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Stability properties of a formulation of Einstein’s equations

Gioel Calabrese,* Jorge Pullin,† Olivier Sarbach,‡ and Manuel Tiglio§
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We study the stability properties of the Kidder-Scheel-Teukolsky~KST! many-parameter formulation of
Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of
view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out
that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability
properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we
present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of
instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis
can be applied in other formulations with similar properties.
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I. INTRODUCTION

Numerical simulations of the Einstein equations for si
ations of interest in the binary black hole problem do not r
forever. The codes either stop due to the developmen
floating point overflows, or even if they do not crash, th
produce answers that after a while are clearly incorrect.
usually very difficult to pinpoint a clear reason why a co
stops working. Recently, Kidder, Scheel and Teukols
~KST! @1# introduced a twelve-parameter family of evolutio
equations for general relativity. Performing an empirical p
rameter study within a certain two-parameter subfamily, th
were able to evolve single black hole space-times for o
1000 M, where M is the mass of the black hole, someth
that had been very difficult to achieve in the past. It is
interest to try to understand what makes some of the par
eter choices better than others, in particular given tha
twelve dimensional parameter study appears prohibitive
present. The intention of this paper is to take some step
this direction. We will first perform a linearized analysis
the KST equations in the continuum, by considering sm
perturbations around flat space-time. We will observe that
stability of flat space-time is entirely characterized by t
level of hyperbolicity of the system. Since the latter is co
trolled by the parameters of the family, this provides a fi
analytic guidance as to which values to choose. Unfo
nately, the result is somewhat weak, since it just points to
obvious fact: formulations with a higher level of hyperboli
ity work better.

In the second part of the paper we perform a set of sim
numerical tests. We consider space-times where all varia
depend on one spatial coordinate, which we consider c
pactified for simplicity, and time. We are able to exhibit e
plicitly the various types of instabilities that arise in the sy
tem. Some of the results are surprising. For the situa
where the system is weakly hyperbolic, the code is stric
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nonconvergent, but it might appear to converge for a sign
cant range of resolutions. We will see that the addition
dissipation does not fix these problems, but actually can
acerbate them. It is often the case in numerical relativity t
discretization schemes that are convergent for strongly
perbolic equations are applied to weakly hyperbolic form
lations. The examples of this section will teach us how d
gerous such a practice is and confirm the analytic result
Ref. @2#. This part of the paper is also instructive in that t
KST system has only been evolved with pseudospec
methods. We use ordinary integration via the method
lines.

The plan of this paper is as follows. In the next section
will discuss several notions of stability that are present in
literature, mostly to clarify the notation. In Sec. III we dis
cuss the stability of the KST equations in the continuu
under linearized perturbations. In Sec. IV we discuss the
merical simulations.

II. DIFFERENT DEFINITIONS OF STABILITY

The termstability is used in numerical relativity in severa
different ways. We therefore wanted to make the notat
clear at least in what refers to this paper. Sometimes
notion of stability is used in a purely analytic context, whi
some other times it is used in a purely numerical one. Wit
analytical contexts, there are cases in which it is used
mean well posedness, as in the book of Kreiss and Lor
@3#. In such a context well posedness means that the norm
the solution at a fixed time can be bounded by the norm
the initial data, with a bound that is valid for all initial data
In other cases it is intended to measure the growth of per
bations of a certain solution within a formulation of Ein
stein’s equations, without special interest in whether
equations are well posed or not.

At the numerical level, a scheme is sometimes defined
stable if it satisfies a discrete version of well posedness. T
is the sense in which stability~plus consistency! is equivalent
to convergence via the Lax theorem@4#. Examples of this
kind of instability are present in the Euler scheme, schem
with Courant factor that are too large, or other situatio
where the amplification factor~or its generalization! is big-
©2002 The American Physical Society11-1
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ger than 1. Finally, the term stability has also historica
been loosely used to mean that a simulation runs for a ce
amount of time before crashing, or that the errors rem
reasonably bounded as a function of time for a cert
amount of time.

At the continuum, part of the problem we want to look
can then be stated as follows. Suppose there is a ce
solutionu0 of Einstein’s equations which is bounded for a
times. One can prescribe the initial dataf 0 that uniquely
determine, through the use of the evolution equations,
solution. However, if one gives initial data slightly differe
from f 0, the corresponding solution might grow witho
bound or even blow up in a finite amount of time. This c
happen either because this is the physical situation, or
cause the new solutionu1 does not satisfy the constraints,
does satisfy them but it is in a gauge that is becoming
defined. Numerical simulations may blow up even when o
tries to model physically stable space-times. This is the c
for evolutions of Schwarzschild or Kerr black holes~which
are known to be at least linearly stable with respect to ph
cal perturbations!.

The time growth of solutions of a given set of parti
differential equations can be classified according to whe
or not it can be bounded by a time function that does
depend on the initial data. This leads to the concept of w
posedness. Namely, a system of partial differential equat
is said to be well posed at a solutionu0(t) if there is aT and
some norm such that

iu~ t !i<F~T!iu~0!i for 0<t<T ~1!

for all solutionsu(t) with u(0) sufficiently close tou0(0).
For linear equations the bound can be tightened to an e
nential, but for nonlinear systemsF(T) might be any other
function that can even diverge at finiteT. The strength of Eq.
~1! characterizes the property that the bound is indepen
of the details of the initial data, in particular of their fre
quency components. This is important in numerical simu
tions, where more~and higher! frequency components ap
pear when resolution is increased. Well posedness
necessary condition in order to have long term, converg
evolutions, but it is not sufficient. Indeed, the functionF(T)
can grow quickly in time. In order to controlF(T) one has to
go beyond well posedness and study non-principal terms.
will now apply these ideas to the KST equations.

III. THE KST FAMILY OF EQUATIONS AND THEIR
LINEAR STABILITY

A. The formulation

Starting from the Arnowitt-Deser-Misner~ADM ! equa-
tions, KST derive a family of strongly hyperbolic first-orde
evolution equations for the three-metric (gi j ), the extrinsic
curvature (Ki j ), and the spatial derivatives of the thre
metric (dki j[]kgi j ), which generalizes previous well pose
formulations@5,6#. A priori prescribing the densitized laps
exp(Q) as a function of space-time, the lapseN is given by

N5gseQ, ~2!
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whereg is the determinant of the three-metric ands a pa-
rameter. The shift vector,Ni , is also assumed to be pre
scribed as a function of space-time. We define the deriva
operator along the normal to the hypersurfaces as

]05
1

N
~] t2£NW !.

The vacuum evolution equations have the form

]0gi j 522Ki j , ~3!

]0Ki j 52
1

2
]kdki j1

1

2
]kd( i j )k1

1

2
gab] ( iduabu j )

2S 1

2
1s Dgab] ( idj )ab1zgabCa( i j )b1ggi j C

2e2Q] i] j~eQ!1Ri j , ~4!

]0dki j522]kKi j 1hgk( iCj )1xgi j Ck1Rki j , ~5!

where the constraint variables

C5
1

2
gab]k~dabk2dkab!1R

~Hamiltonian constraint!

Cj5]aKa j2gab] jKab1Rj

~momentum constraint!

Cki j5dki j2]kgi j ~definition of dki j )

Clki j 5] [ ldk] i j ~‘‘closedness’’ ofdki j )

have been added to the right-hand side of the evolution eq
tions with free parameteresz,g,h,x. In the original KST
construction there are actually twelve parameters, wh
stem from the freedom of adding the constraints implied
redefinitions of variables to the evolution equations wh
casting the equations in first order form. In the lineariz
case we consider here one is left with the four mention
parameters ands. Above, ]k[gkl] l . The ‘‘remainder’’
termsR, Ri , Ri j , andRki j are homogeneous polynomia
of degree 2 indki j , ] iQ, andKi j ~this will have direct con-
sequences on the linear stability, as discussed below!, where
the coefficients may depend ongi j . Finally, the Lie deriva-
tive of the symbolsdki j is

£NW dki j5Nl] ldki j1dli j ]kN
l

12dkl( i] j )N
l12gl ( i] j )]kN

l .

The evolution system has characteristic speeds$0,61,
6Al1,6Al2,6Al3%, where
1-2
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l152s,

l2511x2
1

2
~11z!h1g~22h12x!,

l35
1

2
x1

3

8
~12z!h2

1

4
~112s!~h13x!.

It should be noted that these are the characteristic sp
with respect to the]0 operator. This means thatl50,1 cor-
respond to propagation along the normal to the hypersurfa
or the light cone, respectively. The characteristic speedm
with respect to the] t operator are obtained from these aft
the transformation

m°Nm1Nini ,

whereni is the direction of the corresponding characteris
mode.

The conditions under which the system is completely
posed~CIP!, weakly hyperbolic~WH! or strongly hyperbolic
~SH! ~see the next subsection for these definitions! were
found in KST. The system is CIP if any of the above spee
is complex, while it is WH ifl j>0 for j 51,2,3 but one of
the conditions~6!,~7! below is violated. Finally, the system i
SH provided that@7#

l j.0 for j 51,2,3, ~6!

l35
1

4
~3l111! if l15l2 . ~7!

For example, if the parameters (z,g,h,x) are all zero the
dynamics is equivalent to the ADM equations written in fi
order form with fixed densitized lapse and fixed shift~which
are WH!. If s50 as well, then the system is equivalent
the ADM equations with fixed lapse and shift~which are also
WH!.

In KST seven extra parameters are introduced and use
make changes of variables inKi j anddki j . When performing
this change of variables the constraintCki j50 is also used in
order to trade spatial derivatives of the three-metric fordki j .
Thus, the equations with the new variables have differ
solutions off the constraint surface. However, one can
that at the linear level this change of variables does not
volve the addition of constraints.

B. Linear stability

Here we study the linear stability of the KST system co
sidering perturbations of Minkowski space-time written
Cartesian coordinates. That is, we assume that the b
ground quantities are

gi j 5d i j , Ki j 50, dki j50, Ni50, Q50.

In fact, since bothQ andNi can be freely specified, we wil
first fix them to their background values for simplicity~the
more general case is analyzed at the end of this sect!.
Because the non-principal part of the evolution equations
06401
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Ki j and dki j depends quadratically onKi j , dki j and the de-
rivatives ofQ, only the principal part remains when we lin
earize these evolution equations. More precisely, the line
ized equations have the following structure:

ġi j 522Ki j ,

K̇ i j 5~Ad! i j , ~8!

ḋki j5~BK !ki j ,

whereA andB are spatial, first order, differential linear op
erators with constant coefficients. Furthermore, perturbati
of the three-metric do not appear in the equations forKi j and
dki j . As a consequence, it is sufficient to consider only th
equations; after having solved them, the three-metric is
tained through a time integration. So, the relevant linear e
lution equations have the form

u̇5(
j 51

3

Aj] ju, ~9!

whereu is a ‘‘vector’’ formed by the components ofKi j and
dki j (u has, thus, 24 independent components!, and Aj are
24324 matrices.

Since the matricesAj have constant coefficients and w
want to make an analysis in the absence of boundaries
consider a three-torus with periodic boundary conditions a
domain and analyze Eq.~9! through Fourier expansion. Tha
is, we write

u~ t,xW !5(
kW

û~ t,kW !eikW•xW.

The solution to Eq.~9! is, then

u~ t,xW !5(
kW

eiP(kW )teikW•xWû~0,kW !,

whereP(kW ), called the symbol, is defined by

P~kW !ª(
j 51

3

Ajkj .

There are three different possibilities for the behavior
eiP(kW )t:

~i! The system is SH:P has real eigenvalues and is dia
onalizable, the solution simply oscillates in time. Neverth
less, we should keep in mind that the three-metric can g
linearly in time if kW50W , see Eqs.~8!. It is not difficult to see
that this mode corresponds to an infinitesimal coordin
transformation.

~ii ! The system is only WH:P has real eigenvalues but i
not diagonalizable. Besides the zero-frequency growth in
metric, the Jordan blocks of dimensionn11 in P allow for
growth in u that goes as (kt)n, wherek5ukW u.
1-3
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~iii ! The system is CIP:P has at least one complex eige
value. Besides the previous growing modes, there
be exponential—frequency dependent—growth, i.e.u
'exp(const3kt).

To summarize, the linear stability properties
Minkowski space-time depend only on the hyperbolicity
the system, since the non-principal terms are zero~except for
the evolution equation forgi j , but this equation decouples t
linear order!. Stability advantages of the choice of param
eters empirically found by KST in their analysis of a sing
black hole space-time cannot be displayed in the example
have considered.

Finally, we study the effect of having a nonvanishing li
earized~maybe densitized! lapse and shift: In this case, the
are two extra terms in the evolution equation forKi j and
dki j :

K̇ i j 5~Ad! i j 2] i] jQ,
~10!

ḋki j5~BK !ki j12]k] ( iNj ) .

Since we assume thatQ andNi are prescribed, the solution
to these equations will have the form of the sum of a hom
geneous solution and a particular solution. It is not diffic
to find a particular solution, because we expect that a va
tion of Q andNi induces an~infinitesimal! coordinate trans-
formationxm°xm1Xm with respect to which, in this case,

gi j °gi j 12] ( iXj ) ,

Ki j °Ki j 2] i] jX
t, ~11!

dki j°dki j12]k] ( iXj ) .

In fact, if we make the ansatzKi j 52] i] j f , dki j
52]k] ( ij j ) , we get a particular solution to the system~10! if

ḟ 52s] lj l1Q,

j̇ j5] j f 1Nj .

After a Fourier decomposition, this system has the form

v̇~ t,kW !5 iM~kW !v~ t,kW !1q~ t,kW !,

wherev andq are formed by the Fourier amplitudes off, j j
andQ, Nj , respectively (j 51, . . . ,3), and

M~kW !5S 0 2sk1 2sk2 2sk3

k1 0 0 0

k2 0 0 0

k3 0 0 0

D .

By choosing the homogeneous solution to satisfy the ap
priate initial data, it is enough to consider a particular so
tion with v(t50,kW )50,

v~ t,kW !5eiM(kW )tE
0

t

e2 iM(kW )sq~s,kW !ds.
06401
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If s.0 ~as must be the case if the system is SH!, the matrix

M is diagonalizable, with real eigenvalues 0,6A2sukW u2.
Since the norm of exp(iM(kW )t) can be bounded by a consta
that does not depend ont or onkW @for example, if 2s51, the
matrix M(kW ) is symmetric and exp„iM(kW )t… is unitary#, this
implies thatv can grow at most linearly in time ifq is uni-
formly bounded in time.

If v grows at most linearly in time, the same will hold fo
the main variablesgi j , Ki j anddki j , see Eq.~11!. Again, we
do not see any dependence on the parameters found by
in this particular example.

IV. NUMERICAL EXPERIMENTS

In @2# we show analytically that the iterated Cran
Nicholson~ICN! method with any number of iterations an
the second-order Runge-Kutta methods do not yield con
gent discretization schemes for systems of equations tha
not strongly hyperbolic, even if dissipation is added. Here
exemplify this through the numerical evolution of the KS
system in a simple situation. We evolve Eqs.~3!–~5! in one
dimension. That is, all quantities in those equations are
sumed to depend only ont andx.

The sense in which stability is used in this section is t
of the Lax equivalence theorem, i.e. a scheme is said to
stable if the numerical solutionuk

n at time t5nDt satisfies

iuni< f ~ t !iu0i

for all initial datauk
0 and small enoughDt andDx. Here the

indexn corresponds to the time step andk to the spatial mesh
point. It is in this sense that stability plus consistency
equivalent, through Lax’s theorem, to convergence~conver-
gence with respect to the same discrete norm in which
scheme is stable and consistent!. Note that in this context
consistency means that the discrete equation approache
continuum one in the limit of zero grid spacing. In wh
follows we use the discrete norm

iuni25(
k

~uk
n!2Dx.

We will use the second order Runge-Kutta~RK! method
for the time evolution. The spatial derivatives were d
cretized with centered differences, adding explicit lower
der numerical dissipation as well, the amount of it bei
arbitrary. Most of the simulations presented here will be
the RK method, though the results are very similar for IC
~see the end of the section!. In order to isolate our simula
tions from effects coming from boundary conditions, we w
choose, as in Sec. III, periodic boundary conditions. Al
even though the analytic stability analysis of Sec. III and
Ref. @2# is linear, here we will presentnonlinearsimulations,
but of situations that are close to flat space-time. In all ca
we will use the same initial data, same numerical sche
and change only the continuum formulation of Einstein
equations.

Writing the evolution equations as
1-4
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u̇5Au81 l.o.,

where ‘‘l.o.’’ stands for lower order terms and time integr
tion done with the RK method corresponds to

uk
n115F11CS 11

C

2 D Guk
n , ~12!

where

C5
Al

2
d02I s̃ld41Dt3 l.o.,

with l5Dt/Dx the Courant factor,s̃ the dissipation param
eter andI the identity matrix, and

d0uk5uk112uk21 , ~13!

d4uk5uk1224uk1116uk24uk211uk22 . ~14!

Our strategy for comparing numerical stability with th
level of hyperbolicity is the following: we fix all parameter
of the KST system except one, and change that single pa
eter in such a way that one gets a SH, WH or CIP syste

The metric that we evolve, giving the corresponding i
tial data, is

ds25ef 11 f 2~2dt21dx2!1dy21dz2, ~15!

where f 15 f 1(t1x) and f 25 f 2(t2x) are arbitrary func-
tions. This is an exact solution of Einstein’s equations tha
pure gauge, i.e. it is flat. In order to illustrate our point it
enough to make a simple choice for these functions, suc
f 15A sin(x1t) and f 250 with xP@2p,p#; furthermore,
for the simulations shown below we chooseA50.01.

A. Densitizing the lapse

A necessary condition in order to get well posedn
within the KST system is to choose a positive densitizat
for the lapse,s.0. Furthermore, one has to takes51/2 if
one wants physical characteristic speeds. It is worth notic
that with s51/2 and the metric~15!, the perturbation in the
densitization of the lapseQ is zero; thus, as shown in Se
III, even off the constraint surface the solutions to SH f
mulations should only oscillate in time, except for possib
zero-frequency linear growth.

In a similar way, choosings50 results in a WH system
ands,0 in a CIP one.

Densitizing the lapse is not enough for well posedne
One also has to add the constraints to the evolution eq
tions. For definiteness, in this subsection we will show sim
lations usingz521,g50,h54,x50 ~which corresponds to
the EC formulation without making the change of variable!,
but the main conclusions do not depend on this particu
choice.

1. The SH case„sÄ1Õ2…

In order to understand some of the features of the
numerical results that we will present we start analyzi
06401
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from a discrete point of view, the same numerical sche
when applied to the model equation

u̇5u8. ~16!

Inserting the discrete Fourier mode

uk
n5û~v,b!ei (vnDt1bkDx) ~17!

into the difference scheme~12!, one obtains the discrete dis
persion relation

eivDt511S il sin~bDx!216Ssin4
bDx

2 D
3S 11 i

l

2
sin~bDx!28Ssin4

bDx

2 D
5r~bDx!, ~18!

where S5s̃l. Equation~18! should be seen as a relatio
betweenv andb. The discrete symbol,r(bDx) tells us how
the different Fourier modes are damped and dispersed~see,
e.g. @8#, Chap. 7!. Writing v5a1 ib, we have that

e2bDt5ur~bDx!u ~amplification factor!, ~19!

a

b
5

1

bDt
arg„r~bDx!… ~numerical speed!.

~20!

Choosing, for example,l51/2 andS50.01, one can see@2#
that the scheme~12! for Eq. ~16! is stable and, therefore
convergent. From now on we will use, unless otherw
stated, these values. Figure 1 shows the magnitude of
amplification factor~19! and the numerical speed~20! for
this choice of parameters.

The continuum equation~16! is neither dissipative nor
dispersive. Ideally, one would like the difference scheme
have the same properties. For small values ofA the initial
data essentially consist of only one Fourier mode,A sinx,
which corresponds tob561. If one uses, say, 60 gridpoint
and a spatial domain that extends from2p to p, then one
has thatbDx5p/30, for which Eq.~19! predicts a damping
of about 0.0032% per crossing time. Similarly, from Eq.~20!
one can see that for this resolution and this initial data o
should have a wave loss~i.e. the numerical and exact solu
tion have a phase difference of 2p) at approximatelyt
54600, which corresponds to 750 crossing times. Figur
shows both the numerical and exact solution for thegxx com-
ponent of the metric at different times. The predicted spe
difference is there and is in very good agreement with
analytical calculation based on the model equation. Also,
profile of the numerical solution maintains its shape for
very long time. Figure 3 shows theL2 norm of the errors for
this component at the same resolution. The errors co
mostly from the speed difference, and the maxima a
minima correspond to a phase difference between the
lytical and numerical solution of odd and even multiples
1-5
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FIG. 1. Plot of the amplification factor and the numerical speed associated with difference scheme~12!. If the productbDx is small
enough, then the damping and the error in the propagation speed of the correspondent Fourier mode are very small.

FIG. 2. Exact and numerical solutions for the SH case, at different times, showing the speed difference. This run was done

gridpoints,l51/2, s̃50.02 and a domain of length 2p. With this resolution, the code ‘‘loses’’ one wave after, roughly, 750 crossing tim
064011-6
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p, respectively. Indeed, if one computes the error in
metric due to a phase difference ofp, one gets

S E
2p

p

~esin(t1x)/1002esin(t1x1p)/100!2dxD 1/2

50.035

which is in remarkable agreement as well with the maxi
in Fig. 3. This speed difference is a rather usual numer
feature in solutions of finite difference schemes approxim
ing hyperbolic equations. Usually this difference issmaller
for bigger Courant factors@8#, as can be seen from Fig. 4 fo
the particular discretization used here. One could try to p
this factor to its stability limit, or use a different scheme th
minimizes this effect. But here the point that we want
emphasize is that the errors in the SH simulation are sec
order convergent ones, as shown in Fig. 5. That figure sh
the L2 norm of the error in one component of the metr
gxx , for resolutions ranging from 120 to 480 gridpoints,

FIG. 3. L2 norm of the errors for the metric and extrinsic cu
vature in the SH case. These errors are mostly from nume
speed difference, as described in the text.

FIG. 4. Dependence of the numerical speed on the Courant
tor. Increasing the Courant factor, decreases the error in the pr
gation speed.
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to 1000 crossing times~in order to evolve up to 1000 cross
ing times without losing a wave, one has to use more than
gridpoints!. One can see that the errors grow linearly in tim
One could be tempted to think that this is due to the ze
frequency linear mode predicted in Sec. III. This is not t
case in this simulation as this mode is not excited~though it
could be, in a more general evolution! and the error is cause
by the numerical speed difference, as discussed above
deed, by performing a Fourier decomposition in space of
numerical solution one explicitly sees that the amplitudes
roughly constant in time~for nonzero frequency component
this is exactly what the linearized analysis at the continu
predicted!. Figure 6 shows some of these amplitudes for t
simulation ~to be contrasted later with the WH and CI
cases!.

2. The WH case (sÄ0)

Figure 7 shows plots of the errors associated with evo
tions performed with the same initial data, dissipation a
Courant factor as above, except that now we densitize
lapse according tos50 ~‘‘exact lapse’’!. For two fixed reso-

al

c-
a-

FIG. 5. L2 norm of the errors for the metric.

FIG. 6. Fourier components of the numerical metric forv
50,4,8.
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lutions the coarsest one gives smaller errors after a wh
and the time at which this occurs decreases as one incre
resolution. This indicates that the difference schemeis not
convergent. Note that one could be easily misled to think th
the code is convergent if one did not evolve the system
long enough time, or without high enough resolution. F
example, if one performs two runs, with 120 and 240 gr
points, one has to evolve until, roughly, 150 crossing tim
in order to notice the lack of convergence. To put these nu
bers in context, suppose one had a similar situation in a
black hole evolution. To give some usual numbers, supp
the singularity is excised, with the inner boundary at, sayr
5M , and the outer boundary is at 20M ~which is quite a
modest value if one wants to extract waveforms!. In this case
120 and 240 gridpoints correspond to grid spacings of,
proximately, M /5 and M /10, respectively~usual values as
well in some simulations!. If one had to evolve up to 150
crossing times in order to notice the lack of convergen
that would correspond tot53000M , which is several times
more than what present 3D evolutions last. Of course,
situation presented in this simple example need not appe
exactly the same way in an evolution of a different spa
time, or with a different discretization; in fact, in the ne
subsection we show an example where the instability
comes obvious sooner. Also, there are some ways of noti
in advance that the code is not converging. Namely, it se
that the numerical solution has the expected power
growth that the continuum linearized analysis predicts u
all of a sudden an exponential growth appears. But if o
looks at the Fourier components of the numerical soluti
one finds that there are nonzero components growing e
nentially from the very beginning, starting at the order
truncation error~see Fig. 8!.

One might expect that, since for WH systems t
frequency-dependent growth at the continuum is a power
one, it is possible to get convergence by adjusting the di
pation. In @2# we show that even though certain amount
dissipation might help, the code is never convergent a
indeed, adding too much dissipation violates the von N
mann condition, which leads to a much more severe num
cal instability. We have systematically done numerical e

FIG. 7. L2 norms of the errors for the metric.
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periments changing the value ofs̃ without being able to
stabilize the simulations~more details are given below!, veri-
fying, thus, the discrete predictions.

3. The CIP case (sÄÀ1Õ2)

Figure 9 shows the error in the metric, for different res
lutions. As in the WH case, the errors originate mostly fro
the nonzero frequencies~i.e. the ones that typically grow in
an unstable numerical scheme!. But now they grow more
than 10 orders of magnitude in much less than one cros
time and it is quite obvious that the code is not convergi
This is so because in the CIP case the instability grows
ponentially with the number of gridpoints~see Fig. 10!. This
can be seen performing a discrete analysis for the singl
posed equation in 1D,v t5 ivx . One gets that the symbo
r(bDx) is real and cannot be bounded by 1 in magnitu
making the difference scheme unstable~independently of
resolution!. If one changed to characteristic variables exac
this equation would appear in 1D as a subset of the sys
that we are considering, so this model equation is, in

FIG. 8. Fourier components of the numerical metric forv
50,4,8. Some of the components grow exponentially from the v
beginning.

FIG. 9. L2 norm of the errors for the metric.
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FIG. 10. The rate of growth of the Fourier components increases as one increases the resolution.
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linear approximation, part of the system evolved in this s
section. The amplification factor for this model equation
plotted in Fig. 11.

B. Adding the constraints

Now we fix all parameters except the one that cor
sponds to the addition of the Hamiltonian constraint, a
choose three values that will render SH, WH and CIP s
tems. The results are very similar to those of the previ
section, so we will present them in a less detailed way,
cept that now we will discuss the role of explicit dissipatio

1. The SH case

We start by considering the one-parametric KST subfa
ily of strongly hyperbolic formulations of Eq.~2.39! of KST:

s5
1

2
, z52

1

9
~23120x!, g52

7

6
, h5

6

5
.

~21!

This family has, for any value ofx, characteristic speeds
or 61 ~see Sec. III!. For the simulations shown here w
chosex51 ~andl51/2, s̃50.02, as in the SH simulation
06401
-

-
d
-
s
-

.

-

previously discussed!. Figure 12 shows the analog of Fig. 5
As before, we do have convergence. The Fourier compon
of the solution remain constant in time, and the error com
mostly from the numerical speed difference.

2. The WH case

Here we also use the parameters given by Eq.~21! with
x51, except that now we chooseg5232/21. With this
choice,l15l351, but l250; therefore, as summarized i
Sec. III, the system is WH. As in the previous subsection,
difference scheme may appear to be convergent, but in fa
is not, see Fig. 13. Frequency-dependent exponential gro
starting at very small values accumulates and causes th
stability. We have exhaustively experimented with differe
values for the numerical dissipation without being able
stabilize the code. Next we show some plots to illustrate t
In Fig. 14 we plot one of the Fourier components of t
numerical metric. We increase the dissipation parameters̃,
starting froms̃50.02, and double it each time, while kee
ing the resolution and Courant factor fixed. At the beginni
the rate of the exponential growth becomes smaller when
increasess̃, though it is never completely suppressed, wh
causes the code to be nonconvergent. However, when
1-9
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reaches the values̃50.32 the instability is even worse tha
adding less dissipation, and the same thing happens if
keeps on increasings̃ beyond 0.32. So we next narrow th
interval in which the dissipation is fine tuned, we start ats̃
50.24, and increase at intervals of 0.01. We find the sa
result; ats̃.0.25 there is already too much dissipation a
the situation is worse. Fine tuning even more, we changs̃
in intervals of 0.001 around 0.250, but it is also found th
for s.0.250 the effect of more dissipation is adverse,
also shown in Fig. 14.

The fact that beyonds̃50.250 the situation become
worse is in perfect agreement with the discrete analysis
@2#. There we show that a necessary condition for the v
Neumann condition to be satisfied iss̃l<1/8. Here the up-
per limit of 1/8 corresponds to, precisely,s̃51/4. Exceeding
this value results in a violation of the von Neumann con
tion; as explained in@2#, when this happens there is a n
merical instability that grows exponentially with the numb
of gridpoints~i.e. as in the CIP case!, much faster than when

FIG. 11. Amplification factor associated with the differen
scheme~12! approximating the ill posed equationv t5 ivx .

FIG. 12. L2 norm of the errors for the metric.
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the von Neumann condition is satisfied~in which case the
growth goes as a power of the gridpoints!.

Finally, it is worthwhile to point out that we have als
tried with smaller Courant factors, using, in particular, valu
often used in numerical relativity, likel50.20 and l
50.25, without ever being able to get a completely conv
gent simulation.

3. The CIP case

Finally here we also use the parameters~21! with x51,
but now we takeg5279/42, which impliesl2521 and,
thus, the system is CIP. The results are as expected. The
exponential, frequency-dependent growth that makes the
merical scheme unstable, see Fig. 15.

C. Other simulations

Performing simulations with the ICN instead of the R
method yields similar results, as predicted in@2#. Figure 16
shows, for example, evolutions changing the densitization
the lapse, as in the first subsection, but using the ICN met
with two iterations~counting this number as in@9#!. This is
the minimum number of iterations that yields a stab
scheme for well posed equations but, as shown in@2#, it is
unstable for WH systems. The same values of the Cou
factor and dissipation as above were used in these runs
have also tried with other values of the Courant factor a
dissipation parameter, finding similar results. We were a
to confirm the lack of convergence predicted in@2# in every
WH or CIP formulation we used, including the ADM equa
tions rewritten as first order equations in time space. Lack
convergence with a 3D code, using the ADM equations w
ten as second order in space and the ICN method, for
same initial data used here, has also been confirmed@10#.

V. DISCUSSION

We have shown that a linearized analysis of the K
equations implies that flat space-time written in Cartes
coordinates is a stable solution of the equations if the par

FIG. 13. L2 norm of the errors for the metric. The simulation
stopped once the determinant of the spatial metric becomes ze
1-10
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FIG. 14. We were not able to make the code stable by fine tuning the dissipation parameter.
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eters are chosen in such a way that the system is stro
hyperbolic. No further restrictions on the parameters
placed by this analysis. We have also integrated numeric
the KST equations and shown that the system canno
made stable~in the sense of Lax! and therefore convergent
the parameters are not chosen in such a way that the sy

FIG. 15. L2 norm of the errors for the metric.
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is strongly hyperbolic. No amount of artificial viscosity wa
able to fix the problem.

The conclusions of Sec. III are, to some extent, similar
those of Alcubierreet al., who find that, at the linearized
level, the advantages of the Baumgarte-Shapiro-Shib
Nakamura~BSSN! formulation@11# with respect to the ADM
formulation come from the fact that the first one is ‘‘more
hyperbolic. However, since it is not ‘‘completely’’ hyper
bolic, an ill posed~zero speed, in the notation of@12#! mode
is still present in the BSSN formulation. The conform
traceless~CT! decomposition is therefore introduced as
way of decoupling that mode. However, one could, inste
get rid of that mode by using a different choice of laps
More explicitly, in the analysis of@12# exact lapse is used
but it is not difficult to see that choosing, for example, de
sitized lapse with, say,s51/2, gets rid of the ill posed mode
~indeed, a certain version of the BSSN formulation with de
sitized lapse has been recently used in a 3D evolution o
single black hole@13#!. Moreover, as shown in@14#, the re-
sult is much stronger: even at the nonlinear level appro
ately writing the BSSN formulation with densitized laps
results in a reduction~from first to second order in space! of
certain strongly or symmetric hyperbolic formulations.

The lack of convergence in evolutions of WH or CIP sy
1-11
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FIG. 16. L2 norm of the errors for the metric using ICN.
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tems with schemes that are convergent for well posed e
tions seems to have been overlooked in the past~see, how-
ever, @15#!. If the von Neumann condition is satisfied, on
could be easily misled to think that the scheme is converg
especially if coarse resolutions are used, the evolution
short, or few frequencies are present in the initial data. H
we have shown that this lack of convergence does appe
concrete simulations, even in very simple ones. These
merical experiments, together with the theorem of Ref.@2#
should be enough evidence to cast serious doubts on
simulation performed with evolution equations that a
weakly hyperbolic or whose level of hyperbolicity is un
known that are not accompanied by very detailed conv
gence studies.

Summarizing, we do have analytical tools at our dispo
to constrain schemes and predict to a certain extent t
D

e

,

9
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behavior under numerical evolution. In fact, the examp
shown suggest that in the case of linearized equations,
analytical tools are complete: one cana priori tell if a code
will work or not. In the non-linear case further tools wi
need to be developed to achieve the same status with res
to predicting the performance of a code before running it
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