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Black hole collision with a scalar particle in four-, five-, and seven-dimensional antide Sitter
spacetimes: Ringing and radiation
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In this work we compute the spectra, waveforms, and total scalar energy radiated during the radial infall of
a small test particle coupled to a scalar field intd-dimensional Schwarzschild—anti-de Sitter black hole. We
focus ond=4, 5, and 7, extending the analysis we have donedfe3. For small black holes, the spectra
peaks strongly at a frequeney~d— 1, which is the lowest pure anti—de SittgdS) mode. The waveform
vanishes exponentially @s—«, and this exponential decay is governed entirely by the lowest quasinormal
frequency. This collision process is interesting from the point of view of the dynamics itself in relation to the
possibility of manufacturing black holes at CERN LHC within the brane world scenario, and from the point of
view of the AAS/CFT conjecture, since the scalar field can represent the string theory dilaton, and 4, 5, and 7
are dimensions of interest for the AAS/CFT correspondence.
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. INTRODUCTION N=4 SU(N) super Yang-Mills(conforma) theory on $
X R, with A/ being the number of fermionic generators ahd
In this work we extend the analysis we have done forthe number of D-branes. A concrete method to implement
three-dimensional anti—de SitteAdS) space[1], and com- this identification was givef8,9], where it was proposed to
pute in detail the collision between a black hole and a scalaidentify the extremum of the classical string theory action
particle. Now, a charged particle following a black hole for the dilaton fielde¢, say, at the boundary of AdS, with the
emits the radiation of the corresponding field. Thus a scalagenerating functionalV of the Green’s correlation functions
particle falling into a black hole emits scalar waves. Thisin the CFT for the operata® that corresponds té (in the
collision process is interesting from the point of view of the D-3 brane caseD=TrF?, where F,;, is the gauge field
dynamics itself in relation to the possibility of manufacturing strength,
black holes at the CERN Large Hadron collidérHC) 7 —Wi “
within the brane world scenari®], and from the point of 20 = WEPo(X)],
view of the AdS{CFT conjegture, since the scalgr f|elq Canwhereqbo is the value of¢ at the AdS boundary and the*
rgpresent the SF””g theory d|-Iat0n, and 4, 5, anihvaddi- label the coordinates of the boundary. The motivation for this
tion to 3) are dlmensm_n_s of interest for the AdS/(_:FT COMe-nroposal stems from the common substratum of the two AdS/
spondencé3,4]. In addition, one can compare this processcgr descriptions, i.e., supergravity theory in asymptoti-
with previous works, since there are results for the quasinorga|ly) flat portion of the full black solutions. Then, a pertur-
mal modes of scalar and electromagnetic perturbations whichation in this flat portion disturbs in a similar fashion, both
are known to govern the decay of the perturbations, at intefthe (soft) boundary in one description and the CFT on the
mediate and late timgd,4—§. brane world-volume in the other descriptif8i. For systems
AdS spacetime is the background spacetime in supersynbther than the D-3 brane, analogous statements for the cor-
metric theories of gravity such as 11-dimensional supergravrespondence AJ3CFT,_, follow (see the review3]). In
ity and M theory(or string theory. The dimensiord of AdS its strongest form the conjecture only requires that the space-
spacetime is treated as a parameter which, in principle, caime be asymptotically AdS, the interior could be full of
have values from 2 to 11 in accord with these theories, angravitons or containing a black hole. The correspondence is
where the other spare dimensions either receive a Kaluzandeed a strong/weak duality, and can in principle be used to
Klein treatment or are joined as a compact maniféttlinto  study issues of gravity at very strong couplifsgich as, sin-
the whole spacetime to yield Ag8 M 79, By taking low gularities, the localization of the black hole degrees of free-
energy limits at strong coupling and by performing a groupdom and the relation with its entropy, the information para-
theoretic analysis, Maldacena has conjectured a correspodex, and other problemsising the associated gauge theory,
dence between the bulk ofdimenisonal AdS spacetime in or CFT issues such as the difficult to calculate but important
string theory and a dual conformal field gauge the@#T) n-point correlation functions using classical gravity in the
on the spacetime bounddy]. The first system to be studied bulk. In addition, the AdS/CFT correspondence realizes the
with care was a D-3brane, in which case the conjecture statdslographic principlg 10], since the bulk is effectively en-
that type IIB superstring theory in A¢S S° is the same as coded in the boundary.
Some general comments can be made about the mapping
AdS/CFT when it involves a black hole. A black hole in the
*Electronic address: vcardoso@fisica.ist.utl.pt bulk corresponds to a thermal state in the gauge thidry
"Electronic address: lemos@kelvin.ist.utl.pt Perturbing the black hole corresponds to perturbing the ther-
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FIG. 1. Initial dataZ, for a small black hole withr , =0.1, for FIG. 3. Initial dataZ,, for a black hole wittr . =1, and with the
d=4, 5, and 7(from left to right, respectively The small scalar particle atr,=1.5, for some values df the angular quantum num-
particle is located at,=0.5. The results are shown for the lowest ber. Again, we show the results fde=4, 5, and 7 from left to right,

values of the angular quantum numlbber respectively.

mal state and the decaying of the perturbation is equivalent __ if ‘a [ mady

to the return to the thermal state. So one obtains a prediction 7 8w $:ab gdx—mo

for the thermal time scale in the strongly coupled CFT. Par-

ticles initially far from the black hole correspond to a bi@b x f (14 9sd) (- gapZ®2) Y2\ )
localized excitation in the CFT, as the IR-UV duality s é ’

teaches(a position in the bulk is equivalent to size of an . o .

objech [12]. The evolution toward the black hole representsWheregay, is the background metrig its determinant, and

a growing size of the blob with the blob turning into a bubble Z°(\) represents the worldline of the particle as a function of
travelling close to the speed of light3]. an affine parametex.

B. The equations and the Laplace transform
Il. THE PROBLEM, THE EQUATIONS,

AND THE LAPLACE TRANSFORM, AND THE INITIAL
AND BOUNDARY CONDITIONS

We now specialize to the radial infall case. In the usual
(asymptotically flax Schwarzschild geometry, one can, for
example, let a particle fall in from infinity with zero velocity
A. The problem there[14]. The peculiar properties of AdS spacetime do not
allow a particle at rest at infinity1] (we would need an
infinite amount of energy for thaso we consider the mass
my to be held at rest at a given distanggin Schwarzschild
coordinates. At=0 the particle starts falling into the black

the scalar charggg of the particle are a perturbation on the hole. As the background is spherically symmetric, Laplace's

. ; . tion separates into the usual spherical harmonics
background spacetime, i.emy,qs<M,R, whereM is the equa ' :
mass of the black hole arid is the AdS radius. In this ap- Y(0,¢1, ... .0q4-3) defined over the d—2) unit sphere

proximation the background metric is not affected by the[15]’ wherele Is the pglar angle ang, . . . ¢4 are going
scalar field and is given by to be considered azimuthal angles of the problem. In fact,

since we are considering radial infall, the situation is sym-
2 metric with respect to ad—3) sphere. We can thus decom-

dr
ds®=f(r)dt>— f(—r)—rzdﬂﬁ,z, (1) pose the scalar field as

In this paper we shall present the results of the following
process: the radial infall of a small particle coupled to a
massless scalar field, into dadimensional Schwarzschild—
AdS black hole. We will consider that both the masgand

1
wheref (1) = (r2/R2+ 1— 167M/(d—2)Ag o1k %), Ay, PN 0@1 - 00-0)= g 2 Z(LNYio..o(6).
is the area of a unitd—2) sphere Ay_,=27="Y2T(d 3
—1/2), anddQ3_, is the line element on the unit sphere
S92, The action for the scalar fiel¢ and particle is given The polar angle carries all the angular information, ahés
by a sum of three parts, the action for the scalar field itselfthe angular quantum number associated vdithFrom now

the action for the particle, and an interaction piece, on, instead ofY|q...o(#), we shall simply writeY,(6) for the
ri=1,r0=5 ry=0.1,1r0=0.5
d=4 d=5 d=7
0.5 N -
1. é o vpap v Y
Zis _g -0.5 -2
-2 -1 -4
0. _3 -1.5 _s
-10 0 10 -10 0 10 -10 0 10
v v v
FIG. 2. Initial dataZ, for a black hole withr , =1, and with the FIG. 4. The spherically symmetri¢€ 0) waveform for the case

particle atr =5, for some values df the angular quantum number. of a particle falling fromr,=0.5 into ar, =0.1 black hole. The
Again, we show the results fat=4, 5, and 7 from left to right, results are displayed fat=4, 5, and 7 from left to right, respec-
respectively. tively. The coordinatey =t+r is the usual Eddington coordinate.
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r,=0.1,r0=0.5 r+=0.1,10=0.5
a=4 a=7 d=7 dEAdw a=4 dE/dw d=5 dB/dw d=7
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FIG. 5. Thel=1 waveform for the case of a particle falling FIG. 7. Typical energy spectrdor I=1), here shown for
fromry=0.5 into ar , =0.1 black hole.The results are displayed for =0.1 andr,=0.5.
d=4, 5, and 7 from left to right, respectively.

) ) ) 2(277)1/2quOfY|(O) ia)T(I’)
spherical harmonics over thed{2) unit sphere. In fact Slon)=—q"%n e & )
Y,(6) is, apart from normalizations, just a Gegenbauer poly- r ( )
: d—3)/2 ; ;

nomial C{*~*(cose) [15]. Upon varying the action2),  Note thatzy(r) is the initial value ofZ(t.r), i.e., Zy(r)
integrating over thed—2) sphere, and using the orthonor- =Z(t=0y), satisfying
mality properties of the spherical harmonics we obtain the n

following equation forz,(t,r) PZ (1)
, , ——5— V(1) Zy(r)
J Z|(t,r) Jd Z|(t,r) é’l’*
——————V(DZ(tr)
I at 47qmof(r)Y,(0) ( dt)la( . @
== - r—ro),
 Amggmof [dt| ? r(d-2)2 dr " 0
- r(d_z)/z E_ 5[r_rp(t)]Y|(0) (4)
where ro=r,(t=0). We have represented the particle’s
The potentiaV(r) appearing in Eq(4) is given by worldline by z#=z{(7), with 7 the proper time along a geo-
desic. Heref=T(r) describes the particle’s radial trajectory
a (d—2)(d—4)f(r) (d—2)f'(r) giving the time as a function of radius along the geodesic
V(r)="1(r) =+ 5 + > ,
r ar r dT(r) E 10
(5) dr __f(EZ_f)J./Z ( )

wherea=1(1+d—3) is the eigenvalue of the Laplacian on with initial conditionsT(rg)=0, andE2=f(ro).

72 . . . .
S°"%, and the tortoise coordinate, is defined asir/or., We have rescaled, r—r/R, and measure everything in

=f(r). By defining the Laplace transfornZ(w,r) of  terms of R ie. o is to be readwR, ¥ is to be read
Z(t,r) as R/gsme¥, andr . , the horizon radius, is to be read /R.

~ 1 ®

Z(w,r)=—f e'“'zy(t,r)dt, (6) C. The initial data
(2m)Y2Jo . i

We can obtairZ,(r), the initial value ofZ(t,r), by solv-

then, Eq.(4) transforms into ing numerically Eq.(9), demanding regularity at both the
horizon and infinity(for a similar problem, see, for example,

23 (our) i [16—18). To present the initial data and the results we divide

—+[w2—V(r)]Z(w,r)=S(w,r)+—wZO|(r), the problem into two categoriesi) small black holes with
ar2 2m)1? r.<1, and(ii) intermediate and large black holes with
(7) =1.
(i) Initial data for small black holes,, =0.1. In Fig. 1 we
with the source terng(w,r) given by present initial data for small black holes with =0.1 in the
dimensions of interestd=4, 5, and 7. In this case, the fall
r4=0.1,20=0.5 starts atry=0.5. Results referring to initial data id=3
dE/dw d=4 dE/dw d=5 dB/de a=7
150 123 3000 ry=1,r9=5
100 2000 d=4 d=5 d=7
50 50 1000 o f
T it ® 246810 ¢ 210 -0. -0 -0.03
_ -0.2] -0.05
FIG. 6. Typical energy spectra for the spherically symmetric O 2 SIS SO-s0s
part of the perturbationl &£0), here shown for  =0.1 andr,
=0.5, and ford=4, 5, and 7. Total energy in this mode: fdr FIG. 8. The spherically symmetri¢<€ 0) waveform for the case
=4 we haveE,_q4-4~75. Ford=5, we haveE|,_,4-5~34. For  of a particle falling fromr,=5 into ar . =1 black hole. The results
d=7, we haveE,_y4-,~1500. are displayed fod=4, 5, and 7 from left to right, respectively.
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r,=1,r9=5

d=5

™

a=7

Z1=1

FIG. 9. Thel=1 waveform for the case of a particle falling
fromry=5 into ar, =1 black hole.

[Bamados-Teitelboim-ZanellBTZ) black holg are given in
[1]. We show a typical form ofZ,y for r,=0.1 andry
=0.5, and for different values df As a test for the numeri-
cal evaluation ofZ, , we have checked that ag—r . , all
the multipoles fade away, i.€Z;— 0, supporting the no hair
conjecture. Note thaf, has to be small. We are plotting
Zy/gsmg/R. Since gsmg/R<<1 in our approximation one
has from Figs. 1-3 that indeet}, <1.

(i) Initial data for intermediate and large black holes,
r,=1. In Figs. 2 and 3 we show initial data for an interme-
diate to large black hole, . =1. In Fig. 2 the fall starts at
ro=5. We show a typical form o, for r,=1 andrg
=5, and for different values df In Fig. 3 it starts further
down atry=1.5. We show a typical form afy forr,=1
andry=1.5, and for different values df Again, we have
checked that asy—r ., all the multipoles fade away, i.e.,
Zy—0, supporting the no hair conjecture.

PHYSICAL REVIEW D66, 064006 (2002

ry=1,r9=5

dE/dw d=4 dE/dw d=5 dE/do d=7

0.01

0.005

[

w ()

10 20 30 10 20 30 20 40 &0

FIG. 11. Typical energy specti@or |=1), here shown for .
=1 andry=5.

these boundary conditions, all the energy eventually sinks
into the black hole. To implement a numerical solution, we

note that two independent solutiod$' andZ* of Eq. (7),
with the source term set to zero, have the behavior:

ZH~elorx o r (12)
ZH Ard2-lygr=d2 o0, (13
Z7~Cée“™* tDe 9, ror,, (14)
Z~r 92 o, (15)

Two important remarks are in order: first, it is apparentHere, the WronskialW of these two solutions is a constant,

from Figs. 1-3 that the fieldsum over the multipolgsis

divergent at the particle’s positian. This is to be expected, _ZH 5nqh* throughdh™/dr
as the particle is assumed to be point-like; second, one is le *

to believe from Figs. 1—-8out especially from Figs. 2 and 3
that Zy, increases witH. This is not true, however, as this
behavior is only valid for small values of the angular quan-
tum numberl. For largel, Z, decreases with, in such a
manner as to make(t,r) in Eq. (3) convergent and finite.
For example, forr,=1,ry,=5, andd=4, we have atr
:6, Zo|:2020.781, anim:‘m: 03118

D. Boundary conditions and the Green’s function

Equation(7) is to be solved with the boundary conditions

appropriate to AdS spacetimes, but special attention must be

paid to the initial datd1]: ingoing waves at the horizon,

Zo

Z~F(o)e o™ 4 ————
(277)1/20)

r—r,, (11
and since the potential diverges at infinity we impose reflec

tive boundary conditionsZ=0) there[19]. Naturally, given

ry=1,re=5
dE/dw d=4 dE/do a=5 dEfdw d=7
0-4 0.015 0-002
0.3 -
0.2 0.01 0.001]
0.1 0.005
510 15 20 25% 10 20 30 @ ) Tod°

FIG. 10. Typical energy spectra for the spherically symmetric
part of the perturbationl &0), here shown for, =1 andry=5,
and ford=4, 5, and 7.

W=2Ciw. We define as in[1] h" through dh"/dr, =
—Z”. We can then show

a7 given by

2_1
R

iw

~ r ~ ~ DO~
[z*f zHSdr*+sz ZWSdr*}
e ;
+—

=0 r hH
(2m)YAv z fo

~ * dZO|
H ©
vz [T

dz,
dr,

dr,

dr,

+(h“szH—tho.2°°)(r)} (16)

is a solution to Eq(7) and satisfies the boundary conditions.
tn this work, we are interested in computing the wave func-

tion Z(w,r) near the horizonr(—r ). In this limit we have

ri=1,r¢=1.5

d=4 d=5 d=7
0. 0.1
1 0 o
Zi=0 0 -0.2 ~0.1
-1 0.4 -0.2

FIG. 12. Thel=0 waveform for the case of a particle falling
fromry=1.5 into ar ., =1 black hole.
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=1,10=1.5 small black holes behave as if the black hole was not there at
dE/dw d=4 dE/dw a=5 dE/do a=7 all. This can be checked in yet another way by lowering the
) o 0.06 mass of the black hole. We have done that, and the results we
’ 0.04 have obtained show that as one lowers the mass of the hole,
! 0.1 0.02 the ringing frequency goes te~3 (for d=4) and the
' @ - 510 ® 5 0 @ imaginary part of the frequency, which gives us the damping

scale for the mode, decreasesrasdecreases. In this limit,

the spacetime effectively behaves as a bounding box in

which the modes propagate “freely,” and are not absorbed

by the black hole.

~ i PO Not shown is the spectra for higher values of the angular

Z(r~ry)=wl 4 fr Z7Sdr, quantum numbet. The total energy going down the hole
- increases slightly with. This would lead us to believe that

FIG. 13. Typical energy spectfgor |=0), here shown for ,
=1 andry=1.5.

o o an infinite amount of energy goes down the hole. However,
+—UZH f Z7Zydr, —(h*Zy)(r;) as first noted if22], this divergence results from treating the
(2m) AW re incoming object as a point particle. Taking a minimum dize

) for the particle implies a cutoff inl given by I
1Zoi(r ) 1 ~m/2r . /L, and this problem is solved.
(277)1/2w’ 17) (i) Waveforms and spectra for intermediate and large
black holesy , =1. We plot the waveforms and the spectra.
where an integration by parts has been used. As we mentioned, intermediate and large black hélgsich
All we need to do is to find a solutio#, of the corre- are of more direct interest to the AdS/CFiiehave differ-
sponding homogeneous equation satisfying the above me@ntly. The signal is dominated by a sharp precursor pear
tioned boundary condition&l5), and then numerically inte- =T xo0 @nd there is no ringing: the waveform quickly settles
grate it in Eq.(17). In the numerical work, we chose to adopt c_iown to the flnal_zero value in a pure d_ecaymg fashion. The
r as the independent variable, therefore avoiding the numerfime scale of this exponential decay is, to high accuracy,
cal inversion ofr,, (r). To find %, the integratior{of the given the inverse of the imaginary part of the quasinormal

frequency for the mode. The total energy is not a monotonic
homogeneous form of E@7)] was started at a large value of g y 9y

- . —10° tvpi . function ofr and still diverges if one naively sums over all
r=r;, which wasr;=10" typically. Equation(16) was used  he muitipoles. In either case, there seems to be no power-

to infer the boundary conditior,(r;) andZj(r;). We then  law tails, as was expected from the work of Chetgal.[23].
integrated inward fromr=r;, in to typically r=r, Note that E is given in terms of E/(gsmy/r)?. Since

+10 °r, . Equation(16) was then used to ge. gsMp/r <1 the total energy radiated is small in accord with
our approximation. The value attained Byfor large nega-

IIl. RESULTS tive v, Fig. 12, is the initial data, and this can be most easily
seen by looking at the value @, near the horizon in Fig. 3

A. Numerical results (see alsd1]). This happens for small black holes also, which

Our numerical evolution for the field showed that some!S ©nly natural, since large negative means very early
mes, and at early times one can only see the initial data,

drastic changes occur when the size of the black hole varieg, . X X )
so we have chosen to divide the results(insmall black ~SNc& NO information has amved to tell that the particle has
holes andii) intermediate and large black holes. We will see Started to fall. The spectra in general does not peak at the

that the behavior of these two classes is indeed strikinglI west qua_sinormal frequendyf. Figs. 8-13 as it di(.j in
different. We refer the reader {d] for the results ind=3. lat Spacet"’.“e[24]- (Scalar quasinormal frequencies  of
(i) Waveforms and spectra for small black holes, _Schwarzschnd—AdS plack holes can be foungr6].) Most
=0.1. We plot the waveforms and the spectra. Figures 4_47mportantly, the location of th_e peak seems to_ha\_/e a strong
are typical plots for small black holes of waveforms anddependen_ce Oy (pompare Flgs. 10 and 13Th|s discrep-
spectra fol=0 andl=1 (for =2 and higher the conclu- ancy has its roots in thg behavior pf the quasmorm.al frequen-
sions are not alteredThey show the first interesting aspect cies. In fact, whereas |(asymptot|cally flat spacetime the
of our numerical results: for small black holes the0 sig- real part of the frequency IS boiunded anq seems to go to a
nal is clearly dominated by quasinormal, exponentially de_cons@an[ZS], n A_dS_spacetlme it grows without bouno_l asa
caying, ringing modes with a frequenay~d—1 (scalar functl_on of the pr|nC|paI quantum. numbm[4,6]. Increasing
guasinormal frequencies of Schwarzschild—AdS black holeghe d'StaT‘CGO a? wh|c'h the part|cle. begins to fall has the
can be found ir{4,6]). This particular limit is a pure AdS effe_ct of increasing this effect, so higher modes seem to be
mode [20,21]. For example, Fig. 4 gives, fod=4, o excited at larger distances.
=2m/T~2x/(10/4.5)2.7. This yields a value near the

pure AdS mode fod=4, w=3. Likewise, Fig. 4 givesw B. Discussion of results

~4 whend=5, the pure AdS mode fod=5. All these Two important remarks regarding these results can be
features can be more clearly seen in the energy spectra ploisade.

Fig. 6, where one can observe the intense pealatd (i) The total energy radiated depends on the size of the

—1. The conclusion is straightforward: spacetimes withinfalling object, and the smaller the object is, the more en-
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ergy it will radiate. This is a kind of scalar analog in AdS verse of the imaginary part of the quasinormal frequency,
space of a well known result for gravitational radiation in flat which means that the approach to thermal equilibrium on the
space 26]. CFT should be governed by this time scale. We have shown
(ii) The fact that the radiation emitted in each multipole isthrough a specific important problem that this is in fact cor-
high even for high multipoles leads us to another importantect, but that it is not the whole story, since some important
point, first posed by Horowitz and Hubef]. While we are  features of the waveforms highly depend pn
not able to guarantee that the damping time scale stays Overall, we expect to find the same type of features, at
bounded away from infinityas it seemjs it is apparent from least qualitatively, in the gravitational or electromagnetic ra-
the numerical data that the damping time scale increases wittliation by test particles falling into a Schwarzschild—AdS
increasing. Thus it looks like the late time behavior of these black hole. For example, if the black hole is small, we expect
kinds of perturbations will be dominated by the largést to find in the gravitational radiation spectra a strong peak
mode (.~ /Size of object), and this answers the ques-located atw?=4n?+1(1+1), n=1,2, ... [5]. Moreover,
tion posed in[4]. Thus a perturbation i{F2) in the CFT  some major results in perturbation theory and numerical rela-
with given angular dependendg on S® will decay exponen-  tivity 27,28, studying the collision of two black holes, with
tially with a time scale given by the imaginary part of the masses of the same order of magnitude, allow us to infer that

lowest quasinormal mode wittnat value ofl. evolving the collision of two black holes in AdS spacetime
should not bring major differences in relation to our results
IV. CONCLUSIONS (though it is of course a much more difficult task, even in

n?erturbation theory In particular, in the small black hole
regime, the spectra and waveforms should be dominated by
quasinormal ringing.

We have computed the scalar energy emitted by a poi
test particle falling from rest into a Schwarzschild—AdS
black hole. From the point of view of the AdS/CFT conjec-
ture, where theglarge black hole corresponds on the CFT
side to a thermal state, the infalling scalar particle corre-
sponds to a specific perturbation of this st@a expanding This work was partially funded by Fundapara a Cia-
bubble, while the scalar radiation is interpreted as particlescia e Tecnologia(FCT) through project PESO/PRO/2000/
decaying into bosons of the associated operator of the gaug®14. V. C. also acknowledges financial support from FCT
theory. Previous workf4,6] have shown that a general per- through the PRAXIS XXI program. J. P. S. L. thanks Obser-
turbation should have a timescale directly related to the invatario Nacional do Rio de Janeiro for hospitality.
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