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Black hole collision with a scalar particle in four-, five-, and seven-dimensional anti–de Sitter
spacetimes: Ringing and radiation

Vitor Cardoso* and Jose´ P. S. Lemos†

Centro Multidisciplinar de Astrofı´sica-CENTRA, Departamento de Fı´sica, Instituto Superior Te´cnico,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

~Received 23 May 2002; published 13 September 2002!

In this work we compute the spectra, waveforms, and total scalar energy radiated during the radial infall of
a small test particle coupled to a scalar field into ad-dimensional Schwarzschild–anti-de Sitter black hole. We
focus ond54, 5, and 7, extending the analysis we have done ford53. For small black holes, the spectra
peaks strongly at a frequencyv;d21, which is the lowest pure anti–de Sitter~AdS! mode. The waveform
vanishes exponentially ast→`, and this exponential decay is governed entirely by the lowest quasinormal
frequency. This collision process is interesting from the point of view of the dynamics itself in relation to the
possibility of manufacturing black holes at CERN LHC within the brane world scenario, and from the point of
view of the AdS/CFT conjecture, since the scalar field can represent the string theory dilaton, and 4, 5, and 7
are dimensions of interest for the AdS/CFT correspondence.
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I. INTRODUCTION

In this work we extend the analysis we have done
three-dimensional anti–de Sitter~AdS! space@1#, and com-
pute in detail the collision between a black hole and a sc
particle. Now, a charged particle following a black ho
emits the radiation of the corresponding field. Thus a sc
particle falling into a black hole emits scalar waves. Th
collision process is interesting from the point of view of t
dynamics itself in relation to the possibility of manufacturin
black holes at the CERN Large Hadron collider~LHC!
within the brane world scenario@2#, and from the point of
view of the AdS/CFT conjecture, since the scalar field c
represent the string theory dilaton, and 4, 5, and 7~in addi-
tion to 3) are dimensions of interest for the AdS/CFT cor
spondence@3,4#. In addition, one can compare this proce
with previous works, since there are results for the quasin
mal modes of scalar and electromagnetic perturbations w
are known to govern the decay of the perturbations, at in
mediate and late times@1,4–6#.

AdS spacetime is the background spacetime in supers
metric theories of gravity such as 11-dimensional superg
ity and M theory~or string theory!. The dimensiond of AdS
spacetime is treated as a parameter which, in principle,
have values from 2 to 11 in accord with these theories,
where the other spare dimensions either receive a Kal
Klein treatment or are joined as a compact manifoldM into
the whole spacetime to yield AdSd3M 112d. By taking low
energy limits at strong coupling and by performing a gro
theoretic analysis, Maldacena has conjectured a corres
dence between the bulk ofd-dimenisonal AdS spacetime i
string theory and a dual conformal field gauge theory~CFT!
on the spacetime boundary@7#. The first system to be studie
with care was a D-3brane, in which case the conjecture st
that type IIB superstring theory in AdS53S5 is the same as
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N54 SU(N) super Yang-Mills~conformal! theory on S3

3R, with N being the number of fermionic generators andN
the number of D-branes. A concrete method to implem
this identification was given@8,9#, where it was proposed to
identify the extremum of the classical string theory actionI
for the dilaton fieldf, say, at the boundary of AdS, with th
generating functionalW of the Green’s correlation function
in the CFT for the operatorO that corresponds tof ~in the
D-3 brane caseO5Tr F2, where Fab is the gauge field
strength!,

If0(xm)5W@f0~xm!#,

wheref0 is the value off at the AdS boundary and thexm

label the coordinates of the boundary. The motivation for t
proposal stems from the common substratum of the two A
CFT descriptions, i.e., supergravity theory in the~asymptoti-
cally! flat portion of the full black solutions. Then, a pertu
bation in this flat portion disturbs in a similar fashion, bo
the ~soft! boundary in one description and the CFT on t
brane world-volume in the other description@8#. For systems
other than the D-3 brane, analogous statements for the
respondence AdSd /CFTd21 follow ~see the review@3#!. In
its strongest form the conjecture only requires that the spa
time be asymptotically AdS, the interior could be full o
gravitons or containing a black hole. The correspondenc
indeed a strong/weak duality, and can in principle be use
study issues of gravity at very strong coupling~such as, sin-
gularities, the localization of the black hole degrees of fre
dom and the relation with its entropy, the information pa
dox, and other problems! using the associated gauge theo
or CFT issues such as the difficult to calculate but import
n-point correlation functions using classical gravity in th
bulk. In addition, the AdS/CFT correspondence realizes
holographic principle@10#, since the bulk is effectively en
coded in the boundary.

Some general comments can be made about the map
AdS/CFT when it involves a black hole. A black hole in th
bulk corresponds to a thermal state in the gauge theory@11#.
Perturbing the black hole corresponds to perturbing the th
©2002 The American Physical Society06-1
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mal state and the decaying of the perturbation is equiva
to the return to the thermal state. So one obtains a predic
for the thermal time scale in the strongly coupled CFT. P
ticles initially far from the black hole correspond to a blob~a
localized excitation! in the CFT, as the IR-UV duality
teaches~a position in the bulk is equivalent to size of a
object! @12#. The evolution toward the black hole represen
a growing size of the blob with the blob turning into a bubb
travelling close to the speed of light@13#.

II. THE PROBLEM, THE EQUATIONS,
AND THE LAPLACE TRANSFORM, AND THE INITIAL

AND BOUNDARY CONDITIONS

A. The problem

In this paper we shall present the results of the follow
process: the radial infall of a small particle coupled to
massless scalar field, into ad-dimensional Schwarzschild–
AdS black hole. We will consider that both the massm0 and
the scalar chargeqs of the particle are a perturbation on th
background spacetime, i.e.,m0 ,qs!M ,R, where M is the
mass of the black hole andR is the AdS radius. In this ap
proximation the background metric is not affected by t
scalar field and is given by

ds25 f ~r !dt22
dr2

f ~r !
2r 2dVd22

2 , ~1!

where f (r )5(r 2/R211216pM /(d22)Ad221/r d23), Ad22
is the area of a unit (d22) sphere,Ad2252p (d21)/2/G(d
21/2), anddVd22

2 is the line element on the unit sphe
Sd22. The action for the scalar fieldf and particle is given
by a sum of three parts, the action for the scalar field its
the action for the particle, and an interaction piece,

FIG. 1. Initial dataZ0l for a small black hole withr 150.1, for
d54, 5, and 7~from left to right, respectively!. The small scalar
particle is located atr 050.5. The results are shown for the lowe
values of the angular quantum numberl.

FIG. 2. Initial dataZ0l for a black hole withr 151, and with the
particle atr 055, for some values ofl, the angular quantum numbe
Again, we show the results ford54, 5, and 7 from left to right,
respectively.
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I52
1

8pE f ;af ;aA2gddx2m0

3E ~11qsf!~2gabż
ażb!1/2dl, ~2!

wheregab is the background metric,g its determinant, and
za(l) represents the worldline of the particle as a function
an affine parameterl.

B. The equations and the Laplace transform

We now specialize to the radial infall case. In the usu
~asymptotically flat! Schwarzschild geometry, one can, f
example, let a particle fall in from infinity with zero velocit
there@14#. The peculiar properties of AdS spacetime do n
allow a particle at rest at infinity@1# ~we would need an
infinite amount of energy for that! so we consider the mas
m0 to be held at rest at a given distancer 0 in Schwarzschild
coordinates. Att50 the particle starts falling into the blac
hole. As the background is spherically symmetric, Laplac
equation separates into the usual spherical harmo
Y(u,w1 , . . . ,wd23) defined over the (d22) unit sphere
@15#, whereu is the polar angle andw1 , . . . ,wd23 are going
to be considered azimuthal angles of the problem. In fa
since we are considering radial infall, the situation is sy
metric with respect to a (d23) sphere. We can thus decom
pose the scalar field as

f~ t,r ,u,w1 , . . . ,wd23!5
1

r (d22)/2 (
l

Zl~ t,r !Yl0•••0~u!.

~3!

The polar angleu carries all the angular information, andl is
the angular quantum number associated withu. From now
on, instead ofYl0•••0(u), we shall simply writeYl(u) for the

FIG. 3. Initial dataZ0l for a black hole withr 151, and with the
particle atr 051.5, for some values ofl, the angular quantum num
ber. Again, we show the results ford54, 5, and 7 from left to right,
respectively.

FIG. 4. The spherically symmetric (l 50) waveform for the case
of a particle falling fromr 050.5 into a r 150.1 black hole. The
results are displayed ford54, 5, and 7 from left to right, respec
tively. The coordinatev5t1r * is the usual Eddington coordinate
6-2
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BLACK HOLE COLLISION WITH A SCALAR PARTICLE . . . PHYSICAL REVIEW D 66, 064006 ~2002!
spherical harmonics over the (d22) unit sphere. In fact
Yl(u) is, apart from normalizations, just a Gegenbauer po
nomial Cl

(d23)/2(cosu) @15#. Upon varying the action~2!,
integrating over the (d22) sphere, and using the orthono
mality properties of the spherical harmonics we obtain
following equation forZl(t,r )

]2Zl~ t,r !

]r
*
2

2
]2Zl~ t,r !

]t2
2V~r !Zl~ t,r !

5
4pqsm0f

r (d22)/2 S dt

dt D 21

d@r 2r p~ t !#Yl~0!. ~4!

The potentialV(r ) appearing in Eq.~4! is given by

V~r !5 f ~r !F a

r 2
1

~d22!~d24! f ~r !

4r 2
1

~d22! f 8~r !

2r G ,

~5!

wherea5 l ( l 1d23) is the eigenvalue of the Laplacian o
Sd22, and the tortoise coordinater * is defined as]r /]r *
5 f (r ). By defining the Laplace transformZ̃l(v,r ) of
Zl(t,r ) as

Z̃~v,r !5
1

~2p!1/2E0

`

eivtZl~ t,r !dt, ~6!

then, Eq.~4! transforms into

]2Z̃~v,r !

]r
*
2

1@v22V~r !#Z̃~v,r !5Sl~v,r !1
iv

~2p!1/2
Z0l~r !,

~7!

with the source termSl(v,r ) given by

FIG. 5. The l 51 waveform for the case of a particle fallin
from r 050.5 into ar 150.1 black hole.The results are displayed f
d54, 5, and 7 from left to right, respectively.

FIG. 6. Typical energy spectra for the spherically symme
part of the perturbation (l 50), here shown forr 150.1 and r 0

50.5, and ford54, 5, and 7. Total energy in this mode: ford
54 we haveEl 50,d54;75. Ford55, we haveEl 50,d55;34. For
d57, we haveEl 50,d57;1500.
06400
-

e

Sl~v,r !5
2~2p!1/2qsm0f Yl~0!

r (d22)/2~E22 f !1/2
eivT(r ). ~8!

Note thatZ0l(r ) is the initial value ofZ(t,r ), i.e., Z0l(r )
5Z(t50,r ), satisfying

]2Z0l~r !

]r
*
2

2V~r !Z0l~r !

52
4pqsm0f ~r !Yl~0!

r (d22)/2 S dt

dt D
r 0

21

d~r 2r 0!, ~9!

where r 05r p(t50). We have represented the particle
worldline byzm5zp

m(t), with t the proper time along a geo
desic. Here,t5T(r ) describes the particle’s radial trajecto
giving the time as a function of radius along the geodesi

dT~r !

dr
52

E

f ~E22 f !1/2
~10!

with initial conditionsT(r 0)50, andE25 f (r 0).
We have rescaledr, r→r /R, and measure everything i

terms of R, i.e., v is to be readvR, C is to be read
R/qsm0C, andr 1 , the horizon radius, is to be readr 1 /R.

C. The initial data

We can obtainZ0l(r ), the initial value ofZ(t,r ), by solv-
ing numerically Eq.~9!, demanding regularity at both th
horizon and infinity~for a similar problem, see, for example
@16–18#!. To present the initial data and the results we divi
the problem into two categories:~i! small black holes with
r 1!1, and~ii ! intermediate and large black holes withr 1

*1.
~i! Initial data for small black holes,r 150.1. In Fig. 1 we

present initial data for small black holes withr 150.1 in the
dimensions of interest (d54, 5, and 7!. In this case, the fall
starts atr 050.5. Results referring to initial data ind53

FIG. 7. Typical energy spectra~for l 51), here shown forr 1

50.1 andr 050.5.

FIG. 8. The spherically symmetric (l 50) waveform for the case
of a particle falling fromr 055 into ar 151 black hole. The results
are displayed ford54, 5, and 7 from left to right, respectively.
6-3
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@Ban̂ados-Teitelboim-Zanell~BTZ! black hole# are given in
@1#. We show a typical form ofZ0l for r 150.1 and r 0
50.5, and for different values ofl. As a test for the numeri-
cal evaluation ofZ0l , we have checked that asr 0→r 1 , all
the multipoles fade away, i.e.,Z0l→0, supporting the no hai
conjecture. Note thatZ0l has to be small. We are plottin
Z0l /qsm0 /R. Since qsm0 /R!1 in our approximation one
has from Figs. 1–3 that indeedZ0l!1.

~ii ! Initial data for intermediate and large black hole
r 151. In Figs. 2 and 3 we show initial data for an interm
diate to large black hole,r 151. In Fig. 2 the fall starts a
r 055. We show a typical form ofZ0l for r 151 and r 0
55, and for different values ofl. In Fig. 3 it starts further
down atr 051.5. We show a typical form ofZ0l for r 151
and r 051.5, and for different values ofl. Again, we have
checked that asr 0→r 1 , all the multipoles fade away, i.e
Z0l→0, supporting the no hair conjecture.

Two important remarks are in order: first, it is appare
from Figs. 1–3 that the field~sum over the multipoles! is
divergent at the particle’s positionr 0. This is to be expected
as the particle is assumed to be point-like; second, one is
to believe from Figs. 1–3~but especially from Figs. 2 and 3!
that Z0l increases withl. This is not true, however, as thi
behavior is only valid for small values of the angular qua
tum numberl. For largel, Z0l decreases withl, in such a
manner as to makef(t,r ) in Eq. ~3! convergent and finite
For example, forr 151, r 055, and d54, we have atr
56, Z0l 52050.781, andZ0l 54050.3118.

D. Boundary conditions and the Green’s function

Equation~7! is to be solved with the boundary condition
appropriate to AdS spacetimes, but special attention mus
paid to the initial data@1#: ingoing waves at the horizon,

Z̃;F~v!e2 ivr* 1
iZ0l

~2p!1/2v
, r→r 1 , ~11!

and since the potential diverges at infinity we impose refl
tive boundary conditions (Z̃50) there@19#. Naturally, given

FIG. 9. The l 51 waveform for the case of a particle fallin
from r 055 into a r 151 black hole.

FIG. 10. Typical energy spectra for the spherically symme
part of the perturbation (l 50), here shown forr 151 andr 055,
and ford54, 5, and 7.
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these boundary conditions, all the energy eventually si
into the black hole. To implement a numerical solution, w
note that two independent solutionsZ̃H and Z̃` of Eq. ~7!,
with the source term set to zero, have the behavior:

Z̃H;e2 ivr* , r→r 1 , ~12!

Z̃H;Ard/2211Br2d/2, r→`, ~13!

Z̃`;Ceivr* 1De2 ivr
* , r→r 1 , ~14!

Z̃`;r 2d/2, r→`. ~15!

Here, the WronskianW of these two solutions is a constan
W52Civ. We define as in@1# hH through dhH/dr* 5

2Z̃H and h` throughdh`/dr* 52Z̃`. We can then show
that Z̃ given by

Z̃5
1

W F Z̃`E
2`

r

Z̃HSdr* 1Z̃HE
r

`

Z̃`Sdr* G
1

iv

~2p!1/2W
F Z̃`E

2`

r

hH
dZ0l

dr*
dr*

1Z̃HE
r

`

h`
dZ0l

dr*
dr*

1~h`Z0l Z̃
H2hHZ0l Z̃

`!~r !G ~16!

is a solution to Eq.~7! and satisfies the boundary condition
In this work, we are interested in computing the wave fun
tion Z̃(v,r ) near the horizon (r→r 1). In this limit we have

c

FIG. 11. Typical energy spectra~for l 51), here shown forr 1

51 andr 055.

FIG. 12. Thel 50 waveform for the case of a particle fallin
from r 051.5 into ar 151 black hole.
6-4
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BLACK HOLE COLLISION WITH A SCALAR PARTICLE . . . PHYSICAL REVIEW D 66, 064006 ~2002!
Z̃~r;r 1!5
1

W F Z̃HE
r 1

`

Z̃`Sdr* G
1

iv

~2p!1/2W
Z̃HF E

r 1

`

Z̃`Z0ldr* 2~h`Z0l !~r 1!G
1

iZ0l~r 1!

~2p!1/2v
, ~17!

where an integration by parts has been used.
All we need to do is to find a solutionZ̃2 of the corre-

sponding homogeneous equation satisfying the above m
tioned boundary conditions~15!, and then numerically inte
grate it in Eq.~17!. In the numerical work, we chose to ado
r as the independent variable, therefore avoiding the num
cal inversion ofr * (r ). To find Z̃2, the integration@of the
homogeneous form of Eq.~7!# was started at a large value o
r 5r i , which wasr i5105 typically. Equation~16! was used
to infer the boundary conditionsZ̃2(r i) andZ̃28(r i). We then
integrated inward from r 5r i in to typically r 5r 1

11026r 1 . Equation~16! was then used to getC.

III. RESULTS

A. Numerical results

Our numerical evolution for the field showed that som
drastic changes occur when the size of the black hole va
so we have chosen to divide the results in~i! small black
holes and~ii ! intermediate and large black holes. We will s
that the behavior of these two classes is indeed strikin
different. We refer the reader to@1# for the results ind53.

~i! Waveforms and spectra for small black holes,r 1

50.1. We plot the waveforms and the spectra. Figures 4
are typical plots for small black holes of waveforms a
spectra forl 50 and l 51 ~for l 52 and higher the conclu
sions are not altered!. They show the first interesting aspe
of our numerical results: for small black holes thel 50 sig-
nal is clearly dominated by quasinormal, exponentially d
caying, ringing modes with a frequencyv;d21 ~scalar
quasinormal frequencies of Schwarzschild–AdS black ho
can be found in@4,6#!. This particular limit is a pure AdS
mode @20,21#. For example, Fig. 4 gives, ford54, v
52p/T;2p/(10/4.5);2.7. This yields a value near th
pure AdS mode ford54, v53. Likewise, Fig. 4 givesv
;4 when d55, the pure AdS mode ford55. All these
features can be more clearly seen in the energy spectra p
Fig. 6, where one can observe the intense peak atv;d
21. The conclusion is straightforward: spacetimes w

FIG. 13. Typical energy spectra~for l 50), here shown forr 1

51 andr 051.5.
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small black holes behave as if the black hole was not ther
all. This can be checked in yet another way by lowering
mass of the black hole. We have done that, and the result
have obtained show that as one lowers the mass of the h
the ringing frequency goes tov;3 ~for d54) and the
imaginary part of the frequency, which gives us the damp
scale for the mode, decreases asr 1 decreases. In this limit
the spacetime effectively behaves as a bounding box
which the modes propagate ‘‘freely,’’ and are not absorb
by the black hole.

Not shown is the spectra for higher values of the angu
quantum numberl. The total energy going down the hol
increases slightly withl. This would lead us to believe tha
an infinite amount of energy goes down the hole. Howev
as first noted in@22#, this divergence results from treating th
incoming object as a point particle. Taking a minimum sizeL
for the particle implies a cutoff inl given by l max
;p/2 r 1 /L, and this problem is solved.

~ii ! Waveforms and spectra for intermediate and la
black holes,r 151. We plot the waveforms and the spectr
As we mentioned, intermediate and large black holes~which
are of more direct interest to the AdS/CFT! behave differ-
ently. The signal is dominated by a sharp precursor neav
5r * 0 and there is no ringing: the waveform quickly settl
down to the final zero value in a pure decaying fashion. T
time scale of this exponential decay is, to high accura
given the inverse of the imaginary part of the quasinorm
frequency for the mode. The total energy is not a monoto
function of r 0 and still diverges if one naively sums over a
the multipoles. In either case, there seems to be no pow
law tails, as was expected from the work of Chinget al. @23#.
Note that E is given in terms of E/(qsm0 /r )2. Since
qsm0 /r !1 the total energy radiated is small in accord w
our approximation. The value attained byZ̃ for large nega-
tive v, Fig. 12, is the initial data, and this can be most eas
seen by looking at the value ofZ0 near the horizon in Fig. 3
~see also@1#!. This happens for small black holes also, whi
is only natural, since large negativev means very early
times, and at early times one can only see the initial d
since no information has arrived to tell that the particle h
started to fall. The spectra in general does not peak at
lowest quasinormal frequency~cf. Figs. 8–13!, as it did in
flat spacetime@24#. ~Scalar quasinormal frequencies
Schwarzschild–AdS black holes can be found in@4,6#.! Most
importantly, the location of the peak seems to have a str
dependence onr 0 ~compare Figs. 10 and 13!. This discrep-
ancy has its roots in the behavior of the quasinormal frequ
cies. In fact, whereas in~asymptotically! flat spacetime the
real part of the frequency is bounded and seems to go
constant@25#, in AdS spacetime it grows without bound as
function of the principal quantum numbern @4,6#. Increasing
the distancer 0 at which the particle begins to fall has th
effect of increasing this effect, so higher modes seem to
excited at larger distances.

B. Discussion of results

Two important remarks regarding these results can
made.

~i! The total energy radiated depends on the size of
infalling object, and the smaller the object is, the more e
6-5



S
a

is
an

ta

w
e

t
s

e

oi
S
c-
T
re

le
u
r-
in

cy,
the
wn

or-
ant

at
ra-
S

ect
ak

ela-
h
that
e
lts
in

by

/
CT
er-

VITOR CARDOSO AND JOSE´ P. S. LEMOS PHYSICAL REVIEW D66, 064006 ~2002!
ergy it will radiate. This is a kind of scalar analog in Ad
space of a well known result for gravitational radiation in fl
space@26#.

~ii ! The fact that the radiation emitted in each multipole
high even for high multipoles leads us to another import
point, first posed by Horowitz and Hubeny@4#. While we are
not able to guarantee that the damping time scale s
bounded away from infinity~as it seems!, it is apparent from
the numerical data that the damping time scale increases
increasingl. Thus it looks like the late time behavior of thes
kinds of perturbations will be dominated by the largesl
mode (Lmax;r1 /size of object), and this answers the que
tion posed in@4#. Thus a perturbation in̂F2& in the CFT
with given angular dependenceYl on S3 will decay exponen-
tially with a time scale given by the imaginary part of th
lowest quasinormal mode withthat value of l.

IV. CONCLUSIONS

We have computed the scalar energy emitted by a p
test particle falling from rest into a Schwarzschild–Ad
black hole. From the point of view of the AdS/CFT conje
ture, where the~large! black hole corresponds on the CF
side to a thermal state, the infalling scalar particle cor
sponds to a specific perturbation of this state~an expanding
bubble!, while the scalar radiation is interpreted as partic
decaying into bosons of the associated operator of the ga
theory. Previous works@4,6# have shown that a general pe
turbation should have a timescale directly related to the
O

D

. B

,

l.
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,
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verse of the imaginary part of the quasinormal frequen
which means that the approach to thermal equilibrium on
CFT should be governed by this time scale. We have sho
through a specific important problem that this is in fact c
rect, but that it is not the whole story, since some import
features of the waveforms highly depend onr 0.

Overall, we expect to find the same type of features,
least qualitatively, in the gravitational or electromagnetic
diation by test particles falling into a Schwarzschild–Ad
black hole. For example, if the black hole is small, we exp
to find in the gravitational radiation spectra a strong pe
located atv254n21 l ( l 11), n51,2, . . . @5#. Moreover,
some major results in perturbation theory and numerical r
tivity @27,28#, studying the collision of two black holes, wit
masses of the same order of magnitude, allow us to infer
evolving the collision of two black holes in AdS spacetim
should not bring major differences in relation to our resu
~though it is of course a much more difficult task, even
perturbation theory!. In particular, in the small black hole
regime, the spectra and waveforms should be dominated
quasinormal ringing.
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