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We study the stability properties of the Kidder-Scheel-Teukol§k®T) many-parameter formulation of
Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of
view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out
that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability
properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we
present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of
instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis
can be applied in other formulations with similar properties.
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[. INTRODUCTION nonconvergent, but it might appear to converge for a signifi-
cant range of resolutions. We will see that the addition of
Numerical simulations of the Einstein equations for situ-dissipation does not fix these problems, but actually can ex-
ations of interest in the binary black hole problem do not runacerbate them. It is often the case in numerical relativity that
forever. The codes either stop due to the development dfiscretization schemes that are convergent for strongly hy-
floating point overflows, or even if they do not crash, theyperbolic equations are applied to weakly hyperbolic formu-
produce answers that after a while are clearly incorrect. It idations. The examples of this section will teach us how dan-
usually very difficult to pinpoint a clear reason why a codegerous such a practice is and confirm the analytic results of
stops working. Recently, Kidder, Scheel and TeukolskyRef.[2]. This part of the paper is also instructive in that the
(KST) [1] introduced a twelve-parameter family of evolution KST system has only been evolved with pseudospectral
equations for general relativity. Performing an empirical pa-methods. We use ordinary integration via the method of
rameter study within a certain two-parameter subfamily, theyines.
were able to evolve single black hole space-times for over The plan of this paper is as follows. In the next section we
1000 M, where M is the mass of the black hole, somethingVill discuss several notions of stability that are present in the
that had been very difficult to achieve in the past. It is ofliterature, mostly to clarify the notation. In Sec. Il we dis-
interest to try to understand what makes some of the paran¢uss the stability of the KST equations in the continuum
eter choices better than others, in particular given that &nder linearized perturbations. In Sec. IV we discuss the nu-
twelve dimensional parameter study appears prohibitive aherical simulations.
present. The intention of this paper is to take some steps in
this direction. We will first perform a linearized analysis of
the KST equations in the continuum, by considering small
perturbations around flat space-time. We will observe that the The termstability is used in numerical relativity in several
stability of flat space-time is entirely characterized by thedifferent ways. We therefore wanted to make the notation
level of hyperbolicity of the system. Since the latter is con-clear at least in what refers to this paper. Sometimes the
trolled by the parameters of the family, this provides a firstnotion of stability is used in a purely analytic context, while
analytic guidance as to which values to choose. Unfortusome other times it is used in a purely numerical one. Within
nately, the result is somewhat weak, since it just points to amnalytical contexts, there are cases in which it is used to
obvious fact: formulations with a higher level of hyperbolic- mean well posedness, as in the book of Kreiss and Lorenz
ity work better. [3]. In such a context well posedness means that the norm of
In the second part of the paper we perform a set of simplehe solution at a fixed time can be bounded by the norm of
numerical tests. We consider space-times where all variablege initial data, with a bound that is valid for all initial data.
depend on one spatial coordinate, which we consider comin other cases it is intended to measure the growth of pertur-
pactified for simplicity, and time. We are able to exhibit ex- bations of a certain solution within a formulation of Ein-
plicitly the various types of instabilities that arise in the sys-stein’s equations, without special interest in whether the
tem. Some of the results are surprising. For the situatiorquations are well posed or not.
where the system is weakly hyperbolic, the code is strictly At the numerical level, a scheme is sometimes defined as
stable if it satisfies a discrete version of well posedness. This
is the sense in which stabilityplus consistenagyis equivalent

II. DIFFERENT DEFINITIONS OF STABILITY
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ger than 1. Finally, the term stability has also historicallywhereg is the determinant of the three-metric anda pa-
been loosely used to mean that a simulation runs for a certairameter. The shift vectoi\', is also assumed to be pre-
amount of time before crashing, or that the errors remairscribed as a function of space-time. We define the derivative
reasonably bounded as a function of time for a certairoperator along the normal to the hypersurfaces as
amount of time.

At the continuum, part of the problem we want to look at
can then be stated as follows. Suppose there is a certain do= (A= En)-
solutionu, of Einstein’s equations which is bounded for all
times. One can prescribe the initial datg that uniquely
determine, through the use of the evolution equations, th
solution. However, if one gives initial data slightly different
from f,, the corresponding solution might grow without do0ij = — 2Kjj, ©)
bound or even blow up in a finite amount of time. This can
happen either because this is the physical situation, or be- 1, 1, 1 .
cause the new solutiam does not satisfy the constraints, or JoKij=— 57 Aij + 27 deijrt 29 9(iGjabj)
does satisfy them but it is in a gauge that is becoming ill
defined. Numerical simulations may blow up even when one
tries to model physically stable space-times. This is the case
for evolutions of Schwarzschild or Kerr black holeshich

a‘[he vacuum evolution equations have the form

1
>t 0’) 9%°91d}yant £9*°Cagijyp+ ¥9i;C

are known to be at least linearly stable with respect to physi- —e 999,(e)+ Ry, (4)
cal perturbations
The time growth of solutions of a given set of partial dokij = — 23kKi; + 79k Ciy + XTij Cit R » (5)

differential equations can be classified according to whether

or not it can be bounded by a time function that does notyhere the constraint variables

depend on the initial data. This leads to the concept of well

posedness. Namely, a system of partial differential equations 1

is said to be well posed at a solutiog(t) if there is aT and C==0%"(d,p— dyap) + R
some norm such that 2

H iltoni traint
lu®|<FMJu©) for o<t<T (1) (Hamitonian constrai)

for all solutionsu(t) with u(0) sufficiently close tauy(0). CJ:‘?aKai_gab‘?JKab+Ri
For linear equations the bound can be tightened to an expo- (momentum constraint
nential, but for nonlinear systentS(T) might be any other
function that can even diverge at finite The strength of Eq.

(1) characterizes the property that the bound is independent
of the details of the initial data, in particular of their fre-
quency components. This is important in numerical simula- Cikij=dpdygij (“closedness” ofdy;;)

tions, where morgand higher frequency components ap-

pear when resolution is increased. Well posedness is have been added to the right-hand side of the evolution equa-
necessary condition in order to have long term, convergertions with free parameteres,y,»,x. In the original KST
evolutions, but it is not sufficient. Indeed, the functie(ir) construction there are actually twelve parameters, which
can grow quickly in time. In order to contr&l(T) one hasto  stem from the freedom of adding the constraints implied by
go beyond well posedness and study non-principal terms. Wiedefinitions of variables to the evolution equations when

Ckij = dkij - (9kgij (deﬂmtlon Ofdkij)

will now apply these ideas to the KST equations. casting the equations in first order form. In the linearized
case we consider here one is left with the four mentioned
lll. THE KST FAMILY OF EQUATIONS AND THEIR parameters andr. Above, 7*=g"9. The ‘remainder”
LINEAR STABILITY termsR, R; , Rij, andRy;; are homogeneous polynomlals
of degree 2 indy;, 9;Q, andK;; (this will have direct con-
A. The formulation sequences on the linear stability, as discussed belohere

Starting from the Arnowitt-Deser-MisnefADM) equa- the coefficients may depend @y . Finally, the Lie deriva-
tions, KST derive a family of strongly hyperbolic first-order tive of the symbolsy;; is
evolution equations for the three-metrig;), the extrinsic
curvature K;;), and the spatial derivatives of the three- £1dyij = N'gydyj + dyjj N
metric (dy;;=4,9;;), which generalizes previous well posed
formulations[5,6]. A priori prescribing the densitized lapse
exp@) as a function of space-time, the lapséas given by

+2dy19)N'+ 293195 IkN".

The evolution system has characteristic spef@is 1,

N=g’e®, 2 =N, =N =3}, where
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N =20, Ki; andd,;; depends quadratically oK;;, d;; and the de-
rivatives of Q, only the principal part remains when we lin-
1 earize these evolution equations. More precisely, the linear-
No=14x— 51+ n+y(2=n+2x), ized equations have the following structure:
1 3 1 9ij= —2Kjj,
Ns=5x+ g (1= 9= 7 (1+20)(n+3x).
Kij=(Ad)jj (8
It should be noted that these are the characteristic speeds
with respect to the), operator. This means that=0,1 cor- d = (BK) i
respond to propagation along the normal to the hypersurfaces ki kij

or the light cone, respectively. The charactefiStiC speeds \hereA andB are spatial, first order, differential linear op-
with respect to the); operator are obtained from these after g410rs with constant coefficients. Furthermore, perturbations
the transformation of the three-metric do not appear in the equations<grand
dyjj - As a consequence, it is sufficient to consider only these
equations; after having solved them, the three-metric is ob-
wheren' is the direction of the corresponding characteristict@ined through a time integration. So, the relevant linear evo-
mode. lution equations have the form
The conditions under which the system is completely ill 3
posed(CIP), weakly hyperboliqWH) or strongly hyperbolic - 2 Alg 9
(SH) (see the next subsection for these definitjongre u—j:1 iy ©
found in KST. The system is CIP if any of the above speeds
is complex, while it is WH ifA;=0 for j=1,2,3 but one of hereu is a “vector” formed by the components &f;; and
the conditiong6),(7) below is violated. Finally, the system is di; (u has, thus, 24 independent compongnésid Al are
SH provided thaf7] 24X 24 matrices.
. Since the matriced\) have constant coefficients and we

A>0 for j=1,2,3, ©®) want to make an analysis in the absence of boundaries, we
1 consider a three-torus with periodic boundary conditions as a
A3==(3\;+1) if Aj=N\,. 7) QOmain a_nd analyze E) through Fourier expansion. That

4 is, we write

w—>Np+Nn;,

For example, if the parameterg,t/, n,x) are all zero the .
dynamics is equivalent to the ADM equations written in first u(t,i)zz u(t,k)e™*,
order form with fixed densitized lapse and fixed skifhich k

are WH. If =0 as well, then the system is equivalent to
the ADM equations with fixed lapse and sHifthich are also

v

The solution to Eq(9) is, then

WH).
In KST seven extra parameters are introduced and used to u(t )z) _ 2 eiP(lZ)teilz-;a(o IZ)
make changes of variablesq; andd,;; . When performing K

this change of variables the constra@y;; =0 is also used in

order to trade spatial derivatives of the three-metricdigy . whereP(E), called the symbol, is defined by
Thus, the equations with the new variables have different

solutions off the constraint surface. However, one can see o3

that at the linear level this change of variables does not in- P(k) :=E Al Kj.

volve the addition of constraints. =1

There are three different possibilities for the behavior of
eiP(lZ)t:

_ Here we study the linear stability of the KST system con- (i) The system is SHP has real eigenvalues and is diag-
sidering perturbations of Minkowski space-time written in gnalizable, the solution simply oscillates in time. Neverthe-
Cartesian coordinates. That is, we assume that the backess, we should keep in mind that the three-metric can grow

ground quantities are linearly in time ifk=0, see Eqs(8). It is not difficult to see

B. Linear stability

g;=8;, K;=0, dg=0, N'=0, Q=0. that this mode corresponds to an infinitesimal coordinate
transformation.
In fact, since bottQ andN' can be freely specified, we will (i) The system is only WHP has real eigenvalues but is

first fix them to their background values for simplicitthe Nt diagonalizable. Besides the zero-frequency growth in the
more general case is analyzed at the end of this sectionmetric, the Jordan blocks of dlmensmwal in P allow for
Because the non-principal part of the evolution equations fogrowth inu that goes askt)", wherek=k|.
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(iii) The system is CIPP has at least one complex eigen- If >0 (as must be the case if the system is) He matrix

value. Besidgs the previous growing modes, the.re cag is diagonalizable, with real eigenvalues &'1/20||2|2_
be exponential—irequency dependent—growth, ie. Since the norm of exﬂ(/l(l?)t) can be bounded by a constant

~exp(consk kt). - _
To summarize, the linear stability properties of that does not depend @mr onk [for example, if Zr=1, the

Minkowski space-time depend only on the hyperbolicity of matrix M(k) is symmetric and exM(k)t) is unitary], this
the system, since the non-principal terms are zexaept for ~ implies thatv can grow at most linearly in time i is uni-
the evolution equation fag;; , but this equation decouples to formly bounded in time.
linear orde). Stability advantages of the choice of param- If v grows at most linearly in time, the same will hold for
eters empirically found by KST in their analysis of a single the main variableg;; , Kj; anddy;; , see Eq(11). Again, we
black hole space-time cannot be displayed in the example wéo not see any dependence on the parameters found by KST
have considered. in this particular example.

Finally, we study the effect of having a nonvanishing lin-

earized(maybe densitizedapse and shift: In this case, there IV. NUMERICAL EXPERIMENTS

are two extra terms in the evolution equation ¥ and
dkij .

Kij=(Ad);; — 4;9;Q,

: (10
dkij = (BK)kI] +2(9k(9(le) .

In [2] we show analytically that the iterated Crank-
Nicholson (ICN) method with any number of iterations and
the second-order Runge-Kutta methods do not yield conver-
gent discretization schemes for systems of equations that are
not strongly hyperbolic, even if dissipation is added. Here we
exemplify this through the numerical evolution of the KST

Since we assume th@ andN' are prescribed, the solutions system in a simple situation. We evolve E¢3)—(5) in one

to these equations will have the form of the sum of a homodimension. That is, all quantities in those equations are as-
geneous solution and a particular solution. It is not difficultsumed to depend only dnandx.

to find a particular solution, because we expect that a varia- The sense in which stability is used in this section is that

tion of Q andN' induces ar(infinitesima) coordinate trans-
formationx*“— x*+ X* with respect to which, in this case,

9ij—>9ij 20Xy,
KinKij_aiﬁth, (11)
dkindkij‘f‘z&k&(in).

In fact, if we make the ansatzK;j=-4;9;f, dyj

=20di&j), we get a particular solution to the syst¢hd) if

f=20d'¢+0Q,

After a Fourier decomposition, this system has the form
v(t,K)=iM(K)v (t,K) +q(t,k),

wherev andq are formed by the Fourier amplitudes fo;
andQ, N;, respectively (=1, ...,3), and

0 20k; 20k, 20kj

k;y O 0 0

k, O 0 0

ks O 0 0

M(K) =

of the Lax equivalence theorem, i.e. a scheme is said to be
stable if the numerical solutiony at timet=nAt satisfies

lull=f (o)l

for all initial datau? and small enougiAt andAx. Here the
indexn corresponds to the time step aktb the spatial mesh
point. It is in this sense that stability plus consistency is
equivalent, through Lax’s theorem, to convergefoanver-
gence with respect to the same discrete norm in which the
scheme is stable and consisterifiote that in this context
consistency means that the discrete equation approaches the
continuum one in the limit of zero grid spacing. In what
follows we use the discrete norm

[un2=2] (up)2Ax.
k

We will use the second order Runge-Ku{RRK) method
for the time evolution. The spatial derivatives were dis-
cretized with centered differences, adding explicit lower or-
der numerical dissipation as well, the amount of it being
arbitrary. Most of the simulations presented here will be for
the RK method, though the results are very similar for ICN
(see the end of the sectiprin order to isolate our simula-
tions from effects coming from boundary conditions, we will
choose, as in Sec. lll, periodic boundary conditions. Also,
even though the analytic stability analysis of Sec. Ill and of

By choosing the homogeneous solution to satisfy the approget. (2] is linear, here we will presemtonlinearsimulations,
priate initial data, it is enough to consider a particular solu-, ;¢ of sjtuations that are close to flat space-time. In all cases

tion with v (t=0Kk) =0,

> . O t . % >
v(t,k)= e"\"(")‘f e MMIsq(s k)ds.
0

we will use the same initial data, same numerical scheme,
and change only the continuum formulation of Einstein’s
equations.

Writing the evolution equations as
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U=Au'+l.0. from a discrete point of view, the same numerical scheme
’ when applied to the model equation

where “l.0.” stands for lower order terms and time integra-

tion done with the RK method corresponds to u=u’. (16)
UEH: 1+cl 1+ E ar (12 Inserting the discrete Fourier mode
2 ’ _

i UE: u(w”B)el(wnAHﬁkAx) (17)

where
" into the difference schem@?2), one obtains the discrete dis-
C= 750—|5A64+At><l.0., persion relation

i ~ issinati o314 i) sin(BAx) — 168 it P

with \ = At/Ax the Courant factorg the dissipation param- e = I\ sin( BAX) SI—

eter andl the identity matrix, and

N ., BAX
1+|§sm(ﬁAx)—883|n4T

8MU= Uiy = AU 1+ BU— AUy g + Uy 5. (14 =p(BAX), (18

OoUk= U4 1~ Ug—1, (13 X

Our strategy for comparing numerical stability with the \ 1 are 5= 5\ Equation(18) should be seen as a relation
level of hyperbolicity is the following: we fix all parameters betweenw and3. The discrete symboh(8Ax) tells us how

of thg KST system except one, and change that single paran}iq gifferent Fourier modes are damped and dispetsee,
eter in such a way that one gets a SH, WH or CIP system.e.g.[B] Chap. 7. Writing o= a+ib, we have that

The metric that we evolve, giving the corresponding ini-

tial data, is e PA=|p(BAx)| (amplification factoy, (19

ds?=el1*2(—dt?+dx?) + dy?*+d 7, (15 1

where f,=f,(t+x) and f,=f,(t—x) are arbitrary func- —Warg(p(ﬁAx)) (numerical speed
tions. This is an exact solution of Einstein’s equations that is (20
pure gauge, i.e. it is flat. In order to illustrate our point it is

enough to make a simple choice for these functions, such gshoosing, for example, =1/2 andS=0.01, one can sge]
f;=Asinx+t) and f,=0 with xe[—m,]; furthermore, that the schemél2) for Eq. (16) is stable and, therefore,

=R

for the simulations shown below we choo&e=0.01. convergent. From now on we will use, unless otherwise
stated, these values. Figure 1 shows the magnitude of the
A. Densitizing the lapse amplification factor(19) and the numerical spee@0) for

o this choice of parameters.

A necessary condition in order to get well posedness The continuum equatioril6) is neither dissipative nor
within the KST system is to choose a positive densitizationgispersive. Ideally, one would like the difference scheme to
for the lapseo>0. Furthermore, one has to take=1/2 if  have the same properties. For small valuesAdhe initial
one wants physical characteristic speeds. It is worth noticingjata essentially consist of only one Fourier modesinx,
densitization of the laps® is zero; thus, as shown in Sec. gnq a spatial domain that extends fromr to 7, then one
IIl, even off the constraint surface the solutions to SH for-pas thaggAx= /30, for which Eq.(19) predicts a damping
mulations should only oscillate in time, except for possiblesf apout 0.0032% per crossing time. Similarly, from E20)
zero-frequency linear growth. . one can see that for this resolution and this initial data one

In a similar way, choosing =0 results in a WH system,  should have a wave logse. the numerical and exact solu-
ando<0 in a CIP one. tion have a phase difference ofs at approximatelyt

Densitizing the lapse is not enough for well posedness— 4600, which corresponds to 750 crossing times. Figure 2
One also has to add the constraints to the evolution equapnows both the numerical and exact solution forghecom-
tions. For definiteness, in this subsection we will show simugnent of the metric at different times. The predicted speed

lations using/= —1,y=0,7=4,x=0 (which corresponds to  gjtference is there and is in very good agreement with the
the EC formulation without making the change of variables gnalytical calculation based on the model equation. Also, the

but the main conclusions do not depend on this particulapqfile of the numerical solution maintains its shape for a

choice. very long time. Figure 3 shows the, norm of the errors for
this component at the same resolution. The errors come
mostly from the speed difference, and the maxima and
In order to understand some of the features of the SHninima correspond to a phase difference between the ana-
numerical results that we will present we start analyzinglytical and numerical solution of odd and even multiples of

1. The SH casd o=1/2)
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Amplification factor Numerical speed
A =1/2, S =0.01 (SH model equation) A=1/2, S =0.01 (SH model equation)

— 77T 77— — T T
1. 1.0 -
0.8 .
- «a | ]
K=1) ; 0.6 -
0.4~ -
0.8 - 0.2~ -

L 1 L 1 L 1 ' 1 ) 1 s | 1 1 ) 0.0 L | L | L 1 L | L | ' | ) | s
-x -3w4 -2 -mA4 0 n/4 n2 3n/4 n -% 34 -m2 -m4 0 4 2 34 L]

BAx B Ax

FIG. 1. Plot of the amplification factor and the numerical speed associated with difference gdi#nitthe productBAx is small
enough, then the damping and the error in the propagation speed of the correspondent Fourier mode are very small.

t=0 t=2000
1.020 T T T T T T T T T T 1.020p T r T r T r T r T r
1.015F — Exact solution a 1,015 — Exact solution a
—=- Numerical solution == Numerical solution
1.010f — 1.010f —
1.005f — 1.005 —
oX 1.000| 4  of1.000f .
0.995 E 0.995 —
0.990f — 0.990 —
0.985[- — 0.985 E
. 1 L 1 . 1 . 1 . 1 . . ] . 1 . 1 . ] . ] .
. 0.980
0.980 -n -n/2 0 w2 n -n -2 0 n2 T
X X
t=4000 t=5000
1.020 T T T T T T T T T T 1.020¢r T T T T T T T T T T
1.015) — Exact solution - 1.015 — Exact solution |
—- Numerical solution =~ Numerical solution
1.010f E 1.010f —
1.005[ — 1.0051 E
X - . - .
o 1.000 ot 1.000
0.995 E 0.995F —
0.990f E 0.990F —
0.985[- — 0.985[- —
1 . 1 ) 1 ) 1 . 1 " 1 . 1 . 1 . 1 L 1 L
0.9800 . .
X -y 0 2 T 0.980 — - 5 . L
X X

FIG. 2. Exact and numerical solutions for the SH case, at different times, showing the speed difference. This run was done with 60
gridpoints,\ = 1/2, o= 0.02 and a domain of lengths2 With this resolution, the code “loses” one wave after, roughly, 750 crossing times.
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Errors in the metric and extrinsic curvature
Densitizing the lapse (SH case, 60 gridpoints)
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Errors in the metric
Densitizing the lapse (SH case)

| gXX - gXX exact |
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time
FIG. 3. L, norm of the errors for the metric and extrinsic cur-
vature in the SH case. These errors are mostly from numerical

speed difference, as described in the text. to 1000 crossing time6n order to evolve up to 1000 cross-

7, respectively. Indeed, if one computes the error in theing times without losing a wave, one has to use more thgn 60

m,emc pectiv a.phase d,ifference of one gets gridpoints. One can see that_the errors grow linearly in time.

One could be tempted to think that this is due to the zero-

frequency linear mode predicted in Sec. Ill. This is not the

case in this simulation as this mode is not excitgaugh it

could be, in a more general evolutjcend the error is caused

by the numerical speed difference, as discussed above. In-

which is in remarkable agreement as well with the maximadeed, by performing a Fourier decomposition in space of the

in Fig. 3. This speed difference is a rather usual numericahumerical solution one explicitly sees that the amplitudes are

feature in solutions of finite difference schemes approximatroughly constant in timéfor nonzero frequency components,

ing hyperbolic equations. Usually this differencesimaller  this is exactly what the linearized analysis at the continuum

for bigger Courant factor8], as can be seen from Fig. 4 for predicted. Figure 6 shows some of these amplitudes for this

the particular discretization used here. One could try to pusBimulation (to be contrasted later with the WH and CIP

this factor to its stability limit, or use a different scheme thatcases

minimizes this effect. But here the point that we want to

emphasize is that the errors in the SH simulation are second 2. The WH case ¢=0)

order convergent ones, as shown in Fig. 5. That figure shows Ei . .

the L, norm of the error in one component of the metric, .. igure 7 shows _plots of the errors assouat_ed_Wlth evolu-

g 1‘20r resolutions ranging from 120 to 480 gridpoints UF’)t|ons performed with the same initial data, d|SS|pat|_o_n and
xxo ' " Courant factor as above, except that now we densitize the

lapse according to=0 (“exact lapse”. For two fixed reso-

FIG. 5. L, norm of the errors for the metric.
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FIG. 4. Dependence of the numerical speed on the Courant fac-
tor. Increasing the Courant factor, decreases the error in the propa- FIG. 6. Fourier components of the numerical metric for

gation speed. =0,4,8.

064011-7



CALABRESE, PULLIN, SARBACH, AND TIGLIO

_ Errors in the metric
Densitizing the lapse (WH case)

10

PHYSICAL REVIEW D66, 064011 (2002

Fourier components of the metric
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FIG. 7. L, norms of the errors for the metric. FIG. 8. Fourier components of the numerical metric for

) ) ~ =0,4,8. Some of the components grow exponentially from the very
lutions the coarsest one gives smaller errors after a whil&eginning.

and the time at which this occurs decreases as one increases

resolution. This indicates that the difference schémeot  eriments changing the value of without being able to
convergentNote that one could be easily misled to think that sapjlize the simulationgmore details are given belgyweri-

the code is convergent if one did not evolve the system fokying thus, the discrete predictions.

long enough time, or without high enough resolution. For
example, if one performs two runs, with 120 and 240 grid-

points, one has to evolve until, roughly, 150 crossing times,
in order to notice the lack of convergence. To put these num-
bers in context, suppose one had a similar situation in a 3[&‘_‘I
black hole evolution. To give some usual numbers, suppos

the singularity is excised, with the inner boundary at, say, than 10 orders of magnitude in much less than one crossing

=M, and the outer boundary is at0(which is guite time and it is quite obvious that the code is not convergin
modest value if one wants to extract wavefoyms this case This is so bec(lluse in the CIP case the instabilit rowgs e%{-
120 and 240 gridpoints correspond to grid spacings of, ap- . . L Dility grov
| . ponentially with the number of gridpointsee Fig. 1D This
proximately, M/5 and M/10, respectively(usual values as ; ) - : .
. ; . can be seen performing a discrete analysis for the single ill
well in some simulations If one had to evolve up to 150

crossing times in order to notice the lack of convergencef)Osed equation in 1Dy =iv. One gets that the symbol

that would correspond tb= 3000V, which is several times p(BAX) s real and cannot be bounded by 1 in magnitude,

3. The CIP case ¢=—1/2)

Figure 9 shows the error in the metric, for different reso-
tions. As in the WH case, the errors originate mostly from
e nonzero frequencidge. the ones that typically grow in
an unstable numerical schem@&ut now they grow more

more than what present 3D evolutions last. Of course, the
situation presented in this simple example need not appear
exactly the same way in an evolution of a different space;
time, or with a different discretization; in fact, in the next
subsection we show an example where the instability be-
comes obvious sooner. Also, there are some ways of noticing
in advance that the code is not converging. Namely, it seem:
that the numerical solution has the expected power law
growth that the continuum linearized analysis predicts until
all of a sudden an exponential growth appears. But if one

10

-2

looks at the Fourier components of the numerical solution,— 10™

one finds that there are nonzero components growing expo
nentially from the very beginning, starting at the order of 5
truncation error(see Fig. 8.

-------- s S o — 15

One might expect that, since for WH systems the = Y ATk 2 . 30 35

frequency-dependent growth at the continuum is a power lan P —- 80 gp
N A ) ) ) ) 108 -- 120 gp =

one, it is possible to get convergence by adjusting the dissi- f 240 gp

pation. In[2] we show that even though certain amount of g - 480 gp

.. . . . ! -+ 960 gp

dissipation might help, the code is never convergent and. . o , — .

1 10

indeed, adding too much dissipation violates the von Neu-
mann condition, which leads to a much more severe numeri-
cal instability. We have systematically done numerical ex-
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making the difference scheme unstalfiedependently of
Fesolution). If one changed to characteristic variables exactly
n. . .

this equation would appear in 1D as a subset of the system
that we are considering, so this model equation is, in the

Errors in the metric
Densitizing the lapse (CIP case)

time

FIG. 9. L, norm of the errors for the metric.



STABILITY PROPERTIES OF A FORMULATION @ . .. PHYSICAL REVIEW D 66, 064011 (2002

Fourier components of the metric Fourier components of the metric
Densitizing the lapse (CIP case, 15 gridpoints) Densitizing the lapse (CIP case, 120 gridpoints)
1 1 1 - 1 1 - 1" ' T ’ T Y T Y T v T

Fourier components of g
Fourier components of g,

Fourier components of the metric
Densitizing the lapse (CIP case, 480 gridpoints)

Fourier components of g,

FIG. 10. The rate of growth of the Fourier components increases as one increases the resolution.

linear approximation, part of the system evolved in this subpreviously discussgdFigure 12 shows the analog of Fig. 5.

section. The amplification factor for this model equation isAs before, we do have convergence. The Fourier components

plotted in Fig. 11. of the solution remain constant in time, and the error comes
mostly from the numerical speed difference.

B. Adding the constraints
2. The WH case

Now we fix all parameters except the one that corre- ] )
sponds to the addition of the Hamiltonian constraint, and Here we also use the parameters given by @4) with

choose three values that will render SH, WH and CIP sysX =1, except that now we choosg=—32/21. With this

tems. The results are very similar to those of the previou§Noice,A1=\3=1, buti,=0; therefore, as summarized in
section, so we will present them in a less detailed way, ex>€C- ll, the system is WH. As in the previous subsection, the

cept that now we will discuss the role of explicit dissipation. difference scheme may appear to be convergent, but in fact it
is not, see Fig. 13. Frequency-dependent exponential growth

1. The SH case starting at very small values accumulates and causes the in-
L . stability. We have exhaustively experimented with different
We start by considering the one-parametric KST SUbfami/alues for the numerical dissipation without being able to

ily of strongly hyperbolic formulations of Eq2.39 of KST: stabilize the code. Next we show some plots to illustrate this.
1 1 7 6 In Fig. 14 we plot one of the Fourier components of the
o=5, {=- 5(23+ 20x), vy=-— 5 775 numerical metric. We increase the dissipation parameter

(22) starting fromo=0.02, and double it each time, while keep-

ing the resolution and Courant factor fixed. At the beginning
This family has, for any value of, characteristic speeds O the rate of the exponential growth becomes smaller when one

or =1 (see Sec. Ill. For the simulations shown here we increasesr, though it is never completely suppressed, which
chosey=1 (and\=1/2, 0=0.02, as in the SH simulations causes the code to be nonconvergent. However, when one
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Errors in the metric

A=1/2, S=0.01 (CIP model equation)

Adding the hamiltonian constraint (WH case)

3. 0——T—— T

1
|
I
]
I

~J

— 30 gp
i —- 60 gp
107 T ... 120 gp -
Ens™ i «=+ 240 gp E
F o .—. 480 gp
4 1077 ! 3
E L L 1 Lo d
ool L w1 10 100 1000
- -3n/4 -2 -4 8 0 w4 2 3n/4 T time
Ax

. . ) . FIG. 13.L, norm of the errors for the metric. The simulation is
FIG. 11. Amplification factor associated with the difference giopped once the determinant of the spatial metric becomes zero.
scheme(12) approximating the ill posed equatian=iv, .
5 the von Neumann condition is satisfi¢ith which case the
reaches the value=0.32 the instability is even worse than growth goes as a power of the gridpoints
adding less dissipation, and the same thing happens if one Finally, it is worthwhile to point out that we have also
keeps on increasina- beyond 0.32. So we next narrow the tried with smaller Courant faCtorS, USing, in particular, values

interval in which the dissipation is fine tuned, we starat often used in numerical relativity, like\=0.20 and A

=0.24, and increase at intervals of 0.01. We find the same 0.25, without ever being able to get a completely conver-

~ . S ent simulation.
result; ato>0.25 there is already too much dissipation andg

the situation is worse. Fine tuning even more, we change
in intervals of 0.001 around 0.250, but it is also found that
for 0>0.250 the effect of more dissipation is adverse, asb
also shown in Fig. 14. u

The fact that beyondr=0.250 the situation becomes
worse is in perfect agreement with the discrete analysis o
[2]. There we show that a necessary condition for the von

Neumann condition to be satisfiedds.<1/8. Here the up-

per limit of 1/8 corresponds to, precisely=1/4. Exceeding
this value results in a violation of the von Neumann condi-
tion; as explained if2], when this happens there is a nu-
merical instability that grows exponentially with the number
of gridpoints(i.e. as in the CIP cagemuch faster than when

3. The CIP case

Finally here we also use the paramet&$) with y=1,

t now we takey= —79/42, which implies\,=—1 and,

thus, the system is CIP. The results are as expected. There is
xponential, frequency-dependent growth that makes the nu-
erical scheme unstable, see Fig. 15.

C. Other simulations

Performing simulations with the ICN instead of the RK
method yields similar results, as predicted #]. Figure 16
shows, for example, evolutions changing the densitization of
the lapse, as in the first subsection, but using the ICN method
with two iterations(counting this number as if9]). This is
the minimum number of iterations that yields a stable
scheme for well posed equations but, as showfRinit is
unstable for WH systems. The same values of the Courant
factor and dissipation as above were used in these runs. We
have also tried with other values of the Courant factor and
E dissipation parameter, finding similar results. We were able
] to confirm the lack of convergence predicted & in every
WH or CIP formulation we used, including the ADM equa-

E tions rewritten as first order equations in time space. Lack of
3 convergence with a 3D code, using the ADM equations writ-
ten as second order in space and the ICN method, for the

Errors in the metric
Adding the hamiltonian constraint (SH case)

107°E — T — T T

3 - P e = same initial data used here, has also been confifrbed
E_-~ - - gp E
4 Y ]
[ ] V. DISCUSSION
o L e i gl Lo e
10 100 1000 10000 We have shown that a linearized analysis of the KST

fime equations implies that flat space-time written in Cartesian

FIG. 12. L, norm of the errors for the metric. coordinates is a stable solution of the equations if the param-
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FIG. 14. We were not able to make the code stable by fine tuning the dissipation parameter.

eters are chosen in such a way that the system is stronglg strongly hyperbolic. No amount of artificial viscosity was
hyperbolic. No further restrictions on the parameters areble to fix the problem.

placed by this analysis. We have also integrated numerically The conclusions of Sec. Il are, to some extent, similar to
the KST equations and shown that the system cannot bgose of Alcubierreet al, who find that, at the linearized
made stabl¢in the sense of Laxand therefore convergent if |evel, the advantages of the Baumgarte-Shapiro-Shibata-
the parameters are not chosen in such a way that the systa@hkamuraBSSN formulation[11] with respect to the ADM

10°

Errors in the metric
Adding the Hamiltonian constraint (CIP case)

time

FIG. 15. L, norm of the errors for the metric.

formulation come from the fact that the first one is “more”
hyperbolic. However, since it is not “completely” hyper-
bolic, an ill posedzero speed, in the notation pf2]) mode
is still present in the BSSN formulation. The conformal
traceless(CT) decomposition is therefore introduced as a
way of decoupling that mode. However, one could, instead,
get rid of that mode by using a different choice of lapse.
More explicitly, in the analysis of12] exact lapse is used,
but it is not difficult to see that choosing, for example, den-
sitized lapse with, sayr=1/2, gets rid of the ill posed mode
(indeed, a certain version of the BSSN formulation with den-
sitized lapse has been recently used in a 3D evolution of a
single black hold13]). Moreover, as shown ifil4], the re-
sult is much stronger: even at the nonlinear level appropri-
ately writing the BSSN formulation with densitized lapse
results in a reductioffrom first to second order in spacef
certain strongly or symmetric hyperbolic formulations.

The lack of convergence in evolutions of WH or CIP sys-
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Errors in the metric _Errors in the metric
Densitizing the lapse (SH case) Densitizing the lapse (WH case)
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FIG. 16. L, norm of the errors for the metric using ICN.

tems with schemes that are convergent for well posed equ&ehavior under numerical evolution. In fact, the examples
tions seems to have been overlooked in the e, how- shown suggest that in the case of linearized equations, the
ever,[15]). If the von Neumann condition is satisfied, one analytical tools are complete: one carpriori tell if a code
could be easily misled to think that the scheme is convergentyill work or not. In the non-linear case further tools will
especially if coarse resolutions are used, the evolution iseed to be developed to achieve the same status with respect
short, or few frequencies are present in the initial data. Heréo predicting the performance of a code before running it.
we have shown that this lack of convergence does appear in
conc_:rete S|mu_lat|ons, even in very simple ones. These nu- ACKNOWLEDGMENTS
merical experiments, together with the theorem of R2f.
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