse traceless symmetric tensor fields of the man
B. These modes do not exist in the stability analysis of,
example, the Schwarzschild black hole in four dimensio
@8–11# because there are no suitable tensor harmonics oS2

@12#. Thus, the instabilities we discuss are inherently hig
dimensional.

Typically, the metricg̃ on B will be such that
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R̃ab5e~d21!g̃ab , ~1!

with e561 or e50. This is the normalization ofSd, for
example. Tildes denote tensors onB.

Some examples of such spacetimes are now in order.

A. Static solutions

The spacetime isD5(d12)-dimensional and of the form

ds252 f ~r !dt21
dr2

f ~r !
1r 2ds̃d

2 ~2!

with

f ~r !5e2S a

r D d21

2cr2, ~3!

and ds̃d
2 is the metric onB. The cosmological constant in

d12 dimensions is

Rab5c~d11!gab . ~4!

Consider first the vanishing cosmological constant,c50
and with e51 in Eq. ~1!. When B5Sd, these are the
Schwarzschid-Tangherlini black holes@13# which are spa-
tially asymptotically Euclidean~AE!. If BÞSd one obtains
generalized higher dimensional black holes@5# which are
spatially asymptotically conical~AC!. These are of course
not possible in four dimensions becauseS2 is the only posi-
tive curvature Einstein manifold in two dimensions. IfB
5Sd/G where G,SO(d11) is discrete, then the spatia
metric will be asymptotically locally Euclidean~ALE!. The
(d11)-dimensional Riemannan manifold with the metric

dr21r2ds̃d
2 , ~5!

is called the coneC(B) with baseB. It is Ricci flat precisely
if g̃ is Einstein with the Einstein constant of Eq.~1!. If B
ÞSd there will typically be a singularity at the vertex of th
cone, but in our case this will often be hidden inside an ev
horizon.
©2002 The American Physical Society24-1
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In forming time dependent solutions below we will r
place r2 by sin2r or sinh2r in Eq. ~5! to obtain
(d11)-dimensional Einstein metrics of positive or negati
scalar curvature respectively. This will have two or one s
gular vertices respectively. In the latter case the Riemann
metric will be asymptotically hyperbolic~AH!. Another way
to get an asymptotically hyperbolic Einstein metric wi
negative scalar curvature is to takee50 and replacer2 by
e2r.

If c is positive and e51, one gets a generalize
Schwarzschild–Tangherlini–de Sitter spacetime. The st
region between a cosmological event horizon and a bl
hole event horizon is nonsingular. Ifc is negative ande
51, one has generalized Schwarzschild–Tangherli
anti–de Sitter, without a cosmological horizon.

Another interesting possibility with no cosmological h
rizon is to takec negative ande521 @14–16#. Now, if a
50, the resulting metric will be singularity-free. IfB is a
hyperbolic manifoldB5Hd/G, with G,SO(d,1) a suitable
discrete group, then we have an identification of anti–de
ter spacetime sometimes thought of as a topological b
hole. However ifB is not a hyperbolic manifold then on
gets a singularity-free topological black hole which is n
locally isometric to anti–de Sitter spacetime.

Also of this form are solutions with a negative cosmolo
cal constant of a sort which arises in brane world scena
@17,18#. The metric is most familiar in the form

ds25
1

z2
~dz22dt21ds̃d

2!, ~6!

with e50. If B is flat we obtain (d12)-dimensional anti–de
Sitter spacetime.

B. Time-dependent solutions

By suitably reinterpreting our formulas we can also d
cuss the stability of some time-dependent solutions. For
ample a generalizedD5(d11)-dimensional de Sitter space
time is given by

ds252dt21
cosh2Lt

L2
ds̃d

2 ~7!

with e51. This is singularity-free. Changing coshLt to
sinLt in Eq. ~7! and lettinge521 will give a generalized
anti–de Sitter spacetime which will have big bang and
crunch singularities att50 andt5p/L respectively unlessB
is the hyperbolic metric onHd.

C. Ricci flat Lorentzian base and double analytic continuation

A simple generalization of this time dependent situat
arises if we takeB to be ad dimensional Lorentzian Ricc
flat manifold whose stability properties are known.

For example we could consider the (d11)-dimensional
Einstein manifold with a negative scalar curvature who
metric is
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ds25
1

z2
~dz21ds̃d

2!, ~8!

with e50, because the base is Ricci flat. IfB is the flat
Minkowski metric then we have the metric o
(d11)-dimensional anti–de Sitter spacetime. IfB is a black
hole metric, then we have black strings in anti–de Sit
spacetime.

Another situation in which a Lorentzian base arises is
double analytic continuation of black hole metrics. The
sulting solutions describe expanding ‘‘bubbles of nothin
@19#. Double analytic continuation of the generalize
Schwarzschild solution gives the metric

ds25F12S a

r D d21Gdc21
dr2

12S a

r D d21 1r 2ds̃d
2 , ~9!

wherec is periodic andds̃d
2 is a Lorentzian metric obtained

via analytic continuation of a Euclidean Einstein metric w
e51. If the Euclidean base isSd, then the corresponding
Lorentzian base is just de Sitter space,dSd .

In Sec. II we relate the Lichnerowicz operator on certa
modes in the spacetime with the Lichnerowicz operator
the base manifold. This will give us equations for the pert
bative modes. In Sec. III we study the stability of generaliz
static metrics by setting up a Sturm-Liouville problem.
Sec. IV we look at perturbations in time dependent scenar
In Sec. V we recall the Lichnerowicz spectra on some ma
folds that give explicit examples for the results of Sec. I
Finally, Sec. VI contains the conclusions.

II. LICHNEROWICZ OPERATOR ON A CLASS
OF SPACETIMES

A. A Lichnerowicz mode

Consider aD dimensional spacetime with metric

dsD
2 52 f ~r !dt21g~r !dr21r 2ds̃d

2 , ~10!

where ds̃d
2 is a Riemannian metric on a

d5(D22)-dimensional manifoldB. The spacetime is taken
to be Einstein.

The Lichnerowicz operator acting on a symmetric seco
rank tensorh is

~DLh!ab52Rc
abdh

d
c1Rcah

c
b1Rcbh

c
a2¹c¹chab .

~11!

For transverse trace-free perturbations this gives the first
der change in the Ricci tensor under a small perturbation
the metric

gab→gab1hab , such that ha
a5¹ahab50

Rab→Rab1
1

2
~DLh!ab . ~12!
4-2
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The Lichnerowicz operator is compatible with the transver
trace-free condition@20#.

We wish to study the stability of metrics of the form~10!
under certain metric perturbations. It will be useful to ha
an expression for the Lichnerowicz operator on the spa
time in terms of the Lichnerowicz operator on the base ma
fold B. We shall impose the conditions

h0a5h1a50, ~13!

where 0,1 are thet,r coordinates. These conditions are
course not a gauge choice and mean that we are restri
the modes we are looking at. More precisely, we are rest
ing attention to tensor modes on the base manifold and
are not considering scalar and vector modes. However,
lowing @21# we argue in Appendix A that, at least for th
manifolds in which the base is compact and Riemannian w
e51, the stability of the spacetime under scalar and vec
perturbations is insensitive to the base manifold. Theref
for these modes one may consider the base to be the sp
Sd. But this leaves us with just the standard Schwarzsch
Tangherlini ~-AdS! spacetimes. These standard higher
mensional black holes are expected, although to our kno
edge not proven, to be stable against vector and sc
perturbations. Therefore, we expect that it is only the ten
modes which probe the base manifold sufficiently to prod
instabilities. Nonetheless, it would be nice to see this from
explicit perturbation analysis. The conditions~13! and the
form of the metric~10! imply that the transverse trace-fre
property ofhab ~12! is inherited byhab . Here and through-
out the indicesa,b, . . . run from 0 . . .D and the indices
a,b, . . . will run from 2 . . .D and are the coordinate
on B.

A calculation then gives

~DLh!ab5
1

r 2
~D̃Lh!ab1

1

f

d2

dt2
hab2

1

g

d2

dr2
hab

1F2 f 8

2 f g
1

g8

2g2
1

42d

gr G d

dr
hab2

4

gr2
hab ,

~14!

where (D̃Lh)ab is the Lichnerowicz operator onB. All the
other components of (DLh)ab are zero because of the tran
verse trace-free property. This expression is the backbon
all the calculations in this paper.

It should be noted that Eq.~13! is strong conditions in low
dimensions. For the four dimensional Schwarzschild so
tion, for example, there are no perturbations of this fo
becauseS2 does not admit any tensor harmonics@12#. We are
looking at a potentially unstable mode that is specific
higher dimensional spacetimes.

Our strategy in applying this to static spacetimes in
next section will be to calculate first a criterion for instabili
in terms of the minimum Lichnerowicz eigenvalue,lmin , on
the base manifoldB. In a later section we will then find this
minimum for several relevant manifolds.
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B. Gauge freedom

Diffeomorphism invariance of the Einstein equations im
plies gauge invariance of the linear theory under

hab→hab1¹ajb1¹bja . ~15!

The invariance can be used to set

¹ah̄ab[¹a~hab2 1
2 gabh

c
c!50. ~16!

This is the transverse gauge condition which may always
imposed. The residual gauge freedom is given by vectorj
satisfying

hja1Ra
bjb50. ~17!

Recall that the trace transforms asha
a→ha

a12¹aja ; we
would like to find aj satisfying Eq.~17! and such thatha

a
→0.

We show in Appendix B that if the background spacetim
is vacuum, possibly with a cosmological constant, then o
may impose the transverse trace-free condition for pertu
tions as a gauge choice. This is slightly more subtle than
standard argument in which the cosmological constan
zero.

Therefore the transverse trace-free choice made in
previous subsection is merely a gauge choice if the ba
ground spacetime is vaccum, with or without a cosmologi
constant. However, this will not fix all the gauge freedo
and we need to check that any solutions we find are not p
gauge. A pure gauge solution would be of the form

hab5¹ajb1¹bja . ~18!

In Appendix C we show that none of the modes conside
in this paper is a pure gauge.

III. APPLICATION TO STATIC METRICS

A. Sturm-Liouville problem

In this section we consider static metrics which solve
vacuum Einstein equations, possibly with a cosmologi
constant

Rab5c~d11!gab . ~19!

This requiresg51/f and the metric onB will be Einstein
with

R̃ab5e~d21!g̃ab , ~20!

with e561 or e50. Tildes denote tensors onB. The cases
e561 correspond to having the same scalar curvature aSd

or Hd. The functionf must be of the form

f ~r !5e2S a

r D d21

2cr2. ~21!

We look for unstable modes of the form

hab~x!5h̃ab~ x̃!r 2w~r !evt, ~22!
4-3
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wherex̃ are coordinates onB and

~D̃Lh̃!ab5lh̃ab . ~23!

As discussed in the previous section and in Appendix A,
expect these tensor modes to be the dangerous modes. T
similar to the situation encountered in recent studies of
bility of AdSp3Mq metrics@21–23#.

The pertubation must satisfydRab5c(d11)hab and this
gives an equation forw that may be cast in Sturm-Liouville
form

2
d

dr S f r d
dw

dr D1S l

r 2
2

2 f 8

r
2

~2d22! f

r 2

22c~d11!D r dw52v2
r d

f
w. ~24!

It is convenient to rewrite this as a Schro¨dinger equation by
changing variables to Regge-Wheeler type coordinates
rescaling

dr* 5
dr

f
, F5r d/2w. ~25!

Equation~24! now becomes

2
d2F

dr
*
2

1V„r ~r * !…F52v2F[EF, ~26!

where the potential is

V~r !5
l f

r 2
1

d24

2

f 8 f

r

1
d2210d18

4

f 2

r 2
22c~d11! f . ~27!

Thus the stability problem reduces to the existence of bo
states withE,0 of the Schro¨dinger equation with potentia
V(r ). If such a bound state of the Schro¨dinger equation ex-
ists then the spacetime~10! is unstable to modes of the form
~22!. That is to say, there will be an instability if the groun
state eigenvalue,E0, of Eq. ~26! is negative.

The normalization of wave functions must take into a
count the weight function of Eq.~24!, but the usual normal-
ization is recovered forF:

15E w2
r d

f
dr5E F2

dr

f
5E F2dr* . ~28!

This condition of normalizability that is necessary to set
the Sturm-Liouville problem is just the condition of finit
energy of the gravitational perturbation~22!. The back-
ground spacetimes~10! have a timelike Killing vectorj0

51, up to consideration of horizons. This allows the to
energy of the perturbation on a spacelike hypersurface w
06402
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normal n051/f 1/2 to be well-defined, independently of th
asymptotics of the background spacetime@24#

E}E tmnnmjnAg(d11)dd11x5E r d

f
t00Ag̃(d)ddx̃dr,

~29!

where t005G00
(2)5R00

(2)2 1
2 g00R

(2), the second order chang
in the Einstein tensor under the perturbation. Now note t
the kinetic part of Eq.~29! contains terms such as

E r d

f
hab]0]0habAg̃(d)ddx̃dr

}e2vtE h̃abh̃abAg̃(d)ddx̃E w2
r d

f
dr ~30!

}E w2
r d

f
dr.

Thus requiring finite energy will recover the normalizatio
~28!.

Besides normalization, we must also consider bound
ness properties. The linear approximation to the equation
motion requires thatha

b!1. For black hole spacetimes wit
event horizons, one should re-express solutions in Krus
coordinates@9,25# near the horizon and check boundedne
there. This is because Kruskal coordinates are well-beha
at the horizon. Fortunately, the mode we are considering
no t or r components and therefore is essentially unchan
in Kruskal coordinates. Thus it is sufficient to check boun
edness inr in the original coordinates of Eq.~10!. However,
in Sec. III B 2 we show explicitly boundedness in Krusk
coordinates for completeness.

From Eq. ~22!, we see that boundedness requiresw(r )
5F(r )r 2d/2!1. As r→` the functionF(r ) must go asr d/2

or a lower power ofr. This is a weaker constraint than
imposed by finite energy~28!, with or without a cosmologi-
cal constant. Asr→0 we must haveF(r ) going asr d/2 or a
higher power ofr. This will almost always be a stronge
constraint than that required by finite energy~28!. However,
in many of the applications in this section there will be
event horizon at some finiter 0, wheref (r 0)50. The condi-
tion of boundedness will then simply be thatF(r ) is
bounded atr 0. The finite energy condition will be thatF(r )
goes to zero on the horizon, because the zero off (r ) is
simple. In the cases below, we need to impose the stron
condition for each limit. However, in almost all cases w
encounter, the soutions either satisfy both or neither of
criteria.

B. Vanishing cosmological constant

1. Asymptotic criterion for stability

Set the cosmological constantc50. Asymptotically f
→1 andr 5r * . Alternatively, this is the massless case. W
will derive first a criterion for instability by solving the
asymptotic Schro¨dinger equation~26! with f 51, and hence
4-4
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V`~r !5
d2210d1814l

4r 2
, ~31!

and requiring suitable behavior in the interior. Call t
asymptotic solutionF` . The range here is 0<r ,`. The
argument of this subsection is in fact independent of
interior form of f.

The asymptotic solution which decays at infinity is

F`~r !5Re@r 1/2Kn~vr !#,

n5
1

2
A~52d!224~42l!, ~32!

whereKn(vr ) is the modified Bessel function that decays
infinity @26#. The behavior of Eq.~32! for small r and real,
positiven is F`(r );r 2n11/2. Three cases should be distin
guished. Ifn>1 the solution is divergent and not normali
able according to Eq.~28!. If 1.n.1/2, the solution is di-
vergent but normalizable. If 1/2.n>0, the solution goes to
zero for small r. Another possibility is that the indexn
5 in i is pure imaginary, in which case the Bessel functi
oscillates in the interior as sin(niln r) and the wave function
F is then normalizable. We see that nondivergent norma
able solutions occur precisely when the potential~31! is
negative, that is

d2210d1814l

4
5n22

1

4
<0. ~33!

We have finite energy solutions for a continuous range
v.0. The continuous spectrum of arbitrarily low energy is
direct consequence of the asymptotic potential~31! being
unbounded below. This will not be the case for the full p
tential and the spectrum will become discrete.

In all of the cases of the previous paragraph,w5Fr 2d/2

is not bound at the origin and so none of these solutions g
instabilities of the massless,f 51, metric. However, follow-
ing @27# we note that in the oscillatory solutions with a
imaginary index, the derivative takes all values and so
might expect to be able to match the asymptotic solution
an interior solution for whichf Þ1, at least for certain dis
crete values ofv. Thus if al exists such thatn is imaginary
then the Schro¨dinger equation should have a bound state a
the metric is unstable. That is

lmin,lc[42
~52d!2

4
⇔ instability. ~34!

This is the criterion for instability of a massive black hol
We have also shown that the massless case is always s
Concrete examples of Lichnerowicz spectra giving sta
and unstable spacetimes are given in Sec. V.

The vacuum solution forf is of course Eq.~21! which is
now just the Schwarzschild-Tangherlini@13# black hole and
the asymptotically conical~AC! variants considered in@5,6#.
The radial function is
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f ~r !512S a

r D d21

. ~35!

The higher dimensional Regge-Wheeler tortoise coordin
~25! may be given explicitly in this case as@25#

r * 5r 1 (
n51

d21
e2p in/(d21)

d21
a ln~r 2e2p in/(d21)a!. ~36!

There is an event horizon atr 5a, and so the range ofr is
a<r . The potential becomes

V~r !5V`~r !1
1

a2 S a

r D d11F10d2824l

4
2S a

r D d21 d2

4 G .
~37!

It follows thatV(a)50, as was clear from the initial defini
tion ~27!, and thatV(r )→0 asr→`.

The potential~37! can be seen to be always positive f
a<r ,` if d2210d1814l>0. This was the condition for
the asymptotic potential to be positive also and signalled
nonexistence of finite energy solutionsF in this case. Thus,
as expected, there are also no solutions to the full equat
in this case.

To establish the criterion for instability~34! we still need
to check that there are solutions when the asymptotic s
tion oscillates in the interior and that there are none for
range 1/2>n>0, where an asymptotic solution exists b
does not oscillate. These statements will be supported
merically in the next section. The conclusion will be thata
generalized black hole is unstable if and only if the ba
manifold has a Lichnerowicz spectrum satisfying Eq. (34.

2. Numerical support for the asymptotic criterion

The Schro¨dinger equation~26! with potential ~37! has a
regular singular point at the event horizonr 5a. Thus we
may perform a Taylor expansion of the solution of the eq
tion about this point. The leading order terms are found to
F;(r 2a)6av/(d21), so long as the exponent is noninteg
Typically there is thus one divergent and one converg
solution at the horizon. Further, the convergent solution v
ishes on the horizon and therefore satisfies both the fi
energy and boundedness requirements. We would like to
whether the solution that is well behaved at the horizon
also well behaved at infinity, giving a bound state.

Before solving the equation we can check explicitly, fo
lowing @28#, that the well behaved solution remains well b
haved at the horizon in Kruskal coordinates. Including t
time dependence and using the limit of Eq.~36! asr→a, we
see that the mode~22! behaves near the horizon as

hab;~r 2a!av/(d21)evth̃ab

5ev[ t1a(r 2a)/(d21)]h̃ab;ev(t1r
*

)h̃ab . ~38!

The Kruskal coordinatesR,T are given by

R6T;ef 8(a)(r
*

6t)/25e(d21)(r
*

6t)/2a. ~39!
4-5
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Therefore the mode goes as

hab;~R1T!2v/ f 8(a)h̃ab , ~40!

which is well behaved on the future horizonR2T50. It is
not difficult to see that this expression will remain true f
other functionsf (r ), such as that for the AdS black hole
studied below. In this casef should of course be evaluated
the horizon, which would no longer bea.

To investigate the equation numerically we first find
series expansion about the horizon of the solution tha
regular at the horizon. We use this to set the initial conditio
away from the horizon itself. By taking sufficient terms
the series, this may be done to high accuracy. We t
choose a~positive! value forv and the equation can be nu
merically integrated. The solution will always diverge f
large r because it is extremely unlikely that thev we have
specified corresponds precisely to a bound state. Howe
by varyingv we may see that the solution diverges to po
tive infinity for some values ofv and to negative infinity for
others. Because the solutions of the differential equation
pend continuously on the parameters of the equation, th
must be a bound state for some intermediate value ofv. The
solutions can be double checked by integrating in from
finity towards the horizon, although this is less accur
whenv is small, as for the interesting cases. Tables I an
show values ofv between which the lowest lying negativ
energy bound state,vmax

2 52E0, is found for various small
values ofd andlc2l, wherelc is the critical value ofl of
Eq. ~34!. Without loss of generality we takea51. The de-
pendence of the eigenvalues ona is determined on dimen
sional grounds to bev}1/a. Another way of seeing this is

TABLE I. Lowest bound states for thea51,d54 (D56) gen-
eralized Schwarzschild solution.

lc2l Lower bound forvmax Upper bound forvmax

0.5 3.6331022 3.65431022

0.2 2.6431023 2.6731023

0.1 1.4131024 1.41631024

0.08 4.34131025 4.3531025

0.05 2.2231026 2.2831026

,0 No solutions found
is
s

n

er,
-
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re

-
e
II

that the Schro¨dinger equation is invariant undera→ka, r
→kr, v→v/k.

The results in Tables I and II, and other similar results
different values ofd, suggest that asl approaches the critica
value from below, the energy of the lowest bound state ri
and tends towards 0. This would provide a nice realizat
of our expectation from the previous subsection that th
should be no negative energy bound state ifl.lc . Thus
instability is according to the criterion~34!.

C. Finite cosmological constant

1. Topological black holes

Let the cosmological constantc52L2 and let the base
manifold B have negative curvature,e521. The metric is
seen to have no cosmological horizon. Ifa50 it has no
singularity and an event horizon atr 51/L. These are the
so-called topological black holes@14–16#. Thusf is

f ~r !5211L2r 2. ~41!

If B is a hyperbolic manifoldB5Hk/G, with G,SO(k,1) a
suitable discrete group, then the metric is locally anti–
Sitter space.

The potential~27! is

V~r !5Fd2210d1824l

4r 2
2

L2~d212d!

4 G ~12L2r 2!.

~42!

As expected, the potential vanishes on the horizon. The
tential is not necessarily positive outside the event horiz
so a priori there exists the possibility of bound states w
negative energy if2d2110d2814l,0. The Schro¨dinger
equation~26! may be solved exactly in this case. Two sol
tions are

TABLE II. Lowest bound states for thea51,d58 (D510)
generalized Schwarzschild solution.

lc2l Lower bound forvmax Upper bound forvmax

0.5 2.2831022 2.2931022

0.2 1.5931023 1.59531023

0.1 8.39131025 8.39931025

0.08 2.5831025 2.5931025

0.05 1.3431026 1.3531026

,0 No solutions found
ent.
F6~r !5r (16C)/2~12L2r 2!2v/2L
2F1S 2

v

2L
1

12d6C

4
,2

v

2L
1

31d6C

4
;
26C

2
;L2r 2D , ~43!

whereC5A(d25)224(41l) and 2F1(a,b;c;x) is the hypergeometric function. These are generically linearly independ
Because there is no cosmological horizon, the perturbation extends tor→`. To consider the asymptotics of Eq.~43!, use

the following result for hypergeometric functions

064024-6
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@26#:

2F1~a,b;c;x!5k1~2x!2a
2F1S a,a2c11;a2b11;

1

xD
1k2~2x!2b

2F1S b,b2c11;b2a11;
1

xD ,

~44!

where1

k15
G~c!G~b2a!

G~c2a!G~b!
,

k25
G~c!G~a2b!

G~c2b!G~a!
. ~45!

Using the series expansion of the hypergeometric func
about the origin, this implies that asx→`
e
s

s
au

o
at

06402
n

2F1~a,b;c;x!5k1~2x!2aS 11
a~a2c11!

a2b11

1

x
1••• D

1k2~2x!2bS 11
b~b2c11!

b2a11

1

x
1••• D .

~46!

In particular, the power law behavior at infinity i
xmax„2Re(a),2Re(b)…. In both the solutions of Eqs.~43! we have
2Re(a).2Re(b), so thex2a term is dominant asx→`. It
is then easy to check that the overall leading asymptotic t
of both the solutionsF6 at infinity is O(r d/2). These solu-
tions are never normalizable in the sense of Eq.~28!. How-
ever, because infinity is a regular singular point of th
Schrödinger equation, it is possible to take a linear combin
tion of these two solutions that gives the other allow
power law asymptotics, in this caseO(r 2(21d)/2). This is
precisely the linear combination ofF6 in which the x2a

terms of Eq.~44! cancel. The result is, using the symmet
2F1(a,b;c;x)5 2F1(b,a;c;x),
r

F3~r !5r 2(21d)/21v/L~12L2r 2!2v/2L
2F1S 2

v

2L
1

31d1C

4
,2

v

2L
1

31d2C

4
;
612d

4
;

1

L2r 2D . ~47!

This solution has acceptable behavior asr→`. We now need to check the behavior asr→1/L. To do this we use anothe
identity of hypergeometric functions@26#

2F1~a,b;c;x!5h1 2F1~a,b;a1b112c;12x!1h2~12x!c2a2b
2F1~c2a,c2b;11c2a2b;12x!, ~48!
et-
s

the

an
rva-
se

and

icz

ure

e

where

h15
G~c!G~c2a2b!

G~c2a!G~c2b!
,

h25
G~c!G~a1b2c!

G~a!G~b!
. ~49!

Applying this to Eq. ~47! we see that generically for th
modes withv.0 that we are looking for, the leading term a
r→1/L is O@(12L2r 2)2v/2L#. Inserting this and Eq.~41!
into the normalization condition~28! we see that the solution
is not square integrable at the horizon. Furthermore, the
lution does not satisfy the boundedness requirement bec
F, and hencew, diverges at the horizon. However, ifC is
real andC.31d for some mode, which requires

lmin,24d, ~50!

then we may set

1There is a subtlety here which is that ifd is odd thena2b is a
negative integer and one of these gamma functions diverges. H
ever, the solution~47! that we obtain is the solution which decays
infinity even in these cases.
o-
se

v5S C232d

2 DL.0. ~51!

For this mode we have thath150 and h251 in Eq. ~48!
because one of theG functions in the denominator ofh1
diverges. Another way of seeing this is that the hypergeom
ric function is just a polynomial in this case. It then follow
from Eq.~48! that the mode now has a better behavior at
horizon, going asO@(12L2r 2)v/2L#. In particular it is nor-
malizable and bounded at the horizon. Therefore it gives
instability. Because the base manifold has negative cu
ture, the arguments of Appendix A do not apply in this ca
and therefore we do not know about the effect of scalar
vector modes. The statement we can make is thatif the base
of a massless topological black hole has a Lichnerow
spectrum satisfying Eq. (50) then it is unstable. Some results
on the Lichnerowicz spectrum for negative scalar curvat
Einstein manifolds are collected in Sec. V.

2. Brane world metric

Here f (r )5r 2. The base manifold is Ricci flat becaus
e50. The metric is more familiar in terms ofz51/r

ds25
1

z2
~dz22dt21ds̃d

2!. ~52!

w-
4-7
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The r coordinate extends from the origin to infinity. Th
metric is of the general brane world form considered
@17,18#. More general such metrics will be studied in th
section below on time dependent solutions.

The potential~27! is

V~r !5l1
~d212d!r 2

4
. ~53!

The starred coordinate~25! is just r * 52z. The Schro¨dinger
equation~26! may be solved exactly in this case. The gene
solution is

F~r !5Ar21/2I (11d)/2SAl1v2

r D
1Br21/2K (11d)/2SAl1v2

r D , ~54!

whereA,B are constants andI n ,Kn are the modified Besse
functions. We need to take the real or imaginary part depe
ing on whetherAl1v2 is real or imaginary. The term with
the I n function is always normalizable~28! as r→`, going
asO(r 2(21d)/2). The term with theKn function diverges as
O(r d/2) as r→` and hence is never normalizable becau
d.1, althoughw is bounded. We must then check theI n

solution asr→0. In terms ofz, the normalizability condi-
tion, with an implied real or imaginary part being taken, i

E
0

`

zI(11d)/2
2 ~zAl1v2!dz,`. ~55!
if

d
rg
s

ta
pe

06402
l

d-

e

If l1v2.0 then the integrand diverges exponentially asz
→`. There was no chance of a solution in this case beca
the energy,2v2, would have been lower than the minimu
of the potentiall. If l1v2,0 then the integrand oscillate
with constant magnitude asz→`. In either case, normaliz
ability cannot be enforced. Furthermore,w5Fr 2d/2 is seen
to diverge asr→0 and so the boundedness condition is n
satisfied. Therefore there are no finite energy solutions
the brane world metric (52) isstableunder this perturbation,
independent of the base manifold.

3. Schwarzschild–Tangherlini–anti–de Sitter black holes

Setc52L2 ande511. If a50 then we have a gener
alized anti–de Sitter space that describes the asymptotics
Schwarzschild–Tangherlini–anti–de Sitter black hole. T
function f (r ) is

f ~r !511L2r 2. ~56!

There are no horizons. The potential is now

V`~r !5Fd2210d1814l

4r 2
1

~d212d!L2

4 G ~L2r 211!.

~57!

Two exact solutions to the Schro¨dinger equation are
rent
oing as
F6~r !5r (16C8)/2~11L2r 2!2 iv/2L
2F1S 2 iv

2L
1

12d6C8

4
,
2 iv

2L
1

31d6C8

4
;
26C8

2
;2L2r 2D , ~58!

with C85A(d25)224(42l). This is fairly similar to the topological black hole case, but we now need to consider diffe
limits. By exactly the same arguments as for the topological black hole, the solution that is well behaved at infinity, g
O(r 2(21d)/2), is

F3~r !5r 2(21d)/21 iv/L~11L2r 2!2 iv/2L
2F1S 2 iv

2L
1

31d1C8

4
,
2 iv

2L
1

31d2C8

4
;
612d

4
;

21

L2r 2D . ~59!
s-
bout
me
o-

the
.

er,
/

By using Eq.~44! again, we see that the behavior asr→0 is

O(r (12C8)/2). This both converges and is normalizable
d2210d1814lmin,0 which is unsurprisingly also the
condition for the potential~57! to be negative and indee
unbounded below. There is a continuum of negative ene
bound states withv.0 in this case. None of these solution
satisfies the boundedness condition becausew5Fr 2d/2 al-
ways diverges at the origin. Thus the massless case is s
against the perturbation. The phenomenon of the hy
geoemtric series terminating for special values ofv to give a
well behaved mode does not occur here because of thei in
front of thev in Eq. ~59!. More interestingly, if
y

ble
r-

lmin,42
~52d!2

4
, ~60!

then the solution is oscillatory in the inner regions. The o
cillatory behavior suggests we can make a statement a
massive black holes also. The condition is clearly the sa
~34! as we found before in the case of a vanishing cosm
logical constant. This is perhaps not surprising given that
potentials, Eqs.~31! and ~57!, are the same near the origin
The comments of Sec. III B should go through. Howev
there is now a second length scale in the problem, 1L,
4-8



-

GRAVITATIONAL INSTABILITY IN HIGHER DIMENSIONS PHYSICAL REVIEW D 66, 064024 ~2002!
TABLE III. Lowest bound states for thel5lc21,d54 (D56) generalized Schwarzschild-AdS solu
tion.

L M5aL Lower bound forvmax Upper bound forvmax

0 0 0.1331 0.1335
0.01 0.0100003 . . . 0.131 0.132
0.05 0.04004 . . . 0.0591 0.00599
0.055 0.05505 . . . 0.0264 0.0269
0.057 0.05706 . . . 0.0005 0.00051
.0.058 0.05806 . . . Nosolutions found
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which could delay the onset of the oscillations until beyo
the event horizon, in which case there will be no solution a
no instability.

A few things may be said more concretely. In the mass
case,

f ~r !512S a

r D d21

1L2r 2. ~61!

The potential becomes

V~r !5V`~r !1
1

a2 S a

r D d11F10d2824l22dL2r 2

4

2S a

r D d21 d2

4 G . ~62!

The potential has the expected property that it vanishes a
horizon, where f (r )50. Furthermore, whend2210d18
14l.0 it is everywhere positive, as was the asympto
~massless! potential~57!. Thus there will be no instability in
these cases. We now need to see numerically when a sol
exists and what the role of the new length scale is.

4. Numerical results for Schwarzschild–Tangherlini–
anti–de Sitter black holes

We wish to use the methods of Sec. III B 2 to examine
effect of the new length scale 1/L. First note that the Schro¨-
dinger equation is now invariant under the scalinga
→ka,r→kr,v→v/k,L→L/k. Previously, when there wa
no L we used this to seta51, which was the location of the
horizon. Again, we want to scale the horizon to 1. This w
now require scaling so thata5(11L2)1/(d21). There is a
scale-invariant dimensionless mass

M5aL, ~63!

which allows us to talk about large and small black ho
independently of the scaling used. We expect the criterion
instability to be the same as for Schwarzschild black ho
~34! when the AdS black hole is smallM→0. As we in-
creaseM we expect the black hole to be stabilized by t
cosmological constant. This behavior indeed happens an
illustrated in Table III. The numerics were done as in S
III B 2. For the cased54 ~hence spacetime dimensionD
06402
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56) and withl satisfying the instability criterion byl5lc
21 we see that the unstable mode is stabilized ifM
.0.058 . . . .

This will be the generic behavior.A given base space wil
have a minimum Lichnerowicz eigenvalue,l. If this is less
than the critical valuelc then we can find a critical value fo
the dimensionless mass, Mc , such that if Mc,M then the
unstable mode is stabilized. If Mc.M then the AdS black
hole is unstable. Alternatively, we could think of the mass a
altering the expression forlc .

5. Schwarzschild–Tangherlini–de Sitter black holes

Set c5L2 and e511. This gives us a generalize
Schwarzschild–Tangherlini–de Sitter black hole. We hav

f ~r !512S a

r D d21

2L2r 2. ~64!

There is a cosmological horizon at finite radius, and the
fore we cannot discuss an asymptotic solution to the Sch¨-
dinger equation, because the mass term is not negligible
the horizon. We have all the information necessary to tac
this problem numerically, but various cases must be con
ered separately depending on the values ofa andL. This is
somewhat out of the main line of development of this wo
and so it will not be considered here.

IV. TIME-DEPENDENT SOLUTIONS

A. Generalized de Sitter space

The metric form~10! also covers a range of cosmologic
solutions. For example, a generalized de Sitter metric may
written

ds25
2dr2

L2r 221
1r 2ds̃d

2 , ~65!

wherer is the time coordinate now andL is a constant. This
is of the form~10! with f 50. Note thatd would now be 3,
not 2, in the usual four dimensional case. Consider a per
bation, using the same notation as in Eq.~22!,

hab~x!5h̃ab~ x̃!r 2w~r !, ~66!

and impose the Einstein equation,dRab5dL2hab . There is
now a cosmological term which is that of ordinary de Sit
4-9
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GARY GIBBONS AND SEAN A. HARTNOLL PHYSICAL REVIEW D66, 064024 ~2002!
space inD5d11 dimensions. The equation for the pertu
bationw is most familiar in terms of the coordinates

coshLt5Lr , ~67!

where the metric becomes

ds252dt21
cosh2Lt

L2
ds̃d

2 , ~68!

and Eq.~14! becomes the equation for a scalar field on
Sitter space

d2w

dt2
1dL tanhLt

dw

dt
1

L2

cosh2Lt
~l1222d!w50.

~69!

This provides a check on our expression~14! and also shows
that at late times ast→` the leading term in each of the tw
linearly independent solutions is

w;A1Be2dLt ~70!

with A,B constants.Thus perturbations are frozen in, inde
pendent of the dimension and the form of the base Eins
manifold B. This is just the behavior of such perturbations
standard four dimensional inflationary metrics@29#.

B. Generalized anti–de Sitter space

Generalized anti–de Sitter space can be treated simil
Write the metric as

ds25
2dr2

2L2r 211
1r 2ds̃d

2 , ~71!

where againr is the time coordinate andL a constant. The
base manifoldB must now have negative curvature a
would be Hd for anti–de Sitter space itself. Consider th
perturbation

hab~x!5h̃ab~ x̃!r 2w~r !, ~72!

and impose the Einstein equation,dRab52dL2hab . This is
as for the de Sitter case considered previously but wit
negative cosmological constant. The familiar coordinates
the space are

sinLt5Lr . ~73!

The metric in these coordinates is

ds252dt21
sin2Lt

L2
ds̃d

2 . ~74!

These coordinates make explicit the big bang and big cru
singularities att50 and t5p/L, unless the spacetime i
anti–de Sitter. The equation for the perturbation become
06402
e

in

ly.

a
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h

d2w

dt2
1dL cotLt

dw

dt
1

L2

sin2Lt
~l12d22!w50. ~75!

The general solution to this equation is

w5A~sinLt !(12d)/2P(d21)/2
C/2~cosLt !

1B~sinLt !(12d)/2Q(d21)/2
C/2~cosLt !, ~76!

where A,B are constants and as beforeC
5A(d25)224(41l). Pn

m and Qn
m are Legendre func-

tions of the first and second kind, respectively. These may
expressed in terms of hypergeometric functions as follo
@30#:

Pn
m~x!}~x221!m/2xn2m

3 2F1S m2n

2
,
m2n11

2
;
1

2
2n;

1

x2D ,

Qn
m~x!}~x221!m/2x2n2m21

3 2F1S n1m11

2
,
n1m12

2
;n1

3

2
;

1

x2D .

~77!

In the present casex5cosLt with 0<t<p/L. Thus we need
to check regularity properties att50,p/2L,p/L, correspond-
ing to x51,0,21.

It is easy to check using Eq.~44! that both solutions are
finite at t5p/2L, that isx50. Further, it is clear from Eqs
~77! and~76! that behavior ast→p/L will be the same as for
t→0, up to phases in front of each Legendre function.
particular this means that regularity properties will be t
same at these points. Both solutions of Eq.~76! diverge as
O(t (12d2C)/2) as t→0. Therefore they also diverge ast
→p/L. However,t50 is a regular singular point of Eq.~75!
and therefore there will be a linear combination of the
solutions that has the other allowed power law behavior
t→0, namelyO(t (12d1C)/2). This will be oscillatory and
divergent ifC is pure imaginary. IfC is real it will converge
if C>d21 and diverge otherwise. There is also the pos
bility that well behaved modes will exist for special values
C where the hypergeometric function becomes a polynom

The main conculsion of the previous paragraph is t
there are always modes that if excited at some finite time
diverge in the future.Thus this AdS cosmology is unstab
independent of the base manifold and the dimension.

C. Ricci flat Lorentzian base „brane world metrics II …

Let the baseB be ad-dimensional Ricci flat spacetime
Suppose we know the spectrum of Lichnerowicz modes oB
with eigenvaluesl and such that the modes grow in time.
particular, if this spectrum includes a zero mode, then
spacetimeB is unstable.

The spacetime B may be embedded in a
D5(d11)-dimensional Einstein manifold with negativ
scalar curvature
4-10
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GRAVITATIONAL INSTABILITY IN HIGHER DIMENSIONS PHYSICAL REVIEW D 66, 064024 ~2002!
ds25
1

z2
~dz21ds̃d

2!5
dr2

r 2
1r 2ds̃d

2 . ~78!

For example, ifB is a black hole metric we obtain a blac
string in AdS spacetime. The change of variables in Eq.~78!
is of courser 51/z. We would like to see whether this spac
time is unstable under any of the growing modes inB. Con-
sider the perturbation

hab~x!5r 2w~r !h̃ab~ x̃!, ~79!

where h̃ab is a Lichnerowicz eigenmode on the base w
eigenvaluel. From Eq.~14!, ignoring the terms withf ’s, the
equation forw(r ) coming fromDLhab522dhab is

d2w

dr2
1

d11

r

dw

dr
2

lw

r 4
50. ~80!

The general solution to this equation forl.0 is

w~r !5Ar2d/2I d/2S l1/2

r D1Br2d/2Kd/2S l1/2

r D , ~81!

whereA,B are constants andI m ,Km are the modified Besse
functions. Ifl,0 then the expression is most transparen
we let l→2l and replaceI m ,Km by the Bessel functions
Jm ,Ym . Finally, if l50 then the solution is

w~r !5A1Br2d. ~82!

To see which, if any, of these solutions are acceptable
need to find the energy of the perturbations. Assuming thaB
has a timelike Killing vector, this is similar to the argume
in Sec. III A

E}E tmnnmjnAg(d)ddx

5E tmnnmjnAg̃(d21)r d22drdd21x̃

;E w2r d23dr, ~83!

where we used the metric~78! and n0}r , j0}r 2, t00

;w(r )2. Note thatg̃(d21) is the spatial metric onB. It is
easy to see that the normalization condition~83! is the same
as norm of Eq.~80! cast in Sturm-Liouville form. The eigen
value of the Sturm-Liouville problem is nowl and the
weight function is seen to ber d23, consistent with Eq.~83!.
The boundedness condition in this context is simply t
w(r ) remains finite in the range 0<r ,`.

If there is al50 mode, thed dimensional spacetimeB is
unstable. However, from Eq.~82! it is clear that none of
these solutions is normalizable in the (d11)-dimensional
spacetime. Further, all except the constant solutions are
bounded. Therefore the unstable mode does not carry ov
the full spacetime because it no longer has finite energy.
06402
f
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For l.0 we see that the term with theI m Bessel function
has an exponential divergence asr→0 while the term with
theKm Bessel function goes to zero exponentially and he
is normalizable at the origin. However, this term goes
O(r 0) asr→` and hence, although bounded, is not norm
izable at infinity becaused>2. Thus there are no normaliz
able solutions withl.0.

For l,0, asr→`, the term with theYm Bessel function
goes asO(r 0), and therefore is not normalizable at infinit
The term with theJm Bessel function goes asO(r 2d) and
therefore is normalizable. Asr→0, theJm term oscillates as
O„r (12d)/2cos@(2l)1/2/r )] … and hence is not normalizabl
~83! or bounded asr→0. Thus there are no normalizab
modes of this type.

In conclusion, embedding a Ricci flat spacetimeB into a
higher dimensional spacetime with a cosmological cons
as in Eq.~78! will stabilize at the linear level any unstabl
modes ofB. Furthermore, no other unstable modes of t
form we consider appear. This should be contrasted wit
similar embedding into a higher dimensional Ricci fl
spacetime where the stability properties get worse due
negative Lichnerowicz modes in the initial spacetime@31#,
such as the Gregory-Laflamme instability of nonextrem
black strings @32,33,25#. It was argued in@34# that a
Gregory-Laflamme instability existed also for black strin
in AdS spacetime. However, the perturbed mode prese
there, which agrees as a special case with the modes we
just considered, did not haveha

b bounded as is required in
linearized analysis. The phenomenon of perturbations
brane world metrics diverging in the bulk has been obser
before@35# and is related to the bad behavior of the curvatu
at the horizon. Bounded modes, and hence the instab
could reappear if one modifies the setup, such as by addi
negative tension brane at finite position.

One might worry that the instability of a very thin sho
black string should not be affected by immersion in
anti–de Sitter spacetime with a large radius. This may w
be true. However, if one assumes that the black string r
all the way to the horizon there seems to be no way of avo
ing our conclusions, although there is already a singula
near the horizon in the unperturbed metric@36#. The methods
used here can say very little about what would happen fo
‘‘cigar-like’’ black string configuration.

D. Double analytic continuation

Higher dimensional versions of the Schwarzschild bub
solution @19# have been considered recently in a search
well-behaved time dependent backgrounds in which to st
string theory@37#. Ultimately the Kerr solutions turn out to
be more appropriate, but the Schwarzschild case cont
many of the relevant features. The solution, obtained
double analytic continuation of the Schwarzschil
Tangherlini solution is

ds25F12S a

r D d21Gdc21
dr2

12S a

r D d21

1r 2~2dt21cosh2tdVd21
2 !, ~84!
4-11
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where r>a, c has period 4pa/(d21) anddVd21
2 is the

round metric onSd21. The coordinatec5 i t is the Wick
rotated time from the black hole solution andi t5u
2(p/2), whereu was the usual angular parameter onSd and
t is now the time ondSd . Recently, such ‘‘bubbles of noth
ing’’ have also been considered by analytically continui
AdS-Schwarzschild black holes@38,39#.

A classically stable background is needed for str
theory. Classical instabilities are manifested in the str
worldsheet theory as a renormalization group flow aris
from higher string loops with a fixed point that is not close
the original background in string units.

It was argued in@37# that the classical stability of Eq.~84!
follows from the classical stability of the correspondin
black hole solution. Any mode on the bubble must be pe
odic in thec variable. Bute2 ivc5ewt, so these correspon
to growing modes of the black hole with certain frequenc
v allowed by the periodicity ofc. Furthermore, the part o
the black hole mode that is a harmonic onSd becomes a
harmonic ondSd with the same eigenvalue. In the four d
mensional case of@8–10# these modes are scalar and vec
harmonics, while in our case we are considering tensor
monics @12#. The equation for the radial dependence is
same in the black hole and bubble cases and therefore
criterion for the existence of solutions is the same. On
sphere, the harmonics are trigonometric functions ofu and
these become hyperbolic functions oft, which correspond to
growing and hence unstable modes on the bubble.

The conclusion of the previous paragraph is that any
stable mode on the black hole with appropriatev signals an
unstable mode on the bubble. Conversely, any mode on
bubble signals an unstable mode on the black hole. Thus
have extended the stability arguments of the higher dim
sional Schwarzschild bubble in@37# to include the tensor
mode that is being considered throughout this paper.

There is a subtlety, however. After doing the double a
lytic continuation, we must redo the calculations of ene
because the timelike Killing vector has changed, if inde
there is still a timelike Killing vector at all. The calculation
very similar to the Lorentzian base case~83!. There will
typically be horizons on the base manifold across which
Killing vector changes sign, as in the de Sitter base of
~84!. In this case, the integration over a spacelike hypers
face of the base should be restricted to the region inside
horizon. The integration overr is not changed,

E}E tmnnmjnAg(d11)dd11x

;E t00n0j0Ag̃(d21)r d21drdcdd21x̃

;E w2r d22dr5E F2r 22dr, ~85!

which is indeed different from the energy of the correspo
ing black hole perturbation~29!. As a check of this expres
sion, we can see that this is the same normalizability con
tion that we get from the Sturm-Liouville problem forw.
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The Sturm-Liouville equation remains~24!, but the eigen-
value associated with time evolution is no longerv, but
ratherl, as was commented on for the case of the Lorentz
base. The weight function is thus seen to ber d22 rather than
the r d/ f that we had for the black hole. This is in agreeme
with Eq. ~85!. The condition for boundedness remains t
same:w must not diverge. We may now go through the r
sults from the black hole spacetimes of Sec. III again a
recheck for finite energy using Eq.~85!. We see that the
existence and nonexistence of finite energy solutions rem
the same in each case.

If the Euclidean metric on the base manifoldB of the
generalized black hole solutions, Eqs.~10! and ~21!, admits
an analytic continuation to a Lorentzian metric, then o
may construct a generalized ‘‘bubble of nothing’’ with metr

ds25 f ~r !dc21
dr2

f ~r !
1r 2ds̃d

2 , ~86!

with the notation of Eq.~84! and nowds̃d
2 is a Lorentzian

metric.
Assuming that the tensor harmonics on the Lorentz

base manifold are growing modes in time, the argument
the Sd above case goes through also in the generalized c
Stability is thus related to the stability of a generalized bla
hole solution. We could also see this directly from the re
tionship between the Lichnerowicz operator on the full ma
fold and on the base~14!: perturbations of Eq.~86! that are
periodic inc will give the same radial equation as perturb
tions of the generalized black hole metrics with exponen
growth in t. Thus, for example, in the generalize
Schwarzschild-Tangherlini case, the criterion~34! will be the
same. However, there is an important caveat: the frequen
that cause instabilities for the generalized black hole w
only cause an instability in the bubble spacetime if they
spect the periodicity ofc, that is

v5
N~d21!

2a
, NPZ. ~87!

In practice, this is unlikely to be true for any of the boun
states in the discrete spectrum. Therefore we expect tha
bubble spacetimes will generally be stable against the pe
bation even when they violate the criterion~34!.

V. SPECTRA OF THE LICHNEROWICZ OPERATOR

This section collects and applies mostly known resu
about the spectrum of the Lichnerowicz operator on vario
Einstein manifolds. In our considerations of the static metr
above we found that in the case of Schwarzsch
Tangherlini, Schwarzschild–Tangherlini–anti–de Sitter a
topological black holes, stability of the spacetime against
perturbation ~12!,~13! depends on the spectrum of th
Lichernowicz operator on the base manifoldB ~34!. The ob-
jective of this section is to check that the cases we expec
be stable, i.e. round spheres, are stable and also to find
amples of spaces that are not stable, thus showing tha
criterion for instability is not vacuous. It would be nice t
4-12
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have more spectra at hand, in particular for Einstein ma
folds that are topological spheres such as the Bohm me
@7#. We discuss first Einstein manifolds of positive sca
curvature, relevant for the Schwarzschild and Schwarzsch
AdS cases. We then discuss manifolds of negative scalar
vature, which are relevant for the topological black holes

In this section, tildes will be omitted from the metric pe
turbations on the base manifoldB and we will consider trans
verse trace-free perturbations

gab→gab1hab , ha
a5¹ahab50. ~88!

DefineL by Rab5Lgab .

A. Round spheres

When the base manifold is a unit sphere, asymptotic
conical ~AC! just means asymptotically flat~AF!. The unit
sphereB5Sd has curvature

Rabgd5gaggbd2gadgbg , ~89!

and therefore the Lichnerowicz operator is

~DLh!ab5~2¹2h!ab12dhab . ~90!

However, the Laplacian on the sphere is a positive oper
and thereforelmin>2d. In fact, the spectrum of transvers
trace-free tensor harmonics onSd, d>3, is known to be@40#

~2¹2h!ab5@k~k1d21!22#hab . ~91!

But 2d is larger than the critical eigenvalue of Eq.~34! for
all d, and therefore the spacetime is stable against this
turbation. In particular this means that the A
Schwarzschild-Tangherlini black holes are stable to the p
turbation, as we should expect. The spectrum of quotient
the sphere by a finite group has the same lower bound an
the resulting ALF spaces also give stable black holes.

B. Product metrics

Let the base be metrically a product of Einstein ma
folds. It is well known@41,21# that there is a Lichnerowicz
transverse trace-free zero mode in which one componen
pands and the other shrinks, keeping the total volume c
stant. Specifically, if the metric decomposes as

ds̃d
25dsn

21dsd2n
2 , ~92!

then the mode

hab5S e

n
gn

2e

d2n
gd2n

D
ab

, ~93!

is easily seen to be trace-free, transverse and with a
Lichnerowicz eigenvalue. Comparing with Eq.~34!, this im-
plies that the spactime is unstable with a product base
d,9. It is intriguing that this is the same critical dimensio
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for instability as was found in the context of generaliz
Freund-Rubin compactifications to AdS3Bd @21#, where the
general dependence on the dimension is different.

C. Five and seven dimensional base

In five dimensions, one has the Einstein manifoldsTpq

which areU(1) bundles overS23S2. See e.g.@22# for the
metric and other details. We will not make their choice
normalizationa51 anda will appear as a parameter relate
to the overall scale of the metric. Instead we require thaL
54, as this is the normalization of the unit sphere in fi
dimensions. We have@22#

S q

pD 2

5
128a2

~4a221!~12a221!2
, ~94!

which is seen to imply

1

8
<a2<

1

4
. ~95!

The minimum Lichnerowicz eigenvalue is

lmin5@12a22A784a42240a2120#
1

a2
. ~96!

The critical value in four dimensions~34! is lc54. For the
range ofa2 in Eq. ~95!, we see thatlmin<lc , with equality
occurring for theT11 case wherea25 1

6 . Thus theT11 black
hole is stable while all the otherTpq black holes are unstable
This is precisely the behavior that was observed in the c
text of Freund-Rubin compactifications in@22#.

In seven dimensions, the Einstein manifoldsM pqr, which
are U(1) bundles overCP23S2, and Qn1n2n3, which are
U(1) bundles overS23S23S2, have been studied in th
context of Freund-Rubin compactifications@42,43#. Again,
results will be quoted. Interestingly enough, in seven dim
sions the manifolds with the required normalization,L56,
turn out to be stable precisely when the correspond
Freund-Rubin supergravity compactifications are stab
Thus the bounds we obtain are familiar.

For M pqr, the stability depends onp/q andL as follows:

lmin5LF414x22~25248x132x2!1/2

112x G , ~97!

wherex is defined by

S p

qD 2

5
2x21

x2~322x!
. ~98!

This implies 1
2 <x< 3

2 . We are interested in the caseL56.
Given that the critical value in seven dimensions islc53
~34!, we have that the solution will be stable to this pertu
bation for

9

14
'0.64 . . .,x,1.15 . . .'

39

34
, ~99!
4-13



n

le
n

hi
th
so
s.
v

-

th
T

n

w
s
m
.

it

o

ays

free
-
uch

t
ani-

rba-
ator

ck
on
of

he
dS
me

and

n

do
of

rba-
de

, are
ce-

be
tive
or-
bi-

m
the
for
us

le
e of
ore
an

edo
ged.
ation
of
of
of

ase
n of

not
et-
ay
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and unstable forx outside this interval. Translated into a
interval for p/q this becomes

7A6

27
'0.63 . . .,UpqU,1.18 . . .'

17A66

117
. ~100!

Thus for this range ofp,q we have solutions that are stab
against perturbations of the kind considered in this work, a
therefore stable overall in the cases of Appendix A. T
means that the Schwarzschild-Tangherlini solution with
sphere as base space is not the only classically stable
tion of the form~10!, contrary perhaps to initial expectation
These spaces are not necessarily simply connected, ha
fundamental groupZr .

The situation is more complicated forQn1n2n3. We have
lmin5gminL, wheregmin is the smallest root of

g326g2120~a1a21a2a31a3a1!g256a1a2a350,

~101!

with the a i ’s defined by

S n1

n2
D 2

5
a1~11a2!2

a2~11a1!2
1cyclic

a11a21a351. ~102!

We will look at the simplified case in whicha25a3, imply-
ing n25n3. Further, setL56. The resulting range of stabil
ity to this perturbation is found to be@43#

3A2

5
'0.85 . . .,Un2

n1
U,1.18 . . .'

17A66

177
. ~103!

Again we have found a countable infinity of AC
Schwarzschild-Tangherlini solutions that are stable to
perturbation. The upper bound is the same as previously.
fundamental group isZk , wherek is the greatest commo
divisor of n1 ,n2 ,n3.

Finally, because the bound for stability on the Lichnero
icz operator is the same for a seven dimensional base a
Freund-Rubin bound, all the manifolds that are supersy
metric in the supergravity context give a stable spacetime
list of such spaces can be found in@44#; examples are the
squashed seven sphere andSO(5)/SO(3)max.

D. Negative scalar curvature manifolds

Hyperbolic space and its quotients by appropriate fin
groups have curvature

Rabgd52gaggbd1gadgbg , ~104!

and therefore the Lichnerowicz operator is

~DLh!ab5~2¹2h!ab22dhab . ~105!

The rough Laplacian is a positive definite operator on n
malizable modes and therefore the Lichnerowicz spectrum
bounded below by22d. Comparing with Eq.~50! we see
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that the corresponding topological black holes are alw
stable against the tensor perturbations.

The spectra of negative scalar curvature Einstein-Ka¨hler
manifolds were studied in@45# with the result that for these
manifolds the Lichnerowicz operator on transverse trace-
tensors is bounded below by 222d. Therefore these mani
folds always give black holes that are stable against s
perturbations.

VI. CONCLUSIONS AND OPEN ISSUES

Let us summarize the results of this paper.
~a! Spacetimes of the form~10! admit perturbations tha

are transverse trace-free tensors on the base Einstein m
fold. The stability of these spacetimes against such pertu
tions depends on the spectrum of the Lichnerowicz oper
on the base manifold.

~b! Higher dimensional generalized Schwarzschild bla
holes are stable if and only if the Lichnerowicz spectrum
the base manifold is bounded below by the critical value
Eq. ~34!. This statement includes all perturbations to t
spacetime. The same criterion holds for Schwarzschild-A
black holes, although in this case large black holes beco
stabilized. Examples of base manifolds leading to stable
unstable black holes are given in Sec. V.

~c! ~Generalized! topological black holes have a criterio
for instability due to tensor modes on the base~50!. An
Einstein-Kähler base always gives a stable black hole, as
quotients of hyperbolic space. The brane world metrics
Sec. III C 2 are always stable against these tensor pertu
tions. Time-dependent tensor pertubations in generalized
Sitter spacetime, considered as a cosmological spacetime
always frozen in while in generalized anti–de Sitter spa
time they always include an unstable mode.

~d! A spacetime with no cosmological constant may
embedded in a higher dimensional spacetime with a nega
cosmological constant. Lichnerowicz zero modes which c
respond to instabilities of the initial spacetime become sta
lized. At the linearized level, no new instabilities of the for
we consider are introduced. In particular this means that
perturbative Gregory-Laflamme instability does not occur
AdS black strings in five dimensions, contrary to previo
claims @34#. See the discussion in Sec. IV C.

~e! Double analytic continuation of generalized black ho
spacetimes, if admissible, produces a generalized ‘‘bubbl
nothing’’ spacetime. These spacetimes are generically m
stable to the analytically continued tensor perturbation th
the corresponding black hole. However, one needs to r
energy calculations because the time direction has chan

Some issues remain to be addressed. For the perturb
analysis, these include a numerical study of the stability
generalized de Sitter black holes, an explicit calculation
the vector and scalar modes to confirm the arguments
Appendix A and to extend them to cases where the b
manifold has negative or zero curvature and an extensio
the arguments to nonvacuum solutions.

Regarding the Lichnerowicz spectrum, the spectrum is
known for many interesting metrics, such as the Bohm m
rics. It is possible that the methods of the present work m
4-14
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TABLE IV. Available tensors on the base manifold.

Free base indices Tensors Vectors Scalars

Two h̃ab and (D̃Lh̃)ab ¹̃(ah̃b) ¹̃(a¹̃b)h̃ and g̃abh̃
One h̃a and (D̃Vh̃)a ]̃ah̃
None h̃ and D̃Sh̃
e
se
o

al
a

tti
.

e
ize

n
th
o-
n

a

s
rre
ini
ld

e

n

nd-

ach
po-
e
ua-
se
ear

r-

ond-
e

e is
of

n
we

era-
r
the

ly

a-

in
n
ore
ase

fer-

ted
his
be used to study aspects of this spectrum.
In other directions, it might be interesting to see wheth

rotating black holes admit a similar generalization, and to
whether these instabilities are useful in the context
gravity-gauge theory dualities.
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APPENDIX A: SCALAR AND VECTOR MODES

We argue here that if the Einstein base manifoldB is
compact, Riemannian and withe51, then the scalar and
vector modes will not produce instabilities in the spacetim
under consideration. In particular, this covers the general
Schwarzschild-Tangherlini~-AdS! cases in which we found a
criterion for instability from the tensor modes.

The argument has two steps. First, we will recall@21# that
the scalar and vector second order differential operators oB
are bounded below by their minimum eigenvalue on
sphereSd. Secondly, we will show that the equations of m
tion for these modes depend on the base manifold o
through these differential operators. We will useh̃ andh̃a to
denote generic scalar and vector modes on the base m
fold.

The second order differential operator on scalars isD̃Sh̃

52¹̃a¹̃ah̃. This is non-negative on compact manifold
without a boundary. There is always a zero mode co
sponding to a constant field. In particular, zero is the m
mum eigenvalue onSd and also on any other such manifo
B.

The second order differential operator on vectors inB is
(D̃Vh̃)b52¹̃a¹̃ah̃b1(d21)h̃b . By considering

E
B
~¹̃ah̃b1¹̃bh̃a!~¹̃ah̃b1¹̃bh̃a!>0, ~A1!

an integration by parts shows that for all eigenvaluesl of
D̃V , we havel>2(d21). We have used the fact that th
base manifold is Einstein with the same scalar curvature
the unit sphere of appropriate dimension. The inequality
saturated by modes that are Killing vectors. It is well know
that the minimum eigenvalue ofD̃V on Sd is precisely 2(d
21) @12#. Therefore
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lmin
B >lmin

Sd
. ~A2!

The equations for the various modes are found by expa
ing the linearized equations

1

2
~D̃Lh!ab5c~d11!hab , ~A3!

into harmonics on the base manifold and considering e
linearly independent term separately. The various com
nents of Eq.~A3! may be classified by the number of fre
indices on the base manifold: two, one or none. Each eq
tion can then be written so that it is tensorial on the ba
manifold. There are not many tensors available that are lin
in the perturbation, they are shown in Table IV.

Multiplying these tensors in each equation will be diffe
ential expressions involving functions ofr and t, but the t
dependence is just an exponential. The equations corresp
ing to the terms along the diagonal of Table IV will be of th
form

F@] r
2w I ,] rw

I ,w I #D̃h̃1G@] r
2w I ,] rw

I ,w I #h̃50, ~A4!

where F,G are functionals of the radial functionsw I(r ).
Here I indexes the scalar or vector modes because ther
more than one mode of each type in the decomposition
hab . In this equationh̃ andD̃ represent a harmonic mode o
the base and the corresponding differential operator. But
have decomposed into harmonics of these differential op
tors, soD̃h̃5lh̃. This then gives a differential equation fo
thew I(r ) that only depends on the base manifold through
eigenvaluel

F@] r
2w I ,] rw

I ,w I #l1G@] r
2w I ,] rw

I ,w I #50. ~A5!

Above the diagonal in Table IV we see that there is on
one possible term in each case, after noting that¹̃(a¹̃b)h̃ does
not arise from Eq.~A3!. Therefore the corresponding equ
tions will be of the form

H@] r
2w I ,] rw

I ,w I #¹̃h̃50, ~A6!

where¹̃h̃ is one of the tensors from above the diagonal
Table IV. But this simply implies the differential equatio
H50, with no dependence on the base manifold. Theref
the equations for the perturbations only depend on the b
manifold through the eigenvalues of the second order dif
ential operators on the base.

As we saw for the tensor mode, instabilities are associa
with the eigenvalue being less than some critical value. T
4-15
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is the generic situation and should be thought of as being
to a sufficiently negative mass squared. However, in the
part of this appendix we saw that the eigenvalues for
scalar and vector perturbations were bounded below by
minimum eigenvalues on the sphere of the given dimens
and unit radius,Sd. It is expected, but to our knowledge n
proven, that the standard Schwarzschild-Tangherlini
Schwarzschild-AdS black holes are stable against these
tor and scalar perturbations and therefore these eigenva
must be larger than any critical value. This suggests that
vector and scalar modes do not contribute towards the in
bility of the generalized Schwarzschild-Tangherlini a
Schwarzschild-AdS black holes that we have been consi
ing in this work. It would be nice, however, to check th
explicitly from a perturbation analysis.

APPENDIX B: TRANSVERSE TRACEFREE GAUGE

Here we show that one may impose the trace-free co
tion in addition to the transverse condition for vacuum spa
times with a cosmological constant. This extends a fami
argument to the case of a nonzero cosmological cons
Suppose the background spacetime ind12 dimensions sat-
isfies thevacuumfield equations, possibly with a cosmolog
cal constant,

Rab5c~d11!gab , ~B1!

then considering perturbations that are transverse in the s
of Eq. ~16! one may take the trace of the perturbed equati

1

2
~DLh!ab5c~d11!hab

⇒hha
a12c~d11!ha

a

50. ~B2!

Consider solving the residual gauge freedom equations~17!
subject to the following initial conditions on the spaceli
hypersurface,t5t0:

2~¹0j01¹mjm!52ha
a ,

2@2¹m¹mj01¹m¹0jm22c~d11!j0#52¹0ha
a ,

~B3!

wherem runs over the spatial indices. These equations m
always be solved forj anddj/dt on the hypersurface. Thes
initial data then define a vector fieldj in the causal future of
the hypersurface using the residual gauge equation~17!. We
can show that this vector field gives a gauge transforma
which sets the trace to zero. Definef 5ha

a12¹aja . The
initial conditions ~B3! and ~17! are seen to imply thatf
5d f /dt50 at t5t0. Now find the equation satisfied byf,
using Eqs.~B2! and ~17!:

h f 5hh12h¹aja

522c~d11!ha
a12¹ahja22c~d11!¹aja
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522c~d11!@ha
a12¹aja#

522c~d11! f . ~B4!

We see that, perhaps unexpectedly, the equation forf has no
source term. This fact implies that the vanishing initial co
ditions forcef to vanish identically in the causal future of th
initial hypersurface. Issues of global hyperbolicity of the in
tial spacetime should not concern us as we are only in
ested in the future development of the perturbation. Thus
have shown that there exists aj satisfying the residual gaug
equation~17! such that the trace of the perturbation may
set to 0.

APPENDIX C: NO PURE GAUGE SOLUTIONS

We show here that the tensor perturbations considere
this paper cannot be pure gauge. Suppose there were a
gauge mode,hab5¹ajb1¹bja . For the perturbations we ar
considering about the metric~10!, consider the vanishing
components

h1152S ] rj12
g8~r !

2g~r !
j1D50. ~C1!

Therefore, noting that the form of the perturbation~22!
specifies the time dependence,

j15g~r !1/2evtj̃1~ x̃!. ~C2!

Now consider the vanishing component

h0052S ] tj02
f 8~r !

2g~r !
j1D50. ~C3!

Together with the form we found forj1 this then implies that

j05
f 8~r !

2vg~r !1/2
evtj̃1~ x̃!. ~C4!

Next consider the vanishing component

h015] tj11] rj02
f 8~r !

f ~r !
j050. ~C5!

If we now substitute the expressions we have forj0 ,j1 into
this equation, we obtain a differential equation forg(r ) and
f (r ) that is manifestly not satisfied by any of the functio
we used in this work. This implies thatj05j150. Now
considering the vanishing components

h0a5] tja1]aj050, ~C6!

we see thatj050 implies thatja is independent oft. But if
ja is nonzero then it must depend ont asevt in order for the
hab term to have required time dependence. The conclus
is thus thatja50 and therefore the perturbations we a
considering can never be pure gauge.

In the section on time dependent metrics we tookf 50
and the metric had not components. The argument of th
4-16
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previous paragraph will not work in this case. The express
for j1 ~C2! is now justj15g(r )1/2j̃1( x̃). We can substitute
this into the component

h1a5] rja1]aj12
2

r
ja50. ~C7!

Solving for ja gives

ja5F2r 2E r g~s!1/2

s2
dsG]aj̃1~ x̃![K~r !]aj̃1~ x̃!. ~C8!

Finally, substitute these results into the remaining, nonv
ishing, component and recall the form of the perturbat
~66! and the definition ofK(r ) in Eq. ~C8!:
O

nd
en

n

he

06402
n

-
n

hab5¹̃ajb1¹̃bja1
2r

g~r !
g̃ab~ x̃!j1

52K~r !¹̃a]bj̃1~ x̃!1
2r

g~r !1/2
g̃ab~ x̃!j̃1~ x̃!

5r 2w~r !h̃ab~ x̃!. ~C9!

For the last two lines to be equal, we must have eit
K(r )}r /g(r )1/2 or hab}g̃abj̃1}¹̃a]bj̃1. The former possi-
bility is not true for the functionsg(r ) that we have been
considering while the latter is not consistent withha

a50.
Therefore there are no pure gauge solutions. We could h
used this argument in the previous case also, but the a
ment we gave instead did not use the trace-free propert
any point.
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