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Four-dimensional anti–de Sitter toroidal black holes from a three-dimensional perspective:
Full complexity
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The dimensional reduction of black hole solutions in four-dimensional~4D! general relativity is performed
and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector,
it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities.
Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized
to the toroidal charged rotating anti–de Sitter black hole. The reinterpretation of the fields and charges in terms
of a three-dimensional point of view is given in each case, and the causal structure analyzed.
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I. INTRODUCTION

The work on three-dimensional~3D! gravity theories has
seen a great increase after the discovery that 3D general
tivity possesses a black hole solution, the Ban˜ados-
Teitelboim-Zanelli ~BTZ! black hole @1,2#. Before the ap-
pearance of this black hole solution there were, howe
important works in 3D general relativity which studied th
properties of point particles in 3D geometries@3,4# as well as
solutions with matter@5#, and showed that it provides a tes
bed for 4D and higher-D theories@6,7#. In addition there
were works in 3D string theory with its associated bla
strings @8,9#. However, because of the lack of black hol
there was no possibility of discussing important issues s
as the entropy of the gravitational field, its degrees of fr
dom, and Hawking evaporation. The work of Ban˜ados,
Teitelboim, Zanelli, and Henneaux@1,2# brought then 3D
general relativity into the level of complexity of 4D gener
relativity. This black hole is a solution of the Einstein-Hilbe
action including a negative cosmological constant termL.
One can also show that the BTZ black hole can be c
structed by identifying certain points of the 3D anti–de Sit
~AdS! spacetime@2#. Since the AdS spacetime is a simp
manifold one can study many properties of the BTZ bla
hole through known results in AdS spaces, upon making
ther appropriate global identifications~see@10# for a review!.

After the BTZ solution a whole set of new solutions in 3
followed from a number of different dilaton-gauge vect
theories coupled to gravity. For instance, upon reducing
Einstein-Maxwell theory withL and with one spatial Killing
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vector it was shown in@11,12# that it gives rise to a 3D
Brans-Dicke-Maxwell theory with its own black hole, whic
when reinterpreted back in 4D is a black hole with a toroid
horizon. One can then naturally extend the whole set
Brans-Dicke theories@13,14#. Other solutions with different
couplings have also been found@15,16# ~see@14# for a more
complete list!.

One important ingredient in these solutions is the pr
ence of a negative cosmological constant,L,0. The interest
in these solutions appeared after it was shown that gau
supergravity requires for its ground state aL,0 term, such
that spacetime is AdS or asymptotically AdS. Many of the
black holes, such as the BTZ black hole, only exist in the
ries with a negativeL @17#, which in turn motivated their
further study. A renewal of interest in these solutions ca
after the AdS-conformal field theory~AdS-CFT! conjecture
@18#. This conjecture states the equivalence between st
theory on an AdS background and a corresponding CFT
fined on the boundary of AdS spacetime, i.e., between An
and a CFTn21. Then53 case~i.e., 3D!, mainly through the
BTZ black hole, plays an important role in the verification
the conjecture, since many higher-D extreme black holes
string theory have a near-horizon geometry containing
BTZ black hole. Then the conjecture says that if one h
e.g., a 10-dimensional type IIB supergravity, compactifi
into a BTZ3S33T4 spacetime, the BTZ in the bulk corre
sponds to a thermal state in the boundary CFT@19#. It is also
possible to embed the 4D toroidal black holes@11,12# in a
higher-D string theory such that they can be interpreted
the near horizon structures of anM2 brane rotating in extra
dimensions@20#.

Now, in order to find solutions in a given dimension,n
say, one usually starts from the action of gravity theory w
the generic dilaton and gauge vector couplings in that dim
sion, derives the corresponding equations of motion, tries
©2002 The American Physical Society22-1
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ansatz for the solution and then finally from the different
equations finds the black hole solutions compatible with
ansatz. This is the case for the Schwarzschild solution,
instance, and for many of the 3D solutions quoted abo
Another way of finding solutions arises if the theory po
sesses dualities, i.e., symmetries that convert one solu
into another in a nontrivial way@21#. Yet another way, which
can be seen as a special case of duality, is through dim
sional reduction, where one can reduce a theory by sev
dimensions. The simplest case is to reduce by one dim
sion, i.e., one starts with a (n11)D Lagrangian theory and
through a suitable procedure reduces it along a symm
direction into a newnD Lagrangian theory. There are a num
ber of inequivalent procedures to perform a dimensional
duction, two of those are the dimensional reduction throu
a Kaluza-Klein ansatz~or classical Kaluza-Klein reduction!
@22#, and the Lagrangian dimensional reduction@23#. When
one is reducing through one symmetric compact direction~a
circle!, which will be the cases studied here, both procedu
are equivalent@22,24#. In the reduction process scalars a
gauge vector fields appear naturally. The symmetry direc
of the solution in the (n11)D theory defines a Killing vecto
and a Killing direction, which in general can be compact
non-compact. In turn, in the non-compact case the reduc
process can be important to the original theory in (n11)D.
For example, for a black hole solution in the lowernD
theory one can give precise definitions of charges~mass,
angular momentum, electromagnetic, dilaton and ax
charges!, which in the (n11)D theory are then converte
into charges per unit length of the corresponding black str
@11,25#. In the past two decades, due to the extra dimens
required by supergravity and string theories, the techniq
of compactification and dimensional reduction have beco
powerful tools to build and analyze black hole solutions
lower dimensions~see, e.g.,@21–26#!.

In this paper we follow the classical Kaluza-Klein proc
dure, here equivalent to the Lagrangian dimensional red
tion procedure, to find new solutions in 3D from solutions
4D. An extensive study of 4D solutions of gravity coupled
sigma model theories and their corresponding Kaluza-K
3D counterparts has been performed@24#, in which, in the
last section of the paper on ‘‘Open Problems’’ the auth
state that the inclusion of a cosmological constant is imp
tant. It is our aim to apply the dimensional reduction tec
nique to construct 3D black holes from the 4D toroidal A
black holes@11,12#. Section II is dedicated to a review of th
dimensional reduction method particularized to the case
reduction from 4D to 3D. The definition of the charges for
fields, new and old, appearing in 3D is also given. Then
Sec. III, dimensional reduction, through the Killing az
muthal direction]/]w, of rotating charged black holes wit
toroidal topology is considered. The produced 3D bla
holes display an isotropic horizon~i.e., circularly symmet-
ric!, and the new charges are neatly found. In Sec. IV
conclude.

II. DIMENSIONAL REDUCTION

A. The action, the Lagrangian and the fields

In this subsection we discuss the connection between
Einstein-Maxwell-AdS equations in a four-dimensional~4D!
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spacetime with a Killing vector and the equations in the c
responding 3D spacetime. We assume that the 4D mani
M4 can be decomposed asM45M3S 1 or M45M3R,
with M, S 1, andR being the 3D manifold, the circle, an
the real line, respectively.

The actionŜ in 4D spacetimes is assumed to be the us
Einstein-Hilbert-Maxwell action with cosmological termL̂
and electromagnetic fieldF̂5dÂ ~where Â is the gauge
field!, given by ~we use geometric units whereG51, c
51),

Ŝ5E d4x L̂5
1

16pE d4xA2ĝ~R̂22L̂2F̂2!, ~1!

whereL̂ is the Lagrangian density, or Lagrangian. The co
vention adopted here is that quantities wearing hats are
fined in 4D and quantities without hats belong to 3D ma
folds. We now proceed with the reduction of the action~1! to
3D. In order to do that consider then a 4D spacetime me
admitting one spacelike Killing vector,]w , wherew can be a
compact or a non-compact direction. In such a case the
metric may be decomposed into the form

dŝ25e2b0fds21e2b1f~dw1A idxi !2, ~2!

where ds2 is the 3D metric,f, Ai ( i 50,1,2) and all the
other metric coefficients are functions independent ofw, and
b0 , b1 are numbers. To dimensionally reduce the elect
magnetic gauge field we do

Â5A1Awdw, ~3!

where for compactw the gauge group isU(1) and for non-
compactw it is R. In the last equationA is a 1-form while
Aw is a 0-form. In terms of a coordinate basis in the 3
manifold this means thatA and Aw correspond to a vecto
field Ai and to a scalar fieldAw5C, say, respectively. From
these fields we can define the 3D Maxwell field

F5dA. ~4!

It is convenient to define a new 2-formE as

E[F2dC`A, ~5!

whereA is the Kaluza-Klein gauge field 1-form appearing
the 4D metric~2!.

The Kaluza-Klein dimensional reduction procedure th
gives

S5
L3

16pE d3xA2ge(b01b1)fFR22Le2b0f

12b0~b012b1!~¹f!22e22b0fE2

2
1

4
e2(b12b0)fF 222e22b1f~“C!2G , ~6!

where we have defined
2-2
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F5dA. ~7!

The 3D cosmological constant is defined asL5L̂. L3 is the
result of integration along thew direction. Assuming the
spacetime is compact along the generic spacelike dimen
parametrized byw, thenL3 is given by the range ofw and
will be dimensionless, while for noncompactw, L3 carries
physical units of length. From the 3D point of view,L3 can
be thought of as the size of the extra dimension. The exp
form of E2 in terms of the 3D fundamental fieldsFi j , Ai and
C is

E2[Ei j E
i j 5F214Fi j Ai¹jC12@~“C!2A 22~A i¹iC!2#.

~8!

The reduced action shows two different gauge fields. T
first one,Ai , is the 3D counterpart of the 4D electromagne
gauge field. The second,Ai , is the Kaluza-Klein gauge field
There are also two scalar fields. The dilatonf, and another
scalar fieldC, which is the projection of the 1-form gaug
field Â onto the Killing directionw. The scalar fieldC
couples to the metric differently from a true scalar field. Th
can be seen, for instance, by comparing the last term in
action ~6! to the kinetic term for the dilaton field (¹f)2.

The equations of motion which follow from the action~6!
for the gravitong, the gauge fieldsA andA, the dilatonf,
and the scalarC are, respectively:

Gi j 52Le2b0fgi j 1~b01b1!@¹i¹jf2~b01b1!

3¹if¹jf2gi j ¹
2f#1b1

2@2¹if¹jf2gi j ~¹f!2#

22e22b0fFEikEj
k1

1

4
gi j E

2G2
1

2
e2(b12b0)fFFikF j

k

1
1

4
gi j F 2G12e22b1fF¹iC¹jC2

1

2
gi j ~¹C!2G , ~9!

¹j@e(b12b0)f~Fi j 2A i¹ jC1A j¹ iC!#50, ~10!

¹j@e(3b12b0)fF i j #54e(b12b0)f@2Fi j ¹jC1A i~¹C!2

2~Aj¹jC!¹ iC#, ~11!

¹i@b1
2e(b01b1)f¹ if#

52Lb1e(b113b0)f1
1

4
b1e(3b12b0)fF 2

1
1

2
b1e(b12b0)fE22b1e(b02b1)f~¹C!2,

~12!

¹ i@e(b02b1)f¹ iC1e(b12b0)f~Fi j Aj1A 2¹ iC

2A iA j¹jC!#50, ~13!

whereGi j is the Einstein tensor.
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Now, we are free to chooseb0 andb1, i.e., we are free to
choose the frame in which to work, with the different fram
being related by conformal transformations. There are th
frames that stand out:

~i! the good frame, i.e., the one that preserves most of
structure of the 4D spacetimes, is given byb050 andb1
free, which we can normalize tob1522, yielding the fol-
lowing actionSg ~for these three particular cases, we do n
display the equations of motion, only the action since it
much more condensed!:

Sg5
L3

16pE d3xA2ge22fFR22L2E22
1

4
e24fF 2

22e4f~“C!2G ; ~14!

~ii ! the Einstein frame, the one that preserves the Eins
form of the action, is given by choosingb01b150, and
b051/2, so that the kinetic term of the dilaton is 2b0(b0
12b1)521/2 ~see e.g.@26# for dimensional reduction in
the Einstein frame!, yielding the actionSE:

SE5
L3

16pE d3xA2gFR22Lef2
1

2
~¹f!22e2fE2

2
1

4
e22fF 222ef~“C!2G ; ~15!

~iii ! the string frame, where one choosesb01b1522 and
b05226A2, fixing the kinetic term of the dilaton to
2b0(b012b1)54, yielding the following actionSs:

Ss5
L3

16pE d3xA2ge22fFR22Le22(27A2)f14~¹f!2

2e2(27A2)fE22
1

4
e4(17A2)fF 222e62A2f~“C!2G .

~16!

It is well known that the different frames, related by confo
mal transformations, are physically inequivalent, e.g., o
frame can give spacetime singularities where the other d
not ~see, e.g.,@27,28#!. We will work mainly with the good
frame, and we will comment later on the other frames.

As it will be seen later on, the 3D solutions are obtain
from the 4D metric and the other 4D fields by direct inspe
tion of the metric and correct truncation of extra fields. Th
task is more easily accomplished by working in the go
frame. Once we have the 3D metric in the good frame (b0
50), the metric in any other frame can be obtained by
appropriate conformal transformation. In order to build su
a transformation, let us definedsg

2 anddso
2 as the given met-

ric written in the good and other frames, respectively. In
good frame, the parametersb0 and b1 assume respectively
the values (b0)g and (b1)g @as we have mentioned, we chos
(b0)g50 and (b1)g522#. Let us also denote the value
2-3
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assumed by the parametersb0 and b1 in the other frame,
respectively, by (b0)o and (b1)o . The two frames are then
related by

dso
25~e22b1f!g

(b0 /b1)odsg
2, ~17!

where (e2b1f)g is the dilaton field in the good frame. Fo
instance, the relation between good and Einstein frame
ds

E

25(e2b1f)gdsg
2 .

B. The global charges

Now we define mass, angular momentum and charge
the 3D spacetime by using the formalism of Brown and Yo
@29–31# modified to include a dilaton and other fields.

1. The conventions

We assume that the 3D spacetimeM is topologically the
product of a spacelike surfaceD2 and a real time line inter-
val I, M5D23I . D2 has the topology of a disk. Its bound
ary ]D2 has the topology of a circle and is denoted byS1.
The boundary ofM, ]M, consists of two spacelike surface
t5t1 and t5t2, and a timelike surfaceS13I joining them.
Let t i be a timelike unit vector (t i t

i521) normal to a space
like surfaceD2 ~that foliatesM), andni be the outward unit
vector normal to the boundary]M (nin

i51). Let us denote
the spacetime metric onM by gi j ( i , j 50,1,2). Hencehi j
5gi j 1t i t j is the induced metric onD2 and s i j 5gi j 1t i t j
2ninj is the induced metric onS1 . hi j can be viewed also a
a tensorhmn (m,n51,2) onD2, ands i j can be viewed as a
scalar~a tensor of rank zero! sab[s (a,b52) on the one-
dimensional boundaryS1. Since S1 is a one-dimensiona
space, the induced metricsab has only one independen
component. The induced metric on the spacetime bound
]M is g i j 5gi j 2ninj5s i j 2t i t j . We also assume that th
spacetime admits the two Killing vectors needed in orde
define mass and angular momentum: a timelike Killing v
tor h t

i5(]/]t) i and a spacelike~axial! Killing vector hu
i

5(]u) i .

2. Mass

The next step is to adapt the Brown and York procedure
take into account the dilaton field@31#. By doing this, we
arrive at the following definition of massM on a 3D space-
time admitting a timelike Killing vectorh t

M3D5
L3

8pES 1

e2(b01b1)fd~kf!t ih t
idS, ~18!

where t i is the timelike future pointing normal toD2 , dS
5As dj with j being a coordinate onS1, ands being the
determinant of the induced metric onS1 ~sinceS1 is a one-
dimensional space, the determinants of the induced metric
sab coincides with the metric itself!. kf is the trace of the
extrinsic curvature ofS1 as embedded inD2, modified by the
presence of the dilaton. To definekf explicitly we consider
the particular case when the two-metric inD2 can be split as
06402
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2 5hmndxmdxn5 f 2dr21R2~dj1Vdr!2, ~19!

where m,n51,2, x15r , x25j, and j parametrizesS1.
Functionsf, R, andV depend on all coordinates.kf may then
be written as

kf52
e2(b01b1)f

2

1

f S 2

R

]R

]r
12~bo1b1!

]f

]r
2¹jVD ,

~20!

where¹j is the covariant derivative onS1. Recall that the
energy surface density onS1 , e, is given by

e5
kf

8p
. ~21!

An explicit definition of e is given for the particular case
studied in Sec. III below. In Eq.~18!, the symbold indicates
the difference between the extrinsic curvaturekf on the
spacetimeM obtained from the full actionS, say, and the
corresponding quantity (kf)o obtained from a reference
spacetimeMo , solution of a reference actionSo . Namely,
d(kf)5kf2(kf)o . In this paper we are interested in blac
holes in asymptotically AdS spacetimes. Hence, the actioS
refers to a specific black hole solution as, e.g., the toro
rotating charged-AdS spacetime, andSo refers to the
~asymptotic! AdS spacetime, when no black hole is prese
The right hand side of Eq.~18! is the quasilocal mass a
defined in Brown-York formalism and in general depends
the choice of the boundaryS1. In our definition we assume
thatS1 represents the infinite boundary of the two-spaceD2,
and the integration overS1 then gives the global mass ass
ciated with the considered black hole solution.

3. Angular momentum

Similarly to the mass, the definition of angular mome
tum J for a 3D spacetime admitting a spacelike Killing ve
tor ]u5hu can also be modified to include the dilaton. Th
definition of the angular momentum is then

J3D5L3ES1

e2(b01b1)fd~ j f
i !hu

i dS, ~22!

where j f
i is the momentum surface density onS1, modified

by the presence of the dilaton. We also haved( j f
i)[( j i

f)
2( j i

f)o , where (j i
f)o is the angular-momentum density

the boundaryS1 of the background~or reference! spacetime,
and j f

i is the full angular momentum density of the consi
ered spacetime. We do not give here an explicit definition
j f

i , since it will not be needed in the applications conside
in the present work.

Since we are interested in the global conserved quant
of black holes, in Eq.~22!, as in Eq.~18! and in the charges
defined below, the integral over the boundary ofD2 , S1, is
in fact taken at the infinity ofD2 , S1→`. In such a limit,
the mass, angular momentum, and charges defined acco
to the Brown and York formalism coincide with the ADM
mass, angular momentum and charges.
2-4
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Now we turn our attention to the definition of othe
charges in 3D spacetimes.

4. Electric and magnetic charges

(a) Electric charges of the gauge fields Ai and Ai . The
two gauge fields,Ai andAi , have different electric charge
Qe andQe , respectively, and both are coupled to the sca
field C, besides being coupled to each other. Moreover,Ai
couples toC through kinetic terms, whereasAi couples
through potential terms. Both gauge charges can be obta
by the Gauss law, adapted to non-asymptotically flat stat
ary spacetimes and to the presence of the dilaton@29,31# ~see
also @11,12#!

Qe5
L3

4pES1

dEin
idS, ~23!

Qe5
L3

4pES1

dEin
idS, ~24!

whereEi[e(b12b0)fFi j t
j , E i[e(3b12b0)fF i j t

j /4, ni is the
unit normal to the spacelike one-dimensional surfaceS1, a
circle, andt i is the timelike normal to the two-space (D2), a
disk. Here alsoS1 is the infinite border ofD2. As in the
definition of mass and angular momentum, the symbod
indicates the difference between the quantity in question
the considered spacetime and the same quantity in a r
ence spacetime. Namely,dEi5Ei2(Ei)o and dEi5Ei
2(Ei)o . QuantitiesEi andE i can be interpreted as electr
fields in the two-space orthogonal tot i . (Ei)o and (Ei)o are
the electric field strengths for the background spaceti
when no localized objects are present. The integrals in E
~23! and~24! are taken at spatial infinity. Hence, in order
obtain a well defined charge in spacetimes asymptotic
AdS, we must subtract the background value from the co
sponding global charge, and this procedure has to be app
to every charge of the model.

It is worth mentioning that both of the electric charges a
built from conserved currentsJe

i [¹j (e
(b12b0)fFi j ) and J e

i

[¹j (e
(3b12b0)fF i j /4), respectively, for which follow imme-

diately ¹iJe
i 50 and¹iJ e

i 50 ~see also the item (c), in this
section, below!. These two identities guarantee the existen
of the two conserved electric charges as defined above.

(b) Magnetic charges of the gauge fields Ai and Ai . The
magnetic charges in 3D spacetimes have world histories
dimension zero. They are events in the spacetime~instan-
tons! @32,33# since the dual field strength in 3D is not
2-form, but a 1-form, i.e., * F yields the 1-form Bi
5e i jkF jk/2. Thus, integration over the boundary ofD2 at
infinity cannot be performed in the same way as one does
the electric charge. However, we can think of the diverge
¹iB

i as the magnetic charge density and an integration o
the spacetime 3D world volumeS yields the magnetic
charges~or magnetic instantons!. For stationary spacetimes
the divergence¹iB

i defines an invariant charge densityrm on
the two-spaceD2, and the volume integration over the who
D2 yields the magnetic charge. Using Gauss theorem,
volume integral overD2 is changed into a surface integr
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over the infinite boundary ofD2, i.e., over theS1 circle
mentioned above. We can then define the magnetic cha
in 3D by

Qm5
L3

4pES1

dBin
idS, ~25!

Qm5
L3

4pES1

dB in
idS, ~26!

whereBi5e(b12b0)fe i jkF jk/2, Bi5e(3b12b0)fe i jkF jk/8, and
the integration is taken over aS1 surface, at the spatial in
finity of D2 ~see above!. These definitions apply at least fo
stationary spacetimes and do not include the ‘‘vortex m
netic charge’’ as defined by some authors, where the st
magnetic field can be interpreted as being produced b
stationary electric current~vortex! ~see @34,35#!. They are
certainly useful in the case of instanton monopoles as defi
in @32,33,36#. Such definitions use the fact that, in 3D, th
monopole generates a tangent electric field which can
used to determine the magnitude of the charge@36# ~see Sec.
III !. Let us emphasize that the surface integrals in Eqs.~25!
and~26! were obtained, using Gauss theorem, from a volu
integration over the whole spaceD2. Therefore, the magnetic
charges defined in such a way are meaningful only if
surface integration is taken over the infinite boundary ofD2.
For another discussion on the difficulties to define quasilo
gauge charges associated with 4D dyonic black holes
Ref. @37#.

(c) Deformations of the electromagnetic charges. An in-
vestigation on the field equations shows that the electrom
netic charges defined above may have additional contr
tions from the interaction terms with other fields. This
particularly true whenC is nonzero, and the interactio
terms between the gauge fieldAi and the scalarC give rise
to source terms in the field equations, in such a way that
conserved currents acquire extra terms that depend onC and
on A. To be more explicit, let us show what happens,
instance, regarding the electric chargeQe . The full con-
served current corresponding to theF field is

Jj5¹i@e(b12b0)f~Fi j 1Fextra
i j !#, ~27!

whereFextra
i j [A j¹ iC2A i¹ jC. Therefore, one should ad

a second term to Eq.~23! to give *S1
d(Ei1Ei

extra)nidS,

whereEi
extra5e(b12b0)fFi j

extrat j . There are analogous correc
tion terms related to the other electric charge,Qe , and also
to the magnetic chargesQm andQm . However, we find that
for the black hole solutions we are going to analyze in t
paper the above mentioned corrections to the conse
charges are zero. The extra terms, in fact, contribute to
quasilocal charges, when the boundary of integrationS1 is
not at infinity, but vanishes at the infinite boundary ofD2.

5. Dilatonic charges

In addition to their mass and electromagnetic gau
charges, stationary asymptotically AdS 3D black holes
2-5
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also characterized by the dilaton charge. As a matter of f
two dilaton charges can be defined. The chargeQf @38# and
its dualQ̃f @39# are given by

Qf5
L3

4pES1

d~e(b01b1)f¹if!nidS, ~28!

Q̃f5
L3

4pES1

e i jkd~e(b01b1)f¹kf!ni t jdS, ~29!

where the integrations are defined in the same way as be
The dilaton charge~28! is defined in Ref.@38# in the Ein-

stein frame whereb01b150, and forLÞ0 it is not related
to a conserved current. It represents the total flux of
vector fieldVi5¹if across the surfaceS1 at the boundary of
the spaceD2. The result forQf is the same to all stationar
observers at infinity ofD2, and can then be identified wit
the charge of the dilaton field. Although this surface integ
does not come from a conserved current, and perhaps sh
not be called a charge, we maintain it here because so
times it has a nonzero value and is not totally useless~see
@38,40#!.

The dual dilaton charge~29!, on the other hand, is a con
served charge, since it is obtained from the conserved cur
J̃f

i 5¹j (e
i jke(b01b1)f¹kf), which is divergence free¹i J̃f

i

50.

6. Charges of the scalar fieldC

Finally, due to the presence of the scalar fieldC
in the action ~6! two other charges can also be d
fined. From Eq.~13! it is possible to identify the

quantity JC
i 5e(b02b1)f¹ iC1e(b12b0)f(Fi j Aj1A 2¹ iC

2AiAj¹jC) as a conserved current,¹iJC
i 50. The corre-

sponding conserved charge~analog to the electric charge! is

QC5
L3

4pES1

d~JC
i !nidS, ~30!

where the integration and the symbold have the same mean
ing as above. Let us mention that, for the solutions we
going to analyze here, the interaction terms betweenC and
the gauge fieldsA andA do not contribute to the total charg
for C, and this charge is identically zero.

It is also possible to define a second conserved charg
topological character~which is the analog of the magnet
charge!, also a source of the scalar fieldC. From the vector
quantity¹ iC we may construct an anti-symmetric dual te
sor asHi j 5e i jk¹kC. Therefore, the vector density¹iH

i j is
divergence free and can be interpreted as a conserved
rent. Thus there is an associated conserved charge defin

Q̃C5
L3

4pES1

e i jkd~¹kC!t injdS, ~31!

where the integration is the same as defined above. W
AÞ0, there are additional terms in the equation of mot
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for C not considered to arrive at Eq.~31!, but they do not
contribute to the conserved charge@see the comments jus
after Eq.~26!#.

7. General comments

We now study explicitly the connection between the ge
eral 4D stationary asymptotically AdS spacetimes and
corresponding 3D metrics obtained through the dimensio
reduction technique discussed in the present section. We
reduce through the angular coordinatew. We study 4D tor-
oidal black holes in AdS spacetime, charged and rotat
These have a straightforward dimensional reducing pro
dure; the theory obtained is a 3D Brans-Dicke theory, and
3D results are clear cut and simple; most frames~including
the Einstein frame! are good frames.

III. 3D CHARGED ROTATING TOROIDAL BLACK
HOLES

A. The 4D metric and parameters

Hereafter we consider a class of rotating black holes w
toroidal topology. In a previous paper@12# we reported a
rotating electrically charged black hole with a toroidal ho
zon. Before going on to the dimensional reduction of suc
black hole, it is worth noting that following the same proc
dure as in@12# a dyonic version of the black hole can b
found.

We start constructing the static dyonic toroidal black ho
by choosing the coordinate system (t,r ,u,w) with 2`,t
,1`, 0<r ,1`, 0<u,2p, 0<w,1 ~the ranges of the
angular coordinates are arbitrary; we have chosen these
ticular ones to yield convenient values for the mass a
charges!.

The solution is found by solving Einstein-Maxwell equ
tions for such a static spacetime. We find

dŝ252S a2r 22
4m

r
1

4~q21g2!

r 2 D dt2

1
dr2

a2r 22
4m

r
1

4~q21g2!

r 2

1r 2~dw21du2!,

~32!

Â52
2q

r
d t22g udw, ~33!

wherea2[2 1
3 L, andm, q andg are integration constants. I

is easy to show, for instance using Gauss law, thatq and g
are respectively the electric and magnetic charges of
black hole, andm is its mass. Depending on the relativ
values ofm, q, andg metric ~32! can represent a static tor
oidal black hole.

The rotating metric is then obtained by performing a loc
coordinate transformation which mixes time and angular
ordinates. The result can be written in the form
2-6
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dŝ252S 12
1

2
a2a2

12
3

2
a2a2

D F D

r 2 S dt2
a

A12
1

2
a2a2

dwD 2

1r 2S dw2
aa2

A12
1

2
a2a2

dtD 2G
1r 2S dr2

D
1du2D , ~34!

Â522
q

r S dt2
a

A12
1

2
a2a2

dwD
22guS dw2

aa2

A12
1

2
a2a2

dtD , ~35!

where

D5a2r 424mS 12
3

2
a2a2D r 14~q21g2!S 12

3

2
a2a2

12
1

2
a2a2

D .

~36!

Parametersm, q andg have the same interpretation as in t
static black hole~32!. The rotation parametera is defined
through J5 3

2 aMA12a2a2/2, whereJ is the angular mo-
mentum of the black hole. Let us also mention that the ab
choice of parameters, with the constraint 0<a2a2<1, en-
sures that the asymptotic form of the metric for larger is
exactly the static AdS metric~see Ref.@12#!. In the follow-
ing, however, we restrict the analysis to the case 0<a2a2

,2/3.
The metric~34! admits two spacelike Killing vectors, s

that two independent dimensional reductions are allowed
this case. Such a metric can then be reduced from 4D to
different 3D black hole solutions, or from 4D to one 2
nontrivial black hole. We are going to consider the reduct
along]w . For the reduction along the other Killing vector]u
the result is the dyonic analog of the 3D rotating charg
black hole obtained in@12# ~see also@11#!, in which case one
has to consider a different gauge forÂ, namely, Â5

22(q/r )„dt2(a/A12 1
2 a2a2)dw…22g„w

2(aa2/A12 1
2 a2a2)t…du, without changing the electro

magnetic Maxwell field.
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B. The 3D black hole spacetime

1. The metric and charges

Using the prescriptions developed in Sec. II, the dime
sional reduction along the Killing directionw can now be
performed, yielding the following 3D static black hole:

e2b0fds252

S 12
3

2
a2a2DD

r 2S 12
1

2
a2a2D2

a2D

r 2

dt21r 2S dr2

D
1du2D ,

~37!

A522S q

r
2g

aa2

A12
1

2
a2a2

uD dt, ~38!

A5
a~D2a2r 4!

r 4S 12
1

2
a2a2D2a2D

Ldt, ~39!

L2e2b1f5
1

12
3

2
a2a2

F r 2S 12
1

2
a2a2D2

a2D

r 2 G , ~40!

C5
2q

r

a

A12
1

2
a2a2

22gu, ~41!

where the new arbitrary constantL introduced in the defini-
tion of the dilaton~40! carries physical dimensions of length

For q21g2< 3
4 (12 1

2 a2a2)A3 (12 3
2 a2a2)m4/a2, the

above solution represents a static spherically symme
three-dimensional black hole with electric and magne
gauge charges proportional toq andg, respectively, and with

an extra gauge charge proportional toaA12 1
2 a2a2. For

q21g2. 3
4 (12 1

2 a2a2)A3 (12 3
2 a2a2)m4/a2 the above solu-

tion represents a naked singularity, with singularities
points wherer 4(12 1

2 a2a2)2a2D50. For future reference
and to recall the toroidal topology of the original 4D blac
hole, we call the above solution the 3D toroidal black ho
One should keep in mind, however, that the topology of
3D solution~37! is in fact spherical, or, more precisely, ci
cular, because the slicest5const are two-dimensional spac
like surfaces.

For the sake of definiteness we choose initially the go
frame b050. Using the definitions of Sec. II we can no
determine the mass and charges of the present solution
order to apply Eq.~18! to calculate the mass of the toroid
3D black hole, let us first define explicitly the quantitie
appearing in that equation. In metric~37! we then choose a
regionM of spacetime bounded byr 5const, and two space
like hypersurfacest5t1 and t5t2. The hypersurfacet
2-7
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5const,r 5const, is the one-dimensional boundaryS1 of the
two-spaceD2. The boundary ofM, ]M, in the present case
consists of the product ofS1 with timelike lines (r
5const,u5const) joining the surfacest5t1 and t5t2, and
these two surfaces themselves.S1 can also be thought of a
the intersection ofD2 with ]M (S1 is a circle with radius
r ). The induced metricsab is obtained from Eq.~37! by
setting dt50 and dr50. Thus,a,b52 and sab5s22[s
5r 2, while the two-space metrichi j is obtained by setting
dt50.

Using Eqs.~20! and~37!, we get the following expression
for the extrinsic curvature ofS1:

kf52
e2b1f

2

AD

r S 2

r
12

]~b1f!

]r D , ~42!

whereD and eb1f are given respectively by Eqs.~36! and
~40!. To build d(kf) we computekf from the full solution
given in Eqs.~37!–~41! that describe the 3D toroidal blac
hole in an asymptotically AdS spacetime. The backgrou
spacetime is the 3D spherical AdS spacetime with no bl
hole present, whose extrinsic curvature (kf)o follows from
the same metric~37! by choosingm50, q50, andg50.
Then, using Eq.~42! to calculated(kf)5kf2(kf)o and sub-
stituting into Eq.~18!, and taking the limitr→`, the mass of
the toroidal 3D black hole is finally obtained,

M3D5m~11a2a2!, ~43!

wherem is the mass of the 4D black hole, and to simplify w
have putL5L3. We see that the reduced 3D black ho
acquires mass from the original toroidal black hole in 4
spacetime. The additional mass,dM5m a2a2, depends ex-

plicitly on the 4D rotation parameterv5aa2/A12 3
2 a2a2,

and can be viewed as being generated by the motion of
3D system along the extra dimension. That is to say,
same well known mechanism that gives rise to the elec
magnetic field and charges in Kaluza-Klein theories, a
gives rise to part of the mass of the system in the compa
fied spacetime.

As mentioned before, metric~37! is static and the angula
momentum is zero. This can be seen using Eq.~22! which
gives

J3D50. ~44!

According to Eq.~38!, both the 4D electric and magnet
charges (q, g) are sources to the 3D electromagnetic fie
When considered as independent sources,q and g generate
electric fields with distinct geometric properties.q is the
source of a radial fieldEr;q/r 2, while g gives rise to a

tangent~uniform! electric fieldEu;gaa2/A12 1
2 a2a2. On

the other hand, the source for the Kaluza-Klein gauge fieldA
is proportional to the 4D rotation parameterv

5aa2/A12 3
2 a2a2. Such a charge generates a radial elec

field. Electric gauge charges forA andA for the 3D toroidal
black hole are obtained from Eqs.~23! and ~24!, and are
given respectively by
06402
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Qe5q ~45!

and

Qe5
3

2
maA12

1

2
a2a25J. ~46!

The electric chargeQe , source to the Kaluza-Klein gaug
field, is proportional to the 4D angular momentumJ, as ex-
pected.

Magnetic gauge charges are calculated from Eqs.~25! and
~26!. Following the same prescription as for calculating t
other gauge charges we find

Qm5
gaa

A12
a2a2

2

~47!

and

Qm50. ~48!

Thus we see that the rotation of the 4D charged black h
generates a stationary magnetic currenti g

5gaa2/A12 1
2 a2a2 which is the source of a tangent ele

tric field. In the dimensionally reduced static 3D spacetim
there is no frame dragging and the tangent electric field m
be generated by a Dirac monopole, whose magnitude of
charge isQm5 i g /a. The existence of a uniform tangen
electric field is a special feature associated to the presenc
a Dirac monopole in (211)-dimensional spacetimes@36#.

The dilaton chargesQf andQ̃f for the toroidal black hole
are both zero,

Qf50, Q̃f50. ~49!

It is worth noticing, however, thatd(e(b01b1)f) in Eqs.~28!
and ~29! is nonzero and the quasilocal dilaton charges
both nonzero and depend on the surface of integrationS1.
Consider, for instance, the case of Eq.~28! and letQf(r ) be
the quasilocal charge obtained forf when the integration
boundaryS1 is at r 5const ~not at infinity!. d(eb1f) is the
difference between the full dilaton fieldeb1f (b050), given
by Eq.~40!, and the background dilaton field~from the back-
ground spacetime! (eb1f)o , which follows from Eq.~40! by
putting m50, q50, g50. The resulting conserved dilato
charge can then be thought of as the asymptotic limitr
→`) of the quasilocal charge

Qf~r !5
3

2

ma2a

r
,

where as mentioned before we chooseb1522. Hence,
when the integration is taken over the infinite boundary,
total chargeQf5 limr→`Qf(r ) vanishes. Similar argument
hold for the dual chargeQ̃f . This result can be interpreted a
the dilaton being a short range field.
2-8
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We now investigate the physical meaning of the sca
field C by first calculating its charges. In order to do that w
substitute Eq.~41! into Eqs.~30! and ~31! and take the ap-
propriate limit to get

QC50, Q̃C5g. ~50!

Equation~3! tells us thatC is a gauge field, which appears
3D as a scalar field. The nonzero chargeQ̃C , the source of a
scalar field, is the analog of the magnetic charge and ca
viewed as a topological charge.

The solution given by Eq.~37! then represents a localize
nonrotating massive object in an asymptotically AdS sp
a
n

e

e

06402
r

be

e

time, and has three gauge charges (Qe , Qe , and Qm) and

one scalar charge~Q̃C ).

2. Singularities, horizons, and causal structure

The 3D spacetimes here derived are circular and sta
Their causal structure is in several aspects similar to
causal structure of the corresponding 4D spacetime.
main important difference between 4D and 3D solutions
related to the singularities, as it can be seen by compa
the respective curvature invariants. In the 4D spacetime@Eq.
~34!# there is a singularity atr 50, whilst in 3D there are
other points where the curvature is singular. This is verifi
by studying the 3D Ricci and Kretschmann scalars of me
~37!, which are given respectively by
R5226a21
8m

r 3 S 12
3

2
a2a2D1

8~q21g2!

r 4 S 12
3

2
a2a2

12
1

2
a2a2

D 112a2
D

G
1

3

2

G8D8

r 2G
2

3

2

DG82

r 2G2
12

DG8

r 3G
, ~51!

K5364a42128
a2 m

r 3 S 12
3

2
a2a2D2224

~q21g2!a2

r 4 S 12
3

2
a2a2

12
1

2
a2a2

D 1160
m2

r 6 S 12
3

2
a2a2D 2

2256
m

r 7

~q21g2!

S 12
1

2
a2a2D S 12

3

2
a2a2D 2

1192
~q21g2!2

r 8 S 12
3

2
a2a2

12
1

2
a2a2

D 2

2288a4
D

G
236a2

D8G8

r 2G

248a2
DD8

r 3G
224a2

DG8

r 3G
148a2

D2

r 4G
26

D82G82

r 5G
1144a4

D2

G2136a2
D

r 2 S G82

G2
1

D8G8

G2 D 124a2
D2G8

r 3G2

1
9

4

D82G82

r 4G2
19

DD8G82

r 5G2
24

D2G82

r 6G2
236a2

D2G82

r 2G3
2

9

2

DD8G83

r 4G3
23

D2G83

r 5G3
1

9

4

D2G82

r 4G4
, ~52!
where we have definedG5„r 4(12 1
2 a2a2)2a2D…/(1

2 3
2 a2a2) and 8[]/]r . The 3D spacetime~37! then shows

singularities when the following condition is satisfied:

r 2F r 414ma2r 24~q21g2!
a2

12
1

2
a2a2G50. ~53!

The expression among brackets in Eq.~53! has, forq21g2

Þ0, one positive~real! root r s signaling the presence of
singularity. It has also a negative root which we do not co
sider. Thus, infalling geodesic particles coming from largr
hit a singularity atr 5r s where the spacetime ends~see Fig.
1!.

The horizons of Eq.~37! are given by the real roots of th
equation
-

a2r 424mS 12
3

2
a2a2D r 14~q21g2!S 12

3

2
a2a2

12
1

2
a2a2

D 50.

~54!

In the analysis of horizons, the relevant function is

Descr5
3

4 S 12
1

2
a2a2DA3 S 12

3

2
a2a2Dm4

a2
2q22g2.

~55!

Depending on the relative values of massm, chargesq, a
and g, we have three distinct cases to analyze~the caseq2

1g250 is considered in next subsection!: ~i! Descr.0—in
2-9
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such a case the metric~37! has two horizons: the even
horizon at r 1 and the Cauchy or inner horizon atr 2 .
This is shown in Fig. 1. The singularity atr 5r s is en-
closed by both horizons. The spacetime can then
extended through the horizons untilr s . It represents a
static black hole. Note that the other region betwe
r s and r 50 belongs to a disconnected spacetime a
we do not analyze it further;~ii ! Descr50—the solu-
tion is the extreme black hole spacetime. There

only one horizon at r 5r 15r 25A3 m(12 3
2 a2a2)/a2

5A4 4
3 @(q21g2)/a2#†(12 3

2 a2a2)/(12 1
2 a2a2)‡. In such a

case, when drawing an analog figure to Fig. 1, the dotted
the dashed~external! lines would coincide with each othe
and the singularity atr 5r s ~solid internal line! would be still
hidden~to external observers! by the horizon. Geodesic in
ward lines end at the singularityr s ; ~iii ! Descr,0—this
solution has no horizons and represents a naked singula
From the above description, the Penrose diagrams, with
inherent topology and causal structure of spacetime, can
ily be drawn.

3. Special cases

(a) The J50 case. This case corresponds to an uncharg
version of the solution studied in Sec. III B 1, sinceJ50
impliesa50, which makes the Kaluza-Klein electric charg
Qe equal to zero. The magnetic chargeQm also vanishes@see
Eqs.~46! and ~47!#.

The 3D metric and other fields are obtained also by
dimensional reduction of the static charged 4D spacet
given by Eqs.~32! and ~33!, which yield

FIG. 1. The singularity and horizons of the toroidal 3D spa
time in the coordinates of metric~37!. The parameters are such th
the event horizon atr 1 ~dotted line! and Cauchy horizon atr 2

~slash-dotted line! are present. Spacetime ends at the singularityr s

~full line!.
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ds252S a2r 22
4m

r
1

4~q21g2!

r 2 D dt2

1
dr2

a2r 22
4m

r
1

4~q21g2!

r 2

1r 2du2, ~56!

A52
2q

r
dt, ~57!

L2e2b1f5r 2, ~58!

C522gu, ~59!

and the other fields vanish. This solution represents a
static spherically symmetric charged black hole whose g
desic and causal structures are the same as thew5const
plane of the 4D static toroidal black hole~32!. Such a black
hole has massm, electric chargeq and an additional charge
g, the source to theC scalar field. The dilaton charge is zer
The Ricci and Kretschmann curvature scalars are, res

tively, R526a2212(q21g2)/r 4 and K512a4196m2/r 6

132a2(q21g2)/r 42512m(q21g2)/r 71 704(q21g2)2/r 8,
showing that there is a singularity atr 50. For q21g2

< 3
4
A3m4/a2 there are two horizons and the singularity

hidden to asymptotic external observers. On the other ha
if q21g2. 3

4 A
3
m4/a2 the singularity is naked.

(b) The uncharged q21g250 case. An interesting 3D
spherical black hole is obtained by the dimensional reduc
of the 4D toroidal rotating uncharged black hole. Such
solution can also be obtained directly from Eqs.~37!–~41! by
settingq50 andg50. Namely,

ds252

a2r 22
4m

r S 12
3

2
a2a2D

11
4ma2

r 3

dt2

1
dr2

a2r 22
4m

r S 12
3

2
a2a2D 1r 2du2, ~60!

A52

4maA12
1

2
a2a2

r 314ma2
Ldt, ~61!

L2e2b1f5r 21
4ma2

r
, ~62!

with the other fields being identically zero. This solutio
corresponds to a 3D charged static black hole with just

gauge field whose electric charge isQe5 3
2 maA12 1

2 a2a2.
The mass and angular momentum are the same as fo
caseq21g2Þ0. Singularities and horizons of this spacetim
are also easily obtained from the solution studied in S
III B 1 with q21g250. For all possible values of paramete

-

2-10
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a2.0, m(12 3
2 a2a2).0 and a2(12 3

2 a2a2).0, there is

always just one horizon atr 5A3 4(12 3
2 a2a2)(m/a2), and a

singularity atr 50.
(c) Thea50 case. After dimensional reduction along th

]w direction the metric and the other potentials can be
tained directly by makinga250 in Eqs. ~37!–~41!, which
gives

ds252

F24m

r
1

4~q21g2!

r 2 G
11

4ma2

r 3 2
4~q21g2!a2

r 4

dt2

1
dr2

24m

r
1

4~q21g2!

r 2

1r 2du2, ~63!

A522
q

r
dt, ~64!

A5
a@24mr24~q21g2!#

r 414ma2r 24~q21g2!a2 Ldt, ~65!

L2e2b1f5r 21
4ma2

r
2

4~q21g2!a2

r 2 , ~66!

C5
2q

r
a22gu. ~67!

We have two distinct cases. Indeed, ifq21g2Þ0 there is one
horizon, r h5(q21g2)/m. On the other hand, ifq21g250
there are no horizons and the singularity is naked: in cont
to the 4D black holes with spherical horizons the 4D~and
also 3D! uncharged toroidal black holes vanish when t
cosmological constant is set to zero, leaving a naked sin
larity. Also, the asymptotic regionr→6` is not well de-
fined. We do not comment further on this case.

(d) The rotating black hole. One may, if one wishes, se
this black hole to rotate by performing a forbidden coor
nate transformation which mixes time and angles. This yie
a new rotating solution.

C. The 3D black hole spacetime in other frames

Up to now we have analyzed the 3D black hole in t
good frame. Once we have the metric in the good frame,
metric in any other frame can be obtained by the conform
transformation given in Eq.~17!. We consider first the Ein-
stein frame which follows by setting (b0)o52(b1)o , or by
using Eqs.~37! and~40! and choosingb052b1. This gives
06402
-

st

u-

-
s

e
l

dsE
252Dd t̄21S 12

1

2
a2a21

2
3

2
a2a2

D
3S a2r̄ 42

a2a2

12
1

2
a2a2

DD S dr̄2

D
1dū2D , ~68!

whereD is defined as before, and all the other fields keep
same form of Eqs.~40!, ~41!. We have dressed the coord
nates with bars to make clear they are different from
metric in the good frame~37!. This solution and Eq.~37! are
conformally equivalent, except in the locir 50 and G(r )
5r 4(12 1

2 a2a2)2a2D(r )50, where the metric~37! is sin-
gular. Metric ~68! presents horizons at points whereD( r̄ )
50, and singularities whenG( r̄ )5 r̄ 4(12 1

2 a2a2)2a2D( r̄ )
50. The charges for both of the metrics are also the sa
Good and Einstein frames in this case both yield black ho

Other frames can also be considered. For comparison
show also the metric of the toroidal 3D black hole in t
string frame. Once again, we start with the metric in the go
frame and use Eq.~17!, where now (b0 /b1)o52(17A2),
yielding

dss
252F r 4S 12

1

2
a2a2D2a2D

12
3

2
a2a2

G 7A2

Ddt2

1F r 4S 12
1

2
a2a2D2a2D

12
3

2
a2a2

G 17A2

3S dr2

D
1du2D , ~69!

and all the other fields keep the same form of Eqs.~40!,~41!.
The string and Einstein frames are related bydss

2

5(e2f)E
7A2ds

E

2 , where (e2b1f)E is the dilaton field in the

Einstein frame whereb1521/2. Properties of the metric in
the string and Einstein frames are very similar, with the sa
singularities and horizons. The conformal transformation
lating the two frames is well defined everywhere except
points wherer 4(12 1

2 a2a2)2a2D(r )50, which correspond
to singularities of the spacetime.

D. The 2D black hole spacetime

One can reduce one more dimension. Our aim is now
go from the 3D black hole presented in Eqs.~37!–~41! to the
corresponding 2D reduced black hole by performing a c
sistent truncation along theu direction. In order to perform a
consistent dimensional reduction we have to chooseg50 in
Eqs.~38! and~41!. The result is a (111)-dimensional black
2-11
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hole solution of gravity theory with two gauge fieldsA and
A, two dilatonf1 andf2, and with one scalar fieldC:

e2(b0f11b̄0f2)ds252

S 12
3

2
a2a2DD

r 2S 12
1

2
a2a2D2

a2D

r 2

dt21r 2
dr2

D
,

~70!

A522
q

r
dt, ~71!

A5
a~D2a2r 4!

r 4S 12
1

2
a2a2D2a2D

Ldt, ~72!

L2e2b1f15
1

12
3

2
a2a2

F r 2S 12
1

2
a2a2D2

a2D

r 2 G ,
~73!

e2b2f25r 2, ~74!

C5
2q

r

a

A12
1

2
a2a2

, ~75!
lli,

av

s.

06402
where b0 ,b̄0 ,b1 ,b2 are arbitrary constants. Even thoug
this two-dimensional solution also presents interesting pr
erties, it will not be studied in detail here. For the particu
case with no charges and angular momentum see@41#.

IV. CONCLUSIONS

We have presented the dimensional reduction to 3D of
rotating charged toroidal-AdS black hole. Dimensional
duction, through the Killing azimuthal direction]/]w, pro-
duced 3D black holes with an isotropic event horizon~i.e.,
circularly symmetric!, and the new charges were neat
found.

There are other interesting classes of black holes in 4D
which this procedure could also be applied, namely the
perbolic black holes@42,43#, as well as the toroidal-AdS
holes found in@44# which are not isometric to those o
@11,12#. Such an analysis can be done with the techniq
presented here.
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@2# M. Bañados, M. Henneaux, C. Teitelboim, and J. Zane
Phys. Rev. D48, 1506~1993!.

@3# S. Deser, R. Jackiw, and G. ’t Hooft, Ann. Phys.~N.Y.! 152,
220 ~1984!.

@4# S. Deser and R. Jackiw, Ann. Phys.~N.Y.! 153, 405 ~1984!.
@5# S. Giddings, J. Abbott, and K. Kucharˇ, Gen. Relativ. Gravit.

16, 751 ~1984!.
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