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The dimensional reduction of black hole solutions in four-dimensi¢#) general relativity is performed
and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector,
it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities.
Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized
to the toroidal charged rotating anti—de Sitter black hole. The reinterpretation of the fields and charges in terms
of a three-dimensional point of view is given in each case, and the causal structure analyzed.
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I. INTRODUCTION vector it was shown irf11,12 that it gives rise to a 3D
Brans-Dicke-Maxwell theory with its own black hole, which
The work on three-dimension&BD) gravity theories has when reinterpreted back in 4D is a black hole with a toroidal
seen a great increase after the discovery that 3D general relaerizon. One can then naturally extend the whole set to
tivity possesses a black hole solution, the ~8@ms- Brans-Dicke theorie§l13,14]. Other solutions with different
Teitelboim-Zanelli (BTZ) black hole[1,2]. Before the ap- couplings have also been foufith,16 (see[14] for a more
pearance of this black hole solution there were, howevergomplete list.
important works in 3D general relativity which studied the  One important ingredient in these solutions is the pres-
properties of point particles in 3D geometr[&s4] as well as  ence of a negative cosmological constant; 0. The interest
solutions with mattef5], and showed that it provides a test- in these solutions appeared after it was shown that gauged
bed for 4D and higher-D theorid$,7]. In addition there supergravity requires for its ground state\a 0 term, such
were works in 3D string theory with its associated blackthat spacetime is AdS or asymptotically AdS. Many of these
strings[8,9]. However, because of the lack of black holesblack holes, such as the BTZ black hole, only exist in theo-
there was no possibility of discussing important issues suchies with a negativeA [17], which in turn motivated their
as the entropy of the gravitational field, its degrees of freefurther study. A renewal of interest in these solutions came
dom, and Hawking evaporation. The work of Baws, after the AdS-conformal field theoAdS-CFT) conjecture
Teitelboim, Zanelli, and Henneaux.,2] brought then 3D [18]. This conjecture states the equivalence between string
general relativity into the level of complexity of 4D general theory on an AdS background and a corresponding CFT de-
relativity. This black hole is a solution of the Einstein-Hilbert fined on the boundary of AdS spacetime, i.e., between,AdS
action including a negative cosmological constant t¢&tm and a CFJ},_;. Then=3 case(i.e., 3D), mainly through the
One can also show that the BTZ black hole can be conBTZ black hole, plays an important role in the verification of
structed by identifying certain points of the 3D anti—de Sitterthe conjecture, since many higher-D extreme black holes of
(AdS) spacetimg2]. Since the AdS spacetime is a simple string theory have a near-horizon geometry containing the
manifold one can study many properties of the BTZ blackBTZ black hole. Then the conjecture says that if one has,
hole through known results in AdS spaces, upon making fure.g., a 10-dimensional type IIB supergravity, compactified
ther appropriate global identificatiofsee[10] for a review. into a BTZx S*x T* spacetime, the BTZ in the bulk corre-
After the BTZ solution a whole set of new solutions in 3D sponds to a thermal state in the boundary CH]. It is also
followed from a number of different dilaton-gauge vector possible to embed the 4D toroidal black hold4,12 in a
theories coupled to gravity. For instance, upon reducing 4Dhigher-D string theory such that they can be interpreted as
Einstein-Maxwell theory with\ and with one spatial Killing the near horizon structures of &2 brane rotating in extra
dimensiond 20].
Now, in order to find solutions in a given dimensian,

*Email address: zanchin@ccne.ufsm.br say, one usually starts from the action of gravity theory with
"Email address: anta@on.br the generic dilaton and gauge vector couplings in that dimen-
*Email address: lemos@kelvin.ist.utl.pt sion, derives the corresponding equations of motion, tries an
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ansatz for the solution and then finally from the differential spacetime with a Killing vector and the equations in the cor-
equations finds the black hole solutions compatible with theesponding 3D spacetime. We assume that the 4D manifold
ansatz. This is the case for the Schwarzschild solution, fon, can be decomposed asl,= M XSt or M= MXR,
instance, and for many of the 3D solutions quoted abovewith M, S*, andR being the 3D manifold, the circle, and
Another way of finding solutions arises if the theory pos-the real line, respectively.

sesses duallltles, i.e., symmetries that convert one s.olut|on The actionS in 4D spacetimes is assumed to be the usual
into another in a nontrivial wa}21]. Yet another way, which . o . ) ] -

can be seen as a special case of duality, is through dimedzinstein-Hilbert-Maxwell action with cosrpologlcal terrh
sional reduction, where one can reduce a theory by severahd electromagnetic fielér=dA (where A is the gauge
dimensions. The simplest case is to reduce by one dimerfield), given by (we use geometric units whei@=1, c
sion, i.e., one starts with an¢-1)D Lagrangian theory and =1),

through a suitable procedure reduces it along a symmetry

direction into a newnD Lagrangian theory. There are a num- - .1 = A PN

ber of inequivalent procedures to perform a dimensional re- S:f d4X£:ﬁf d4X\/__9(R_2A_F2)' @)
duction, two of those are the dimensional reduction through

a Kaluza-Klein ansatzor classical Kaluza-Klein reduction whereZ is the Lagrangian density, or Lagrangian. The con-

[22], and the Lagrangian dimensional reduct{@3]. When . ! o ;
: . ' o vention adopted here is that quantities wearing hats are de-
one s reducing through one symmetric compact direction %ined in 4D and quantities without hats belong to 3D mani-

circle), which will be the cases studied here, both procedure ; .
are equivalenf22,24). In the reduction process scalars and olds. We now proceed with the reduction of the actiihto

gauge vector fields appear naturally. The symmetry directiorsD- [N order to do that consider then a 4D spacetime metric
of the solution in the i+ 1)D theory defines a Killing vector 2dmitting one spacelike Killing vectod,,, where can be a
and a Killing direction, which in general can be compact orcompact or a non-compact direction. In such a case the 4D
non-compact. In turn, in the non-compact case the reductiofetric may be decomposed into the form

process can be important to the original theoryiint(1)D. ~ _

For example, for a black hole solution in the loweD ds?=e2Potd?+ e2Pr¥(de+ A,dX)?, 2
theory one can give precise definitions of chargemss,

angular momentum, electromagnetic, dilaton and axiorwhereds? is the 3D metric,¢, A; (i=0,1,2) and all the
chargey which in the @+1)D theory are then converted other metric coefficients are functions independenp oénd
into charges per unit length of the corresponding black string3,, B; are numbers. To dimensionally reduce the electro-
[11,25. In the past two decades, due to the extra dimensionmagnetic gauge field we do

required by supergravity and string theories, the techniques

of compactification and dimensional reduction have become A=A+A_do, 3
powerfql tools_ to build and analyze black hole solutions in ¢
lower dimensiongsee, e.g.[21-26). where for compact the gauge group is/(1) and for non-

In this paper we follow the classical Kaluza-Klein proce- compacty it is R In the last equatior is a 1-form while
dure, here equivalent to the Lagrangian dimensional reducs is a 0-form. In terms of a coordinate basis in the 3D
tion procedure, to find new solutions in 3D from solutions in yanifold this means thad and A correspond to a vector
4D. An extensive study of 4D solutions of gravity coupled 10 a4 A. and to a scalar fieIA‘leP(P, say, respectively. From

sigma model theories and their corresponding Kaluza-Kleifhase fields we can define the 3D Maxwell field
3D counterparts has been perfornmé@d], in which, in the
last section of the paper on “Open Problems” the authors F=dA. (4)
state that the inclusion of a cosmological constant is impor-
tant. It is our aim to apply the dimensional reduction tech-|t is convenient to define a new 2-for as
nigue to construct 3D black holes from the 4D toroidal AdS
black holed11,12. Section Il is dedicated to a review of the E=F—dVTAA, (5)
dimensional reduction method particularized to the case of
reduction from 4D to 3D. The definition of the charges for all where A is the Kaluza-Klein gauge field 1-form appearing in
fields, new and old, appearing in 3D is also given. Then, inthe 4D metric(2).
Sec. lll, dimensional reduction, through the Killing azi- The Kaluza-Klein dimensional reduction procedure then
muthal directiond/d¢, of rotating charged black holes with gives
toroidal topology is considered. The produced 3D black
holes display an isotropic horizofie., circularly symmet- L
ric), and the new charges are neatly found. In Sec. IV we S= @f dgx\/__ge(BOWl)({R_ZAEZBW
conclude.

+2Bo(Bot2B1)(Vp)>—e 2PolE?

II. DIMENSIONAL REDUCTION

1
A. The action, the Lagrangian and the fields - Zez('BrBOM]:Z— 2e Zﬁld’(V‘I’)z} (6)
In this subsection we discuss the connection between the
Einstein-Maxwell-AdS equations in a four-dimensioféD)  where we have defined
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F=dA. (7) Now, we are free to choosg, andpj;, i.e., we are free to

choose the frame in which to work, with the different frames

The 3D cosmological constant is definedfes A. Ls is the being related by conformal transformations. There are three

result of integration along the direction. Assuming the frames that stand out:

spacetime is compact along the generic spacelike dimension (1) the good frame, i.e., the one that preserves most of the

parametrized byp, thenLs is given by the range op and  Structure of the 4D spacetimes, is given By=0 and 5,

will be dimensionless, while for noncompagt L carries  [1€€: which we can normalize {6, =—2, yielding the fol-

physical units of length. From the 3D point of viely, can ~ 10Wing actionS, (for these three particular cases, we do not

be thought of as the size of the extra dimension. The explicifliSPlay the equations of motion, only the action since it is

form of E? in terms of the 3D fundamental field; , .4; and much more condensgd

v is .

R—2A-E?- Ze */F?

_Ls 3y [—aa—26
EZEE”EIJ:F2+4FIIA|VJ\P+2[(V\P)2A2_(AIV|‘P)2] Sg—ﬁf d°x —ge

8

—2e*Y(V)?|; (149

The reduced action shows two different gauge fields. The
first one,A;, is the 3D counterpart of the 4D electromagnetic
gauge field. The secondy; , is the Kaluza-Klein gauge field.
There are also two scalar fields. The dilainand another
scalar field¥, which is the projection of the 1-form gauge

field A onto the Killing direction. The scalar field¥

couples to the metric differently from a true scalar field. This

can be seen, for instance, by comparing the last term in the L 1

action(6) to the kinetic term for the dilaton fieldV(¢)2. SEZ—SJ d3x \/__Q{R_gAeqﬁ_ Z(Vh)2—e *E2
The equations of motion which follow from the acti¢) 167 2

for the gravitong, the gauge fieldé& and.A, the dilatone¢, 1

and the scalaW are, respectively: - Ze2¢f2—2e¢(vqf)2}; (15)

(i) the Einstein frame, the one that preserves the Einstein
form of the action, is given by choosingy,+ 8,=0, and

0=1/2, so that the kinetic term of the dilaton i8Bg Bq
+2B1)=—1/2 (see e.g[26] for dimensional reduction in
the Einstein framg yielding the actiorSg:

Gij= — Ae?Polg;+ (Bo+ B ViVid—(Bo+ B1) .
) (iii ) the string frame, where one choosgg+ 8,=—2 and
XVipVip—g; V2p1+ B2V oV d—ai;(V $)?] Bo=—2=%/2, fixing the kinetic term of the dilaton to
2Bo(Bot+2B1) =4, yielding the following actiorsg;
i

1 1
—ZeZBO‘[{ EikE;'("‘ Zgi. EZ} _ EeZ(ﬁ1ﬁo)¢[}"ikj:;<

L .
sszﬁf d3x\—ge 2| R—2Ae 227294 4(V $)?

1
+ 797

+ 2e2ﬁ1¢[vix1fvjqf— %gij(V\If)Z}, (9
— 227 \2)pp2_ %e“(li 2)¢ F2_ 2ei2““7¢(V\P)2 _
Vi[elPrm Pl d(Fll — AIVIW + AIVIW)]=0, (10
(16)
Vj[e(351_:30)¢_7:ij]:4e(Bl_ﬁO)¢[_FijVj\II+Ai(V\II)2
_ _ It is well known that the different frames, related by confor-
—(AV V)V ], (11 mal transformations, are physically inequivalent, e.g., one
frame can give spacetime singularities where the other does
V[ BielPot oY ¢] not (see, e.g.[27,28)). We will work mainly with the good
frame, and we will comment later on the other frames.
= — AB,ePr3h0d 4 Eﬁle(S,Bl—Bo)qﬁ}—Z As it will be seen later on, the 3D §o|utions are optained
4 from the 4D metric and the other 4D fields by direct inspec-
tion of the metric and correct truncation of extra fields. This
+ lﬁle(ﬁl—ﬁo)qﬁEZ_Ble(ﬁo—ﬁl)qS(V\I,)Z, task is more easily accomplished .b){ working in the good
2 frame. Once we have the 3D metric in the good framg (
(12) =0), the metric in any other frame can be obtained by the
appropriate conformal transformation. In order to build such
V [0 BUSYIY + eB1BOU(FIl 4+ AV a transformation, let us definks] andds; as the given met-
o ric written in the good and other frames, respectively. In the
- A'AV¥)]=0, (13)  good frame, the parametefiz and 8; assume respectively
the values o) 4 and (3,)4 [as we have mentioned, we chose
whereG;j; is the Einstein tensor. (Bo)g=0 and (B1)q=—2]. Let us also denote the values
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assumed by the parameteBg and B, in the other frame, dsd =hpdxMdx"=f2dr2+R?(dé+Vvdr)?, (19
respectively, by Bo), and (81),. The two frames are then 2
related by where m,n=1,2, x'=r, x?=¢, and ¢ parametrizess;.

Functionsf, R, andV depend on all coordinatek? may then

dsy= (e 2A19) o Plog e, (17 be written as
where €%#1%), is the dilaton field in the good frame. For o e (Fot AU 1 E£+2( N )ﬁ—VV
instance, the relation between good and Einstein frames is N 2 f\R ar Bot B1 or &)
ds?=(e?#1%)(ds]. (20)
where V; is the covariant derivative o8;. Recall that the
B. The global charges energy surface density oy, e, is given by
Now we define mass, angular momentum and charges in s
the 3D spacetime by using the formalism of Brown and York = k_ 21)
[29—-31 modified to include a dilaton and other fields. 87’
1. The conventions An explicit definition of € is given for the particular case

studied in Sec. Il below. In Eq18), the symbols indicates
the difference between the extrinsic curvatk® on the
spacetimeM obtained from the full actiorg, say, and the
corresponding quantity k¢), obtained from a reference
spacetimeM,,, solution of a reference actiog,. Namely,
8(k?)=k?—(k?),. In this paper we are interested in black
holes in asymptotically AdS spacetimes. Hence, the a&ion
refers to a specific black hole solution as, e.g., the toroidal
rotating charged-AdS spacetime, arf§) refers to the
(asymptoti¢ AdS spacetime, when no black hole is present.
The right hand side of Eq8) is the quasilocal mass as
defined in Brown-York formalism and in general depends on
the choice of the boundar§,. In our definition we assume
thatS; represents the infinite boundary of the two-spBge
and the integration ove$; then gives the global mass asso-
ciated with the considered black hole solution.

We assume that the 3D spacetiohé is topologically the
product of a spacelike surfad®, and a real time line inter-
val I, M=D,XI. D, has the topology of a disk. Its bound-
ary dD, has the topology of a circle and is denoted &y
The boundary oM, d M, consists of two spacelike surfaces
t=t; andt=t,, and a timelike surfacé&, x| joining them.
Lett' be a timelike unit vectort({t'= — 1) normal to a space-
like surfaceD, (that foliatesM), andn' be the outward unit
vector normal to the boundamM (n;n'=1). Let us denote
the spacetime metric oM by g;; (i,j=0,1,2). Henceh;;
=gjj +tt; is the induced metric o, and oj; =g;; +tjt;
—n;n; is the induced metric 08§, . h;; can be viewed also as
a tensoth,, (m,n=1,2) onD,, ando;; can be viewed as a
scalar(a tensor of rank zejoo,,=0 (a,b=2) on the one-
dimensional boundarys;. Since S; is a one-dimensional
space, the induced metric,, has only one independent
component. The induced metric on the spacetime boundary
dM is yj=gj;—nin;=oj;—tit;. We also assume that the
spacetime admits the two Killing vectors needed in order to  Similarly to the mass, the definition of angular momen-
define mass and angular momentum: a timelike Killing vectum J for a 3D spacetime admitting a spacelike Killing vec-

tor nit:(g/(yt)i and a spacelikgaxial) Killing vector 7719 tor d4= n, can also be modified to include the dilaton. The
=(d,)". definition of the angular momentum is then

3. Angular momentum

2 Mass Jsp=Ls J e?Por P4 5(j%) n),dS, (22
The next step is to adapt the Brown and York procedure to 1

take into account the dilaton fiel81]. By doing this, we

arrive at the following definition of madd on a 3D space-

time admitting a timelike Killing vectory,

wherej?; is the momentum surface density 8p, modified
by the presence of the dilaton. We also hai(qe“’i)z(j{f’)
—(i?),, where (), is the angular-momentum density at

L ' the boundarys; of the backgroundor referencgspacetime,
M3D=8—3 e2(Bot B9 5(k?)t; idS, (18  andj is the full angular momentum density of the consid-
mJs, ered spacetime. We do not give here an explicit definition for

, j%;, since it will not be needed in the applications considered
wheret' is the timelike future pointing normal t®,, dS in the present work.
= /o d¢ with £ being a coordinate of;, and ¢ being the Since we are interested in the global conserved gquantities
determinant of the induced metric @ (sinceS; is a one-  of black holes, in Eq(22), as in Eq.(18) and in the charges
dimensional space, the determinanbf the induced metric  defined below, the integral over the boundarylof, S;, is
aap coincides with the metric itselfk? is the trace of the in fact taken at the infinity oD,, S;—. In such a limit,
extrinsic curvature of; as embedded iD,, modified by the  the mass, angular momentum, and charges defined according
presence of the dilaton. To defiké explicitly we consider to the Brown and York formalism coincide with the ADM
the particular case when the two-metricli can be splitas mass, angular momentum and charges.
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Now we turn our attention to the definition of other over the infinite boundary oD,, i.e., over theS; circle

charges in 3D spacetimes. mentioned above. We can then define the magnetic charges
. , in 3D by
4. Electric and magnetic charges
(a) Electric charges of the gauge fields and A;. The L i
two gauge fieldsA; and 4;, have different electric charges Qm_ﬂ SléBin ds, (25

Q. and Q., respectively, and both are coupled to the scalar
field ¥, besides being coupled to each other. Moreo®er, L
couples toW through kinetic terms, wheread; couples sz—a’f 5B,n'dS, (26)
through potential terms. Both gauge charges can be obtained amls,
by the Gauss law, adapted to non-asymptotically flat station- _ ,
ary spacetimes and to the presence of the dili2er8] (see  WhereB;=e#/17£0%¢ FI/2, B=eF1~Fo ¢, FIK/8, and
also[11,12)) the integration is taken over &; surface, at the spatial in-
finity of D, (see above These definitions apply at least for
i stationary spacetimes and do not include the “vortex mag-
Qe:4_f8 SEin'dS, (23 netic charge” as defined by some authors, where the static
! magnetic field can be interpreted as being produced by a
L stationary electric currenfvortex) (see[34,35). They are
Qe:—3 sEN'AS, (24) certainly useful in the case of instanton monopoles as defined
4m s in [32,33,38. Such definitions use the fact that, in 3D, the
(Bi-Bode s  (3B1-Bo) b ] - monopole generates a tangent electric field which can be
where Ej=e"1" Pol9F;t), &= PO tl/4, n'is the  ysed to determine the magnitude of the chd®# (see Sec.
unit normal to the spacelike one-dimensional surfégea ). Let us emphasize that the surface integrals in E2{.
circle, andt' is the timelike normal to the two-spacB§), 8  and(26) were obtained, using Gauss theorem, from a volume
disk. Here alsaS; is the infinite border ofD,. As in the jntegration over the whole spaBs. Therefore, the magnetic
definition of mass and angular momentum, the symbol charges defined in such a way are meaningful only if the
indicates the difference between the quantity in question iyrface integration is taken over the infinite boundarpef
the considered spacetime and the same quantity in a refefor another discussion on the difficulties to define quasilocal
ence spacetime. NamelySE;=E;—(Ej), and 6§=&  gauge charges associated with 4D dyonic black holes see
—(&)o- QuantitiesE' and &' can be interpreted as electric Ref. [37].
fields in the two-space orthogonal to (E;), and (), are (c) Deformations of the electromagnetic chargés in-
the electric field strengths for the background spacetimeyestigation on the field equations shows that the electromag-
when no localized objects are present. The integrals in Eqsietic charges defined above may have additional contribu-
(23) and(24) are taken at spatial infinity. Hence, in order to tions from the interaction terms with other fields. This is
obtain a well defined charge in spacetimes asymptoticallparticularly true when¥ is nonzero, and the interaction
AdS, we must subtract the background value from the corrererms between the gauge fiel] and the scalai give rise
sponding global charge, and this procedure has to be appligdl source terms in the field equations, in such a way that the
to every charge of the model. conserved currents acquire extra terms that depent and
Itis worth mentioning that both of the electric charges aréon 4. To be more explicit, let us show what happens, for
built from conserved currentd,=Vj(e/’1#’Fl) and 7, instance, regarding the electric char@e. The full con-
=V;,(e(®1- Ao 7i14), respectively, for which follow imme-  served current corresponding to tAefield is
diately V;J,=0 andV,7,=0 (see also the itemcj, in this
section, below These two identities guarantee the existence J=v[eBr=Po¢(Fll+FU )], (27)
of the two conserved electric charges as defined above.

(b) Magnetic charges of the gauge fieldsahd .A;. The  whereFll = AIViw— A'Viw¥. Therefore, one should add

magnetic charges in 3D spacetimes have world histories with secor?étrierm to Eq23) to give [ 8(E;+E™nidS
dimension zero. They are events in the spacetimstan- SR ’

tong [32,33 since the dual field strength in 3D is not a
2-form, but a 1-form, ie., *F yields the 1-form B;
=eiijJ"/2. Thus, integration over the boundary bf, at
infinity cannot be performed in the same way as one does f

whereEf*"%= elF1~ A PEX1]]  There are analogous correc-
tion terms related to the other electric chargk,, and also

to the magnetic charged,,, and Q,,. However, we find that
0flor the black hole solutions we are going to analyze in this

the electric charge. However, we can think of the divergencé;’aper the above mentioned corrections to the_ conserved
VB' as the magnetic charge density and an integration oveqharges are zero. The extra terms, in fact, .contnbute_ to the
the spacetime 3D world volum& yields the magnetic quasnc_)ca_ll _charges, when the bou_nda_ry of integrafigris
charges(or magnetic instantonsFor stationary spacetimes, not at infinity, but vanishes at the infinite boundary®j.

the divergenc&,B' defines an invariant charge density on
the two-spac®,, and the volume integration over the whole
D, yields the magnetic charge. Using Gauss theorem, the In addition to their mass and electromagnetic gauge
volume integral oveD, is changed into a surface integral charges, stationary asymptotically AdS 3D black holes are

5. Dilatonic charges
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also characterized by the dilaton charge. As a matter of facfor ¥ not considered to arrive at E31), but they do not

two dilaton charges can be defined. The chapge[38] and
its dualQ,, [39] are given by

Qy= (28)

Ly _
—_ (BotB1) oy i
47Tf815(e 0TPUPY. p)N'dS,

_ L3 o
Q¢:Ejslfijk5(e(ﬁ°+ﬁl)¢vk¢>)n'tjd5’ (29

where the integrations are defined in the same way as befor

The dilaton chargé€28) is defined in Ref[38] in the Ein-

contribute to the conserved charfgee the comments just
after Eq.(26)].

7. General comments

We now study explicitly the connection between the gen-
eral 4D stationary asymptotically AdS spacetimes and the
corresponding 3D metrics obtained through the dimensional
reduction technique discussed in the present section. We will
reduce through the angular coordinate We study 4D tor-
oidal black holes in AdS spacetime, charged and rotating.
®hese have a straightforward dimensional reducing proce-
dure; the theory obtained is a 3D Brans-Dicke theory, and the

stein frame whergo+ 5,=0, and forA #0 itis notrelated  3p reqyits are clear cut and simple; most frarfiesluding
to a conserved current. It represents the total flux of thg,q Einstein frameare good frames.

vector fieldV; =V, ¢ across the surfacg, at the boundary of
the spacé,. The result forQ,, is the same to all stationary
observers at infinity oD,, and can then be identified with

the charge of the dilaton field. Although this surface integral
does not come from a conserved current, and perhaps should

Ill. 3D CHARGED ROTATING TOROIDAL BLACK
HOLES

A. The 4D metric and parameters

not be called a charge, we maintain it here because some-

times it has a nonzero value and is not totally uselese
[38,40Q).
The dual dilaton charg€&9), on the other hand, is a con-

Hereafter we consider a class of rotating black holes with
toroidal topology. In a previous pap¢t2] we reported a
rotating electrically charged black hole with a toroidal hori-

served charge, since it is obtained from the conserved curregPn- Before going on to the dimensional reduction of such a

Ji,=Vi(eelPot FUPY, ¢), which is divergence fre&J,,

6. Charges of the scalar fieldlr

Finally, due to the presence of the scalar field
in the action (6) two other charges can also be de-
fined. From Eq(1l3) it is possible to identify the

quantity  Jy=elPomFUIVIP 1 elBr Pl ¢(Fll 44 A2V'W
—A'AlV,¥) as a conserved currenf;Jy,=0. The corre-
sponding conserved chargenalog to the electric charges

Ls

Q=g Llﬁu‘q,)nids, (30

where the integration and the symbbhave the same mean-

ing as above. Let us mention that, for the solutions we are

going to analyze here, the interaction terms betw&eand
the gauge fieldé and.4 do not contribute to the total charge
for ¥, and this charge is identically zero.

black hole, it is worth noting that following the same proce-
dure as in[12] a dyonic version of the black hole can be
found.

We start constructing the static dyonic toroidal black hole
by choosing the coordinate systemyr(8,¢) with —oo<t
<+oo, O=<r<+o, 0<6<27, 0<¢p<1 (the ranges of the
angular coordinates are arbitrary; we have chosen these par-
ticular ones to yield convenient values for the mass and
charges

The solution is found by solving Einstein-Maxwell equa-
tions for such a static spacetime. We find

It is also possible to define a second conserved charge of

topological charactefwhich is the analog of the magnetic
charge, also a source of the scalar field. From the vector
quantity V'¥ we may construct an anti-symmetric dual ten-
sor asHj;= eijkV"\P. Therefore, the vector densifjH" is

divergence free and can be interpreted as a conserved ¢ [

rent. Thus there is an associated conserved charge defined

- Lj .
Qfmfsle”ka(v WHt'nlds, (31)

- am  4(g*+g?
dSZZ— a2r2—7+w dt2
r
dr?
+ ER +r2(de?+d6?),
22 4m  4(@7+07)
o r r2
(32
. 2q
A=—"=dt-2g ode, (33

=_1

3/, andm, g andg are integration constants. It
easy to show, for instance using Gauss law, thahd g
te respectively the electric and magnetic charges of the
black hole, andm is its mass. Depending on the relative
values ofm, g, andg metric (32) can represent a static tor-
oidal black hole.
The rotating metric is then obtained by performing a local

wherea?

where the integration is the same as defined above. Wheroordinate transformation which mixes time and angular co-
A#0, there are additional terms in the equation of motionordinates. The result can be written in the form
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B. The 3D black hole spacetime

A L A a 2 1. The metric and charges
ds’=— 3 2 dt— 1 de Using the prescriptions developed in Sec. Il, the dimen-
1— —a2a? 1- ~a2a? sional reduction along the Killing directiop can now be
performed, yielding the following 3D static black hole:
2
aa? 3
+12[ de- R (1—§a2a2 A dr?
1 5 5 62B0¢d52:— 1 azAdtz‘Frz(T-ﬁ-d@z ,
—a“« rZ(l__aZa,Z _
dr? (37)
+r2 —+de?|, (34
aa?
A=-2| ——g 0| dt, (39
R q a 1- —a%a?
A=—-2—| dt— do
r
1--a%a? a(A—a?r?
2 = ( I ) Ldt, (39
202 r4(1—§a2a2 —a?A
—296| do— dt |, (35
_ 2,2 1 1 a’A
1 2a a | 202816 — 3 [r2<1——a2a2 Sl (40)
1— Eazaz
where
2q a
3 Y=——-2¢g6, (41
1-— -aa? ' 1 2 2
3 2 \/1l--a‘a
A=a2r4—4m(1—§a2a2 r+4(q%+g? 2
T a2.2
1 2a @ where the new arbitrary constantintroduced in the defini-
(36) tion of the dilaton(40) carries physical dimensions of length.

3
For o%+g®<$(1-1a%a? \/(1— 2a%a®)m*la?,  the

Parametersn, q andg have the same interpretation as in theabove solution represents a static spherically symmetric

static black hole(32). The rotation parametea is defined
through J=33aM/1—a%a?/2, wherel is the angular mo-

three-dimensional black hole with electric and magnetic
gauge charges proportional geandg, respectively, and with

mentum of the black hole. Let us also mention that the abov@n extra gauge charge proportional 4a/1— a2a?. For

choice of parameters, with the constraint8%a?<1, en-
sures that the asymptotic form of the metric for lamges
exactly the static AdS metritsee Ref[12]). In the follow-
ing, however, we restrict the analysis to the caseaBa?
<2/3.

g9°+g°>3(1-3%a%a? \7(1—§a2a2)m4/a2 the above solu-
tion represents a naked singularity, with singularities at
points wherer(1— %a2a?)—a?A=0. For future reference,
and to recall the toroidal topology of the original 4D black

The metric(34) admits two spacelike Killing vectors, so hole, we call the above solution the 3D toroidal black hole.
that two independent dimensional reductions are allowed ifone should keep in mind, however, that the topology of the
this case. Such a metric can then be reduced from 4D to twgD solution(37) is in fact spherical, or, more precisely, cir-
different 3D black hole solutions, or from 4D to one 2D cular, because the slicés const are two-dimensional space-
nontrivial black hole. We are going to consider the reductionlike surfaces.
alongd,, . For the reduction along the other Killing vectay For the sake of definiteness we choose initially the good
the result is the dyonic analog of the 3D rotating chargedrame B,=0. Using the definitions of Sec. Il we can now
black hole obtained ifil2] (see alsg11]), in which case one determine the mass and charges of the present solution. In

has to consider a different gauge fdx, namely, A= order to apply Eq(18) to calculate the mass of the toroidal
— 2(q/r) (dt—(a/1— 2a2a?)do)— 2g(e 3D black hole, let us first define explicitly the quantities

appearing in that equation. In metii87) we then choose a
—(aa®/\1-3a%e?)t)dg, without changing the electro- regionM of spacetime bounded bry= const, and two space-

magnetic Maxwell field. like hypersurfacest=t; and t=t,. The hypersurfacet
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=const,r =const, is the one-dimensional bound&kyof the Q=1 (45
two-spaceD,. The boundary oM, d M, in the present case

consists of the product ofS; with timelike lines and

=constp=const) joining the surfacets=t; andt=t,, and 3 1

these two surfaces themselveés. can also be thought of as _ / 2 2

the intersection oD, with M (S, is a circle with radius Qe=pmay\/1-zata’=J. (46)
r). The induced metriar,, is obtained from Eq(37) by

settingdt=0 anddr=0. Thus,a,b=2 ando,,=0,=0  The electric charge&d., source to the Kaluza-Klein gauge
=r2, while the two-space metrib;; is obtained by setting field, is proportional to the 4D angular momentumas ex-

dt=0. pected.
Using Egs(20) and(37), we get the following expression Magnetic gauge charges are calculated from E2fs.and
for the extrinsic curvature af;: (26). Following the same prescription as for calculating the
o other gauge charges we find
~P1
oo © E(&rzﬁ(ﬁmﬁ))' w
2 r\r ar gaa
An=—F—— (47
where A and e®1¢ are given respectively by Eq§36) and 1— aa
(40). To build 5(k?) we computek? from the full solution 2
given in Eqs.(37)—(41) that describe the 3D toroidal black
hole in an asymptotically AdS spacetime. The backgroundind
spacetime is the 3D spherical AdS spacetime with no black
hole present, whose extrinsic curvatuke?), follows from Om=0. (48)
?ﬁeﬁ?ﬂ?n?Eﬁéﬁ)?)tobgaf:jgfelg?&) :0 |;</>q_ (2&5)?2‘% sSb Thus we see that the. rotation of the 4D_charged black hole
stituting into Eq.(18), and taking the limit —, the mass of generates a__ stationary magnetic currentig
the toroidal 3D black hole is finally obtained, =gaa?/\/1—-3a?a? which is the source of a tangent elec-
tric field. In the dimensionally reduced static 3D spacetime,
Mgzp=m(1+a%e?), (43)  there is no frame dragging and the tangent electric field must

be generated by a Dirac monopole, whose magnitude of the
wheremis the mass of the 4D black hOle and to Slmpllfy we Charge ISQm i /a/ The existence of a uniform tangent
have putL=L3. We see that the reduced 3D black holeglectric field is aspeual feature associated to the presence of
achIreS mass from the Orlglnal tOfOIdal blaCk hole in 4Da Dirac m0n0p0|e in (2_ 1) -dimensional Space“mége]

spacetime. The additional mas#yl =m a®a, depends ex- The dilaton charge® , andQ, for the toroidal black hole
plicitly on the 4D rotation parameteb—aazlx/l— 3a%a?,  are both zero,
and can be viewed as being generated by the motion of the
3D system along the extra dimension. That is to say, the Q4=0, Q¢:o_ (49)
same well known mechanism that gives rise to the electro-
magnetic field and charges in Kaluza-Klein theories, alsat is worth noticing, however, thaﬁ(e(ﬂowlw) in Egs.(29)
gives rise to part of the mass of the system in the compactiand (29) is nonzero and the quasilocal dilaton charges are
fied spacetime. both nonzero and depend on the surface of integrafipn
As mentioned before, metri@7) is static and the angular Consider, for instance, the case of E28) and letQ(r) be
momentum is zero. This can be seen using @) which  the quasilocal charge obtained fgr when the integration
gives boundarysS; is atr=const(not at infinity). §(ef1?) is the
difference between the full dilaton fie&f1¢ (8,=0), given
J3p=0. (44) by Eq.(40), and the background dilaton fie{ttom the back-
ground spacetime ef1%),, which follows from Eq.(40) by
puttingm=0, q=0, g=0. The resulting conserved dilaton
‘charge can then be thought of as the asymptotic limit (
—) of the quasilocal charge

According to Eq.(38), both the 4D electric and magnetic
charges ¢, g) are sources to the 3D electromagnetic field
When considered as independent sourgeand g generate
electric fields with distinct geometric propertieg.is the
source of a radial fieldE,~q/r?, while g gives rise to a 3 mala
tangent(uniform) electric fieldE ,~gaa?/\/1—%a%a?. On Qy(r)= 2
the other hand, the source for the Kaluza-Klein gauge field
is proportional to the 4D rotation parametet»  where as mentioned before we chooSe=—2. Hence,
=aa’/\1—-2a%a?. Such a charge generates a radial electrigvhen the integration is taken over the infinite boundary, the
field. Electric gauge charges fér and.A4 for the 3D toroidal  total chargeQ =lim; ...Q,(r) vanishes. Similar arguments

black hole are obtained from Eq&3) and (24), and are hold for the dual chargéd). This result can be interpreted as
given respectively by the dilaton being a short range field.
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We now investigate the physical meaning of the scalatime, and has three gauge chargék ( Q., andQ,,) and
field ¥ by first calculating its charges. In order to do that we | harae
substitute Eq(41) into Egs.(30) and (31) and take the ap- one scalar chargéy ).

propriate limit to get 2. Singularities, horizons, and causal structure
5 The 3D spacetimes here derived are circular and static.
Quy=0, Qy=g. (500  Their causal structure is in several aspects similar to the

causal structure of the corresponding 4D spacetime. The
Equation(3) tells us that¥’ is a gauge field, which appears in Main important difference between 4D and 3D solutions is

. ~ related to the singularities, as it can be seen by comparing
3D as a scalar field. The nonzero chaf@g, the source of a the respective curvature invariants. In the 4D spacefitue

s_calar field, is the ar_\alog of the magnetic charge and can b(%4)] there is a singularity at=0, whilst in 3D there are
viewed as a topological charge. other points where the curvature is singular. This is verified

The solution given by Eq37) then represents a localized |y sdying the 3D Ricci and Kretschmann scalars of metric
nonrotating massive object in an asymptotically AdS Space37), which are given respectively by

R=—26 2+8 1 3 022 +8(q2+gz) Tt +12 2A+3F,AI 3AF,2+2M, 51
T AT iR ré ) 5 “T 2 2r7 Spop 5D
1- -a‘a
3
S22
a?m 3.,, (02+g?)a? 1=58% m? 3, .7
K=364a"—128—%—| 1— za’a?| — 224 1 +1605| 1— za’a
r 2 r 1., r 2
l--a“«
2
2
1—-a%a?
m 2+ 2 3 2 2+ 2\2 2 A AT
256~ &(1——:&12) +192(OI 89 ) —288x* =—36a?
r 1_122 2 r 1_122 r r2r
2a o 2a o
PP LY URPPY-S A? 6A’2F’2 144a4A2 262> r'z AT’ ) LAY
“rr P S AT Tt I R
+9A/2I~/2+0AA/F/2 4A2F/2 36a2A2I‘12 9AA'F’3 OA2F13+9A2I‘12 -
4 4r2 7 512 r 672 P23 2 413 S esre 4 pArd (52)
|
where we have definedl'=(r%(1—3%a%a?) —a?A)/(1 -
—3a”a?) and '=g/dr. The 3D spacetimé37) then shows 3 1-sa%a
singularities when the following condition is satisfied: a2r4—4m( 1- Eaza2 r+4(9?+g? —— | =0
) 1- —a%a?
a 2
r2| ré+4ma’r—4(g>+g?>)———|=0. (53 (54)
1— lazaz
2 In the analysis of horizons, the relevant function is
The expression among brackets in E§3) has, forg?+ g2 3 1 3 3 1
#0, one positive(rea) root rg signaling the presence of a pegcr= _( 1— = a2q? (1_ Za242 ﬂ_qz_gz_
singularity. It has also a negative root which we do not con- 4 2 2 a?
sider. Thus, infalling geodesic particles coming from large (55
hit a singularity atr =r¢ where the spacetime en@see Fig.
1). Depending on the relative values of mass chargesg, a
The horizons of Eq(37) are given by the real roots of the andg, we have three distinct cases to analyttee caseq?
equation +g°=0 is considered in next subsectjofi) Descr>0—in
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osf ' ' ' "' ' ' ' ] 4m  4(9%+g?
d<2= — azrz__JrM dt?
o8l A 1 r
o | dr?
04 + 5 > +I‘2d02, (56)
., 4m 4(q°+g°)
0.2 b a‘rc— — [ ———
e ' r*
P |
-0.2[ b A:_Tdt, (57)
o} . L2e?PrP=r2, (58)
-0sf 1 V=-296, (59)
R Ty Sy e—a— o ------ 02 04 06 o8 1 and the other fields vanish. This solution represents a 3D
x=rcos@ static spherically symmetric charged black hole whose geo-

FIG. 1. The singularity and horizons of the toroidal 3D space-deSiC and causal S_tructur_es are the same asptheonst
time in the coordinates of metri87). The parameters are such that plane of the 4D static toroidal black ho(82). Such a black

the event horizon at, (dotted ling and Cauchy horizon at_  hole has masm, electric charge) and an additional charge
(slash-dotted lingare present. Spacetime ends at the singulagity 0, the source to th@ scalar field. The dilaton charge is zero.
(full line). The Ricci and Kretschmann curvature scalars are, respec-

tively, R=—6a?—12(q*+g?)/r* and K=12a*+96m?/r®
+32a%(q°+g?)/r*—=512m(q*+g?)/r '+ 704(q*+g?)?/r®,
showing that there is a singularity at=0. For g2+ g?
<3Jm%a? there are two horizons and the singularity is
hidden to asymptotic external observers. On the other hand,

f 92+ 92> 2 Jm% o2 the singularity is naked.

such a case the metri@B7) has two horizons: the event
horizon atr, and the Cauchy or inner horizon at .
This is shown in Fig. 1. The singularity at=rg is en-

e oo e rezone e, o2 ", (o) T uncharged b-g1-0 case An mrestng 2D
9 i P spherical black hole is obtained by the dimensional reduction

stafic black hole. Note that the other region betweelz‘Ef the 4D toroidal rotating uncharged black hole. Such a

rs and r=0 belongs_ to a diﬁconnected spacetime an olution can also be obtained directly from E7)—(41) by
we do not analyze it furtherfii) Descr=0—the solu- settingg=0 andg=0. Namely

tion is the extreme black hole spacetime. There is

only one horizon atr=r,=r_= \e/m(l— 3a2a?)/a? W22 4_m( 1— Eazaz
= V3l(q?+ )/a?I[(1 - 3a%a?)I(1- a%a?)]. In such a ds?=— T2 e
case, when drawing an analog figure to Fig. 1, the dotted and 1+ A'_mgi
the dashedexterna) lines would coincide with each other, r
and the singularity at=r ¢ (solid internal ling would be still dr2
hidden (to external observersy the horizon. Geodesic in- + +r2dg2, (60)
ward lines end at the singularitys; (iii) Descr<0—this w2r2— 4_m(1_ Eazaz
solution has no horizons and represents a naked singularity. 2
From the above description, the Penrose diagrams, with the
?nherent topology and causal structure of spacetime, can eas- aman/1— = a2a?
ily be drawn. 2
A=- 5 ame Ldt, (61
3. Special cases 2
L2e?h1t=r2+ 4n:a , (62)

(a) The J=0 case This case corresponds to an uncharged
version of the solution studied in Sec. llIB 1, sinde=0  with the other fields being identically zero. This solution
impliesa=0, which makes the Kaluza-Klein electric charge corresponds to a 3D charged static black hole with just one
Qe equal to zero. The magnetic chaiQg, also vanishefsee  gauge field whose electric charge@=3:3may/1—3a’a?.
Eqs.(46) and (47)]. The mass and angular momentum are the same as for the

The 3D metric and other fields are obtained also by thecaseq?+ g2+ 0. Singularities and horizons of this spacetime
dimensional reduction of the static charged 4D spacetimare also easily obtained from the solution studied in Sec.
given by Eqgs.(32) and(33), which yield Il B 1 with g+ g?=0. For all possible values of parameters

064022-10



FOUR-DIMENSIONAL ANTI-de SITTER TOROIDA . .. PHYSICAL REVIEW D 66, 064022 (2002

@?>0, m(1-32a%a?)>0 and a?(1—3a%a?) >0, there is 1,,
always just one horizon at= \”74(1— 2a2a®)(m/a?), and a — 1=3@%7d
singularity atr=0. dsg=—Adt*+ 3
(c) Thea=0 case After dimensional reduction along the - Eazaz
d,, direction the metric and the other potentials can be ob-
tained directly by makingr?=0 in Egs.(37)—(41), which 242 a2 _
gives X a2r4—1—A T+d02 , (68
1- Eazaz
—4m 4(q2+ gz)
r + r2 whereA is defined as before, and all the other fields keep the
ds?=— 5 ———dt? same form of Eqs(40), (41). We have dressed the coordi-
1+ 4m3a _ A +49 )a nates with bars to make clear they are different from the
r r metric in the good framé37). This solution and Eq.37) are
dr? conformally equivalent, except in the loci=0 and I'(r)

N 12462 63) =r4(1-%a”a?) —a’A(r)=0, where the metri¢37) is sin-
2 2 ’ . . . N
—4m+ 4(9°+9°) gular. Metric (68) presents horizons at points whedr)
r re =0, and singularities whef'(r)=r*(1—1a%a?) —a?A(r)
=0. The charges for both of the metrics are also the same.
Good and Einstein frames in this case both yield black holes.
_ 4 Other frames can also be considered. For comparison, we
A= _Zth’ 64 show also the metric of the toroidal 3D black hole in the
string frame. Once again, we start with the metric in the good
frame and use Eq17), where now Bo/81),=— (17 2),
a[—4Amr—4(g?+g?)] yielding

:r4+4ma2r—4(q2+gz)a2|'dt' (65 _

A

7 F2
r“(l——aza2 —a?A
ds?=— Adt?
4ma®  4(g*+g?)a? 3
L2e?Pré=r2+ _4a zg ) , (66) 1- -a%a?
r r i 2 |
B 1 7172
r{l 1— za2a?| —a%A
2q 2
¥=—a—29g6. (67) +
r 3
1- Eazaz
We have two distinct cases. Indeedgff+ g2+ 0 there is one dr? )
horizon, r,= (gq2+g?)/m. On the other hand, i§2+g?=0 X| 3~ +det), (69

there are no horizons and the singularity is naked: in contrast

to the 4D black holes with spherical horizons the @hd  and all the other fields keep the same form of E¢6),(41).
cosmological constant is set to zero, leaving a naked singué(ef d))I\QdSZ where €2£1%). is the dilaton field in the
larity. Also, the asymptotic region— * o is not well de- E E’ E

fined. We do not comment further on this case.

(d) The rotating black holeOne may, if one wishes, set
this black hole to rotate by performing a forbidden coordi-
nate transformation which mixes time and angles. This yield
a new rotating solution.

Einstein frame wherg,= —1/2. Properties of the metric in
the string and Einstein frames are very similar, with the same
singularities and horizons. The conformal transformation re-
éating the two frames is well defined everywhere except at
points wherg(1—3a?a?) —a?A(r)=0, which correspond

to singularities of the spacetime.

C. The 3D black hole spacetime in other frames D. The 2D black hole spacetime

Up to now we have analyzed the 3D black hole in the One can reduce one more dimension. Our aim is now to
good frame. Once we have the metric in the good frame, thgo from the 3D black hole presented in E¢37)—(41) to the
metric in any other frame can be obtained by the conformatorresponding 2D reduced black hole by performing a con-
transformation given in Eq.17). We consider first the Ein- sistent truncation along th&direction. In order to perform a
stein frame which follows by setting3p) .= —(81),, OF by  consistent dimensional reduction we have to chaps® in
using Eqgs(37) and(40) and choosing3,= — B;. This gives  Eqgs.(38) and(41). The result is a (* 1)-dimensional black
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hole solution of gravity theory with two gauge fieldsand
A, two dilaton ¢, and ¢,, and with one scalar fieltV:

B (1— Eazaz A rz
e2(Bod1t Bod2)d2= — dt?+r2—
, 1, ,) a%A A
ref 1— Ea a”|— rza
(70
q
A=—2-dt, (72)
a(A—ar?
= 1 Ldt, (72
r4(1— —a%a?|—a’A
2
1 a’A
L2e?Prd1= r2< 1- Eaza2 el
1- -a?%a?
(73
e2B262—2 (74
20 a
P=— , (75)
r 1
1— —a2a?
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where B,89,81,8, are arbitrary constants. Even though

this two-dimensional solution also presents interesting prop-
erties, it will not be studied in detail here. For the particular
case with no charges and angular momentum[4#&p

IV. CONCLUSIONS

We have presented the dimensional reduction to 3D of the
rotating charged toroidal-AdS black hole. Dimensional re-
duction, through the Killing azimuthal directioffd¢, pro-
duced 3D black holes with an isotropic event horizas.,
circularly symmetrig, and the new charges were neatly
found.

There are other interesting classes of black holes in 4D to
which this procedure could also be applied, namely the hy-
perbolic black holed42,43, as well as the toroidal-AdS
holes found in[44] which are not isometric to those of
[11,12. Such an analysis can be done with the techniques
presented here.
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